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RESEARCH ARTICLE SUMMARY
◥

HUMAN GENOMICS

Global diversity, population
stratification, and selection of human
copy-number variation
Peter H. Sudmant, Swapan Mallick, Bradley J. Nelson, Fereydoun Hormozdiari,
Niklas Krumm, John Huddleston, Bradley P. Coe, Carl Baker, Susanne Nordenfelt,
Michael Bamshad, Lynn B. Jorde, Olga L. Posukh, Hovhannes Sahakyan, W. Scott Watkins,
Levon Yepiskoposyan, M. Syafiq Abdullah, Claudio M. Bravi, Cristian Capelli, Tor Hervig,
Joseph T. S. Wee, Chris Tyler-Smith, George van Driem, Irene Gallego Romero,
Aashish R. Jha, Sena Karachanak-Yankova, Draga Toncheva, David Comas, Brenna Henn,
Toomas Kivisild, Andres Ruiz-Linares, Antti Sajantila, Ene Metspalu, Jüri Parik,
Richard Villems, Elena B. Starikovskaya, George Ayodo, Cynthia M. Beall, Anna Di Rienzo,
Michael F. Hammer, Rita Khusainova, Elza Khusnutdinova, William Klitz, Cheryl Winkler,
Damian Labuda, Mait Metspalu, Sarah A. Tishkoff, Stanislav Dryomov, Rem Sukernik,
Nick Patterson, David Reich, Evan E. Eichler*

INTRODUCTION: Most studies of human ge-
netic variationhave focusedon single-nucleotide
variants (SNVs). However, copy-number var-
iants (CNVs) affect more base pairs of DNA
among humans, and yet our understanding
of CNV diversity among human populations is
limited.

RATIONALE: We aimed to understand the
pattern, selection, anddiversity of copy-number
variation by analyzing deeply sequenced ge-
nomes representing the diversity of all humans.
We compared the selective constraints of de-
letions versus duplications to understand pop-
ulation stratification in the context of the

ancestral human genome and to assess dif-
ferences in CNV load between African and
non-African populations.

RESULTS: We sequenced 236 individual ge-
nomes from 125 distinct humanpopulations and
identified 14,467 autosomal CNVs and 545
X-linked CNVs with a sequence read-depth
approach. Deletions exhibit stronger selective
pressure and are better phylogenetic markers
of population relationships than duplication
polymorphisms. We identified 1036 population-
stratified copy-number–variable regions, 295
of which intersect coding regions and 199 of
which exhibit extreme signatures of differ-

entiation. Duplicated loci were 1.8-fold more
likely to be stratified than deletions but were
poorly correlated with flanking genetic diver-
sity. Among these, we highlight a duplication
polymorphism restricted to modern Oceanic
populations yet also present in the genome of
the archaic Denisova hominin. This 225–kilo–
base pair (kbp) duplication includes twomicro-
RNA genes and is almost fixed among human
Papuan-Bougainville genomes.
The data allowed us to reconstruct the an-

cestral human genome and create a more ac-
curate evolutionary framework for the gain

and loss of sequences dur-
ing human evolution. We
identified 571 loci that
segregate in the human
population and another
2026 loci of fixed-copy 2
in all humangenomes but

absent from the reference genome. The to-
tal deletion and duplication load between
African and non-African population groups
showed no difference after we account for
ancestral sequences missing from the human
reference. However, we did observe that the
relative number of base pairs affected by
CNVs compared to single-nucleotide poly-
morphisms is higher among non-Africans
than Africans.

CONCLUSION: Deletions, duplications, and
CNVs have shaped, to different extents, the
genetic diversity of human populations by
the combined forces of mutation, selection,
and demography.▪
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Global human CNV diversity and archaic introgression of a chromosome 16 duplication. (Left) The geographic coordinates of populations
sampled are indicated on a world map (colored dots). The pie charts show the continental population allele frequency of a single ~225-kbp duplication
polymorphism found exclusively among Oceanic populations and an archaic Denisova. (Right) The ancestral structure of this duplication locus (1) and the
Denisova duplication structure (2) are shown in relation to their position on chromosome 16.We estimate that the duplication emerged ~440 thousand
years ago (ka) in the Denisova and then introgressed into ancestral Papuan populations ~40 ka.
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Global diversity, population
stratification, and selection of human
copy-number variation
Peter H. Sudmant,1 Swapan Mallick,2,3 Bradley J. Nelson,1 Fereydoun Hormozdiari,1
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W. Scott Watkins,10 Levon Yepiskoposyan,9 M. Syafiq Abdullah,11 Claudio M. Bravi,12
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In order to explore the diversity and selective signatures of duplication and deletion human
copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human
populations. We observed that duplications exhibit fundamentally different population
genetic and selective signatures than deletions and are more likely to be stratified between
human populations. Through reconstruction of the ancestral human genome, we identify
megabases of DNA lost in different human lineages and pinpoint large duplications
that introgressed from the extinct Denisova lineage now found at high frequency
exclusively in Oceanic populations. We find that the proportion of CNV base pairs to
single-nucleotide–variant base pairs is greater among non-Africans than it is among African
populations, but we conclude that this difference is likely due to unique aspects of
non-African population history as opposed to differences in CNV load.

I
n the past decade, genome sequencing has
provided insights into demography and mi-
gration patterns of human populations (1–4),
ancient DNA (5–7), de novo mutation rates
(8–10), and the relative deleteriousness and

frequency of coding mutations (11, 12). Global
human diversity, however, has only been par-
tially sampled, and the genetic architecture of
many populations remains uncharacterized. To
date, the majority of human diversity studies
have focused on single-nucleotide variants (SNVs),
although copy-number variants (CNVs) have
contributed significantly to hominid evolution
(13, 14), adaptation, and disease (15–18). Much
of the research into CNV diversity has been
performed with single-nucleotide polymorphism
(SNP) microarray and array comparative ge-
nomic hybridization (aCGH) platforms (19–22),
which provide limited resolution. In addition,
comparisons of population CNV diversity with
heterogeneous discovery platforms may lead to
spurious population-specific trends in CNV di-
versity (22, 23). Although there are many other
forms of structural variation (e.g., inversions or
mobile element insertions), in this study we
focused on understanding the population genet-
ics and normal pattern of copy-number var-

iation by deep sequencing a diverse panel of
human genomes.

Results
CNV discovery

We sequenced to high coverage a panel of 236
human genomes representing 125 diverse human
populations from across the globe (Fig. 1 and
table S2). Sequencing was performed to amean
genome coverage of 41-fold from libraries pre-
pared by using a standard polymerase chain
reaction–free protocol on the HiSeq 2000 Il-
lumina (San Diego, CA) sequencing platform
(24). The panel includes representation from a
broad swathe of human diversity, including in-
dividuals from across Siberia, the Indian sub-
continent, and Oceania. We also analyzed the
high-coverage archaic Neanderthal (25) and
Denisova (26) as well as three ancient human
genomes to refine the evolutionary origin and
timing of CNV differences (24). We applied a
read-depth–based digital comparative genomic
hybridization (dCGH) approach (13, 24) to iden-
tify 14,467 autosomal CNVs and 545 X-linked
CNVs among individuals relative to the reference
genome (Table 1 and table S1), which we esti-
mate provides breakpoint resolution to ~210 base

pairs (bp) (24). CNV calls were validatedwith SNP
microarrays and a custom aCGHmicroarray that
targeted all CNVs identified in 20 randomly se-
lected individuals (24).
Themedian CNV size was 7396 bp, with 82.2%

of events (n = 12,338) less than 25 kbp (24). CNVs
mapping to segmental duplications were larger
on average (median of 14.4 kbp) than CNVs map-
ping to the unique portions of the genome (med-
ian of 6.2 kbp). Almost one-half of CNV base pairs
mapped within previously annotated segmental
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duplications (a 10-fold enrichment) (Table 1). In
total, 217.1 Mbp (7.01%) of the human genome
are variable because of CNVs, in contrast to
33.8 Mbp (1.1%) resulting from single-nucleotide
variations (Table 1). Deletions (loss of sequence)
were less common (representing 85.6 Mbp or
2.77% of the genome) comparedwith duplications
(gain of sequence, 136.1 Mbp or 4.4% of the ge-
nome). Furthermore, comparing our data set with
other studies of CNVs (21, 27), 67 to 73%of callswe

report are unique to our study, whereas we cap-
tured 68 to 77%of previously identified CNVs (24).

CNV diversity and selection

African populations are broadly distinguished
from non-African populations by a principal
component analysis (PCA) for either deletions
(Fig. 2A and fig. S20) (24) or duplications (Fig.
2B). In this analysis, we limited the variants to
biallelic deletions or biallelic duplications (dip-

loid genotypes of two, three, or four) to eliminate
difficulty of inferring phase from multicopy CNVs.
For deletions, PC1 (6.8% of the variance) and PC2
(3.94%) distinguish Africans, West Eurasians,
East Asians, and Oceanic populations. PC3 and
PC4, describing 2.8% and 2.0% of the total var-
iance, cluster Papuans and populations of the
Americas, respectively. Many other populations
were predictably distributed along clines between
these clusters (e.g., Northern Africans, Siberians,
South Asians, Amerindians, and indigenous peo-
ples of Philippines and North Borneo). PCAs gen-
erated from SNVs showed patterns similar to
those from deletions. Africans also show much
greater heterozygosity (Fig. 2C and Table 2), for
instance, ~25% more heterozygous biallelic dele-
tions and more than a twofold difference when
compared with Amerindians (qAfrican = 535 versus
qAmericas = 209). The archaic Neanderthal and
Denisova genomes form an out-group to all
humans (24).
Duplication heterozygosity and PCA in general

show similar trends (Fig. 2D), albeit with far less
definition. Oceanic populations, especially those
from Papua New Guinea, Australia, and Bou-
gainville, showed the greatest separation on PC1

aab3761-2 11 SEPTEMBER 2015 • VOL 349 ISSUE 6253 sciencemag.org SCIENCE

Table 1. CNVs and SNVs broken down by their intersection with genomic region. The number

of mega–base pairs of exonic and segmentally duplicated CNVs reflects the amount of exonic and

segmental duplication sequences affected, respectively, not the total sum of the intersecting CNVs.

Class Autosomal (Mbp) X chromosome (Mbp) Exonic (Mbp)
Segmentally

duplicated (Mbp)

Deletions 7,233 (78.99) 278 (6.61) 636 (0.32) 331 (8.47)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Duplications 7,234 (129.62) 267 (6.46) 2,093 (1.56) 4,462 (96.93)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Subtotal 14,467 (204.54) 545 (12.61) 2,729 (1.84) 4,793 (99.84)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

SNVs 32,630,650 (32.63) 1,175,170 (1.18) 314,872 (0.31) 1,559,158 (1.56)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

All 32,645,117 (237.17) 1,175,715 (13.79) 317,601 (2.15) 1,563,951 (101.4)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Fig. 1. Analysis of CNVs in several world populations. The geographical locations of the 125 human populations, including two archaic genomes,
assessed in this study. Populations are colored by their continental population groups, and archaic individuals are indicated in black.
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by duplication. Biallelic duplications appear to
be somewhat less-informativemarkers of human
ancestry, in contrast to SNVs, which provide the
greatest resolution (e.g., SNV PCs 1 to 4 describe
5.8, 3.4, 2.6, and 1.7% of the variance, respec-
tively). This difference is also seen when compar-
ing SNV and CNV heterozygosity (Fig. 2, E and
F).Whereas heterozygous biallelic deletionswere
strongly correlated (R = 0.88) with SNV het-
erozygosity, the correlation between SNVs and
duplications was much weaker (R = 0.27). We
compared this correlation for duplications lo-

cated adjacent to segmental duplications (within
or proximal 150 kbp) in contrast to those oc-
curring in unique regions of the genome and
therefore less likely to be subject to recurrent
mutation. Heterozygous duplications occurring
in unique regions were better correlated with
heterozygous SNVs (r= 0.29) than those adjacent
or within segmental duplications (r = 0.17), al-
though the difference was not significant (two-
sided Williams’ test P < 0.1).
Studies of larger (>100 kbp) deletion and du-

plication events indicate that deletions are more

deleterious than duplications (28). We reasoned
that this may be reflected in the allele frequency
spectrum (AFS) of normal genetic variation and
compared the AFS of genic versus intergenic de-
letions and duplications for smaller events (Fig.
3, A and B). Genic deletions were significantly
rarer than intergenic deletions (Wilcoxon rank
sum test, P = 1.84 × 10–9), but genic duplications
showed no such skew (Wilcoxon rank sum test,
P = 0.181). Size also had a significant impact on
the AFS of CNVs. Deletions increased in rarity
as a function of size (F test, P = 5.02 × 10–11)

SCIENCE sciencemag.org 11 SEPTEMBER 2015 • VOL 349 ISSUE 6253 aab3761-3

Fig. 2. Population structure and CNVdiversity. PCA of individuals assessed in this study plotted for biallelic deletions (A) and duplications (B) with colors and
shapes representing continental and specific populations, respectively. Individuals are projected along the PC1 and PC2 axes.The deletion (C) and duplication
(D) heterozygosity plotted and grouped by continental population.The relationship betweenSNVheterozygosity and deletion (E) or duplication (F) heterozygosity
is compared.
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(Fig. 3C), but only a nominally significant trend
was observed for duplications (P = 0.031) (Fig.
3D). These data suggest that selection has shaped
the extant diversity of deletions and duplications
differently during human evolution.

Population stratification

Because population stratification can be indic-
ative of loci under adaptive selection, we cal-
culated Vst statistics for each CNV among all
pairs of continental population groups, a metric
analogous to Fst (the fixation index) (29). Vst and
Fst statistics compare the variance in allele fre-
quencies between populations, with Vst allowing
comparison of multiallelic or multicopy CNVs. We

identified 1036 stratified copy-number–variable
regions (CNVRs with maximum population Vst >
0.2, ~10% of the total), 295 of which intersected the
exons of genes and 199 that exhibited extreme
stratification (Vst > 0.5) (table S3). After correct-
ing for copy number, duplicated loci were 1.8-fold
more likely to be stratified than deletions. This
finding is more remarkable in light of the fact
that duplications were less discriminatory by
PCA, suggesting that a subset of multiallelic
duplicated CNVs show large allele frequency
differences between different populations (see
discussion below). The Vst of stratified dupli-
cated CNVs was weakly correlated with the Fst
of flanking SNVs (R2 = 0.03, P = 3.27 × 10–12)

in contrast to deletions (R2 = 0.2, P < 2 × 10–16).
Stratified duplication loci, thus, are far less like-
ly to be tagged by adjacent SNPs through link-
age disequilibrium.
Many of the population-differentiated loci were

multiallelic and mapped to segmental duplica-
tions, including the repeat domain of ANKRD36
and theDUF1220 domain ofNBPF (24) (Table 3).
Several of these population differences involve
genes of medical consequence, such as the mul-
tiallelic duplication of CLPS, a pancreatic colipase
involved in dietary metabolism of long-chain
triglyceride fatty acids (Fig. 4A). Increased ex-
pression in mouse models of this gene is nega-
tively correlated with blood glucose levels (30).
A duplication of the haptoglobin and haptoglobin-
related (HP and HPR) genes expanded exclu-
sively in Africa. The duplication has recently been
associatedwith a possible protective effect against
trypanosomiasis in Africa, although only copy
3 and 4 alleles were reported (31). We find this
locus has further expanded to five and six copies
in Esan, Gambian, Igbo, Mandenka, and Yoruban
individuals (Fig. 4A). We also compared the loca-
tion of our CNVs with disease loci identified by
genome-wide association study (GWAS) (32) and
sites of potential positive selection (33). Although
only a small fraction of our CNVs (1 to 6%) over-
lapped such functional annotation, we note that
21% of putative adaptive loci intersected with a
CNVwhen compared with 6% of disease GWAS
loci (table S4). Because many of the intervals
are large, further refinement and investigation
are needed to determine the importance of such
overlaps.

Denisovan CNVs are retained and
expanded in Oceanic populations

Wefurther searched forhighly stratifiedpopulation-
specific CNVs sharing alleles with the archaic
Neanderthal andDenisovan individuals assessed
in our study. Although no Neanderthal-shared
population-specific CNVs were identified, five
Oceanic-specific CNVswere identified that shared
theDenisova allele at high frequency (24). Papuan
genomes have previously been reported to harbor
3 to 6% Denisovan admixture (6, 26). CNVs of
putative Denisovan ancestry were at remark-
ably high frequency in Papuan individuals (all
>0.2 allele frequency), with one ~9-kbp deletion

aab3761-4 11 SEPTEMBER 2015 • VOL 349 ISSUE 6253 sciencemag.org SCIENCE
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Fig. 3. Selection on CNVs. Folded allele-frequency spectra of exon-intersecting deletions (A) and dup-
lications (B). Whereas deletions intersecting exons are significantly rarer than intergenic deletions, exon-
intersecting duplications show no difference compared to intergenic duplications. The mean frequency of
CNVs beyond a minimum size threshold is plotted for deletions (C) and duplications (D). A strong negative
correlation between size and allele frequency is observed for deletions but less so for duplications.

Table 2. Summary statistics of biallelic CNV deletions versus SNVs by continental population group.

Continental population

group
n Segregating SNVs Segregating CNVs

CNVs/

individual

(median)

Heterozygous

CNVs/individual

(median)

Continental population

group-specific CNVs

(allele count ≥ 2)

qCNV/genome

West Eurasian (WEA) 58 13610715 1728 279.0 209.0 688 (89) 324.42
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Oceanic (OCN) 21 9467426 1022 263.0 173.0 353 (84) 237.51
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

East Asian (EA) 45 17452049 1463 271.0 191.0 525 (59) 288.48
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Siberian (SIB) 23 9644914 1102 285.0 205.0 214 (30) 250.74
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

South Asian (SA) 27 11308883 1405 279.0 208.0 418 (43) 308.32
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Americas (AMR) 21 8127639 899 266.0 169.0 208 (25) 208.93
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

African (AFR) 41 21698517 2663 319.0 261.0 1772 (702) 534.97
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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lying 2 kbp upstream of the long noncoding
RNA LINC00501, another 5-kbp duplication lying
8 kbp upstreamof theMETTL9methyltransferase
gene, and a 73.5-kbp duplication intersecting the
MIR548D2 andMIR548AA2microRNAs (Fig. 4B).
We determined that the latter two are part

of a larger composite segmental duplication
that appears to have almost fixed among human
Papuan-Bougainville genomes [allele frequency
(AF) = 0.84] but has not been observed in any
other extant human population (Fig. 4, B and C).
We noted three additional duplications proximal
to this locus exhibiting strikingly correlated copy
number, despite being separated by >1 Mbp in
the reference genome (Fig. 4C) (24). We suggest
that these constitute a single, larger (~225 kbp)
complex duplication composed of different seg-
mental duplications. By using discordantly map-
pingpaired-end reads,we resolved the organization
of two duplication architectures not represented
in thehuman reference (Fig. 4D). The first ofwhich
(architecture A/C) is present in all individuals as-
sessed in this study (5625 discordant paired-end
reads supporting) but not in the human reference
genome. The second (B/D) corresponds to the
Denisova-Papuan–specific duplication and is only
present in these individuals and the Denisova ge-
nome. Seventy paralogous sequence variants [mark-

ers distinct to paralogous locus (34, 35)] distinguish
the Papuan duplication, of which 65/70 (92.9%)
were shared with the archaic Denisova genome.
On the basis of single-nucleotide divergence, we
estimate that the duplication emerged ~440 thou-
sand years ago (ka) and rose to high frequency in
Papuan (>0.80 AF) but not Australian genomes,
probably over the past 40,000 years after introgres-
sion fromDenisova (Fig. 4E). This polymorphism
represents the largest introgressed archaic hom-
inin duplication in modern humans.

The ancestral human genome

The breadth of the data set allowed us to recon-
struct the structure and content of the ancestral
human genome before human migration and
subsequent gene loss. To identify ancestral se-
quences potentially lost by deletion, we iden-
tified a set of sequences present in chimpanzee
and orangutan reference genomes but absent
from the human reference genome (20,373 non-
redundant loci corresponding to 40.7 Mbp of se-
quence). Of these, 9666 (27.6 Mbp) were unique
(i.e., not composed of common repeats). Because
of the inability to accurately genotype copy num-
ber for unique segments less than 500 bp by
read-depth analysis, we limited our ancestral
reconstruction to nonrepetitive sequences greater

than this length threshold. Although the major-
ity represented deletions specifically lost in the
human lineage since divergence from great apes
(6341 loci) or else referenced genome artifacts
(2026 loci fixed-copy 2 in all individuals as-
sessed, 6.2 Mbp), a small subset of these (n = 571
or 1.55 Mbp) segregate as biallelic polymorphisms
in human populations (Fig. 5A). As expected,
Africans were more likely to show evidence of
these ancestral sequences compared with non-
African populations, because the latter have ex-
perienced more population bottlenecks and thus
retained less of the ancestral human diversity. A
comparison to archaic genomes allowed us to
identify sequences (50 loci or 104 kbp) that were
present in Denisova or Neanderthal but lost in
all contemporary humans as well as ancestral
sequences present in all humans but not found
in Denisova or Neanderthal (17 loci or 33.3 kbp).

No difference in the CNV load between
Africans and non-Africans

The high coverage and uniformity allowed us to
contrast putatively deleterious, exon-removing
CNVs among human populations, which are of
interest in disease studies (36–38). In our call set,
we identified 2437 CNVRs intersecting exons.
The distribution of allele counts of these tended
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Table 3. CNVs differentiated between human populations. CNVs intersecting genes that show dramatic difference in copy number (as measured by Vst)

between human populations (see Fig. 1 for definition of populations).

Locus Genes Vst Copy range Description

chr2:97849921–97899292 ANKRD36 0.49 (OCN-WEA) 30–41
Repeat domain expanded to 45 copies

in Papuans.
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

chr1:144146792–144224420 NBPF 0.32 (AFR-EA) 185–271

Expansion of the DUF1220 repeat domain

in Africans and Amerindians. Copy number

associated with cognitive function and

autism severity (47).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

chr6:35749042–35767153 CLPS 0.29 (AMR-SA) 2–6

Pancreatic colipase involved in dietary

metabolism of long-chain triglyceride

fatty acids. Increased expression is

negatively correlated with blood glucose

in mice (30).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

chr16:72088031–72119241 HP, HPR 0.25 (AFR-WEA) 1–6

Haptoglobin and haptoglobin-related genes

are expanded exclusively in Africa and

associated with a possible protective

effect against trypanosomiasis (31).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

chr12:64011854–64015265 DPY19L2 0.32 (OCN-SA) 5–7

DPY genes are required for sperm head

elongation and acrosome formation

during spermatogenesis, and DPY19L2

homozygous deletions have been identified

as a major cause of globozoospermia (48).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

chr1:74648583–74664195 LRRIQ3 0.23 (AMR-WEA) 2–3
LRRIQ3 is duplicated exclusively in

Siberian and Amerindian populations.
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

chr17:43692284–43708692 CRHR1 0.25 (EA-WEA) 4–7

Deletions of corticotropin-releasing hormone

receptor 1 result in reduced anxiety and

neurotransmission impairments in mice (49).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

chr5:150201231–150223428 IRGM promoter 0.25 (AFR-WEA) 0–2
The IRGM promoter CNV is a Crohn’s disease

risk factor (50).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

chr3:195771149–195776591 TFRC promoter 0.57 (AFR-EA) 0–2
Transferrin receptor is a cellular receptor for

New World hemorrhagic fever arenaviruses (51).
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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Fig. 4. Population-stratified CNVs and archaic introgression. (A) Four
specific examples of population-stratified CNVs intersecting genes are shown,
including LRRIQ3, the pancreatic collipase CLPS, the sperm head and ac-
rosome formation gene DPY19L2, and the haptoglobin and haptoglobin-
related genes HP and HPR. Dot plots indicate the copy of the locus in each
individual, and pie charts with colors depict the continental population dis-
tribution per copy number (see text for details and Figs. 1 and 2 and dot
plots for color scheme). (B) Predicted copy number on the basis of read depth
for a 73.5-kbp duplication on chromosome 16. It is observed in the archaic
Denisovan genome and at 0.84 allele frequency in Papuan and Bougainville
populations, yet absent from all other assessed populations. The duplication

intersects two microRNAs.The orange arrow corresponds to the position and orientation of this duplication as further highlighted in (C) and (D). (C) A heat map
representation of a ~1-Mbp region of chromosome 16p12 (chr16:21518638–22805719). Each row of the heat map represents the estimated copy number in 1-kbp
windows of a single individual across this locus.Genes, annotated segmental duplications, arrows highlighting the size and orientation in the reference of the
Denisova/Papuan-specific duplication locus (locus D), and three other duplicated loci (A, B, and C) of interest are shown below. (D) The structure of
duplicationsA,B,C, andD [as shown in (C) over the same locus] in the reference genomeand the discordant paired-end readplacements used to characterize two
duplication structures. Structure A/C is found in all individuals, although not present in the reference genome,whereas structure B/D is only found in Papuan and
Bougainville individuals, indicating a large (~225 kbp), complex duplication composed of different segmental duplications. Both the A/C and B/D duplication
architectures exhibit inverted orientations comparedwith the reference.The number of reads in all Oceanic and non-Oceanic individuals supporting each structure
are indicated. (E) Maximum likelihood tree of the 16p12 duplication locus [duplication D in (B) to (D)] constructed from the locus in orangutan, Denisova, the
human reference, and the inferred sequence of the Papuan duplication (24). All bootstrap values are 100%.
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toward lower-frequency events with, again, dele-
tions more rare than duplications (Wilcoxon rank
sum test, P = 1.25 × 10–5). Collectively, individuals
harbor a mean of 19.2 exon-intersecting deletions
per genome (22.8 per diploid genome), with
African individuals exhibiting, on average, amean
of 22.4 deletions compared with 18.6 in non-
Africans (26.1 and 22.1 per diploid genome, re-
spectively), consistent with the increased diversity
of African populations and consistent with data
observed for loss-of-function SNVs [(12, 39),
~122 LoF SNVs in Africans versus ~104 in non-
Africans].
Whereas non-African individuals exhibited

more homozygous deletion variants compared
withAfricans, among exon-intersecting deletions
no such pattern was observed. Exon-intersecting
duplications were much more balanced, with
African populations showing only a slight excess
when compared to non-Africans (98.4 versus
95.2 events per genome). Studies of SNVs have
not found consistent evidence of a difference in
load between African compared to non-African

populations (40–42). We compared the difference
in load between African and non-African popula-
tions for deletions and duplications, respectively.
Here, we defined the difference in load as the
difference in the sum of derived allele frequencies
between African and non-African populations,

LðAfrÞ−LðnAfrÞ ¼
X

∀i
PAfrðiÞ−

X

∀i
PnAfrðiÞwhere

PAfr(i) is the derived allele frequency of a variant i.
Prima facie Africans exhibited an apparent high-
er deletion load than non-African populations
(Fig. 5B) (P = 0.0003, block bootstrap test), al-
though there was only a nominal difference in
the load of exonic deletions (P = 0.0482). Dup-
lications showed no such effect.
We reasoned that this difference might poten-

tially be driven by high-frequency–derived alleles,
absent from the human reference genome, which
was enriched for clone libraries of non-African
ancestry (5). Approaches that rely on identifying
CNVs based on read placements to the reference
genome would necessarily miss these CNVs, de-
creasing the number of variants identified in indi-

vidualsmore closely resembling the reference, i.e.,
non-Africans. To test this hypothesis, we incorpo-
rated the biallelic 571 nonrepetitive human CNV
loci described above. Copynumberswere estimated
for these sequences in each of the individuals
and assessed by remapping raw reads against an
ancestral human reference genome. As expected,
the deletion allele of this sequence was at a high
frequency (mean derived allele frequency, DAF =
0.58). After including these sequences, we observed
no difference in the CNV load between Africans
and non-Africans (95% confidence interval –18.4
to 8.8 load difference as defined above) (Fig. 5B),
underscoring the importanceof anunbiasedhuman
reference for such population genetic assessments.
Although we found no CNV or SNV load differ-

ences between populations, we examinedwheth-
er the relative proportion of base pairs differing
among individuals derived from CNVs versus
SNVs showed any population-specific trends. We
calculated the number of base pairs varying be-
tween all pairs of individuals assessed in our study
contributed either from SNVs or from deletions,
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Fig. 5. The ancestral human genome and CNV burden. (A) A heat map of
the allele frequency of 571 (1.55Mbp) nonrepetitive sequences absent from the
human reference genome yet segregating in at least one population ordered in
humans by a maximum likelihood tree (49). Four groups of interest are
highlighted: G1, ancestral sequences that have almost been completely lost
from the human lineage; G2, ancestral sequences that are largely fixed but
rarely deleted (also absent in human reference); G3, ancestral sequences that
have become copy-number variable since the divergence of humans and
Neanderthals/Denisovans ~700 ka; and G4, sequences potentially lost in
Neanderthals and Denisovans since their divergence from humans. (B) The

resulting distributions of 10,000 block-bootstrapped estimates of the dif-
ference in load between African (AFR) and non-African (nAFR) populations
considering only the reference genome (GRCh37) and supplemented by se-
quence absent from the human reference genome (GRCh37 + NHP) included
(see text for details). (C) Violin plots of the distribution of the ratio of dele-
tion base pairs to SNV base pairs differing between every pair of African
individuals (AFR-AFR), all pairs of non-African individuals (nAFR-nAFR), and
every non-African, African pair (nAFR-AFR). (D) Heat map representation of
the mean ratio of deletion to SNV base pairs differing between individuals
from pairs of populations.
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calculating the DEL-bp/SNV-bp ratio. As expected,
the number of base pairs differing between in-
dividuals by deletions or by SNVs independently
was always higher among African individuals
when compared with other populations. Unex-
pectedly, the ratio of deletion-bp to SNV-bp was
substantially higher within non-African pop-
ulations (mean of 1.27 compared to 1.14; Fig. 5,
C and D). This relative increase in deleted base
pairs was most pronounced among non-African
populations, which have experiencedmore recent
genetic bottlenecks (e.g., Siberian and Amerin-
dian). Given the absence of a significant difference
in the deletion load comparing African and non-
African populations, there is no reason to believe
that this finding is due to differences in the ef-
fectiveness of selection against deletions since the
populations separated. However, selection places
a downward pressure on the allele frequencies of
both deletions and SNVs, with the pressure being
stronger for deletions because the selection coef-
ficients are stronger on average. As has been pre-
viously shown for SNVs, different allele-frequency
spectra for deletions in contrast to SNVs have the
potential to interact with the differences in demo-
graphic history across populations—even without
differences in the effectiveness of selection after
population separation—to contribute to observed
differences in the apportionment of genetic var-
iation among human populations (41).

Discussion

Although themutational properties and selective
signatures of SNVs have been explored exten-
sively, similar analyses of CNVs have lagged be-
hind. As a class, duplications show generally poor
correlations with SNV density, have poor linkage
disequilibrium to SNVs (43, 44), and are less in-
formative as phylogenetic markers but are more
likely to be stratified than deletions among human
populations. This observation may be explained
by the fact that directly orientated duplications
show a gradient of elevated mutation rates result-
ing from nonallelic homologous recombination
and, as such, can change their copy-number state
more dynamically over short periods of time. This
property alsomakes this class of variation, similar
to highly mutable loci such as minisatellites (45),
particularly susceptible to homoplasy—that is,
identity by state as opposed to identity by descent.
Deletions, in contrast, recapitulate most proper-
ties of SNVs because they are more likely to
exhibit identity by descent as a result of single
ancestral mutation event.
We have provided here sequencing data for

the study of human diversity and used this re-
source to explore patterns of human CNV diver-
sity at a fine scale of resolution (>1 kbp). As
expected, human genomes differ more with re-
spect to CNVs than SNVs, and almost one-half
of these CNV differences map to regions of seg-
mental duplication. Both deletion and duplica-
tion analyses consistently distinguish African,
Oceanic, and Amerindian human populations.
Africans show the greatest deletion and dupli-
cation diversity and have the lowest rate of fixed
deletions with respect to ancestral human in-

sertion sequences. Oceanic and Amerindian, in
contrast, show greater CNV differentiation, likely
as a result of longer periods of genetic isolation
and founder effects (46). Among the Oceanic,
the Papuan-Bougainville group stands out in
sharing more derived CNV alleles in common
with Denisova, including a massive interspersed
duplication that rose to high frequency over a
short period of time.
We find that duplications and deletions exhibit

fundamentally different population-genetic prop-
erties. Duplications are subjected to weaker se-
lective constraint and are four times more likely
to affect genes than deletions (Table 1), indicat-
ing that they provide a larger target for adaptive
selection. After controlling for reference genome
biases, we find no difference in CNV load be-
tween human populations when measured on
a per-genome basis, which is what matters to
disease risk, assuming that CNVs act additively.
However, we find that the proportion of human
variation that can be ascribed to CNVs rather
than to SNVs is greater among non-Africans
than among Africans. The biological significance
of this difference should be interpreted cau-
tiously and will require association studies to
determine its relevance to disease and other
phenotypic differences.
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