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ARTICLE OPEN

Genomic heterogeneity in pancreatic cancer organoids and its
stability with culture
Olalekan H. Usman1, Liting Zhang2, Gengqiang Xie1, Hemant M. Kocher 3, Chang-il Hwang 4, Yue Julia Wang1, Xian Mallory2 and
Jerome Irianto 1✉

The establishment of patient-derived pancreatic cancer organoid culture in recent years creates an exciting opportunity for
researchers to perform a wide range of in vitro studies on a model that closely recapitulates the tumor. One of the outstanding
question in pancreatic cancer biology is the causes and consequences of genomic heterogeneity observed in the disease. However,
to use pancreatic cancer organoids as a model to study genomic variations, we need to first understand the degree of genomic
heterogeneity and its stability within organoids. Here, we used single-cell whole-genome sequencing to investigate the genomic
heterogeneity of two independent pancreatic cancer organoid lines, as well as their genomic stability with extended culture. Clonal
populations with similar copy number profiles were observed within the organoids, and the proportion of these clones was shifted
with extended culture, suggesting the growth advantage of some clones. However, sub-clonal genomic heterogeneity was also
observed within each clonal population, indicating the genomic instability of the pancreatic cancer cells themselves. Furthermore,
our transcriptomic analysis also revealed a positive correlation between copy number alterations and gene expression regulation,
suggesting the “gene dosage” effect of these copy number alterations that translates to gene expression regulation.

npj Genomic Medicine            (2022) 7:71 ; https://doi.org/10.1038/s41525-022-00342-9

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the most common
form of pancreatic cancer. With a 5-year survival rate of 11%,
PDAC has one of the highest death rates among all cancers1. As
part of the effort to improve the survival rate of PDAC and to
develop more effective treatments, a better understanding of
disease biology is urgently needed. In recent years, multiple
studies have reported success in establishing PDAC organoid
culture from patient tumors2–8. These organoids were shown to
closely recapitulate the phenotype, the genotype, and the drug
response of their in vivo tumor counterparts. PDAC organoid
culture provides researchers with the opportunity to perform
various in vitro studies on a model that closely represents the
in vivo tumor, which in turn, will allow for a broader, deeper, and
more accurate understanding of the disease. One characteristic
of PDAC is its genomic heterogeneity in both primary tumors
and metastatic lesions9–16. However, the causes and conse-
quences of the observed genomic heterogeneity are largely
unknown. A better understanding of genomic heterogeneity will
help us elucidate both the etiology of the disease and its
progression. PDAC organoid culture provides the opportunity to
perform high-resolution genotyping and detailed mechanistic
studies. Moreover, sample purity has been a significant issue in
tissue-based genomic studies, where low purity has been shown
to compromise the accuracy of the genomic data17. PDAC
organoid culture, on the other hand, yields samples with the
highest cancer cell purity.
To use PDAC organoids as a model to study genomic variations,

however, we first need to understand the baseline genomic
heterogeneity and stability of PDAC organoids. Without this
understanding, it will be challenging to accurately interpret the
genomic data after specific genetic modulations, treatments, or

other perturbations. One of the pioneering studies by the
Tuveson group used karyotyping to show the ploidy shifts within
the extended PDAC organoid culture3. A following-up study by
the same group derived single-cell clones from the organoid
cultures18 and showed sub-clonal copy number variations (CNVs)
between the clones, indicating genomic heterogeneity and
instability within the PDAC organoids. Here, using single-cell
whole-genome sequencing (scWGS) on two independent lines of
PDAC organoids, we significantly increased the cellular resolution
of organoid genotyping compared with previous studies. We
observed genomic heterogeneity, in the form of chromosome
copy number alterations, within both lines of PDAC organoids.
Furthermore, we identified clonal and sub-clonal populations and
elucidated their correlations through a phylogenetic tree analysis.
Lastly, our transcriptomic analysis also revealed the functionality
of these copy number alterations, suggesting a “gene dosage”
effect19–21 of these copy number alterations that translates to
gene expression regulation.

RESULTS
Copy number alterations in two lines of patient-derived PDAC
organoids
Two patient-derived primary tumor PDAC organoids (hPT1 and
hPT2) were acquired and expanded for this study (Fig. 1a). The
doubling time of both organoids was about 7 days, hence the
organoids were passaged at a 1:2 ratio weekly. Immunostaining
clearly showed that the organoids were positive for both
cytokeratin and epithelial cell adhesion molecule (EpCAM),
reflecting their epithelial origin (Fig. 1b). To analyze their
chromosome copy number profiles, the genomic DNA of both
hPT1 and hPT2 organoids was subjected to single-nucleotide
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polymorphism microarray (SNPa), and the data was used to derive
their copy number profiles at 1 Mb resolution (Fig. 1c). We
previously benchmarked this method and demonstrated that
SNPa produced similar results as the comparative genome
hybridization array22, which is the gold standard for chromosome
copy number profile measurements23. Chromosome copy number
alterations were observed across the genome of both hPT1 and
hPT2 (Fig. 1c). The total chromosome number was estimated from
the summation of the average copy number of each chromosome.
In general, copy gains were more prevalent than losses, resulting
in a sub-triploid ploidy of 57.1 and 57 chromosomes for hPT1 and
hPT2, respectively. Additionally, we observed unusually high copy
number alterations in chromosome 8 of hPT2, where the copy
number appeared to oscillate between losses and very high gains.
This pattern is in line with the typical signatures of chromothripsis,
as reported in numerous cancers, including PDAC24,25. The role of
chromothripsis in PDAC metastatic progression was suggested
through the amplification of MYC at chromosome 826. Indeed, the
copy number of MYC in hPT2 is higher than in hPT1 (Fig. 1c).
The copy number of some genes, including the four most

common driver mutation genes27: KRAS, CDKN2A, TP53, and
SMAD4, are also frequently altered in PDAC28. In both hPT1 and
hPT2 (Fig. 1c), the oncogene KRAS is amplified, while the tumor
suppressors CDKN2A and TP53 have reduced copy numbers.
Interestingly, the copy loss of the tumor suppressor SMAD4 was
only observed in hPT1, suggesting a potential phenotypic
distinction between hPT1 and hPT2. Differences in copy number
alterations were also observed in the other frequently altered
genes, including ARID1A, TGFBR2, CTNNB1, RREB1, EGFR, and BRAF.

Genomic heterogeneity in PDAC organoids and genomic shift
with prolonged culture
SNPa provides a bulk-level overview of the average copy numbers
of all the cells in the PDAC organoid. To improve our cellular

resolution in understanding the genomic heterogeneity of PDAC
organoids, we performed scWGS on both hPT1 and hPT2. We
further examined each organoid line at two passage numbers to
gain insights into the genomic stability of organoid culture.
From passage 3 of hPT1 organoids (hPT1 P3), we acquired

scWGS data from 705 cells. We derived the copy number profile
of each cell at 5 Mb resolution. Of note, the resolution of the
copy number profile from scWGS is lower than that from SNPa.
Averaging the sequencing data at a bigger 5 Mb window is
necessary due to the relatively shallow sequencing depth,
ranging between 0.015× and 0.042× for the scWGS samples.
To systematically analyze the genomic heterogeneity within
each sample, we performed t-SNE analysis on the single-cell
copy number profiles, followed by spectral clustering to derive
clusters of closely related cells. The spectral clustering of the
hPT1 P3 t-SNE plot resulted in five clusters (Fig. 2a). Genomic
heterogeneity was clearly observed within the hPT1 P3 popula-
tion. Specifically, two distinct groups of cells were observed. The
first group of cells was contained in Clusters 1 and 2, totaling
61 cells. Compared to the rest of the population, the cells in
Clusters 1 and 2 had partial copy gains in chromosomes 1, 3, 7, 8,
and 16, and whole chromosome copy gains in chromosomes 11,
12, 13, and 20. The second group of cells was contained in
Clusters 3–5, totaling 644 cells. Genomic heterogeneity within
this group was observed through the intermittent copy losses
across the cells within chromosomes 1, 3, 6, 7, 9, 14, 18, 21, and
X, as well as copy gains within chromosomes 3, 8, 13, and 15.
When we averaged the single-cell copy number data from the
705 hPT1 P3 cells (Fig. 2a bottom), the resulting copy number
profile is in accordance with the SNPa copy number profile of
hPT1 (Fig. 1c), confirming the concordance with the scWGS
method. One difference between the aggregated scWGS profile
and the SNPa profile is that the estimated number of
chromosomes from the scWGS data is higher than the one
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Fig. 1 Chromosome copy number alterations in patient-derived pancreatic ductal adenocarcinoma (PDAC) organoids. a Representative
images of primary tumor-derived PDAC organoids, hPT1 and hPT2, from two independent patients, showing the growth of the organoids over
4 days (bar= 200 µm). b Confocal sections of hPT1 and hPT2 organoids immunostained for cytokeratin (red) and EpCAM (green), both are
markers of epithelial and PDAC cells (bar= 25 µm). c Genomic DNA of passage 3 of hPT1 and passage 6 of hPT2 was subjected to SNPa, and
the resulting data was used to derive chromosome copy numbers of the organoids within 1Mb binning windows. The heatmaps illustrate
chromosome copy numbers across the whole genome, where blue indicates chromosome loss (<2) and red indicates chromosome gain (>2).
The copy number of the frequently mutated genes in PDAC is indicated by the color of the corresponding arrowheads. The total chromosome
number was estimated from the summation of the average copy number of each chromosome. Chromosome copy number alterations were
observed across the genome, and both organoids had sub-triploid ploidy of ~57 chromosomes.
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estimated by SNPa. This slight discrepancy may be because they
were derived from different methods and/or because of the
different copy number resolutions, 5 Mb for scWGS and 1 Mb for
SNPa. Nevertheless, the higher scWGS estimate is still within the
sub-triploid ploidy range.

Next, we performed scWGS analysis on passage 14 of hPT1
organoids (hPT1 P14). As we passaged the organoids weekly, hPT1
P3 was cultured for 11 weeks to reach hPT1 P14. At P14, we
acquired scWGS data from 744 cells. The spectral clustering of
the hPT1 P14 t-SNE plot resulted in six clusters (Fig. 2b). From the
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copy number profiles, two distinct groups of cells were also
observed in hPT1 P14. The copy number profiles of the first group
of cells in Clusters 1–3 resembled the cells in hPT1 P3 Clusters 1
and 2. However, the proportion of these cells in hPT1 P14 grew to
~40.7% (303 cells out of 744 cells) from ~8.7% in hPT1 P3,
suggesting a clonal population expansion with extended culture.
Genomic heterogeneity within the hPT1 P14 Clusters 1–3 cells was
observed within chromosomes 1, 4, 5, 11, 13, 16, and 22, which
were absent in hPT1 P3 Clusters 1 and 2 cells. The copy number
profiles of the 441 cells in hPT1 P14 Clusters 4–6 resembled the
hPT1 P3 Clusters 3–5 cells, with the exception of the partial loss of
chromosome 8 within all of the hPT1 P14 Cluster 4 cells and some
of the cells in Clusters 5 and 6. In all, the total number of
chromosomes was estimated to be 64.4, which is slightly higher
than in the hPT1 P3, indicating copy number gains with the
extended culture. Indeed, when we derived the CNV between
hPT1 P3 and P14 from the averaged copy number profile (Fig. 2c),
62.7 Mb copy gains were observed across chromosomes 1, 3, 6, 7,
8, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, and X and 20.9 Mb copy
losses were observed in other chromosomes. Most of the
observed genomic shifts correspond to the clonal expansion in
hPT1 P14 Clusters 1–3.
Similar scWGS analyses were performed for the hPT2 organoids.

From passage 6 of hPT2 organoids (hPT2 P6), we acquired scWGS
data from 873 cells. The spectral clustering of the hPT2 P6 t-SNE
plot resulted in five clusters (Fig. 2d). Three distinct groups of cells
were observed within the single-cell copy number profiles of hPT2
P6 cells. The differences between these three groups of cells
revolved around chromosomes 4, 9, and 18. First, the 85 cells
within Cluster 1 had intermittent copy losses in chromosome 18,

instead of the copy gains that were observed in the other clusters.
Second, within Cluster 1, 11 cells had uniquely partial gains in
chromosome 9, accompanied by partial diploid in chromosome 4.
The rest of the 788 cells in Clusters 2–5 had copy gains in
chromosomes 4 and 18, and intermittent losses in chromosome 9.
Genomic heterogeneity in these 788 cells was observed in the
form of intermittent copy losses within chromosomes 3, 9, 13, 14,
17, 19, and X. The unusual oscillating copy number profile in
chromosome 8, as illustrated in Fig. 1c, was also observed under
scWGS in all cells. Furthermore, the averaged copy number profile
of hPT2 P6 under scWGS (Fig. 2d bottom) also highly resembled
the SNPa copy number profile of hPT2 P6 in Fig. 1c. The total
number of chromosomes for the hPT2 P6 cells was estimated to
be 64.5, again, slightly higher than the number estimated by the
SNPa copy number profile (Fig. 1c). After an extended culture for
10 additional passages, the scWGS data of hPT2 P16 revealed a
clonal expansion of the cells that had partial copy gains in
chromosome 9, overtaking the population majority from ~1.3% in
hPT2 P6 to ~64.4% in hPT2 P16 (Clusters 3–7, totaling 643 cells out
of 999 cells, Fig. 2e), again suggesting a clonal population
expansion with extended culture. However, in contrast to hPT2 P6,
these 643 hPT2 P16 cells had copy gains in both chromosomes 4
and 18. The rest of the 356 cells in hPT2 P16 Clusters 1, 2, and 8
resembled the cells in hPT2 P6 Clusters 2–5, with the addition of
copy gains in chromosome 20 in some cells. From the averaged
copy number profile, we estimated the chromosome number of
hPT2 P16 to be 65.3, which was slightly higher than the number
estimated for hPT2 P6, again suggesting a gain of copy number
with extended culture. Indeed, from the CNV analysis between
hPT2 P6 and P16 (Fig. 2f), significant copy gains were observed

Fig. 2 Single-cell whole-genome sequencing reveals genomic heterogeneity within PDAC organoids and the genomic shift with culture.
a From passage 3 of hPT1 (hPT1 P3), we acquired scWGS data of 705 cells. The single-cell copy number data derived from the scWGS were
subjected to t-SNE analysis, followed by spectral clustering to derive the number of clusters within the sample. The spectral clustering of the
hPT1 P3 t-SNE plot resulted in five distinctive clusters. The single-cell chromosome copy number profiles of each cluster were plotted in
the form of heatmaps, with the resolution of a 5Mb binning window. Genomic heterogeneity is evident within the population. Clusters 1 and
2 show a distinct group of cells (totaling 61 cells) with partial chromosome copy gains in chromosomes 1, 3, 7, 8, and 16, in addition to whole
chromosome copy gains in chromosomes 11, 12, 13, and 20. Genomic heterogeneity can also be observed in the rest of the cells (Clusters 3–5,
totaling 644 cells) through the intermittent copy losses within chromosomes 1, 3, 6, 7, 9, 14, 18, 21, and X, as well as intermittent copy gains
within chromosomes 3 and 15. The bottom heatmap shows the averaged copy number from the 705 hPT1 P3 cells. The copy number pattern
across the genome is in accordance with the hPT1 copy number profile derived from the SNPa in Fig. 1c. The total number of chromosomes
was estimated to be 62.9, which is slightly higher than the one estimated by the SNPa, but both of them are still within the sub-triploid ploidy
range. b From passage 14 of hPT1 organoids (hPT1 P14), we acquired scWGS data of 744 cells. The spectral clustering of the hPT1 P14 t-SNE
plot resulted in six distinctive clusters. The copy number profiles of hPT1 P14 Clusters 1–3 resemble the cells in hPT1 P3 Clusters 1 and 2,
however, the proportion of these cells increases within the hPT1 P14 population (totaling 303 cells), suggesting a clonal population expansion
with the extended culture of 11 passages. Genomic heterogeneity within the hPT1 P14 Clusters 1–3 cells can be observed in chromosomes 1,
4, 5, 11, 13, 16, and 22. The copy number profiles of the rest of the cells (Clusters 4–6, totaling 441 cells) look similar to the hPT1 P3 Clusters
3–5 cells, except for the partial loss of chromosome 8 within all of the hPT1 P14 Cluster 4 cells and some cells in Clusters 5 and 6. The bottom
heatmap shows the averaged copy number from the 744 hPT1 P14 cells. The total number of chromosomes was estimated to be 64.4, which is
higher than hPT1 PT3, indicating copy number gains with extended culture. c The CNV between hPT1 P3 and hPT1 P14 was derived from the
averaged copy number data. Chromosome copy gains were observed in chromosomes 1, 3, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, and X,
which correspond to the clonal expansion in hPT1 P14 Cluster 1–3. All combined, the extended culture resulted in approximately 62.7 Mb
copy gains and 20.9 Mb copy losses. d From passage 6 of hPT2 (hPT2 P6), we acquired scWGS data of 873 cells. The spectral clustering of the
hPT2 P6 t-SNE plot resulted in five distinctive clusters. Similar to hPT1 organoids, genomic heterogeneity can be observed within the hPT2
population. In contrast to the other clusters, the cells within Cluster 1 have intermittent copy losses in chromosome 18, instead of copy gains.
Eleven cells within Cluster 1 have uniquely partial gains in chromosome 9 and partial diploid in chromosome 4. The copy number profiles of
the rest of the cells (Clusters 2–5, totaling 788 cells) are generally similar to each other, with some level of genomic heterogeneity in the form
of intermittent copy losses within chromosomes 3, 9, 13, 14, 17, 19, and X. The bottom heatmap shows the averaged copy number from the
873 hPT2 P6 cells, which is in accordance with the hPT2 copy number profile derived from the SNPa in Fig. 1c. The total number of
chromosomes was estimated to be 64.5. e From passage 16 of hPT2 organoids (hPT2 P16), we acquired scWGS data of 999 cells. The spectral
clustering of the hPT2 P16 t-SNE plot resulted in eight distinctive clusters. The copy number profile of hPT2 P16 Clusters 1, 2, and 8 (totaling
356 cells) resemble the cells in hPT2 P6 Clusters 2–5, with the addition of copy gains in chromosome 20 in some cells. The rest of the cells in
Clusters 3–7 (totaling 643 cells) have partial copy gains in chromosome 9, resembling the 11 cells in hPT2 P6 Cluster 1, again suggesting a
clonal population expansion with the extended culture. However, in contrast to the cells in hPT2 P6, these 643 cells also have copy gains in
chromosomes 4 and 18. The bottom heatmap shows the averaged copy number from the 999 hPT2 P16 cells. The total number of
chromosomes was estimated to be 65.3, which is higher than hPT2 P6, indicating copy number gains with extended culture. f The CNV
between hPT2 P6 and hPT2 P16 was derived from the averaged copy number data. Significant chromosome copy gains were observed within
chromosome 9, which were caused by the clonal expansion in hPT2 P16 Clusters 3–7. Other copy gains were also observed in chromosomes 3,
16, 18, and 20. The extended culture resulted in approximately 25.7 Mb copy gains and 9.8 Mb copy losses.
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within chromosome 9, which were caused by the clonal expansion
in hPT2 P16 Clusters 3–7, and also other copy gains in
chromosomes 3, 16, 18, and 20. All combined, the extended
culture resulted in approximately 25.7 Mb of copy gains and
9.8 Mb of copy losses.
Next, to investigate the evolutionary distance between the

clusters of cells, the copy number profiles of each cluster were
averaged and used to derive phylogenetic trees for hPT1 and
hPT2. The maximum parsimony method29 was used to build the
trees from the early passage clusters, followed by the minimal
distance pairings of the late passage clusters. This approach
enabled us to reveal the correlation between the clusters of cells
from different culture periods and to quantify the copy number

differences between the clusters, as a measure of genomic
heterogeneity. The hPT1 phylogenetic tree revealed two distinct
groups of clusters that were separated by ~1500 Mb of copy
number differences (Fig. 3a). Closer to the diploid root, the first
group includes hPT1 P3 Clusters 3–5 (P3 C3–5), and hPT1 P14
Clusters 4–6 (P14 C4–6). P14 C5–6 are paired to P3 C4, while P14
C4 is paired to P3 C5. These pairings indicate the correlation
between the late passage clusters to the early ones, and again
confirm the existence of the same clonal population across the
extended culture. The estimated chromosome number ranges
from 56.1 to 62.8. The other group of clusters includes P3 C1–2,
and P14 C1–3, which are paired to P3 C1. The estimated
chromosome number ranges from 67.3 to 71.1. Unlike the first
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Fig. 3 Phylogenetic tree analysis reveals the correlation between the identified sub-population clusters and enables the quantification of
genomic heterogeneity. The single-cell chromosome copy number data of the clusters identified in Fig. 2 were averaged and used to derive
phylogenetic trees for hPT1 and hPT2. The maximum parsimony method was used to build the trees from the early passage clusters, followed
by the minimal distance pairings of the late passage clusters. These trees reveal the correlation between the clusters of different culture
periods and quantify the copy number differences between the clusters, as a measure of genomic heterogeneity. a hPT1 phylogenetic tree
reveals two distinct groups of clusters that are separated by ~1500Mb of copy number differences. Closer to the diploid (2 N) root, the first
group includes hPT1 P3 Clusters 3–5 (P3 C3–5), and hPT1 P14 Clusters 4–6 (P14 C4–6). P14 C5–6 are paired to P3 C4, while P14 C4 is paired to
P3 C5. The estimated chromosome number ranges from 56.1 to 62.8. The other group of clusters, spread within ~500 Mb of copy number
differences, includes P3 C1–2, and P14 C1–3, which are paired with P3 C1. The estimated chromosome number ranges from 67.3 to 71.1. b The
clusters in the hPT2 phylogenetic tree are distributed within ~750 Mb of copy number differences, which is smaller than the hPT1 tree,
suggesting lower genomic heterogeneity within the hPT2 population. The hPT2 P6 Clusters 1–5 (P6 C1–5) are spread within ~300 Mb and are
closely related to each other. hPT2 P16 Clusters 1, 3, 4, 7, and 8 (P16 C1, C3–4, C7–8) are paired to P6 C2, while P16 C2 and C5–6 are paired to
P6 C3. The estimated chromosome number ranges from 63 to 66.1.
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group, the clusters in this second group spanned within ~500 Mb
of copy number differences, indicating a lower level of genomic
heterogeneity within these clusters.
The clusters in the hPT2 phylogenetic tree were distributed

within ~750 Mb of copy number differences, which was smaller
than the hPT1 tree, suggesting lower genomic heterogeneity
within the hPT2 population (Fig. 3b). The hPT2 P6 Clusters 1–5 (P6
C1–5) are spread within ~300 Mb and are closely related to each
other. hPT2 P16 Clusters 1, 3, 4, 7, and 8 (P16 C1, C3–4, C7–8) are
paired to P6 C2, while P16 C2 and C5–6 are paired to P6 C3. The
estimated chromosome number ranges from 63 to 66.1. The copy
number changes associated with each edge of the phylogenetic
trees can be found in Supplementary Dataset 1.
In addition to the phylogenetic tree analysis, we also performed

an unsupervised hierarchical clustering analysis of the sub-
population clusters of hPT1 and hPT2 (Supplementary Fig. 1),
where the distance between clusters was calculated using the
Canberra distance method. Indeed, the correlation between the
clusters identified by the hierarchical clustering highly resembles
the correlations derived from the phylogenetic tree, confirming
the findings of the phylogenetic analysis.

Copy number alterations in PDAC organoids translate to
transcript regulation
To investigate the functionality of these copy number alterations,
the transcriptomes of hPT1 and hPT2 were analyzed through RNA-
seq. The gene expression fold change between the two organoids
was quantified and its profile across the whole genome was
averaged at every 1 Mb. CNVs between hPT1 and hPT2 were
derived from the SNPa copy number profiles that also have 1 Mb
resolution. The matching resolution enables the comparison
between gene expression regulation and the CNVs between the
two organoids (Fig. 4a). The variation within the gene expression
regulation profile is much higher than the CNV, which may be due
to the trans-regulation of transcription30. However, the agreement
between the CNV and gene expression regulation profile can be
observed across the whole genome, especially where CNVs occur,
such as in chromosomes 1, 3, 6, 7, 10, 14, 15, and 21. Indeed, such
agreement was also observed in some of the frequently altered
genes in PDAC28, including ARID1A, CTNNB1, RREB1, EGFR, BRAF,
MYC, and SMAD4. CNVs of hPT1 and hPT2 positively correlated to
the gene expression regulation between the two organoids, with a
statistically significant Pearson correlation coefficient of 0.42
(Fig. 4b), suggesting “gene dosage” effects19–21 and functionality
of chromosome copy number changes.

Gene set enrichment analysis (GSEA)31,32 of the regulated genes
identified several “hallmark” gene sets33 that are significantly
enriched in hPT1 and hPT2 (Supplementary Fig. 2). A couple of cell
cycle-related gene sets (E2F targets and G2M checkpoint gene
sets) were enriched in hPT1 (Supplementary Fig. 2A). Interestingly,
SMAD4 has been shown to suppress cell proliferation through the
TGF-β pathway34 and SMAD4 deficiency in the KRAS G12D PDAC
mouse model promotes cell proliferation35. These previous
findings suggest the possibility that the enrichment of the cell
cycle-related gene sets might be driven by the copy loss and
downregulation of SMAD4 in hPT1 (Figs. 1c and 4a). Moreover, the
gene set that is upregulated by the activation of WNT signaling
through the accumulation of CTNNB1 (WNT-beta catenin signaling
gene set) is also enriched in hPT1, which might be driven by the
copy gain and upregulation of CTNNB1 in hPT1 (Figs. 1c and 4a).
Both of these enrichments in hPT1 suggest the functional impact
of chromosome copy number changes on cellular phenotypes.
Furthermore, the genes that are upregulated in hPT1 also drive
the enrichment of the epithelial-mesenchymal transition gene set,
metabolism-related gene sets (hypoxia, glycolysis, cholesterol
homeostasis, oxidative phosphorylation, reactive oxygen species
pathway, and bile acid metabolism gene sets), and the genes that
are upregulated through activation of mTORC1 complex
(mTORC1 signaling gene set). Meanwhile, the upregulated genes
in hPT2 resulted in the enrichment of genes that are important for
cell polarity (apical surface gene set), immune response-related
genes (allograft rejection and complement gene sets), and genes
that are downregulated by KRAS activation (KRAS signaling down
gene set) (Supplementary Fig. 2b).

DISCUSSION
In this study, we used two independent lines of patient-derived
PDAC organoids, hPT1 and hPT2, to elucidate genomic hetero-
geneity within the organoid cultures. Chromosome copy number
alterations were evident across the genome of both organoids
(Fig. 1c), and copy number gains were more prevalent than the
losses, resulting in a sub-triploid ploidy. Such copy number
alterations were also reported in previous PDAC genomic studies
involving both tumor tissues9,10 and organoids3,5,8,18,36. Addition-
ally, by performing karyotyping, one of the pioneering studies
that derived the PDAC organoid3 also showed ploidy hetero-
geneity and shift within the organoid culture. Here, we further
investigated this genomic heterogeneity within PDAC organoid
cultures and their genomic stability with extended culture by
using scWGS (Figs. 2 and 3). With this technology, we can derive
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high-resolution copy number profiles at single-cell resolution.
Clonal populations with similar copy number profiles were
observed within the organoids, and the proportion of these
clones was shifted with extended culture, suggesting the growth
advantage of some clones. However, sub-clonal genomic hetero-
geneity was also observed within each clonal population,
indicating the genomic instability of the PDAC cells themselves.
Considering the functionality of these copy number alterations in
gene expression regulation (Fig. 4), we speculate that the
observed genomic heterogeneity here should translate to a
population of cells with heterogeneous phenotypes. Indeed, such
transcriptomic heterogeneity was also reported by a single-cell
RNA-seq study on PDAC organoids37.
On a side note, it is important to recognize several limitations

in the PDAC organoid model when interpreting the findings in
this study. First, the PDAC organoids were maintained in a
culture media that is supplemented with growth factors and
various inhibitors, and they are also cultured within Matrigel,
which is comprised of various extracellular matrix proteins. These
culture conditions will potentially select a subset of cells that are
more adapted to this culture system, resulting in a growth
advantage for these cells. Similar selection limitation was also
reported in patient-derived xenograft mouse models38. Hence, it
is important to note that the genomic heterogeneity and clonal
shift observed in this study might be impacted by the culture
condition itself, in addition to the intrinsic genomic instability.
Secondly, passaging the organoids weekly at a 1:2 ratio might
also introduce a technical limitation to the organoid culture.
There is a possibility for a rare population to be passaged into a
Matrigel dome while absent in the other domes. In such a case,
we will miss that rare population if we sample the Matrigel
domes without that rare population for scWGS. Hence, our
current passaging procedure with mechanical dissociation and a
1:2 ratio may potentially suppress the distribution of rare
populations or low-abundance cells.
All combined, the findings in this study suggest the need for

future genomic studies that involve the use of PDAC organoids, to
consider the genomic shift of PDAC organoids with culture. This
will help to provide a more accurate interpretation of the genomic
data. Furthermore, the genomic instability in PDAC organoids may
not be limited to the shift in copy number profiles: It may also
impact other forms of genomic variations, such as single
nucleotide variations (SNVs) and other structural variants. How-
ever, the detection of SNVs from scWGS data remains challenging.
This is mainly due to sequencing cost, limitations in whole
genome amplification chemistry, and the availability of suitable
analysis algorithms. For example, in this study, we used the
multiple displacement amplification method, which introduces
amplification artifacts across the genome, and the commonly used
mutation detection algorithm like GATK Mutect239 will detect
these artifacts as SNVs40. Hence, improving genome amplification
chemistry to minimize artifacts and developing algorithms that
can address these amplification artifacts is needed for future
scWGS studies. On another note, unlike copy number quantifica-
tion, SNV analysis typically requires a read coverage of >30×, and
the sequencing cost of ~1000 cells will be very high to achieve
such coverage. Alternatively, if we assume that the clones with
similar copy number profiles have similar genomic variations, then
we can combine their sequencing data to increase the read depth,
which then enables the SNV analysis. This approach has been
tested previously with some success41.
Future single-cell functional genomic studies are needed to

elucidate the mechanistic insights behind the growth advantage
of certain clones and the genomic instability within PDAC
organoids. Some groups have established the technology to
sequence both genomic DNA and mRNA of the same cell42–45;
however, currently, no commercially available technology
enables the mass adaptation of such assays yet. Alternatively,

considering the significant correlation between CNV and gene
expression regulation (Fig. 4), we can perform scWGS and single-
cell RNA-seq independently on the same organoid line, and
potentially match the copy number profile of a given clone to
the corresponding gene expression profile, which then allows us
to derive the key regulators of the observed genomic variations.
On a different note, inference of copy number profiles from RNA-
seq data has been reported in multiple studies46–49. However, as
shown in the CNV and RNA-seq correlation in Fig. 4a, the gene
expression profile has much higher variations across the genome
when compared to the CNV counterpart; hence, inference from
RNA-seq data may lead to less accurate quantification of copy
number profiles.

METHODS
PDAC organoid culture and immunostaining
hPT1 and hPT2 PDAC organoids were derived from the primary
tumors of two independent patients. The hPT1 organoids were
acquired from the Barts Pancreas Tissue Bank at passage number 5
with the organoid ID B01P0735BOR (2018/14/FSU/JI/P/Organoids).
The hPT2 organoids were acquired from ATCC, as part of the
Human Cancer Models Initiative, at passage number 15, with the
organoid name HCM-CSHL-0092-C25. The ethical approvals and
the patient informed consent for these organoids were acquired
by the respective sources, i.e., the Barts Pancreas Tissue Bank for
hPT1 and the Cold Spring Harbor Laboratory for hPT2. The
passage number listed in the manuscript represents the number
of passages performed within our lab upon the first thaw. For
example, hPT1 P3 in Fig. 2a was passaged three times in our lab.
Maintenance of PDAC organoid culture was performed following
the Tuveson Laboratory Murine and Human Organoid Protocols
(http://tuvesonlab.labsites.cshl.edu/wp-content/uploads/sites/49/
2018/06/20170523_OrganoidProtocols.pdf), which were kindly
compiled based on that lab’s previous studies2,3. Both hPT1 and
hPT2 organoids have a “cystic” morphology (Fig. 1a), where a
distinct lumen can be observed within each organoid. Hence, as
suggested by the Tuveson Laboratory Murine and Human
Organoid Protocols, the organoids were passaged through
mechanical dissociation, where the isolated organoids were
vigorously triturated using a P1000 tip against the bottom of the
centrifuge tube at least 20 times. This will ensure the shearing of
the organoids into organoid fragments and the homogeneous
mixing of the organoid fragments suspension. The organoids were
passaged at a 1:2 ratio weekly; for example, if the original culture
consisted of two 50 µL Matrigel domes, the passaged organoid
fragments will be distributed into four 50 µL Matrigel domes.
For immunostaining, PDAC organoids within the Matrigel (Corn-
ing) were fixed in 4% formaldehyde (EMS) for 15 min, permeabi-
lized by 0.5% Triton-X (Sigma) for 10 min, blocked by 5% bovine
serum albumin (VWR), and incubated overnight in the primary
antibodies against pan-Keratin (Cell Signaling, #4545) and EpCAM
(Abcam, #ab71916), both at 1:500 dilution. DNA was stained with
2 µg/mL DAPI (Sigma) for 15min. Confocal imaging was done
using a Zeiss LSM 880 system with a 63×/1.4 NA oil-immersion
objective. Brightfield imaging was performed using an Olympus
IX71 with a digital sCMOS camera (Prime 95B, Photometrics) and a
10×/0.3 NA objective.

Single nucleotide polymorphism microarray
DNA isolation was performed as suggested in the Tuveson
Laboratory Murine and Human Organoid Protocols, briefly the
PDAC organoids were subjected to the mechanical dissociation
described above, and the Blood and Cell Culture DNA Mini Kit
(QIAGEN) was used to isolate the genomic DNA per manufac-
turer’s instruction. The isolated DNA samples were sent to the
Center for Applied Genomics at the Children’s Hospital of
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Philadelphia for the SNP array analysis using the Infinium Global
Screening Array-24 v3.0 Kit (Illumina). The chromosome copy
number analysis was performed in GenomeStudio v.2.0 (Illumina)
by using the cnvPartition v.3.2.1 plugin. The chromosome copy
number calls were averaged every 1 Mb to derive the copy
number profiles at 1 Mb resolution. Heatmaps were plotted in R by
using the algorithm gtrellis v.1.28.050. was used to derive their
copy number profiles at 1 Mb resolution

Single-cell whole-genome sequencing
For scWGS, to get a single-cell suspension, at least two 50 µL
Matrigel domes containing the PDAC organoids were enzymati-
cally dissociated with TrypLE Express (Thermo Fisher) following
the Tuveson Laboratory Murine and Human Organoid Protocols.
This resulted in a suspension of ~300,000 single cells. The single-
cell suspension was thoroughly mixed, and ~20,000 cells were
then processed using chromium single-cell CNV (10× Genomics)
for scWGS. Briefly, this technology employs the droplet micro-
fluidic method and the whole-genome multiple displacement
amplification method. The resulting libraries of amplified DNA
were subjected to 150-bp paired-end sequencing with a Novaseq
6000. The numbers of reads for the samples were approximately
180, 140, 420, and 530 million reads for hPT1 P3, hPT1 P14, hPT2
P6, and hPT2 P16, respectively. These read amounts provide
sufficient read depth for the chromosome copy number
quantification, per the manufacturer’s recommendation.

Bioinformatics of the scWGS data
To derive the chromosome copy number profiles, the scWGS data
was analyzed using the 10× Genomics Cell Ranger DNA algorithms
and visualized using the 10× Genomics Loupe scDNA Browser. The
resulting copy number profiles had a resolution of 5 Mb, meaning
that each chromosome was segmented into 5Mb parts, and each
segment was represented by a copy number. For the phylogenetic
tree analysis, when continuous segments in a cluster had the same
copy number, we merged those segments, while making sure that
the merged segments could still be vertically compared to each
other across all clusters. Put another way, when a cluster had
different copy numbers in the segments to be merged, we shrank
the number of segments until all clusters had the same copy
number on the segments to be merged. We then filtered out the
segments that had the same copy number across all clusters since
these segments do not contribute to the heterogeneity of the cell
clusters or the construction of the phylogenetic tree. In this way,
we reduced the number of unnecessary segments. Next, we used
PAUP29 to derive maximum parsimony phylogenetic trees for the
early passage clusters: hPT1 P3 clusters, called T1, and hPT2 P6
clusters, called T2, respectively. Both T1 and T2 are rooted to a
copy number neutral diploid genome. Under the criterion of
maximum parsimony, PAUP renders a phylogenetic tree that has a
minimum number of changes of copy number states for each
merged segment, along with the copy number states for all the
internal nodes on the tree. The distance between each cluster and
the root was calculated by summing the length of the edges along
the path from the root to the cluster. To calculate the length of an
edge, we first summed over the length of all segments whose copy
number was different between the parent and the child nodes that
the edge connects. We then divided the sum by 1Mb. The
resulting number, i.e., the copy number change measured in
megabases, represents the length of this edge. We then attached
the later passage clusters in hPT1 P14 to T1 through the minimal
distance pairings as described in the following manner: Let set A
be the clusters in hPT1 P14 that have not yet been placed on T1.
Let set B be the clusters already placed on T1. We calculated the
pairwise distance between all elements in A and all elements
in B. The pairwise distance was calculated in the same way as

calculating the length of an edge mentioned above. Suppose pair
(x, y), in which x is from A, and y is from B, has the smallest
distance. We attached x to y so that x becomes a daughter node of
y. Since x is attached to T1, it is no longer an element of A but
becomes an element of B. We thus update sets A and B
accordingly. This whole process was iterated until set A becomes
empty and all clusters in hPT1 P14 are attached to T1. We repeated
the whole process to attach the clusters in hPT2 P16 to T2. The
resulting trees T1 and T2 are the final phylogenetic tree containing
both P3 and P14 for hPT1, and P6 and P16 for hPT2. In summary,
we divided the construction of the phylogenetic tree into two
steps in which the first step is to construct the maximum
parsimony tree from the clusters in hPT1 P3, and the clusters in
hPT2 P6, whereas the second step is to attach the clusters in P14 to
the tree for hPT1, and the clusters in P16 to the tree for hPT2,
respectively. This way, the tree honors the different passage
numbers, i.e., culturing time, of hPT1 P3 and P14, as well as hPT2
P6 and P16. The phylogenetic trees were plotted using ggtree
v.3.4.051 and treeio v.1.20.052. Heatmap visualization of the
genomic data was done using gtrellis v1.28.050. The t-SNE53 and
spectral clustering were done using the TSNE and SpectralCluster-
ing functions, respectively, in Python. The hierarchical clustering
was done using the heatmap.2 function from ggplots v.3.1.354 in R.

RNA-seq sample preparation and analysis
RNA isolation was performed as suggested in the Tuveson
Laboratory Murine and Human Organoid Protocols, briefly the
culture media was aspirated away, and the Matrigel domes were
dissolved into TRIzol Reagent (Thermo Fisher), followed by the
RNA isolation protocol recommended by the manufacturer.
Libraries for RNA-seq were made with the NEBNext Ultra II
Directional RNA Library Prep Kit for Illumina per the manufac-
turer’s instructions, followed by 150-bp paired-end sequencing
with the Novaseq 6000 at Florida State University’s Translational
Science Laboratory, resulting in ~10,000,000 reads for each
sample. Reads per kilobase million for each gene were calculated
by normalization of the read of each gene by the sample’s total
read count (in millions) and by the gene length (in kilobases). The
gene expression profile was plotted in R by using the algorithm
gtrellis v.1.28.050. GSEA31,32 of the regulated genes were
performed using the “hallmark” gene sets of the human molecular
signatures database (MSigDB)33. As suggested by the GSEA
guideline, a false discovery rate < 25% was used as the threshold
to select significant enrichment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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