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Abstract 13 

Condition assessments and rating systems are frequently used by field engineers to assess 14 

inland navigation assets and components. The goal of these assessments is to initiate 15 

effective risk-informed budget plans for maintenance and repair/replace. Ideally, a 16 

degradation model of every component failure mode in the gate would facilitate 17 

maintenance decision-making. However, sometimes there is no clear physical 18 

understanding how a damage progresses in time; for example, it isn’t clear how the 19 

bearing gaps change in time in the quoin blocks of a miter gate. Therefore, this is one 20 

motivation for the framework proposed in this paper, which integrates Structural Health 21 

Monitoring with a Markov transition matrix built from historical condition assessment. 22 

To show the applicability of this framework, two examples are presented of how to find 23 

the optimal time to plan for maintenance of components in miter gates i) static 24 

maintenance planning based on operational condition assessment (OCA) ratings only and 25 

ii) dynamic maintenance planning based on integration of damage diagnostics based on 26 

monitoring data and failure prognosis based on OCA ratings. In addition, this paper 27 

presents a new Bayesian approach to estimate the ratio of errors in the OCA ratings, 28 

which allows for improved accuracy in OCA rating-based prognosis.  29 

 30 
Keywords: Miter gates; Uncertainty quantification; Weibull analysis, Surrogate model, 31 

Damage estimation, Bayesian, Remaining useful life, Markov process.  32 
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1. Introduction 33 

The U.S. Army Corps of Engineers (USACE) maintains and operates 236 locks at 34 

191 sites in the United States [1]. More than half of these structural assets have surpassed 35 

their 50-year economic design life [2]. For the USACE portfolio, a maintenance planning 36 

framework is needed for the navigation structures that are under the SMART Gate 37 

program [3], which consists of several lock sites including Dalles Navigation Lock, Lock 38 

27, Greenup Lock (used in this work), and Meldahl Lock on the Mississippi River [4]. In 39 

this work, the component of interest is the bearing gap in the quoin blocks. The 40 

deterioration of the quoin blocks is broadly manifested as a small gap because of the loss 41 

of contact between the quoin block attached to the gate and the wall that supports the gate 42 

laterally. The formation of this gap can be detected using sensor data or from features 43 

derived from this data [5,6]. It is important to optimize the maintenance of quoin block 44 

components because they directly control the lateral boundary conditions, which affect 45 

the stress profile in horizontally-framed miter gates, where over-stresses exceeding a 46 

certain threshold can lead to structural failure. Currently, contact blocks are effectively a 47 

continuous single piece of steel, which during maintenance requires the entire piece to be 48 

replaced even if only part is damaged [7]. However, replacement cost is relatively low 49 

compared to the downtime cost during maintenance or when failure occurs. Therefore, it 50 

is necessary to optimize the maintenance considering not only repair/replacement costs 51 

but also the impact (consequence) costs when a miter gate is not operational. 52 

Maintenance planning has been extensively studied for various engineering systems 53 

in the past decades. Current approaches can be roughly classified into two categories, 54 

namely time-based maintenance (TBM) and condition-based maintenance (CBM). TBM 55 

(also known as periodic maintenance) assumes that the estimated failure behavior is 56 

statistically or experientially known [8]. Statistical modelling such as Weibull analysis 57 
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[9] is widely used in TBM to identify failure characteristics of a component or system. 58 

The goal of TBM models is to find the optimal policy that minimizes a cost function. 59 

TBM approaches have been developed for both repairable or nonrepairable systems [10], 60 

and the complexity of the TBM approach correlates to the complexity of the structural 61 

system. Applications for single-component or multi-component systems are found in 62 

[11,12] and [13,14], respectively. A more extensive review of TBM applications can be 63 

found here [15]. In this work, a single component system TBM model is first considered 64 

and later compared with a CBM model.   65 

CBM has gained increasing attention recently as a preferred approach to TBM. CBM 66 

combines data-driven reliability models and information from a condition monitoring 67 

process (e.g. continuous monitoring, periodic inspection, or non-periodic inspection). 68 

Based on the underlying degradation process, CBM models can be categorized into two 69 

subgroups: (1) models that assume discrete-state deterioration and (2) models that assume 70 

continuous state deterioration. An extensive list of CBM applications may be found in 71 

[16–19], primarily used for mechanical, aerospace, or manufacturing systems. For large 72 

civil engineering infrastructure, most of the applications have been applied specifically 73 

to bridge engineering [20–22]. In CBM, maintenance schedules are predicted based on 74 

methods integrating current state diagnostics and future state prognosis. These methods 75 

may be classified into physics-based (e.g., a finite element (FE) model) [23–25], data-76 

driven (e.g., a Marko transition matrix or other probabilistic method) [26–29], and hybrid 77 

approaches [30,31].  A hybrid approach that combines physics-based knowledge with in-78 

situ data to improve the CBM predictive capabilities is the focus of this paper. For the 79 

case of the miter gate (and many other structural applications), an FE model to predict 80 

the miter gate response for diagnostics is employed, due to the lack of field data. In order 81 

to use a physics-based approach for prognostics, a degradation state equation would be 82 
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needed. The degradation of some critical components of the miter gate, however, is not 83 

fully well understood. A random-walk state equation could be assumed; as is shown in 84 

this paper, a random-walk state equation will lead to large errors, even though it might be 85 

good enough for damage diagnostics. This work proposes a new hybrid approach to 86 

overcome this challenge by integrating physics-based structural health monitoring (SHM) 87 

with a statistically-based state transition matrix, which is obtained from operational 88 

condition assessment (OCA) data. The OCA rating is an assessment obtained from an 89 

inspection process, which uses existing data from periodic and non-periodic inspections, 90 

including corrosion tests and dive reports. The objective of the OCA process is to obtain 91 

global consistent operational condition data to identify the current condition states of the 92 

USACE infrastructure  [32]. According to the literature, hybrid approaches have not been 93 

studied as extensively as noted in [33] and even less for large civil infrastructure systems 94 

or miter gates. While the focus in this paper will be on horizontally-framed miter gates, 95 

the framework is applicable to other structures that have both online health monitoring 96 

systems and available condition rating data (e.g. OCA).  97 

The contributions of this paper can be summarized as: (1) development of a new 98 

hybrid CBM approach that integrates high-fidelity FE model-based SHM with inspection 99 

data-based transition matrix for effective diagnosis, prognosis, and maintenance 100 

planning; (2) quantification of effects of uncertainty in OCA ratings on maintenance 101 

planning; (3) a new Bayesian scheme to update the error ratio in the OCA ratings; (4) 102 

surrogate modeling method to overcome the computational challenge in FE model-based 103 

SHM; and (5) application of the proposed framework to a miter gate problem.  104 

Next, an overview of the proposed framework will be provided. Following that, the 105 

proposed framework is explained in detail. 106 

 107 
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2. Overview of proposed framework 108 

Fig. 1 presents an overview of the proposed framework for optimal maintenance 109 

decisions for deteriorating components in miter gates. As shown in this figure, the 110 

proposed framework consists of four main modules, namely (1) failure prognosis based 111 

on OCA ratings, (2) maintenance planning, (3) damage diagnosis using physics-based 112 

simulation, and (4) integration of failure diagnosis and prognosis to achieve on-line 113 

planning and updating. These four modules are systematically integrated together to 114 

perform two types (static and dynamic) of optimal maintenance decisions for miter gates. 115 

 116 

 117 
Figure 1: Overview of proposed framework for optimal maintenance decisions for 118 

deteriorating components in miter gates  119 

The term static refers to the inability to update the current or future state based on the 120 

changes that a component of the system undergoes. The static maintenance planning is 121 

only based on the field OCA ratings from a large population of miter gates. The obtained 122 

maintenance decisions are therefore general to the population of miter gates and are not 123 

specific for a specific gate. Thus, the maintenance planning may not be truly optimal for 124 

a specific gate. For the static maintenance planning, there are several uncertainties to be 125 

addressed, such as how to justify a maintenance decision and how to deal with the 126 

uncertainty in the OCA rating due to incorrect rating assignments, i.e., ratings due to 127 
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protocols are sometimes given to components even when they are not inspected.  128 

Many miter gates are equipped with sensors which can collect strain measurement. 129 

data in real time, e.g., the SMART Gate program mentioned earlier [3]. Based on the 130 

online monitoring data and the high-fidelity physics-based simulations, the damage 131 

condition is estimated using Bayesian methods. The real-time damage diagnosis provides 132 

damage information at individual gate level, which offers an opportunity to achieve 133 

optimal maintenance planning and dynamic maintenance decisions. The integration of 134 

failure diagnosis and prognosis (as shown in Fig. 1) faces several challenges. For instance, 135 

the high-fidelity physics-based simulation model is computationally expensive, which 136 

makes Bayesian damage estimation challenging; the OCA ratings are highly abstracted 137 

and are assigned at a different time scale than the online monitoring system. The proposed 138 

framework tackles the above challenges by using the information from field OCA ratings, 139 

physics-based simulation, and online monitoring data.  140 

Each of the following sections explains in detail the four modules mentioned earlier. 141 

Section 3 and 4 describe the static maintenance planning based only on the field OCA 142 

ratings from a large population of miter gates. Section 5 and 6 describe the formulation 143 

and application, respectively, of the dynamic maintenance planning based on the 144 

integration of prognosis models (i.e. physics-based FE model) and historical inspection 145 

data (i.e. field OCA ratings). More specially, Section 5 explains the damage diagnosis 146 

using physics-based model updating using two different degradation models (i.e. state 147 

equation) and formulates the integration of failure diagnosis, Bayesian updating of the 148 

error ratio of the OCA ratings based on damage diagnosis, and prognosis to achieve on-149 

line planning and updating. Section 6 describes a real-world application example of the 150 

framework described in Section 5. 151 

 152 
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3. Failure prognosis based on OCA ratings 153 

3.1 Deriving a transition matrix from OCA ratings 154 

The USACE Asset Management team oversees the OCA process to assess structural 155 

component deficiencies by giving a category rating based on a condition and performance 156 

criteria. The ratings are classified as A (Excellent), B (Good), C (Fair), D (Poor), F 157 

(Failing) and CF (Completely Failed). More detailed definitions and discussion may be 158 

found in [2]. A transition matrix P (see Eq. (1)) is defined as a square matrix with 159 

nonnegative values that represents how some process “transitions” from one state to the 160 

next. In this application, an inspected OCA rating at time t, , (which represents the 161 

OCA rating is i at time t, with i=1…6, corresponding to the 6 letter ratings specified 162 

above), will transition to inspected state at time t+1, , according to 163 

   (1) 164 

Based on an OCA database, the number of times that a component transitioned from 165 

one rating category to another (as determined by engineering expert elicitation) over a 166 

given inspection time step was determined to generate the rating transition matrix. Each 167 

value in the transition matrix represents a conditional probability, and the sum of each 168 

row equals unity after normalizing the counts. Only the upper triangular components were 169 

considered to simulate component deterioration; the lower triangular components would 170 

represent improvements or repairs (transitions from a worse condition to a better 171 

condition), and for the purposes of this analysis, they were ignored. Fig. 2 shows the 172 

overall process for generating this one-step transition matrix P. The foundational data 173 

used to generate the counts were obtained from the OCA ratings database for navigation 174 

locks corresponding from January 2010 to June 2018, which was provided by USACE 175 
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personnel. 176 

 177 
Figure 2: 1-step (1 year) transition matrix for quoin block components 178 

 179 

3.2 Unreliability (failure) function using transition matrix for component reliability 180 

A failure cumulative mass function, which can approximate the probability of failure 181 

cumulative density function, can be obtained by calculating the transition probabilities 182 

after n time steps. In this case, failure is defined to be achieving the rating “CF”. The 183 

probability that a critical component goes from OCA rating 𝑖 to OCA rating 𝑗 after n 184 

inspection time steps is calculated by raising the transition matrix to the power of n, 185 

 . (2) 186 

The conditional probability n-step transition matrix Eq. (1) can then be used to 187 

transition some initial OCA rating probabilities for each rating to the state probabilities n 188 

time steps later, or 189 

 ,  (3) 190 

( ), , , 1, ,6;n
j t n i tP I I i j i+ = " = ³P !

( ) ( ) ( ) ( ) ( ) ( )1, 2, 3, 4, 5, 6, 0( ) [ , , , , , ] ( ) n
n n n n n n nP P I P I P I P I P I P I P= = ×I I P



9 
 

where  is the predicted OCA rating at time , and  is the initial 191 

inspected OCA rating probability, i.e., 192 

 .  (4) 193 

Fig. 3 shows the unreliability function , , of the quoin block component with the 194 

component age in years with the initial state probability specified as , 195 

i.e., the gate begins its OCA rating fully in rating “A”. This is a reasonable assumption, 196 

but any initial OCA rating could be specified if other information is known, e.g., some 197 

initial degradation is possibly present at the initial time. 198 

 199 
Figure 3: Unreliability function of quoin block component [34] 200 

 201 

4. Static Optimal Maintenance Decision of Miter Gates Based on OCA Ratings  202 

4.1. Failure time distribution modeling via Weibull analysis 203 

The predictions about the life (i.e. reliability) of any component over time t in a 204 

structure may be fit to a Weibull distribution [9], which is commonly used in life cycle 205 

analysis. The reliability function, , based on the Weibull distribution is:  206 

   (5) 207 
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where , , and  are the reliability, shape parameter, and characteristic life (scale 208 

parameter), respectively. The shape parameter  must be greater than 1.0 to justify 209 

preventive maintenance due to wear out failures [4,35]. The characteristic life (or scale 210 

parameter)  represents the point in time when there is a 63.2% (when  in Eq. (6)) 211 

chance of failure of the component. The corresponding failure time distribution, ,  is 212 

given by 213 

 . (6) 214 

For the locks and dams comprising the USACE infrastructure portfolio, the typical 215 

Periodic Inspection (PI) of the lock and dam varies from every year to occurring to a 216 

maximum of every 5 years [36]. However, the dewatering of a lock is much less frequent, 217 

often spanning multiple PI intervals. Therefore, unless there is evidence of degradation 218 

of a component that cannot be inspected, it is given a “B” rating. If a component was 219 

previously given something less than a “B” rating, and it is known that no work has been 220 

performed, the rating is carried over. Thus, many of the given “B” ratings are not the 221 

result of an actual inspection; this is particularly true for any component that is submerged 222 

underwater. Based on direct communication with USACE personnel, this is true for all 223 

components that are “unable to be inspected at that time, which is essentially the innocent 224 

until proven guilty mindset”. After analyzing the data, it was clear that the counts 225 

remaining at B after 1 year were very large (see counts of staying at B in Figure 2). Also, 226 

it was noted that many historical OCA ratings of quoin block components didn’t transition 227 

all the way from A to CF. Sometimes, the components were replaced/repaired before 228 

passing to C, D or F (or they just simply not recorded). Therefore, after discussing with 229 

USACE engineers, the source of uncertainty of the B ratings needs to be accounted for in 230 

the failure time analysis and maintenance planning. 231 
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Fig. 4 shows how the unreliability function, F(t), changes when the transition matrix 232 

changes due to the uncertainty associated in the states remaining at “B” as explained 233 

before. 234 

 235 
Figure 4: Unreliability function considering uncertainty in the condition rating protocol 236 

The variability in the unreliability function was obtained by considering that the 237 

counts of remaining in state “B” that corresponded to an actual inspection was some ratio 238 

of the total counts reported (i.e., Binspected/Btotal varies from 0 to 1).  239 

 240 

4.2. Static optimal maintenance based on failure prognosis 241 

Based on the unreliability function F(t), the optimal maintenance time can be found 242 

by minimizing the cost function proposed by [10] to find the cost per unit of time (CPUT) 243 

of performing preventive maintenance at time t (in years) as follows: 244 

   (7) 245 

where  is the preventative action cost, and  is the unplanned action cost. The 246 

denominator of Eq. (7) represent mean time between maintenance actions. Note that  247 

Eq. (12) has more meaning when the cost ratios, , are considerably greater than 1, 248 

otherwise the numerator would behave as a constant function. Fig. 5 shows the CPUT 249 
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computed for different cost ratios , without considering the previously discussed 250 

uncertainty in the “B” ratings. For some miter gate, it was suggested by USACE personnel 251 

that the corresponding cost ratio is close to 5 based on cost data from lock 14 (located in 252 

the Arkansas river), which would result in a toptimal of about 48 years implied by Fig.5 if 253 

that were the case. 254 

 255 
Figure 5: CPUT based on transition matrix with Binspected/Btotal = 1. 256 

To understand the advantage and cost savings, the CPUT value at the optimal value 257 

is compared with the CPUT at other repair/replacement times, which can represent the 258 

average time that USACE regularly performs maintenance on quoin blocks. Fig. 6 shows 259 

the percentage savings using the optimal maintenance as a function of the average actual 260 

maintence time cycle. Note that if the actual maintenance time is already at its optimum, 261 

the percentage of savings is equal to 0%. 262 

Fig. 7 shows the CPUT computed for different cost ratios when considering the 263 

uncertainty in the “B” rating in a given year. The results clearly show a lot of variability 264 

in the CPUT, and consequently in the optimal time to perform maintenance (i.e., the time 265 

when CPUT is minimized). For example, the minimum CPUT varies from 0.05 to 0.15 266 

for , which is an increment of 200%. Note that the variability is larger as the 267 

cost ratio increases. 268 

/u pC C

/ 5u pC C =
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 269 
Figure 6: % Savings based on actual maintenance time 270 

 271 
Figure 7: CPUT with Binspected/Btotal from 0 (upper curves) to 1 (lower curves). 272 

Fig. 8 shows the variability in the optimal maintenance time (between 16 and 48 273 

years) when the cost ratio is equal to 5 (the USACE miter gate case). The variability is 274 

more pronounced when the cost ratio is small as shown in Fig. 9. The modal values at the 275 

ends represent the toptimal (at minimum CPUT) when Binspected/Btotal approaches to 0 and 1 276 

in the left and right end respectively. The reason is because as the Binspected (due to 277 

Binspected/Btotal  = 1) approaches a large value,  the normalized value in the transition matrix 278 

is still a large value. In other words, the transition probability, , is closer to 1 279 

and larger relatively to the other transition probabilities from  (i.e. , 280 

, , and ). Therefore, the normalized values 281 

in the transition matrix do not change as much, and consequently the toptimal does not 282 

change as much. Similar behavior is observed when Binspected (due to Binspected/Btotal = 0) 283 

( )1t tP B B+

tB ( )1t tP A B+

( )1t tP C B+ ( )1t tP D B+ ( )1t tP F B+ ( )1t tP CF B+
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approaches to 0. Except that, , is closer to 0 and smaller relative to the other 284 

transition probabilities. 285 

 286 
Figure 8: Variability in optimal maintenance time for Cu/Cp = 5 287 

 288 
Figure 9: Variability in optimal maintenance time for different cost ratios 289 

Table 1 summarizes the statistics of the time variability shown in Figures 8 and 9. 290 

Based on these statistics, the average optimal maintenance time considering only the 291 

reliability of quoin block in miter gates would be almost 31 years. As mentioned earlier, 292 

the cost ratio for lock 14 is close to 5, so an interpolation can be made for the optimal 293 

maintenance between 4 and 5 if needed. Also, the reason why larger cost ratio values (e.g. 294 

10, 20 and 50) were considered is because miter gates in the Mississippi river or other 295 

( )1t tP B B+
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rivers would have higher traffic demands than lock 14. In other words, the downtime cost 296 

for these gates will logically be increased (  would be larger).  297 

Table 1: Optimal maintenance time (years) statistics 298 

Cp/Cu Mean SD Max Min 
50 8.82 2.59 13 2 
20 13.47 3.60 19 5 
10 19.27 4.99 27 10 
5 30.75 9.09 48 16 
4 38.52 13.48 69 20 

 299 

Up to this point the maintenance planning has been depending only on the historical 300 

inspection data (i.e. field OCA ratings). However, current state (or damage) estimation 301 

can enable dynamic decision making, which may lead to reduced lifecycle cost. To 302 

achieve this, Sec. 5 proposes the integration of diagnostic models (i.e. physics-based FE 303 

modeling) and historical inspection data (i.e. field OCA ratings). As mentioned before, 304 

the following section formulates the integration of failure diagnosis and prognosis to 305 

achieve on-line planning and updating. 306 

 307 

5. Integration of Damage Diagnosis and Failure Prognosis for Dynamic 308 

Maintenance Planning of Miter Gates 309 

As demonstrated in Sec. 4, optimal maintenance highly depends on the evolution of 310 

the damage, e.g., how fast the probability of “CF” changes with time. Ideally, a 311 

degradation model of every damage level present in every component in the gate would 312 

facilitate the maintenance decision-making process. However, sometimes there is not a 313 

clear understanding of how the damage evolves with time. For example, such is the case 314 

with miter gates, where it is not understood how the bearing gaps change in time. This is 315 

one motivation for integrating SHM with the Markov transition matrix. Figure 10 shows 316 

more details of the proposed framework to integrate SHM with the Markov transition 317 

uC



16 
 

matrix. As shown in this figure, the proposed framework first estimates the damage sate 318 

(i.e. gap length) using online SHM data. The estimated gap length is then used to update 319 

the error ratio in the “B” ratings. Based on that, the Markov transition matrix is updated, 320 

which will be used for failure prognosis and dynamical optimal maintenance planning. In 321 

what follows, each element of the proposed framework is explained in detail. 322 

 323 
Figure 10: Overview of the proposed framework 324 

5.1 Sequential damage estimation using physics-based simulation 325 

Let  be the strain measurement data at time step , where  is 326 

the number of strain sensors, the posterior probability density function of the gap length 327 

 at time step  conditioned on strain measurements  collected up 328 

to  is given by 329 

   (8) 330 

where  is given by 331 
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   (9) 332 

with  being the likelihood function (from the measurement equation) of 333 

observing  for given  at time step , and  is the PDF of  for a given 334 

 obtained from the state equation which describes the damage evolution over time. 335 

As illustrated in Fig. 10, the physics-based simulation model is employed as the 336 

measurement equation in this paper. The likelihood function , assuming that the 337 

observations   are statistically independent, is computed by 338 

   (10) 339 

where  is the PDF of the standard normal distribution,  is the standard deviation 340 

of the observation noise, and  is the mean strain response prediction at the location 341 

of the j-th sensor obtained from the physics-based simulation. 342 

Since the physics-based computer simulation model is used to predict 343 

 and the likelihood function  needs to be evaluated 344 

numerous times during the sequential damage estimation, this is computationally 345 

burdensome. To address this challenge, a surrogate model is constructed for the strain 346 

response at  strain locations as , where 347 

 is the strain response prediction at the j-th sensor location and 348 

 including the gap length ( ) and other model parameters ( ) such as 349 

hydrostatic and thermal loads applied to miter gates.   350 

To build such a surrogate model and tackle the challenge of the high-dimensional 351 

output during surrogate modelling, N training points are first generated for  and are 352 
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denoted as . From physics-based simulations, a data matrix of the 353 

strain responses for N training points is obtained as below 354 

   (11) 355 

where  is the strain response with 356 

inputs ,  is the strain response at the j-th sensor location, and 357 

 is the number of sensors as discussed before.  358 

The data matrix  shown above is then compressed using singular value 359 

decomposition (SVD) as 360 

   (12) 361 

where  is a  orthogonal matrix,  is a  orthogonal matrix and  is a 362 

 rectangular diagonal matrix with non-negative real numbers  363 

on the diagonal, in which  is minimum of  and .  364 

Defining another matrix as , the original data matrix  can be reconstructed  365 

   (13) 366 

where  is the i-th row of ,  is the i-th row of ,  is the 367 

element of  at i-th row and j-th column,  is the j-th important feature vector used to 368 

approximate , and r is the number of features retained in the decomposition.  369 

Eq. (13) shows that the variation in the high-dimensional response across the design 370 

domain mainly comes from the variation in , which 371 

denotes the value of  for i-th training point. With the training points of 372 
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 and , , a surrogate models is constructed 373 

for and   as  using the Kriging surrogate 374 

modelling method. In Kriging surrogate modelling,  is approximated as 375 

   (14) 376 

where  are coefficients of the trend function , and  is a 377 

stationary Gaussian process with correlation function  between the responses at 378 

any two points given by  379 

   (15) 380 

in which  is the number of variables, and  is a vector of roughness 381 

parameters.  382 

The hyper-parameters  can be estimated using the maximum 383 

likelihood estimation method (used in this paper) or the least-squares method. After the 384 

estimation of the hyper-parameters , for any given inputs , the GP prediction is a 385 

Gaussian random variable given by 386 

   (16) 387 

where  and  are respectively the mean and variance of the prediction of  388 

at input . Combining Eqs. (13) and (16), the strain response in the original space (i.e.  389 

strain at . . locations) of the kriging surrogate model can be expressed as 390 

   (17) 391 

For any given , the prediction of the strain response in the original space is 392 

given by 393 
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   (18) 394 

where  and . The covariance of 395 

 and  is given by 396 

   (19) 397 

For sensor locations , after considering uncorrelated and unbiased observation 398 

noise, the diagonal entries of the covariance matrix become 399 

   (20) 400 

After substituting the original physics-based simulation with the surrogate model as 401 

discussed above, the likelihood function  in the sequential damage estimation 402 

is computed by 403 

   (21) 404 

where the mean and covariance terms are given by  405 

 and , computed by 406 

plugging  into Eqs. (16) and (17). 407 

From Eqs. (10) to (21), the computation of  has been discussed in the 408 

sequential damage estimation using a physics-based simulation model. As indicated in 409 

Eqs. (8) and (9), an important step in the sequential damage estimation is the evaluation 410 

of , which is usually based on the state equation of the damage propagation. 411 

As mentioned previously, however, the degradation mechanism of the miter gate is 412 

complicated and not fully understood; there is no appropriate physics-based degradation 413 

model available that can adequately describe the growth of the gap. The only known 414 
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information is that the gap will grow over time (no self-repair/replace). In this situation, 415 

the following minimally informed state equation is employed 416 

   (22) 417 

in which  is a sufficiently large process noise term that imposes random gap growth 418 

over time, i.e., gap growth is a random walk. Since the gap can only grow over time, a 419 

Weibull process noise with a shape parameter of 0.5 and a scale parameter of 1.2 is used 420 

in this paper which is able to cover a wide range (from 0 to 228 cm) of gap growth rate. 421 

By recursively implementing Eqs. (8) and (9), the miter gate gap length is estimated 422 

based on the online strain measurement data. In this paper, the particle filtering (PF) 423 

method [37] is employed to perform the sequential damage estimation through the online 424 

strain measurement and the physics-based simulation. Let the particles from the (n-1)-th 425 

time step after performing prediction using the state equation be , 426 

where  is the number of particles in particle filtering, the posterior distribution at the 427 

n-th time step is obtained by resampling the particles according to the following weights  428 

   (23) 429 

where  is obtained by plugging  into Eq. (21). 430 

As being shown in Sec. 6.2, the state equation given in Eq. (22) allows for effective 431 

damage estimation through sequential Bayesian inference. Let the distribution parameters 432 

of  be  and , where  is the scale parameter of Weibull distribution and  is 433 

the shape parameter of the distribution, if the state equation given in Eq. (22) is used for 434 

prognosis, the gap length  after  months ( , prognosis over 30 months) can 435 

be approximated as a normal distribution as below according to the central limit theorem 436 

   (24) 437 
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where  stands for a random gap length,  is a specific realization of ,  is the 438 

current gap length,  and  are 439 

respectively the mean and variance of . 440 

The probability that the remaining useful life (RUL), , is less than a specific value 441 

, is then given by 442 

   (25) 443 

in which  is the gap failure threshold (i.e., 381 cm. this paper). 444 

Based on the above equation, the  confidence interval of the RUL conditioned 445 

on the current gap length  is derived as 446 

   (26) 447 

where  is given by 448 

   (27) 449 

The unconditional  confidence interval of the RUL can then be computed by  450 

   (28) 451 

in which  is the posterior distribution of  obtained from the damage 452 

diagnosis. 453 

If the state equation given in Eq. (22) is accurate, the above equations allow to 454 

analytically estimate the RUL. Due to the large process noise  and the discrepancy 455 

between the state equation and the underlying unknown degradation model, Eq. (22) 456 

could lead to large error in the remaining useful life (RUL) estimation when it is applied 457 

to the failure prognosis (see the result in Sec. 6.3). Therefore, the state equation Eq. (22) 458 
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cannot be used for optimal maintenance planning. Motivated to overcome this limitation, 459 

the physics-based damage estimation is integrated with the Markov transition matrix in 460 

the subsequent sections for (1) updating of the error ratios in the “B” ratings, and (2) 461 

failure prognosis of the miter gate based on SHM and transition matrix. 462 

 463 

5.2 Updating of “B” ratings error ratio based on online damage estimation 464 

As been shown in Secs.4.1 and 4.2, the uncertainty in Binspected/Btotal could significantly 465 

affect the failure prognosis results and maintenance planning. In order to reduce the 466 

uncertainty using the damage estimation technique developed in Sec. 5.1, a mapping of 467 

the estimated gap length  on to an OCA rating is performed as follows: 468 

   (29) 469 

where  is a function that maps a gap length  to an OCA rating  at time 470 

step , and  are the gap length thresholds used to partition the gap 471 

domain into OCA ratings. 472 

In order to use the estimated OCA ratings to update the error ratio of the “B” ratings, 473 

the variable Binspected/Btotal is defined as .   is then updated using 474 

Bayesian method based on the damage estimation as follows 475 

   (30) 476 

in which  are the estimated OCA ratings of time steps  to  from 477 

the SHM system by mapping the estimated gap lengths into OCA ratings using Eq. (29), 478 
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 is the prior distribution of , the non-informative uniform distribution  479 

is used in this paper (i.e. ), and  is the likelihood function of 480 

observing  for given . 481 

Since the estimated  are uncertain due to the uncertainty in 482 

,  Eq. (30) is rewritten as follows by considering the uncertainty in  483 

   (31) 484 

where  is an observation realization of  obtained from the physics-485 

based damage estimation in Sec. 5.1, and  is given by 486 

   (32) 487 

Defining the posterior samples of gap length from Sec. 5.1 as488 

 (see Eq. (23) in Sec. 5.1), where  is the number of 489 

particles in particle filtering and  is the k-th particle at time step . Using the posterior 490 

samples from  to , Eq. (31) is approximated as   491 

   (33) 492 

where  is the k-th realization of the gap length estimation, and 493 

 is given by 494 

   (34) 495 

in which 496 

   (35) 497 

The  is computed based on the OCA rating transition matrix as  498 
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   (36) 499 

where  is an element of  with index of the element determined by 500 

 given in Eq. (29).  501 

 is obtained using a transition matrix conditioned on  (see Secs. 3.2 and 4.1) 502 

as follows   503 

   (37) 504 

in which  is a modified transition matrix to account for the difference in the time 505 

scales of the SHM system and the 1-year transition matrix obtained from inspection data. 506 

For instance, in this paper the time scale of the SHM system is in months; therefore, 507 

 in which  is obtained by following the procedure depicted in  508 

Fig. 2 and setting . 509 

Using Eqs. (31) through (37), the error ratio of the “B” ratings can be updated over 510 

time based on the SHM damage estimations. Next, it is discussed how to perform failure 511 

prognostics and maintenance planning based on the updating.  512 

 513 

5.3 Failure prognosis and dynamic optimal maintenance planning 514 

As indicated in Fig. 10, the above sequential damage estimation (using physics-based 515 

simulation in Sec. 5.1) and the updating of the error ratio (Sec. 5.2) are integrated with 516 

the transition matrix to overcome the challenge that there is no degradation model 517 

available for failure prognosis. To achieve this purpose, the probability mass function 518 

(PMF) of a certain OCA rating is computed based on the posterior distribution of the gap 519 

length obtained from physics-based damage estimation (Sec. 5.1) and the mapping from 520 

gap length to OCA rating in Eq. (29). Taking the OCA rating “ ” (i.e. the OCA rating 521 
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is i at time step ) as an example, the PMF of “ ” conditioned on the strain 522 

observations  collected up to current time step , is given by 523 

   (38) 524 

in which  is the probability operator and  is the posterior distribution 525 

obtained from damage estimation as discussed in Sec. 5.1. 526 

Since particle filtering method is employed, the PMF  is approximated as 527 

   (39) 528 

where  are the posterior samples at ,  529 

and , otherwise.  530 

Based on the above equation, the PMF of all COA ratings conditioned on  can be 531 

expressed as 532 

   (40) 533 

Combining Eqs. (40) and (3), the OCA rating after m time steps conditioned on 534 

current strain observations ( ) and given value of the error ratio  is given by 535 

   (41) 536 

where  is the transition matrix given in Fig. 2 for given . 537 

The cumulative density function (CDF) of the remaining useful life is then computed 538 

as 539 
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   (42) 540 

where  is the failure probability in the future m time steps conditioned on  541 

and , and  is the posterior distribution of  obtained in Sec. 5.2.  542 

With strain observations collected through the sensors, the gap length and error ratio 543 

are updated over time through the damage estimation discussed in Sec. 5.1 and the error 544 

ratio updating scheme in Sec. 5.2. The RUL is then updated through Eqs. (38) and (42). 545 

The results of a miter gate application show that integrating physics-based damage 546 

estimation and the Markov transition matrix allows for effective RUL estimate even 547 

through there is no degradation model available. 548 

Based on the failure prognosis, the  in the future m time steps conditioned 549 

on the current strain observations and an error ratio  is given by 550 

   (43) 551 

where  is the failure probability given in Eq. (42), which needs to be 552 

interpolated from discrete time steps to continuous time step to evaluate the  553 

for any given future time.  554 

The expected optimal maintenance plan conditioned on current observations, , is 555 

then identified as 556 

   (44) 557 

The above equation is the result of integrating SHM with the Markov transition matrix 558 

based on field OCA ratings, which allows updating the optimal maintenance plan over 559 
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time. This enables for dynamic decision making and thus leads to reduced lifecycle cost. 560 

Next, a miter gate application is used to demonstrate the effectiveness of the proposed 561 

framework and investigate effects of the mapping function on the decision-making 562 

process. 563 

 564 

6. Application to Miter Gate Failure Prognosis and Maintenance Optimization 565 

In this section, the proposed framework is applied to an in-service USACE miter gate 566 

to demonstrate the effectiveness of the proposed prognosis and maintenance optimization. 567 

6.1 Physics-based simulation model of miter gate 568 

A FE model of the Greenup miter gate (Kentucky, USA) is used to understand the 569 

physics of a real-world miter gate. This model has been previously validated in the 570 

undamaged condition [5] with the available strain gage readings from the Greenup miter 571 

gate. Due to the SHM network already mounted in the Greenup miter gate [3], the effect 572 

of input parameters such as the gap length (and other parameters such as the hydrostatic 573 

and thermal loads on the gates) to the strain network is analyzed using this validated FEM 574 

model. 575 

The Greenup gate is a relatively new gate where negligible damage (gap length) was 576 

assumed for validation purposes. Most elements in the gate are 3D linear shells elements 577 

to reduce the computational cost of such a large model. A contact-type constraint is used 578 

between the quoin block attached lock wall (denoted in orange) and the gate (denoted in 579 

gray), making this a nonlinear problem. The Lagrange multiplier method was employed 580 

to impose the contact constraint. The strain gauge locations are far from the contact area, 581 

mostly due to physical constraints in the miter gate, but this far-field location also 582 

mitigates errors due to the method employed to enforce the contact constraint. The 583 

opposite side of the lock wall uses fixed boundary conditions, and symmetry boundary 584 
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conditions are used at the right end (i.e., the miter) of the gate to simulate the right leaf.  585 

Figure 11 shows the FE model of the Greenup gate and the modeling of bearing gap 586 

(enclosed area). The bearing gap (loss of contact) is modelled by removing the part of the 587 

quoin block attached to the lock wall (denoted in orange). Note that the size of the bearing 588 

gap in Figure 11 is just representative, as this will be a varying input variable to the FE 589 

model to generate “damage” data extracted from sensor locations in the gate. For more 590 

details on the quoin block mechanism, refer to Figure 8.37b in [38].  591 

        592 
Figure 11: Miter Gate and physical-based FE model 593 

In the next section, the generated data from multiple (i.e. 46 sensors) strain gauges 594 

will be used to develop diagnostics and prognostics capabilities for bearing gaps in miter 595 

gates. 596 

 597 

6.2 Sequential damage detection using physics-based simulation 598 

As discussed earlier, if continuous monitoring is introduced with the Markov 599 

transition matrix then the optimal maintenance plan over time can be updated based on 600 

the information gained by the sensor information using sequential damage estimation. 601 

As discussed in Sec. 5.1, the likelihood function  needs to be evaluated 602 

numerous times during the sequential damage estimation, which is computationally 603 

expensive especially because of the number of DOF in a FE model of a miter gate. A 604 

( | )n nf as
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surrogate model is constructed to map the relation from gap length (and other model 605 

parameters such as hydrostatic and thermal loads applied to miter gates) to the strain 606 

response at the strain gauges locations as shown in Figure 12. This figure shows the 607 

locations where the strain information is extracted from the physical based model to train 608 

the Kriging surrogate model. The sensor location matches with SHM strain network 609 

installed at the Greenup miter gate. 610 

 611 
Figure 12: Sensor locations, and data generated to train surrogate model 612 

Figure 13 shows the Kriging model testing accuracy at one strain SVD important 613 

feature (left) for different input values (i.e. gap length and other model inputs such as 614 

hydrostatic and thermal loads applied to miter gates) and the strain accuracy (in the 615 

original strain space) at different strain gauges locations for the same input value.  616 

 617 
Figure 13: Surrogate modelling accuracy validation 618 

Synthetic input parameters are generated using an autoregressive–moving-average 619 

(ARMA) model. These inputs are evaluated with the validated kriging model to generate 620 
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strain time series measurements at every strain gauge location of the miter gate as shown 621 

in Figure 14. 622 

 623 
Figure 14: Strain observations from sensors 624 

Following the method discussed in Sec. 5.1, the posterior  distribution of 625 

the gap length may be updated dynamically as strain measurements are available from 626 

the SHM network system.  Figure 15 shows the updated predictions of the gap length 627 

against the true damage. 628 

 629 
Figure 15: Damage detection over time using the state equation given in Eq. (22) 630 

The result in Figure 15 shows that the proposed sequential damage estimation method 631 

is able to accurately estimate the damaged gap length based on the strain measurement 632 

data from the 46 sensors as indicated in Figure 12. 633 

1:( | )n nf h s
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 634 

6.3 Estimation of “B” ratings error ratio based on online damage estimation 635 

As described in Sec. 5.2 and indicated in Figure 10, the variable, , 636 

can be recursively updated using the observations obtained from the physics-based 637 

damage estimation. To achieve this, firstly, a mapping between gap length to the OCA 638 

condition rating is needing following Eq. (29). In this application, a uniform mapping 639 

consisting on gap length increments of 30 in. (76.2 cm.) was used as shown in Table 2. 640 

Table 2: State mapping from discrete to continuous 641 

OCA  
rating 

Gap  
length (cm) 

IA   
IB  
IC  
ID  
IF  

ICF  

Following that, the “B” rating error ratio is updated based on the damage estimation. 642 

Figure 16 shows the mean prediction and the 95% confidence intervals obtained for . 643 

As the information is acquired from the physics-based diagnosis, the variance of  644 

reduces significantly. Also, it is noted that as the quoin block has already surpassed the 645 

B condition, the value of  approaches the true value (an assumed ground truth value in 646 

Sec. 6.2 that is used to generated the synthetic strain measurement data based on a gap 647 

growth model). This demonstrates the effectiveness of the proposed Bayesian updating 648 

scheme in estimating the “B” ratings error ratio. It worth mentioning that the error ratio 649 

updating is mainly affected by the gap length profile as given in Figure 15. The gap length 650 

profile is just one realization of the underlying degradation model. Since it is just one 651 
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realization of many possible gap growth profiles, it leads to a small bias between the 652 

estimated error ratio and the “true” error ratio used in Sec. 6.2.   653 

 654 
Figure 16: "B" ratings error ratio ( ) estimation  655 

6.4 Failure prognosis and optimal maintenance planning for the miter gate 656 

To demonstrate the improvement on the gap length prognosis, the updated over time 657 

RUL can be evaluated, and compared against its true value. Figure 17 shows that the RUL 658 

estimation using the state equation given in Eq. (22). It shows that the random-walk state 659 

equation could lead to large errors in RUL estimate even if it can effectively perform 660 

damage detection. As been discussed in Sec. 5.3, the information from the OCA rating 661 

can be used to improve the prognosis capabilities and overcome the limitations of the 662 

state equation in Eq. (22). Figure 18 shows that the proposed hybrid prognosis method 663 

can improve the accuracy RUL estimation while effectively performing damage detection. 664 

The jumps in Figure 18 are attributed to the discrete nature of the OCA ratings. 665 

g
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 666 
Figure 17: RUL estimate using the state equation given in Eq. (22) 667 

 668 
Figure 18: RUL estimate using the proposed method 669 

Figure 19 and 20 show how the minimum CPUT and the optimal maintenance time 670 

are updated from the strain measurements over time. These figures were generated using 671 

a uniform mapping between the gap length to the OCA ratings as given in Table 2. The 672 

vertical line in these figures represent the true end of life. In other words, the true end of 673 

life is when the gap length reaches the value of 150 inch (381 cm.), which corresponds to 674 

the “CF” condition. As noted, the minimum CPUT mainly increase with time, indicating 675 

that the denominator in Eq. (43) is approaching to zero as the term  is approaching 676 

to 1. Similarly, in contrast to the static maintenance planning in Sec. 4, the optimal 677 

maintenance time (relative to the current time) can be updated dynamically as time passes 678 

based on the information collected from the SHM system. 679 

1:|
( )

ntF ts
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 680 
Figure 19: Minimum CPUT corresponding to different values of Cp and Cu 681 

 682 
Figure 20: a) Optimal maintenance time corresponding to different Cp and Cu,  683 

b) optimal maintenance time approaching end of life, c) alternative optimal maintenance 684 
time corresponding to different Cp and Cu , and d) alternative optimal maintenance time 685 

approaching end of life 686 

One of the main reasons why the optimal time (see Figure 20a), especially for low 687 

cost ratios, increases so dramatically at around 175 month is due to the nature of Eq. (43) 688 

and (12). In these cases, the CPUT curve obtained from Eq. (43) tends to be very flat. In 689 

other words, many different maintenance times may have basically the same CPUT value. 690 

For Figure 20c, a conservative selection for the optimal maintenance is carried out, and 691 

it is assumed that the updated optimal maintenance tends to decrease with time and holds 692 

practically the same CPUT value. Thus, with this conservative selection, the minimum 693 
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CPUT corresponding to different values of Cp and Cu would show basically the same 694 

results as Figure 19. 695 

 696 

7. Conclusions 697 

A Markov process is used to approximate the unreliability function using inspection 698 

ratings from quoin block in miter gates. A cost function, that weight the preventive and 699 

emergency costs associated for the rehabilitation of a structural component, is used to 700 

come up with the optimal maintenance time. It is shown that the uncertainties in the 701 

transition matrix derived from visual inspections affects the optimal maintenance time. 702 

To reduce the uncertainty in the optimal maintenance time, a framework is introduced to 703 

combine continuous structural health monitoring with the Markov transition matrix. This 704 

approach allows to update the optimal maintenance plan as well as the error ratio of the 705 

OCA ratings over time based on the information gained by the sensor information using 706 

sequential damage estimation. This approach can be applicable to different nonrepairable 707 

components in miter gates, which may have different transition matrices values. 708 

However, further work needs to be done to extend this methodology to other components 709 

in miter gates and then from miter gate components to whole miter gate system level (e.g. 710 

including all critical miter gate components). 711 
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