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UNEXPECTED STEIN FILLINGS, RATIONAL SURFACE SINGULARITIES,

AND PLANE CURVE ARRANGEMENTS

OLGA PLAMENEVSKAYA AND LAURA STARKSTON

Abstract. We compare Stein fillings and Milnor fibers for rational surface singularities with reduced
fundamental cycle. Deformation theory for this class of singularities was studied by de Jong–van

Straten in [dJvS98]; they associated a germ of a singular plane curve to each singularity and described

Milnor fibers via deformations of this singular curve.
We consider links of surface singularities, equipped with their canonical contact structures, and

develop a symplectic analog of de Jong–van Straten’s construction. Using planar open books and
Lefschetz fibrations, we describe all Stein fillings of the links via certain arrangements of symplectic

disks, related by a homotopy to the plane curve germ of the singularity.

As a consequence, we show that many rational singularities in this class admit Stein fillings that
are not strongly diffeomorphic to any Milnor fibers. This contrasts with previously known cases, such

as simple and quotient surface singularities, where Milnor fibers are known to give rise to all Stein

fillings. On the other hand, we show that if for a singularity with reduced fundamental cycle, the
self-intersection of each exceptional curve is at most −5 in the minimal resolution, then the link has

a unique Stein filling (given by a Milnor fiber).

1. Introduction

The goal of this paper is to compare and contrast deformation theory and symplectic topology of
certain rational surface singularities. Using topogical tools, we examine symplectic fillings for links of
rational surface singularities with reduced fundamental cycle and compare these fillings to Milnor fibers
of the singularities. Each Milnor fiber carries a Stein structure and thus gives a Stein filling of the link;
however, we show that there is a plethora of Stein fillings that do not arise from Milnor fibers. Milnor
fibers and deformation theory are studied in the work of de Jong–van Straten [dJvS98] for sandwiched
surface singularities (this class includes rational singularities with reduced fundamental cycle). The
main feature of their construction is a reduction from surfaces to curves: deformations of a surface
singularity in the given class can be understood via deformations of the germ of a reducible plane curve
associated to the singularity. To describe Stein fillings, we develop a symplectic analog of de Jong–van
Straten’s constructions, representing the fillings via arrangements of smooth (or symplectic) disks in
C2. Our approach is purely topological and thus different from de Jong–van Straten’s; their algebro-
geometric techniques do not apply in our more general symplectic setting. We work with Lefschetz
fibrations and open books, referring to algebraic geometry only for motivation and for the description
of smoothings from [dJvS98].

Let X ⊂ CN be a singular complex surface with an isolated singularity at the origin. For small
r > 0, the intersection Y = X ∩ S2N−1

r with the sphere S2N−1
r = {|z1|2 + |z2|2 + · · ·+ |zN |2 = r} is a

smooth 3-manifold called the link of the singularity (X, 0). The induced contact structure ξ on Y is the
distribution of complex tangencies to Y , and is referred to as the canonical or Milnor fillable contact
structure on the link. The contact manifold (Y, ξ), which we will call the contact link, is independent
of the choice of r, up to contactomorphism.

An important problem concerning the topology of a surface singularity is to compare the Milnor
fibers of smoothings of (X, 0) to symplectic or Stein fillings of the link (Y, ξ). A smoothing is given by
a deformation of X to a surface (the Milnor fiber) that is no longer singular. (We discuss smoothings
in more detail in Section 2.) Milnor fibers themselves are Stein fillings of (Y, ξ), called Milnor fillings.
An additional Stein filling can be produced by deforming the symplectic structure on the minimal
resolution of (X, 0) [BdO97]. For rational singularities, this filling agrees with the Milnor fiber of the
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2 OLGA PLAMENEVSKAYA AND LAURA STARKSTON

Artin smoothing component and need not be considered separately (see Section 4). An interesting
question is whether the collection of these expected fillings, taken for all singularities with the same
link (Y, ξ), gives all possible Stein fillings of the link. In this article, we will use the term unexpected
Stein filling to refer to any Stein filling which does not arise as a Milnor fiber or the minimal resolution.

There are very few examples of unexpected Stein fillings in the previously existing literature, none
of which are simply-connected. In this article, we show that, in fact, unexpected Stein fillings are
abundant, and in many cases simply-connected, even for the simple class of rational singularities with
reduced fundamental cycle. These singularities, also known as minimal singularities [Kol85], can be
characterized by the conditions that the dual resolution graph is a tree, where each vertex v corresponds
to a curve of genus 0, and its self-intersection v ·v and valency a(v) satisfy the inequality −v ·v ≥ a(v).
(See Section 2 for more details.) In low-dimensional topology, such graphs are often referred to as
trees with no bad vertices. The corresponding plumbed 3-manifolds are L-spaces, i.e. they have the
simplest possible Heegaard Floer homology [OS03]. In a sense, links of rational singularities with
reduced fundamental cycle are just slightly more complicated than lens spaces. As another measure of
low complexity, these contact structures admit planar open book decompositions. In the planar case,
the set of Stein fillings satisfies a number of finiteness properties [Sti03, Pla12, Kal, LW], which makes
it rather surprising that these singularities diverge from the expected.

We construct many specific examples of unexpected Stein fillings for rational singularities with
reduced fundamental cycle. Then we show that our examples can be broadly generalized to apply to a
large class of singularities with reduced fundamental cycle: we only require that the resolution graph of
the singularity contain a certain subgraph to ensure that the link has many unexpected Stein fillings.

Theorem 1.1. For any N > 0, there is a rational singularity with reduced fundamental cycle whose
contact link (YN , ξN ) admits at least N pairwise non-homeomorphic simply-connected Stein fillings,
none of which is diffeomorphic to a Milnor filling (rel certain boundary data). Examples of such
(YN , ξN ) include Seifert fibered spaces over S2 corresponding to certain star-shaped resolution graphs.

The statement also holds for any rational singularity with reduced fundamental cycle whose resolution
graph has a star-shaped subgraph as above.

More precise statements are given in Section 7. Our first example which admits simply-connected
unexpected Stein fillings corresponds to the singularity with resolution graph in Figure 1. More
generally, we can find N distinct unexpected Stein fillings for singularities whose dual resolution graph
is star-shaped with at least 2N + 5 sufficiently long legs, N ≥ 4, the self-intersection of the central
vertex is a large negative number, and the self-intersection of any other vertex is −2.

Figure 1. A resolution graph for a singularity whose link admits simply-connected
unexpected fillings. (Unlabeled vertices have self-intersection −2.) Any graph contain-
ing this as a subgraph corresponds to a singularity which also admits simply-connected
unexpected fillings.

By contrast, previous results have indicated that for simple classes of singularities, all Stein fillings
come from Milnor fibers or the minimal resolution (there are no unexpected fillings). This is true for
(S3, ξstd) [Eli91], for links of simple and simple elliptic singularities [OO03, OO05], for lens spaces (links
of cyclic quotient singularities) [Lis08, NPP10b], and in general for quotient singularities [PPSU18,
BO12]. Theorem 1.1 breaks this pattern and provides many unexpected fillings. However, we are also
able to show that certain classes of rational singularities with reduced fundamental cycle do not admit
any unexpected fillings:
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Theorem 1.2. Let (X, 0) be a rational singularity with reduced fundamental cycle with link (Y, ξ), and
suppose that each exceptional curve in its minimal resolution has self-intersection at most −5. Then the
resolution of (X, 0) is the unique weak symplectic filling of (Y, ξ), up to blow-up, symplectomorphism
and symplectic deformation.

This theorem proves a symplectic analogue of [dJvS98, Theorem 6.21], which establishes a special
case of a conjecture of Kollár, showing that for singularities as in Theorem 1.2, the base space of a
semi-universal deformation has one component. Thus, they show there is a unique smoothing, whereas
we generalize this to show there is a unique minimal symplectic filling. To prove Theorem 1.2, we
build on the combinatorial argument of [dJvS98] and use mapping class group arguments to establish
the symplectic case.

The bound of −5 on the self-intersection of the exceptional curves in Theorem 1.2 cannot generally
be improved. Indeed, any singularity whose minimal resolution contains a sphere of self-intersection
−4 has at least two distinct Stein fillings, because a neighborhood of the (−4) sphere can be rationally
blown down to produce another filling with smaller Euler characteristic [Sym98]. This corresponds to
the fact that the singularity has at least two smoothing components if a (−4) sphere is present, [Kol91].
While our Theorem 1.1 shows there are unexpected fillings in many examples, we do not cover all
examples which fail the hypotheses of Theorem 1.2; there are many cases where we cannot determine
whether or not the link has unexpected fillings.

Theorem 1.2 extends the list of singularities with no unexpected Stein fillings. However, when
complexity of the singularity increases, one should expect the unexpected: as predicted in [Ném13],
more complicated singularities are likely to have Stein fillings that do not arise from Milnor fibers. To
our knowledge, the only previous examples of unexpected Stein fillings in the literature are detected
by their first Betti number. By [GS83], Milnor fibers for normal surface singularities always have
b1 = 0. An infinite family of Stein fillings with b1 6= 0 was given in [AO14, AO18] for links of
certain non-rational singularities; these links are Seifert fibered spaces over higher genus surfaces. It
follows from [AO14, AO18] that most of these fillings are different from both the Milnor fibers and
the resolution of the singularity. The constructions in these papers use surgeries and produce infinite
families of exotic fillings (which are all homeomorphic but pairwise non-diffeomorphic). Note that for
rational singularities, the first Betti number cannot detect unexpected fillings: the link is a rational
homology sphere, and a homology exact sequence argument shows that b1 = 0 for any Stein filling (see
Remark 6.5).

Note that, in general, known results allow to find many non-rational singularities whose links have
infinitely many Stein fillings. As an example, consider a normal surface singularity whose resolution
has a unique exceptional curve of genus g ≥ 2 with self-intersection −d, for d > 0. The resolution is
the total space of the complex line bundle of degree d over the corresponding Riemann surface, and
the singularity can be thought of as cone point. If g = 1

2 (d−1)(d−2), this is the cone over the smooth

projective surface of degree d in C3, so (Xd, 0) is simply the hypersurface singularity xd + yd + zd = 0.
For each d ≥ 5, the results of [BMVHM17] produce arbitrarily long positive factorizations of the
corresponding open book monodromy, which in turn yields infinitely many Stein fillings for the link
(Yd, ξd); in particular, there are Stein fillings with arbitrarily large b2. One might hope that most of
these Stein fillings are unexpected: indeed, a hypersurface singularity has a unique Milnor fiber, and
its topology is well understood [Mil68, Tju69]. However, the question is more subtle: because (Xd, 0)
is not (pseudo)taut [Lau73], there are infinitely many singularities with the same link (Yd, ξd). Milnor
fibers of these singularities may yield additional Stein fillings. Describing all such Milnor fibers seems
to be out of reach; conceivably, they may produce all the Stein fillings given by the arbitrarily long
factorizations of [BMVHM17]. We will discuss related questions in more detail in Section 4, although
we do not have any answers for this case.

Our present work gives the first examples of unexpected Stein fillings for rational singularities, and
for the case where the link Y is a rational homology sphere. In the case of rational singularities, the
fillings must be differentiated from Milnor fibers by more subtle means than b1, as all Stein fillings
have b1 = 0 in this case. For singularities with reduced fundamental cycle, the contact link admits a
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planar open book decomposition, [NT10, Sch07]. By [Pla12, Kal], it follows that the number of Dehn
twists in any positive monodromy factorization, and thus b2 of Stein fillings, is bounded above. This
means that we cannot generate unexpected fillings by arbitrarily long positive factorizations. On the
other hand, even though there is typically an infinite collection of singularities with the given link, the
reduced fundamental cycle hypothesis, together with the de Jong–van Straten theory, gives us certain
control over the topology of all possible Milnor fibers.

In general, comparing Stein fillings to Milnor fillings is a two-fold challenge: classification is typically
out of reach, both on the deformation theory side (smoothings and Milnor fibers) and on the symplectic
side (Stein fillings). In the particular case of rational singularities with reduced fundamental cycle,
two important tools facilitate the study of fillings. On the algebraic geometry side, de Jong and
van Straten reduce the study of deformations of the surface to certain deformations of a decorated
germ of a reducible singular complex curve C ⊂ C2. (The germ C is associated to the surface as
explained in Section 2. For now, we omit the decoration from notation.) The construction of [dJvS98]
works for a more general class of sandwiched rational singularities; in the case of reduced fundamental
cycle, the associated plane curve germ has smooth irreducible components. Thus in this case, C is
simply the union of smooth complex disks C1, C2, . . . , Cm, all passing through 0. The decoration of
the germ is given by marked points, initially concentrated at the origin. To encode deformations of
the surface singularity, one considers 1-parameter δ-constant deformations of C, where the marked
points are redistributed so that all singularities of the deformed curve Cs are marked (additional
“free” marked points are also allowed). Smoothings of the corresponding singularities are given by
picture deformations, where the only singularities of the deformed curve are transverse multiple points.
While picture deformations are still hard to classify directly and thus rarely give explicit classification
of smoothings, they do provide a lot of useful information. In certain examples, they allow us to
understand the topology of Milnor fibers and compute their basic invariants.

The following theorem summarizes de Jong–van Straten’s results that we use. Detailed definitions
and precise statements will be given in Section 2.

Theorem 1.3. [dJvS98, Theorem 4.4, Lemma 4.7] Let (X, 0) be a rational singularity with reduced
fundamental cycle, and C ⊂ C2 its decorated germ of a reducible complex curve such that all the
branches C1, . . . , Cm of C are smooth complex disks. Then smoothings of (X, 0) are in one-to-one
correspondence with picture deformations of C. A picture deformation gives an arrangement Cs of
the deformed branches Cs1 , . . . , C

s
m, s 6= 0, with marked points that include all the intersections of the

branches. The Milnor fiber WCs of the corresponding smoothing can be constructed by blowing up at
all marked points and taking the complement of the proper transforms of Cs1 , . . . , C

s
m.

The Milnor fibers described in Theorem 1.3 are non-compact, but a slight modification yields com-
pact Milnor fillings of the contact link (Y, ξ) of (X, 0). We consider the germ C in a small closed ball
B ⊂ C2 centered at 0, such that all the branches of C, and thus all the deformed branches for small s,
intersect ∂B transversely, and B contains all marked points. To obtain a smooth compact 4-manifold
whose boundary is the link Y , we blow up B at the marked points, take the complement of disjoint
tubular neighborhoods of the proper transforms of Cs1 , . . . , C

s
m, and smooth the corners.

In turn, on the symplectic side, contact links of singularities with reduced fundamental cycle are
more accessible because they are supported by planar open books, [NT10, Sch07]. By a theorem of
Wendl [Wen10], all Stein fillings of a planar contact manifold are given by Lefschetz fibrations whose
fiber is the page of the open book. In other words, all these Lefschetz fibrations arise from factorizations
of the monodromy of the given open book into a product of positive Dehn twists. In most cases, such
positive factorizations cannot be explicitly classified, but they give a combinatorial approach to Stein
fillings.

To relate the two sides of the story, we generalize the notion of picture deformation and consider
smooth graphical homotopies of the decorated germ C with smooth branches. A smooth graphical
homotopy of C is a real 1-parameter family of embedded disks Ct1, . . . , C

t
m such that for t = 0 the disks

C0
1 , . . . , C

0
m are the branches of C, and for t = 1, the intersections between C1

i and C1
j are transverse and
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positive for all i, j. There is a collection of marked points on C1
1 , . . . , C

1
m, coming from a redistribution

of the decoration on C, such that all intersection points are marked. (See Definition 3.1.)
We prove that just as picture deformations yield smoothings in [dJvS98], every smooth graphical

homotopy gives rise to a Stein filling naturally supported by a Lefschetz fibration.

Theorem 1.4. Let (Y, ξ) be the contact link of a singularity (X, 0) with reduced fundamental cycle,
and let C be a decorated plane curve germ representing (X, 0), with m smooth components C0

1 , . . . , C
0
m.

For any smooth graphical homotopy, let W be the smooth 4-manifold obtained by blowing up at all
marked points and taking the complement of the proper transforms of C1

1 , . . . , C
1
m. (In the case of a

picture deformation Cs, W is the Milnor fiber WCs from Theorem 1.3).
Then W carries a planar Lefschetz fibration that supports a Stein filling of (Y, ξ). When W = WCs ,

the Lefschetz fibration is compatible with the Stein structure on the Milnor fiber.
The fiber of the Lefschetz fibration on W is a disk with m holes, and the vanishing cycles can be

computed directly from the decorated curve configuration C1
1 , . . . , C

1
m. On (Y, ξ), the Lefschetz fibration

induces a planar open book decomposition, which is independent of the smooth graphical homotopy of
the given decorated germ C.

Each rational singularity with reduced fundamental cycle has a distinguished Artin smoothing
component, which corresponds to a picture deformation called the Scott deformation (see Section 4).
Applying Theorem 1.4 to the Scott deformation yields a planar Lefschetz fibration filling (Y, ξ) where
the vanishing cycles are disjoint (see Proposition 4.1). This gives a natural model for the planar
open book decomposition on (Y, ξ). This open book is closely related to the braid monodromy of the
singularity of C. Note that we need to consider all singularities topologically equivalent to (X, 0) to
describe all Milnor fillings for (Y, ξ), since all such singularities have the same contact link. However,
topologically equivalent singularities can be represented by topologically equivalent decorated germs
and produce the same open book decompositions.

The process of computing the monodromy factorization resembles a known strategy for monodromy
calculation for a plane algebraic curve [MT88a, MT91]. The necessary information can be encoded by
a braided wiring diagram given by the intersection of Cs with a suitably chosen copy of C× R ⊂ C2.

A reversal of the above constructions allows us to represent Stein fillings of (Y, ξ) via arrangements
of symplectic curves, as follows. Let W be an arbitrary Stein filling of the link (Y, ξ). We fix an
open book for (Y, ξ) defined by the germ C as above. By Wendl’s theorem, W can be represented
by a Lefschetz fibration with the planar fiber given by the page. The Lefschetz fibration corresponds
to a factorization of the open book monodromy into a product of positive Dehn twists. We reverse-
engineer a braided wiring diagram producing this factorization, and then use the diagram to construct
an arrangement Γ of symplectic disks. (In fact, an arrangement of smooth graphical disks is sufficient
for our constructions, but the symplectic condition can be satisfied at no extra cost.) We require that
the disks intersect transversally (multiple intersections are allowed), and equip Γ with a collection
of marked points that include all intersections and possibly additional “free” points. We also show
that the resulting arrangement of disks and points is related to the decorated germ C by a smooth
homotopy, which is graphical in suitable coordinates. (The homotopy moves the disks and the marked
points.) This yields a symplectic analog of Theorem 1.3.

Theorem 1.5. Let (Y, ξ) be the contact link of a singularity (X, 0) with reduced fundamental cycle
that corresponds to a decorated plane curve germ C. Then any Stein filling of (Y, ξ) arises from an
arrangement Γ of symplectic graphical disks with marked points, as in Theorem 1.4. The arrangement Γ
is related to the decorated germ C by a smooth graphical homotopy.

Theorems 1.3 and 1.5 mean that both Milnor fibers and arbitrary Stein fillings of a given link
of rational singularity with reduced fundamental cycle can be constructed in a similar way, starting
with the decorated plane curve germ C representing the singularity. Milnor fibers arise from algebraic
picture deformations of the branches of C, while Stein fillings come from smooth graphical homotopies
of the branches.
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Once the comparison of Milnor fibers and Stein fillings is reduced to comparison of arrangements of
complex curves or smooth disks with certain properties, we can construct examples of arrangements
that generate Stein fillings not diffeomorphic to Milnor fibers. We need arrangements that are related
to a particular plane curve germ by a smooth graphical homotopy but not by an algebraic picture de-
formation. We build unexpected line arrangements satisfying this property in Section 7, using classical
projective geometry and a study of analytic deformations. We use these to construct unexpected Stein
fillings; then we verify that they are not diffeomorphic (relative to the boundary open book data) to
Milnor fillings by an argument based on [NPP10a]. This leads to the proof of Theorem 1.1 and other
similar examples.

At first glance, the difference between algebraic and smooth plane curve arrangements seems rather
obvious. However, because we are in an open situation, working with germs of curves and smooth disks
with boundary as opposed to closed algebraic surfaces, the question is quite subtle. In particular, we
cannot simply use known examples of topological or symplectic line arrangements in CP2 not realizable
by complex lines. Indeed, in many cases the smooth surfaces can be closely approximated by high-
degree polynomials, so that a Lefschetz fibration on the corresponding Stein filling can be realized by a
Milnor fiber. We discuss the relevant features of the picture deformations and smooth (or symplectic)
graphical homotopies in detail in Section 8, and explain what makes our examples work.

It is worth stating that while Stein fillings and Milnor fillings are the same for certain small families
of singularities, the two notions are in fact fundamentally different. A Milnor filling is given by a
smoothing of a singular complex surface, so there is a family of Stein homotopic fillings of (Y, ξ) that
degenerate to the singular surface. A Stein filling of the link has no a priori relation to the singular
surface and is not part of any such family. This distinction becomes apparent in our present work,
by the following heuristic reasoning. A picture deformation Cs of the decorated germ C gives, for any
s 6= 0, a Milnor filling WCs , so that all these fillings are diffeomorphic and even Stein homotopic. The
Milnor fillings look the same for all s 6= 0 because the arrangements of deformed branches {Cs1 , . . . , Csm}
have the same topology. By contrast, if the germ C is homotoped via a family of smooth disk arrange-
ments Γt, the topology of the arrangement {Γt1, . . . ,Γtm} may change during the homotopy. Under
certain conditions we can construct a family of Lefschetz fibrations Wt that includes the given Stein
filling and changes its diffeomorphism type at finitely many discrete times as it connects to the minimal
resolution. In other cases, at some time t the homotopy gives an arrangement Γt which produces an
achiral Lefschetz fibration, so the 4-manifolds in the corresponding family do not necessarily carry a
Stein structure. We return to this discussion in Section 8.

One can also ask whether unexpected fillings exist for rational singularities with reduced funda-
mental cycle that are not covered by Theorem 1.1 or Theorem 1.2. For certain additional simple
examples, we can use Theorem 1.5 and pseudoholomorphic curve arguments to verify that there are
no unexpected fillings, even though the smoothing may not be unique. This approach only works
when the germ of the singularity is a pencil of lines satisfying certain restrictive constraints. Namely,
we can consider (1) arrangements of 6 or fewer symplectic lines, or (2) arrangements of symplectic
lines where one of the lines has at most two marked points where it meets all the other lines in the
arrangement. Since the boundary behavior of symplectic lines is controlled, we can cap off symplectic
lines in a ball to symplectic projective lines in CP2, together with the line at infinity. The correspond-
ing arrangements in CP2 are shown to have a unique symplectic isotopy class and are symplectically
isotopic to an actual complex algebraic line arrangement in CP2, [Sta15, Lemma 3.4.5]. It follows that
every symplectic arrangement as above can be obtained as picture deformation of a pencil of com-
plex lines, and therefore, the corresponding Stein fillings are given by Milnor fibers. The links of the
corresponding singularities are Seifert fibered spaces for which Stein fillings were completely classified
and presented as planar Lefschetz fibrations in [Sta15, Chapter 4]. The line arrangements appearing
in that classification precisely coincide with the symplectic disk arrangements from the perspective of
this article. (Here, gluing in the deleted neighborhood of the disk provides an embedding of the Stein
filling into a blow-up of C2. In [Sta15], gluing on the cap, which augments the configuration of lines
by the additional line at infinity, provides an embedding of the Stein filling in a blow-up of CP2.) In
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general, Theorem 1.5 seems to have limited applications to classification of fillings, due to complexity
of arrangements of curves.

It is interesting to note that while de Jong–van Straten describe deformations of sandwiched singu-
larities, our constructions only work for the subclass of rational singularities with reduced fundamental
cycle. Indeed, a planar open book decomposition of the contact link plays a key role in our work because
we need Wendl’s theorem to describe Stein fillings. By [GGP] the Milnor fillable contact structure on
the link of a normal surface singularity is planar only if the singularity is rational and has reduced
fundamental cycle. This means that our methods in the present paper cannot be used for classification
for any other surface singularities. However, for future work, we are investigating extensions of these
methods to produce examples of unexpected fillings for more general surface singularities. Finally,
recall that all weak symplectic fillings of a planar contact 3-manifold are in fact given by planar Lef-
schetz fibrations, up to blow-ups and symplectic deformation [NW11]. It follows that Theorem 1.5
and related results apply to describe all minimal weak symplectic fillings. However, we focus on Stein
fillings and will give all statements, with the exception of Theorem 1.2, only for the Stein case.

Organization of the paper. In Section 2 we review the definitions of rational singularities with
reduced fundamental cycle as well as their deformation theory from [dJvS98], and prove some of their
properties from the topological perspective. In Section 3 we prove the first direction of the symplectic
correspondence, namely Theorem 1.4. In Section 4 we explain the smoothing in the Artin component
from the perspective of symplectic topology, discuss the corresponding open books, and also raise some
questions related to open book factorizations and non-rational singularities. In Section 5 we prove the
other half of the correspondence, establishing Theorem 1.5 using braided wiring diagrams and Wendl’s
theorem [Wen10]. In Section 6 we prove Theorem 1.2 and explain how to calculate algebraic topological
invariants of the fillings, which we will use to distinguish our examples of unexpected Stein fillings from
Milnor fillings. In Section 7 we prove that there are many examples of unexpected Stein fillings for links
of rational surface singularities with reduced fundamental cycle, establishing Theorem 1.1. Finally,
in Section 8 we explain what key differences between picture deformations and smooth graphical
homotopies contributed to the distinction between expected and unexpected Stein fillings.

Acknowledgments. We are grateful to Stepan Orevkov for suggesting Example 7.14 to us. This
example played a crucial role in our understanding of arrangements that produce unexpected fillings.
We thank Roger Casals, Eugene Gorsky, and Marco Golla for their interest to this project and numerous
motivating and illuminating discussions at the early stages of this work. In particular, Eugene helped us
understand some of the results of [dJvS98]. We are grateful to Eugene and Marco for their comments
on the preliminary version of this article, and to Jonathan Wahl, Jeremy Van Horn-Morris, and
Patrick Popescu-Pampu for interesting correspondence. Many thanks to Inanc Baykur for illuminating
correspondence and discussion on the higher genus case. LS would also like to thank Sari Ogami who
learned and explained to me a great deal about the monodromy of braided wiring diagrams. OP is
also grateful to John Etnyre, Jonny Evans, Mark McLean, and Oleg Viro for a few helpful discussions.
We thank the referees for their thoughtful comments and suggestions. OP was supported by NSF
grants DMS-1510091 and DMS-1906260 and a Simons Fellowship. LS was supported by NSF grant
DMS-1904074.

2. Rational singularities with reduced fundamental cycle,
their decorated curve germs, and relation to deformations

In this section, we collect some facts about rational singularities with reduced fundamental cycle and
state de Jong–van Straten’s results on their smoothings, [dJvS98]. De Jong–van Straten’s results are in
fact more general: they fully describe deformation theory for a wider class of sandwiched singularities.
We state only the results we need. Some of our statements are slighly different from [dJvS98]: we
describe their constructions from the topological perspective and set the stage for our work. Although
we aim for a mostly self-contained discussion, the reader may find it useful to consult [Ném99] for a
general survey on topology of surface singularities. The survey [PP16] focuses on the interplay between
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singularity theory and contact topology and provides very helpful background. Additionally, a brief
survey of the key results of [dJvS98] from the topological perspective can be found in [NPP10a].

2.1. Resolutions and smoothings. We begin with some general facts about surface singularities.
Let (X, 0) be a normal surface singularity. Its resolution π : X̃ → X is a proper birational morphism

such that X̃ is smooth. The exceptional divisor π−1(0) is the inverse image of the singular point.
For a given singularity (X, 0), the resolution is not unique, as one can aways make additional blow-
ups; however, for a surface singularity, there is a unique minimal resolution [Lau71]. The minimal

resolution is characterized by the fact that X̃ contains no embedded smooth complex curves of genus
0 and self-intersection −1 (thus it does not admit a blow-down).

After performing additional blow-ups if necessary, we can assume that the exceptional divisor π−1(0)
has normal crossings. This means that π−1(0) = ∪v∈GEv, where the irreducible components Ev are
smooth complex curves that intersect transversally at double points only. A resolution with this
property is called a good resolution. For a surface singularity, a minimal good resolution is also
unique [Lau71].

The topology of a good resolution is encoded by the (dual) resolution graph G. The vertices v ∈ G
correspond to the exceptional curves Ev and are weighted by the genus and self-intersection Ev ·Ev of
the corresponding curve. We will often refer to Ev ·Ev as the self-intersection of the vertex v and use
the notation v · v for brevity. The edges of G record intersections of different irreducible components.
Note that the link of the singularity is the boundary of the plumbing of disk bundles over surfaces
according to G. In this paper, we focus on rational singularities; in this case G is always a tree, and
each exceptional curve Ev has genus 0. (Genus 0 curves are also called rational curves.) Therefore we
will typically omit the genus from the markings on the vertices and only record the self-intersection
numbers.

The link of the singularity determines the dual graph of the minimal good resolution, and vice versa.
By a result of W. Neumann [Neu81], the links of two normal surface singularities have the same oriented
diffeomorphism type if and only if their dual resolution graphs are related by a finite sequence of blow-
ups/blow-downs along rational (−1) curves. Moreover, the links of two normal surface singularities are
orientation-preserving diffeomorphic if and only if their minimal good resolutions have the same dual
graphs. Minimal good resolutions are easy to recognize: if a good resolution is not minimal, its graph
will have a vertex representing a genus 0 curve with self-intersection −1. (This follows from [Neu81];
see also [GGP, Lemma 5.2] for a direct proof that any possible blow-downs can be seen directly from
the graph.)

The local topological type of the singularity (X, 0) can be understood from its link Y , as a cone
on the corresponding 3-manifold. We will say that two singularities are topologically equivalent if they
have the same link. It is important to note that the analytic type of the singularity is not uniquely
determined by the link; typically, many analytically different singularities have diffeomorphic links. It
is known that the canonical contact structures are all isomorphic for different singularities of the same
topological type [CNPP06]; thus, the dual resolution graph encodes the canonical contact structure.
Indeed, this contact structure can be recovered as the convex boundary of the plumbing, according to
the graph, of the standard neighborhoods of the corresponding symplectic surfaces.

We now turn our attention to deformations and Milnor fibers. A deformation of a surface singularity
(X, 0) is any flat map λ : (X , 0) → (T , 0) such that λ−1(0) = (X, 0). A versal (or semi-universal)
deformation f : (X , 0) → (B, 0) parameterizes all possible deformations of (X, 0). The base space
(B, 0) generally has multiple irreducible components, which may have different dimensions. It is
generally difficult to understand the space B, its irreducible components, and the dimensions of these
components.

A deformation λ : (X , 0) → (D, 0) over the disk in C is called a (1-parameter) smoothing of (X, 0)
if Xs := λ−1(s) is smooth for all s 6= 0. For any smoothing all such Xs are diffeomorphic, and we call
Xs the Milnor fiber of the smoothing. For example, for a hypersurface X = {f(x, y, z) = 0} ⊂ C3 with
f(0) = 0 and df(0) = 0, a smoothing of the singularity at 0 can be given by f : C3 → C, with Milnor
fiber Xε = {f(x, y, z) = ε} for a small ε 6= 0. Each Milnor fiber is endowed with a Stein structure,
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and for different t0, t1 ∈ D \ 0, Xs0 and Xs1 are Stein homotopic (the Stein homotopy is obtained by
choosing a path from s0 to s1 in D which avoids 0).

We need to work with a compact version of the Milnor fiber. For a sufficiently small radius r > 0,
the surface X ⊂ CN is transverse to the sphere SN−1

r . We fix an ball BNr ⊂ CN centered at 0,
sometimes called a Milnor ball, and consider X∩BNr as the Milnor representative of X. The boundary
∂(X ∩ BNr ) is the link Y of (X, 0), and the complex structure on X induces the canonical contact
structure ξ on Y . For sufficiently small s 6= 0, we can similarly find a compact version of Xs whose
boundary is contactomorphic to the link (Y, ξ), which provides a Stein filling of (Y, ξ).

For a semi-universal deformation f : (X , 0)→ (B, 0) of the surface singularity (X, 0), an irreducible
component Bi of B is called a smoothing component of (X, 0) if the general fiber over Bi is smooth.
We note that Bi may have lower (complex) dimensional strata where the fibers over these strata are
not smooth. For example, these non-general strata could arise from singularities in the component
Bi or intersections of Bi with other irreducible components of B. Nevertheless, these non-general
strata have positive complex co-dimension, so the subset of Bi over which the fiber is smooth will be
connected. Any 1-parameter smoothing of (X, 0) lies in a unique smoothing component Bi.

In general, not every surface singularity admits a smoothing. However, for rational singularities
every irreducible component of B is a smoothing component ([Art74], see also [PP16, Theorem 4.24]).
Moreover, there is one distinguished component, called the Artin component. This component is

associated to the minimal resolution X̃ of (X, 0) ([Art74], see also [PP16, Theorem 4.25]). (For

rational singularities, deformations of X̃ come from deformations of (X, 0) and these deformations of
(X, 0) form the Artin component.) We discuss Milnor fibers in this component in greater detail in
Section 4.

In this paper, we study Stein fillings for the contact link (Y, ξ) of a surface singularity, and compare
them to Milnor fillings. As explained above, in general the link determines only the topological,
but not the analytic, type of the singularity. Normal surface singularities whose topological type
admits a unique analytic type are called taut; if there are only finitely many analytic types, the
singularity is pseudotaut. Taut and pseudotaut singularities were classified by Laufer [Lau73]: there
are several very restrictive lists for the dual resolution graphs, in particular, the graphs cannot have
any vertices of valency greater than 3. Thus, most singularities are not (pseudo)taut, even if we
restrict to a very special kind that we consider in this paper, rational singularities with reduced
fundamental cycle. If we are to compare Stein fillings and Milnor fillings of the link, we need to
consider Milnor fibers for all possible singularities of the given topological type. In principle, it is quite
possible that topologically equivalent singularities have non-diffeomorphic Milnor fibers: for example,
the hypersurface singularities x2 + y7 + z14 = 0 and x3 + y4 + z12 = 0 have the same topological type,
but their (unique) Milnor fibers have different b2, [Lau77], see also the discussion in [PP16, Section
6.2]. Fortunately, in the case of reduced fundamental cycle we will have some control over the topology
of Milnor fibers for different analytic types, thanks to the de Jong–van Straten construction.

2.2. Sandwiched singularities, extended graphs, and decorated germs.

Definition 2.1. (X, 0) is a rational singularity with reduced fundamental cycle if it admits a normal
crossing resolution such that all exceptional curves have genus 0, the dual resolution graph G is a tree,
and for each vertex v ∈ G, the valency a(v) of v and the self-intersection v · v satisfy the inequality

(2.1) a(v) ≤ −v · v.

It follows from (2.1) that the graph as above can only have vertices with self-intersection −1 as
the leaves of the tree. Blowing down all such vertices, we obtain a graph that still satisfies (2.1) and
represents the minimal resolution of (X, 0).

To explain the terminology of Definition 2.1, we recall the definition of a fundamental cycle. For a
given resolution, consider the set of divisors

{Z =
∑
v∈G

mvEv | Z > 0, and Z · Ev ≤ 0 for all Ev}.
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This set has a partial order, defined by
∑
mvEv ≥

∑
nvEv if mv ≥ nv for all v. There is a minimal

element with respect to this partial order, denoted Zmin and called Artin’s fundamental cycle. Since
the resolution dual graph is connected, different components Ev intersect positively, and Z > 0, any
element in the set has mv > 0. Therefore, Zmin ≥

∑
v∈GEv. It is easy to see that (

∑
v∈GEv) ·Ev ≤ 0

for all Ev if and only if Condition (2.1) is satisfied. In this case Zmin =
∑
v∈GEv, and since each

exceptional curve enters with multiplicity 1, we say that the fundamental cycle Zmin is reduced.
In [dJvS98], de Jong and van Straten work with sandwiched singularities. By definition, a sand-

wiched singularity (X, 0) is analytically isomorphic to the germ of an algebraic singular surface

which admits a birational morphism to (C2, 0). For a resolution π : X̃ → X, we get a diagram

(X̃, π−1(0)) 99K (X, 0) 99K (C2, 0). In particular, X is sandwiched between two smooth spaces via
birational maps. Sandwiched singularities are rational and can be characterized by their resolution
graphs as follows, by translating the sandwiched condition. The graph G is sandwiched if we can
add to it a number of edges and their end vertices with self-intersections (−1), so that the resulting
graph G′ gives a plumbing whose boundary represents S3. In other words, G′ gives a configuration of
rational curves that can be blown down to a smooth point. The choice of the graph G′ is not unique.
It is not hard to see that every rational singularity with reduced fundamental cycle is sandwiched. In
Proposition 2.2 below, we discuss in detail the construction of the possible graphs G′ for this case.

Any sandwiched singularity can be associated to a (germ of a) complex plane curve singularity,
constructed as follows. The choice of the graph G′ corresponds to an embedding of the tubular
neighborhood of the exceptional set of the resolution X̃ into some blow-up of C2. This blown-up
surface also has a distinguished collection of (−1) curves, so that the configuration of these (−1)
together with the exceptional set can can be completely blown down. For each distinguished (−1) curve,
choose a transverse complex disk (called a curvetta) through a generic point. Now, contract the curve
configuration corresponding to G′. The union of the curvettas becomes a germ of a reducible curve C
in C2, with components passing through 0. Let Ci, i = 1, 2, . . . ,m be the irreducible components of
C; following [dJvS98], we also refer to Ci as curvettas. We emphasize that only the germ of C at the
origin is defined; when we use the notation C ⊂ C2, we only consider a small neighborhood of 0 ∈ C2.
In particular, we are only interested in the singularity of the reducible curve C at 0. In this paper, we
will focus on the case where the components Ci are smooth at 0, so that locally Ci is a smooth disk.
This suffices to study rational singularities with reduced fundamental cycle, as we will soon see. This
disk may be locally parameterized by a high-degree algebraic curve in C2, but the global topology of
this curve is unimportant to us, because we only use the part of the curve in a neighborhood of the
origin.

Each curvetta Ci comes with a weight wi = w(Ci), given by the number of exceptional spheres
that intersect the corresponding curve in the blow-down process from G′ to the empty graph. In other
words, wi is the number of blow-down steps that affect the corresponding curvetta before it become
Ci. The weighted curve (C, w) is called a decorated germ corresponding to (X, 0). An example of this
process, and the resulting decorated germ for the given singularity, is shown in Figure 2.

It is convenient to start the process with the minimal normal crossings resolution of (X, 0). For
rational singularities with reduced fundamental cycle, it is easy to see that the graph of the minimal
normal crossings resolution has no (−1) vertices. (From (2.1), only vertices of valency 1 can have
self-intersection −1 in any resolution graph, and these can be blown down to get the minimal graph.)
If G has no (−1) vertices, then all the (−1) vertices of G′ are those that come from the extension: each
(−1) vertex is a leaf of G′, connected by an edge to a unique vertex of G. The transverse curvetta
slices are added to all these (−1) vertices.

In what follows, we will only consider decorated germs that arise from the above construction.
(These are called standard decorated germs in [NPP10a]. Some statements in [dJvS98] allow for more
general decorated germs.)

The singularity (X, 0) can be reconstructed from (C, w). We iteratively blow up points infinitely
near 0 on proper transforms of curvettas C1, . . . , Ck until we obtain a minimal embedded resolution of
C. Then we perform additional blow-ups at the intersection of Ci with the corresponding exceptional
curve, so that the sum of multiplicities of proper transforms of Ci at the blow-up points is exactly wi.
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Figure 2. An example of a sandwiched singularity and a choice of corresponding
curvettas (green arrows). The first diagram shows the resolution curves together with
extra (red) (−1) exceptional curves attached. Then there is a sequence of blow-downs.
We keep track of the weights w(Ci) in rectangular boxes next to each green curvetta
arrow. The multiplicities of tangencies between bunches are recorded in blue circled
numbers.

The union of the exceptional curves that do not meet the proper transforms of the curvettas is then
contracted to form (X, 0).

We emphasize that C depends on the choice of the graph G′, i.e. on the particular extension of the
resolution graph of (X, 0) by (−1) curves. Any of these choices can be used to classify Milnor fillings as
in [dJvS98]. In general, the branches of C are singular curves. However, if (X, 0) is a rational singularity
with reduced fundamental cycle, an appropriate choice of G′ ensures that C has smooth branches. We
will always work in this setting and only consider decorated germs with smooth components. In
the following proposition, we establish a necessary and sufficient condition for smoothness purely in
terms of the graph G′. Although similar questions were studied in [dJvS98, dJvS94], we formulate the
condition here in a way that seems simplest from the topological point of view. In the next section,
we will reinterpret the statement for open book decompositions.

Proposition 2.2. Let the graph G′ be a negative definite plumbing tree, and P ′ the correspond-
ing plumbing of disk bundles over rational curves. Suppose that the boundary of the plumbing P ′ is
S3; equivalently, G′ encodes a configuration of rational curves that can be blown down to a smooth
point. For each (−1) vertex, let C̃j be a complex disk intersecting the corresponding (−1) sphere in P ′

transversally once. Let C1, . . . , Cm be the images of C̃1, . . . , C̃m under blowing down the configuration
G′. Then the following are equivalent:

(1) Each Cj is smooth.
(2) There exists exactly one v′0 ∈ G′ such that v′0 · v′0 + a(v′0) = −1, and v′ · v′ + a(v′) = 0 for all

v′ 6= v′0. (We will often refer to v′0 as the root.)

As before, v′ · v′ denotes the self-intersection of a vertex v′ ∈ G′, and a(v′) its valence.
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Proof. Consider C = C1 ∪ · · · ∪ Cm with smooth branches Cj . We obtain G′ as described above, by
blowing up repeatedly at intersections of the Cj with each other and with the exceptional divisors. We
stop when the resulting configuration of curves has the following property: if an exceptional divisor
intersects a proper transform C̃j then it is disjoint from all other proper transforms C̃j′ , j

′ 6= j (in

particular, different C̃j are disjoint from each other), and the total number of blow-ups performed on
(proper tranforms of) Cj is exactly wj , the weight on Cj .

We will show that G′ has the structure of a rooted tree by repeatedly applying the following
procedure. For the root v′0, we will have v′0 · v′0 + a(v′0) = −1, and for all other vertices v′ 6= v′0,
v′ · v′ + a(v′) = 0. We show that this condition is satisfied at every stage of the process.

Blow up at the common intersection point of all Cj . The resulting exceptional divisor (and its future
proper transforms) gives the root of the tree. If proper transforms of all Cj still have a common point,

we repeatedly blow up at the same point until some of the proper transforms C̃j become disjoint from

each other. (With a slight abuse of notation, C̃j will denote the proper transform of Cj at any stage of
the process.) Additional blow-ups create a chain of exceptional (−2) spheres with the root at one end
and the most recent exceptional (−1) sphere at the other end. Up to relabeling, we can assume there

are distinct intersection points C̃1 ∩ · · · ∩ C̃a1
= p1

1, C̃a1+1 ∩ · · · ∩ C̃a2
= p1

2, · · · , C̃a1
r1
∩ · · · ∩ C̃m = p1

r1

lying on the most recently introduced exceptional divisor B1.
Assuming m > 1, since all the C̃j intersect B1, we must blow up exactly once at each p1

i to make
them all disjoint from B1. Here we use smoothness of the curvettas Cj (and thus of their proper
transforms) to ensure that they become disjoint from B1 after a single blow-up: every point on Cj
has multiplicity 1, thus C̃j intersects each exceptional divisor with multiplicity at most 1. Note that

once C̃1, . . . , C̃m are all disjoint from B1, we will not blow up at any point on B1 again, therefore at
this stage we can already compute the self-intersection and valency of the correspondung vertex in G′.
The self-intersection of the proper transform of B1 in G′ (which we will also denote B1) is −r1 − 1. If
B1 is not the root, it has valency r1 + 1, and if it is the root it has valency r1. Thus, Condition 2 is
satisfied for the vertex of G′ given by B1. All the other vertices in the graph at this stage are either
(−2) spheres in a chain of valency 2 (if not the root) or valency 1 (if the root), or newly introduced
(−1) vertices of valency 1, so Condition 2 is satisfied at this stage.

In order to obtain G′ we repeat this process iteratively, replacing the first exceptional sphere with
the exceptional sphere obtained by blowing up at some psi . (The points p1

1, . . . , p
1
r1 were introduced

above; after blowing up at each of these new points, the new exceptional curves intersect the proper
transforms of the curvettas at points p2

1, . . . , p
2
r2 ; similarly, points psi , . . . , p

s
rs are the intersections that

appear at step s.) Each time, Condition 2 is preserved, since each curve C̃j intersects each exceptional

divisor with multiplicity at most 1. Repeating sufficiently many times, eventually all of the C̃j will
intersect only disjoint exceptional spheres. After potentially blowing up more times at the intersection
of C̃j with its intersecting exceptional sphere until the number of blow-ups is wj , we obtain G′.
(The additional blow-ups create a chain of (−2) vertices connecting to the last (−1) vertex.) Since
Condition 2 is preserved at each step of this procedure, G′ satisfies Condition 2.

Conversely, if G′ satisfies Condition 2, the only (−1) vertices are leaves of the rooted tree (valency
1). Blowing down a leaf preserves Condition 2 because it decreases the valency of the adjacent vertex

by 1 and increases the self-intersection by 1. The C̃j are disks which transversally intersect the (−1)

leaves of G′ with multiplicity 1. Therefore each C̃j intersects each exceptional divisor with multiplicity
at most 1. This property is preserved under blowing down a (−1) leaf, because a multiplicity 1

intersection of C̃j on a (−1) leaf becomes a multiplicity 1 intersection on the adjacent exceptional

divisor after blowing down. Blowing down an exceptional divisor which intersects C̃j with multiplicity

1 preserves smoothness of C̃j . Therefore after blowing down all leaves of G′ and finally the root, the
resulting proper transforms Cj are still smooth. �

Remark 2.3. Another way to see that G′ must satisfy Condition 2 is to consider what happens if G′

has a vertex with a(v′) > −v′ · v′. After blowing down, eventually the vertex v′ will correspond to a

(−1) sphere with valency ≥ 2, with at least one C̃j intersecting it with multiplicity at least 1. (The
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existence of the intersecting C̃j comes from the fact that intersections are transferred under blow-down
to the adjacent vertices. Initially, every (−1) sphere in G′ has an intersecting curvetta. Each time
that a (−1) sphere is blown down, the curvetta intersection is transferred to the adjacent vertices,
whose self-intersections are correspondingly increased. For v′ to reach self-intersection −1, one must
have blown down (−1) vertices adjacent to it. Throughout the process of blowing down, we maintain
the condition that (−1) vertices always have at least one intersecting curvetta.) After blowing down
the (−1) sphere of valency ≥ 2, we obtain a point where at least two exceptional divisors intersect at

the same point with a C̃j . Eventually one of these exceptional divisors will be blown down, forcing C̃j
to intersect the other exceptional divisor with multiplicity ≥ 2. Once this other exceptional divisor is
blown down, the proper transform of C̃j becomes singular.

Figure 3. Two possible choices to add −1 curves to the same resolution graph,
resulting in different curvettas, one with smooth components and another with a
singular (cuspidal) component.

Note that it is possible to have different choices of extension for G, such that one choice yields
smooth curvettas and another yields singular curvettas (see Figure 3 for an example). In other words,
some sandwiched resolution graphs G have extensions both to a graph which does satisfy Condition 2
of Proposition 2.2 and to a graph which does not. For our classifications, we will always work with a
choice of extension of G which does satisfy Condition 2 and the corresponding smooth curvettas.

We can also deduce some basic numerical properties from Proposition 2.2. It turns out that for
a rational singularity (X, 0) with reduced fundamental cycle, the multiplicity of the singular point
determines the number of choices for the defining plane curve germ C with smooth branches, as well
as the number of curvetta branches in each such germ. Assuming that (X, 0) ⊂ (CN , 0) for some large
N , recall that the multiplicity mult X can be defined geometrically as the number of intersections
#X ∩L of X with a generic complex (N − 2)-dimensional affine subspace L ⊂ C, passing close to the
origin. For rational singularities, multiplicity is a topological invariant, which can be computed from
the resolution graph by the formula mult X = −Z2

min, see e.g. [Ném99]. The two statements below
are also discussed in [dJvS98] from the algebro-geometric perspective but they follow easily from the
combinatorics of the resolution graph.

Proposition 2.4. Let (X, 0) be a rational singularity with reduced fundamental cycle, and C a plane
curve germ corresponding to (X, 0). If C has smooth branches, the number of branches is given
by multX − 1.
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Proof. The minimal normal crossings resolution graph G for (X, 0) has no (−1) vertices. Then G is
obtained from (any choice of) the graph G′ by deleting all vertices v′ ∈ G′ with v′ · v′ = −1. The
curvetta branches are obtained by putting transverse slices on each (−1) sphere v′ ∈ G′, thus the
number m of curvetta branches is given by the number of the (−1) vertices in G′. By Condition 2 of
Proposition 2.2, ∑

v′∈G′
(v′ · v′ + a(v′)) = −1.

Again by Condition 2, each (−1) vertex has valency 1 in G′, so each addition of a (−1) vertex to G
increases the sum

∑
v∈G(v · v + a(v)) by 1, thus we have∑
v∈G

(v · v + a(v)) =
∑
v′∈G′

(v′ · v′ + a(v′))−m = −1−m.

Finally, we relate this quantity to the fundamental cycle Zmin, which is the sum of homology classes
of the exceptional divisors, Zmin =

∑
v∈GEv:∑

v∈G
(v · v + a(v)) =

∑
v

E2
v +

∑
v 6=u

Ev · Eu = Z2
min,

so m = −1− Z2
min = multX − 1. �

Decorated germs representing a given (X, 0) are obtained from extensions G′ of the resolution graph
G as above. These can be thought of as combinatorial choices for the decorated germ; in the next
lemma, we compute the number of such extensions. Then, we show that the combinatorial choice,
namely the choice of vertices of G on which the additional (−1) vertices are placed to form G′,
determines the topological type of the resulting decorated germ. By definition, the topological type of
a germ of a singular curve C ⊂ C2 is given by its link, which is the intersection of C with a sufficiently
small 3-sphere S3 ⊂ C2 centered at the origin. For a decorated germ, we additionally record the
weights of the curvetta components. Later on, we will see that the different choices of G′ correspond
to natural different choices of data on the open book decomposition we construct in Section 4.

Lemma 2.5. Up to topological equivalence, there are at most mult X choices of plane curve germs
with smooth branches representing (X, 0).

Proof. We first show that there are at most multX = −Z2
min possible combinatorial choices for germs

with smooth components representing (X, 0). These correspond to choices of extensions of G to G′ by
adding (−1) vertices. If we have a minimal graph G with an extension G′ satisfying Condition 2 of
Proposition 2.2, then we can add another (−1) sphere leaf adjacent to the root to get a new graph G′′,
such that the valency of each vertex of G′′ equals its negative self-intersection. All the other possible
extensions of G to a graph satisfying Condition 2 can be obtained by deleting one of the (−1) vertices
of G′′. (Indeed, adding a (−1) vertex to any other position in G would violate Condition 2.) Since G′

has (multX − 1) vertices of self-intersection −1, we know that G′′ has exactly multX vertices with
this property, one of which must be deleted. Note that because of potential symmetries in the graph
G′′, some of the choices of G′ will result in isomorphic germs C, but multX gives an upper bound on
the number of combinatorially different curvetta configurations.

Once the choice of the extension G′ of the graph G is made, the topological type of the decorated
germ C can be read off directly from G′. In particular, we can compute the relevant numerical
invariants, such as linking numbers between the components of C ⊂ C2. As before, we assume that G′

satisfies Condition 2 of Proposition 2.2, so that C has smooth branches.
Following [dJvS98, Definition 4.14], we define the length and overlap functions on the vertices of

the graph G. For v0, vi ∈ G, let the length l(v0, vi) be the number of vertices in the path from vi to
v0 in the tree G (including endpoints). For v0, vi, vj ∈ G, let the overlap ρ(vi, vj ; v0) be the number of
common vertices in the paths from vi to v0 and vj to v0.

Let v0 ∈ G ⊂ G′ be the root. Now, if the curvetta Ci comes from the transverse slice on a (−1)
sphere corresponding to a leaf of G′, and this leaf is attached to the vertex vi ∈ G, then the blow-
down process gives w(Ci) = 1 + l(v0, vi). If Ci, Cj are the curvettas at the (−1) vertices attached
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to vi, vj , the order of tangency tang(Ci, Cj) between the corresponding branches of C is given by
tang(Ci, Cj) = ρ(vi, vj ; v0).

The topological type of C ⊂ C2 is described via its link, given by the intersection C ∩ S3, where S3

is a small sphere centered at the origin. As each of the curvettas C1, . . . , Cm is a smooth disk, the
intersection of Ci with S3 is an unknot; C ∩ S3 is a link with m components C1 ∩ S3, . . . , Cm ∩ S3,
each of them unknotted. The components of Ci ∩S3 are oriented as boundaries of Ci ∩B4. Then, the
linking number between two link components equals the order of tangency between the corresponding
curvettas,

lk(Ci ∩ S3, Cj ∩ S3) = tang(Ci, Cj).

The topological equivalence of germs follows from the above calculations, by construction of the
links of the germs that we consider; it can also be seen more directly. Any decorated germ for (X, 0)
comes, after a blow-down, from a particular placement of the transverse curvetta slices on the (−1)
curves corresponding to vertices that we added to G to from the graph G′. This gives a configuration
of curvetta slices together with the curve configuration corresponding to the graph G′, embedded in a
blow-up of C2. Clearly, for two different choices of the generic curvetta slices for the same graph G′,
the two configurations of curvettas+curves can be identified by an ambient homeomorphism (in the
blown-up C2). After the blow-down, the induced ambient homeomorphism will identify the links of
the resulting germs, showing that the germs are topologically equivalent. We already know that the
weights will be same, so the decorated germs have the same topological type. �

The following observation will also be useful later. Let t(Ci) = maxj tang(Ci, Cj) be the maximal
order or tangency between Ci and another branch of C. Then it follows that

(2.2) t(Ci) < w(Ci)

for all curvettas Ci.

Remark 2.6. De Jong–van Straten [dJvS98] study deformation theory of the surface singularity
(X, 0); in particular, they are interested in the analytic type of the singularity and its deformations.
To encode the analytic type of (X, 0), one needs the analytic type of the corresponding decorated germ
C. By contrast, our focus is on the contact link (Y, ξ) of (X, 0) and its Stein fillings. A priori there may
be another surface singularity (X ′, 0) whose link is Y , and by [CNPP06], the singularities (X, 0) and
(X ′, 0) have contactomorphic links. By Neumann’s results [Neu81], all singularities with the same link
have the same dual graph of minimal resolution, so both (X, 0) and (X ′, 0) correspond to the same
minimal graph G. (Note that by [Lau73], if G has any vertices of valency greater than 3, the analytic
type of the singularity is not uniquely determined, so indeed (X, 0) and (X ′, 0) may be analytically
different in the above scenario.) We can compare the decorated germs that describe singularities (X, 0)
and (X ′, 0): any choice of the decorated germ for (X, 0) arises from an extension G′ of the graph G
and the corresponding placement of the curvettas. Although analytically the exceptional divisors of
resolutions of (X, 0) and (X ′, 0) may be different, topologically they look the same, and we can choose
the same extension G′ and the corresponding placement of curvettas for (X ′, 0). By the argument
above, the resulting germ for (X ′, 0) will be topologically equivalent to the germ for (X, 0), even if
the two germs may be analytically different. This fact will play an important role in the proof of
Theorem 7.8. In particular, the two germs will have the same number of branches, the same weights
and the same pairwise orders of tangency for the branches.

Of course, if we only know the combinatorics of the graph G, we lose analytic information on the
plane curve germ C (such as, for example, the angles between its transverse branches), but we will
never need the analytic information. The contact 3-manifold (Y, ξ) is fully determined by the weights
and pairwise orders of tangency of the branches of the decorated germ C.

2.3. De Jong–van Straten’s theory: Milnor fibers from germ deformations. The main result
of [dJvS98] says that deformations of the sandwiched singularity can be encoded via deformations of
the germ (C, 0) satisfying certain hypotheses. We will state a special case of their theorem that will
be relevant to us, but first we introduce some notation.
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We have defined the weights as positive integers wi associated to the irreducible components (curvet-
tas) Ci of C. It will be convenient to interpret the weight wi as a collection of wi marked points
concentrated at 0 ∈ Ci. More formally, we consider a subscheme w(i) of length wi at 0 in Ci. The

normalization C̃ of the reducible curve C with smooth components is given by the disjoint union of
the components Ci; thus we can think of the decoration w = (w1, w2, . . . , wm) as a subscheme of C̃,
with components w(i) ⊂ Ci as above. (We use notation C̃ for normalization here and in the discussion

below. Similar notation C̃j had different meaning in Proposition 2.2, though in a sense, both uses
refer to resolutions of the curve Cj ⊂ C. This should not lead to confusion as normalization is only
mentioned in the next few paragraphs.)

De Jong and van Straten prove that for sandwiched singularities, 1-parameter smoothings corre-
spond to picture deformations, which are 1-parameter deformations of the germ C together with the
subscheme w. In fact, de Jong–van Straten describe all deformations of (X, 0), but in this paper we
are only interested in smoothings. Since we do not use their results in full generality, we omit some
technical points and give simpler versions of the definitions and statements from [dJvS98].

Informally, picture deformations look as follows. The deformation Cs is given by individual defor-
mations Csi of the curvetta components, so that the deformed germ Cs is reduced and has irreducible
smooth components Csi corresponding to the original curvettas. (In the case of plane curves, any de-
formation is given by unfolding, i.e. by deforming the defining equation of the curve.) The deformation
is required to eliminate tangencies between the curvettas, so that for s 6= 0 all deformed curvettas Csi
intersect transversally. Thus, the only singularities of the deformed germ Cs = ∪iCsi for s 6= 0 are
transverse multiple points. For s = 0, the decoration w consists of wi marked points on the curvetta
Ci for each i = 1, . . . ,m, concentrated at 0. During the deformation, these marked points move along
the curvettas, so that for s 6= 0, the deformed curvetta Csi contains exactly wi distinct marked points,
and all intersection points Csi ∩ Csj for j 6= i are marked.

More formally, deforming the curvettas Ci individually means that we consider δ-constant defor-
mations of the reducible germ C = ∪iCi. Intersection points between deformed curvettas define the
total multiplicity scheme ms on the normalization C̃s for s 6= 0; if all intersections are transverse, the
corresponding divisor is reduced, i.e. each point enters with multiplicity one. The requirement that
all intersection points are marked means that the deformation wS ⊂ C̃ × S of the decoration w must
satisfy the condition ms ⊂ ws. The requirement that all marked points be distinct on each Csi for
s 6= 0 is the same as saying that the divisor given by wsi is reduced for s 6= 0. The condition ms ⊂ ws
then implies automatically that all singularities of the deformed germ Cs are ordinary multiple points
(i.e. the deformed curvettas intersect transversally).

Definition 2.7. A picture deformation CS of the decorated germ (C, w) with smooth components
C1, . . . , Cm over a germ of smooth curve (S, 0) is given by a δ-constant deformation CS → S of C and

a flat deformation wS ⊂ C̃S = C̃ × S of the scheme w, such that for s 6= 0, the divisor ws is reduced,
the only singularities of Cs are ordinary multiple points, and ms ⊂ ws.

Strictly speaking, wS lives in the normalization, but for s 6= 0 we can think of ws as the set of
marked points {p1, p2, . . . , pn} ⊂ ∪mi=1C

s
i , such that all intersection points Csi ∩Csj are marked. We say

that pi is a free marked point if it lies on a single Csi (away from the intersections). (Note that these
points, and the number of such points n, can generally be different for different picture deformations.)

With these definitions in place, de Jong and van Straten’s results on smoothings are as stated in
Theorem 1.3: every picture deformation of (C, w) gives rise to a smoothing of the corresponding surface
singularity (X, 0), and every smoothing arises in this way. Specifically, the Milnor fiber of the smoothing
that corresponds to the picture deformation Cs = ∪mi=1C

s
i ⊂ C2 with marked points {p1, p2, . . . , pn}

is obtained by blowing up C2 at all points p1, p2, . . . , pn and taking the complement of the proper
transforms of Cs1 , . . . , C

s
m in C#n

j=1CP2. Picture deformations of C generate all Milnor fibers, that
is, each Milnor fiber of (X, 0) arises from some picture deformation of (X, 0) via this construction.
Note that Theorem 1.3 makes no claim of a precise one-to-one the correspondence between picture
deformations and smoothings: one expects that isomorphic smoothings only come from isomorphic
picture deformations (in the appropriate sense), but this has not been established. In certain cases,
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one can distinguish Milnor fibers by their topological invariants, or by comparing incidence matrices of
the corresponding curvetta arrangements, [dJvS98, Section 5], [NPP10a]. We discuss this in Section 6
and use similar technique to distinguish Stein fillings.

Remark 2.8. To be more precise, we need to consider the compact version of the construction of
Milnor fibers, as follows. Fix a closed Milnor ball B ⊂ C2 for the germ C. For sufficiently small s 6= 0,
the deformed arrangement Cs will have a representative in B which meets ∂B = S3 transversally, and
all marked points p1, . . . , pn are contained in the interior of B. Let B̃ be the blow-up of B at p1, . . . , pn.
Because in the picture deformation all the intersections between deformed curvettas are transverse,
the proper transforms of Cs1 , . . . , C

s
m in B̃ will be disjoint smooth disks. Let T1, . . . , Tm be pairwise

disjoint tubular neighborhoods of these proper transforms. As a compact 4-manifold with boundary,
the Milnor fiber that corresponds to Cs is given by W = B̃ \ ∪mi=1Ti, after corners are smoothed, and
the Stein structure is homotopic to the complex structure induced from the blow-up.

3. Graphical deformations of curvettas yield fillings

Let (X, 0) be a rational surface singularity with reduced fundamental cycle, and consider the as-
sociated decorated germ (C, w) of a reducible plane curve as in the previous section, with smooth
branches C1, C2, . . . , Cm equipped with weights. Our goal is to build an analog of [dJvS98] in the
symplectic category: it turns out that Stein fillings the link of (X, 0) can be obtained from certain
smooth homotopies of the branches of the decorated germ C. We will restrict to graphical homotopies
to streamline our definition and constructions. (In our setting, one can always choose an appropriate
coordinate system, so the graphical hypothesis leads to no loss of generality.)

Fix a closed Milnor ball B for C as in Remark 2.8, so that each branch Ci intersects ∂B transver-
sally. If B is small enough, the complex coordinates (x, y) in C2 can be chosen so that all branches
C1, C2, . . . , Cm are graphical in B: Ci = {y = fi(x)}. We will consider smooth graphical arrangements
Γ = {Γ1,Γ2, . . . ,Γm} such that each Γi is a smooth graphical disk, so that Γi = {y = gi(x)} for a
smooth function gi, and Γi intersects ∂B transversally.

The following definition is given for homotopies of the branches defined for a real parameter t ∈ [0, 1].
Sometimes we will use the same notion for homotopies defined in a parameter interval t ∈ [0, τ ], with
obvious notational changes. We assume that coordinates (x, y) are chosen as above.
Definition 3.1. Let (C, w) be a decorated plane curve germ, with weights wi = w(Ci) of its smooth
graphical branches C1, C2, . . . , Cm. A smooth graphical homotopy of (C, w) is a smooth homotopy Cti
of the branches of C, so that C = ∪mi=1C

0
i , together with distinct marked points pk, k = 1, . . . , n (for

some n), on ∪mi=1C
1
i . We assume that in a Milnor ball B the following conditions are satisfied:

(1) Each branch is given by Cti = {y = f ti (x)} for a function f ti (x) = fi(x, t) smooth in (x, t), and
Cti intersects ∂B transversally for all t.

(2) Intersections between the branches remain in the interior of B during the homotopy.
(3) At t = 1, all intersections of any two branches C1

i , C1
j are positive and transverse.

(4) At t = 1, all intersection points on each branch C1
i are marked, and there may be additional

free marked points. Each free point lies in the interior of B on a unique branch C1
i . The total number

of marked points on C1
i is wi.

The choice of Milnor ball B is unimportant as all our considerations are local. For brevity, we will
often omit B from notation and talk about decorated germs and their homotopies in C2. In that case,
we implicitly work in a fixed neighborhood of the origin, and assume that all intersections between
branches which begin in this neighborhood remain in this neighborhood during the homotopy, and thus
the components of the arrangement have controlled behavior near the boundary of the neighborhood.

Conditions (1) and (2) are automatically satisfied for “small” homotopies. Indeed, if t is close to 0,
Cti is C1-close to Ci. The reducible curve C with smooth branches has a finite set of tangent directions
at the origin, and the branches Cti will have tangent spaces lying in a small neighborhood of these
directions in the Grassmannian of symplectic planes in C2. Therefore we can choose coordinates so
that the fiber of the projection avoids these directions. We only include the intersection of the branches
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of C at 0 in the Milnor ball B, so for small t intersections will remain in B. For larger homotopies, we
require these conditions non-trivially.

Picture deformations satisfy all of the conditions (1)-(4), so a picture deformation is a special
case a smooth graphical homotopy of the germ (in appropriate coordinates). In contrast to picture
deformations of [dJvS98], condition (4) on the marked points and the weight restrictions is only
required at t = 1 for homotopies. For a closer analogy with Definition 2.7, we can consider marked
points {pji (t)}j∈{1,...,wi} on Cti for all 0 ≤ t ≤ 1. For t = 0, the marked points are concentrated at

the origin on each branch, giving the decoration of (C, w). Suppose that pji (t), 0 ≤ t ≤ 1 are smooth

functions describing the motion of marked points during homotopy, so that pji (t) ∈ Cti for all t. For

t = 1, the points pji (1) = pji satisfy condition (4) above. This implies, in particular, that at t = 1, the
branch Cti has no more than wi intersection points with other branches. However, for 0 < t < 1, the

marked points pji (t) are not subject to any restrictions and have little significance. The homotoped
curvettas Cti can have an arbitrary number of intersections, and intersections may be positive or
negative. By contrast, for picture deformations the weights control the number of intersection points
between deformed curvettas at all times, the intersections between branches are always marked during
deformation, and all intersections are positive because curvettas are deformed through complex curves.

Let (Y, ξ) be the link of the singularity (X, 0) with the decorated germ (C, w). We will show that
every smooth graphical homotopy of the germ C gives rise to a Stein filling of (Y, ξ).

First, we focus on the curvetta arrangement {C1
1 , C

1
2 , . . . , C

1
m} with marked points, produced at the

end of homotopy at the time t = 1. Lemma 3.2 below produces a certain Lefschetz fibration from this
input. The lemma applies to any arrangement of smooth graphical disks {Γ1,Γ2, . . . ,Γm} satisfying
the stated hypotheses; the homotopy is not used at this stage. We use different notation to emphasize
that {Γi} need not be related to C. Then, Lemma 3.4 uses the homotopy between the decorated germ
(C, w) and the curvetta arrangement {C1

1 , C
1
2 , . . . , C

1
m} with its marked points p1, p2, . . . , pn to show

that the open book on the boundary of the Lefschetz fibration supports (Y, ξ). It follows that our
construction produces a Stein filling of (Y, ξ).

As a smooth 4-manifold, the filling produced by Lemma 3.2 is constructed similarly to the Milnor
fibers in Theorem 1.3. Namely, we blow up at each of the intersection points of the homotoped
curvettas, as well as at the free marked points, and then take the complement of the proper transforms
of the curvettas. Even though C1

i are smooth disks (rather than complex curves), we will assume that
they are locally modelled on complex curves near the intersection point, so the blow-up and the proper
transforms can be understood in the usual sense. Alternatively, one could also think about the proper
transform in the smooth sense, as the closure of the complement of the blown-up point (see [GS99,
Definitions 2.2.7 and 2.2.9]). To obtain a 4-manifold with given boundary, we consider a compact
version of the construction in a Milnor ball, as explained in Remark 2.8. It is convenient to consider
the Milnor ball of the form B = Dx ×Dy ⊂ C2, with corners smoothed, where Dx and Dy are disks
in the coordinate planes Cx and Cy. For every x0 ∈ Dx, the graphical disks Γi intersect {x0} × Dy

transversally, and the intersection with ∂(Dx×Dy) lies as a braid in ∂Dx×Dy. To simplify notation,
we do not mention the Milnor ball B explicitly in the first part of the lemma.

Lemma 3.2. Let Γ1, . . . ,Γm be smooth disks in C2 which are graphical with respect to the projection
πx, Γi = {y = fi(x)}. Assume that at each intersection point of two or more Γi, there exists a
neighborhood U of the intersection such that ∪iΓi are cut out by complex linear equations inside U .
(Up to graphical isotopy, this only requires the Γi to intersect transversally and positively with respect
to the orientation on the graph Γi induced from the natural orientation on C.) Let p1, . . . , pn be points
on the disks Γi which include all intersection points, and let α : C2#nCP2 → C2 be the blow-up at the

points p1, . . . , pn. Let Γ̃1, . . . , Γ̃m denote the proper transforms of Γ1, · · · ,Γm.

Then πx ◦ α : (C2#nCP2) \ (Γ̃1 ∪ · · · ∪ Γ̃m) → C is a Lefschetz fibration whose regular fibers are

punctured planes, where each puncture corresponds to a component Γ̃i. There is one vanishing cycle for
each point pj, which is a curve in the fiber enclosing the punctures that correspond to the components Γi
passing through pj.
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Similarly, if B = Dx × Dy is a Milnor ball that contains all the points pi, . . . , pn and contains

(Dx ×C) ∩ (∪iΓi), and Ti is a small tubular neighborhood of Γ̃i, then πx ◦ α : (α−1(Dx ×Dy)) \ (T1 ∪
· · · ∪Tm)→ Dx is a Lefschetz fibration with compact fiber. The fiber is a disk with holes corresponding
to the components Γi. The vanishing cycles correspond to the points pj in the same way.

If the curvettas Cs1 , . . . , C
s
m with marked points are the result of picture deformation of the germ

(C,w) associated to a surface singularity, the Lefschetz fibration constructed as above is compatible
with the complex structure on the Milnor fiber of the corresponding smoothing.

Proof. Before blowing up, the projection πx : C2 → C is clearly a fibration, and the smooth disks Γi
are sections of this fibration. If they were disjoint sections, then their complement would be a fibration
whose fiber is C with m punctures. Since the sections intersect, we blow up at each of the intersection
points, along with blow-ups at other chosen points on the curves. For each fiber containing one of
the pj where we blow up, the corresponding fiber in the blow-up is the total transform, which is a
nodal curve containing the exceptional sphere and the proper transform of the fiber. More specifically,
translating the coordinates (x, y) on C2 to be centered at pj , the coordinates on the blow-up are

C2#CP2
pi = {((x, y), [u : v]) | xv = yu}

The singular fiber is the total transform of F = {x = 0} which has two irreducible components:

(E = {((0, 0), [u : v])}) ∪
(
F̃ = {((0, y), [0 : 1])}

)
The node occurs at the intersection of these two components at ((0, 0), [0 : 1]). Therefore in a neighbor-
hood of the node we can take v = 1, so we have local coordinates on the blow-up given by (y, u) ∈ C2

where x = yu. The projection πx ◦ α is given in these coordinates by

πx ◦ α(y, u) = yu

which is exactly the model for a Lefschetz singularity at (y, u) = (0, 0).
In the coordinate chart on C2 centered at pj , let Γi = {(x, fi(x))}. The total transforms of the

curves Γi which pass through pj (i.e. which have fi(0) = 0) are given by

(E = {((0, 0), [u : v])}) ∪
(

Γ̃i =

{(
(x, fi(x)),

[
1 : lim

a→x

fi(a)

a

])})
and those which do not pass through pj (fi(0) 6= 0) lift isomorphically to the blow-up:

{((x, fi(x)), [x : fi(x)])}.
Note that the proper transforms do not pass through the node ((0, 0), [0 : 1]). Moreover, since the

intersections between the Γi were assumed to be transverse, lima→0
fi(a)
a have different values for

different values of i where fi(0) = 0. Therefore, the Γ̃i are disjoint sections of the Lefschetz fibration
from the blow-up of C2 to C, so their complement gives a Lefschetz fibration with punctured fibers.
Moreover, in the singular fibers, the sections which intersect the exceptional sphere part of the fiber

are precisely the proper transforms Γ̃i such that Γi passed through pj .

Regular neighborhoods Ti of the Γ̃i can be chosen sufficiently small to be disjoint from each other
and the Lefschetz singular points, thus yielding the compact Lefschetz fibration. This changes the fiber
(converting the punctures into holes) but does not change the fibration structure and the vanishing
cycles. The total space of a Lefschetz fibration over a disk is a compact 4-manifold with boundary;
the fibration induces a planar open book decomposition on the boundary.

In the case of a picture deformation deformation of the germ (C,w), the deformed curvettas
Cs1 , C

s
2 , . . . , C

s
m are smooth complex disks with marked points satisfying the hypotheses of the lemma.

Then Stein structure induced by the Lefschetz fibration is compatible with the complex structure on
the Milnor fiber, because πx ◦ α is holomorphic. �

Consider a smooth graphical arrangement Γ = {Γ1, . . . ,Γm} in a Milnor ball B = Dx×Dy, such that
each Γi transversally intersects the vertical part ∂Dx×Dy of ∂B and is disjoint from Dx×∂Dy. Taking
the boundaries of the graphical disks, we have an m-braid ∂Γ = ∂Γ1 ∪ ∂Γ2 ∪ · · · ∪ ∂Γm ⊂ ∂B = S3.
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(Each component ∂Γi is an unknot, but the components are linked.) The monodromy of this braid is
called the monodromy of the arrangement Γ. We can interpret the braid group on m strands as the
mapping class group MCG(Cm) of the m-punctured plane. Then the braid ∂Γ is identified with the
monodromy φΓ of the Cm-bundle over S1, given by the projection πx : C2 \ ∪mi=1Γi → C restricted to
the preimage π−1

x (∂Dx) of the circle ∂Dx ⊂ C.
To construct the Lefschetz fibration corresponding to Γ in Lemma 3.2, we perform blow-ups at points

pi that project to the interior of Dx. These blow-ups do not affect the bundle over ∂Dx. Therefore,
the non-compact version of the Lefschetz fibration (with fiber Cm) has the monodromy φΓ given by
the braid ∂Γ.

For the compact version of the Lefschetz fibration from Lemma 3.2, the general fiber Pm is the disk
Dy with m holes. The fibration induces an open book on its boundary, with page Pm. The boundary
of the total space of the fibration Ls is the union of two parts: the horizontal boundary ∂Pm × D,
which forms the binding of the open book, and the vertical boundary, a fiber bundle over S1 = ∂Dx

with fiber Pm, which forms the mapping torus for the open book. This fiber bundle is given by the
projection (πx ◦α)−1(∂Dx)→ Dx, which is the same as the projection πx : B \∪mi=1Γi → Dx restricted
to π−1

x (∂Dx), because the blow-up map α is the identity over ∂Dx. Let φ : Pm → Pm denote the
monodromy of this fiber bundle (i.e. the monodromy of the open book). We then have a commutative
diagram

Pm
φ−−−−→ Pmy y

Cm
φΓ−−−−→ Cm,

where the vertical maps are inclusions. This proves

Lemma 3.3. Let Γ = {Γ1, . . . ,Γm} be a smooth graphical arrangement with marked points {pj}, and
B = Dx×Dy a Milnor ball whose interior contains all marked points, such that Γi∩(Dx×C) ⊂ B and
Γi is transverse to ∂B for all i = 1, . . . ,m. Let φΓ be the monodromy of the braid ∂Γ = ∂Γ1∪· · ·∪∂Γm ⊂
∂B = S3.

Let φ : Pm → Pm be the monodromy of the open book induced by the Lefschetz fibration constructed
for (Γ, {pj}) in Lemma 3.2. Then φΓ is the image of φ under the projection

η : MCG(Pm)→MCG(Cm)

induced by the inclusion Pm ↪→ Cm of the compact disk with m holes into the m-punctured plane.

When the arrangement (Γ, {pj}) is related to the decorated germ (C, w) by a smooth graphical
homotopy, the monodromy φΓ of the braid ∂Γ is the same as the monodromy of the braid ∂C =
∂C1 ∪ · · · ∪ ∂Cm, because the homotopy between disks gives an isotopy of the two boundary braids.
By definition, the braid monodromy of ∂C is the monodromy ϕ of the singular point of C.

We next examine the monodromy of the open book corresponding to Γ in the case of the compact
fiber, and find its relation to the monodromy of the singular curve C.

Lemma 3.4. Let {Γ1, . . . ,Γm} and {Γ′1, . . . ,Γ′m} be two smooth graphical arrangements, such that the
boundary braid of are braid-isotopic (respecting labels) and the weights on the corresponding components
agree. Let L and L′ be the corresponding Lefschetz fibrations constructed in Lemma 3.2. Then the
induced open book decompositions on the boundary have the same page and same monodromy.

We will prove the lemma after pointing out its consequences. Since the plane curve arrangements
at either end of a smooth graphical homotopy have braid-isotopic boundaries, and the weights on the
components remain constant during the smooth graphical homotopy, it follows that the open book
decomposition induced on the boundary for any Lefschetz fibration arising in this way is independent
of the choice of smooth graphical homotopy.

For the case where (Γ, w) is the end point of a picture deformation of a plane curve germ (C, w), L′
is a Lefschetz fibration on the (compactified) Milnor fiber of the associated smoothing of the surface
singularity (X, 0), as in Theorem 1.3. In this case the boundary of the Milnor fiber is the link Y of
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the singularity (X, 0), and the Milnor fiber gives a Stein filling of the canonical contact structure ξ on
the link, so the open book supports ξ. Because every rational singularity has a picture deformation
yielding a Milnor fiber arising in such a manner (see Section 4 in our case), the open book on the
boundary of any Lefschetz fibration arising from the endpoint of a smooth graphical homotopy of the
same germ must support the canonical contact structure on the link of the singularity.

Combining Lemma 3.2 and Lemma 3.4 with this discussion completes the proof of Theorem 1.4
which we summarize in the following corollary.

Corollary 3.5. A smooth graphical homotopy of the decorated germ (C, w) gives rise to a Stein filling
of the link (Y, ξ) of the corresponding singularity.

Proof of Lemma 3.4. Applying the previous discussion and Lemma 3.3 to the arrangement Γ = {Γ1,Γ2, . . . ,Γm},
we see that the the homomorphism η : MCG(Pm) → MCG(Cm) sends the open book monodromies
φ and φ′ to the same braid monodromy ϕ ∈ MCG(Cm). The kernel of the map η : MCG(Pm) →
MCG(Cm) is generated by the boundary-parallel Dehn twists around the holes in the fiber Pm. (Re-
call that the monodromy of an open book is considered rel boundary of the page, so while the twists
around individual strands are trivial in the braid case, the boundary twists become non-trivial for
open books.) It follows that the monodromies φ, φ′ of the open books on the boundaries of L and L′
can differ only by boundary twists, since η(φ) = η(φ′) = ϕ.

Let Ti denote a positive Dehn twist around the i-th hole. Then we have

(3.1) φ′ = φ ◦ Tα1
1 ◦ Tα2

2 ◦ · · · ◦ Tαmm
for some integers α1, α2, . . . , αm. The order is unimportant since the boundary twists are in the center
of MCG(Pm).

It remains to pin down the boundary twists around each hole, i.e. to show that αi = 0 for every
i = 1, . . . ,m. To do so, we need to take into account the blow-ups at the free marked points pi (the
marked points that lie on the branches away from the intersections). These correspond to boundary
twists. Recall a basic fact about diffeomorphisms of a planar surface rel boundary: for any two
factorizations Ψ, Ψ′ of ψ : Pm → Pm, the number of Dehn twists that enclose a given hole h is the
same for Ψ and Ψ′. (Here, we count all twists, not only the boundary ones.) The above statement
easily follows from the fact that lantern relations generate all relations in the mapping class group of
a planar surface [MM09], and the number of Dehn twists enclosing a given hole is unchanged under a
lantern relation. This implies that the number of Dehn twists enclosing the i-th hole is well-defined
for a monodromy ψ : Pm → Pm; let ni = ni(ψ) denote this number. If two monodromies φ, φ′ are
related by (3.1), we have

(3.2) ni(φ
′) = ni(φ) + αi.

On the other hand, the number ni is determined by the vanishing cycles of the Lefschetz fibration. By
construction of the fibration L1 associated to the homotopy Ct, the number of Dehn twists enclosing
the i-th hole is given by the number of blow-ups at the marked points on C1

i , which in turn equals
the weight wi of the component Ci of the original germ C. So ni(φ) = wi = ni(φ

′), and αi = 0
from (3.2). �

Remark 3.6. Our description of the open book monodromy for an arrangement is somewhat similar
to E. Hironaka’s results on the monodromy of complexified real line arrangements in C2 [Hir12]. An
important difference is that we consider Lefschetz fibrations on the complement of the proper transform
of the curves in a blow-up of C2, while Hironaka computes the monodromy of the fiber bundle over S1

obtained by projecting the complement of the complex lines in C2 to a circle of large radius (compare
with the proof of Lemma 3.4). She also considers the setting with compactified fibers, by taking the
complement of tubular neighborhoods of the lines, and computes the monodromy of line arrangements
as an element of MCG(Pm). It is important to note that even in the compactified setting, her answers
are different from the monodromy of the corresponding Lefschetz fibrations that we consider. (The
difference is given by some boundary twists.) The discrepancy appears because when the tubular
neighborhoods of C1

i ’s are removed from C2, their parametrization is induced from C2. When we blow
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up and take proper transforms of C1
i , the parametrization of tubular neighborhoods is induced by the

Lefschetz fibration structure on the blown-up manifold. These two parametrizations are different in
the two settings, affecting the choice of the meridian of the tubular neighborhood of a line and the
framing of the boundary of the corresponding hole.

4. The Lefschetz fibration for the Artin smoothing

4.1. The Scott deformation. We can now use a specific deformation to describe the monodromy
of the open book decomposition of (Y, ξ). We will use a canonical deformation, called the Scott
deformation in [dJvS98], which yields a smoothing in the Artin component. This deformation yields a
particularly nice arrangement of curvettas where the associated Lefschetz vanishing cycles are disjoint.
This in turn yields a model factorization for the monodromy of the boundary open book decomposition.
In Proposition 6.7, we will show that the corresponding Stein filling is uniquely recognizable from its
combinatorics. Recall that tang(Ci, Cj) stands for the order of tangency between branches Ci, Cj of
C, and t(Ci) = maxj tang(Ci, Cj).

Proposition 4.1. Let (X, 0) be a rational surface singularity with reduced fundamental cycle, and
(C, w) one of its decorated reducible plane curve germs with m smooth irreducible components. Let
(Y, ξ) be the contact link of (X, 0). Then (Y, ξ) has a planar open book decomposition whose page is a
disk with m holes h1, . . . , hm, corresponding to the branches of C. The open book monodromy admits
a factorization into disjoint positive Dehn twists with the following properties:

1) for any two branches Ci, Cj, the corresponding holes hi, hj are enclosed by exactly tang(Ci, Cj)
of these Dehn twists;

2) there are w(Ci)− t(Ci) > 0 boundary Dehn twists around the hole hi;
3) there is at least one positive Dehn twist about the outer boundary component of the page.

Proof. We use the picture deformation of (C, w) referred to as the Scott deformation in [dJvS98,
Proposition 1.10]. This deformation arises from iteratively applying the following procedure. (We
refer the reader to [dJvS98, A’C75] for details, including the explanation why the procedure below can
be actually realized by a 1-parameter deformation.)

The input of the procedure is an isolated singular point p of a plane curve C with multiplicity m.
In our case C is a union of smooth components, and the multiplicity m is the number of components
through the point p. The output of the procedure is a deformation C ′ whose singularities are:

(1) one m-fold point where m branches intersect transversally, and
(2) the collection of singularities occurring on the proper transform of C in the blow-up of C2 at p.

The idea of the deformation is to blow up at p, perform a small deformation of the curves so that
the singularities of the proper transform become disjoint from the exceptional divisor, and then blow
down the exceptional divisor to return to the plane and obtain the curve C ′.

We demonstrate this process in an example in Figure 4. The initial configuration in the bottom left
consists of five curves. The curves C1 and C2 are tangent with multiplicity 3, and these two curves
are tangent to C3 with multiplicity 2. The curves C4 and C5 are transverse to C1, C2, C3 but tangent
to each other with multiplicity 4. After blowing up at the common intersection point, we obtain the
proper transforms together with an exceptional divisor as shown in the top left of Figure 4. Now C1 and
C2 are tangent with multiplicity 2 and transversally intersect C3 at the same point on the exceptional
divisor. The curves C4 and C5 become disjoint from C1, C2, C3, and they are tangent to each other
with multiplicity 3 at another point on the exceptional divisor. Next we perform the deformation of
the curves, fixing the exceptional divisor, but translating the proper transforms C̃1, C̃2, . . . , C̃5 of the
curvettas slightly so that the intersection of the exceptional divisor with the proper transforms now
occurs away from the intersections of the proper transforms with each other, as shown in the top right
of Figure 4. Finally, we blow down the exceptional divisor, which results in a transverse intersection
of the resulting curvettas Cs1 , C

s
2 , . . . , C

s
5 together with the singularities (intersections) of the proper

transforms as required.
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Figure 4. One iteration of the Scott deformation in an example.

Since the multiplicity of the orders of tangency between components decreases each time we take
the proper transform, applying this procedure iteratively to the singularities of type 2 eventually yields
a deformation to a plane curve with only transverse intersections. See Figure 5 for the iterations of
the Scott deformation in our example, until all of the singularities are transverse intersection points.
When working with a decorated germ (C, w), with the marked points of w initially concentrated at 0,
the same blow-up procedure will separate the marked points. Indeed, if there are additional marked
points which increase the weight, they can be separated by additional iterations of the blow-ups and
translations, so that at the end all marked points are disjoint. (In this sense the scheme ws is reduced.)
Note that the total weight w(Ci) of each component is equal to the total number of marked points on
that component (including the intersection points).

When the components of C are smooth, the result of this deformation is as follows. If some com-
ponents of C were tangent to order r1 before the deformation, they will all pass through the same
r1 transverse multi-points pi1 , . . . , pir1 . If another component of C intersects these components with
multiplicity r2 < r1 before the deformation, this component will pass through r2 of these points after-
wards. The total number of intersection points appearing on the Scott deformation of a component
Ci is precisely t(Ci), the highest possible order of tangency between Ci and another branch in the
original germ C. In this sense, the intersection points are used as efficiently as possible. The number
of additional marked points on Ci is w(Ci)− t(Ci).

Now, consider the Lefschetz fibration constructed from the Scott deformation via Lemma 3.2. We
claim that up to a curve isotopy, the vanishing cycles of this fibration are disjoint curves on the planar
page. The reason for this is built into the iterative nature of the Scott deformation, which results in a
nesting of the vanishing cycles as follows.
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Figure 5. A Scott deformation applied iteratively until all intersections are transverse.

Consider the equivalence relations on the components C1, . . . , Cm of the germ C defined by Ci ∼l Cj
if Ci and Cj intersect at 0 with multiplicity at least l. The transitivity of this relation comes from
the fact that if C1 intersects C2 with multiplicity r at 0 and C2 intersects C3 with multiplicity s at
0, then C1 must intersect C3 with multiplicity at least min{r, s}. These equivalence relations induce
partitions of the components of C, and ∼l refines ∼l′ for l > l′.

If we apply the Scott deformation procedure iteratively, on the first iteration, we obtain one trans-
verse intersection of all of the branches (the singularity of type 1) which groups the components of
C according to the (unique) block of the partition induced from ∼1. Applying the Scott deformation
procedure to all the singularities of type 2, generates a transverse multi-point of type 1 for every block
in the partition induced by ∼2. Iterating this procedure, we obtain a transverse intersection for every
block of each partition Pl induced by ∼l, for l ≥ 1. For sufficiently large l, each block will consist of
a single smooth component, and thus no new transverse intersections of type 1 will result from the
procedure. When a block contains a single element, there may or may not be additional marked points
placed. Instead of using the partition and Scott deformation to place additional marked points, we
can simply use the formula that Ci must have w(Ci)− t(Ci) total additional marked points.

Recall that there is one vanishing cycle in the Lefschetz fibration for each marked point of the
Scott deformed curve, and this vanishing cycle encircles the punctures/holes corresponding to the
components of curves which pass through the given marked point. Because the equivalence relations ∼l
refine each other as l increases, the subsets of Ci which intersect at the (l + 1)st iteration are nested
within the subsets of Ci which intersect at the lth iteration. Moreover, because the isotopy in the
blow-up procedure can be made arbitrarily small, we can assume that there is no braiding of the
components Ci between the lth and (l+ 1)st iterations (see Section 5 for more details on how braiding
of the curves can occur and be understood in general). More specifically, observe that in the Scott
deformation procedure, as in Figure 4, the deformation from right to left in the blow-up (at the
top of the figure) can be performed by an arbitrarily small translation of the exceptional divisor.
By making the translation sufficiently small, we can ensure that in each subset intersecting at the
(l+ 1)st iteration, the curves stay close together and do not interact with another such subset. (In the
language of Section 5, non-trivial braiding would correspond to a crossing of the wires, and a small
translation ensures that the wires cannot cross in between the singularities produced iteratively by the
Scott deformation.) Then, the vanishing cycles corresponding to the intersections of type 1 which are
introduced at the (l+ 1)st iteration will be nested inside (and thus disjoint from) the vanishing cycles
corresponding to the intersections of type 1 introduced at the lth iteration. We can also assume that
any two vanishing cycles introduced in this way at the lth iteration are disjoint because the application
of Lemma 3.2 to the Scott deformation actually realizes these Lefschetz singularities simultaneously in
the same fiber (we can later perturb so they arise in different fibers if desired). Finally, the additional
marked points at smooth points of the Ci correspond to vanishing cycles which are boundary parallel
to the ith hole, and thus can be realized disjointly from each other and all other vanishing cycles. Thus
we conclude that the Scott deformation yields a Lefschetz fibration with disjoint vanishing cycles. This
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means that the compatible planar open book for the link (Y, ξ) has monodromy which is a product
of positive Dehn twists about the disjoint curves described above. Because at the first step we get a
transverse intersection of all deformed curvettas, the corresponding vanishing cycle encloses all holes,
i.e. we have a Dehn twist about the outer boundary component of the page. �

4.2. Symplectic resolution and Lefschetz fibrations. It is noted in [dJvS98] that the Scott defor-
mation corresponds to the Artin smoothing, which in this situation is diffeomorphic to the resolution
of the singularity. In fact, we can see more directly, through symplectic topological means, that the
Lefschetz fibration corresponding to this Scott deformation gives a plumbing which necessarily corre-
sponds to the resolution of the singularity.

We recall the procedure of [GM13, Theorem 1.1]. Starting with the plumbing graph G, this pro-
cedure produces a planar Lefschetz fibration compatible with the symplectic resolution of a rational
singularity with reduced fundamental cycle. (The sympectic structure on the plumbing can be de-
formed to the corresponding Stein structure.) In fact, [GM13, Theorem 1.1] applies to a wider class of
singularities (see Subsection 4.3 below), but we first describe it for this particular case. To construct
the fiber of the Lefschetz fibration, take a sphere Sv for each vertex v ∈ G and cut out −a(v)−v ·v ≥ 0
disks out of this sphere. (As before, a(v) is the valency of the vertex v; the number of disks is non-
negative by (2.1).) Next, make a connected sum of these spheres with holes by adding a connected
sum neck for each edge of G. For a sphere Sv corresponding to the vertex v, the number of necks
equals the number of edges adjacent to v, i.e. its valency a(v). The resulting surface S has genus 0
because G is a tree. See the top of Figure 6 for an example.

Proposition 4.2. [GM13, Theorem 1.1] The surface S constructed above is the fiber of a Lefschetz
fibration on a symplectic neighborhood of symplectic surfaces intersecting ω-orthogonally according to
the graph G. The vanishing cycles are given by the curves parallel to the boundaries of the holes (one
curve for each hole) and the cores of the necks of the connected sums.

Let X̃ be the Milnor fiber of the Artin smoothing component for a rational (X, 0) with reduced

fundamental cycle; X̃ is a Stein filling for the contact link (Y, ξ). We now have several different

Lefschetz fibration structures on X̃. First, because X̃ is diffeomorphic to the minimal resolution of
(X, 0), a Lefschetz fibration is produced by the Gay–Mark construction of Proposition 4.2. Second,
for each choice of the decorated germ (C, w) with smooth branches, the proof of Proposition 4.1 also

gives a Lefschetz fibration on X̃. All these Lefschetz fibrations have planar fibers. In our construction
of the Lefschetz fibration from the curvetta arrangement, the general fiber has a distinguished “outer”
boundary component coming from the fibration π : B → C on the Milnor ball B = Dx × Dy ⊂ C2.
In the Gay-Mark construction, there is no distinguished boundary component of the fiber. On the
other hand, the decorated germ is not uniquely defined: recall from Proposition 2.4 that there are
mult X choices of decorated germs with smooth branches representing (X, 0), where some of these
germs may coincide due to symmetries in the extension of the resolution graph. Of course, since the
link of the singularity is independent of the choice of curvetta germs, the Stein filling arising from
the Artin smoothing should not depend on these choices. We now show that the choice of curvettas
corresponds precisely to the choice of the outer boundary component, so this choice only affects the
presentation of the Lefschetz fibration. See Figure 6 for an example.

Lemma 4.3. Let L be the planar Lefschetz fibration on X̃ provided by Proposition 4.2. Then the
mult X different choices of smooth curvetta germs for (X, 0) produce, via the Scott deformation,

planar Lefschetz fibrations on X̃ with a distinguished boundary component of the fiber. The choices of
smooth curvetta germs are in one-to-one correspondence with the different choices of outer boundary
component of the general fiber of L.

Proof. As before, we associate to each vertex of the resolution graph G for the singularity the quantities
v · v for the self-intersection and a(v) for the valency. In the Gay-Mark Lefschetz fibration L, each
vertex v ∈ G contributes −v · v − a(v) boundary components to the fiber. On the other hand, recall
from the proof of Propositions 2.2 and 2.4 that the germ C of smooth curvettas is obtained from an
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Figure 6. An example demonstrating different choices of curvettas correspond to
different choices of outer boundary component for the fiber of the Lefschetz fibration.
At the top we have the resolution configuration and the corresponding Gay–Mark
Lefschetz fiber with vanishing cycles. The resolution configuration is augmented with
red (−1) curves and blue curvettas. For each choice of curvettas we delete exactly
one of these red (−1) curves and the corresponding curvetta. We show the resulting
curvettas, their Scott deformation, and the corresponding planar Lefschetz fibration
obtained from Lemma 3.2 in the cases of excluding the (−1) curves labeled 2, 3, and
5. Note that because of symmetries in the graph, the exclusion of 1 or 2 yield very
similar looking cases, and similarly with the exclusion of 4 or 5.

extension of the resolution graph G to a graph G′. We attach −v ·v−a(v) vertices with self-intersection
−1 and valency 1 to each vertex v to obtain a graph G′′ and then delete exactly one of these (−1)
vertices to get the graph G′. This shows that the number of choices for the germ matches the number
of boundary components of the fiber of L, and this number is exactly multX = −

∑
(v ·v+a(v)). The

curvetta branches of the germ C are obtained by taking disks dual to the remaining (−1) vertices and
considering their proper transform after blowing down all exceptional divisors; thus the curvettas are in
one-to-one correspondence with the (−1) vertices of G′. In turn, in the Lefschetz fibration constructed
by Lemma 3.2, the “inner” boundary components of the fiber are in one-to-one correspondence with
the curvettas. The deleted (−1) vertex in G′′ still corresponds to a boundary component in the fiber
of the Gay-Mark Lefschetz fibration L, thus we can say that it corresponds to the outer boundary
component of the fiber of the planar Lefschetz fibration produced by Lemma 3.2. Note also that if we
enumerate the (−1) vertices of the graph G′ by 1, 2, . . . ,m = multX − 1, we get an enumeration of
the components of C, which in turn gives an enumeration of the holes of the fiber. �
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Recall from Remark 2.6 that there may be different analytic types of singularities with the same
link (Y, ξ). These singularities are all topologically equivalent and have the same graph G, so that
decorated germs for each these singularities are obtained from extensions of G. A particular choice of
extension gives topologically equivalent decorated germs for all singularities with link Y . Topologically
equivalent germs yield the same open book decompositions of (Y, ξ) as in Proposition 4.1, since the
weights and the orders of tangency between branches are encoded by the topological type. Together
with the previous proposition, this gives

Corollary 4.4. Let (Y, ξ) be a link of surface singularity with reduced fundamental cycle. Then for
any singularity (X, 0) whose link is Y and any choice of the decorated germ C for (X, 0) with smooth
branches, the open book decomposition of (Y, ξ) defined by C is the same; namely, the open book induced
by the Gay-Mark Lefschetz fibration. Different extensions G′ of the resolution graph G used to construct
C correspond to different choices of the outer boundary of the page of the open book. Enumeration of
the branches of C (or equivalently, of the (−1) vertices of G′) corresponds to enumeration of the holes
in the page.

It is interesting to note that the Milnor fiber of the Artin smoothing is the only Stein filling with
disjoint vanishing cycles in its Lefschetz fibration.

Proposition 4.5. Suppose a planar Lefschetz fibration has disjoint vanishing cycles, with at least
one boundary parallel vanishing cycle for each boundary component. Then this is a Lefschetz fibration
for the Artin smoothing of a rational singularity with reduced fundamental cycle. In particular, the
induced open book decomposition on the boundary supports the contact link of a rational singularity
with reduced fundamental cycle.

Proof. As in [GM13], if the vanishing cycles are disjoint, we can realize all Lefschetz singularities
simultaneously in the same fiber. The unique singular fiber is thus a configuration of spheres inter-
secting transversally according to a graph. Note that the boundary parallel twists are important to
ensure that the only non-closed components of the singular fiber are disks which retract to a point.
(These disks come from the small annuli around the holes.) The non-singular fibers provide a regular
neighborhood for the configuration, so the entire 4-manifold is a symplectic plumbing. This 4-manifold
gives a symplectic filling for a contact structure supported by a planar open book, thus by [Etn04] its
intersection form is negative definite, i.e. the plumbing graph G is negative definite. Thus, the graph
can be thought of as the resolution graph of a normal surface singularity (X, 0).

As in [GM13], −v · v ≥ a(v) for each vertex v ∈ G, so (X, 0) is a rational singularity with reduced

fundamental cycle. To see this, observe that each vertex v ∈ G corresponds to a closed component Ŝv
of the singular fiber. Alternatively, Ŝv can be viewed as the union of a component Sv of the complement
of the vanishing cycles in a regular fiber capped off by thimbles for each of its boundary vanishing
cycles. Then, v · v = Ŝv · Ŝv equals the negative number of thimbles in Ŝv, or equivalently the negative
number of vanishing cycles on the boundary of Sv (see [GGP, Proposition 2.1]). The valency a(v) is

the number of other spheres in the singular fiber intersecting Ŝv. Put differently, a(v) is the number

of closed surfaces Ŝv′ , v
′ 6= v, such that Sv and Sv′ share a vanishing cycle in their boundaries; thus

a(v) is the number of the vanishing cycles in ∂Sv that are not adjacent to a boundary component in
the fiber. Then −v · v − a(v) is the number of vanishing cycles adjacent to a boundary component in
∂Sv, so −v · v − a(v) ≥ 0, as required. Note also that v · v ≤ −2 as each Sv has at least 2 vanishing
cycles on the boundary, so G is the graph of the minimal resolution.

The above discussion implies that if we run the construction of Proposition 4.2 for the graph
G, we recover the given Lefschetz fibration. It follows that our Lefschetz fibration is compatible
with the symplectic structure on the minimal resolution. For a rational singularity, the resolution
is diffeomorphic to the Milnor fiber of the Artin smoothing (and the symplectic structure on the
symplectic plumbing deforms to the corresponding Stein structure). This shows that the Lefschetz
fibration produces the same filling as the Artin smoothing. �

4.3. A digression: some non-rational singularities and potential unexpected fillings. Al-
though we stated Proposition 4.2 for rational singularities, Theorem 1.1 of [GM13] is more general: the
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same construction works when the normal crossings resolution has exceptional curves of higher genus,
as long as condition (2.1) is satisfied. The fiber of the corresponding Lefschetz fibration is formed by
taking the connected sum of surfaces given by the exceptional curves and cutting −v · v − a(v) ≥ 0
holes in the surface corresponding to v ∈ G. As before, the vanishing cycles are given by the boundary
parallel curves around the holes and the curves around the connected sum necks. We can use this
construction together with monodromy factorizations of [BMVHM17] to construct infinite collections
of Stein fillings for links of certain non-rational singularities.

Figure 7. The Gay-Mark Lefschetz fibration for the resolution of a non-rational
singularity which admits infinitely many unexpected fillings. The subsurface of genus 4
with d = 4 used to produce infinitely many monodromy factorizations is shaded.
Vanishing cycles are drawn in blue.

Indeed, suppose that a normal surface singularity (X, 0) has a good resolution such that one of the
exceptional curves has genus g ≥ 2 and self-intersection −d, with d ≤ 2g−4. As before, we assume that
the resolution graph has no bad vertices, i.e. satisfies (2.1). Then the fiber of the Lefschetz fibration
from [GM13, Theorem 1.1] has a subsurface of genus g with some necks and holes, and a vanishing
cycle around each neck and each hole. (See Figure 7.) The total number of these vanishing cycles is d.
We can cut out this subsurface along the curves parallel to the vanishing cycles to get a surface of genus
g with d holes, so that the product of the Dehn twists around the vanishing cycles is the boundary
multi-twist. For d ≤ 2g − 4, [BMVHM17, Theorem A] establishes that the boundary multi-twist has
infinitely many positive factorizations as products of Dehn twists about non-separating curves. These
factorizations can consist of arbitrarily many Dehn twists. It follows that the monodromy of the
corresponding open book on the link (Y, ξ) has infinitely many positive factorizations, each of which
produces a positive allowable Lefschetz fibration (see [AO01]) and thus a Stein filling; these Stein
fillings can have arbitrarily high Euler characteristic. We ask

Question 4.6. Does the above construction produce any unexpected Stein fillings?

To answer this question, one would need to contrast these Stein fillings and the Milnor fibers of all
surface singularities with the given link. Each fixed singularity can only have finitely many Milnor
fibers. (Indeed, the Milnor fibers correspond to the components of the base of miniversal deformation;
the base is a germ of an analytic space, and as such it can only have finitely many components, see e.g.
[PP16, Theorem 4.10 and discussion in section 7].) However, because of the presence of a higher-genus
surface in the resolution, every singularity as above is not (pseudo)taut [Lau73], which means that
there exist infinitely many analytic types of singularities with the same dual resolution graph, and
thus the same contact link. We are interested in the Stein topology of the Milnor fibers, which is more
coarse than the analytic type; in principle, it is possible that the infinite collection of analytic types
of the singularity would only give rise to finitely many Stein homotopy types for the Milnor fibers.
Thus, we have the following dichotomy: either (1) there are only finitely many Stein homotopy types
(or diffeomorphism types) of the Milnor fibers, which would imply existence of unexpected fillings, or
(2) an infinite collection of possible analytic types gives rise to an infinite collection of pairwise distinct
Stein fillings. Establishing either outcome would be extremely interesting, even for a single example.

It should also be noted that in the non-rational case, one should in principle consider non-normal
singularities as well, as these might generate additional Stein fillings, see [PP15] for a detailed discussion
of this issue (which doesn’t arise in the rational case).
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Remark 4.7. In a related direction, it is interesting to give a closer look at a family of examples
given by cones over curves. Consider a normal surface singularity whose resolution has a unique
exceptional curve of genus g ≥ 2 with self-intersection −d, for d > 0. The resolution is the total space
of the complex line bundle of degree d over the corresponding Riemann surface, and the singularity
can be thought of as cone point. The link is a circle bundle over the genus g surface, with Euler
number −d. The canonical contact structure is the Boothby–Wang structure, which has an open book
decomposition as described above: the page is a genus g surface with d boundary components, and
the monodromy is the boundary multi-twist.

As explained above, for d ≤ 2g − 4, we have an infinite collection of Stein fillings, produced by
factorizations of the multi-twist. Interestingly, this method no longer applies when d > 4g+ 4: in that
range, the boundary multi-twist admits no non-trivial positive factorizations, again by [BMVHM17,
Theorem A]. On the other hand, for d > 4g + 4, the singularity is realized by an affine cone over
a projective curve and is known to be non-smoothable [Ten92]. In fact, it is also known that the
resolution gives the unique Stein filling in this case [OO03, Proposition 8.2].

Similarly, for cones over elliptic curves, i.e. g = 1, the singularity is non-smoothable for d > 9
[Pin74], and the only Stein filling is indeed given by the resolution, while for d ≤ 9, all Stein fillings
are given by smoothings and resolutions, [OO05].

5. Every symplectic filling comes from a symplectic deformation of curvettas

5.1. Braided wiring diagrams. A braided wiring diagram is a generalization of a braid in R × C
(where the braid condition means that the curves should be transverse to each {t} × C). In a wiring
diagram, instead of only looking at smooth braids, we allow the strands to intersect. Let πR : R×C→ R
denote the projection to the first coordinate. We will also use the natural projection from C to R
sending a complex number its real part.

Definition 5.1. A braided wiring diagram is a union of curves γj : R→ R× C, j = 1, . . . , n, each of
which is a section of the projection πR : R×C→ R, i.e. each “wire” is given by γj(t) = (t, hj(t)+iwj(t)).
Different wires γj may intersect; in this article we will assume that they are not tangent at intersections.

We say a braided wiring diagram is in standard form if there are disjoint intervals I1, . . . , IN ⊂ R
such that I` × C contains a unique intersection point of some subcollection of the curves γj , and in
I` × C, the wires are given as γj(t) = (t, kjt + aj + ibj). If γj does not pass through the intersection
point, we require kj = 0.

Note that any braided wiring diagram can be isotoped through braided wiring diagrams to be in
standard form.

We can encode a braided wiring diagram by projecting the union of the images of the γj to R× R
and denoting the crossings of the projection as in a knot diagram.

A braided wiring diagram can be encoded by sequence (β0, J1, β1, J2, . . . , βm−1, Jm, βm), where each
βi is a braid and Ji = {ki, ki + 1, . . . , ki + `i} is a consecutive sequence of integers indicating the local
indices of the strands involved in the ith intersection point. For brevity, we will say that Ji is a
consecutive set.

Conventions: Strands in a wiring diagram are numbered from bottom to top. The convention
in [CS97] is to draw this sequence of braids and intersections from right to left. If one thinks of
composing words in the braid group using group notation (left to right) instead of functional notation
(right to left), then one will need to read off the braid words from left to right–this is the convention
used in [CS97]. However, in our case since we are always thinking of braids as diffeomorphisms of the
punctured plane, we will use functional notation to compose braid words, and thus read everything–the
intersections and the braid words–from right to left.

Example 5.2. The braided wiring diagram shown in Figure 8 corresponds to the sequence

(id, {2, 3}, id, {3, 4}, σ−1
1 ◦ σ−1

2 , {3, 4}).
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Figure 8. Braided wiring diagram.

Braided wiring diagrams were introduced in [CS97] (inspired by foundational work of [MT88a] and
generalized from diagrams of [Goo80]) to study configurations of complex curves, particularly line
arrangements, and the fundamental groups of their complements. The definition works just as well to
study configurations of smooth graphical disks in C2. As in Section 3, let (x, y) be complex coordinates
on C2, and let πx be the projection to the first coordinate. Let Γ1, . . . ,Γm be smooth disks in C2 which
are graphical with respect to the projection to x, Γi = {y = fi(x)}. Assume that all the intersections
between the Γi’s are transverse and positive (with respect to the natural orientation on the graphical
disks projecting to C).

Definition 5.3. A braided wiring diagram of a graphical configuration Γ = {Γ1,Γ2, . . . ,Γn} of smooth
disks in C2 is obtained as follows. Choose a (real) embedded curve η : [0, 1] → C which passes once
through the projection of each singular point of the configuration, such that the real part Re η is
non-increasing. The preimage of the curve η under πx in C2 is diffeomorphic to [0, 1] × C, and the
intersection of this copy of [0, 1]× C with the configuration Γ is the braided wiring diagram.

The transversality of each smooth disk Γj to the projection πx ensures that the wiring diagram
curves are transverse to the projection πR : R × C → R. Note different choices of η may result
in different braided wiring diagrams which are related by certain generalized Markov moves. See
for example [CS97] for more details. We will show in Section 5.3 that one can always construct a
configuration Γ with a given braided wiring diagram; moreover, the components Γj of Γ can be chosen
to be symplectic.

5.2. Braided wiring diagrams to vanishing cycles. Given a configuration Γ = {Γ1,Γ2, . . . ,Γm}
in C2 as above, Lemma 3.2 produces an associated Lefschetz fibration. Recall that a Lefschetz fibration
is completely determined by its fiber and an ordered list of vanishing cycles. (Critical points are
assumed to have distinct critical values.) The fiber in this situation is planar with m boundary
components, where m is the number of curves in the configuration. If we are given a braided wiring
diagram of Γ, we can explicitly determine the vanishing cycles, as follows.

To describe the vanishing cycles of a Lefschetz fibration L : M → C, we first need to fix certain
data. Choose a regular fiber F0 := L−1(p0) as the reference fiber. Let p1, . . . , pn denote the critical
values of L. Choose paths ηj connecting p0 to pj in the complement of the pj ’s, such that the paths
ηj are ordered counterclockwise from 1 to n locally around p0. Then the jth vanishing cycle Vj is the
simple closed curve in F0 which collapses to a point under parallel transport along the path ηj .

When given a braided wiring diagram, we can construct the paths ηj in a systematic manner and
compute the vanishing cycles Vj in terms of the braided wiring data. The wiring diagram lies over a
curve η : [0, 1] → C such that the real part of η is always decreasing. The Lefschetz fibration from
Lemma 3.2 comes from the composition L := π ◦ α of the blow-down map α : C2#nCP2 → C2 with
the projection map πx : C2 → C. One then takes the complement of the sections given by proper
transforms of the curves Γ1,Γ2, . . . ,Γm in C2#nCP2, so that each Γj corresponds to a hole in the planar
fiber. Thus the jth hole corresponds to the wire γj in the diagram, and in the standard form the holes
are arranged vertically in the fiber, labeled 1, . . . ,m consecutively. Each consecutive set Ji corresponds
to a subcollection of holes contained in a convex subset of C. The Lefschetz critical points occur in
C2#nCP2 above the intersection points of the braided wiring diagram. Let 0 < t1 < · · · < tn < 1
denote the times such that the jth intersection point of the wiring diagram lies over η(tj). We will
choose our reference fiber to lie over the right end-point p0 = η(0) of the curve η in C. Strictly
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Figure 9. The vanishing paths ηj chosen to identify the vanishing cycles in the fiber
over p0 relative to the wiring diagram path η.

speaking, we need a compact version of this construction, which is obtained by working in a closed
Milnor ball and taking complements of tubular neighborhoods of Γi’s, but for simplicity we omit the
Milnor ball from the notation.

We will choose paths ηj : [0, tj ] → C given by ηj(t) = η(t)− εjρj(t)i, where ρj : [0, tj ] → [0, 1] is a
bump function which is 0 near t = 0 and t = tj , and 1 outside a small neighborhood of 0 and tj , and
0 < ε1 < ε2 < · · · < εn < ε. See Figure 9.

Our local model for the Lefschetz fibration in Lemma 3.2 shows that the curve which collapses to a
point in the fiber L−1(ηj(tj − δ)) (for small δ > 0) is a convex curve enclosing the holes in the set Jj .
To determine the vanishing cycle in our reference fiber F0 = L−1(p0), we need to track the monodromy
over the path ηj for t ∈ [0, tj − δ]. This is the monodromy of the braid given by the intersection of the
configuration with the slice of C2 which projects to ηj . (Note this intersection is indeed a braid over
the interior of ηj , because each curve ηj is disjoint from the critical points away from its endpoints.)
By assuming ε to be sufficiently small, we see that this braid agrees with corresponding portion of the
braided wiring diagram, except when passing near an intersection point. When ηj passes an interval
near tk for k < j, the braid resolves the intersection by separating the strands. The strands are ordered
from bottom to top in decreasing order by slope in the projection R× C→ R× R (the most positive
slope is the lowest strand in the crossing). This can be verified by checking the local model for the
complexification of real lines because all of our intersections are positive and transverse (see [MT88b]).
After resolving an intersection of the strands in the set Jk = {ik, ik + 1, . . . , ik + lk}, the element of the
mapping class group which corresponds to this portion of the braid from right to left is ∆−1, where
∆ is positive half-twist of the strands ik, ik + 1, . . . , ik + lk. (In terms of the standard generators of
the braid group, ∆Jk = (σik · · ·σik+lk−1)(σik · · ·σik+lk−2)(σikσik+1)(σik).) Therefore, the braid lying
above ηj is given by

φj = βj−1 ◦∆−1
j−1 ◦ · · · ◦ β1 ◦∆−1

1 ◦ β0,

where ∆k denotes the positive half-twist of the strands in the set Jk. Namely, ∆k is the diffeomorphism
supported in a neighborhood of the disk convexly enclosing the holes in the set Jk, which acts by
rotating the disk by π counterclockwise. The jth vanishing cycle is the curve which is taken to
the convex curve Aj enclosing the holes in the set Jj under the braid lying above ηj . Therefore,

Vj = φ−1
j (Aj).

Remark 5.4. We can encode blow-ups at “free” points (as is allowed by Lemma 3.2) by adding
marked points in our braided wiring diagram indicating “intersection points” that involve only a single
strand (so the corresponding J will have |J | = 1).

Note that the total monodromy of the curve configuration around a circle enclosing all of the critical
points can now be calculated in two different ways:

(1) using the total monodromy of the curve configuration encoded by the braided wiring diagram
(2) taking the product of positive Dehn twists about the induced vanishing cycles.
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Figure 10. Vanishing cycles corresponding to the braided wiring diagram of Figure 8.
The circled crossings correspond to intersections in the wiring diagram. Uncircled
crossings come from braiding between intersections.

Figure 11. The total monodromy about a braided wiring diagram.

To reassure the reader that our formulas and conventions are consistent, we verify that these two
different ways of calculating the monodromy agree.

The total monodromy encircling a braided wiring diagram (β0, J1, β1, . . . , βn−1, Jn, βn) is given by
following the diffeomorphisms induced by a counterclockwise rotation around the wiring interval. Such
a counterclockwise circle is obtained by connecting an upward push-off of the wire interval oriented
right to left with a downward push-off oriented left to right as in Figure 11. The intersections between
the strands of Jj are resolved as the positive half-twist ∆j in the upward push-off (right to left). In

the downward push-off the intersection is resolved as the negative half-twist ∆−1
j right to left, but

since we pass throught the downward push-off from left to right, each such segment contributes ∆j to

the monodromy. The braids contribute βj when traversed right to left and β−1
j when traversed left to

right. See Figure 11. The total monodromy is therefore

β−1
0 ◦∆1 ◦ β−1

1 ◦∆2 ◦ β−1
2 . . . β−1

n−2 ◦∆n−1 ◦ β−1
n−1 ◦∆2

n ◦ βn−1 ◦∆n−1 ◦ βn−2 ◦ · · · ◦ β2 ◦∆2 ◦ β1 ◦∆1 ◦ β0.

On the other hand, each vanishing cycle is given as

Vj = φ−1
j (Aj) = (βj−1 ◦∆−1

j−1 ◦ · · · ◦ β1 ◦∆−1
1 ◦ β0)−1(Aj).

Therefore a Dehn twist τVj about Vj is equal to

τVj = φ−1
j ◦∆2

j ◦ φj
because τAj = ∆2

j and in general τφ(C) = φ ◦ τC ◦ φ−1. Thus, the total monodromy of the Lefschetz
fibration given by the product of positive Dehn twists about the vanishing cycles is

φ−1
n ◦∆2

n ◦ φn ◦ φ−1
n−1 ◦∆2

n−1 ◦ φn−1 ◦ · · · ◦ φ−1
1 ◦∆2

1 ◦ φ1.

We can simplify φj ◦ φ−1
j−1 as

(βj−1 ◦∆−1
j−1 ◦ · · · ◦ β1 ◦∆−1

1 ◦ β0) ◦ (β−1
0 ◦∆1 ◦ β−1

1 ◦ · · · ◦∆j−2 ◦ β−1
j−2) = βj−1 ◦∆−1

j−1.

Therefore τVn ◦ · · · ◦ τV1 is equal to

φ−1
n ◦∆2

n ◦ (βn−1 ◦∆−1
n−1) ◦∆2

n−1 ◦ · · · ◦ (β1 ◦∆−1
1 ) ◦∆2

1 ◦ β0,
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Figure 12. The graph of ρ : R→ [0, 1]. The marked points on R are the ti.

Figure 13. The graph of χ : R→ [−η, η].

which equals

β−1
0 ◦∆1 ◦ β−1

1 ◦ · · · ◦∆n−1 ◦ β−1
n−1 ◦∆2

n ◦ βn−1 ◦∆n−1 ◦ · · · ◦ β1 ◦∆1 ◦ β0.

This coincides with the total monodromy of the braided wiring diagram given above, as required.

5.3. Wiring diagrams to symplectic configurations. Given any braided wiring diagram, we in-
terpret it as a collection of intersecting curves in R × C. We will extend each of these curves to a
symplectic surface in C× C.

Proposition 5.5. Given a braided wiring diagram ∪jγj ⊂ R × C in standard form, there exists a
configuration of symplectic surfaces ∪jΓj in C× C such that Γj extends γj, that is,

(∪jΓj) ∩ (R× {0} × C) = ∪jγj ,

and all intersections Γj ∩ Γk lie in the original wiring diagram in (R × {0} × C) and are transverse
and positive.

Proof. Let t1 = πR(p1), . . . , tn = πR(pn) denote the R coordinates of the intersection points p1, . . . , pn
in the wiring diagram. Braid crossings in the wiring diagram can be viewed as additional intersections
that appear in the image of the diagram under the projection R×C→ R×R. Choose δ > 0 sufficiently
small so that there are no crossings in the braided wiring diagram in π−1

R ([ti− 4δ, ti + 4δ]) (except the
intersection at pn). Let ρi : R→ [0, 1] be a smooth bump function such that

ρi(t) =

{
1 t ∈ [ti − δ, ti + δ]

0 t /∈ (ti − 2δ, ti + 2δ)

Let ρ =
∑n
i=1 ρi. (Figure 12.)

Let η > 0. Let χ : R→ [−η, η] (Figure 13) be a smooth function such that
χ(s) = −η x ≤ −2η

χ(s) = s −η2 ≤ s ≤
η
2

χ(s) = η x ≥ 2η

χ′(s) ≥ 0 ∀s ∈ R

For each wire, we will define its extension to a symplectic surface. Suppose the wire is parametrized
as

γj(t) = (t, hj(t) + iwj(t)) ∈ R× C.
Define Γj(t, s) : R2 → C2 by

Γj(t, s) = (t+ is, hj(t) + i(wj(t) + ρ(t)χ(s)h′j(t))).
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The tangent space of the image of Γj is spanned by
∂Γj
∂t = dΓj(

∂
∂t ) and

∂Γj
∂s = dΓj(

∂
∂s ). The previous

formulas use complex coordinates (x, y) on C2; now we pass to real coordinates (x1, x2, y1, y2), so
that x = x1 + ix2, y = y1 + iy2. In these coordinates, the standard symplectic form is given by
ω = dx1 ∧ dx2 + dy1 ∧ dy2. We have

∂Γ

∂t
=

∂

∂x1
+ h′j(t)

∂

∂y1
+ (w′(t) + ρ′(t)χ(s)h′j(t) + ρ(t)χ(s)h′′j (t))

∂

∂y2

∂Γj
∂s

=
∂

∂x2
+ ρ(t)χ′(s)h′j(t)

∂

∂y2

Evaluating the symplectic form gives

ω

(
∂Γj
∂t

,
∂Γj
∂s

)
= 1 + ρ(t)χ′(s)(h′j(t))

2 > 0,

so the image of Γj is a symplectic surface.
To verify that these extensions do not intersect outside of the original intersections of the wiring

diagram, we observe that any intersection between Γj and Γk would occur at the same parameters
(t0, s0) and must have hj(t0) = hk(t0) and wj(t0) + ρ(t0)χ(s0)h′j(t0) = wk(t0) + ρ(t0)χ(s0)h′k(t0). If
hj(t0) = hk(t0), this means that the wires γj and γk project to the same point under the projection
R×C→ R×R. This means there is either a crossing or an intersection between wires γj and γk at t0.

If t0 is an intersection point of the wires, wj(t0) = wk(t0). Additionally, at t0, the projections of
the wires have different slopes, so h′j(t0) 6= h′k(t0). We also have ρ(t) ≡ 1 near t0. Using this, the
intersection assumption that

wj(t0) + ρ(t0)χ(s0)h′j(t0) = wk(t0) + ρ(t0)χ(s0)h′k(t0)

implies that
χ(s0)(h′k(t0)− h′j(t0)) = wj(t0)− wk(t0) = 0.

Therefore, χ(s0) = 0, so s0 = 0 by definition of χ.
If t0 is a crossing between wires, wj(t0) 6= wk(t0). Because ρ is supported only near the intersection

times, and we assume the crossings occur outside of these intervals, ρ ≡ 0. Therefore, the assumption
that wj(t0) + ρ(t0)χ(s0)h′j(t0) = wk(t0) + ρ(t0)χ(s0)h′k(t0) gives a contradiction.

Finally, we check that Γj and Γk intersect positively. If we assume that the wiring diagram is in
standard form near the intersection points hj(t) = kjt + aj and constant coordinate wj(t) ≡ bj , then
near (ti, 0) where ρ(t) ≡ 1 and χ(s) ≡ s, we have that

Γj(t, s) = (t+ is, kjt+ aj + i(bj + kjs))

so the image of Γj agrees with the complex line y = kjx + aj + bji, so the intersection of Γj and Γk
locally agrees with an intersection of complex lines. �

5.4. Stein fillings correspond to symplectic configurations. Given a contact structure supported
by a planar open book, a theorem of Wendl [Wen10] says that every Stein filling is symplectic defor-
mation equivalent to a Lefschetz fibration with the same planar fiber; Niederkrüger–Wendl [NW11]
extend this result to minimal weak symplectic fillings. Thus, Stein fillings are essentially in one-to-one
correspondence with positive factorizations of the monodromy of the given planar open book (and the
same is true even for weak symplectic fillings, up to blow-up). The following statement is equivalent
to Theorem 1.5.

Proposition 5.6. Let (Y, ξ) be the link of a rational singularity (X, 0) with reduced fundamental cycle.
Fix a decorated germ (C, w) for (X, 0), with smooth branches C1, C2, . . . , Cm.

Then every Stein filling of (Y, ξ) is supported by a Lefschetz fibration built from a configuration of
m symplectic disks {Γ1,Γ2, . . . ,Γm} in C2 with marked points, via Lemma 3.2.

Proof. Because the contact manifold is planar, any Stein filling is supported by a planar Lefschetz
fibration with the same fiber. We will reverse-engineer the required configuration of symplectic disks.
Let F0 be a fixed identification of the planar fiber, where the holes are lined up vertically and labeled by
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numbers 1, 2, . . . ,m. Let V1, . . . , Vn be the ordered list of vanishing cycles for the Lefschetz fibration.
We begin by producing a collection (ψ0, . . . , ψn−1) of diffeomorphisms ψi : F0 → F0 and (J1, . . . , Jn)
of consecutive subsets of {1, . . . ,m}. Here, “consecutive” means that Jj = {i, i+ 1, . . . , i+k} for some
i, k.

Choose a diffeomorphism β0 : F0 → F0 such that β0(V1) is isotopic to a curve convexly enclosing a
consecutive collection of holes; let J1 be the corresponding consecutive subset. Let ∆1 be the counter-
clockwise half-twist of the convex disk that contains precisely the holes indexed by J1. Recursively,
choose a diffeomorphism βj : F0 → F0 such that βj ◦ ∆−1

j ◦ · · · ◦ β1 ◦ ∆−1
1 ◦ β0(Vj+1) is isotopic to

a curve convexly enclosing a consecutive collection of holes that corresponds to the set Jj+1, and let
∆j+1 denote the corresponding half-twist.

Consider the braided wiring diagram determined by (β0, J1, β1, J2, . . . , βn−1, Jn). By Proposi-
tion 5.5, we can construct a configuration of symplectic surfaces Γ1, . . . ,Γm in C2 extending this
diagram. Using Lemma 3.2, we obtain a planar Lefschetz fibration. We need to use the compact
version of the construction to get a fibration whose general fiber is a disk with m holes; for this, we
start with a Milnor ball of the form B = Dx ×Dy, such that Dx is a neighborhood of η, and Dy is a
disk of sufficiently large radius to include the wires above Dx.

As explained in Subsection 5.2, the vanishing cycles of this Lefschetz fibration will be given by

V ′j = (βj−1 ◦∆−1
j−1 ◦ · · · ◦ β1 ◦∆−1

1 ◦ β0)−1(Aj)

for j = 1, . . . , n, where Aj is a convex curve enclosing the consecutive holes in the set Jj . The choice
of the βj ensures that these vanishing cycles are identical to our original ones: V ′j = Vj .

Along with the symplectic disk configuration {Γ1, . . . ,Γm}, we also obtain a collection of marked
points on these disks. The marked points include all the intersections as well as additional free marked
points, as in Remark 5.4. Each free marked point can be chosen anywhere on the corresponding disk, as
long as all marked points are distinct. As in Lemma 3.4, counting multiplicities of pairwise Dehn twists
in the monodromy shows that the number of marked points on each disk Γj is the same as the weight
w(Cj) of the corresponding curvetta Cj of the defining decorated germ (C,w) of the singularity. �

Remark 5.7. Note that the diffeomorphisms βj are not unique. Any choice will suffice to produce an
appropriate braided wiring diagram and corresponding symplectic configuration.

To show that every Stein filling is generated by a symplectic analog of de Jong–van Straten’s
theorem, it remains to prove that different symplectic configurations with the same monodromy are
related by deformations. The role of de Jong–van Straten’s picture deformations is played by graphical
homotopies.

Proposition 5.8. Let (X, 0) be a rational singularity with reduced fundamental cycle, and (C,w) its
decorated plane curve germ with smooth branches C1, . . . , Cm. Let (Y, ξ) be the contact link of (X, 0).
Suppose that Γ = {Γ1,Γ2, . . . ,Γm} is a configuration of symplectic disks with marked points p1, . . . , pn,
constructed for a given Stein filling of (Y, ξ) as in Proposition 5.6. Then (Γ, {pj}) can be connected to
(C,w) by a smooth graphical homotopy.

Lemma 5.9. Suppose C0
1 , . . . , C

0
m and C1

1 , . . . , C
1
m are two configurations of graphical disks in a Milnor

ball B = Dx ×Dy, such that ∂C0
j = ∂C1

j for j = 1, . . . ,m. Then there is a family of graphical disks

Ct1, . . . , C
t
m (potentially with negative intersections) interpolating between these two configurations with

fixed boundary link ∂Ct1 ∪ · · · ∪ ∂Ctm ⊂ ∂B. Here, ∂Ctj = Ctj ∩ ∂B = Ctj ∩ (∂Dx ×Dy).

Proof. Because we are not limiting the behavior of the intersections of the components, it suffices to
check that there is a family Ctj interpolating between C0

j and C1
j for one component. For simplicity

of notation we will drop the j. For this, because both C0 and C1 are graphical, we can write them as
Cs = {(x, fs(x))} for s = 0, 1. Then since ∂C0 = ∂C1, we have that f0(x) = f1(x) for x ∈ ∂Dx. Let
Ct = {(x, tf1(z)+(1− t)f0(x)}. Then Ct interpolates smoothly between C0 and C1, and its boundary
is fixed. �



36 OLGA PLAMENEVSKAYA AND LAURA STARKSTON

Lemma 5.10. Suppose C1∪· · ·∪Cm is a configuration of graphical disks, so its boundary ∂C1∪· · ·∪∂Cm
is a braid. Let L1, . . . , Lm be the components of a braid L1 ∪ · · · ∪ Lm which is braid isotopic (with
corresponding indices) to ∂C1 ∪ · · · ∪ ∂Cm. Then there is a homotopy of graphical disks Ct1, . . . , C

t
m

such that C0
j = Cj and ∂C1

j = Lj.

Proof. If C1, . . . , Cm are graphical over a disk Dx, choose a larger disk D′x containing Dx. Then we
can extend C1, . . . , Cm to graphical disks C ′1, . . . , C

′
m over D′x such that ∂C ′1, . . . , ∂C

′
m is the braid Lj ,

by realizing the trace of the braid isotopy over the annulus D′x \Dx. Next, we can shrink D′x to Dx

continuously via a family of embeddings φt : D′x → D′x where φ0 = id, φ1(D′x) = Dx, and φ1 identifies
points in ∂D′x with points in ∂Dx according to the same identification used to realize the trace. Then
if C ′j = {(x, fj(x))} for x ∈ D′x, we can let

Ctj = {(φt(x), fj(x) | x ∈ D′x} ∩ (Dx × C).

Then C0
j = Cj and ∂C1

j = Lj as required. �

Proof of Proposition 5.8. When we fix the germ (C,w) and apply the method of Proposition 5.6 to a
given Stein filling for (Y, ξ), we first consider the open book on (Y, ξ) induced by the decorated germ as
in Proposition 4.1. The Stein filling then carries a Lefschetz fibration that induces the same open book
on the boundary, and the arrangement (Γ, {pj}) is constructed from the monodromy of this Lefschetz
fibration. The smooth disks Γ1, . . . ,Γm are contained in the Milnor ball B for C and are transverse to
its boundary S3, so that S3 ∩ (Γ1 ∪ · · · ∪ Γm) is a braid. By Lemma 3.3, the monodromy of this braid
is the image of the monodromy of the open book under the projection MCG(Pm) → MCG(Cm) of
the mapping class group of the compact disk with holes to the mapping class group of the punctured
plane, so the two braids are braid-isotopic. Therefore, we can apply Lemma 5.10 to perform a graphical
homotopy to Γ1, . . . ,Γm so that its boundary agrees with that of C1, . . . , Cm. Next, apply Lemma 5.9
to continue the graphical homotopy from C1, . . . , Cm to Γ1, . . . ,Γm. �

Remark 5.11. For our construction of a Lefschetz fibration, it is not important that the Cti are
symplectic disks, we only care that they are graphical. However, by performing a rescaling in the y
direction, we can ensure that all of the graphical disks are symplectic if the partial derivatives of the
function f are sufficiently small. More specifically, if C = {(x, f(x))} where x = x1 + ix2 and∣∣∣∣ ∂f∂x1

∣∣∣∣ , ∣∣∣∣ ∂f∂x2

∣∣∣∣ < √2

2

then C will be symplectic. This bound is sufficient although not necessary; it can be achieved by
rescaling f which itself is a graphical homotopy. Moreover, if f0 and f1 both satisfy these bounds,
then their convex combination tf0+(1−t)f1 also satisfies the bound for all t ∈ [0, 1], so the interpolation
between the two disks will also be symplectic.

6. Incidence matrix and topology of fillings

6.1. Basic topological invariants. It is shown in [dJvS98] that the basic topological invariants of
the Milnor fibers obtained from the picture deformations can be easily computed from the deformed
curvetta arrangement. Moreover, the incidence matrix of the arrangement can be reconstructed from
the Milnor fiber, [NPP10a]. We now review these facts briefly and adapt and generalize them in
our context: the goal is to show that exactly the same results hold for more general Stein fillings,
constructed from smooth disk arrangements as in Section 5.

As we have shown in Section 5, every Stein filling W can be described by an arrangement Γ = {Γi}
of symplectic curvettas with marked points {pj}nj=1, related to the plane curve germ C = C1∪· · ·∪Cm
by a smooth graphical homotopy. We always assume that curvettas intersect positively. We also
treat the components of C as labeled, so the ordering of components C1, . . . , Cm is fixed. The set of
marked points {pj}nj=1 contains all intersection points between the Γi’s and possibly a number of free
points. The incidence matrix I(Γ, {pj}) has m rows and n columns, defined so that its entry aij at
the intersection of i-th row and j-th column equals 1 if pj ∈ Γi, and 0 otherwise. Note that there is
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no canonical labeling of the points pj , so the incidence matrix is defined only up to permutation of
columns. We will say that two arrangements (Γ, {pj}) and (Γ′, {p′j}) are combinatorially equivalent if
their incidence matrices coincide (up to permutation of columns, i.e. up to relabeling of the marked
points).

Let L be the Lefschetz fibration constructed for the arrangement (Γ, {pj}) as in Lemma 3.2. Its
general fiber is a disk with m holes that correspond to the curvettas Γ1, . . . ,Γm of Γ; in particular,
the number of holes equals the number of rows in the matrix I(Γ, {pj}). The vanishing cycles of L
correspond to the marked points {pj}nj=1 and enclose sets of holes that correspond to curvettas passing
through that point: if Γi1 , . . . ,Γik are all curvettas that intersect at pj , the vanishing cycle Vj encloses
the holes hi1 , . . . , hik . It follows that homology classes of the vanishing cycles of L can be determined
from the incidence matrix I(Γ, {pj}), and we have

Proposition 6.1. Let L be the Lefschetz fibration for the arrangement (Γ, {pj}) with incidence matrix
I(Γ, {pj}). If the jth column of I(Γ, {pj}) has 1’s in rows i1, i2, . . . , ik, the corresponding vanishing
cycle Vj of L encloses the holes hi1 , . . . , hik in the fiber.

Corollary 6.2. Let (Γ, {pj}) and (Γ′, {p′j}) be two combinatorially equivalent arrangements, and L
and L′ the corresponding Lefschetz fibrations. Then the vanishing cycles of L and L′ are in one-
to-one correspondence, so that the two vanishing cycles that correspond to one another are given by
homologous curves in the fiber.

Because smooth graphical homotopies do not allow intersections to escape through the boundary, the
number of pairwise intersections of Γi and Γj is given by tang(Ci, Cj) = ρ(vi, vj ; v0), see Remark 2.6.
The weight of Γi (the total number of intersection points and the free marked points on Γi) is given by
w(Ci) = 1+l(v0, vi). The intersections between Γi and Γj correspond to the points among p1, p2, . . . , pn
contained in both lines, and each such point gives a “1” in the same column for the i-th row and the
j-th row of the incidence matrix. Therefore we have

Lemma 6.3. Let (C, w) be a decorated germ corresponding to (X, 0), with branches C1, C2, . . . , Cm.
Consider any arrangement {Γi}mi=1 of smooth curvettas encoding a Stein filling of the link of (X, 0).
The incidence matrix I(Γ, {pj}) has the following properties:
(i) the number of 1’s in the i-th row of I(Γ, {pj}) is w(Ci) = 1 + l(v0, vi);
(ii) the number of 1’s which appear in the same columns for the i-th row and the j-th row is tang(Ci, Cj) =
ρ(vi, vj ; v0).

Here, l(v0, vi) and ρ(vi, vj ; v0) are the length and overlap functions on the resolution graph G, defined
in Remark 2.6, and v0 is the choice of root.

We now describe how the incidence matrix I(Γ, {pj}) determines basic algebraic topology of the
filling W , namely H1(W ), H2(W ), the intersection form of W , and the first Chern class c1(J) of
the Stein structure. (Homology is taken with Z coefficients thoughout.) The statements about the
homology and the intersection form of W are proved in [dJvS98, Section 5] for the algebraic case, but
the proofs are entirely topological and apply in the more general settings as well. Alternatively, the
same invariants can be computed from the vanishing cycles of the Lefschetz fibration [Aur05, Lemma
16]. For Lefschetz fibrations with planar fiber, detailed proofs for the intersection form and c1(J)
calculations are given in [GGP]. We write Z〈{pj}〉 for the free abelian group generated by {pj}nj=1;
Z〈{Γi}〉 is defined similarly. The incidence matrix I(Γ, {pj}) defines a map between the corresponding
lattices.

Proposition 6.4. There is a short exact sequence

0 −→ H2(W ) −→ Z〈{pj}〉
I−→ Z〈{Γi}〉 −→ H1(W ) −→ 0.

Proof. Let W be the total space of a Lefschetz fibration over a disk D, with planar fiber P . (We
always assume that W , P , and D are compatibly oriented.) If D′ ⊂ D is a small disk that contains
no critical points, then W is obtained from P ×D′ by attaching 2-handles to copies of the vanishing
cycles contained in the vertical boundary P × ∂D′, so that distinct handles are attached along knots
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contained in distinct fibers. We use the exact sequence of the pair (W,P ×D′); since P ×D′ retracts
onto P , we can replace the former with the latter. Notice also that H1(W,P ) = 0, so we get

0 −→ H2(W )
j∗−→ H2(W,P )

∂∗−→ H1(P ) −→ H1(W ) −→ 0.

The group H2(W,P ) is freely generated by the cores of the attached 2-handles; we can identify these
generators with the vanishing cycles. By construction of the Lefschetz fibration, each vanishing cycle
corresponds to a blow-up at some marked point, so we can identify the vanishing cycles with the set
{pj}. The free abelian group H2(W,P ) is then identified with the lattice Z〈{pj}〉. The generators for
the free abelian group H1(P ) can be given by loops around the holes in the planar fiber. The holes
correspond to the branches of C, thus H1(P ) can be identified with the lattice Z〈{Γi}〉. The map ∂∗
is evaluated as follows: to compute ∂∗(pj), we take the boundary of the core of the corresponding
2-handle, given by the vanishing cycle associated with pj , and express this vanishing cycle in terms of
the generators of H1(P ) = Z〈{Γi}〉. Since the vanishing cycle is a simple closed curve on the planar
page, its first homology class equals the sum of the boundaries of the holes it encloses, which in turn
correspond to the branches Γi passing through pj . Therefore, ∂∗(pj) is given precisely by the j-th
column of the incidence matrix I(Γ, {pj}), as required. �

Remark 6.5. Since the link Y of a rational singularity (X, 0) is always a rational holomology 3-sphere,
a standard argument shows that b1(W ) = 0 for any Stein filling W of Y . Indeed, W has no 3-handles,
so H3(W ;Q) = 0; then for the pair (W,Y ) = (W,∂W ) we have

0 = H1(∂W ;Q)→ H1(W ;Q)→ H1(W,∂W ;Q) ∼= H3(W ;Q) = 0.

It follows that the matrix I(Γ, {pj}) always has full rank.

Note that H2(W ) is isomorphic to Im j∗, which in turn equals ker ∂∗. So H2(W ) can be identified
with null-homologous linear combinations of vanishing cycles (thought of as 1-chains in P ). One can
explicitly describe an oriented embedded surface in W representing a given second homology class, as
follows [GGP, Section 2]. First, one constructs an oriented embedded surface in P×D′ whose boundary
is the given null-homologous linear combination of the vanishing cycles, and then the vanishing cycles
are capped off in W . A similar construction is given in [dJvS98] without Lefschetz fibrations, for Milnor
fibers obtained by blowing up the 4-ball at the marked points and taking the complement of the proper
transforms of curvettas; exactly the same argument works for a smooth curvetta arrangement (Γ, {pj}).
After blowing up the 4-ball B at the points p1, p2, . . . , pn, we have the 4-manifold B̃, the blow-up of
B, with generators of H2(B̃) given by the fundamental classes Epi of the exceptional divisors. We

identify H2(B̃) = Z〈{pj}〉. The intersection form of B̃ is standard negative definite in the given basis,

as Ep · Ep = −1. The manifold W is obtained from B̃ by removing the tubular neighborhoods Ti of

the proper transforms Γ̃i of the curvettas Γi. The inclusion induces a map H2(W ) → H2(B̃), which
is in fact the same map as j∗ above, under obvious identifications. Every homology class in H2(W )
is represented by an embedded oriented surface which can be constructed by taking the collection of
the corresponding exceptional spheres Epi , punctured at their intersections with Γ̃j , and connected by
tubes running inside the cylinders Ti. The intersection of two such surfaces can be computed by taking
the intersections of the corresponding collections of exceptional spheres, as the tubes can be arranged
to be disjoint. For the Stein structure J on W associated to the given Lefschetz fibration, we can
compute c1(J) using the same inclusion H2(W ) → H2(B̃). Indeed, J is homotopic to the restriction

of complex structure j on B̃ and c1(j)[Epi ] = 1 for every Epi . Therefore we have

Proposition 6.6. The intersection form on H2(W ) ⊂ Z〈{pj}〉 is the restriction of the standard
negative definite form given by pi · pj = −δij, i, j = 1, . . . , n. The first Chern class c1(J) of the Stein
structure is the restriction of the linear form on Z〈{pj}〉 given by c1[pi] = 1, i = 1, . . . , n.

See also [GGP, Proposition 2.1, Proposition 2.4] for a detailed calculation (in terms of the vanishing
cycles) of the intersection form and c1(J) for an arbitrary Lefschetz fibration (W,J) with planar fiber.
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6.2. Uniqueness of the Artin filling and proof of Theorem 1.2. In general, the topology of
the filling might not be fully determined by the incidence matrix of the corresponding curvettas ar-
rangement; Proposition 6.1 gives the homology classes of the vanishing cycles but not their isotopy
classes. However, it turns out that the incidence matrix completely determines the smoothing for pic-
ture deformations that are combinatorially equivalent to the Scott deformation, so that one gets the
Artin smoothing component, [dJvS98, Cases 4.13]. We prove that an analogous result holds for Stein
fillings as well. Note that the argument in [dJvS98] uses simultaneous resolutions and only works in
the algebraic setting, while we work with mapping class groups instead. Our argument works because
the Artin filling has a Lefschetz fibration with disjoint vanishing cycles in the fiber.

Proposition 6.7. Let (X, 0) be a rational surface singularity with reduced fundamental cycle, with
contact link (Y, ξ) and decorated germ (C, w). Let Γ be an arrangement of smooth graphical curves
with positive intersections and marked points {pj}, related to the germ (C, w) by a smooth graphical
homotopy, so that (Γ, {pj}) gives rise to a Stein filling W of (Y, ξ).

Suppose that (Γ, {pj}) is combinatorially equivalent to the Scott deformation (Cs, ws) of (C, w). Then
the Stein filling given by (Γ, {pj}) is Stein deformation equivalent to the Artin filling of (Y, ξ).

Proof. Let L the Lefschetz fibration for (Γ, {pj}), constructed as in Lemma 3.2, and let LA be the
Lefschetz fibration for the Artin smoothing, given in Proposition 4.2. We know that LA is given by
the monodromy factorization as in Proposition 4.1; let φ denote the monodromy of the open book as
in the lemma.

Both fibrations L and LA have the same fiber S, and the fibration L corresponds to some factor-
ization of the same monodromy φ. By Corollary 6.2, the vanishing cycles {Vj} and {V Aj } of the two

fibrations are in one-to-one correspondence, so that the curves Vj and V Aj are homologous in the fiber.

We need to show that Vj and V Aj are isotopic.
There are two types of the vanishing cycles in the fibration LA: 1) boundary-parallel curves that

enclose a single hole each and 2) the curves that go around the necks connecting the spheres, as
shown at the top of Figure 6. The isotopy class of a boundary-parallel curve in the fiber is uniquely
determined by its homology class, so if V Aj is boundary-parallel, then Vj = V Aj . Now, because the
total monodromy of L and LA is the same, and the Dehn twists around the boundary-parallel curves
are in the center of the mapping class group of the fiber, we see that the products of the Dehn twists
around the vanishing cycles homologous to necks are the same for both L and LA. In other words, if
N denotes the set the vanishing cycles homologous to necks, we have

(6.1)
∏
Vj∈N

τVj =
∏

V Aj ∈N

τV Aj .

Let ψ denote the diffeomorphism of the fiber given by the product (6.1).
To prove that each vanishing cycle Vj is indeed isotopic to the vanishing class V Aj homologous to Vj ,

we proceed by induction on the number of necks in the fiber S (this is the same as the number of edges
in the dual resolution graph G). Equivalently, we can induct on the number of vertices, since G is a
tree. When G has only one vertex, there are no necks, so all the vanishing cycles are boundary-parallel,
and Vj = V Aj for all pairs of vanishing cycles. Assume that the claim is established for all graphs with
k vertices or fewer. Consider a graph G with k + 1 vertices and pick a leaf vertex v of G. We will be
able to remove v to reduce the question to a graph G′ with k vertices.

In the Lefschetz fibration of Lemma 4.2, the leaf v corresponds to the sphere Sv with holes, connected
to the rest of the fiber S by a single neck. The fibration LA has a vanishing cycle V A that goes around
this neck, and L has a vanishing cycle V in the same homology class. Since v is a leaf, Sv is separated
from its complement S \ Sv by the curve V A. Observe that all the other non-boundary parallel
vanishing cycles of LA lie outside Sv. A priori, non-boundary parallel vanishing cycles of L may
belong to different isotopy classes and intersect Sv; we want to show that they can be isotoped to lie
outside Sv.
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If the self-intersection v · v = −2, then in fact V A encloses only one hole, so it is boundary-parallel,
and we can immediately conclude that V and V A are isotopic, and Sv is a boundary-parallel annulus
disjoint from all the other vanishing cycles.

Suppose now that v · v ≤ −3, so that V A encloses r = −1− v · v > 1 holes. Connect these holes by
r − 1 disjoint arcs α1, . . . , αr−1 in the sphere Sv, so that if the fiber S is cut along these arcs, the r
holes will become a single hole, see Figure 14.

Figure 14. After cutting the fiber S, the vanishing cycle V A becomes boundary-
parallel in S′.

By construction, the arcs α1, . . . , αr−1 are disjoint from all non-boundary parallel vanishing cycles
V Aj of LA. It follows that each αi is fixed by the diffeomorphism ψ. As in [BMVHM17, Proposi-
tion 3] and [Fos, Section 2], we now make the following key observation: after an isotopy removing
non-essential intersections, all arcs α1, . . . , αr−1 must be also disjoint from all non-boundary-parallel
vanishing cycles Vj of L. To see this, we recall that each right-handed Dehn twist is a right-veering
diffeomorphism of the oriented surface S, [HKM07]. If α and β are two arcs with the same endpoint

x ∈ ∂S, we say that β lies to the right of α if the pair of tangent vectors (β̇, α̇) at x gives the orientation
of S. The right-veering property of a boundary-fixing map τ : S → S means that for every simple
arc α with endpoints on ∂S, the image τ(α) is either isotopic to α or lies to the right of α at both
endpoints, once all non-essential intersections between α and τ(α) are removed. Now, suppose that
L has a vanishing cycle Vj ∈ N that essentially intersects one of the arcs, say α1. Then the curve
τVj (α1) is not isotopic to α (see e.g. [FM12, Proposition 3.2]), so τVj (α1) lies to the right of α1. Since
the composition of right-veering maps is right-veering, we can only get curves that lie further to the
right of α after composing with the other non-boundary parallel vanishing cycles of L. However, the
composition ψ =

∏
Vj∈N τVj fixes α1, a contradiction.

Once we know that no vanishing cycles of L or LA intersect any of the arcs α1, . . . , αr−1, we can
cut the fiber S along these arcs, and consider the image of the relation (6.1) in the resulting cut-up
surface S′. In S′, V A becomes a boundary-parallel curve, and since V lies in the same homology class,
we see that V and V A are isotopic in S′ (and therefore in S). We then have∏

Vj∈N,Vj 6=V

τVj =
∏

V Aj ∈N,V Aj 6=V A
τV Aj .

Now observe that cutting up S along the arcs as above has the same effect as removing the sphere Sv
with its neck from the set of subsurfaces forming the fiber S in Lemma 4.2. Then the cut-up fiber S′
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with its non-boundary parallel vanishing cycles {Vj} and {V Aj } corresponds to the fibrations for the
graph G′ obtained by deleting the leaf v and its outgoing edge from the graph G. By the induction
hypothesis, we can conclude that all pairs of homologous vanishing cycles Vj , V

A
j are isotopic in S′,

and thus in S. It follows that the Lefschetz fibrations L and LA are equivalent, and therefore the Stein
filling given by L is Stein deformation equivalent to the Artin filling. �

The above results have the following interesting application, related to conjectures of Kollár on
deformations of rational surface singularities. Suppose that a rational singularity (X, 0) has a dual
resolution graph G such that v · v ≤ −5 for every vertex v ∈ G. In this case, Kollár’s conjecture
asserts that the base space of a semi-universal deformation of X has just one component, the Artin
component; in particular, there is a unique smoothing, up to diffeomorphism. In the special case of
reduced fundamental cycle, this conjecture was proved by de Jong and van Straten via their picture
deformations method. We establish the symplectic version of this result, proving Theorem 1.2.

Proof of Theorem 1.2. We can focus on Stein fillings: by [Wen10] and [NW11], every weak symplectic
filling of a planar contact manifold is a blow-up of a Stein filling, up to symplectic deformation. By
Section 5, Stein fillings are given by arrangements of symplectic curvettas. The argument in [dJvS98,
Theorem 6.23] shows that under the given hypotheses on the resolution of (X, 0), there is a unique
combinatorial solution to the smoothing problem, namely, any arrangement of curvettas must have the
same incidence matrix as the Artin incidence matrix given by the Scott deformation. De Jong–van
Straten’s argument is somewhat involved, so we will not summarize it here, but we emphasize that the
proof of this fact is completely combinatorial and does not use the algebraic nature of arrangements.
The same claim holds for an arbitrary smooth arrangement subject to the same hypotheses. The only
input used in [dJvS98] is the properties of the incidence matrix determined by the resolution graph
as in Lemma 6.3, together with the the following observation: if all vertices of the resolution graph
G have self-intersection −5 or lower, each end vertex of G (except the root) gets at least three (−1)
vertices attached in the augmented graph G′, so that there are at least three corresponding curvettas.
An important step in the inductive proof is that the matrix must have a column where all entries are 1,
i.e. all Γi’s must have a common point.

Once we know that all arrangements corresponding to possible Stein fillings are combinatorially
equivalent to the arrangement given by the Scott deformation, Theorem 1.2 follows from Proposi-
tion 6.7. �

In the case where additionally the graph G is star-shaped with three legs, uniqueness of minimal
symplectic filling (up to symplectomorphism and symplectic deformation) was proved by Bhupal–
Stipsicz [BS13]. (They give a detailed proof under the hypothesis that the self-intersection of the
central vertex is at most −10 but mention that one can go up to −5 with similar techniques.) Their
method relies on McDuff’s theorem [McD90] and was previously used by Lisca [Lis08]: one finds a
concave symplectic cap which is a plumbing of spheres that completes an arbitrary filling to a rational
surface, which must be a blow-up of CP2, analyzes possible configurations of (−1) curves, and then
verifies that the configurations in the image of the cap plumbing under the blow-down is a pencil of
symplectic lines which has a unique symplectic isotopy class. To our knowledge, this strategy has not
been applied to non-star-shaped graphs in existing literature. The difficulty in the non-star-shaped
case is that there is not an obvious concave symplectic plumbing which can serve as a cap. Our proof
works for completely arbitrary trees.

6.3. Distinguishing Stein fillings. We now turn to constructions that will be needed in the next
section, and explain how to use incidence matrices to distinguish Stein fillings, at least relative to
certain boundary data. Indeed, as shown by Némethi and Popescu-Pampu [NPP10a], the incidence
matrix is “remembered” by the Milnor fiber of the corresponding smoothing, which allows us to show
that certain Milnor fibers are not diffeomorphic (in the strong sense, i.e. relative to a boundary
marking). The argument in [NPP10a] is purely topological, so we can generalize it to arbitrary Stein
fillings. While [NPP10a] applies more generally to sandwiched singularities, we only consider the case
of reduced fundamental cycle.
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Instead of the boundary marking used in [NPP10a], we will keep track of the boundary data via a
choice of a compatible embedded open book for (Y, ξ). As in Section 2, we fix a choice of extension
G′ of the dual resolution graph G of a singularity with link (Y, ξ), to fix the topological type of the
associated decorated germ (C, w) with labeled branches C1, . . . , Cm. Each branch Cj corresponds to a
hole hj of the open book as explained in Section 4; fixing the embedded open book, up to isotopy, is
equivalent to fixing the topological type of the decorated germ. In fact, this open book decomposition
provides the data of the “markings” of [NPP10a], where each of the solid tori components of the
binding correspond to “pieces” of the marking data which allow one to fix the gluing of the smooth
cap of [NPP10a] to the filling using the open book instead of the markings.

By Wendl’s theorem [Wen10], all Stein fillings of a planar contact 3-manifold are given, up to
symplectic deformation, by Lefschetz fibrations with same fiber, so that these fibrations are encoded
by monodromy factorizations of the fixed open book as above. Suppose that Stein fillings W and W ′

arise from symplectic curvetta arrangements (Γ, {pj}) and (Γ′, {p′j}) as in Propositions 5.6 and 5.8. On
the boundaries ∂W and ∂W ′, these arrangements induce open books which are isomorphic, because
both are isomorphic to the open book induced by the germ (C, w). Fix these two open books, OB on
∂W and OB′ on ∂W ′, defined up to isotopy; as part of the open book data, we also label the binding
components (with the exception of the outer boundary of the disk, the boundary components of the
page correspond to the branches of the decorated germ).

We will say that W and W ′ are strongly diffeomorphic if there is an orientation-preserving diffeo-
morphism W → W ′ whose restriction to ∂W maps the open book OB on ∂W to an open book on
∂W ′ which is isotopic to the given one, OB′. If the open book on ∂W ′ is isotopic to the image of the
open book on ∂W , we can compose the diffeomorphism W → W ′ with a self-diffeomorphism of W ′

which extends the isotopy of ∂W ′ to obtain a diffeomorphism matching the open books. Therefore,
we can equivalently say that W and W ′ are strongly diffeomorphic if there is an orientation-preserving
diffeomorphism W →W ′ that identifies the open books OB on ∂W and OB′ on ∂W ′. This identifica-
tion is required to preserve the labeling of the binding components. (We will discuss a slightly weaker
condition in Remark 6.9.)

Rephrasing the theorem of [NPP10a] in our context, we have:

Proposition 6.8. ([NPP10a, Theorem 4.3.3]) Let (Y, ξ) be the contact link of a rational singularity
with reduced fundamental cycle, and fix the isotopy class of an embedded open book as above. Let two
strongly diffeomorphic Stein fillings W and W ′ arise from arrangements (Γ, {pj}) and (Γ′, {p′j}) of
symplectic curvettas with marked points, as in Section 5. Then the incidence matrices I(Γ, {pj}) and
I(Γ′, {p′j}) are equal, up to permutation of columns.

Proof. We outline the proof briefly, referring the reader to [NPP10a] for details, as we use exactly the
same topological argument in a slightly different (in fact, simpler) context.

Let (C, w) be the decorated germ with labeled smooth branches C1, . . . , Cm, determined up to
topological equivalence by the open book data for (Y, ξ). Unlike [NPP10a], we only work with the case
of smooth components of C; therefore, all δ-invariants of the branches Ci are 0, and the formulas of
[NPP10a] become simpler.

As in [NPP10a], we construct a cap U , which is a smooth manifold with boundary that can be
attached to any Stein filling W of (Y, ξ), so that W ∪U is a blow-up of a 4-sphere. To construct U , let
B ⊂ C2 be a closed Milnor ball as in Section 3, so that B contains both the branches of the germ C and
the arrangement Γ together with all intersection points between curvettas Γi. Let (B′, C′) be another
copy of this ball with the germ C inside, with reversed orientation. After an isotopy of the boundaries
of the curvettas Γi to match ∂Ci, we can glue (B,Γ) and (B′, C′) so that the boundary of Γi is glued
to the boundary of the corresponding germ branch C ′i. Note that each disk Γi is oriented as a graph
over C, so the result of gluing is a smooth 4-sphere B ∪B′ containing the embedded smooth 2-spheres
Σi = Γi ∪ C ′i. Blowing up at the points p1, . . . , pn, we get #n

i=1CP2, represented as the blow-up B̃ of

the ball B glued to B′. Let Ti be a thin tubular neighborhood of the proper transform of Γi in B̃.
Recall that by Lemmas 3.2 and 3.4, we have W = B̃ \ ∪mi=1Ti. Set U = B′ ∪mi=1 Ti, so that we have
U ∪W = #n

i=1CP2. As in [NPP10a, Lemma 4.2.4], the cap U is independent on W and is determined
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by the boundary data. Indeed, to form U , we attach 2-handles to the 4-ball B′. The attaching circles
are given by the boundaries of Γi’s, and the link ∪i∂Γi is isotopic to the link given by the boundaries
of the branches of the original decorated germ. The framing for ∂Γi is −wi, the negative weight on the
branch Ci of the decorated germ. The proof of Lemma 3.4 shows that the weight wi is given by the
number of Dehn twists enclosing the i-th hole in (any decomposition of) the monodromy of the open
book. Thus, the cap U and the way it is glued to W is determined by the decorated germ defining the
singularity, together with the fixed open book data of (Y, ξ). Finally, as in [NPP10a], we see that there
is a unique basis {ej}nj=1 for H2(#n

i=1CP2) of classes of square −1 such that the intersection numbers
Σi · ej are all positive. It follows that these numbers depend only on W and the open book data. On
the other hand, the numbers Σi · ej form the incidence matrix I(Γ, {pj}), as Σi · ej = 1 if pj ∈ Γi,
and 0 otherwise. It follows that the incidence matrices I(Γ, {pj}) and I(Γ′, {p′j}) are the same, up to
relabeling the marked points, which amounts to permutation of columns. �

Remark 6.9. Our definition of a strong diffeomorphism and the above proof assumes that the binding
components of the open book are labeled, and that the diffeomorphism preserves this labeling. In other
words, we think of the page of the open book(s) as a disk with holes, where each hole hi corresponds
to the i-th branch of the fixed decorated germ; the diffeomorphism matches the i-th hole of the page
for ∂W to the i-th hole for ∂W ′. It is in fact possible to consider a less restrictive definition of strong
diffeomorphisms, by allowing permutations of binding components, and to prove a sightly stronger
version of Proposition 6.8 and Theorem 7.8. More precisely, the proposition still holds if there is a
diffeomorphism f : W → W ′ that sends the chosen open book OB on ∂W to an open book on ∂W ′

which is isotopic to OB′, in the sense of isotoping the binding and the pages, but the isotopy matches
the binding components in a wrong order. Moreover, it is plausible that the proposition still holds
if we only have a diffeomorphism W → W ′ whose restriction to ∂W takes the binding of the open
book OB to an oriented link which is isotopic to the binding of OB′ on ∂W ′ (because ∂W = Y is
a link of rational singularity, and thus a rational homology sphere, it seems possible to use [Thu86]
to construct an isotopy of pages of the open books if their bindings are isotopic, perhaps under some
mild additional hypotheses). We leave most of the details to the motivated reader, only indicating
below why the proposition should hold if the identification of the open books permutes the binding
components. It should be emphasized that these arguments would yield only a mild generalization
of Proposition 6.8: fixing appropriate boundary data is crucial for our proof. Note that by Wendl’s
theorem, all Stein fillings of a planar contact manifold fill the same open book; so in this sense, it is
reasonable to think of the boundary open book as fixed.

To consider the case where the diffeomorphism between the fillings permutes the binding components
of the open book, assume that there is an orientation-preserving self-diffeomorphism σ of the page of
the open book that commutes with the monodromy. We do not assume that σ fixes the boundary
of the page; in particular, we are interested in the case where σ permutes the boundary components.
It can be shown that if σ acts non-trivially on the set of boundary components, then the decorated
germ and/or the resolution graph of the singularity has the corresponding symmetry. For example,
if σ exchanges holes h1 and h2, these holes must be enclosed by the same number of Dehn twists (in
any positive factorizations of the open book); this implies, in partucular, that equality of weights for
the corresponding curvetta branches, w1 = w(C1) = w(C2) = w2. Additionally, for any other hole hi,
the number of Dehn twists enclosing the pair h1, hi must be the same as the number of Dehn twists
enclosing the pair h2, hi. Because the Artin factorization is determined by combinatorial data (see
Proposition 6.7), it follows that the Artin factorization admits a symmetry interchanging holes h1 and
h2. Then, we can argue as in Proposition 4.5 to reconstruct the resolution graph of the singularity, and
to see that the graph must have a symmetry, and the corresponding curvetta arrangement must admit
a symmetry interchanging curvettas C1 and C2 (up to a topological equivalence). A similar reasoning
would work for a more general self-diffeomorphism σ; we do not give the complete argument to avoid
setting up complicated notation. If σ exchanges the boundary of a hole with the outer boundary of
the page (thought of a disk with holes), there must be a symmetry of the resolution graphs and the
corresponding extended graphs (see Section 2).
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Since the self-diffeomorphism σ of the page commutes with the monodromy, it induces a self-
diffeomophism of the supporting 3-manifold Y , which is not necessarily isotopic to the identity. We
will use the same notation for this self-diffeomorhism of Y , σ : Y → Y .

Now, suppose that fillings W and W ′ are as in Proposition 6.8, and that there is an orientation-
preserving diffeomorphism f : W →W ′ that maps the open book OB on W to the open book f(OB)
on W ′ that is isotopic to σ(OB′) rather than to OB′. As explained above, the decorated germ admits
a symmetry induced by σ; in turn, it follows that the cap U admits a self-diffeomorphism that restricts
to the map σ : Y → Y on the boundary, after an orientation reversal. Using this self-diffeomorphism
to glue the cap to W ′, and comparing W ∪id U and W ′ ∪σ U , we can argue as in Proposition 6.8 to
conclude that the incidence matrices I(Γ, {pj}) and I(Γ′, {p′j}) are the same.

7. Milnor fibers and unexpected Stein fillings: examples

We now construct examples where the link of a rational singularity with reduced fundamental cycle
has Stein fillings that are not realized by Milnor fibers of any smoothing.

Our examples build on results of the previous sections: by [dJvS98], Milnor fibers of smoothings
correspond to (algebraic) picture deformations of the decorated germ, while Stein fillings of the link
can be constructed from arbitrary smooth graphical homotopies of the curvettas. During the picture
deformation, the decorated germ C is immediately deformed into an arrangement of curvettas yielding
a Milnor fiber, so that the arrangement appears as the deformation Cs for small s (and for a given
deformation, all values of s close to 0 produce diffeomorphic Milnor fibers and equivalent Lefschetz
fibrations). Indeed, for an algebro-geometric 1-parameter deformation of the germ C, the general fibers
of the deformation all “look the same” (up to diffeomorphism). By contrast, during the course of a
smooth graphical homotopy, we are allowed to change the topology of the arrangement of curvettas,
and thus will produce Stein fillings whose topology varies during the homotopy. We emphasize that
immediate deformation vs long-term homotopy of the branches of C makes the key difference between
Milnor fillings and Stein fillings of links of rational singularities with reduced fundamental cycle.
In Section 8, we explain why this is the key aspect and compare picture deformations and smooth
graphical homotopies in more detail. In this section, we exploit the difference between immediate
deformations and long-term homotopies to produce examples of Stein fillings that are not diffeomorphic
(rel boundary) to any Milnor fibers.

7.1. Arrangements of symplectic lines and pseudolines. To construct links of singularities that
admit unexpected Stein fillings, we first consider decorated germs given by pencils of lines (with
weights) and focus on their associated singularities. In this section, we will use the following termi-
nology: several points are collinear if they all lie on the same line, and several lines are concurrent if
they all pass through the same point. Concurrent lines form a pencil; we will refer to an arrangement
of concurrent lines as a pencil of lines. We will also talk about concurrent pseudolines or concurrent
smooth disks, with the same meaning.

Note that any two pencils of complex lines in C2 are isotopic through pencils, therefore the
corresponding singularities are topologically equivalent and have contactomorphic links. Let C =
{C1, C2, . . . , Cm} be a pencil of m complex lines, with each line Ck decorated by a weight wk = w(Ck).
Consider the surface singularity that corresponds to the decorated germ (C, w), and let Y (m,w) =
Y (m;w1, . . . , wm) denote its link with the canonical contact structure ξ. Note that Y (m,w) is a Seifert
fibered space over S2 with at most m singular fibers. Indeed, consider the dual resolution graph of
the singularity; the graph gives a surgery diagram for the link. This graph has m legs emanating from
the central vertex. Legs correspond to the lines of the pencil, so that k-th leg has wk − 1 vertices
(including the central vertex).

Note that legs of length 1 consist only of the central vertex and thus will appear invisible. However,
in the examples we focus on, every leg will have length greater than 1. The central vertex has self-
intersection −m − 1, all the other vertices have self-intersection −2. See Figure 16 for an example.
The decorated pencil C can be recovered from the graph as in Section 2: we add (−1) vertices at the
end of each leg, take the corresponding collection of curvettas, and blow down the augmented graph.
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To construct Stein fillings of Y (m,w), we will use curvetta homotopies taking the pencil of complex
lines to a symplectic line arrangement in C2. We define these arrangements as follows.

Definition 7.1. A symplectic line arrangement in C2 is a collection of m symplectic graphical disks
Γ1, . . . ,Γm in C2 with respect to a projection π : C2 → C such that

(1) for every pair i, j ∈ {1, . . . ,m} with i 6= j, Γi intersects Γj positively transversally exactly
once, and

(2) for R sufficiently large, (Γ1∪· · ·∪Γm)∩π−1(SR) is isotopic to the braid given by one full twist
on m strands in the solid torus π−1(SR) (where SR ⊂ C is the circle of radius R).

Equivalently, we can view the symplectic line arrangement in a Milnor ball B = Dx × Dy ⊂ C2

containing all intersections. The intersection of the arrangement with ∂B is then the braid of one full
twist in ∂Dx × Dy. A symplectic line arrangement in the closed ball B can always extended to an
arrangement in C2, so we will give all statements about symplectic line arrangements in C2.

Example 7.2. A pencil of complex lines intersecting at the origin in C2 is a symplectic line arrange-
ment. Clearly every pair of lines intersects at a single point (the origin) transversally (and positively
because they are complex). That the monodromy in π−1(SR) is one full twist on m strands can be
computed directly from a model as in [MT88a].

More generally, any complex line arrangement of m lines in C2 such that no intersections between
lines occur at infinity (i.e. every complex line has a different complex slope) gives a symplectic line
arrangement. This can be seen by compactifying the line arrangement in CP2 and looking at the
intersection of the lines with the boundary of a regular neighborhood of the CP1 at infinity. These
intersections form an m component link with one component for each line, such that the link compo-
nents are isotopic to disjoint fibers of the ε-neighborhood (which can be identified with a subset of the
normal bundle) of the CP1 at infinity. After changing coordinates from the perspective of the CP1

at infinity to the perspective of the complementary ball, the components of the link obtain one full
twist. From the Kirby calculus perspective, the boundary of the ε-neighborhood of CP1 is presented as
(+1) surgery on the unknot, and the link is m parallel meridians of this surgery curve. After reversing
orientation to get the boundary of the complementary ball, the surgery coefficient on the unknot be-
comes a (−1) surgery, and blowing down this surgery curve induces one full twist in the m unknotted
meridians.

Since any symplectic line arrangement has the same monodromy as the pencil of complex lines,
Lemmas 5.9 and 5.10 imply they are related to the pencil by a smooth graphical homotopy.

Our primary source of examples of non-complex symplectic line arrangements is given by pseudoline
arrangements as described below. However, symplectic line arrangements are more general and can
include braiding in the associated wiring diagram.

Example 7.3. A pseudoline arrangement is a collection `1, . . . , `m of smooth graphical curves in R2

where for every pair i, j, `i and `j intersect transversally at exactly one point. Such a pseudoline
arrangement can be considered a braided wiring diagram as in Definition 5.1, but in the particular
case where there is no braiding. In particular, we can apply Proposition 5.5 to extend the pseudoline
arrangement to an arrangement of symplectic graphical disks Γ1, . . . ,Γm; the extension produces a
symplectic line arrangement. Indeed, condition (1) in the definition of a symplectic line arrangement is
satisfied because any two pseudolines intersect transversally at one point, and their extensions intersect
positively by construction. Condition (2) follows from the calculation of the total monodromy as in
Section 5.2 and a classical theorem of Matsumoto and Tits [Mat64] about uniqueness of reduced
factorizations in the braid group.

Alternatively, we can refer to the results of [RS19, Section 6], where pseudoline arrangements in
RP2 are extended to symplectic line arrangements in CP2 (extensions in CP2 are strictly harder to
construct than extensions in C2.) Additionally, using the same theorem of Matsumoto and Tits, [RS19,
Proposition 6.4] provides a homotopy of pseudoline arrangements connecting the given arrangement
to the pencil. After applying Proposition 5.5, we get a homotopy of the corresponding symplectic
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line arrangements. Note that by construction, this homotopy of symplectic line arrangements keeps
all intersections positive at all times, whereas the smooth graphical homotopy given by Lemmas 5.9
and 5.10 may introduce negative intersections.

We use symplectic line and pseudoline arrangements to construct Stein fillings of Seifert fibered
spaces (Y (m;w), ξ) via Lemma 3.2 and Lemma 3.4.

Proposition 7.4. Let (C, w) be a decorated pencil of m lines. Suppose that Γ = {Γ1, . . . ,Γm} is a
symplectic line arrangement such that each disk Γi has at most wi distinct intersection points with the
other disks of the arrangement. Then, (Γ, {pj}) yields a Stein filling of (Y (m;w1, w2, . . . , wm), ξ).

In particular, a pseudoline arrangement Λ = {`1, . . . , `m} gives a Stein filling of (Y (m;w1, w2, . . . , wm), ξ)
via an extension to a symplectic line arrangement, provided that `i has at most wi distinct intersection
points with the other pseudolines.

7.2. Unexpected line arrangements yield unexpected fillings. Now we will show that some of
the Stein fillings as above do not arise as Milnor fibers. In the next lemma, we consider analytic defor-
mations of reducible plane curve germs, associated to a singularity by the de Jong–van Straten theory,
and establish a property that will play a key role in our construction of unexpected arrangements.

The term δ-constant deformation in the next lemma refers to an algebro-geometric property: the
deformation is required to preserve the δ-invariant of a singular plane curve. We keep this terminol-
ogy since it is used in [dJvS98, NPP10a]; however, under the hypothesis that the germ has smooth
branches, the δ-constant condition simply means that the deformation changes the germ component-
wise, without merging different components. Intuitively, the δ-invariant counts the number of double
points “concentrated” in each singular point [Mil68, Section 10]; for example, an ordinary d-tuple point
(where d smooth components meet transversely) contributes δ = 1

2d(d− 1), since it can be perturbed

to 1
2d(d− 1) double points. Thus, we can deform a triple point to three double points by a δ-constant

deformation, but we are not allowed to deform two transversely intersecting lines into a smooth conic
(such a deformation would kill a double point).

Lemma 7.5. Consider the germ of a reducible plane curve C in C2 with m smooth graphical branches
C1, C2, . . . , Cm passing through 0, and let Cs = ∪mk=1C

s
k be a δ-constant deformation of C. (Here,

δ-constant means that each branch of the germ is deformed individually, i.e. the deformation is not
allowed to merge different branches.) Suppose that all the branches C1, . . . , Cm have distinct tangent
lines at 0, and that not all deformed branches Cs1 , . . . , C

s
m are concurrent for s 6= 0.

Then there exists a complex line arrangement A = {L1, . . . , Lm} in C2 such that not all lines in A
are concurrent, no two lines are equal, and A satisfies all the incidence relations of Cs. Namely, for
any collection of the deformed branches Csi1 , Csi2 , . . . , Csik that intersect at one point, the corresponding
lines Li1 , Li2 , . . . , Lik also intersect:

(7.1) Csi1 ∩ C
s
i2 ∩ · · · ∩ C

s
ik
6= ∅ =⇒ Li1 ∩ Li2 ∩ · · · ∩ Lik 6= ∅.

Note that the incidence pattern for branches of Cs is the same for all s 6= 0, because the definition of a
1-parameter deformation implies that all nearby fibers “look the same”. It is important to keep in mind
that the complex line arrangement A may satisfy additional incidences, so that certain intersection
points coincide in A but are distinct for the arrangement {Cs1 , Cs2 , . . . , Csm}. In particular, a pencil of
lines would satisfy incidence relations of any other arrangement, but we postulate that A cannot be a
pencil (the lines in A are not all concurrent).

Proof of Lemma 7.5. Since any two curvettas intersect positively in the original germ C, any two
deformed branches Csi , Csj intersect for s 6= 0. We can make an s-dependent translation to ensure
that the first two branches always intersect at the origin, Cs1 ∩Cs2 = {0}; strictly speaking, this means
passing to a slightly different deformation of the germ C.

All components of the reducible curve C pass through 0 and are graphical analytic disks with respect
to the projection to the x-coordinate. Thus we can define the germ of C near 0 by an equation of the
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form
m∏
i=1

(aix+ ci(x)− y) = 0,

where ci(x) =
∑
k≥2 ci,kx

k are analytic functions in x with ordxci > 1 at 0. We can also assume that
ai 6= 0 for all i = 1, . . . ,m.

The 1-parameter deformation Cs is then given by, for s close to 0, by an equation of the form

m∏
i=1

(ai(s)x+ bi(s) + ci(x, s)− y) = 0.

Here ai, bi are analytic functions in s, and at the origin (0, 0) ordsai = 0, ordsbi > 0; additionally,
ci(x, s) is analytic in x, s, and ordxci > 1. The i-th component Csi of the deformed curve at time s is
given by the equation ai(s)x+ bi(s) + ci(x, s)− y = 0. Because the branches Cs1 and Cs2 pass through
0 for all s, we have b1 ≡ b2 ≡ 0. At s = 0 all components pass through the origin so bi(0) = 0 for all i.

Let r = mini(ordsbi) (where the order is always taken at the origin). Because bi(0) = 0 for all i, we
have r > 0, and r = ordsbi0 for some 3 ≤ i0 ≤ m. Notice also that r < +∞, since otherwise all the
components Csi would pass through 0 for all s 6= 0. We write bi(s) = sr b̄i(s); then b̄i0(0) 6= 0.

Now make a change of variables for s 6= 0

x = srx′, y = sry′.

Since ordxci(x, s) ≥ 2, we have ci(x, s) = s2r c̄i(x
′, s) for some analytic function c̄i. Thus, the equation

for the deformation becomes
m∏
i=0

(ai(s)s
rx′ + sr b̄i(s) + s2r c̄i(x

′, s)− sry′) = 0.

Equivalently, for s 6= 0 and i = 1, . . . ,m, the deformed components Csi are given by the equations

ai(s)x
′ + b̄i(s) + sr c̄i(x

′, s)− y′ = 0.

When we pass to the limit as s→ 0, the equations become

ai(0)x′ + b̄i(0)− y′ = 0,

so in the limit we obtain an arrangement of of straight lines in C2. Not all of these lines are concurrent,
since b̄i0(0) 6= 0 while b̄1(0) = b̄2(0) = 0.

The curves Csi satisfy the same incidence relations for all s 6= 0. Since intersection points between
curves vary continuously with s, the incidence relations must be preserved in the limit, so (7.1) holds.

�

Our examples of unexpected Stein fillings are given by pseudoline arrangements with the following
special property.

Definition 7.6. Let Λ = {Γ1, . . .Γm} ⊂ R2 be a symplectic line arrangement where not all lines
are concurrent. We say that Λ is unexpected if the only complex line arrangements that satisfy all
the incidence relations of Λ are pencils of lines. Namely, whenever a complex line arrangement A =
{L1, L2, . . . , Lm} ⊂ C2 has the property

Γi1 ∩ Γi2 ∩ · · · ∩ Γik 6= ∅ =⇒ Li1 ∩ Li2 ∩ · · · ∩ Lik 6= ∅,
all the lines L1, L2, . . . , Lm of A must be concurrent.

If an unexpected symplectic line arrangement comes from a pseudoline arrangement, we will say
that the pseudoline arrangement is unexpected.

Remark 7.7. It is important to note that unexpected symplectic line arrangements are not the same
as symplectic line arrangements not realizable by complex lines. Being an unexpected arrangement is
a stronger condition: we want to rule out not only complex line arrangements with the same incidence
relations as those of Λ, but also complex line arrangements that satisfy all the incidence relations
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of Λ and possibly additional incidence relations (without being a pencil). For instance, the pseudo-
Pappus arrangement (Example 8.1 in the next section) is not realizable by complex lines but it is not
unexpected, because the classical Pappus arrangement has all of the same incidences and an additional
one.

Theorem 7.8. Suppose that Γ = {Γ1, . . . ,Γm} is an arrangement of smooth graphical disks with
marked points {pj}, related by a smooth graphical homotopy to a decorated germ (C, w). Let (Y, ξ)
be the link of the surface singularity that corresponds to (C, w). Suppose that a subcollection of disks
{Γ1,Γ2, . . . ,Γr} of Γ forms an unexpected symplectic line arrangement.

Then the Stein filling W given by (Γ, {pj}) is not strongly diffeomorphic to any Milnor filling of
(Y, ξ). If the weights on C are large enough, W is simply-connected.

By Proposition 7.4, unexpected line arrangements yield unexpected fillings of Seifert fibered spaces
of the form Y (m,w).

Corollary 7.9. Let Γ = {Γ1, . . . ,Γm} be an unexpected symplectic line arrangement, and for k =
1, . . . ,m let w(Γk) denote the number of intersection points of Γk with the disks Γi, i 6= k. Then
for every weight w = (w1, w2, . . . , wm) with wk ≥ w(Γk), k = 1, . . . ,m, the Seifert fibered space
(Y (m,w), ξ) has a Stein filling not strongly diffeomorphic to any Milnor filling. This Stein filling is
given by a Lefschetz fibration constructed from the arrangement Γ with the appropriate choice of marked
points. When strict inequalities wk > w(Γk) hold for all k, we get a simply-connected unexpected Stein
filling.

Proof of Theorem 7.8. Observe that when the number of intersection points on each Γi is smaller than
the weight of the corresponding branch of the decorated germ, each Γi has a free marked point. Then
the Lefschetz fibration constructed from (Γ, {pj}) has a boundary-parallel vanishing cycle around every
hole in the disk fiber, so that the corresponding thimbles kill all generators of π1(fiber), and therefore,
in this case π1(W ) = 0.

Let WM be a Milnor filling that arises from a smoothing of some surface singularity with the link Y .
By Theorem 1.3, WM corresponds to a picture deformation C′s of a decorated germ C′ = ∪mi=1C

′
i with

weight w, topologically equivalent to (C, w).
Although the germs C and C′ may differ analytically, they are topologically equivalent and thus have

isotopic boundary braids. Therefore by Lemma 3.4 the open book decomposition naturally induced by
the Lefschetz fibration in Lemma 3.2 for W agrees with that for WM , so comparing them via strong
diffeomorphism makes sense.

By Proposition 6.8, if W is strongly diffeomorphic to WM , the incidence matrix of the deformed
curvetta arrangement {C ′s1 , . . . , C ′sm}, s 6= 0, with its marked points must be the same as the inci-
dence matrix for the arrangement (Γ, {pj}), up to permutation of columns. In particular, we see
that the subarrangement {Γ1, . . . ,Γr} of symplectic lines satisfies the same incidence relations as the
subarrangement {C ′s1 , . . . , C ′sr } of the deformed curvettas of C′. By assumption, in each of these ar-
rangements not all curvettas are concurrent. Because pairs of curves Γ1, . . . ,Γr intersect algebraically
positively once, C ′1, . . . , C

′
r have distinct tangent lines. Now by Lemma 7.5, there exists a complex line

arrangement A that satisfies all the incidence relations of {C ′s1 , . . . , C ′sr }, and thus all the incidence
relations of Γ. This is a contradiction because Γ is an unexpected arrangement. �

7.3. Constructing unexpected pseudoline arrangements. We now give examples of unexpected
pseudoline arrangements; these will yield concrete examples of unexpected Stein fillings. We start with
classical projective geometry constructions.

Example 7.10. Recall that the classical Pappus arrangement in R2 is constructed as follows. Take
two lines, `1 and `2, and mark three distinct points a, b, c on L1 and three distinct points A,B,C on
`2, avoiding the intersection `1 ∩ `2. Consider the following lines through pairs of marked points:

`3 = aB, `4 = aC, `5 = bA, `6 = bC, `7 = cA, `8 = cB.

The Pappus theorem asserts that the three intersection points `3 ∩ `5, `4 ∩ `7, and `6 ∩ `8 are collinear;
the classical Pappus arrangement consists of the lines `1, . . . , `8, together with the line through these
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three points. We modify this last line to make an unexpected pseudoline arrangement, as follows.
Let `9 be a line through C, distinct from `4 and `6. Consider the intersection point `8 ∩ `9 and let
`10 be a pseudoline passing through points `3 ∩ `5, `4 ∩ `7, and `8 ∩ `9 as shown in Figure 15. Let
P = {`1, `2, . . . , `10}.

Notice that in this case, it is clear that the pseudoline `10 can be homotoped to the classical Pappus
line through the points `3 ∩ `5, `4 ∩ `7, and `6 ∩ `8. The resulting arrangement of straight lines in R2

can be homotoped to a pencil by linear homotopy. (We already know from discussion in Example 7.3
that P is homotopic to the pencil, but here we have a very simple explicit homotopy.)

`1

`2

`4 `3
`6 `5

`8 `7
`9

`10

a
b

c

A
B

C

Figure 15. The pseudoline arrangement P = {`1, `2, . . . , `10} is given by the black
lines, the blue line, and the red line in the figure. The dotted line in the middle
is not included. The dotted line and the eight black lines give the classical Pappus
arrangement. Note that the intersection points `1 ∩ `2, `3 ∩ `6, `3 ∩ `9, `5 ∩ `8, and
`5 ∩ `9 are not shown in the figure.

Proposition 7.11. The arrangement P is unexpected.

Proof. As already stated, the classical Pappus theorem asserts that for the given arrangement, the
intersection points `3 ∩ `5, `4 ∩ `7, and `6 ∩ `8 are collinear. Collinearity holds both in the real and
in the complex projective geometry settings, so that if L1, L2, . . . , L7, L8 ⊂ C2 are complex lines with
given incidences, then L3 ∩L5, L4 ∩L7, and L6 ∩L8 are collinear. From this, we can immediately see
that the arrangement P is not realizable by complex lines {L1, L2, . . . , L10}: since L6∩L8 and L8∩L9

are distinct points on L8, the points L3 ∩ L5, L4 ∩ L7 and L8 ∩ L9 cannot be collinear.
To show that P is unexpected, we need to prove that no complex line arrangement satisfies all the

incidence relations of P even if some (but not all) of the intersection points coincide. Indeed, we show
that if a complex line arrangement A = {L1, L2, . . . , L10} satisfies the incidence relations of P and two
of the intersection points coincide, then A must be a pencil. Remember that we always assume that
all the lines in the arrangement are distinct.

The following trivial fact, applied systematically, greatly simplifies the analysis of cases:

Observation 7.12. Let L1, L2, L3, L4 be four lines in C2, which are not necessarily distinct. Suppose
that two of the pairwise intersection points coincide: L1 ∩L2 = L3 ∩L4. Then L1, L2, L3, and L4 are
concurrent, so that they all intersect at the point L1 ∩L2 = L1 ∩L3 = L1 ∩L4 = L2 ∩L3 = L2 ∩L4 =
L3 ∩ L4.
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In the case of three lines, if L1 ∩ L2 = L3 ∩ L1, then L2 ∩ L3 = L1 ∩ L2 = L3 ∩ L1. Visually, if two
vertices of a triangle coincide, the third vertex of the triangle coincides with the first two.

Assuming that some of the intersection points in Figure 15 coincide, we mark these points by “O”,
and then use Observation 7.12 to chase vertices that coincide: starting with two marked vertices, we
look for additional vertices that coincide with the first two, further mark these by “O”, and continue.
When every line contains a marked intersection point, we know that all lines in the arrangement are
concurrent: they form a pencil though O.

We begin this process. First, assume that the intersection points L3 ∩ L5 ∩ L10 and L4 ∩ L7 ∩ L10

are distinct. By the Pappus theorem, the complex line arrangement A = {L1, L2, . . . , L10} can satisfy
all the incidence relations of P only if L6 ∩L8 = L8 ∩L9 ∩L10. Setting O = L6 ∩L8 = L8 ∩L9 ∩L10,
by Observation 7.12 we have O = C = L4 ∩ L6 ∩ L9 ∩ L2, then O = B = L8 ∩ L2 ∩ L3, then
O = a = L3 ∩ L4 ∩ L1, then O = b = L5 ∩ L6 ∩ L1 and O = c = L7 ∩ L8 ∩ L1. Now, O appears on
every line at least once, so the arrangement degenerates to a pencil.

(This can be seen quickly if in the above diagram, you highlight the lines passing through inter-
section points marked by O, in order. You can mark a new intersection by O if it contains at least
two highlighted lines, and then highlight all the lines through that point O. When all the lines are
highlighted, you have a pencil.)

For the second case, assume that the intersection points L3 ∩ L5 ∩ L10 and L4 ∩ L7 ∩ L10 coincide.
Set O = L3 ∩L5 ∩L10 = L4 ∩L7 ∩L10. Then O = a = L3 ∩L4 ∩L1 and O = A = L5 ∩L7 ∩L2. Then
O = c = L7 ∩ L8 ∩ L1 and O = C = L4 ∩ L6 ∩ L2 ∩ L9. Again, every line contains a point marked O,
so the arrangement degenerates to a pencil. �

Corollary 7.13. Let Y = Y (10;w) be a Seifert fibered space given by a star-shaped plumbing graph
with 10 legs as in Figure 16, such that eight of the legs of the graph have at least 5 vertices each,
including the central vertex, and two remaining legs have at least 4 vertices each. (Equivalently, two
components of w are 5 or greater, and the rest are 6 or greater.) Observe that Y is the link of a
rational singularity, and let ξ be the Milnor fillable contact structure on Y . Then (Y, ξ) admits a Stein
filling which is not strongly diffeomorphic to any Milnor filling.

w1 ≥ 6

w2 ≥ 5

w3 ≥ 6

w4 ≥ 5

w5 ≥ 6

w6 ≥ 6

w7 ≥ 6

w8 ≥ 6

w9 ≥ 6

w10 ≥ 6

−11

Figure 16. Left: a pencil of 10 lines decorated with weights. Right: the plumb-
ing graph for Y , the central vertex has self-intersection −11, all the rest self-
intersection −2. Eight of the legs have at least 5 vertices each (including the central
vertex), and two remaining legs have at least 4 vertices each.
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Proof. We count the intersection points on each line in the arrangement P: w(`2) = w(`4) = 5,
w(`k) = 6 for k 6= 2, 4. Then for any collection of integers w1, w2, . . . , w10 such that w2 ≥ 5, w4 ≥ 5,
and wk ≥ 6 for k 6= 2, 4, we can mark the lines of the arrangement P as required in Corollary 7.9. The
corresponding singularity has the dual resolution graph as shown in Figure 16, with one leg of length
wk−1 for each line Lk in the arrangement, so the link is the Seifert fibered space Y (10, w). The result
now follows from Corollary 7.9 and Proposition 7.11. �

A different example comes from a version of the Desargues theorem; we use complete quadrangles
and harmonic conjugates. The example in Figure 17 was pointed out to us by Stepan Orevkov. He
suggested an approach to prove that this arrangement cannot appear as an algebraic deformation of
a pencil. We are grateful for his input which inspired us to define unexpected line arrangements and
prove Lemma 7.5.

V

H

P

`1 `2 `3 `4

`0

`6

`5

`7

`8

`9
`10

a

b

c

a′

Figure 17. An arrangement of real pseudolines. The intersection of `0 and `10 is not
shown.

Example 7.14. In the standard R2 ⊂ RP2, we take four vertical lines `1, `2, `3, `4, three horizontal
lines `5, `6, `7, the two parallel diagonal lines `8, `9, and a “bent” pseudoline `10 as shown in Figure 17.
Let `0 be the line at infinity. Note that because `1, `2, `3, `4 are all parallel in R2, they intersect at a
point V on `0. Similarly, the lines `5, `6, `7 have a common intersection with `0 at a point H, and the
lines `8 and `9 intersect on `0 at a point P . Removing from RP2 a line which is different from all `i’s
and intersects them generically, we can consider Q = {`i}10

i=0 as a pseudoline arrangement in R2. (See
Figure 18 for a version where `0 is no longer the line at infinity.)

Proposition 7.15. The pseudoline arrangement Q is unexpected.

Proof. Suppose that a complex line arrangementA = L0, L1, . . . , L10 satisfies all the incidence relations
of Q. This means that for all intersections between the pseudolines in Figure 17, the corresponding
lines of A intersect. We claim that unless A is a pencil, all of these intersection points must be distinct
(That is, no two distinct intersection points in Figure 17 can coincide for the arrangement A.) To see
this, we use Observation 7.12 repeatedly, as in Proposition 7.11. Recall that V = L1∩L2∩L3∩L4∩L0

and H = L5 ∩ L6 ∩ L7 ∩ L0.
If H = V = O, then we have Li ∩ Lj = O for all 1 ≤ i ≤ 4, 5 ≤ j ≤ 7, and so A is a pencil.
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If one of the intersection points Li ∩Lj , 1 ≤ i ≤ 4, 5 ≤ j ≤ 7, coincides with V or H, then we have
two intersection points marked with O on a vertical or horizontal line in Figure 17; then O = V = H,
and all lines are concurrent.

If any two intersection points Li ∩Lj , 1 ≤ i ≤ 4, 5 ≤ j ≤ 7, coincide, Observation 7.12 implies that
they will both coincide with at least one of V or H, so we revert to the previous case.

Finally, if all the points V , H, Li ∩ Lj , 1 ≤ i ≤ 4, 5 ≤ j ≤ 7 are distinct, all remaining intersection
points which do not coincide with one of these are necessarily generic double points (otherwise we
would have a pair of lines intersecting more than once).

Once we know that all the distinct intersections for Q are distinct for A, it remains to show that
Q cannot be realized as a complex line arrangement A = {Li}10

i=0. Suppose that it is, for the sake of
contradiction.

Figure 18. An arrangement of lines L0, L1, . . . , L9 and pseudoline L10 with inci-
dences as in Figure 17. We show that the line L through a and b and the line L′

through a and c coincide (with the dotted line shown), so the points a, b, and c are
collinear. Therefore a′, b, and c cannot be collinear.

We will show that the intersection points a = L2 ∩ L5, b = L3 ∩ L6, and c = L4 ∩ L7 are collinear.
(See Figure 18) Then we can conclude that the points a′ = L1 ∩ L5, b, and c cannot be collinear.
Indeed, a 6= a′, since all intersection points in the diagram are distinct. If all four points a, a′, b, c
were collinear, then the line L5 through a and a′ would coincide with the line L10 through a′, b, and
c, but we assume that L5 and L10 are distinct.
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To see that the points a, b, and c are collinear, we will use some notions of classical projective
geometry, namely complete quadrangles and harmonic conjugates. (In Remark 7.16 below, we also
indicate an alternative proof, in the more familiar Euclidean terms.) Observe that the lines L5, L6, L2,
L3, L8, and the line L through a, b form the four sides and the two diagonals of a complete quadrangle.
Then the point Q = L ∩ L0 is the harmonic conjugate of the point P = L8 ∩ L0 with respect to the
points V = L2 ∩ L3 and H = L5 ∩ L6. Now, consider the lines L2, L4, L5, L7, L9, and the line L′

through a and c. Again these form a complete quadrangle, so that the point Q′ = L′ ∩ L0 is the
harmonic conjugate of the point P = L9 ∩ L0 with respect to V = L2 ∩ L4 and H = L5 ∩ L7. Since
the harmonic conjugate of P with respect to V,H is unique, it follows that Q = Q′. Since the lines L
and L′ both pass through Q = Q′ and a, we must have L = L′, and so all three points a, b, c lie on
this line. �

Remark 7.16. The above statement also has an easy Euclidean geometry proof, after some projective
transformations. Indeed, we can find an automorphism of CP2 such that

L1 ∩ L5 7→ (0 : 0 : 1), L1 ∩ L6 7→ (1 : 0 : 1), L2 ∩ L5 7→ (0 : 1 : 1), L2 ∩ L6 7→ (1 : 1 : 1).

Then H 7→ (1 : 0 : 0), V 7→ (0 : 1 : 0), and it is not hard to see that all the lines in the figure
must be complexifications of real lines. The line L0 is the line at infinity; the remaining lines are
(complexifications of) the corresponding real lines in R2. We use the same notation for the real lines.
Now we see that L1, L2, L3, L4 are parallel vertical lines, L5, L6, L7 are parallel horizontal lines, etc.
So that the arrangement looks like Figure 17. The lines in the figure form a number of triangles that
are similar to the shaded triangle; it then follows that the points a, b, c are collinear, so a′, b, c are not.

Note, however, that the above proof is somewhat incomplete: Figure 17 assumes a particular position
of the lines L3, L4, L7 relative to L1, L2, L5, L6. For a complete proof, an additional analysis of cases is
required, with slightly different figures for other possible relative positions of the lines. Our projective
argument with harmonic conjugates allows to avoid this analysis, and also to emphasize the projective
nature of the statement and the proof.

Corollary 7.17. Let Y = Y (11;w) be the Seifert fibered space given by a star-shaped plumbing graph
with 11 legs, such that two legs have at least 5 vertices each, two legs have at least 3 vertices, and
the remaining 7 legs have at least 4 vertices each (including the central vertex). In other words, two
components of the multi-weight w are 4 or greater, two are 6 or greater, and the remaining seven are
5 or greater. Let ξ be the Milnor fillable contact structure on Y . Then (Y, ξ) admits a Stein filling
which is not strongly diffeomorphic to any Milnor filling.

Proof. Exactly as in Corollary 7.13, this follows from Corollary 7.9 and Proposition 7.15. The picture
is similar to Figure 16, with the obvious minor changes. Indeed, the pseudoline arrangement of
Proposition 7.15 has two lines `0, `3 with weight 4, two lines `9, `10 with weight 6, and seven remaining
lines with weight 5. Note that a permutation of the components of w does not change the contact
manifold, so we avoided labeling the components of w in the statement of the corollary. �

It is easy to generalize the above examples to star-shaped graphs with higher negative self-intersection
values of the central vertex. Indeed, by Theorem 7.8, we can construct unexpected Stein fillings from
an arbitrary arrangement of smooth graphical disks that contains an unexpected symplectic line ar-
rangement. We turn to the general case later in this section; for now, we create more unexpected
pseudoline arrangements simply by adding extra lines.

Lemma 7.18. Suppose that Λ is an unexpected symplectic line arrangement. Let ` be a symplectic
line that passes through at least one intersection point of two or more lines in Λ. Then the pseudoline
arrangement Λ ∪ {`} is also unexpected.

Proof. If there exists a complex line arrangement A ∪ {L} that satisfies all the incidence relations of
Λ ∪ {`}, and L corresponds to `, then A satisfies all incidences of Λ, and so A is a pencil. The line L
must pass through the intersection of two or more lines of A, so A ∪ {L} is also a pencil. �
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Theorem 7.19. For any m ≥ 10, consider the Seifert fibered space Ym = Y (m,w) with m ≥ 10, with
weights w = (w1, . . . , wm) such that wi ≥ m− 1 for all i = 1, . . . ,m. The space Ym is given by a star-
shaped graph with m ≥ 10 legs, such that the length of each leg is at least m−1. The central vertex has
self-intersection −m − 1, and all other vertices have self-intersection −2. Let ξ be the Milnor fillable
contact structure on Y . Then (Y, ξ) admits a simply-connected Stein filling not strongly diffeomorphic
to any Milnor fiber.

Proof. We can add lines to the arrangement P to form unexpected arrangements of m ≥ 10 pseudolines.
Since any pseudolines intersect at most once, each pseudoline has at most m−1 intersections with other
lines. By Corollary 7.9, Y = Y (n,w) is an unexpected Stein filling if wi ≥ m− 1 for all i = 1, . . . ,m,
which is simply-connected if all inequalities are strict. �

Varying the positions of the additional lines and/or applying a similar procedure to different ar-
rangements such as P and Q, it is possible to construct a variety of pairwise non-homeomorphic Stein
fillings of the same link, so that none of the Stein fillings is strongly diffeomorphic to a Milnor filling.
We give one such construction below to prove the first part of Theorem 1.1. The second part of Theo-
rem 1.1 follows from the discussion at the end of this section, where we extend star-shaped graphs that
correspond to unexpected arrangements to a much wider collection of graphs of rational singularities
with reduced fundamental cycle.

Theorem 7.20. For every N > 0 there exists a rational singularity with reduced fundamental cycle
whose link (Y, ξ) admits at least N pairwise non-homeomorphic simply-connected Stein fillings, none
of which is strongly diffeomorphic to any Milnor fiber. The link Y is given by a Seifert fibered space
Y = Y (2N + 5, w) with sufficiently large weights w.

V

H

P

V

H

P

λ0 λ3

Figure 19. Pseudoline arrangements and fillings with different topology.

Proof. We will start with the arrangement Q of Figure 17 and augment it to other unexpected arrange-
ments, using Lemma 7.18. First, we add more “vertical” and “horizontal” lines to the arrangement,
so that it has N vertical and N horizontal lines, creating a grid as shown in Figure 19. (We assume
N ≥ 4 as the N = 4 case fulfills the statement for lower values of N .) All “vertical” lines intersect at
the point V , all horizontal lines intersect at the point H. The two diagonal lines, `8 and `9 intersecting
at P , the bent pseudoline `10, and the line at infinity `0 are present as in the arrangement Q. Let
Q′ denote this arrangement. We will now produce N + 1 unexpected arrangements Q′k = Q′ ∪ λk,
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k = 0, 1, . . . , N , by adding to Q′ different additional “diagonal” pseudolines λ0, λ1, . . . , λN passing
through P , see Figure 19. Each arrangement Q′k consists of 2N + 5 pseudolines. The pseudoline λ0 is
taken to be the main diagonal of the grid formed by the vertical and horizontal lines; it is a straight
line in RP2 passing through the point P . The pseudoline λ1 differs from λ0 in a small neighborhood
of a single grid intersection: while λ0 passes through the chosen intersection point of a vertical and a
horizontal line, λ1 intersects these two lines at distinct points. Similarly, λk differs from λ0 in neigh-
borhoods of k grid intersections and meets the corresponding vertical and horizontal lines at distinct
points. Figure 19 shows the arrangements Q′0 = Q′ ∪ λ0 and Q′3 = Q′ ∪ λ3.

Now, consider the decorated germ given by a pencil of 2N + 5 lines, each with a weight greater
than 2N + 4. We choose the weights to be greater than the number of intersection points on each line
in any of the arrangements Q′k; obviously, taking weights greater than 2N + 4 suffices because each
line intersects the other 2N + 4 lines once (in fact w ≥ 2N + 2 suffices for this arrangement). Let
(YN , ξ) be the contact link of the corresponding singularity. Similarly to the previous examples, YN
is the Seifert fibered space given by a star-shaped plumbing graph with 2N + 5 sufficiently long legs,
with the central vertex having the self-intersection −2N − 6 and all the other vertices self-intersection
−2. By Corollary 7.9, each arrangement Q′k yields a Stein filling Wk of (YN , ξ) which is not strongly
diffeomorphic to any Milnor filling.

Finally, we argue that all fillings W0,W1, . . . ,WN have different Euler characteristic. Each Wk

has the structure of a Lefschetz fibration with the same planar fiber (a disk with 2N + 5 holes), but
these Lefschetz fibrations have different number of vanishing cycles. Every time we replace a triple
intersection of pseudolines in the arrangement by three double points (and arrange the marked points
on the lines accordingly), the number of vanishing cycles decreases by 1. Indeed, three double points
correspond to three vanishing cycles in the Lefschetz fibration (each enclosing two holes), while a
triple intersection together with an additional free marked point on each of three lines corresponds
to four vanishing cycles (one vanishing cycle enclosing three holes, the remaining three enclosing a
single hole each). Thus, replacing a triple point by three double points corresponds to a lantern
relation monodromy substitution, which in turn corresponds to a rational blow-down of a (−4) sphere.
Therefore, χ(W0) > χ(W1) > · · · > χ(WN ), as required. �

7.4. Generalizations. All our previous examples were given by singularities with star-shaped graphs
where most vertices have self-intersection −2. It is not hard to obtain examples with much more
general graphs, using the full power of Theorem 7.8: we add more smooth disks to an unexpected
symplectic line arrangement.

Example 7.21. In the arrangement Q of Figure 17, replace the line `3 by several pseudolines that
all pass through the same four intersection points. Note that because of multiple intersections, the
result is no longer a pseudoline arrangement, but we still have a braided wiring diagram and can
apply Proposition 5.5 to extend it to an arrangement of symplectic disks. In Figure 20, we take three
curves replacing `3. In the decorated germ, the complex line corresponding to `3 will be replaced by 3
curvettas that are tangent to order 4 (and transverse to the other 10 branches of the germ). By (2.2),
the weight of each new curvetta must be 5 or greater. We take the weights to be exactly 5 for the three
new curvettas. Consider the symplectic curve arrangement given by the extension of the diagram in
Figure 20, with marked points at all intersections and one additional free marked point on each of
the three new curves (to account for higher weights). The resolution graph for Q is star-shaped with
11 legs. The self-intersection of the central vertex is −12 and all other self-intersections are −2. The
legs of the resolution graph for Q with minimal weights had two legs of length 3, two of length 5,
and seven of length 4. For this revised arrangement, the corresponding singularity has an augmented
graph. Specifically, one of the legs of length 3 (which corresponded to `3) gains an additional vertex
of self-intersection −4. If the three tangent curvettas have higher weights, so they have additional
free marked points in the deformed arrangement, the −4 vertex becomes a branching point with 3
additional legs (each vertex on these legs has self-intersection −2). See Figure 20. By Theorem 7.8,
the links of the corresponding singularities have unexpected Stein fillings.
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−12

−4

−12

−4

Figure 20. The pseudoline arrangement Q of Figure 17 is modified: the pseudoline
`3 is replaced by three smooth curves with 4 intersections, as shown. There are 3
free marked points, one on each of the new curves; the rest of the marked points
are the intersections in the diagram. The germ of the corresponding singularity has
three curvettas tangent to order 4, each of weight 5, replacing one of the lines. The
resolution graph of the corresponding singularity is shown in the middle of the figure.
If the weights of the three tangent curvettas are taken to be higher, the graph will
have additional branching as shown on the right. All unlabeled vertices have self-
intersection −2.

In general, if we replace `3 with k curves commonly intersecting at the four points where `3 inter-
sected other pseudolines as above, the additional vertex will have self-intersection −k−1 and increased
weights will yield k additional legs with (−2) vertices.

Further, we can replace each of the k pseudolines by a bundle of curves that go through the same
intersections.

Example 7.22. Figure 21 shows a possible bundle replacing `3, instead of the bundle of three curves
in the previous arrangement of Figure 20. All the new curves run C1 close to and are isotopic to the
original pseudoline, and they pass through the same intersection points with the other pseudolines.
Within each bundle, the curves may have additional intersections, which lead to higher order tangencies
between the corresponding curvettas in the decorated germ. In particular, for the arrangement in
Figure 21, the bundle of curves replacing `3 will have three subbundles of curves intersecting each
other 4 times, (and intersecting each of the other pseudolines once). One of these subbundles has four
curves which are intersect each other a total of 5 times, another has two curves which intersect a total
of 7 times, and the third has two curves intersecting each other a total of 6 times, with an additional
curve intersecting these two 5 times.

The corresponding decorated germ (with the weights given by the number of intersection points in
the disk arrangement) encodes the singularity whose graph has more branching and some vertices with
higher negative self-intersections, as shown in Figure 21. Note that if we vary the incidence pattern of
the additional curves (subject to the weight restrictions), we can obtain a number of unexpected Stein
fillings with different topology.

Example 7.22 demonstrates how, once we have an unexpected symplectic line arrangement Γ = {Γi},
the star-shaped graph G of the corresponding singularity can be extended to arbitrarily complicated
graphs of rational singularities with reduced fundamental cycle. The following proposition explains
how to form these bundles in general from a given extension of the graph, completing the proof of
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−3
−3`5

`6

`7

Figure 21. In the pseudoline arrangement Q of Figure 17, we replace `3 with a
bundle of curves passing through the exisiting intersections of `3 with `5, `6, `7, and
`0. (Only part of the arrangement is shown.) Note that the additional curves create no
extra intersections with the pseudolines of Q. All the intersection points are marked,
and there are additional free marked points that correspond to higher weights. In the
resolution graph of the singularity, the leg corresponding to `3 is replaced by a tree
with additional branching, as shown. All unlabeled vertices have self-intersection −2.

Theorem 1.1. It is not hard to see that under the hypotheses of the proposition, the extended graph
H corresponds to a singularity with reduced fundamental cycle.

Proposition 7.23. Let G be the star-shaped resolution graph corresponding to the surface singularity
associated to an unexpected symplectic line arrangement with minimal possible weights. Let I be the
set of leaves of G, and let {Gi}i∈I be a collection of (possibly empty) negative definite rooted trees;
assume that G and Gi have no (−1) vertices.

Consider a graph H constructed by attaching to G the rooted trees Gi, i ∈ I, so that the root of Gi is
connected to the leaf ui by a single edge. Assume that the resulting graph H satisfies condition (2.1). Let
(Y, ξ) be the link of a rational surface singularity with reduced fundamental cycle whose dual resolution
graph is H.

Then (Y, ξ) admits a Stein filling which is not strongly diffeomorphic to any Milnor filling.

Remark 7.24. Proposition 7.23 provides a fairly general class of rational surface singularities with re-
duced fundamental cycle which admit unexpected fillings. The construction can be further generalized
to include variations in the bundling structure and to apply to more general graphs G as the input.
Despite all variations, getting rid of the (−2) vertices in the resolution graph seems difficult. Indeed,
we could add a curve intersecting `3 only twice in Example 7.22, which would lower the self-intersection
to (−3) for one of the vertices on the leg of the star-shaped graph G. However, such a curve would
intersect the other pseudolines in the arrangement Q at new points. This would increase the weights
on the curvettas corresponding to these other pseudolines, producing free marked points and yielding
additional (−2) vertices elsewhere in the graph. In fact, we already know from Theorem 1.2 that our
strategy must have limitations, as there are no unexpected fillings when each vertex of the resolution
graph has self-intersection −5 or lower.

Proof of Proposition 7.23. The initial unexpected symplectic line arrangement {Li} consists of sym-
plectic lines associated to the legs of the star-shaped graph G. As above, let ui denote the valency
1 vertex of the leg that corresponds to Li. Choose a braided wiring diagram for the symplectic line
arrangement such that a symplectic line Li corresponds to the wire γi. The braided wiring diagram
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should be chosen such that γi contains all the marked points of Li (including free points). We will re-
place each wire γi, with a bundle of curves (with intersections but no braiding between the components
of the bundle) constructed according to the tree Gi, as follows.

All curves in the ith bundle must intersect at all marked points on γi. We will specify the additional
intersections and explain how to determine the number of curves and free marked points in the bundle.
The bundle will be described recursively, via its subbundles and iterative (sub)k-bundles, which we
determine by moving through the graph Gi. We start at the root and move upward in the graph Gi
with respect to the partial order induced by the root, stopping when we either reach either a vertex
v0 of self-intersection number −s0 for s0 ≥ 3 or exhaust the graph Gi.

By Condition (2.1), (−2) vertices can only occur in a linear chain. Thus, if we never reach a vertex
with self-intersection −s0 for s0 ≥ 3, then all vertices of Gi have self-intersection −2 (and Gi is a linear
chain). Suppose there are r0 ≥ 0 such (−2) vertices. In that case, the bundle for Gi should consist
of only a single curve, but with r0 ≥ 0 additional free points. (The weights of the decorated germ
increase accordingly.)

If there exists a vertex v0 of self-intersection −s0 for s0 ≥ 3 after passing through a linear chain of
r0 vertices of self-intersection −2, then the bundle will consist of exactly s0−1 non-empty subbundles.
The subbundles will be described as we travel further along Gi. We require that all curves in the
bundle intersect exactly r0 additional times (where each of these r0 intersection points gets marked)
and increase the weight of each curve by r0 + 1, yielding one additional free marked point on each
curve. Two curves in different subbundles will not intersect at any additional points beyond those
specified so far.

Note that v0 can have at most s0 − 1 vertices directly above it in Gi, since its valency is at
most s0. In particular, Gi itself is built by attaching s0−1 (potentially empty) trees onto the subgraph
{v ≤ v0} ⊂ Gi. We associate the s0 − 1 subbundles to these s0 − 1 rooted trees G1

1, . . . , G
1
s0−1, which

may be empty or non-empty. (Note that the partial order on G induced by its root induces a partial
order and root on each G1

j .)
Now we will create subbundles and their subsubbundles by iteratively repeating a slight modification

of the process above. For each tree G1
j , we construct a subbundle as follows. Starting at the root of

G1
j , we again have a linear chain of r1 ≥ 0 vertices with self-intersection −2, which either exhausts the

graph G1
j or ends in a vertex v1 of self-intersection number −s1 for s1 ≥ 3. (Note that r1 and s1 depend

on j, but we drop this index to avoid further notational clutter.) If we are in the first case, where there
is no such vertex v1, the subbundle associated to G1

j will consist of a single curve with r1 additional
free marked points. If we are in the second case, where the chain of length r1 of (−2)-vertices ends at a
vertex v1 with self-intersection −s1 for s1 ≥ 3, the subbundle itself will be a union of s1−1 non-empty
subsubbundles, intersecting at r1 + 1 additional points. (Accordingly, the weights increase by r1 + 1,
but no new free marked points are added.) Two curves in different subsubbundles will not intersect at
any additional points beyond those previously specified.

The s1 − 1 subsubbundles correspond to the s1 − 1 potentially empty trees G2
1, . . . , G

2
s1−1 attached

above v1. We determine these subsubbundles by iteratively repeating this process, where G2
l takes the

role of G1
j and the subsubbundle takes the role of the subbundle. Note the (sub)k-bundles will generally

have (sub)k+1-bundles, leading to additional iterations of the procedure. The situation where a (sub)k-
bundle does not have a (sub)k+1-bundle is when the (sub)k-bundle consists of a single component (as
in the first case of the procedure). Since the graph is finite, there will be a finite number of iterations,
so this process will eventually describe the bundle completely.

Having constructed such bundles individually for each Gi, we now superimpose them onto the wires
γi as satellites to get a new braided wiring diagram by inserting them into a small neighborhood of γi
so that each wire of the bundle is C1 close to the original wire γi. Recall that all intersection points
between wires are marked in the original diagram, and all curves from the ith-bundle are required to
intersect at all marked points. It follows that curves from the different bundles are allowed to intersect
only at the marked points of the original diagram.
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We can apply Proposition 5.5 to extend the new braided wiring diagram to an arrangement Γ of
symplectic disks. We claim that via Lemma 3.2, the resulting arrangement Γ provides a Stein filling
for the link of the singularity with the resolution graph H. To check the claim, we need to show that
the open book decomposition on the boundary of the Lefschetz fibration constructed from Γ supports
the canonical contact structure for the link associated to H. Recall that H is associated to a decorated
germ CH with smooth branches, by attaching (−1) vertices and curvettas and blowing down. We
will show that Γ is related by a smooth graphical homotopy to another decorated germ C which is
topologically equivalent to CH . The topological type of C will be determined by the intersections and
marked points in Γ: the order of tangency between two components in C is equal to the number of
intersections between the corresponding components of Γ. The weight on each curve is the total number
of marked points on the corresponding disk of Γ, including intersections and free marked points. After
showing that Γ and C are related by a smooth graphical homotopy, we will verify that C and CH are
topologically equivalent (with corresponding weights) to conclude that the open book decompositions
are equivalent.

To relate Γ and C, we first construct a smooth graphical homotopy from Γ to a “pencil of the
bundles”. In the pencil of the bundles, all curves will intersect at one point, and curves from different
bundles do not intersect anywhere else, but curves from the same bundle may intersect at other points
along the corresponding line. We can use a smooth graphical homotopy of the original symplectic line
arrangement {Li} to a pencil as a guide to build the required homotopy of Γ, because each bundle is
C1-close to the corresponding symplectic line inside the chosen Milnor ball. Essentially, at this step
we treat each bundle as a whole, bringing different bundles together without perturbing curves inside
each bundle. More precisely, we satellite the bundle onto the family of wiring diagrams corresponding
to the smooth graphical homotopy of the symplectic lines to the pencil. The intersection points within
a bundle will remain distinct in this smooth graphical homotopy. Note that at intermediate times
during the homotopy, we allow many additional intersection points in the arrangement, as curves from
different bundles will intersect outside the common marked intersections.

Next, we show that each bundle can be homotoped so that all the intersections come together to
high order tangencies. Let Γi denote the ith bundle constructed above, and let Ci denote the curves
in the germ C corresponding to those in Γi. To show that Γi and Ci are related by a smooth graphical
homotopy, it suffices to check that they have the same boundary braid. To verify this, we observe that
the subbundling structure looks like the nested structure produced by the Scott deformation of Ci as
in the proof of Proposition 4.1. The bundle, as drawn in R2, provides a wiring diagram which is planar
isotopic to the wiring diagram of the Scott deformation, and thus their braid monodromy is the same.
As a consequence, each bundle Γi is related by a smooth graphical homotopy to Ci. Applying these
homotopies to all bundles, we see that Γ is related to C by a smooth graphical homotopy, and their
induced open books agree.

Now, we need to check that C and CH are topologically equivalent. To this end, we will compare
the weights and the parwise orders of tangency between curvettas in the two germs. For C, these
quantities are computed from the intersections and marked points in Γ, while Remark 2.6 shows how
to compute them from the graph H.

First, we make a few observations to relate the curvettas on the graphH to the bundling construction
above. Before the star-shaped graph G is extended, the lines Li correspond to the legs of the graph.
For each i, the ith leg is a chain of (−2) vertices, with an end vertex ui. We attach a single (−1) vertex
to ui and put a curvetta on this vertex; this curvetta gives rise to the line Li. By Remark 2.6, the
weight of Li is 1 + l(u0, ui), where u0 is the root of G. In this case, the root has been chosen to be the
center of the star-shaped graph.

When Gi is non-empty, the symplectic line Li is replaced by a collection of mi curves (we compute
mi below) in the germ associated to H. These new curves come from curvettas on the additional
(−1) vertices attached to Gi. For each v ∈ Gi, (v · v + a(v)) additional (−1) vertices are attached to
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Figure 22. How to compute the weights from the graph G following the proof of
Proposition 7.23.

v, and each (−1) vertex has a curvetta attached, thus

mi = −
∑
v∈Gi

(v · v + a(v))

as in Proposition 2.4. Note that mi agrees with the number of curves in the bundle Γi constructed
above for the graph Gi. This is because the sub-bundling process terminates when you reach a (sub)k-
bundle which is a single component. This occurs when the (sub)k-bundle corresponds to a (sub)k-tree
consisting of only r ≥ 0 vertices of self-intersection −2. When r > 0, this means that there is a
(−2) vertex leaf which contributes one to mi, and when r = 0, this means there is a (−s) vertex v
with fewer than (s − 1) branches above it, and there are correspondingly −(v · v + a(v)) = s − a(v)
such (sub)k-bundles, each consisting of a single curve.

Now, let Cx be one of the curvettas for the graph H, and let ṽx be a vertex of G such that
Cx intersects a (−1) vertex attached to ṽx. According to Remark 2.6, the weight of Cx according
to the graph H is 1 + l(ṽx, u0), where l(ṽx, u0) counts the number of vertices in the path from the
root u0 of G to the vertex ṽx. This path consists of several parts. From the original graph G, the
path contains the l(ui, u0) vertices connecting the root u0 to the vertex ui where Gi is attached.
Next, there are vertices from Gi, which can be organized into (K + 1) chains as shown in Figure 22.
For 0 ≤ k ≤ K−1, the kth chain consists of rk ≥ 0 vertices of self-intersection (−2), followed by a vertex
of self-intersection −sk < −2. Finally, there may be a last chain of (−2)-vertices, of length rK ≥ 0,
such that ṽx is its last vertex. (If ṽx · ṽx < −2, then rK = 0.) Therefore,

1 + l(ṽx, u0) = 1 + l(ui, u0) + rK +
K−1∑
k=0

(rk + 1).

On the other hand, in the construction of the bundle, the initial weight on each curve begins at
1 + l(ui, u0). For each iterative (sub)k-bundle it is included in, the weight is increased by rk + 1, until
we reach a stage K where the (sub)Kgraph consists of rK ≥ 0 vertices, all of self-intersection −2.
For this Kth stage, the weight is increased by rK (the increase is associated to free marked points).
Therefore, the total weight on Cx will be

w(Cx) = 1 + l(ui, u0) + rK +

K−1∑
k=0

(rk + 1),

which agrees with 1 + l(ṽx, u0), as required.
Next, we compare the orders of tangency between the curves. According to Remark 2.6, the order

of tangency between two components Cx and Cy is ρ(ṽx, ṽy;u0), the number of common vertices in
the path from ṽx to u0 with the path from ṽy to u0. Note that by Condition 2.1, the vertex vL
where these two paths diverge has self-intersection −sL for s ≥ 3. See Figure 23. The path from u0

to vL includes the path from u0 to ui in G. This contributes l(ui, u0) vertices. The path continues
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Figure 23. How to compute the tangencies from the graph G following the proof of
Proposition 7.23.

into Gi, with sequential chains of rk vertices of self intersection (−2), each ending in a vertex vk of
self-intersection −sk < −2, for 0 ≤ k ≤ L. Therefore

ρ(ṽx, ṽy; v0) = l(ui, u0) +

L∑
k=0

(rk + 1).

On the other hand, in the bundle construction, the curves Cx and Cy lie in two distinct (sub)L+1-
bundles created for two of the distinct trees lying above vertex vL. No intersections between Cx and
Cy will be created after the Lth stage. At the beginning of the bundle construction, all curves are
required to intersect 1 + l(ui, u0) times. All other intersections between Cx and Cy are created in the
procedure above at some iteration k, for 0 ≤ k ≤ L. At the k = 0 stage, we add r0 intersections
between Cx and Cy. At stage k for 1 ≤ k ≤ L, we add additional rk + 1 intersections between Cx and
Cy. Therefore the total number of intersections between Cx and Cy is

1 + l(u0, ui) + r0 +

L∑
k=1

(rk + 1),

which agrees with ρ(ṽx, ṽy; vr).
To complete the proof, observe that the arrangement Γ contains the original unexpected symplectic

line arrangement as a subarrangement (choose a single component of each bundle). By Theorem 7.8,
we obtain unexpected Stein fillings of the link of the sigularity corresponding to the graph H. �

8. Further comments and questions on curvetta homotopies

In the previous section we showed that Stein fillings of the link of a singularity do not always arise
from the Milnor fibers, even for the simple class of rational singularities with reduced fundamental
cycle. Our examples of unexpected Stein fillings come from curvetta arrangements that do not arise as
picture deformations of the decorated germ representing the singularity, although these arrangements
are still related to the decorated germ through a smooth graphical homotopy. In this section, we make a
detailed comparison of de Jong–van Straten’s picture deformations (Definition 2.7) to smooth graphical
homotopies (Definition 3.1). Observe that the two notions differ in several essential ways. Indeed, the
curvetta branches are required to be algebraic resp. just smooth; positivity of all intersections and
the weight restrictions must hold at all times during a picture deformation but only at the end of a
graphical homotopy; the topology of the arrangement may change at non-zero times during graphical
homotopy but not during a picture deformation. This is summarized in Table 1. We will explore each
of these aspects and their role in differentiating Stein fillings from Milnor fibers. The most important
aspect seems to be the topology of the curvetta arrangement, and whether it is allowed to vary during
the homotopy.
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Table 1

smooth graphical homotopy picture deformation

type of curvetta branch Ctj smooth graphical disk
disk given by
(germ of) algebraic curve

topology of curvetta
arrangement

may change with time remains the same

weight restrictions:
Ctj has at most wj intersections

only hold for final arrangement,
may be violated during homotopy

hold at all times

positivity of intersection points:
Cti · Ctj > 0

only hold for the final arrangement,
may be violated during homotopy

hold at all times

8.1. Algebraic versus smooth. The first difference between picture deformations and homotopies
is that a smooth graphical homotopy includes curvettas which need not be complex algebraic curves,
either during the course of the homotopy or at the end of the homotopy. It turns out that this is not
the key aspect contributing to the difference between Milnor fillings and Stein fillings in our examples.
Indeed, adding higher-order terms, one can produce some surprising curvetta arrangements. Because
the curvettas are open algebraic disks, possibly given by high degree algebraic equations, curvetta
arrangements can be more general than arrangements of complex lines or global algebraic curves. To
illustrate, we recall the example of pseudo-Pappus arrangement from [dJvS98], see Figure 24:

p
q r

Figure 24. The pseudo-Pappus arrangement.

Example 8.1. [Gru09, dJvS98] Recall that the classical Pappus arrangement consists of 9 lines (we
have already discussed this arrangement in Example 7.10. By the Pappus theorem, the points p, q, r in
the middle of Figure 24 are collinear. In the pseudo-Pappus arrangement, the line through these three
points is replaced by a bent pseudoline that passes through two points but not through the third. The
pseudo-Pappus arrangement cannot be realized by complex lines. However, the bent pseudoline can
be given by a graph of a high-degree polynomial whose additional intersections with the other lines
occur sufficiently far outside the ball we restrict to. Thus, the pseudo-Pappus arrangement can be
realized by higher-degree open algebraic curves. In fact, as mentioned in [dJvS98], the pseudo-Pappus
arrangement arises as a picture deformation of the pencil of 9 lines, with the weights of each line
given by the number of intersection points on the corresponding line in the arrangement. The picture
deformation can be obtained by adding small higher-order terms to the linear deformation of the pencil
to the classical Pappus arrangement. Thus, the pseudo-Pappus arrangement gives rise to Milnor fibers
of smoothings of the singularities given by the corresponding decorated pencil of 9 lines.

In fact, all of the fillings produced via arrangements of real pseudolines can be obtained from an
algebraic curvetta arrangement which can be deformed by a polynomial homotopy (through algebraic
curves) to a pencil of lines. (However, this family does not constitute a picture deformation because
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the topology may vary at different t 6= 0, and the weight constraints may fail at intermediate times.)
Note that we only consider a portion of the algebraic curves in a chosen ball surrounding the origin.
In particular, the algebraic curves may intersect additional times outside of this ball, but we do not
need to count such intersections in the incidence data of our arrangement.

Proposition 8.2. Let Λ = {`1, . . . , `m} be an arrangement of real pseudolines in R2. Then there
exists a family of complex algebraic curves {Γt1, . . . ,Γtm}, given by polynomial equations

Γti = {y = p(x, t)},
and a smoothly embedded closed 4-ball B ⊂ C2, such that {Γt1, . . . ,Γtm} is a symplectic line arrangement
in B (with intersections in the interior of B) for every t ∈ [0, 1], where

• B ∩ (Γ0
1 ∪ · · · ∪ Γ0

m) has the incidences of a pencil of lines,
• B ∩ (Γ1

1 ∪ · · · ∪Γ1
m) is isotopic in B to the symplectic extension of the pseudoline arrangement

`1 ∪ · · · ∪ `m given by Proposition 5.5.

Before proving the proposition, we discuss its consequences.

Remark 8.3. Consider an arbitrary pseudoline arrangement `1, . . . , `m and the corresponding sym-
plectic line arrangement {Γ1, . . . ,Γm}. By Proposition 7.4, this arrangement gives Stein fillings of
the spaces (Y (m;w1, . . . , wk), ξ) whenever the weights satisfy inequalities wk ≥ w(Γk), k = 1, . . . ,m.
Let Γt = {Γt1, . . . ,Γtm} be a polynomial homotopy between a pencil of lines and the arrangement
{Γ1, . . . ,Γm}; such a homotopy always exists by Proposition 8.2. A priori, the homotopy may vi-
olate the weight constraints: at some moment t, the number of intersections may increase, so that
w(Γtk) > wk. (In fact, the homotopy constructed in Proposition 8.2 converts all multiple intersections
into double points and thus creates a lot of additional intersections.) However, since Γtk intersects each
of the other m − 1 components exactly once, w(Γtk) will never exceed m − 1. Thus, if wk ≥ m − 1
for all k, any homotopy as above will satisfy the weight constraints. By construction, intersections
between any two components Γti and Γtj remain positive for all t. Thus, the homotopy Γt satisfies
the requirements of the first, third, and fourth lines in Table 1, sharing these properties with picture
deformations, but it changes topology of the arrangement. Accordingly, the arrangement {Γt1, . . . ,Γtm}
gives a Stein filling Wt of (Y (m;w1, . . . , wk), ξ) for every t, and Wt carries a Lefschetz fibration as in
Lemma 3.2, but topology of the fillings Wt changes with t. Note also that for small t > 0, the defining
polynomials for Γtk give an unfolding, and thus a 1-parameter deformation of C. Equipped with marked
points, this gives a picture deformation. Therefore, for small t > 0 the Stein filling Wt is given by a
Milnor fiber. As t increases and the topology of the arrangement changes, we obtain new fillings Wt

which may not be realizable by Milnor fibers. We will consider a specific example of such a topology
change in Subsection 8.3.

The conclusion we wish to draw here is that the difference between algebraic curves and smooth
curves is not the essential to our counterexamples, as we can realize the corresponding symplectic line
arrangements by complex algebraic curves and construct polynomial homotopies. The positivity of
intersections and the weight constraints can often be trivially satisfied, although we further discuss
the role of weights in Subsection 8.4. In fact, the important difference comes from the second aspect
in Table 1, namely smooth graphical homotopies can vary their topology and singularities in various
different ways during the homotopy, whereas picture deformations must maintain the same topology
for all non-zero parameters t.

We now turn to the proof of Proposition 8.2. Given any pseudoline arrangement, it can be isotoped in
R2 to be in a standard wiring diagram form, with the following properties. Each pseudoline is graphical
`i = {y = fi(x)}. Away from intersection points, each pseudoline is horizontal with fi(x) = 2δn for
some integer 1 ≤ n ≤ m and a fixed constant δ > 0. There are disjoint intervals (a1, b1), . . . , (ar, br)
at which fi(x) is non-constant, such that there is a unique point in each interval (ak, bk) at which `i
intersects other pseudolines. Furthermore, we ask that fi and fj are linear whenever |fi(x)−fj(x)| < δ,
and each fi(x) is monotonic in each interval (ak, bk). We will assume after a planar isotopy of Λ our
pseudoline arrangement is initially given in this form. To construct our algebraic family, we first
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require a smooth family of pseudolines connecting this given pseudoline arrangement in standard
wiring diagram form to a pencil, and satisfying a quantitative transversality property as follows.

Lemma 8.4. Let Λ = {`1, . . . , `m} be an arrangement of real pseudolines in R2 in standard wiring
diagram form with constant δ, such that all intersections occur in [−M,M ] × R. Then there exist
smooth functions fi : [−M,M ]× [0, 1]→ R with the following properties:

(1) `i = {y = fi(x, 1)} (at time 1 the graphs of the functions give the chosen pseudoline arrange-
ment).

(2) fi(x, 0) = cix (at time 0 the graphs of the functions give a linear pencil).
(3) For any t0 ∈ [0, 1], and any i 6= j, there is a unique point x̄ ∈ [−M,M ] such that fi(x̄, t0) =

fj(x̄, t0) and an interval x̄ ∈ (a, b) ⊂ [−M,M ] such that |fi(x, t0) − fj(x, t0)| < δ if and only
if x ∈ (a, b) (the pseudolines remain at least distance δ apart except in a neighborhood of their
unique intersection).

(4) For any t0 ∈ [0, 1], and any x0 ∈ [−M,M ] such that |fi(x0, t0)− fj(x0, t0)| < δ, we have that∣∣∣∣∂fi∂x
(x0, t0)− ∂fj

∂x
(x0, t0)

∣∣∣∣ > η := δ/2M

(whenever the pseudolines become close enough to intersect, their slopes are quantitatively far
from each other to ensure isolated transverse intersections).

Proof. Note that when the original pseudoline arrangement {`i} is in standard wiring diagram form, it
does satisfy property (4) of the lemma when t0 = 1. This is because whenever |fi(x, 1)− fj(x, 1)| < δ,
the function fi − fj is linear, and it interpolates a height difference greater than δ over an interval
smaller than 2M , so its slope is greater than η.

It was proven that any arrangement of pseudolines in standard wiring diagram form can be related
through a family of pseudolines to a pencil in [RS19, Proposition 6.4]. In that paper, what is needed
is that the pseudolines maintain transverse intersections throughout the family, whereas we need a
quantitative measure of this transversality. We demonstrate here that this stronger condition is in fact
satisfied by the family in [RS19].

We briefly recall the key aspects in the construction of the family and refer the reader to [RS19,
Proposition 6.4] for further details. This family is graphical and thus can be written as `ti = {y =
fi(x, t)}, for i = 1, . . . ,m where `1i = `i. The key move to modify the pseudoline arrangement into a
pencil through a family is shown in Figure 25 (this figure is a slight modification of that appearing in
[RS19, Figure 8]). This move is used iteratively to break up k-tuple points into a sequence of double
points in a particular order. This procedure can be reversed to form an m-tuple point from a collection
of appropriately ordered double points at the end to obtain a pencil. The order of the double points
can be modified through the moves shown in Figures 26 and 27, by a classical theorem of Matsumoto
and Tits [Mat64].

If a pseudoline arrangement satisfies the transversality property (4) before the move in Figure 27,
then it will continue to satisfy the same property throughout the move, because the relative slopes
remain the same, only the interval where they occur is translated.

For the move from Figure 26, this can be realized using Figure 25 once in reverse to form a triple
point and then again in the forwards time direction but mirrored to break up the triple point in the
opposite manner (see [RS19, Figure 10]). Therefore it suffices to ensure that property (4) is satisfied
throughout the move shown in Figure 25. Indeed, throughout this move, whenever a pair of pseudolines
have height difference less than δ (recall that the spacing between the heights of the strands at the
left and right ends of the figure is 2δ), both pseudolines are linear in this interval. The difference
of pairwise slopes whenever |fi(x, t) − fj(x, t)| < δ is always greater than η throughout this family,
because each crossing changes the difference in fi − fj by at least 2δ across the interval, whereas the
interval has length at most 2M . Moreover, this move preserves the property that there is a unique
interval at which a given pair satisfies |fi(x, t)− fj(x, t)| < δ. �

Proof of Proposition 8.2. We use the functions {fi(x, t)}, representing a family of pseudolines through
their graphs at a fixed time t, and approximate these by real polynomials intersecting in somewhat
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Figure 25. Key move used to construct a family of pseudolines, slightly modified
from [RS19].

Figure 26. First reordering move.

Figure 27. Second reordering move.

controlled ways. We assume that x ∈ [−M,M ] and that M ≥ 1. Recall that our final pseudoline
arrangement is given by `i = {y = fi(x, 1)}. Let x1, . . . , xn be the points at which fi(xk, 1) = fj(xk, 1)
for some i 6= j.

Let ε > 0. Let ζ = min{1,mini 6=j{|xi − xj |}}. In particular, ζ ≤ 1.
Using the Stone-Weierstrass approximation theorem, choose polynomials p̃i(x, t) such that∣∣∣∣∂fi∂x

(x, t)− p̃i(x, t)
∣∣∣∣ < εζn−1

4n2(2M)n
.

Then by integrating p̃i(x, t) and shifting by a constant, we can find pi(x, t) such that ∂pi
∂x (x, t) = p̃i(x, t)

and

|pi(x, t)− fi(x, t)| <
εζn−1

4n2(2M)n−1
.

Now for k = 1, . . . , n let

aik =
(fi(xk, 1)− pi(xk, 1))

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.
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Let ai0 = pi(0, 0). Define

pi(x, t) = pi(x, t) + ai0(t− 1) + ai1t(x− x2) · · · (x− xn)

+ ai2t(x− x1)(x− x3) · · · (x− xn) + · · ·+ aint(x− x1) · · · (x− xn−1).

Then we have that for every k = 1, . . . , n, pi(xk, 1) = fi(xk, 1) and pi(0, 0) = pj(0, 0) = 0 for all
i, j. In particular, for every multi-intersection point of the pseudolines `1, . . . , `m there is a multi-
intersection point of the corresponding {p1(x, 1) = 0}, . . . , {pm(x, 1) = 0}. We will show that the
curves γt01 := {p1(x, t0) = 0}, . . . , γt0m := {pm(x, t0) = 0} form a pseudoline arrangement at each time
t0 (namely every pair of components intersects exactly once). In particular, this suffices to show that
at t0 = 1, the algebraic arrangement has the same intersections as the smooth pseudoline arrangement.
For this, we use the following bounds:

|pi(x, t)− fi(x, t)| ≤ |pi(x, t)− pi(x, t)|+ |pi(x, t)− fi(x, t)|

≤ ai0 +

n∑
k=1

aik(2M)n−1 +
εζn−1

4n2(2M)n−1

≤ εζn−1

4n2(2M)n−1
+

n∑
k=1

ε

4n2(2M)n−1
· (2M)n−1 +

εζn−1

4n2(2M)n−1

< ε.

We can similarly bound the difference of the derivatives with respect to x:∣∣∣∣∂pi∂x
(x, t)− ∂fi

∂x
(x, t)

∣∣∣∣ ≤ ai0 +

n∑
k=1

aikn(2M)n−2 +
εζn−1

4n2(2M)n−1
< ε.

Now we want to show that the graphs λti := {y = pi(x, t) | x ∈ [−M,M ]} provide a family of
algebraic pseudoline arrangements whose incidences agree with those of {`i} at t = 1, and agree
with the incidences of a pencil at t = 0. We will use the intersection and quantitative transversality
properties of Lemma 8.4, to verify that for each time t0 ∈ [0, 1], there is a unique transverse intersection
between λt0i and λt0j where pi(x, t0) = pj(x, t0) for x ∈ [−M,M ].

Since we could choose ε > 0 arbitrarily in the argument above, we now set ε = min{δ/3, η/3}.
For each t0 ∈ [0, 1] and each pair i 6= j, there is an interval (a, b) such that for x ∈ [−M,M ] \ (a, b),
|fi(x, t0)− fj(x, t0)| ≥ δ. By the triangle inequality, for x ∈ [−M,M ] \ (a, b),

|pi(x, t0)− pj(x, t0)| ≥ |fi − fj | − |fi − pi| − |pj − fj | > δ − 2ε ≥ δ/3 > 0.

Therefore pi(x, t0) 6= pj(x, t0) for x ∈ [−M,M ] \ (a, b). Now for x ∈ (a, b), we have that |fi(x, t0) −
fj(x, t0)| < δ so by the last property of Lemma 8.4,∣∣∣∣∂fi∂x

(x, t0)− ∂fj
∂x

(x, t0)

∣∣∣∣ > η.

Again by the triangle inequality and the bounds above we get that∣∣∣∣∂pi∂x
(x, t0)− ∂pj

∂x
(x, t0)

∣∣∣∣ > η/3.

Since the difference of the derivatives is bounded away from zero, this implies that there can be at
most one value x ∈ (a, b) such that pi(x, t0) = pj(x, t0).

Because fi(x, t0) and fj(x, t0) intersect once in the interval (a, b) and their distance is δ at the
end-points a and b, up to switching i and j, we have fi(a, t0) − fj(a, t0) = δ = fj(b, t0) − fi(b, t0).
Since |pi(x, t) − fi(x, t)| < δ/3 and |pj(x, t) − fj(x, t)| < δ/3, this implies that pi(a, t0) > pj(a, t0)
and pj(b, t0) > pi(b, t0). Therefore there must exist at least one value x ∈ (a, b) such that pi(x, t0) =

pj(x, t0). Therefore the arrangement {λt0i }mi=1 is a pseudoline arrangement for all t0 ∈ [0, 1].
Finally, view the variable x as a complex variable. Let B = [−M,M ]× i[−α, α]×DR ⊂ C2 where

DR is a disk of sufficiently large radius R such that all |pi(x, t)| < R for x ∈ [−M,M ] × i[−α, α].
We consider the locus {

∏m
i=1(y − pi(x, t)) = 0} ⊂ B for each t ∈ [0, 1], and label its irreducible
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components as Γti = {y − pi(x, t) = 0 | (x, y) ∈ B}. If α > 0 is chosen sufficiently small, then all
of the intersections where pi(x, t) = pj(x, t) with x ∈ [−M,M ] × i[−α, α] occur at real values of x.

Therefore this complexification of the λt0i restricted to B gives an algebraic family of curves, which for
any t0 ∈ [0, 1] is a symplectic line arrangement, at t0 = 0 has the incidences of a pencil, and at t0 = 1
has the incidences of the original pseudoline arrangement {`i}. �

Remark 8.5. To prove Proposition 8.2, we started with a particular smooth homotopy between the
given pseudoline arrangement and the pencil; this homotopy was provided by Lemma 8.4. Note that
the same argument applies to an arbitrary smooth graphical homotopy that has the properties stated
in Lemma 8.4. In many examples such as those in Section 7, a homotopy with required properties
can be easily constructed directly, thus we can find its polynomial approximation without resolving
all multiple intersections into double points as required by the algorithm of Lemma 8.4. However, we
are unable to do the polynomial approximation while preserving all the incidence relations during the
homotopy (we only guarantee the required incidences agree with those of the homotopy for t = 0 and
t = 1 but not for 0 < t < 1.)

8.2. Smooth graphical homotopies imitating picture deformations. Even without the alge-
braic condition, we can define a subclass of smooth graphical homotopies which produce Stein fillings
constrained in a similar way as Milnor fibers. We now isolate these key properties of a picture defor-
mation needed to detect the examples of unexpected Stein fillings in Section 7.

We can describe a smooth graphical homotopy with branches Ctk ⊂ C2 via equations

(8.1) fk(x1, x2, t)− y = 0.

where (x, y) are the complex coordinates on C2, x = x1 + ix2, and t is the real homotopy parameter.
At t = 0, we assume that ∪ki=1C

0
k = C is the germ of a complex algebraic curve where each branch

passes through the origin. In particular, fk(0, 0, 0) = 0 for all k. Additionally, any two branches of C
have positive total algebraic intersection number, so any two deformed branches Cti , C

t
j intersect for

small t > 0. Composing the homotopy with a t-dependent translation, we can also assume that the
first two branches always intersect at the origin, Ct1 ∩ Ct2 = 0.

As before, we will assume that the deformed branches Ctk are not all concurrent for t > 0. This means
that for t > 0, at least one of the functions fk(0, 0, t), k > 2, is non-zero. We need a non-degenerate
version of non-concurrence:

(8.2) ∃k ∈ {3, . . . ,m},∃r > 0 such that
∂rfk
∂tr

(0, 0, 0) 6= 0.

In other words, if we set ordt fk = min{r : ∂rfk
∂tr (0, 0, 0) 6= 0}, then ordt fk is finite for at least some

values k = 3, . . . ,m. Intuitively, this condition says that the branches move away from being concurrent
at the infinitesimal level.

In addition to the above non-degeneracy hypothesis, assume that for all t > 0 the arrangements
{Ct1, Ct2, . . . , Ctm} are topogically equivalent. It follows that each curvetta Cti has a finite number of
intersections with the other curvettas Ctj , i 6= j; the incidence pattern, and the number of intersections,
remains constant during the homotopy. We can add decorations so that all intersection points on
∪mi=1C

t
i are marked; as for picture deformations, we allow free marked points as well. Let wk be the

total number of marked points on the branch Ctk, for any t > 0, and set w = (w1, w2, . . . , wm). We will
use the term small smooth deformation to refer to a smooth graphical homotopy of the decorated germ
(C, w) with special properties as above. Small smooth deformation mimic picture deformations in the
smooth category, using smooth graphical instead of algebraic curvettas: they preserve the topology
of the curvetta arrangement and satisfy the same weight restrictions and positivity of intersection
properties.

Proposition 8.6. Lemma 7.5 holds for small smooth deformations of plane curve germ C with smooth
branches.

Proof. The proof remains almost the same, but we have to use Taylor approximations of smooth
functions instead of power series for analytic functions.
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In complex coordinates (x, y) on C2, the complex tangent line to Ck at 0 has the form akx− y = 0
for ak ∈ C. Setting x = x1 + ix2 and identifying C2 with R2×C, the complex tangent line becomes the
2-plane akx1 + iakx2 − y = 0. Set bk(t) = fk(0, 0, t) and gk(x, y, t) = fk(x, y, t)− akx1 − iakx2 − bk(t).

Since gk(0, 0, t) = 0 for all t, we have ∂γgk
∂tγ (0, 0, 0) = 0 for all γ; additionally, ∂gk

∂x (0, 0, 0) = 0 and
∂gk
∂y (0, 0, 0) = 0. Equation (8.1) for the deformed branch Ctk becomes

(8.3) akx1 + iakx2 + bk(t) + gk(x1, x2, t)− y = 0.

Using 8.2, r = mink ordt bk(t) = ordt bk0
(t) < +∞, and write bk(t) = tr b̄k(t) for all k.

We now use the Taylor formula for each function gk(x1, x2, t) at (0, 0, 0), writing out the terms up
to r-th order, followed by the remainder. This gives

akx1 + iakx2 + tr b̄k(t)+
∑

1<α+β+γ≤r
α>0 or β>0

∂α+β+γgk

∂xα1 ∂x
β
2∂t

γ
(0, 0, 0)xα1x

β
2 t
γ

+
∑

α+β+γ=r
α>0 or β>0

hk;α,β,γ(x1, x2, t)x
α
1x

β
2 t
γ + hk;0,0,r(0, 0, t)t

r − y = 0.
(8.4)

The remainder function hk;α,β,γ is continuous for each (k;α, β, γ), and hk;α,β,γ(x1, x2, t) → 0 when
(x1, x2, t)→ (0, 0, 0). Now make a change of variables

x1 = trx′1, x2 = trx′2, y = try′.

It is not hard to see that, as in Lemma 7.5, after the change of variables we can divide Equation (8.4)
tr for t 6= 0 and take the limit as t → 0. The result is an arrangement of non-concurrent complex
lines given by equations akx

′ + b̄k(0)− y′ = 0. Since we have assumed that the incidence relations for
Ct1, . . . , C

t
m remain the same for all t 6= 0, the same relations must hold for the lines. �

As a consequence, small smooth deformations cannot produce the unexpected symplectic line ar-
rangements that gave unexpected Stein fillings in Section 7. In such examples, to obtain deformations
which produce only Milnor fibers, the algebraic condition on the curves and deformation is less impor-
tant than keeping the topology of the curves constant for t 6= 0. For rational singularities with reduced
fundamental cycle, small smooth deformations give a symplectic analogue of smoothings, picking out
the Stein fillings which are “closest” to the singularity and its resolution.

8.3. Smooth graphical homotopies changing topology. The key difference between picture de-
formations and smooth graphical homotopies in Table 1 is that the topology of the union of the curves
is allowed to change multiple times during a smooth graphical homotopy (for picture deformations, the
only change happens at time 0). In other words, the types of singularities where the curves intersect
can vary during the homotopy.

Here we provide an explicit example to illustrate the topology change in the family of Lefschetz
fibrations. Our example is related to the configuration Q from Example 7.14, but with a careful choice
of weights.

Example 8.7. Consider the pencil of 11 lines indexed from 0 to 10, with weights w0 = 4, w1 = w2 =
w3 = w4 = w5 = w7 = 5, w6 = w8 = w9 = 6, and w10 = 8. Observe that any arrangement of
straight lines is related to the pencil by linear deformation (scaling the constant terms of the linear
equations to 0). Using such a deformation, let Qt0 be the arrangement shown in Figure 28, where `10

is a straight line. Unlike the arrangement Q, `10 does not pass through the intersection point b of `3,
`6 and `9. The corresponding picture deformation of the weighted pencil gives a deformation of the
surface singularity. We can extend the picture deformation to a smooth graphical homotopy which
for t0 < t < 1 bends the pseudoline `10 towards the intersection `3 ∩ `6 ∩ `9, and at t = 1 realizes
the configuration Q. (We implicitly use Proposition 5.5 to symplectify the family of pseudolines to a
smooth graphical homotopy of symplectic line arrangements.)

Now, consider the Stein fillings Wt correspond to the arrangements Qt, 0 ≤ t ≤ 1. For 0 < t < 1,
the Stein fillings are diffeomorphic to Milnor fibers of the corresponding smoothings of the singular
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algebraic deformation

line-bending homotopy

line-bending
homotopy

Figure 28. A long-term homotopy from a pencil of lines to Q.

complex surface. Indeed, the Lefschetz fibrations given by Lemma 3.2 are all equivalent, and for t close
to 0 the smooth graphical homotopy is a picture deformation. When t = 1, Lemma 7.17 says that the
Stein filling W arising from Q is not strongly diffeomorphic to any Milnor fiber. The topology of W
is different from that of Wt: as a smooth manifold, Wt for t < 1 is obtained from W by rational blow-
down. The corresponding Lefschetz fibrations are related via the positive monodromy substitution
given by the daisy relation [EMVHM11], see Figure 29.

8.4. Violating positivity of intersections and weight constraints. Although we have seen that
we can produce many examples of unexpected Stein fillings using smooth graphical deformations which
satisfy positivity of intersections and the weight constraints, we also can construct examples where a
Stein filling arises from a configuration of curves such that every smooth graphical homotopy from the
germ curvetta violates the weight constraints.

Example 8.8. Consider again the configuration Q from Example 7.14 of 11 symplectic lines {Lk}11
k=1.

We compare this to a pencil of lines with weights

(8.5) w0 = w3 = 4, w1 = w2 = w4 = w5 = w6 = w7 = w9 = 5, w8 = w10 = 6.
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Figure 29. The Stein filling W is related to the Milnor fibers Wt by the monodromy
substitution as shown.

These are chosen such that wk = w(Lk), so they are the minimal possible weights satisfying the
hypotheses of Corollary 7.9. We can show that there is no smooth graphical homotopy from this
pencil to Q satisfying these weight constraints.

Proposition 8.9. The arrangement Q cannot be obtained from the pencil of lines by a smooth graphical
homotopy satisfying the weight constraints as above, if we consider homotopies that are analytic in t
or satisfy a non-degeneracy condition such as (8.2).

This statement follows from the following lemma, which shows that for combinatorial reasons, there
are no “intermediate” arrangements between the pencil and Q, so if a homotopy existed, it would have
to deform the pencil immediately into an arrangement with the same incidence relations as Q.

Lemma 8.10. Let Qt = ∪10
k=0L

t
k be a smooth graphical homotopy such that Q0 is a pencil of 11

lines, and Q1 = Q (after an appropriate choice of coordinates). Suppose that all intersections Lti · Ltj
are positive, and each Ltk has no more than wk intersection points at all times t ∈ [0, 1]. Then, the
homotopy Qt immediately deforms the pencil of lines into an arrangement combinatorially equivalent
to Q, perhaps after restricting to a smaller time interval: there exists τ ≥ 0 such that Qτ is a pencil,
and Qt is combinatorially equivalent to Q for all t ∈ (τ, 1].

Proof. Any two lines in the pencil have algebraic intersection number 1. Since intersections remain
inside the Milnor ball during the homotopy and remain positive at all times, throughout the homotopy
any two components Lti and Ltj of Qt intersect exactly once. This allows us to work with Qt as with
pseudoline arrangements in Proposition 7.15.

We examine possible combinatorics of an arrangement with the weight restrictions as above. The
analysis below works at any time t. For each individual line Lk, we write Ltk for its image under the
homotopy at time t. For t = 0, the lines L0

k form a pencil; for t = 1, we have Q = ∪L1
k.

In the arrangement Q, the line L0 contains 4 intersection points. These are points where L0 meets
the pencil L1, L2, L3, L4 of vertical lines, the pencil L5, L6, L7 of horizontal lines, the two diagonal
lines L8, L9, and the bent line L10. The weight condition then implies that Lt0 can never have more
than 4 intersection points. Note that L3 also has only 4 intersection points, so the same is true for
Lt3. It follows that at most one intersection point on Lt0 can have multiplicity 5 or greater: if there are
two such points, there would be two pencils of 5 or more lines. Even if Lt3 is in one of these pencils, it
would intersect the lines of the other pencil in 5 or more distinct points, a contradiction. Next, observe
that no line has more than 6 intersection points, so no pencil can contain more than 6 lines unless
all the lines are concurrent. We conclude that Lt0 must have at least 3 intersection points for all t,
because it is not possible to distribute the 10 other lines into two intersection points on L0 subject to
these conditions.

Observe that Qt must be combinatorially equivalent to Q for t close to 1. Indeed, for t sufficiently
close to 1, the four distinct intersection points on L0 remain distinct on Lt0. Similarly, for t close
to 1, each of Lt5, Lt6, and Lt7 have at least 5 distinct intersection points with the other curves in the
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arrangement Qt. On the other hand, due to weight restrictions each of these curves has at most 5
intersection points. It follows that Lt5, Lt6, and Lt7 have exactly 5 intersection points each, and the
curves of Qt meeting at each intersection have the same incidence relations as the corresponding lines
in Q. Thus, the incidences involving Lt0, as well as the incidences for the “grid” intersections between
Lt1, L

t
2, L

t
3, L

t
4 and Lt5, Lt6, Lt7, are the same as in Q for t close to 1. All the remaining intersections in

Qt are double points, and they cannot merge with other intersections if t is sufficiently close to 1.
The above argument shows that {t ∈ [0, 1] : Qt is combinatorially equivalent to Q} is open. Now,

suppose that Qt is equivalent to Q for t > t0. We examine the combinatorial possibilities for Qt0 ,
assuming that this arrangement is not a pencil. Consider two cases, 1) Lt00 has 4 distinct intersection
points, and 2) Lt00 has 3 distinct intersection points. In the first case, it follows that Qt0 must be
combinatorially equivalent to Q. This is because all the incidence relations valid for t > t0 still hold by
taking a limit as t→ t0. As in the proof of Proposition 7.15, we see that no two intersection points can
collapse (if they do, all the curves must be concurrent). It follows that in this case, all the incidence
relations in Qt0 are the same as in Q.

In the second case, there are 3 intersection points on L0. Again, because all incidences hold after
taking limits as t → t0, the arrangement Qt0 satisfies all the incidence relations of Q. Additionally,
two of the intersection points on L0 collapse. It follows from the proof of Proposition 7.15 that in this
case Qt0 must be a pencil, contradicting the assumption that Lt00 has 3 distinct intersection points.

We conclude that if Qt is combinatorially equivalent to Q for all 1 ≥ t > t0, and Qt0 is different,
then Qt0 must be a pencil. �

We have just seen that there are examples of Stein fillings arising from graphical smooth homotopies
which do not satisfy the weight constraint (and such that there is no possible graphical smooth homo-
topy which does satisfy the weight constraint). On the other hand, we do not have examples of Stein
fillings associated to a configuration of graphical curves which cannot be related to the curvetta germ
by a smooth graphical homotopy satisfying positivity of intersections between the curve components.
We suspect that in fact, there may always be a smooth graphical homotopy maintaining positivity of
intersections.

Question 8.11. Suppose C0 = {C0
1 , C

0
2 , . . . , C

0
m} and C1 = {C1

1 , C
0
2 , . . . , C

1
m} are two collections of

symplectic disks in B4
r such that Cti intersects Ctj positively transversally or with a local holomorphic

model. Further assume that the boundaries of C0 and C1 are isotopic braids in S3
r . Does there exists

a continuous family {Ct1, Ct2, . . . , Ctm} of symplectic disks, all with isotopic boundary braid for t ∈ [0, 1]
extending this pair of arrangements, such that for each t, Cti and Cti′ have positive intersections?

To prove existence of such a homotopy, one could realize C0 and C1 as J0 and J1-holomorphic
curves respectively, for almost complex structures J0 and J1 which are compatible with the standard
symplectic structure, with appropriate convexity conditions at the boundary of the ball. One could
connect J0 and J1 through a family Jt of almost complex structures with the same properties, and
then try to find a family Cti of Jt holomorphic disks interpolating between C0

i and C1
i for each i.

The difficulty arises in analyzing the moduli spaces of J-holomorphic curves with appropriately chosen
boundary conditions (either using an SFT set-up or a totally-real boundary condition). Compactness
issues in the moduli space must be overcome to obtain a positive answer to Question 8.11. Because
such techniques are far beyond the scope of this article, and the answer to the question is not central
to our investigations, we leave this open.

Remark 8.12. If a smooth graphical homotopy fails to satisfy the weight constraints or positivity
of intersections, we cannot construct a sequence of Stein fillings using Lemma 3.2. However, we can
“connect” the singular complex surface (X, 0) to the Stein filling W via a family of achiral Lefschetz
fibrations (see [GS99, Section 8.4]).

Consider Example 8.8. We will use the homotopy of pseudoline arrangements given in Example 8.7.
For 0 < t < 1, the pseudolines `3, `6, `9 and `10 have more intersection points than the weights (8.5)
allow. We need to compensate the higher weights to obtain the required open book monodromy, so
we place negative free marked points on these lines: `3, `6, `9 need one negative marked point each
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to compensate for one extra positive intersection, and `10 needs 2 negative points. In the open book
monodromy, every negative marked point contributes a negative Dehn twist around the corresponding
hole. It follows from the proof of Lemma 3.4 that with these additional negative twists, the resulting
open book supports (Y, ξ). The corresponding vanishing cycles determine an achiral Lefschetz fibration.
The negative Dehn twists corresponds to a “negative” blow-up in the smooth category (the 4-manifold
changes by taking a connected sum with CP2).
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