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Phase diagram of interacting pion matter and isospin charge fluctuations
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Equation of state and electric (isospin) charge fluctuations are studied for matter composed of interacting
pions. The pion matter is described by self interacting scalar fields via a φ4-φ6-type Lagrangian. The mean-field
approximation is used, and interaction parameters are fixed by fitting lattice QCD results on the isospin density as
a function of the isospin chemical potential at zero temperature. Two scenarios for fixing the model parameters—
with and without the first-order phase transition—are considered, both yielding a satisfactory description of the
lattice data. Thermodynamic functions and isospin charge fluctuations are studied and systematically compared
for these two scenarios, yielding qualitative differences in the behavior of isospin charge susceptibilities. These
differences can be probed by lattice simulations at temperatures T � 100 MeV.

DOI: 10.1103/PhysRevC.103.065201

I. INTRODUCTION

The Bose-Einstein condensation (BEC) [1,2] is a fas-
cinating phenomenon that occurs in a system of bosons
when a macroscopic amount of particles occupies the zero-
momentum state. This century-old phenomenon, observed
experimentally in cold atomic gases [3–6], is predicted
to occur in very different physical systems, ranging from
condensed-matter physics to high-energy nuclear physics,
astrophysics, and cosmology (see, e.g., Refs. [7–15]). A theo-
retical description of the BEC appears to be rather sensitive to
delicate details of particle interactions [16–25].

In the present work we study the BEC phenomenon in
strongly interacting QCD matter. The effective low-energy
degrees of freedom in QCD are pions—the three pseudo-
Goldstone bosons in the confined phase. The pions obey the
Bose-Einstein statistics, thus an emergence of the BEC of
pions is possible and has been predicted to occur at large
isospin chemical potentials, both in effective QCD theories
[26,27] and in first-principle lattice QCD simulations [28,29].
In nature, the pion BEC may occur during the cooling of the
early Universe [30], in the gravitationally bound pion stars
[29,31,32], or as a nonequilibrium phenomenon in heavy-ion
collisions [8,9,33]. The hypothetical boson stars [34–36] may
exist and can be a candidate for the dark matter in the Universe
[37–42].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

Different effective QCD descriptions of the phase diagram
of interacting pion matter with a BEC include chiral perturba-
tion theory [43,44], the Nambu-Jona-Lasinio model [45,46],
the linear sigma model [47,48], the Polyakov-loop extended
quark meson model [49,50], functional renormalization group
[51,52], hard thermal loops [53], etc. Recently, a possibility
of the BEC in the pion system at zero chemical potential
was considered within a Skyrme-like model including both
attractive and repulsive interaction terms [14,54,55]. Effects
of repulsive interactions on the BEC of pions were studied in
Ref. [56] at nonzero chemical potential. The system of pions
at zero chemical potential was described [14] by an effective
Lagrangian with the attractive (φ4) and repulsive (φ6) terms
of a scalar field φ. In the present paper we extend this model
to the finite isospin1 chemical potential μI .

The phase diagram on the whole plane of isospin chemical
potential μI and temperature T is investigated. Most macro-
scopic systems with both repulsive and attractive interactions
between constituents display the first-order liquid-gas phase
transition (FOPT) which is ended by the critical point (CP).
Therefore, these phenomena can also be expected for the
interacting pions in addition to the BEC.

Lattice QCD results support an existence of the pion BEC
at finite isospin chemical potential [28]. We use the recent lat-
tice data at zero temperature to fix the repulsive and attractive
interaction parameters of the model. Then, thermodynamic
functions and electric (isospin) charge fluctuations up to the
fourth order are calculated in the (μI , T ) plane. Two dif-
ferent scenarios are employed and systematically compared.
The first one includes only the repulsive interactions via

1We use the common simplified terminology and call the third
component of isospin (electric charge) the isospin charge.
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the φ6 term, but not the attractive φ4 term. In this case no
FOPT transition is observed, only the BEC transition. The
second possibility takes into account both the repulsive and
attractive pion-pion interactions. In this case the FOPT is
observed at small T and generates a nontrivial interplay be-
tween the FOPT and BEC transitions on the phase diagram.
The measures of the isospin charge fluctuations—scaled vari-
ance, skewness, and kurtosis—appear to be very sensitive to
a presence of the CP and BEC phenomena. They are used to
differentiate these two scenarios.

The paper is organized as follows: the theoretical
description of interacting pion system is presented in Sec. II.
The two choices of the interaction potential, the fixing of
the model parameters, and the resulting phase diagrams
are discussed. Section III is dedicated to fluctuations of the
isospin charge, in particular the scaled variance, skewness,
and kurtosis are discussed in some detail. The summary in
Sec. IV closes the paper.

II. INTERACTING-PION SYSTEM

A. Model formulation

The three pions species, (π+, π−, π0), are represented as a
triplet of interacting pseudoscalar fields φ = (φ1, φ2, φ3) that
are described by an effective relativistic Lagrangian density:

L = 1
2 (∂μφ ∂ μφ − m2

πφ2) + Lint (φ
2), (1)

where mπ is the vacuum pion mass2 and Lint is the interaction
part of the Lagrangian. We omit here the electromagnetic in-
teractions. Consider now this system in statistical equilibrium
within the grand canonical ensemble (GCE). The independent
variables are the temperature T and the isospin chemical
potential μI . The isospin chemical potential couples to the
conserved isospin charge, the pion species π+, π−, and π0

carry the isospin charges of +1, −1, and 0, respectively.
To proceed, we apply a relativistic mean-field approxima-

tion, i.e., series Lint in terms of δσ = φ2 − σ , where σ = 〈φ2〉
is the expectation value of the scalar field and 〈. . .〉 denotes the
GCE averaging. The effective mean-field Lagrangian can then
be represented as [14]

L ≈ 1
2 [∂μ φ ∂ μφ − M2(σ )φ2] + pex(σ ), (2)

where M(σ ) is the effective pion mass and pex(σ ) is the so-
called excess pressure,

M2(σ ) = m2
π − 2

dLint

dσ
, pex(σ ) = Lint − σ

dLint

dσ
. (3)

The effective Lagrangian form of Eq. (2) implies that the main
effect of interactions in our description leads to an appearance
of a medium-dependent effective mass M(σ ). The excess
pressure pex(σ )—the second term on the right-hand side of
Eq. (2)—ensures the proper counting of the interaction energy.

The details of the model formulation can be found in
Refs. [14,57]. This model was previously used to describe the
pion system at zero chemical potential [14] and the system
of interacting alpha particles [57]. In the present study we

2We use the natural units h̄ = c = k = 1 and assume equal masses
of all three pion species, mπ = 140 MeV.

apply this model to the new physical situation and consider
the pion system at non-negative values of the isospin chemical
potential μI � 0. The results at μI � 0 can then be obtained
by interchanging π+ and π−. Values of μI > 0 correspond to
positive values of the isospin charge density nI ≡ n+ − n− >

0, where n+ and n− correspond to π+ and π− particle number
densities, respectively. We consider the possible BEC of the
positively charged pions in this regime. The expectation value
of the scalar field σ is presented as (see Refs. [14,57] for the
derivation details)

σ (T, μI , M ) =
∑

i

σ th
i (T, μi, M ) + σ bc

+ , (4)

where σ th
i correspond to the contributions of the thermal

pions, i = (+,−, 0),

σ th
i (T, μi, M ) =

∫
d3k

(2π )3

nk(T, μi, M )√
k2 + M2

, (5)

while σ bc
+ corresponds to a possible contribution of the Bose

condensate (BC) of π+. Here μ+ = μI , μ− = −μI , μ0 = 0,
and

nk(T, μi, M ) =
[

exp

(√
k2 + M2 − μi

T

)
− 1

]−1

. (6)

We use a Skyrme-like parametrization of the interaction
term:

Lint (σ ) = a

4
σ 2 − b

6
σ 3, a � 0, b > 0. (7)

In Eq. (7), a � 0 and b > 0 are model parameters which
define the strength of, respectively, attractive and repulsive
interactions between particles. The effective mass and the
excess pressure for this choice of the interaction terms are
equal to

M(σ ) =
√

m2
π − aσ + bσ 2, (8)

p ex(σ ) = −a

4
σ 2 + b

3
σ 3. (9)

Inverting Eq. (8) with respect to σ we obtain3

σ =
a +

√
a2 + 4b

(
M2 − m2

π

)
2b

. (10)

At given T and μI we use the system of self-consistent equa-
tions (4) and (8) to determine σ and M.

The pressure p, the number densities of thermal pions, nth
i ,

and the isospin charge density nI can be calculated as

p =
∑

i

∫
d3k

(2π )3

k2

√
k2 + M2

nk(T, μi, M ) + pex(σ ), (11)

nth
i =

∫
d3k

(2π )3
nk(T, μi, M ), (12)

nI =
(

∂ p

∂μI

)
T

= n+ − n−. (13)

3The second root of Eq. (8) corresponds to mechanically unstable
states.
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Here ni are the total number densities of pions. The n+ density
may include a contribution from a Bose condensate (BC). The
condensation does not occur if μI < M. In the case μI < M
only the thermal pions contribute to the total number densities,

n+ = nth
+, n− = nth

−, n0 = nth
0 , μI < M. (14)

The BEC of π+ occurs when their chemical potential μ+ ≡
μI reaches the value of the effective mass,4 i.e., μI = M. In
this case the number density n+ may receive a contribution
nbc

+ from the BC:

n+ = nth
+ + nbc

+ , μI = M. (15)

The number of densities of the two other pions species are
unchanged: n− = nth

−, n0 = nth
0 . The number density of π+ in

a condensate reads

nbc
+ = μIσ

bc
+ = μI

(
σ −

∑
i

σ th
i

)
. (16)

In Eq. (16) the quantities σ and σ th
i are calculated according

to Eqs. (10) and (5), respectively.
An onset of the BEC takes place when μI reaches the

effective mass M. This condition defines a line in the phase
diagram—the BEC line. This line is calculated by substituting
M → μI and σ bc

+ → 0 into the system of equations (4), (8),
and (12) and solving it with respect to μI at given value of T .

B. Fixing the parameters using lattice data at zero temperature

Lattice QCD simulations at finite isospin density provide
constraints on the equation of state from first principles [28].
In particular, the isospin density nI (T = 0, μI ) at zero tem-
perature has been presented in Ref. [29]. The lattice QCD
simulations of Ref. [28] were performed with inclusion of a
pion source to trigger the explicit breaking of UI (1) symmetry
and to stabilize the numerical simulations. The extrapolation
is then performed to the limit of vanishing source. Just after
this procedure, the lattice results are used to constrain the a
and b interaction parameters in our model, because the model
implicitly assumes a vanishing pion source. The refitting of
the lattice data in the presence of the nonzero pion source term
can be interesting and will almost certainly require modifica-
tions of the Lagrangian to achieve the presence of nonzero
condensate across the entire phase diagram.

In the limit of zero temperature, T = 0, the thermal pion
excitations are absent, i.e., all thermal densities (12) vanish. In
this case the system consists solely of the BC of π+ mesons,
thus, the isospin density coincides with the number density
of the condensed pions, nI (T = 0, μI ) = nbc

+ , and the total
pressure equals the excess pressure, p(T = 0, μI ) = pex. The
explicit expression for nI (T = 0, μI ) in the considered model

4Note that chemical potential values μI > M exceeding the ef-
fective mass are forbidden because they would lead to negative
occupancy numbers nk (6) for some k states.

follows from Eqs. (5), (10), and (16):

nI (T = 0, μI ) = μI

⎛
⎝a +

√
a2 + 4b

(
μ2

I − m2
π

)
2b

⎞
⎠. (17)

1. Scenario I: Repulsive interactions only

In the first scenario we consider purely repulsive interac-
tions between pions. To achieve this we set a = 0 and b > 0.5

Equation (17) in this case is reduced to

nI (T = 0, μI ) = b−1/2 μI

√
μ2

I − m2
πθ (μI − mπ ). (18)

An onset of the BEC occurs at μI = mπ . The isospin density
is a continuous function of μI since nI (T = 0, μI = mπ ) = 0.
On the other hand, the μI -derivative of nI exhibits a disconti-
nuity at μI = mπ . Therefore, the transition between vacuum
and a pion-condensed phase at μI = mπ is a second-order
phase transition at T = 0. Qualitatively, this is consistent with
predictions of many different theories, including, for instance,
chiral perturbation theory [26,43] or Polyakov-loop extended
quark-meson model [49,50].

To fix the value of the parameter b we fit the lattice
QCD data on nI (T = 0, μI ) of Ref. [29] in the range of
chemical potentials μI/mπ < 2. We obtain b � 9.09/m2

π with
χ2/dof � 1.62. A comparison with the lattice data is shown
in Fig. 1(a) by the blue dashed line.

2. Scenario II: Repulsion + attraction

Let us turn now to the more general case when both the
attractive and repulsive interactions are present, a > 0 and
b > 0. In this case the system undergoes a first-order phase
transition between vacuum (the gaseous phase) and a pion-
condensed phase (the liquid phase), with the coexistence point
being characterized by a vanishing pressure. To see this con-
sider Eq. (9): this equation has two solutions for pex = p(T =
0, μI ) = 0, defining the expectation values of the scalar field
at the FOPT boundaries, σg = 0, and σl = 3a/4b. This cor-
responds, via Eq. (8), to the following values of the effective
mass in the gaseous and liquid components:

Mg = mπ , Ml =
√

m2
π − 3a2

16b
. (19)

The FOPT takes place at μ0 = Ml . The gaseous phase at
T = 0 corresponds to the vacuum, thus, ng = 0. The isospin
density jumps at μI = μ0 from ng = 0 to

nl ≡ nI (T = 0, μI → μ0 + 0) = 3a

4b

√
m2

π − 3a2

16b
. (20)

To fix the numerical values of a and b we again fit the lattice
data on nI at T = 0. We obtain a � 0.93 and b � 11.39/m2

π

with a fit quality of χ2/dof � 1.35—a slightly better fit com-
pared with Scenario I.

5Another option would be to set b = 0 and take a < 0. The results
in such a case are qualitatively similar to a = 0 and b > 0.
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FIG. 1. (a) A comparison of the pion condensate as a function of the isospin chemical potential, μI at zero temperature, T = 0, with lattice
data of Ref. [29] is shown by solid line and dashed line for the Scenario I (a = 0) and Scenario II (a > 0), respectively. The ground state
nI ≈ 0.022 fm−3 at μI ≈ 0.993mπ for a > 0 and the singularity point nI = 0 at μI = mπ for a = 0 are marked by, respectively, the red circle
and the hollow green star. The inset shows the zoomed-in picture close to μI = mπ . (b) The ratio of the system’s pressure to the ideal-gas
pressure at zero isospin chemical potential, μI = 0, as a function of temperature.

As discussed above, Scenario II predicts the FOPT. Using
the numerical values of the a and b parameters fit to the
lattice data, one obtains the FOPT at μ0 ≈ 0.993 mπ , where
the isospin density jumps from ng = 0 to nl > 0. The values
of the π+ density nI and the binding energy per particle W at
T = 0 and μI = μ0,

nI ≈ 0.060m3
π ≈ 0.022 fm−3, (21)

W ≡ ε

nI
− mπ = Ml − mπ ≈ −1 MeV, (22)

obtained in Scenario II correspond to the ground state of the
pion matter. This density is about seven times smaller than
the normal nuclear matter density of n0 = 0.16 fm−3, and
the binding energy is about 16 times smaller than that in the
nuclear ground state.

The behavior of nI in Scenario II at zero temperature is
shown in Fig. 1(a) by the solid red line. A comparison with the
lattice data and the predictions of Scenario I are also shown.
Overall, the behavior of nI in the both scenarios is similar.
Even though the nature of the phase transition differs between
the two scenarios, due to the small latent heat of the FOPT in
Scenario II it is difficult to distinguish it from the second-order
phase transition in Scenario I using the presently available
lattice data. In Sec. III we discuss fluctuations as a possibility
to make such a distinction.

C. Phase diagram at finite temperatures

Model calculations at finite temperatures are straightfor-
ward. Important constraints on the equation of state of pion
matter can be obtained at zero chemical potentials and large
temperatures, 120 � T � 160 MeV, where the QCD equation
of state is known from lattice QCD [58,59]. In this range,
the pressure and energy density are reasonably well described

by the ideal hadron-resonance gas (see, e.g., Ref. [60]). This
indicates that effects of pion interactions in this regime are
small.

The ideal hadron resonance gas model incorporates many
mesonic resonances such as ρ and ω as free particles. Counted
in the hadron-resonance gas as separate hadron species, these
resonances take into account an essential part of π -π in-
teractions. In the statistical model of high-energy collisions,
most pions at the chemical freeze-out temperature near T =
150 MeV are not primary thermal pions but emerge after
resonance decays. The role of the mesonic resonances be-
comes, however, less important at smaller temperature, e.g.,
because of their large masses, the resonance contributions to
thermal equilibrium pion gas become negligible at T < 70
MeV considered in the paper. Our modeling of the ππ in-
teractions within the effective-mass model concerns just this
hypothetical nonresonance part of the pion interactions. From
a fact of the existence of atomic nuclei one concludes that the
nonresonance interactions, both repulsive and attractive, exist
between nucleons. It seems that straightforward experimental
evidence are absent about a strength of the nonresonance
repulsive and attractive forces between pions and even about
their existence themselves. The lattice data at T < 70 MeV
and μI ≈ mπ seem to give us a unique possibility to answer
this question.

In Fig. 1(b) we plot a ratio of the pressure of interacting
pions to the ideal pion gas baseline (i.e., at a = 0 and b = 0)
for the two scenarios. For purely repulsive interactions (Sce-
nario I) the pressure demonstrates small suppression relative
to the ideal gas. If attractive effects are included (Scenario II)
the pressure at small temperatures is higher than that of the
ideal gas of pions. However, at large T , the repulsive effects
become dominant and the pion pressure is again suppressed.
In both scenarios the corrections to the ideal gas pressure at
μI = 0 are small, not exceeding 1%. This is not the case at
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FIG. 2. Phase diagrams of the pion matter in the (μI/mπ , T/mπ ) and (nI/m3
π , T/mπ ) planes, at (a), (c) a = 0, and (b), (d) a > 0. Dashed

lines correspond to the onset of the BEC. Solid lines correspond to the first-order phase transition. The CP is marked by the green star. Coloring
in panel (b) show the isospin charge density, nI/m3

π .

nonzero values of μI : the thermodynamics of the interacting
pion gas differs drastically from that in the ideal pion gas in
the (μI , T ) region of the phase diagram where BEC pions are
formed, as discussed in the following.

In Scenario I, where the attractive pion interactions are
absent (a = 0), there is no FOPT in the pion system. An onset
of the π+ BEC takes place when μI reaches the value of
the effective mass M. The BEC line can thus be obtained
by substituting M → μI in the system of equations (4) and
(8) and solving it with respect to T . The resulting BEC line
Tbc(μI ) is shown in Fig. 2(a) by the dashed line. In the ideal
gas limit one would obtain a vertical BEC line, μI = mπ . The

deviation from the ideal-gas behavior thus becomes evident as
T is increased. This is due to large particle number densities,
and thus stronger effects of interactions, as the temperature
is increased. Note that, in the ideal Bose gas, a region of
the (μI , T ) plane with μI > mπ is forbidden, whereas in the
interacting system considered here this region is legitimate.
It follows from Eq. (10) that the effective mass is always
larger than the vacuum mass, M(T, μI ) > mπ , the pure re-
pulsion scenario (a = 0). The (nI , T ) phase diagram in the
a = 0 scenario is shown in Fig. 2(c). The thermodynamic
states below the dashed lines in Figs. 2(a) and 2(c) corre-
spond to a nonzero density of the BC, i.e., to a macroscopic
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number of π+-mesons occupying the zero momentum level
k = 0.

In Scenario II, with both the repulsive (b > 0) and at-
tractive (a > 0) pion interactions present, the FOPT phase
transition takes place in addition to the BEC formation. The
(μI , T ) and (nI , T ) planes are presented for this scenario in
Figs. 2(b) and 2(d), respectively. The line of the FOPT is
shown by a thick solid line in Fig. 2(b). This line ends in a crit-
ical point (CP) at T = Tc ≈ 0.369mπ , μI = μc ≈ 0.991mπ ,
and nI = nc ≈ 0.051m3

π , which is shown by the green star.
The μc value can be expressed explicitly in terms of model
parameters

μc =
√

m2
π − a2

4b
. (23)

An approximate analytical dependence of Tc on a, b, and mπ

can also be obtained:

Tc ≈ π√
b

(
2a

ζ (3/2)

)2/3(
4bm2

π − a2
)−1/6

. (24)

Here ζ (x) is the Riemann zeta function. The relation (24)
has been obtained by assuming n− 	 n0 	 n+ as well as
the nonrelativistic approximation in vicinity of the CP. Using
the previously obtained parameters a and b from fitting the
lattice data one obtains Tc ≈ 0.393 mπ . This is within 6% of
the numerical result obtained without approximations. Note
that the limit a → 0 corresponds to Tc → 0 and μc → mπ .

At the FOPT line in the (μI , T ) plane the pressures of the
gaseous and liquid phases are equal to each other. On the other
hand, the isospin charge density nI has a discontinuity. The
mixed phase shown in Fig. 2(d) is bounded by the gas-like
(left) and liquid-like (right) binodals presented by solid lines
that intersect each other at the CP. The pion states inside the
mixed phase correspond to linear combinations of the diluted
(gaseous) and dense (liquid) states lying on the left and right
binodals, respectively. The liquid component of the mixed
phase always lies below the BEC line, thus it always contains
a nonzero fraction of condensed π+-mesons. The gaseous
component, on the other hand, does not contain the BEC.

A remarkable feature of the considered model is that the
BEC line enters the mixed phase at the CP. This property of
the model is robust with regard to variations in the values
of the a and b parameters. Another peculiar property is the
nonsmooth intersection of the left and right binodals at the
CP.

Scenarios I and II provide a similar picture of the phase
diagram at T 
 Tc. At T � Tc, on the other hand, the differ-
ences are significant. We argue that these differences can be
most clearly seen by studying the behavior of isospin charge
fluctuations. This is discussed in Sec. III.

The liquid-gas FOPT is a rather general phenomenon that
takes place in many different physical systems, from molecu-
lar liquids to nuclear matter. This transition can be described
by different mean-field models. However, all these mean-field
approaches belong to the same universality class. In particular,
they give the same critical exponents in a vicinity of the CP
(see, e.g., Ref. [61]). On the other hand, properties of the
BEC can look rather different in various models. In Ref. [56],

several phenomenological approaches were used to describe
particle repulsive effects in the Bose gas. These formulations
look very similar at μ = 0 but appear to be drastically dif-
ferent in a vicinity of the BEC. A situation can become even
more tangled in the system of bosons when both the repulsive
and attractive forces are present, and two phenomena—the
FOPT and BEC—take place simultaneously. Therefore, it is
a priori not clear whether the same universality class of ef-
fective theories should lead to similar physical results. We
plan to consider other types of mean-field models of the pion
matter in our further studies. The present and future lattice
QCD simulations will be used for these phenomenological
investigations.

The QCD-inspired models such as chiral perturbation the-
ory [43,44], the Nambu-Jona-Lasinio model [45,46], and the
Polyakov-loop extended quark-meson model [49,50] consid-
ered in the literature all appear to disfavor the existence of the
FOPT. The similar conclusion comes from the linear sigma
model [47,48] that takes into account the (pseudo)-Goldstone
nature of pions. All these models lead to a phase diagram
of the pion matter without the FOPT that is qualitatively
consistent with the pure repulsion scenario, namely, Scenario
I considered in our paper.

However, we do believe that the ultimate conclusion
should come from first-principle lattice QCD simulations. The
present lattice results do not allow us to distinguish the two
scenarios conclusively. In that regard, we suggest the analysis
of the isospin number susceptibilities at T < 100 MeV as a
sensitive probe to distinguish the two scenarios.

III. FLUCTUATIONS

The two descriptions presented of the isospin charge den-
sity from the lattice results at T = 0 both contain the BEC.
Within the second description, the FOPT at T < Tc leads to
the nI discontinuity. We argue that the difference between the
two scenarios can be probed by considering isospin charge
fluctuations.

In the GCE, the jth-order susceptibility of the isospin
charge is determined by a jth-order partial derivative of the
pressure p with respect to the chemical potential μI :

χ j = ∂ j (p/T 4)

∂ (μI/T ) j
. (25)

First we look at the isospin charge fluctuations at μI = 0.
The temperature dependence of the susceptibilities χ2 and χ4

at μI = 0 is presented in Figs. 3(a) and 3(b), respectively. At
T < mπ these quantities calculated for the interaction Sce-
narios I and II are close to those in the ideal Bose gas of
pions. An increase of the fluctuations due to the attraction in
Scenario II is too small and is hardly seen in Fig. 3. Thus, both
scenarios are almost indistinguishable from the ideal gas at
T < mπ . At T > mπ , the repulsion become significant lead-
ing to a noticeable suppression of fluctuations and the peak
structures are observed. The results can be put into the context
of the linear sigma model. Electric charge susceptibilities have
been computed in the linear sigma model within functional
renormalization-group approach in Ref. [62], and these results
are qualitatively consistent with ours. Thus, both scenarios
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FIG. 3. Isospin fluctuation (a) χ2 and (b) χ4 as functions of temperature at μI = 0 for different interaction potentials.

studied here are consistent with the linear sigma model at
μI = 0.

The susceptibilities at μI = 0 do not allow us to distinguish
the two scenarios and determine whether the FOPT at finite
isospin densities exists. Furthermore, at T ≈ mπ the contribu-
tions from other hadrons and resonances to the susceptibilities
become important as well and also at T ∼= 155 MeV ∼=
1.15mπ a crossover transition from the hadron-resonance gas
to the quark-gluon plasma is expected. Thus, there appears to
be a little chance to observe significant effects of the pion-pion
interactions in the thermodynamic quantities at zero chemical
potentials. The situation becomes very different at μI ≈ mπ .
In this region of the phase diagram two physical phenomena
become possible: BEC and FOPT. A strong increase of the
electric charge fluctuations is thus expected. Rather small
repulsive and attractive interactions that are barely visible at
μI = 0 become crucially important at μI ≈ mπ and lead to a
qualitatively different behavior in Scenarios I and II. Thus we
explore isospin charge fluctuations at finite isospin densities
in the following.

Ratios of susceptibilities given by (25) can be particularly
useful because such quantities are intensive in the thermody-
namic limit. Some of the most well known quantities include
the scaled variance ω, skewness Sσ , and kurtosis κσ 2 (see,
e.g., Ref. [63]):

ω = χ2

χ1
, Sσ = χ3

χ2
, κσ 2 = χ4

χ2
. (26)

Using Eq. (25) together with Eq. (11) the scaled variance
ω can be written as

ω = T

nI

(
∂nI

∂μI

)
T

. (27)

In the ideal pion gas the scaled variance diverges at the BEC
line [8], i.e., ωid → ∞ at μI → mπ − 0:

ωid = T 2 m3/2
π√

2πnI

(mπ − μI )−1/2 → ∞. (28)

Due to the repulsive interactions in the considered model the
scaled variance remains finite. On the BEC line, M = μI , one
finds

ω = MT

nI

(
∂M

∂σ

)−1

= μ2
I T

nI

1√
b
(
μ2

I − μ2
c

) , (29)

where μc is given by Eq. (23). The value of ω remains
also finite in a presence of the BC, nbc

+ > 0. In Scenario
II (a > 0), ω exhibits singular behavior at the CP, T = Tc,
μI = μc, where it diverges. A systematic expansion of the
thermodynamic functions in a vicinity of the CP allows us
to obtain the critical exponents. We expect that the critical
exponents of the considered system are different from those in
the mean-field class universality. This is due to the presence
of the two order parameters, nl

I − ng
I > 0 and nbc

+ > 0, which
disappear simultaneously at the CP (see, e.g., Ref. [64]). A
detailed discussion of this subject is, however, outside of the
scope of the present study.

Scaled variance. The behavior of the scaled variance ω

in the plane of temperature and isospin chemical potential
is shown in Fig. 4. In Scenario I (pure repulsion), ω is a
continuous function, in particular across the BEC boundary
[see Fig. 4(a)]. In Scenario II (full potential), on the other
hand, ω exhibits a jump discontinuity over the FOPT line and
becomes divergent at the CP [Fig. 4(b)]. It is still a continuous
function across the BEC line, however.

Note that, in the limit a → 0 (Scenario I), the CP ap-
proaches Tc → 0 and μc → mπ . Therefore, the point μI =
mπ at zero temperature retains some of the properties of the
CP and exhibits large fluctuations in its vicinity. One can
observe ω of any magnitude in the vicinity of this point,
the exact magnitude depending on the path of approach. In
particular, approaching this point along the BEC line one finds
ω → ∞ at T → 0.

Skewness. The skewness Sσ for Scenarios I (a = 0) and
II (a > 0) is shown in Figs. 5(a) and 5(b), respectively. At
small μI 	 mπ , where the pion densities are small, both the
pion interactions and Bose statistics effects can be neglected;
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FIG. 4. The scaled variance of the isospin charge fluctuations of the pion matter in the (μI/mπ , T/mπ ) plane is shown for (a) the pure
repulsion case (Scenario I) and (b) the full potential case (Scenario II). Colors show values of the scaled variance. Dashed lines correspond to
the onset of the BEC. Black solid lines correspond to the first-order phase transition. The CP is marked by the green star.

thus, Sσ ≈ 1. The skewness attains positive values in those
regions of the phase diagram where there is no BC. Sσ is
discontinuous along the BEC line, jumping from positive val-
ues outside the BEC phase to negative values in the phase with
a BC. The above observations are valid for both scenarios. In
Scenario II (a > 0) Sσ shows singular behavior at the CP. The
skewness can reach both −∞ and +∞ at the CP depending
on the path of approach. When crossing the FOPT in Scenario
II Sσ undergoes a jump discontinuity.

Kurtosis. κσ 2 is presented in Fig. 5. In both the scenar-
ios it also always attains positive values everywhere on the
phase diagram. Kurtosis can strongly deviate from the base-
line κσ 2 = 1 of an ideal Boltzmann gas. This is due to the
presence of interactions and Bose statistics. The largest values
of the kurtosis are generally obtained in the vicinity of the
BEC line. The kurtosis exhibits a nonmonotonic behavior as
a function of μI at both the BEC line and the FOPT line,
where it jumps down as μI is increased. κσ 2 is an increasing
function of μI elsewhere on the phase diagram. The values
of κσ 2 remain large even far away from the CP and the Bose
condensation boundary. This is due to its large sensitivity to
interactions in the system. κσ 2 diverges at the CP. The model
does not predict negative values of κσ 2 anywhere on the phase
diagram. This is in contrast with the universal behavior of
fluctuations in the Ising model [65,66], as well as various
model calculations [67–71], where negative values of κσ 2 are
observed in the so-called analytic crossover region above the
critical temperature. In the present work the negative values
of κσ 2 are not observed because of the Bose-Einstein con-
densation. The BEC-line, which itself corresponds to a phase
transition of a higher order, crosses the CP, thus no region

in the vicinity of the CP can be identified as an analytic
crossover.

We would like note that κσ 2 exhibits a singular behavior
also in Scenario I (a = 0), at a point (T = 0, μI = mπ ) [see
Fig. 5(c)]. Approaching this point along the BEC line, one
finds κσ 2 → ∞ at T → 0.

In the present work we do not discuss the behavior of
fluctuations inside the mixed phase of the FOPT. These fluc-
tuations can be addressed by using the method developed in
Ref. [72] and will be the subject of a future study.

IV. SUMMARY

We studied the thermodynamic properties of interacting
pion matter in the framework of a mean-field model with a
φ4-φ6-type Lagrangian. The phase structure has been studied
at nonzero isospin chemical potential μI that corresponds
to the conserved third component of isospin. Parameters of
the repulsive and attractive interactions were fixed using lat-
tice QCD data on the isospin density as the function of the
chemical potential μI at zero temperature. The lattice data
can be reasonably fit within the two qualitatively different
scenarios: Scenario I with only repulsive interactions, and
Scenario II with both repulsive and attractive interactions. In
both scenarios a phase with a Bose condensate of π+ pions
was found to occur at sufficiently large μI , the transition
between ordinary pion matter and matter with a BC taking
place along the so-called BEC lines. The presence of the
attractive interactions in Scenario II leads, in addition to the
BEC, also to a first-order liquid-gas phase transition of pions
with a CP at Tc ≈ 0.369mπ and μc ≈ 0.991mπ . A notable
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FIG. 5. (a), (b) The skewness and (c), (d) kurtosis of the isospin charge fluctuations in (μI/mπ , T/mπ ) are shown for (a), (c) the pure
repulsion case (Scenario I) and (b), (d) the full potential case (Scenario II).

qualitative feature of the model, present for a broad range of
values of parameters a and b, is the fact that the BEC line
merges with the FOPT line at the CP. The system is character-
ized by two order parameters: (i) the difference nl − ng > 0
between the liquid and gas phase densities corresponds to the
liquid-gas transition; (ii) the density nbc

+ of the Bose condensed
π+ pions that characterizes the BEC transition. This makes
the model qualitatively different from the usual systems with
a CP and FOPT, where only a single order parameter is
present.

The susceptibilities of isospin charge fluctuations up to the
fourth order studied in the paper can serve as a robust ob-
servable to distinguish between the two different scenarios. In
the both scenarios, the scaled variance ω = χ2/χ1, skewness
Sσ = χ3/χ2, and kurtosis κσ 2 = χ4/χ2 remain finite on the

BEC line. This happens due to the repulsive interactions in the
pion system, in contrast with the ideal pion gas where these
measures become infinite on the BEC line. All three fluctua-
tion measures demonstrate anomalous properties approaching
the CP: ω → ∞, κσ 2 → ∞, and Sσ can reach both +∞ and
−∞ depending on a path to the CP. Note a significance of the
higher-order susceptibilities (e.g., skewness and kurtosis fluc-
tuation measures) which are highly sensitive to a presence of
the CP. In Scenario I the CP is absent. In this case the anoma-
lous fluctuations take place in the point T = 0 and μI = mπ .
Approaching this point, ω and κσ 2 can reach any value from
0 to ∞, and Sσ can reach any value between −∞ and +∞
depending on a path to the (μI = mπ , T = 0) point. The
susceptibilities χi can be computed in lattice QCD, which are
free of the sign problem at finite μI . Analysis of their behavior
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can be used to establish a point (region) of anomalously large
fluctuations. Determining whether this point corresponds to
zero or finite temperatures will allow us to distinguish be-
tween Scenarios I (T =0) and II (T =Tc > 0). Besides, there is
a qualitative difference in the behavior of the scaled variance
ω near T = 0 in Scenario I and near T = Tc in Scenario II:
ω → ∞ at T → Tc in Scenario II, and ω can reach any value
from 0 to ∞ depending on the path of approaching to T = 0 in
Scenario I.

The results obtained in this paper can be used in sys-
tems where the pion densities are large and a BC of pions
may occur. This can happen, for example, in heavy-ion or
proton-proton collisions where the pion condensation may
occur as a chemical nonequilibrium effect. Other possi-
bilities include pion stars as well as the Early Universe
which may have passed through a pion-condensed phase

if the lepton flavor asymmetries during its evolution were
large.
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