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high stiffness
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Abstract

A family of robust stretch-dominated bimaterial latticesimtroduced
which combines low (or zero) thermal expansion with higkfrs#iss, struc-
tural robustness over wide temperature ranges and mauufagtacility.
This combination of properties is unavailable through attyep material
solution. The concept uses two constituents configured aénady sub-
lattices. It accommodates the thermal expansion throutdtioa of the
members of one sub-lattice. Moreover, the lattice exhilsitge stifness
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to weight because it is fully triangulated and does not relyatational re-
sistance at the joints for structural rigidity. A wide rar@feconstituents can
be used to build the new lattices enabling many desirablegpties to be in-
corporated, especially high strength and toughness. Exearopboth planar
and volumetric lattices are presented, and their thermchar@cal proper-
ties derived. The results are verified by conducting expemnis and finite
element simulations on a lattice fabricated using alummand titanium
alloy constituents.

1 Introduction

Structural systems that experience large temperaturegelsaare susceptible
to extreme thermal stresses that activate failure by thermachanical fatigue. To
suppress such failures, the material should have a low #lezrpansion coef-
ficient, @, over a wide range of temperature. However, levis not normally
suficient, but must be combined with adequatéiséss, strength and robustness
(ductility and toughness) to support in-plane loads anddlm&nmoments. This
combination of attributes cannot be found in any singlestiturent material.

The available choices are apparent from material propedysnsuch as fig-
ure 1, which displays the known universe of robust mateifials/E (Young’s
modulus) space. Solids having low (or even negativexist, but all possess
characteristics which limit their use in applications whademand robustness and
durability over large temperature changes. Invar is rqliugthas low expansion
only between €C and 100C (figure 2(a)). Zerodur (Schott Optics, 2006) has low
expansion over a larger temperature range (figure 2a), isud iglass ceramic and
unsuitable for reliable load bearing structures. Compasiterials incorporating
carbon fibers have property combinations closest to theatkattributes. These
fibers have very low axiat. When incorporated into a matrix, the ensuing mate-
rials combine lowx with acceptable sfiness, but deficiencies have limited their
application in demanding thermal scenarios. Specificalhen incorporated into
an organic matrix, the largeftierence in the thermal expansion between the two
constituents results in strains upon temperature cydhiagdause matrix cracking



and thermal fatigue. This deficiency is partially circumtezhby using a carbon
matrix. Such materials have low expansion up to 2&0@igure 2(b)), as well as
reasonable dtiness. However, they experience severe oxidation at highesam
tures, as well as robustness issues and manufacturingtioms.
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Figure 1: The universe of available structurally robustemats (ceramics are not included), plot-
ted in the space of $fhess and thermal expansion.

The challenge to be pursued in this article is to begin wittenently robust
constituents, either metallic or polymeric, which indivally have larger. Topol-
ogy concepts will then be used to generate a material hawrgoezover a large
temperature range, combined with acceptabléngiss, strength and resistance to
thermal fatigue. The approach to be pursued combines tvpaudite constituents
to achieve properties outside the range attainable with eggarately. That s, two
constituents with widely dierent individuak will be combined with empty space
to create a lattice material with low overall expansion. dhiginal ideas for ma-
terials having these characteristics emerged from coagepposed by Sigmund
and Torquato (1996); Lakes (1996); Gibiansky and Torque287); Sigmund and
Torquato (1997) and, more recently, byféeson (2006). The topologies exam-
ined are summarized on figure 3. The bimaterial latticesgmtes! in figure 3(a)

3



C/C composite
3 Invar

Al/Ti lattice
]

Mdur I Ni/Nb lattice

Polymer lattice

1k L i
I Y T T NN NN (R N 1 1
0 20 40 60 80 100 120 140 160 180 O 500 1000 1500

Temperature (C) Temperature (C)

expansion (ppm/C)
N
T

Coefficient of thermal

Figure 2: The relationship betweerand temperature for three solid materials: Invar, Zeroddr a
carbon-carbon composite; and three planar lattices coatpafs liquid crystal polymer (assum-
ing that the anisotropy can be controlled) and polycarbondth 8.65 skewness, titanium and
aluminium with 24 skewness and niobium C-103 and Inconel 625 withskewness.

(Lakes, 1996) and figure 3(c) (@erson, 2006) can be designed to have zero ex-
pansion, but both have low fness and strength because of the bending of one
of the sub-lattices lattices upon mechanical loading (ith&iue on figure 3(c)).
This stifness deficiency is obviated by the Sigmund and Torquato (1@8&gn
(figure 3(b)), obtained by optimizing for combined zero ex@an and maximum
biaxial stitness. The limitations of this material are that it is geomally too
complex for manufacturing and has only modest in-planexialistiftness. The
goal here is to devise zero expansion lattices with topelogmenable to man-
ufacturing that are stretch- (not bending-) dominated up@&chanical loading,
enabling them achieve zemowhile being relatively sff and strong and resistant
to thermal fatigue. The rules governing stretch-dominatedctures have been
elucidated by Gibson and Ashby (1997) and Deshpande etQfl1{f). Most no-
tably, stretch-dominated structures havéiséiss that scales linearly with relative
density,p, whereas their bending-dominated analogs ha¥etis which scales
with p3 for planar structures and wit? Tor volumetric structures (Gibson and
Ashby, 1997). Consequently, at the relative densities @fr@st, 0L < p < 0.5,

the stretch-dominated designs have at least a factor 2rd€rlatifness.



a. Lakes Lattice

‘ b. Topology Optimization ‘ ‘ c. AFRL Lattice

Figure 3: Unit cells of planar lattices. (a) The Lakes configion for arbitrary thermal expansion
(Lakes, 1996). (b) A high-dfiness, zero thermal expansion lattice calculated using @dgyp
optimisation code (Sigmund and Torquato, 1996). (c) A loarthal expansion lattice proposed
by Jeferson (2006). For each of these bimaterial lattices, thekldanstituent has a low céiient

of thermal expansion, while the gray constituent has a higfficient of thermal expansion.

A preview of these concepts gives further context (figurér2)he temperature
range 0C-300C (figure 2(a)), near-zero averagecan be obtained with an all-
metallic lattice that combines aluminium and titanium gdlpas well as an all-
polymeric lattice that combines polycarbonate with ligargistal polymer. Over
a wider temperature range,@1000C (figure 2(b)), the new concept can realize
near-zero average with another all-metallic system that combines nickel and
niobium alloys. The only competition is a carjoarbon composite having the
aforementioned limitations. To validate the concept andetmonstrate that these
new materials can be manufactured in a practical mannettieelanade from
commercial aluminium and titanium alloys has been prodacetitested.

The article is organized in the following manner: stretcmehated planar lat-
tices are devised that combine lawvith high stifness. The mechanics governing
the thermal expansion and thefBtess are presented for pin jointed lattices with



slender members. It will be shown that these lattices canebgded to achieve
zero thermal expansion ceient, but also have siness close to the theoret-
ical bounds. Next, to validate the theory, thermal expansi@asurements are
presented for a pinned planar lattice made from aluminiuthtaanium alloys.
Additional validation is provided by finite element analysif a bonded system.
This same analysis is used to ascertain stresses induceddatioe bimaterial
nodes during a temperature excursion to ensure that theelatincept provides
adequate resistance to thermal fatigue. Finally, the sxtarof the concept to a
volumetric lattice is examined and thffextive properties of these new materials
are situated with respect to the universe of available nadser

2 Propertiesof stretch-dominated planar lattices

2.1 Topology

The following features characterize a family of planarnt&ts which combines
low expansion with good strength andBtess:

I. It must incorporate at least two constituents witlfeliente. Constituent 1
with the lower valueg;, forms a continuous periodic lattice network com-
posed of identical polyhedral unit cells, configured as sewersions of
regular polyhedra. The skewness is essential to the attaihof zero ex-
pansion. Constituent 2, having the larger expansignis arranged as dis-
continuous polyhedra contained within the unit cells ofstdnent 1. The
polydedron of constituent 2 has the same number of verticdssales as
the unskewed analogue of the polyhedron of constituent 1.

ii. The periodic structure contains two categories of no¢&slattice nodes at
which the unit cells of constituent 1 are connected and (paegion nodes
where constituent 2 is connected to constituent 1.

iii. The lattice must be fully triangulated within each uoéll so that the struc-
ture is stretch-dominated.



iv. The topology should enable the length changes to be atautated by a
rotation (angle change) at the nodes, when pin-jointedh $aafigurations
provide high stifness and strength. Structures with these characteristics
based upon equilateral triangles, squares and hexagorshawe in fig-
ure 4.

We note that while the structural performance of the latiticdependent upon
the particular configuration of the constituent 2 componta thermal behavior
is not; provided that constituent 2 is isotropic and simpinrected, the overall
lattice thermal properties depend only upon the configomadif the type 1 com-
ponent and the location of the expansion nodes.

Triangular Square Hexagonal

Figure 4: Unit cells of planar lattices which are stretchdaminated and which can have low or
zero net thermal expansion. The gray constituent hasdighile the black constituent has low
a.

The examples to be evaluated are planar periodic latticgsdbapon an equi-
lateral triangle (figure 5), which have isotropic planarthal expansion and $i#
ness. From a thermal expansion perspective, this triaragiebe open or solid.
Members of constituent 1 have modulus, density and undefdiength denoted
by E;, p1 and¢; respectively. The corresponding quantities for the mesibér
constituent 2 arek,, p, andf,. The member cross-sections are solid and have
areasA; andA,. The overall geometry is determined by the length of the unit
cell, L, and the skewness from an equilateral triangjesee figure 5. With these
geometric parameters, the undeformed lengths of the toestimembers are:

L L
= yeag 27 §(1+ V3tang) 1)

4



such that:
6dL  Lsingdg _ Ldl V3Lde

= . 2
L - 2cog6’ & L +200§0 2)

déy =

Qe

/Ny

= type 1
(low CTE)
members

- type 2
(high CTE)
members

Figure 5: A periodic planar lattice with a low net dheient of thermal expansion. The gray
constituent has higl while the black constituent has law

2.2 Thermal expansion

For homogeneous temperature changes, these latticesoanapis in-plane.
The lattice has thermal expansienlefined such that an increment in temperature
dT causes a length changé & oLdT. When the lattice is pin-jointed, absent
external stress, the members exhibit length changes=da;¢,dT and d’, =
at,dT. The expansion cdicient is thus:

2a1

= . 3
a1 1-3sin() (% + tan@) ©)

@ 1- 1z sin(m)(% + tane)

This relation is plotted in Figure 6. It is apparent that thitite has zero net ther-
mal expansion within a realizable window of skewn&ssnd thermal expansion
ratio,X = ay/a;. Specifically, whert ~ 2.5, zero thermal expansion emerges for



skewnes® ~ 25°. It is important to note that the thermal expansion behaviou
is a function only of the geometry of the lattice composed @istituent 1 and
the locations of the expansion nodes; that is, the configuraif constituent 2
has no #ect on the thermal behaviour of the lattice provided thatsttrent 2
expands isotropically and consists of a single connectbdadtice. The struc-
tural behaviour of the lattice is, of course, dependent upenconfiguration of
constituent 2.
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Figure 6: Contours of normalized net thermal expansiorfaienta of the planar lattice for a
range of skewness.

When the joints are pinned, no internal stresses are inducathomogeneous
temperature change. When bonded, they resist rotationrenchémbers bend,
generating internal stresses during thermal expansioitefélement models have
been created to assess their magnitude, as discussed below.



2.3 Stiffness

Biaxial stiffness. The lattice is isotropic in-plane with biaxial stretchingfs
ness:
Ny = Spe, 4)

whereN; is the average force per unit length imposed on the structaguibiax-
ial tension and is the resulting average straia{ = e, = €). When pin-jointed,
the forcesF in the members are:

NpL N, L sing
F = 5 F = - * 5
' 2cos/6+6) ? V3 cos(n/6 + 6) ®)

USing (2) WithEl = dfl/fl = Fl/ElAl and62 = dfz/fz = F2/E2A2, the strain
becomes:
- ( Fi 2sindsin(z/6+6) F, )/(1_ 2singsin(r/6 + 6)
E1A V3 ExA V3
SettingQ = E;A,/E;A; and using (5) and the definition (4), the structurafiséss
in equibiaxial loading is:

). (6)

E,A, COS(/6 + ) (3 —2+/3sindsin(r/6 + 9))
L 3Q/2 + 2 sirf Osin(r/6 + 6) '

Sh (7)

The structural ficiency, I1, under biaxial loading can be ascertained from (7)
upon noting that the mad4 per unit area of the Ilattice is:
M = 60101A1 + 3202~
V3L?/2

(8)

such that:
Sy Qcosd cos(r/6 + 6) (3— 2v3singsin(r/6 + 9))

II= = .
ME:  V3(3Q+4sirfosin(r/6 + 6)) (1 + ZEQsin(x/6 + 0))

9)

This is plotted in Figure 7(a) fqu,E;1/p1E, = 1. To give context, the maximum
possible structuralféciency, which arises for a triangulated lattice (skewrtess

10
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Figure 7: Dimensionless fiiness for the triangular grid lattice fprE,/02,E; = 1. (a) Structural
efficiency under biaxial loading, where a triangular gd={ 0, A, = 0) is optimally stif with

Spo1/ME; = 1/2. (b) Structural iciency under uniaxial loading, where a triangular gdd=
0, A; = 0) is optimally stif with Syp;/ME; = 1/3.
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0° andA; = 0), isIlyax = 1/2. Even for large skewnesg ( 30°), the lattice
retains 10% of I, .

Uniaxial stiffness. When loaded uniaxially, most pin-jointed lattices (such as
figure 3(c)) have internal mechanisms, withffsiess reliant on the bending and
rotational resistance of the members and joints. In the raviiguration,loads
are carried exclusively by stretching or compressing the lattice members. The
uniaxial stretching sfinessS,, is defined byN, = Sye, whereN; is the uniaxial
force per length acting in any direction aat the associated overall strain in that
direction. The expressions arising from the determinaicthe uniaxial stifness
are cumbersome, and hence are not presented here. Synsncetrgstent with
the solution periodicities are imposed on the unit of thédatused in carrying
out the calculation. The ensuing structuréiia@encies are plotted in figure 7(b)
and compared with the maximum for the triangulated lattitg, = 1/3. Again,
the lattice retains 15% of its maximunffieiency at large skewness.

In summary, this pin-jointed, planar lattice has the characteristic that, while
realizing low or zero net expansion, it exhibits excellent stiffness in both biaxial
and uniaxial loading.

2.4 Comparison with the Gibiansky-Torquato bound on biax-
1al stiffness

Gibiansky and Torquato (1997) have obtained the tighteshtd® on the co-
efficient of thermal expansion of isotropic planar, three-phastems when the
overall in-plane biaxial modulusSy, is prescribed. These bounds can be ap-
plied to the present lattice material by identifying thepestive members with
phases 1 and 2 and invoking rectangular cross-sectionsunitithickness and
in-plane widths,h; andh,. The member area fractions, = 6h;/3L cosd and
c, = 3p(1 + 3tand)/L, as well askEy, v4, a1, Ez, vo, anda, are prescribed. The
third phase is the void space having area fractogrs 1 — ¢; — ¢,. As illustrated
by Sigmund and Torquato (1997), for materials witlprescribed to be zero, the
lower of the two Gibiansky-Torquato bounds provides an ufyoend onS,.

12



The biaxial modulusS,, computed for the pin-jointed lattice with the ratio of
the two phase area fractions fixdd & hy), plotted in figure 8, is compared with
the upper bound calculated with the formulae provided byrsigd and Torquato
(1997)! While the results at larger area fractions#c,) become suspect (because
the formulas (3) and (7) tacitly assume slender members)clibseness of the
bound at low area fractions suggests the present latticerralamay be optimal.
(Note that while the result for the present lattice in figudp®s not depend on the
Poisson ratiosy; andv,, the bound does. Nevertheless, by computing results for
various combinations of; andv,, we have established that the bound is weakly

dependent on the Poisson ratios.)

0.06
E2/E1=1.5 h1=h2
Qo/0=2.5 V1=V2=0.3
U\I Gibiansky-T t
- N ibiansky—Torquato
«n 0.04 Bound
n
n
(]
£
2 002 L Lattice Material
©
>
@
f*a)
0 | | | |

0 0.1 0.2 0.3 0.4 0.5
Area Fraction, ¢+ C,

Figure 8: For materials with = 0, an example comparing the biaxial modul8g, of the planar
lattice material with the Gibianksy-Torquato upper boundraa range of the area fraction occu-
pied by the two material phases. The curve for the latticeenadtis computed using (3) and (7)

for the pin-jointed lattice.
We have performed similar comparisons for the- O planar materials con-

sidered by Sigmund and Torquato (1997), udigE;, = 1, az/a; = 10,v; =

1The formulae listed by Sigmund and Torquato (1997), while fairly complicated, are
misprint-free. We have reproduced their figures with thenfialae they provide.
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v, = 0.3 andc; = ¢,. In their assessment, topology optimisation was used te gen
erate an isotropic planar material that maximiSggor the casec; = ¢, = 0.25
(the result is shown here in figure 3(b)). Their material heilal stiffness 15%
below the Gibiansky-Torquato bound, comparable to thegortesittice material.
However, their material has in-plane Poisson ratie 0.54, implying a uniaxial

to biaxial stttness ratioS,/Sy = 0.46. The present lattice material fag/'Sp = 1
and is thusbout twice as stiff in uniaxial stressing. In a very recent development,
Sigmund (2006) has used the lattice in figure 5 vath= ¢, = 0.25 as a start-
ing shape in the Sigmund-Torquato optimization program @erfiormed search
computations for an isotropic material with= 0 for two different cases: max-
imization of Sy, and maximization of5,. In both cases, the search produced a
lattice-type structure similar to that in figure 5 haviBg close to the bounds
well as high values ofS,. An interesting feature of this latest topology optimiza-
tion is that the ends of members 2 (but not members 1) tapeistoadl section
suggesting that these ends afieetively pinned in the optimal structure.

3 Experimental validation for the planar lattice

In this section, the practicality of a planar lattice desigade from robust, all-
metallic constituents is explored and combined with a priglary validation of
the thermal expansion characteristics. For this purpeseconstituent materials
are selected having thermal expansion ratio in the rabge,a,/a; = 2 — 3
(figure 6). A combination of a titanium alloy (Ti-6Al-4V) aaostituent 1 with
an aluminium alloy (7075-T6) as constituent 2 satisfies tacgirement. Over
the range 2TC to 250C, the average thermal expansions are 10.3/@pand
25.6 ppmiC for the titanium and aluminium alloys respectively, giyian over-
all averagex=2.5 (table 1). For this assessment, solid triangles of alium
were used for ease of manufacturing and because, therrialgolid is equiva-
lent to a triangular truss. Predictions of the influence @vahkess on the lattice
thermal expansion for this material combination (figure Qidg the experimen-

14



Young's | Yield Strength | Thermal Expansior

Modulus| oy (MPa) | T (C) | @ (ppm/C) | T(C)
Material (GPa)

434 20 24.0 0

Al alloy 70 391 200
7075-T6 339 300 27.2 300
Ti alloy 110 1100 20 9.9 20
Ti-6Al-4V 858 300 10.6 300

Table 1: Material properties for the titanium and aluminialioys used in the numerical simula-
tions, including the variation of yield strength and thelesgansion with temperature.

tal design. Note that the critical skewness giving zero ayerthermal expansion

IS, B0 ~ 25°. Unit cells have been made with both bonded and pinned joints
(figure 10). Those with the bonded joints have skewn@ss,6,«,. The speci-
mens were manufactured using protocols established fardahaterials (Wadley

et al., 2003); namely, by laser cutting from sheets of thestiturent materials,
then assembled and finally bonded by either brazing or laskting.

o
g ©
© a
2 4
Q9 c
SRNe]
Ewn 2
O C
O @
g o
[
o8 _2
5 £ = Prediction
2 4l e Experiment 4
= | I | | d
10 15 20 25 30

Skewness angle, 6 (degrees)

Figure 9: Predicted curve and experimental results famitita - aluminium planar lattices with a
range of skewness.

The configuration with the pinned joints has been used taatdifigure 9 by
performing tests over the skewness range 349 < 28°. The specimens were

15



T alloy,

Al alloy

Figure 10: (a) A pinned planar experimental specimen coexgbas titanium 6AI-4V and alu-
minium 7075-T6 with relative densigy ~ 0.25. (b) An example of a bonded unit cell of the same
materialsyp ~ 0.12.

heated slowly between ambient and 250n a furnace and allowed to air cool.
The temperature was determined using thermocouples thacatdoth the alu-
minium and the titanium, while the displacement betweeaaa)t lattice nodes
was measured with a scanning laser extensometer. Two tyeaperiment were
conducted. (i) The average values of thermal expansiofiicieat for the lattice
over this temperature range were determined from the redoddta and plotted
in figure 9. (ii) Since the thermal expansion fogents of both alloys are tem-
perature dependent (table 1), the variationvafith temperature was measured
for fixed skewness, using values closefig, (both 20 and 24). The results
are plotted in figure 11, along with the predictions. The espondence between
both sets of measurements and the predictidgfisyes the analysis and verifies
the existence of all-metallic lattices having near zerarttad expansion over an
appreciable range of temperature.

16
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Figure 11: The variation af for # = 20° andd = 24° planar lattices. The theoretical predictions
are shown as solid lines while the experimental resultsteaeotted lines.

4 Stressconcentrationsat bonded joints

Actual structures typically use bonded attachments madardming or elec-
tron beam welding (Wadley et al., 2003). Bonded connectgerserate a rota-
tional resistance at the joints and induce bending of thecéatmembers. The
moment resistance of a member is a function of the slenderaésr /L, which,
for square members and whAn = A,, is related to the relative densjtthrough:

r 2(1+ coso + V3sino)

D= — ) 10
p L cosh (10)

Here the relative density is expressed in terms of relatigasa Calculation of the
uniaxial structural ficiency (Appendix A, figure A1(b)) reveals that at skewness
close t0d,¢, the stttness can increase markedly as the members become stubbier
(r/L > 0.04). This increase in dthess has two consequences. (i) The requisite
skewness angle for zero expansion deviates figym (ii) Bending stresses are
induced that might cause yielding. Additionally, at the esdthe thermal misfit
between the constituents produces stress concentratiahsnight also induce
yielding.

17



To examine these issues, finite element calculations haae jperformed for
the lattice depicted on figure 12, chosen to have skewneds altge t00 .
The 16 unit cell has been used. Note that, to fit the cells togethsgction AC
is required having inclination ffiering from that along DC. Periodic boundary
conditions are imposed as follows (see figure 12). Point Exelfto avoid rigid
body displacements. The segments EF and AB are prohibibed displacing in
the x-direction but can displace vertically. The section ED ishpbited from dis-
placing along its normal, but elongation along its lengthliswed so that D can
displace outward and upward,(sin 60 = u, cos 60). The segment AC displaces
uniformly along its normal, with displacement in the y-ditien compatible with
the displacement of A. The segment can also elongate. Subj#tese bound-
ary conditions, calculations are conducted with the finiéerent code ABAQUS
(HKS, 2005), using the material properties from table 1,tvaw values of skew-
nessg = 207, 24°. A typical mesh includes about 1000 8-node generalizedeplan
strain elements.

For all temperature variations within the operating rangése stresses in-
duced in the members during a thermal excursion are found éxtsemely small,
except for those concentrated at bonded interfaces. Anpiredry step in the anal-
ysis adjusts the contact length AC of the joints (figure 1Z)jrtd geometries that
minimize the mismatch. Contours of the local Mises stregsesaximum tem-
perature are shown in figure 13. For the design shown, the odtthe Mises
stress to the yield strength, which is largest in the aluammalloy, remains below
unity everywhere. Since both materials remain elasticttiieemal expansion of
the lattice is found to be invariant with thermal cycling.

For different material combinations or larger thermal excursitins,yield
strength of one or both of the materials may be surpassedjngplocal plastic
flow. The plastic deformation will redistribute the stresé@nalogous to stress ef-
fects at notches; see Hult and McClintock (1957)) and thegpime cases, shake-
down will occur (Bree, 1967). To ascertain the associatadditions, these phe-
nomena must be explored further, both experimentally antti finite element

18
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Figure 12: The bonded planar lattice used in the finite elé¢sietulations. Due to the symmetries
of the lattice, 16 of a unit cell is modeled, shown with the imposed boundanda@®mns.
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Mises Stress (MPa)

2007 Al
150 interface

250

Figure 13: The local Mises stresses at the alumiriiiamium interface in the lattice shown in
figure 12 due to a temperature increase from2 250C.

simulations.

5 Situating the lattices within the univer se of avail-
able materials

The lowa lattices provide a combination of characteristics presipunattain-
able: good sftness and strength in an easily manufactured geometry witido
zero) net thermal expansion over large temperature ranlyeweover, by ex-
tending the concept to a volumetric lattice (see AppendixaBnaterial can be
envisaged that occupies a large gap iffrséiss - thermal expansion space (see
figure 1). (Note that the low expansion of Invar is restricte@ small range of
operational temperatures.) Since the new lattices canm&rteted using metals
(or plastics), it is possible to build robust materials withprecedented thermo-
mechanical properties.

Some specifics have been illustrated by figure 2 using twolheed@d one
polymer lattice, as well as one lawceramic, one metal and one composite. Each
curve is terminated at the maximum use temperature. In geador solid mate-
rials increases with temperature, whiléor the lattices declines with temperature.
As a consequence, the skewness of the lattice structureecendsen to provide
zero net expansion over the desired temperature rangealkassignificant that,
by choosing the correct combination of materials and skegjiattice structures
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can be designed to perform better than all other materiads awy temperature
range for which the constituents retain structurdfrs#iss.

Finally, other unusual combinations of properties can bdeesed. For ex-
ample, a material with low thermal expansion and high théonalectrical con-
ductivity could be designed. Again, this combination ofgedies is unattainable
using conventional materials. Moreover, negativmaterials can be created, as
well as those with very highv. The primary restriction is finding two materials
with suficiently differenta, which are mechanically and chemically compatible
and can be joinedfiectively.

6 Concludingremarks

A family of lattices with low thermal expansion and high stiwral sttftness
has been introduced. The thermal expansion of the membacsasnmodated by
rotations at the nodes. The high structurafséss arises because the mechanical
response of the lattices is dominated by stretching, raliaerbending. By appro-
priate selection of the constituents and the skewfieadattice with any desired
a can be created. This permits the design of afft@ent of thermal expansion
that precisely matches the application. Importantly, beeahese lattices can be
fabricated from a wide range of constituents, they can begded to exhibit high
strength and toughness. Not only can the lattices be designeero expansion,
they also have biaxial and uniaxial fstiess close to the theoretical bounds and
are thus superior to all previously-known concepts. Extansf these lattices
into three dimensions is straightforward, involving a skevwetrahedral unit cell
containing a regular octahedron (See Appendix B).

An experimental program has been initiated to validate #rdopmance of
these lattices. Pinned planar lattices with a rangeasfdX have been constructed
and are being subjected to large temperature excursioglgnprary results have
been presented here. To assess ffexts of rigid connections, test pieces with
rigidly bonded joints are being tested. These tests wilkarine the extent of
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plasticity due to thermal mismatch and member bending, dsas¢he net geo-
metric changes due to thermal cycling. The experimentajnara will be coupled
with a series of finite element calculations to determinengetoies which exhibit
shakedown rather than ratcheting.

In summary, the lattice materials introduced here provigeunique combi-
nation of low thermal expansion with high #tiess in an easily manufacturable,
yet structurally robust, geometry. Single constituenteriats may have low,
but are either brittle (ceramics), have a narrow range ofdgpansion (Invar) or
have manufacturing or usage limitations (carlcanbon composites).
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Appendix A Propertiesof bonded planar lattices

Connecting the lattice members with joints capable of cagynoments, ei-
ther by welding or another form of bonding, changes the tlaéand mechanical
properties of the lattice. The members have second momeénts: A;r? and
I, = Azrg and slenderness ratiog/L andr,/L.

A.1 Thermal expansion
With the paramete€; = A;(7/1; representing the bending tiess of the
members, the normalisedof the bonded planar lattice is:
(Cl tang — 12\/§) (cose + \/§sin9) (Z—j - 1)
C, ( V3 cos — sin@) + 12( V3+ Z%) (cose + V3 sine)
which in the limit as the slenderness ratigL — 0 reduces to the result for
pinned lattices. Sample results for this calculation amshin figure Al(a). The

@

=1

(A1)
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effect of bonding the joints is to increaaeabove that expected for pinned joints
comprising the same constituent materials and geometrgs€uently., for
the pinned lattice must be reassessed when the joints adeddo assure an
accurate choice.

A.2 Stiffness

The uniaxial stifness of the bonded planar lattice is dependent upon the bend-
ing stiffness of the constituent members, and can be determined Byrectimg
the structural stiness matrix. The dthess matriX is related to the force vector
F and the deflection vectarthrough the relatiolKu = F. Results for the bonded
lattice loaded uniaxially are shown in figure Al(b). Thdfstss calculation re-
duces to that of the pin-connected lattice wheg I, = 0.

Appendix B Properties of stretch-dominated volu-
metric lattices

B.1 Topology

Three-dimensional periodic lattice structures compriskewed polyhedral
solid of low-« constituent 1 connected to form a volumetric lattice in viahic
each cell contains a higia-polyhedron of constituent 2. In contrast to the two-
dimensional case, the polyhedron of constituent 2 has tikeeaumber of sides as
that for constituent 1. We describe an example based upoeveesktetrahedron
of constituent 1, containing an octahedron of constitueffig?2ire B1). The unit
cell of this configuration contains four lattice nodes andesipansion nodes. The
full lattice geometry has the same underlying structurénasoctet (octahedron-
tetrahedron) truss described by Fuller (1961), Deshpatale(@001a) and Chris-
tensen (2004) with the skewed tetrahedra of figure B1(b)acapd the regular
tetrahdra of the octet truss. The length of the cellL iand the skewness, is
defined as the angle projected onto a plane between a regtitiédron and the
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Figure Al: (a) Normalised net cficient of thermal expansion for the bonded planar latticé wit
az/a1 = 2.5 andE; A1 /E>A; = 1 for a range of slenderness ratiogl() of the members;/L = 0

is for the pinned structure. (b) Dimensionless uniaxidfratiss for the bonded planar lattice for
p1E2/p2E1 = 1 andE; A1 /E>A; = 1. The lattice unit cell shown in figure 10(b) hgd. = 0.02.



constituent 1 lattice members. This definitiondak chosen so that for both the
planar and volumetric cases, 8 6 < 30°, and is shown in figure B1(c). Given
these definitions, the lengths of the two constituent memaes:

1
L tarf 62 L
51:_(1+ E) . =5 (1+ V3tang), (B1)

N

2

wherea = 1/2 tarr(2 V2).

Figure B1: A three-dimensional periodic lattice with a lowefficient of thermal expansion. The
dark gray members of constituent 1 have lawvhile the light gray members of constituent 2
have higha. (a) The lattice structure, similar to an octet truss, and tiee individual unit cells
are connected. (b) The unit cell, and the loading configomaéind constraints for the uniaxial
stiffness. (c) A view normal to the plane of three lattice nodesvsigpthe skewnesg and unit
cell lengthL. Note that) is defined by the projection of the constituent 1 members amtiane.
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B.2 Thermal expansion

For a homogeneous temperature change, the thermal expasidioe volu-
metric lattice is isotropic, and is defined such that an imenet in temperatureld
produces a length changé & oLdT. Following the same procedure outlined
above for the planar lattice, the net thermal expansiof the volumetric lattice
is given by:

& V3(coga+tartg)- 2tand(1+ V3tano)
@ V3coga - tand

(B2)

This relation is plotted in figure B2. Again, for realizablees/ness, there is an
opportunity to create structures with very small net thdrmx@ansion. Compari-
son with figure 6 shows that the requirements for lewolumetric structures are
slightly less stringent than for the planar structurest ihavolumetric structures
require lower skewness to attain equivalent
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Figure B2: Contours of normalized net thermal expansiorfimenta of the volumetric lattice
for a range of skewness.
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B.3 Stiffness

Hydrostatic stiffness. The hydrostatic sfinessSy, of the volumetric truss is de-
fined byNy = Spe whereN; is the hydrostatic stress ards defined as d/L: Sy,
is three times the bulk modulus. It is convenient to calculate the hydrostatidfsti
ness of the pin jointed volumetric lattice using the methbdmual work. For an
applied hydrostatic stredé, = 2P/ V3L2, the member forces in the constituent 1
and constituent 2 members are, respectively:

P ~ P( 1 1 E3)

DTEsne-0 7T avalianb-o  @nd)

whereb = tarr® V2 andc = tam’(tand/ cosa). The displacement at each tetra-

hedral vertex is:
_ 3t1F16F1  36F0F;

= +

AE 6P AEL0P
for virtual nodal forcesi)P which induce virtual member forces=. The hydro-
static stithessS;, is then given by:

(B4)

P
Sh = : (B5)
" VAL
The mass per unit volume of the unit cell is given by:
M = 12A1€1p1 + 12A2£2p2 (B6)

L3/ V3

A plot of the structural ficiency,I1 = Syp;/ME;, for a range of skewness (fig-
ure B3(a)), reveals that the structure retains approxim&td 0% of the maxi-
mum achievableféciency,Il.x = 1/3, found for a perfect tetrahedro6=0) of
constituent 1 members.

Uniaxial stiffness. The pin-jointed volumetric lattice has the same cubic sym-
metry as the octet truss, and hence is not mechanicallyotr The maximum
stiffness occurs for loadings applied normal to a plane congittiree of the
lattice nodes (Deshpande et al.,, 2001a). The correspondiraxial stifness
for the low a volumetric lattice has been calculated by finite elemenssnfu

27



a. Hydrostatic

o o
N w

Stiffness Index, Sy, p/ME;
©

0.20 b. Uniaxial

Stiffness Index, S, p;/ME;
o o o
o —t —
o] N (0]

o
o
=

| | | |
0 1.0 2.0 3.0 4.0

Q=E,A,/E{A,

0 | | |

Figure B3: The non-dimensionaltiess of the tetrahedral volumetric lattice whgi,/p2E1 =

1. (a) Hydrostatic, where a tetrahedral gdd< 0, A, = 0) is optimally stif with Syp1/ME; = 1/3;

(b) Uniaxial, in a direction normal to a plane containingethilattice nodes, where a tetrahedral
grid (0@ = 0, A, = 0) is optimally stif with Syp1/ME; = 1/5.
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ABAQUS beam elements) for a structure idealized as a simmppported set of
pin-connected truss members loaded at one tetrahedralkve®pecifically, the
unit cell is loaded at one lattice node in a direction nornoahtplane contain-
ing the other three lattice nodes. The loaded node is peuinitt displace freely,
while the other three nodes are constrained in, respegtigak, two and three
orthogonal directions (see figure B1(b)). These conditrepsoduce the symme-
tries in the complete volume-filling lattice. The uniaxiabdulusS, calculated
with this set of loads and boundary conditioagquivalent to the overall Young's
modulusinthisdirection. The trends in uniaxial structuraffiiency are plotted in
figure B3(b). For a perfect tetrahedrah<£ 0 andA; = 0) the maximum structural
efficiency isll.x = 1/5, which duplicates the result of Deshpande et al. (2001a)
for the octet truss without the members of constituent 2.
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