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ABSTRACT

The Kozai–Lidov mechanism can be applied to a vast variety of astrophysical systems involving hierarchical three-
body systems. Here, we study the Kozai–Lidov mechanism systematically in the test particle limit at the octupole
level of approximation. We investigate the chaotic and quasi-periodic orbital evolution by studying the surfaces of
section and the Lyapunov exponents. We find that the resonances introduced by the octupole level of approximation
cause orbits to flip from prograde to retrograde and back as well as cause significant eccentricity excitation, and
chaotic behavior occurs when the mutual inclination between the inner and the outer binary is high. We characterize
the parameter space that allows large amplitude oscillations in eccentricity and inclination.
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1. INTRODUCTION

The Kozai–Lidov mechanism (Kozai 1962; Lidov 1962)
has proven very useful for interpreting numerous astrophysical
systems. For example, it has been shown that it can play a major
role in exoplanet configurations and obliquities (e.g., Holman
et al. 1997; Wu & Murray 2003; Fabrycky & Tremaine 2007;
Veras & Ford 2010; Correia et al. 2011; Naoz et al. 2011,
2012). In addition, close stellar binaries with two compact
objects are likely produced through triple evolution, and the
Kozai–Lidov mechanism may play a key role in these systems
(e.g., Harrington 1969; Mazeh & Shaham 1979; Soderhjelm
1982; Kiseleva et al. 1998; Ford et al. 2000; Eggleton &
Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007; Perets &
Fabrycky 2009; Thompson 2011; Katz & Dong 2012; Shappee
& Thompson 2013; Naoz et al. 2013; Naoz & Fabrycky 2014).
Furthermore, the Kozai–Lidov mechanism has been proposed as
an important element in the growth of black holes at the centers
of dense star clusters, the formation of short-period binary black
holes (Blaes et al. 2002; Miller & Hamilton 2002; Wen 2003;
Ivanova et al. 2010), and tidal disruption events (Chen et al.
2009, 2011; Wegg & Bode 2011; Bode & Wegg 2013; G. Li
et al., in preparation).

The Kozai–Lidov mechanism focuses on hierarchical three-
body systems, which can be treated as the interaction between
two elliptical wires by orbit averaging: the inner wire is
composed of the inner two objects, and the outer wire is
composed of the outer companion orbiting around the center
of mass of the inner two objects. The total angular momentum
of this system, the vector sum of the inner orbit’s and the outer
orbit’s angular momenta, is conserved.

Kozai (1962) and Lidov (1962) first studied this mechanism
by expanding the gravitational potential in a power series of
the semi-major axis ratio and considered applications when one
of the inner objects is massless (the test particle limit) and the
outer orbit is circular. Kozai (1962) considered the secular (long-
term) evolution of asteroids under the perturbation of Jupiter,
and Lidov (1962) studied the secular evolution of satellites under
the perturbation of the Moon. In those cases, the gravitational
potential of the inner orbit is axisymmetric, which renders the ẑ
component of the inner orbit’s angular momentum (Jz) constant,
where ẑ is the direction of the total angular momentum of the

system. The quadrupole order of approximation (O((a1/a2)2))
sufficiently describes the orbital evolution of such systems, and
the eccentricity and the inclination undergo large amplitude
oscillations due to the “Kozai resonance” when i > 39.◦2.

Recently, Naoz et al. (2011) considered the case when none
of the inner objects is a test particle, and pointed out that Jz

is no longer conserved. In addition, the eccentric Kozai–Lidov
mechanism (hereafter EKL) applies to cases when the outer
orbit is non-circular, where the ẑ component of the angular
momentum of the inner orbit is also not conserved (Naoz et al.
2011). In this situation, the octupole terms in the potential
(O((a1/a2)3)) need to be taken into account to describe the
orbital evolution, where the eccentricity of the inner orbit can
be excited to unity, and the inner orbit may flip from prograde
to retrograde or vice versa (Naoz et al. 2011; Lithwick & Naoz
2011; Katz et al. 2011; Naoz et al. 2013). As the eccentricity
increases, the pericenter distance decreases and causes an
enhanced tidal disruption rate (G. Li et al., in preparation).
Furthermore, including the octupole effects, oscillations of the
eccentricity and the inclination of the inner orbit may still exist
when i < 39.◦2, and the inner orbit may undergo a coplanar flip
from ∼0◦ to ∼180◦ (Li et al. 2014).

Here, we probe the test particle limit, which simplifies the
analysis due to its smaller number of degrees of freedom. This
approximation was proven to be very useful in a large range
of astrophysical settings (Lithwick & Naoz 2011; Katz et al.
2011; Naoz et al. 2012; Li et al. 2014; S. Naoz & J. Silk, in
preparation; G. Li et al., in preparation). Importantly, probing
this limit can help us gain some basic understanding of the
EKL mechanism. The test particle limit has been studied in
the literature before to obtain an analytical understanding of
the flip of the orbit (Lithwick & Naoz 2011; Katz et al. 2011).
Nevertheless, a systematic study of the chaotic behavior and
the identification of the underlying resonances are necessary
but are uncovered in the literature. We identify the resonances,
and characterize the chaotic regions and the initial conditions
where high eccentricity and flips may occur in the parameter
space. This can help predict the dynamical evolution of systems
without doing a large amount of simulations.

This paper is organized as follows. In Section 2, we give a
brief overview of the Kozai–Lidov mechanism. In Section 3,
we investigate the surface of section systematically for a large
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Figure 1. System configuration. A test particle mt orbits around an object m1
and forms the inner binary. The outer binary consists of the objects (m2) and
m1 (in the test particle limit). Jo represents the angular momentum of the outer
binary, J represents that of the inner binary, and Jz represents the ẑ component
of J, where ẑ is in the direction of Jo. In the test particle limit, J ≪ Jo and the
outer orbit is stationary.
(A color version of this figure is available in the online journal.)

range of orbital parameters. In Section 4, we characterize the
initial condition which allows large amplitude oscillations in ec-
centricity and inclination. Finally, in Section 5, we characterize
the chaotic regions.

2. OVERVIEW OF THE ECCENTRIC KOZAI–LIDOV
MECHANISM IN THE TEST PARTICLE LIMIT

As mentioned in the introduction, the Kozai–Lidov mech-
anism describes the dynamical behavior of hierarchical three-
body systems (see Figure 1). The inner two objects (m1 and mt)
form an inner orbit, and the outer orbit is formed by the outer
object (m2) orbiting around the center of mass of the inner two
objects. The eccentric Kozai–Lidov mechanism describes the
dynamics when the outer orbit is eccentric, and the test particle
limit requires one of the closely separated objects to be a test
particle mt → 0.

In the hierarchical configuration, we average over the mean
motion of the two orbits and treat the evolution of the system
as the interaction of two elliptical wires, which is known as the
secular approximation. This approximation reduces this system
from six degrees of freedom to four degrees of freedom. In
addition, in the test particle limit, the outer orbit is stationary
and reduces the system to two degrees of freedom (Harrington
1968, 1969; Ford et al. 2000). Expanding the Hamiltonian of
the interaction energy between the two ellipses in a power series
of a1/a2, the Hamiltonian can be expressed as the following at
the second (quadrupole) and third (octupole) orders (Lithwick
& Naoz 2011):
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ϵ characterizes the importance of the octupole order. The
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(Lithwick & Naoz 2011). J =√
1−e2

1 is the specific angular
momentum of the inner orbit, ω is the argument of the periapsis
of the inner orbit, Jz =√

1−e2
1 cos i1 is the ẑ component of the

inner orbit’s angular momentum J, and Ω is the longitude of the
ascending node of the inner orbit. Specifically, J, ω and Jz, Ω
are conjugate momentum and coordinate pairs. We denote by
e1 the eccentricity of the inner orbit, and by i1 the inclination of
the inner orbit to the total angular momentum of the system. In
the test particle limit, i1 = i is the mutual inclination between
the two orbits.

The secular approximation breaks down when the change
in the angular momentum of the inner binary happens faster
than the orbital timescales (see Equation (B14) in Ivanov et al.
2005, Equation 18 in Antonini et al. 2014, and Equation (48)
in Bode & Wegg 2014). Since the analysis presented here
is for the reduced Hamiltonian (note that J is the specific
angular momentum: J =

√
1 − e2), which is independent of

the masses, the timescales can be set arbitrarily and the secular
approximation is irrelevant here. Nevertheless, applying this
study to physical systems requires the correct scaling of the
masses to satisfy the criteria for the secular approximation.

In the quadrupole limit, the Hamiltonian is independent of
Ω, so Jz is constant, and the system is integrable. In addition,
the angle ω = ϖ − Ω is the resonant angle of the system,
where ϖ is the longitude of the periapsis. When i > 39.◦2,
the solution admits a resonant region and e1 and i exhibit large
amplitude oscillations. Particularly, e1 may be excited to high
values starting from e1 ∼ 0 (e.g., Morbidelli 2002).

As mentioned in the introduction, the octupole order adds
variations in Jz which allows the inner orbit to flip from prograde
to retrograde, and the eccentricity to be excited very close to 1
(Lithwick & Naoz 2011; Katz et al. 2011; Naoz et al. 2011, 2012,
2013). In the following sections, we work with the Hamiltonian
at the octupole level of approximation to analyze the surface of
section and the chaotic behaviors.

3. SURFACES OF THE SECTION

For a two-degrees of freedom system, the surface of section
projects a four-dimensional trajectory on a two-dimensional
surface. Specifically, we plot points on a two-dimensional
surface composed of one canonically conjugate pair (e.g., J–ω
or Jz–Ω) whenever the other angle (Ω or ω) reaches a fixed
value and moves in a fixed direction (see the left panel in
Figure 2). The collection of points form the surface of section.

There are three distinct regions in the surface of section:
“resonant regions,” “circulation regions,” and “chaotic regions”
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Figure 2. Upper panel: illustration of the “surface section” for the J–ω plane.
By recording the point in the trajectory every time Ω = 0, Ω̇ > 0, the trajectory
can be represented by a two-dimensional graph, as shown in the left panel.
This set of points forms the “surface of section.” Lower panel: illustration of
the resonant and chaotic regions on the surface of section. We set H = −0.1,
ϵ = 0.1 in this plot. The resonant and higher-order resonant zones are marked
by the red and the green arrows. The chaotic zones are indicated by the gray
arrows. In the resonant region, the angle ω is constrained in a small region
and the trajectories are quasi-periodic. In the chaotic region, the position of the
points are not regular and the trajectories are chaotic.
(A color version of this figure is available in the online journal.)

(right panel in Figure 2). The resonant regions are formed by
points where the momenta and coordinates (the angles) undergo
bound oscillations. The trajectories in this region are quasi-
periodic, where the system is in the liberation mode. The
circulation region represents trajectories where the coordinates
are not constrained to a specific interval. Both resonant and
circulatory trajectories map onto a one-dimensional manifold
on the surface of section. On the contrary, chaotic trajectories
map onto a two-dimensional manifold. In other words, while
quasi-periodic trajectories form lines on the section, chaotic
trajectories are area-filling. Embedded in the chaotic region, the
small islands correspond to the higher order resonances, which
are caused by the interaction between the primary resonances.
The trajectories in the higher order resonant regions are also
quasi-periodic.

We now consider the surface of section in the J–ω plane
(setting Ω = 0 and dΩ/dt > 0). When e1 is excited to large
values, J → 0. When Ω is set, for each point in the J–ω plane,
Jz (−J ! Jz ! J ) is unequivocally defined by the conservation
of H. There is a finite range of H that the system can take on,

because both actions must have zero imaginary components.
Since we plot the sections with constant H values, we first
explore the range of energy H it can achieve in the J–ω plane.
This way, we can select the range in H that we explore below.

We note that the maximum and minimum energy it can reach
in the J–ω plane when Ω = 0 is ∼3 and ∼−2.4 (see Appendix
Figures 8 and 9, which show the maximum and the minimum
H in the J–ω plane). Thus, we plot six surfaces of section for
H ranging from H = −2 to H = 1.2, since when H > 1.2, the
behavior is similar to that of H = 1.2. Note that the H admits
positive values for this bound system, because it is the interaction
energy between the test particle (mt) and the outer companion
(m2), i.e., the disturbing function of this system to the Kepler
Hamiltonian of the inner and outer orbits. To investigate the
role of the octupole effects, we plot the surface section for two
extreme values of ϵ: ϵ = 0.001 and ϵ = 0.1. When ϵ < 0.001,
the octupole effects are negligible. On the other hand, ϵ = 0.1
represents the maximal octupole effects, where, when ϵ > 0.1,
the hierarchical condition may break down and the system may
become unstable.

The sections are shown in Figure 3. The empty region
(bounded by the black curves) do not have physical solutions.
The comparison between the two rows in Figure 3 shows the
difference between the octupole and the quadrupole resonances:
ϵ = 0.001 is dominated by the quadrupole effect and ϵ = 0.1
is dominated by both the quadrupole and the octupole effects.
For the former, where the quadrupole dominates, there are two
resonant regions with fixed points at ω = π/2 and 3π/2 when H
is high (as shown in Figure 3 at ϵ = 0.001, H = −0.5,−0.1, 0.5
and 1.2). For the latter when the octupole plays an important role
(i.e., ϵ = 0.1), we find different resonant regions for different
energy levels, and the location of the resonant regions varies
according to the energy levels.

The resonant regions are associated with fixed points at
ω = π , ω = π/2 and ω = 3π/2 depending on the energy level.
The resonances at high J and at ω = π/2 or 3π/2 correspond
to the quadrupole resonances identified in the literature (Kozai
1962; Holman et al. 1997; Morbidelli 2002). The other resonant
zones result from the interaction of the resonances associated
with the “harmonics” in the octupole level Hamiltonian, i.e., 2ω,
ω ± Ω, and 3ω ± Ω. Moreover, chaotic regions can only be seen
for high ϵ at H = −0.5 and H = −0.1, where reading from
the surfaces, the chaotic zones are a result of the overlap of the
resonances between the quadrupole and the octupole resonances
(e.g., Chirikov et al. 1979; Murray et al. 1997). Embedded in
the chaotic region, higher-order resonances can be found at
H = −0.1, where the trajectories are quasi-periodic and the
eccentricity cannot be excited.

On the other hand, the comparison between the different
energy levels shows that the orbital evolution corresponds to
different orbital parameters. The corresponding e1 and i are
shown in Figures 10 and 11 in the Appendix. Accordingly, the
low H corresponds to the low inclination (i ∼ 0◦–30◦) and
high eccentricity (e1 " 0.6) case, the higher H corresponds
to the high inclination (i ∼ 30◦–60◦) and low eccentricity
(e1 # 0.6) case, and H > 0 corresponds to the high inclination
(i ∼ 60◦–90◦) and low eccentricity case (e1 # 0.3). When H is
low (H ∼ −2), the evolution is only affected by the octupole
resonances, while when H is higher, octupole and quadrupole
resonances both contribute and may overlap to cause the chaotic
region as mentioned above. We find that e1 can be excited to
high values (J → 0) for almost all energy levels but is only
excited very close to unity for higher ϵ. This emphasizes that
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Figure 3. Surface of section in the J–ω plane. In the first row, ϵ = 0.001 and in the second row, ϵ = 0.1. The octupole terms are important when ϵ is bigger. H varies
from −2 ∼ 1. The corresponding e1 and i in this plane is shown in Figures 10 and 11. There are chaotic regions at H = −0.5 and H = −0.1.
(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

the octupole level of approximation causes large eccentricity
excitation, since a larger ϵ implies that the octupole level is
important.

Next, we study the surface section in the Jz–Ω plane
(Figure 4). These sections clearly show the flip of the orbit
when Jz changes sign. The maximum and minimum energy
that can be reached in the Jz–Ω plane (with ω = 0) is ∼0
and ∼−2.4. Thus, we plot the surface of section ranging from
H = −2 to H = −0.1 for two values of ϵ = 0.001 and 0.1.
At the quadrupole level, Jz is constant, and there are no reso-
nances in the Jz–ω plane. Thus, all the resonances originated
from the octupole level of approximation, and the fixed points
are at Ω = π and Ω = 0. In addition, similar to the surface

section on the J–Ω plane, we see higher-order resonances for
ϵ = 0.1 at H = −0.3 and H = −0.1 embedded in the chaotic
region, and the chaotic region is confined to H = −0.5 and
H = −0.1. Since Jz changes sign in all energy levels, the orbit
may flip for all energy levels, and the flip parameter space is
larger for higher ϵ. The corresponding e1 and i on the surface
are shown in Figures 12 and 13.

To summarize, the surfaces of section show that flips and the
excitation of e1 can occur for both regular regions and chaotic
regions for a wide range of H, and they depend sensitively on
the initial condition. In addition, the trajectories are chaotic only
when H # 0, corresponding to high mutual inclination, low
eccentricity cases. Furthermore, it is the octupole resonances
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Figure 5. Maximum e1 for different H and ϵ. We set the initial condition at the top of the energy boundary condition of the J–ω plane, and we record the maximum
e1 reached in t = 500tK . Each line represents a different H, and the cross marks the ϵ bigger than which the inner orbit may flip (i crosses over 90◦). We find that e1
may be excited and the orbit may flip when H ! −1.5, −0.5 ! H ! 0, and H " 0.5. The first case corresponds to the coplanar flip (i flips from ∼0◦ to ∼180◦ or
vice versa), and the latter two correspond to the high inclination flip.
(A color version of this figure is available in the online journal.)

that cause the flip of the orbit and the excitation of eccentricity
very close to unity.

4. THE MAXIMUM ECCENTRICITY
AND THE FLIP CONDITION

To apply this mechanism to astrophysical systems with
different initial conditions, we investigate the parameter regions
that exhibit interesting dynamical behaviors. We create a finer
grid of H and ϵ than those presented in Figures 3 and 4,
and we monitor the trajectories that start with the selected
initial condition in the J–ω or the Jz–Ω plane. Of course,
some behaviors which do not pass through the selected initial
condition will be missed, but this exploration gives a general
idea of the behavior of the system as a whole.

We start with the exploration in the J–ω plane. To systemat-
ically estimate the range in J that the trajectories may reach, we
start at the maximum energy boundary of J for a given H and ϵ,
which corresponds to the minimum eccentricity. Accordingly,
for H < −1, ω starts at π , and for H > −1, ω starts at π/2.
The maximum e1 is recorded after monitoring for t = 500tK
(we define tK in Equation (4)), which is much longer than the
Lyapunov timescale (see below).

In Figure 5, we plot 1 − e1,max as a function of ϵ, where each
curve represents a fixed H (H ∈ [−2, 2]), and ϵ ranges from
0.001 to 0.1. In addition, we use the symbol “x” to mark the ϵ
higher than which the orbit flips. It shows that there are roughly
five dynamical regions in H: when H # −1.5, −0.5 # H # 0,
and H " 0.5, the orbit may flip and e1 can be excited very close
to unity; when −1.5 # H # −0.5 and 0 # H # 0.5, starting
with the minimum e1, e1 cannot be excited to unity. Reading
from the surface of section in Figure 3, the lack of e1 excitation
at 0 # H # 0.5 and high ϵ is due to the quadrupole resonances,
which traps the trajectory at low e1.

Particularly, e1 may be excited and the orbit may flip in three
scenarios: when the inner orbit is eccentric and coplanar, when
the inner orbit is circular and with high inclination, or when the

inner orbit is moderately eccentric and with very high inclination
∼80◦–90◦ (see Figure 14). In addition, the maximum change in
∆J can be well fit by a power law:

∆J =
{

e−2.77H−3.62ϵ0.051H+1.08 (H < −1)

e2.14H+1.23ϵ0.75H+2.00 (H > −1).
(5)

Next, we explore the Jz–Ω plane. We start the trajectories at
the lower energy boundary of Jz at Ω = π for the given H and
ϵ, and we record the maximum change in Jz after t = 500tK .
Figure 6 shows ∆Jz as a function of ϵ, where each curve
represents a different H. ϵ ranges from 0.001 to 0.1, and H
ranges from −2 to 0, since the maximum H is zero for ω = 0.
Similarly to the J–ω plane, we use the symbol “x” to mark
the ϵ higher than which the orbit flips. As expected, it shows
that the orbit may flip when −2 < H < −1.5 and −0.5 <
H < 0, where −2 < H < −1.5 corresponds to an eccentric
and coplanar inner orbit, and −0.5 < H < 0 corresponds to a
circular inner orbit with a high inclination. Moreover, ∆Jz can
be fit by a power law of H and ϵ:

∆Jz =
{
e−2.21ϵ1.06 (H < −0.5)
e10.7H+4.23ϵ0.48H+1.31 (H > −0.5).

(6)

Note that Equations (5) and (6) are for the specific initial
conditions mentioned above. They show the general dependence
of the maximum change in J and Jz on ϵ and H.

5. CHAOTIC REGIONS

The surfaces of section show that the system is chaotic when
H # 0 (Figures 3 and 4). To better characterize the chaotic
regions, we first calculate the percentage of area that is chaotic in
each surface in Figure 3. Specifically, we divide each surface into
equally spaced grids in J and ω, and count the fraction of grids
that has chaotic trajectories. We use the Lyapunov exponent
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Figure 6. Maximum change in Jz for different H and ϵ. We set the initial point at Ω = π , where Jz is on the lower energy boundary. We record the maximum change
in Jz for t = 500tK . The crosses represent the ϵ bigger than which the inner orbit may flip (Jz changes sign). We find the orbit may flip at −2 < H < −1.5 and
−0.5 < H < 0. The former corresponds to the coplanar flip and the latter corresponds to the high inclination flip.
(A color version of this figure is available in the online journal.)

(λ) to determine whether the trajectories are chaotic, where λ
indicates how quickly two closely separated trajectories diverge
from each other,

λ = lim
t→∞

1
t

ln
δtraj(t)
δtraj(0)

. (7)

We integrate the tangent of the trajectories for 1000tK to
compute λ, and we find that there are chaotic trajectories only
when ϵ = 0.1, H = −0.5 or −0.1. Specifically, 85 out of 276
(∼ 31%) grid cells have chaotic trajectories when ϵ = 0.1 and
H = −0.5, and 109 out of 242 (∼45%) grid cells have chaotic
trajectories when ϵ = 0.1 and H = −0.1. It shows that even
when H # 0, a large range of orbital parameters would still
yield regular trajectories.

Next, we characterize the chaotic region in the parameter
space of H and ϵ. We arbitrarily select the trajectories starting
with Ω = 0, ω = π/2, and the maximum J for the given H
and ϵ, where the associated e1 and i of the initial condition
are shown in Figure 14. Similarly, we integrate the tangent of
the trajectories for 1000tK to compute λ, and we plot λ as a
function of H and ϵ in the left panel of Figure 7. The larger λ
corresponds to the more chaotic systems. A large region in the
parameter space is regular, and the system is chaotic only when
−0.6 < H < 0 for larger ϵ. The Lyapunov timescale is ∼6tK
when ϵ " 0.01 and −0.6 < H < 0 (low e1 and i " 40◦).

To justify that the regions with smaller λ are regular, we
increase the run time to 4000tK , and we find that the Lyapunov
exponents for the regular region decrease, while the Lyapunov
exponents in the chaotic region remain at ∼6tK . Moreover, to
avoid missing chaotic regions due to the specific choice of the
initial condition, we vary the initial condition and make several
contour plots of λ in the plane of H and ϵ. The right panel of
Figure 7 shows the case when ω starts at 0, where the trajectories
are also chaotic when −0.6 < H < 0.
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Figure 7. Lyapunov exponents with different H and ϵ. Run time t = 1000.
Left panel: we consider the following initial condition: ω0 = π/2, Ω0 = 0,
J0 = 1, or the maximum J at the energy boundary and −0.8 < H < 0.3.
Right panel: we consider the following initial condition: ω0 = Ω0 = 0, J0 = 1,
and −0.6 < H < 0. Note that for this choice of initial conditions no physical
solution exists for H > 0. The colormap represents the value of the Lyapunov
exponents λ. The yellow and red colors correspond to large Lyapunov exponents,
which are associated with chaotic regions, and the cyan and blue colors represent
the regular regions.
(A color version of this figure is available in the online journal.)

6. CONCLUSION

The hierarchical three-body system in the test particle limit
is common in a large range of astrophysical settings. The
dynamical behavior of such systems may lead to retrograde
objects, an enhanced rate for tidal disruption, and merger or
collision events (e.g., Holman et al. 1997; Fabrycky & Tremaine
2007; Naoz et al. 2011, 2012; Chen et al. 2011; Bode &
Wegg 2013; S. Naoz & Silk, in preparation; G. Li et al., in
preparation). Here, we used a large range of the initial condition
to systematically study the dynamics, including the underlying
resonances, and the chaotic characteristics of the system.

First, we plotted the surface of section on the J–ω plane
for a large range of energy H and two different ϵ to identify
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the underlying resonances (Figure 3). In the quadrupole level,
the resonances that occur at high H are centered around fixed
points at ω = π/2 and 3π/2. On the other hand, the octupole
level resonances are centered at ω = 0, π/2, π , or 3π/2
depending on the different energy levels, and we can identify
resonances in all these energy levels. The octupole resonances
cause the excitation of e1 in the high eccentricity coplanar case
(corresponding to low H), shown in Li et al. (2014). The overlap
of the quadrupole and octupole resonances causes the chaos for
the low eccentricity and high inclination case (corresponds to
higher H; e.g., Naoz et al. 2011).

The surfaces of section in the Jz–Ω plane not only show the
octupole resonances but the condition when the orbit flips as Jz

changes sign (Figure 4). At the quadrupole level, Jz is constant,

and there is no resonant zones in the Jz–Ω plane. However, at
the octupole level, the resonant zones exist and lead to the flip of
the orbit. As expected, similarly to the J–ω plane, it also shows
that chaotic behavior exist when H # 0 for high ϵ.

Finally, we calculated the Lyapunov exponent for different H
and ϵ to characterize the region where the evolution is chaotic.
Consistently with the surface of section, we have found that the
orbital evolution is chaotic when H # 0 (low e1 high i cases).
Specifically, the Lyapunov timescale ∼6tK .

By monitoring the trajectories, we find that the inner eccen-
tricity may be excited and the orbit may flip for a circular high
inclination orbit or for an eccentric and nearly coplanar orbit.
This agrees with previous discussions in the literature for the
flips with high inclination (Naoz et al. 2011; Lithwick & Naoz
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2011; Katz et al. 2011) and coplanar flips (Li et al. 2014). In ad-
dition, we note that the flips with high inclination are chaotic and
the coplanar flips are regular. This analysis can be applied to ob-
served systems. Knowing roughly the orbital elements, one can
identify the type of trajectories in the surface of section. Then,
one can study the evolution features of the system without do-
ing a large number of simulation for different initial conditions.
Moreover, our analysis could help predict the enhancement in
the rate of tidal disruption events due to eccentricity excitation
(G. Li et al., in preparation).

We thank Konstantin Batygin for helpful remarks. This work
was supported in part by NSF grant AST-1312034 (for A.L.).

APPENDIX

First, we explore the range H can reach for the surface of
section in the J–ω plane with Ω = 0 and in the Jz–Ω plane with
ω = 0. We contour plot the maximum and minimum of H as
a function of J and ω while setting Ω = 0 in Figure 8, which
depicts that the range of H is ∼−2.4 to ∼3. Similarly, we plot
the maximum and minimum of H for different Jz and Ω with
ω = 0 in Figure 9. It shows that H ranges from ∼−2.4 to 0.
Accordingly, we plot the surface of section for −2 < H < 1.2
in Figure 3, since when H > 1.2 the section are similar to that
when H = ∼1.2, and we set −2 < H < 0 for the surface of
section in Figure 4.
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Next, we show the associated eccentricity and inclination for
the surface of section (Figures 3 and 4) and the initial condition
in Figures 5 and 6. This helps to connect the resulting dynamical
behavior to the parameters in e1 and i, which can be obtained
more directly for observations.

In Figures 10 and 11, we plot the initial condition in the J–ω
plane corresponding to the surfaces of section in Figure 3. e1

can be calculated from the J value directly as e1 =
√

1 − J 2,
so a higher J is associated with lower e1. On the other hand, i is
lower for larger J when H = −2,−1,−0.5, and i is higher for
larger J when H = −0.1, 0.5, 1.2.

Next, in Figures 12 and 13, we plot e1 and i in the Jz–Ω
plane, corresponding to the surface section in the Jz–Ω plane

with ω = 0 in Figure 4. When i > 90◦, Jz > 0, and when
i < 90◦, Jz < 0. We find that e1 is higher for lower H, and i is
closer to 90◦ for higher H.

Furthermore, we plot the initial condition for the trajectories
we selected to investigate the maximum e1 in Figure 14. It shows
that for the maximum e1 plot (Figure 5), when H # −1.2, we
monitor the trajectories that start with high eccentricity and low
inclination. In this case, when H # −1.7, the orbit may flip
at high ϵ and the maximum e1 may reach ∼1–10−6 for high ϵ.
When −1.2 # H # 0, we monitor trajectories that start with
low eccentricity and high inclination. In this case, not much
variation is seen unless H # 0. When H > 0, we monitor
trajectories starting with high inclination i ∼ 80◦–90◦.
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In the end, we plot the initial condition for the trajectories
that are monitored for Jz or the flip of the orbit in Figure 15.
When H # −1, we start the trajectories with high e1 and low i;
when H " −1, we start the trajectories with low e1 and high i.
The orbit may flip with −0.4 # H # 0 at high ϵ for trajectories
starting with low e1 and high i, and the orbit may flip with
H # −1.5 when the trajectories start with high e1 and low i.
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