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Tetris™: Exploring Human Performance via Cross Entropy
Reinforcement Learning Models

Catherine Sibert, Wayne D. Gray, and John K. Lindstedt
Cognitive Science Department
Rensselaer Polytechnic Institute

Abstract

What can a machine learning simulation tell us about human
performance in a complex, real-time task such as TetrisT™?
Although Tetris is often used as a research tool (Mayer,

), the strategies and methods used by Tetris players have
seldom been the explicit focus of study. In Study 1, we use
cross-entropy reinforcement learning (CERL) (Szita & Lor-
incz, ; Thiery & Scherrer, ) to explore (a) the util-
ity of high-level strategies (goals or objective functions) for
maximizing performance and (b) a variety of features and
feature-weights (methods) for optimizing a low-level, one-
zoid optimization strategy. Two of these optimization strate-
gies quickly rise to performance plateaus, whereas two oth-
ers continued towards higher but more jagged (i.e., variable)
plateaus. In Study 2, we compare the zoid (i.e., Tetris piece)
placement decisions made by our best CERL models with
those made by the full spectrum of novice-to-expert human
Tetris players. Across 370,131 episodes collected from 67 hu-
man players, the ability of two CERL strategies to classify hu-
man zoid placements varied with player expertise from 43%
for our lowest scoring novice to around 65% for our three
highest scoring experts.

Keywords: Tetris, human expertise, strategies, methods,
cross-entropy reinforcement learning

Introduction

Tetris™ is one of the most played games in the world
(Stuart, ), one of the games most used for psycholog-
ical studies (Lindstedt & Gray, ; Mayer, ), and a
favorite challenge for the machine learning community (Fa-
hey, ; Gabillon, Ghavamzadeh, & Scherrer, ; Szita
& Lorincz, ). The latter became interested in Tetris as a
challenging machine learning problem. The former has seen
Tetris as potentially important for its presumed side effects
for things as diverse as ameliorating sex differences in spa-
tial skills (Linn & Petersen, ; Okagaki & Frensch, ;
Sims, ; Terlecki, Newcombe, & Little, ), relief
from “flashbacks for trauma” (Holmes, James, Coode-Bate,
& Deeprose, ), and improving the abilities of engineer-
ing students (Martin-Gutierrez, Luis Saorin, Martin-Dorta, &
Contero, ). The world’s many game players, presumably,
enjoy Tetris simply because it provides an enjoyable and en-
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tertaining challenge.

Within cognitive science, Tetris has been used to develop
(Kirsh & Maglio, ; Maglio, Wenger, & Copeland, )
and refine (Destefano, Lindstedt, & Gray, ) the construct
of Epistemic (or Complementary) Action. This use of Tetris
is qualitatively different from other uses as the researchers
were interested in the detailed interactions among cognition,
perception, and action that forms the basis of interactive be-
havior in Tetris. The scientific arguments relied on a deep
analysis of the instance by instance interactions of humans-
with-zoid (i.e., the Tetris pieces), the tradeoffs made between
cognition in-the-head and cognition in-the-world, and how
those tradeoffs changed as a function of expertise with Tetris.

The current work is well within this cognitive science tra-
dition. In Study 1, we build 8 cross-entropy reinforcement
learning (CERL) controllers that attempt to optimize Tetris
performance using four different strategies (objective func-
tions) crossed with two different sets of features such as the
landing height of the last zoid added, pits (the number of
empty cells that are covered by other zoids), and many more.
Similar to genetic algorithms, each CERL model optimizes
performance by adjusting the weight given each feature in the
feature set over several generations. In Study 2, the two best
of these 8 controllers are used to classify each of 370,131
episodes collected from 67 human Tetris players.

Following Newell’s ( ) injunction to “accept a single
complex task and do all of it” this work is part of a larger
effort that seeks to understand the acquisition of extreme ex-
pertise in Tetris (Gray, Hope, Lindstedt, & Destefano, ).

Playing Tetris

Players use the keyboard or special game controllers to ro-
tate zoids, as they are falling, into an accumulating pile of
zoids at the bottom of the screen. When a player fills an en-
tire row, the row vanishes, and the score increases. Since it
is not always possible to clear rows, the pile gradually rises.
The game ends when the pile rises above the top row in the
board. (A game in progress is shown in Figure 1.) Despite
Tetris’ widespread appeal, it is unwinnable. If you play it long
enough, you will lose (Baccherini & Merlini, ; Kendall,
Parkes, & Spoerer, ; Fahey, )!



The standard Tetris board is 10 squares wide by 20 squares
high. At the beginning of the game the zoids fall at the rate of
1.25 rows per s and would take 25 s to fall from the top to the
bottom row. This drop speed increases with the game level,
and at level 9 the pieces fall at 10 rows per s or 2 s to fall from
the top to the bottom row. Mastering decision-making and
physical placement at these rates is a significant challenge for
human players.

Figure 1. Tetris board, with a falling I-Beam-zoid, the pile at
the bottom, and a new I-Beam-zoid in the Preview Box on the
right.

When people play Tetris, we somehow consider both the
current move and some number of future moves to deter-
mine where to place a zoid to maximize points and minimize
height. Data from our best human players suggest that they
have a web of contingency plans that span the current zoid,
the next zoid (which is shown in the Preview box in Figure
1), and several unknown future zoids.

In contrast, our CERL models are one-zoid optimizers
which make move decisions by evaluating all potential zoid
placements using sets of weighted features and selecting the
highest scoring move. As Table | shows, these features are
metrics such as the total height of the pile, the number of
unfilled squares, or pits, and the number of lines that will be
cleared by the given placement. For any given game board
configuration, the feature values will differ slightly for each
possible placement. Ties among the highest rated zoid place-
ments are decided randomly.

Study One

The first study explored the performance of our four dif-
ferent objective functions on two different feature sets. We
consider each objective function as one goal or strategy that
a human player could choose to optimize. In terms of fea-
ture sets, we adopted the Dellacherie set (Fahey, ) of 6
features that has been widely used in the machine learning
literature (Szita & Lorincz, ; Thiery & Scherrer, ,

) (See Table 1). We also created our own set of 48 fea-
tures. This set is composed of features developed in our prior
work (Lindstedt & Gray, ; Lindstedt, ) combined

2189

Table 1

Useful Tetris Features Proposed by Dellacherie
Feature ‘ Description ‘
Landing height Height where the last zoid is added
Eroded zoid cells # of cells of the current zoid eliminated

due to line clears

# of full to empty or empty to full, row

Row transitions ..
transitions between cells on the board

Col transitions Same as above for vertical transitions

# of empty cells covered by at least one

Pits full cell
A series of empty cells in a column such
Wells that their left cells and right cells are both

occupied

with the 6 Dellacherie features as well as other features de-
scribed in the machine learning literature. Unlike the machine
learners, who were interested in claiming bragging rights as
to which approach cleared the most lines, we are interested
in human level results. Hence, for this purpose we ran each
model on each generation until it died or until it completed
506 Tetris episodes (i.e., where each episode is the placement
of one zoid), as 506 episodes is the longest game played by
any player in our laboratory.

Cross Entropy Reinforcement Learning

Four things are required to train the CERLs: an objective
function, a set of features, an assignment of weights to those
features, and patience. Patience is required as each controller
is trained for 80 generations where each generation consists
of 100 controllers completing one game of Tetris each.

For the first generation, the starting controller sets all fac-
tor weights to zero and the standard deviation for each factor
to 100. Hence, the first 100 models for this first generation
form a cloud around the zero starting point, with a standard
deviation of 100. Each successive generation begins with a
new starting controller defined by the mean values of the best
performing 10 models from the prior generation. To avoid
early convergence, a constant noise factor of 4 was introduced
in each generation, meaning that for the first generation, the
standard deviation was 104. This noise factor remains con-
stant throughout the generations, while the standard deviation
to which it is added is adjusted and potentially converges on
an optimal feature value. As for the first generation, the new
starting controller is used to spawn one hundred new con-
trollers that form a cloud around this new starting point. This
procedure is followed until 80 generations of controllers have
played Tetris, resulting in a highly optimized controller.

Of course, within each run of 80 games, the definition
of “best controller” depends on the objective function being
optimized. For our studies these objective functions were
(a) Score, (b) total number of Lines cleared, (c) highest Level
reached, and (d) the number of episodes in which four lines
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Table 2
Feature Weights of the Lines and Score Objective Functions for
the Dellacherie Features Set

Feature ‘ Lines ‘ Score
Landing height —-0.45 -0.29
Eroded zoid cells +0.32 -0.81
Row transitions -0.26 -0.34
Col transitions -0.64 -1

Pits -1 -0.61
Wells -0.13 -0.05

(4Lines) were cleared at once. The first three objective func-
tions are typically displayed to human players during the
game (as shown by the right-middle portion of Figure 1).
However, in all of our human games, humans were told to
optimize the first; namely, Score. The fourth objective func-
tion, clearing four lines with one zoid, rewards 13.3 times as
many points as does using four zoids to each clear one line.
Note that clearing four lines at once is called a “Tetris” and
gives the game its name. Human experts often report that the
setting up and execution of these "Tetris" moves composes a
large part of their game strategy.

At the end of each generation, before the next set of 100
controllers was generated, the new starting controller played
30 test games, consisting of 3 games each of 10 preselected
game seeds (the game seeds produce different randomizations
of the sequence of zoids). The average score of these 30
games was used to track the learning of the model over each
generation. The mean scores for these 30 games is plotted,
for each of the 8 objective functions, in Figure 2.

Results

Learning Feature Weights. Table 2 shows the final
weights (normalized) of the six Dellacherie features for the
Lines and Score models. Key differences between the strate-
gies employed by each model can be observed within these
numbers. For example, “eroded zoid cells” is clearly favored
by the Lines model’s moderately positive weight of +0.32,
but less emphasized by the Score model’s strongly negative
weight of —0.81. These different weightings are character-
ized by behavioral differences between the models in that the
Lines model seeks to clear as many lines as possible (thus
eroding the zoid cells), whereas clearing lines is not as em-
phasized in the Score model, allowing it instead to build up to
higher score payoffs.

Controller Performance. As Figure 2 shows, the
biggest effect on skilled performance came from the choice
of objective function. Models optimized for Lines and Level
quickly reached a score threshold of a little under 100,000,
and then performed consistently at that threshold. Models
optimized for Score and 4Lines took longer to reach a score
threshold, and that threshold, while higher than those opti-
mized for Lines and Level, was much more variable.

To put the CERL results into a human context, we can com-
pare their performance with the mean of each human’s four
highest scoring games. The second to fourth best humans
averaged scores of 93,000, 73,000, and 53,000, respectively.
Our very best human’s average score was 174,000.

Our Human High Score, shown in Figure 2, was con-
tributed by one very determined human. As, for each move,
the model was allowed as much decision time as it needed
and as the time for the model to move a piece into position
was essentially instantaneous, our representative of humanity
was allowed to play with gravity turned off’; that is, unless
the human held down the drop key, the zoids did not drop.
This enabled our champion to score 246,186 points (see the
red line towards the top of each panel in Figure 2).

Objective Function: 4Lines Level — Lines = Score
Human High Score -- 246,186 |
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Figure 2. Learning curve of models. (See text for discussion
of the Human High Score.)

Discussion

Study One tells us that machine learning models that focus
on 1-zoid or 1-step optimization do pretty well compared to
humans who presumably are attempting to optimize place-
ments of two successive zoids (i.e., the current zoid and the
zoid shown in the Preview Box) while planning for longer se-
quences, such as deliberately arranging the pile so as to clear
off four rows with one I-Beam zoid. Likewise, the better
human players also work deliberately over many successive
zoids to prepare the playing board for high scoring opportu-
nities while preventing disasterous buildups (of course, the
CERLs do some of these things as well, see Table 1, Feature
1, Landing Height).

Of course, our humans are working under more constraints
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than our CERLs. Unlike humans, once a decision is made, the
CERLs instantianeously rotate, move, and place the current
zoid into the desired location. Hence, it may be easy for hu-
mans to match CERL performance when the game is at level
one and it takes a zoid 25 s to drop from top to bottom, but
not nearly as easy when the game is at level 9 and a zoid takes
only 2 s to fall the same distance!

These observations raise the question as to how much of
human performance could be accounted for by 1-step opti-
mizations and whether or when such optimizations need to be
superseded by other human strategies.

Study Two

In Study Two, we used each of the 8 trained controllers
from Study One (two sets of factors by four objective func-
tions), to classify nearly 370,131 episodes of Tetris (all
episodes from each of our 67 human players) as to whether
the location where the human placed the zoid, matched the
location that the controller would have placed the same zoid
on the same board configuration.

Methods

Human Gameplay. All human Tetris games were col-
lected in session one of a four session, 6-hr Tetris study.
Session one was “free play” as the scores obtained in ses-
sion one were used to assign players to Tetris conditions
for the remaining three sessions of the study. All humans
used the Meta-T (Lindstedt & Gray, ) experimental
task environment to play Tetris and which also collected all
keystrokes, eye data, and system events with millisecond ac-
curacy. Hence, these games can be considered as normal
play, uninfluenced by experimental manipulations, albeit un-
der laboratory conditions.

Matching Humans to Models. For each episode in the
human dataset, the board configuration and current zoid were
given to each of the 8 final models from Study One. Each
model evaluated a move score for all available moves, and
returned the highest scoring move. The model’s chosen move
was compared to the move made by the human, and was con-
sidered to have matched the human if the model chose the
same move as the human.

A move was also counted as a match under two additional
conditions. First, it is often the case that the model will
equally rank two or more moves. In this case, the model
breaks its tie by random choice. Therefore, in cases where
the human’s move was equally ranked with the model’s, we
considered that the model’s move, matched human choice.
(These sitations occurred 1.39% of the time.) Second, hu-
mans were capable of making one move that the models could
not; namely, humans could slide a zoid under an overhang
left by another zoid (see Figure 3). Our current search algo-
rithm considers these overhangs as inaccessible pits, but ex-
perienced human players recognize these moves quickly and
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tend to use them whenever available. Given the desirability
of closing such pits whenever possible, we ranked the human
use of a slide as equivalent to the best move considered by the
model. (Overhang moves were made by humans 0.74% of the
time.)

Figure 3. An overhang maneuver entails placing all or part of
a zoid underneath parts of the pile. In the example, the player
wishes to place the falling zoid where the shadow zoid is.

Results

Our 8 models were derived by crossing the four objective
functions (Lines, Levels, Score, and 4Lines) with our two sets
of features (ALL 48 and DELL 6). Applying these models to
classifying human performance produces 8 statistical models
of human performance. In this section, we seek to identify
the best statistical model where best is defined both in terms
of the model’s success at classifying human moves and by
parsimony; that is, the ALL 48 and DELL 8 feature sets vary
in size and a trivial prediction would be that the larger feature
set fits the data better than the smaller set. Hence, as we move
from the realm of purely machine learning considerations, to
models that help explain human performance, we want to be
sure that the models we settle on have the fewest assumptions
that are reasonable.

In winnowing out our 8§ models we rely on the results of
Multiple Regression modeling and the Akaike Information
Criterion (AIC). Crawley ( ), describes AIC as “penal-
ized log-likelihood” as it weighs the fit of a model against the
number of parameters used; the more parameters, the more
the model is penalized, and a better fit is required if the model
is to be seriously considered.

Eliminating Two Objective Functions: Lines and Lev-
els. 'We begin by collapsing over feature sets to compute
four regression models of the form, Im(percent_match ~
feature_set), and computing one AIC for each model. This
yields AICs for Lines and Levels of -401 and -398 and AICs
for Score and 4Lines of -446 and -452. As for AICs, smaller
is better, we conclude that there are sufficient differences
among our Objective Functions to justify eliminating models
with Lines and Levels from further consideration.
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Eliminating the All Features Models. We now com-

pare the remaining 48 feature, ALL models with the 6 fea-
ture, DELL ones. Following Crawley (p. 416), we find
that R’s AIC function, e.g., AIC(Feature.ALL.OF.S core)
produces the same result as the loglinear model -2 =
logLik(data.ALL.score) + 2 = (3). Hence, we modify the log-
linear model by adding the number of features into the final
df term with the following results:
-2 % logLik(model.DELL.S core) + 2 * (3 + 6) for an AIC of -237
—2 % logLik(model. DELL.4Lines) + 2 = (3 + 6) for an AIC of -236
-2 « logLik(model ALL.S core) + 2 + (3 + 48) for an AIC of -152
-2 % logLik(model ALL.4Lines) + 2 = (3 + 48) for an AIC of -165

As lower is better for an AIC score, these comparisons led us to
conclude that the simpler Dellacherie models provide the better fit
and to drop the remaining All Features models from further consid-
eration.

[
o
o
0.55+ ®
0504
=
Co451 A
©
= A
c
K]
070
5]
Q
o
4
o
065
0604
oS
[
2
055 5

Iog(crit:e?'ion) " ”

Figure 4. Proportion of moves classified for each of our 67
human player for the best feature set (Dellacherie) and the
two best matching Objective Functions — Highest Score and
Number of 4Lines. Each data point in the figure represents
the model’s ability to predict the move that the human would
make. The x-axis shows human performance in terms of the

log of each human’s highest game score.

Fit of CERL Models to Human Data. So far we have
been more concerned with reducing our set of models than we
have been with what they suggest to us about the human data.
Both of the remaining two models, the Dellacherie versions of the
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Score and 4Lines models, provide significant fits to the data (both
p’s < .00001) with the Multiple R-Sq for Score accounting for 0.33
of the variance and that for 4Lines accounting for 0.32. However,
a clearer picture can be gained by looking at Figure 4 which plots
the proportion matched for each of the 67 Tetris Players based on
the log of their criterion score (i.e., the mean of their highest 4 game
scores).

Discussion

When we began the modeling work, we entertained the hypoth-
esis that the models would do better at predicting novice than ex-
pert performance, as we believed that novices tended to think only
one zoid ahead whereas experts constantly planned for Tetrises and
other manuevers. To our surprise, as Figure 4 shows, models match
human performance from about 45 to 65 percent of the time with the
by-player match increasing linearly from the poorest to best players.

Of course, a reasonable question to ask is always, “what is
chance?” Although we are not quite sure how to calculate chance for
a zoid placement, with 10 columns in which a zoid can be dropped
and 1 orientation for the Square, 2 each for the I-Beam, S, and Z,
and 4 each for the T, L and J, we believe that a conservative estimate
of chance is around 5%. Hence, we are somewhat surprised at how
good of a job these machine learning models are doing at classifying
human behavior.

Finally, we are intrigued by the two right-most points in both
halves of Figure 4. These are our two very best human players and
they seem to be showing a prediction plateau. Do these points rep-
resent the limits of prediction for models based on one-zoid opti-
mization? Or would our data show a continued upward slope if our
dataset included more and stronger human Tetris players?

Conclusion

We see four directions forward for this line of Tetris research.
First is the question as to how the objective functions of Score and
4Lines vary. It is clear for humans that clearing four lines increases
score tremendously (13.3 times more points for clearing four lines
with one zoid than than clearing one line with each of four zoids).
Are these two really separable or does their similiarity in matching
human choice imply they are measuring the same thing? Second,
we want to revisit our All Factors set to determine if some of the
potential power from the additional factors was wasted as subsets of
different factors were calculating the same outcome in some situa-
tions but different outcomes in other situations. This might result in
two subsets of predictors that were competing with each other rather
than cooperating. Third, we are very intrigued with the increasing
success of CERL classifications with increasing human expertise.
Tutoring complex perceptual-motor-cognitive skills in real-time is
very difficult and seldom done well. We wonder whether our CERL
models could be effectively used to provide immediate feedback to
novice or intermediate human Tetris players. Fourth, it is intrigu-
ing to ponder whether the two left-most points in Figure 4 represent
a flattening of CERL powers of classification at the higher levels
of human expertise or whether the slope would continue upward if
more and stronger human players were found. Perhaps the appar-
ent flattening reflects the limits of one-zoid optimization for Tetris
and the beginning of a role for human strategies requiring extreme
expertise?
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