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Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental

disorders of an unclear etiology, and no cure currently exists. Prior studies have

demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain

displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred

to simply as BTBR) display deficits in social functioning, lack of communication ability,

and engagement in stereotyped behavior. Despite extensive behavioral phenotypic

characterization, little is known about the genes and proteins responsible for the

presentation of the ASD-like phenotype in the BTBR mouse model. In this study,

we employed bioinformatics techniques to gain a wide-scale understanding of the

transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR

mice. We found a number of genes and proteins to be significantly altered in BTBR

mice compared to C57BL/6J (B6) control mice controls such as BDNF, Shank3, and

ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified

distinct functional pathways altered in BTBR mice compared to B6 controls that have

been previously shown to be altered in both mouse models of ASD, some human

clinical populations, and have been suggested as a possible etiological mechanism

of ASD, including “axon guidance” and “regulation of actin cytoskeleton.” In addition,

our wide-scale bioinformatics approach also discovered several previously unidentified

genes and proteins associated with the ASD phenotype in BTBR mice, such as

Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic

targets for ASD are uncovered. As a result, we believe that informed use of synergistic

bioinformatics applications represents an invaluable tool for elucidating the etiology of

complex disorders like ASD.
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INTRODUCTION

Autism spectrum disorders (ASDs) are complex
neurodevelopmental disorders characterized by altered
functionality across two symptom domains: (1) social and
communication deficits; and (2) stereotyped repetitive behaviors
with restricted interests (American Psychiatric Association,
2000). Currently, more than 1 in 100 children in the United
States are diagnosed with an ASD (Nazeer and Ghaziuddin,
2012); therefore, understanding the origins of these disorders is
a pressing health concern. Gene mutations have been found to
play a large role in the onset of ASD (Abrahams and Geschwind,
2008). Yet while the heritability of ASD is high (nearly 90%
by some estimates; Santangelo and Tsatsanis, 2005), genetic
mutations known to result in the appearance of the ASD
phenotype have been identified in only 30% of all ASD cases
(Sakai et al., 2011). While several potential causes of ASD have
been suggested (Chugani, 2004; Geschwind and Levitt, 2007;
Pizzarelli and Cherubini, 2011; Zou et al., 2011; Choudhury et al.,
2012), the exact etiology of ASD has yet to be elucidated (Persico
and Bourgeron, 2006; Abrahams and Geschwind, 2008).

Given the heterogeneous nature of ASD, mouse models have
proven to be particularly useful and reliable in elucidating the
etiology of these disorders (Ey et al., 2011; Spooren et al., 2012;
Tsai et al., 2012; Silverman and Crawley, 2014). One strain in
particular, called the black and tan, brachyury, has been shown
to be an especially relevant animal model of ASD (Bolivar et al.,
2007; Moy et al., 2007). BTBR T+ Itpr3tf/J is an inbred strain
of the black and tan, brachyury mice. This inbred strain has
not only been useful in ASD research, but has been used as a
model for type 2 diabetes (Clee et al., 2005), due to its natural
insulin resistance. Extensive behavioral characterization of the
BTBR mouse model has revealed low sociability compared to
C57BL/6J (B6) mice (Bolivar et al., 2007; McFarlane et al., 2008).
B6 is a standard inbred strain that shows normal social behaviors
and low repetitive behaviors and is, therefore, frequently used
as a good control comparison to BTBR (Bolivar et al., 2007;
Moy et al., 2007, 2008; McFarlane et al., 2008; Pobbe et al.,
2010; Defensor et al., 2011; Pearson et al., 2011; Scattoni et al.,
2011, 2013; Wöhr et al., 2011; Silverman et al., 2012, 2015).
Many other hallmark symptoms of ASD have also been observed
in the BTBR mouse; moreover, behavioral phenotypes that are
representative of both ASD symptomatic domains, including low
sociability compared to B6 strains (Bolivar et al., 2007; Moy et al.,
2007), resistance to change (Moy et al., 2007, 2008), increased
display of repetitive self-grooming behavior (Pobbe et al., 2010),
display of other repetitive behaviors (Pearson et al., 2011), and
reduced display of territorial scent marking (Wöhr et al., 2011).
Furthermore, unusual vocalizations have also been extensively
characterized in BTBRmice (Scattoni et al., 2008, 2011), as well as
instances of social avoidance and gaze aversion (Defensor et al.,

Abbreviations: Agk, acylglycerol kinase; ASD, autism spectrum disorder; B6,

control mice; BTBR, black and tan, brachyury; GIP, gastric inhibitory polypeptide;

IPA, ingenuity pathway analysis; iTRAQ, isobaric tags for relative and absolute

quantification; KEGG, Kyoto Encyclopedia of Genes and Genomes; LSI, Latent

Semantic Indexing; PCR, polymerase chain reaction; Rock2, Rho-associated

coiled-coil containing protein kinase 2; Wfs 1, Wolframin syndrome 1.

2011). While the autistic-like behavioral phenotype of the BTBR
mouse has been studied intensively, and preliminary genetic
investigations of the differences between BTBR and B6 have been
reported (McFarlane et al., 2008; Jones-Davis et al., 2013; Jasien
et al., 2014), the precise transcriptomic and proteomic brain
alterations underlying some of these ASD behavioral phenotypes
remain unclear.

The specific genomic and transcriptomic mediators of the
autistic phenotype are only now being revealed (Jones-Davis
et al., 2013; Jasien et al., 2014). To enhance our understanding
of the BTBR mouse strain and to gain further insight into the
underlying mechanisms of ASD, we conducted transcriptomic
and quantitative proteomic analyses on cortical and hippocampal
tissues collected from BTBR mice, since these two brain regions
have been strongly associated with ASD (Mundy, 2003; Nadler
et al., 2006).

MATERIALS AND METHODS

Animal Care and Tissue Collection
All experimental animal procedures were approved by the
Animal Care and Use Committee of the National Institute
on Aging. All mice used were either male BTBR T+Itprtf/J
mice (4 months of age) or male control B6 C57BL6J mice (4
months of age) which were housed in the National Institute of
Mental Health animal facility on a 12-h light and dark cycle
from 6 a.m. to 6 p.m. Animals received food and water ad
libitum throughout the duration of the study. Animals were
euthanized using isoflurane anesthesia at 4 months of age
and whole hippocampal and cortical tissues were collected by
microdissection on a pre-chilled (4◦C) metal plate performed by
a trained researcher. Body weight data was collected immediately
prior to euthanization for each animal. To prepare tissues for
further analyses (protein or microarray) hemi hippocampi or
cortices were further sliced on the pre-chilled plate using a pre-
chilled sterile razor blade to generate a crude tissue homogenate.
These tissues were subsequently snap frozen on dry ice and
stored at−80◦C until used for further analyses. Trunk blood was
collected from each animal, blood was centrifuged at 3000 rpm
for 30min at 4◦C and plasma was subsequently collected. Animal
care and experimental procedures followed NIH guidelines and
were approved by the National Institute on Aging Animal Care
and Use Committee (protocol numbers 432-LCI-2015, and 433-
LCI-2015).

Identification and quantification of
significantly Altered genes
RNA was isolated from microdissected hippocampus and cortex
from three individual animals in each experimental group (B6
control and BTBR, hippocampus and cortex) using a Qiagen
RNeasy mini kit according the manufacturer’s instructions
(Qiagen, Inc., Valencia, CA). Therefore, three individual arrays
for both cortex and hippocampus were performed for each
genotype, BTBR and B6 control. Total RNA was used to generate
biotin-labeled cRNA by using the Illumina TotalPrep RNA
Amplification Kit (Ambion; Austin, TX, cat #IL1791). A total
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of 0.75µg of biotin-labeled cRNA was hybridized at 58◦C for
16 h to Illumina’s Sentrix MouseRef-8 Expression Bead-Chips
(Illumina, San Diego, CA). The arrays were washed and blocked,
and the labeled cRNA was detected by staining with streptavidin-
Cy3. The arrays were scanned with an Illumina BeadStation
500×Genetic Analysis Systems scanner and the image data were
extracted using the Illumina BeadStudio software, Version 3.0.
Microarray data were analyzed using DIANE 6.0, a spreadsheet-
based microarray analysis program based on the SAS JMP7.0
system. Raw microarray data were subjected to filtering and z
normalization and tested for significant changes as described
previously (Jin et al., 2012). In brief, average values of the
replicate spots of each transcript on the microarray were
normalized by global normalization. The correction factor was
calculated by dividing the sum of intensities of each sample
by the average of all the samples. The normalized values were
calculated by multiplying average intensities of each mRNA with
the correction factor. Raw intensity data for each experiment
were transformed to log10, and used for the calculation of Z-
scores. Significant changes in mRNA expression were calculated
in the form of Z-ratios and/or Z-test values, by using Z-score
values in all calculations. Z-ratios constitute a measure of the
change in transcript expression of a given gene from control
group value, expressed in units of standard deviation from the
average change of all genes for that comparison. The Z-ratio
is a measure of fold change between comparisons, and the p-
values test for reproducibility of the intensity of a gene among
biological replicate arrays: Z-ratio (between condition A and
B) = z(A) - z(B)/SD deviation). Remaining genes were analyzed
by Two-way ANOVA to establish the statistical significance of
differential levels of expression between ages and genotypes
(p < 0.05). Comparisons between Z-ratios test for equivalence of
significant changes between the BTBR groups and the control B6
groups. All transcript expression changes were assessed through
comparison with control samples. A Z-ratio value of ± 1.50
and/or a Z-test value p < 0.05 were the significance thresholds
used in this study. Significantly-regulated transcripts were then
refined by calculating the false discovery rate, which controls
for the expected proportion of falsely rejected hypotheses, and
including only those genes with false discovery rate <0.05.
Hierarchical clustering and principal component analysis was
performed with the software package DIANE 6.0, a spreadsheet-
based microarray analysis program based on the SAS JMP7.0
system.

Signaling Pathway Bioinformatics Analysis
Functional signaling pathway analyses were used to analyze
significantly regulated transcript and protein data sets from
the control (B6) and BTBR mice. KEGG pathway analysis
was performed using WebGestalt (http://bioinfo.vanderbilt.edu/
webgestalt/) software, as previously described (Zhang et al., 2005;
Wang et al., 2013). Canonical signaling pathway analysis was
performed using Ingenuity Pathway Analysis (IPA). Inclusion
criteria were set as follows: pathway groups needed to meet
a minimum population of two transcripts/proteins from the
input experimental set, and also needed to possess a probability
significance of enrichment compared to a control background

dataset of less than 0.05 (hypergeometric test of significance).
For Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, the degree of enrichment R was calculated
and expressed as a hybrid score as follows: R = O/E where
O is the observed gene number and E is the expected
gene number in the KEGG pathway. P-values were assigned
to pathways with R > 1 to indicate the significance of
enrichment. For IPA canonical pathway analysis, the enrichment
probability (expressed as a negative log10 of the probability)
and enrichment ratio are indicated in the specific data tables
and represent the direct primary output of the full signaling
mode (Metabolic and Cellular Signaling) of pathway analysis.
In addition, Venn diagrams were also constructed to identify
common and uniquely altered genes between hippocampus and
cortex, using VennPlex (Cai et al., 2013). Word frequency
analysis was performed with the online WriteWords application
(www.writewords.org.uk/word_count.asp).

Latent Semantic Indexing Analysis
Latent semantic indexing (LSI)-based GeneIndexer analysis was
performed as previously described (Chadwick et al., 2010). Hence
we used GeneIndexer software (www.computablegenomix.com,
Memphis, TN) to rank genes/proteins based on relevancy
to the input keyword queries using functional information
in Medline (Homayouni et al., 2005). GeneIndexer contains
over 2 million Medline abstracts corresponding to over
21,000 mammalian genes. GeneIndexer extracts both explicit
and implicit gene/protein-to-keyword relationships from
the literature using an information retrieval model called
LSI (Homayouni et al., 2005; Roy et al., 2011; Chen et al.,
2013a). This model ranks genes according to the strength of
the association with the keyword query, whereby a score >

0.2 typically indicates an explicit association (e.g., the word
actually appears in the gene abstracts) and a score between 0.1
and 0.2 typically indicates an implicit functional relationship
(Homayouni et al., 2005). In brief, experimentally-derived
gene symbol lists (from either hippocampus or cortex) were
uploaded into GeneIndexer. Using LSI, GeneIndexer then
correlates the strength of association between specific factors
(genes/proteins) in these datasets with user-defined interrogation
terms (“autism,” “autistic disorder,” “autistic spectrum disorder,”
“ADHD,” “ASD,” “obsessive”). Genes/proteins with a significant
correlation (value > 0.1) were extracted and labeled (according
to their experimentally-derived identified expression pattern,
i.e., BTBR vs. B6 control) as either elevated (red) or decreased
(green). Textrous!-based natural language processing analysis
was performed, as previously described (Chen et al., 2013b).
Essentially, Textrous! can perform the inverse function of
GeneIndexer by deriving significantly correlated natural
language nouns semantically-linked in multiple biomedical
databases (PubMed Central Abstracts (http://www.ncbi.nlm.
nih.gov/pubmed/) including Online Mendelian Inheritance
in Man (http://www.omim.org/) and Jackson Laboratories
Mouse Genomatics Mammalian Phenotypes Database (http://
www.informatics.jax.org/searches/MP_form.shtml). Textrous!
possesses two modes of dataset analysis: (1) “collective,” in which
words correlating to all of the input data are derived; and (2)
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“individual,” in which the strongest individual input data-noun
correlations are reported.

Real-time Polymerase Chain Reaction
Analysis
Real-time polymerase chain reaction (PCR) analysis was
performed, as previously described (Shin et al., 2008). Briefly,
total RNA was extracted from the microdissected (from three
mice on each genotype) mouse hippocampus and cortex
using TRIzol reagent and reverse-transcribed into cDNA using
SuperScript™ First-Strand Synthesis System (Invitrogen, Grand
Island, NY). Next, PCR was carried out using gene-specific
primer pairs and SYBR Green PCR master mix (Applied
Biosystems, Foster City, CA) in an ABI Prism 7000 sequence
detection system (Applied Biosystems). The amplification
conditions were 50◦C (2min), 95◦C (10min), and then 40 cycles
at 95◦C (15 s) and 60◦C (1min). The data were normalized
to glyceraldehyde-3-phosphate dehydrogenase (Gapdh) mRNA.
All real-time PCR analyses are represented as the mean ±

S.E. from at least three independent animal experiments, each
performed in triplicate. Primers used were: 5′- TCATACTTC
GGTTGCATGAAGG-3′ and 5′- AGACCTCTCGAACCTGCC
C-3′ for BDNF; 5′- GAAACACCAGCACTATGATTGGA-3′ and
5′- ATTCCCGTAAACTCCCCTGTG-3′ for Pak1; 5′- ATTTGT
CCCAATGTCTGCGAA -3′ and 5′- TGGCTATCTTGGCTA
TAAAGGGG -3′ for Serpina3n; 5′-TCTGACTTTCCTTGCCTG
GT-3′ and 5′-ATTCAGGTCTCGTTGGCATC-3′ for Cort; 5′-
GAAGTTCGCCTGCTTTGAAC-3′ and 5′-CTGCCACAAATG
TCACAACC-3′ for Slc25a3.

Western Blotting Protein Expression
Analysis
Microdissected hippocampal and cortical tissues (n = 4 B6
controls, n = 4 BTBR) were fractionated using the Qproteome™
Cell Compartment Kit according to the manufacturer’s
instructions (Qiagen, Valencia, CA). Protein extracts were
quantified using BCA reagent (ThermoScientific, Rockford,
IL) before one-dimensional mass-based resolution. Specifically
protein extracts (containing 15µg of total protein) were
resolved on 4–12% Bis-Tris polyacrylamide gels (Invitrogen,
Carlsbad, CA) before electrotransfer to a polyvinylenedifluoride
(PVDF) membrane (Perkin Elmer, Waltham, MA). PVDF
membranes were blocked for 1 h at room temperature in
4% non-fat milk (Santa Cruz Biotechnology, Santa Cruz,
CA) before immunoblotting. Specific primary antisera were
obtained from the following sources: Actin (Sigma Aldrich,
St. Louis, MO), Stxbp1 (Sigma Aldrich, St. Louis, MO),
Rock2 (Abcam, Cambridge, MA), Tom1I2 (Sigma Aldrich,
St. Louis, MO), Agk (Novus Biologicals, Littleton, CO), and
Gap43 (Abcam, Cambridge, MA), Arl1 (Proteintech Group,
Inc., Chicago, IL) Detection of primary immune complexes
were performed with subsequent application of a 1:10,000
dilution of an alkaline phosphatase-conjugated, species-
specific secondary antibody (Sigma Aldrich, St. Louis, MO)
followed by enzyme-linked chemifluorescence (ECF) exposure
(GE Healthcare, Pittsburgh, PA) and digital quantification

using a GE Amersham Molecular DynamicsTyphoon
9410 Phosphorimager with ImageQuant 5.2 L software (GE
Healthcare, Pittsburgh, PA). ECF band intensity was measured
as fluorescent units minus background per square pixel
((FU-B)/px2).

Isobaric Tags for Relative and Absolute
Quantification Mass Spectrometry
Isobaric tags for relative and absolute quantification (iTRAQ)
mass spectrometric quantification was performed, based
on a modified protocol to that described previously (Hu
et al., 2006). Briefly, iTRAQ isobaric mass tags and labeling
reagents were obtained from Applied Biosystems (Carlsbad,
CA). BTBR and B6 tissue samples (n = 4 BTBR and n = 4
B6 control) were treated in parallel throughout the labeling
procedure. Hippocampal tissues were fractionated using
the Qproteome™ Cell Compartment Kit according to the
manufacturer’s instructions (Qiagen, Valencia, CA). Protein
extracts representing the cytosolic compartment were used
primarily for subsequent proteomic and immunoblotting
analyses. This compartment was chosen as it represents the
most diverse cellular compartment and therefore the most
likely to yield information pertaining to as many molecular
signaling processes as possible. These protein extracts were
quantified using BCA reagent (ThermoScientific, Rockford,
IL). The general iTRAQ labeling protocol consists of: protein
reduction and cysteine blocking, protein digestion via trypsin,
peptide labeling with iTRAQ reagents, sample combination,
strong cation exchange chromatography, desalting with solid
phase extraction, and liquid chromatography with tandem
mass spectrometric analysis. Briefly, to create our two control
iTRAQ samples, 75µg of protein from two B6 control mice
were pooled to and then were designated to be labeled with the
114 mass iTRAQ label mixture—the same procedure using the
pooling of two additional separate 75µg B6 control protein
samples was performed to create the second 115 control mass
iTRAQ label mixture. In a similar manner the protein extracts
from four BTBR mice were evenly distributed into the 116
and 117 mass iTRAQ label groups. Hence the four individual
150µg protein extracts from each mouse genotype (control
B6 114, 115—BTBR 116, 117 iTRAQ labels) were acetone
precipitated and resuspended in 20µL of iTRAQ dissolution
buffer [0.5M triethylammonium bicarbonate (TEAB), ABSciex]
containing 0.1% ProteaseMAX detergent (Promega) to denature
the proteins. The sample was then reduced by adding iTRAQ
Reducing Reagent [Tris(2-carboxyethyl) phosphine (TCEP),
ABSciex] to a final concentration of 5mM and incubated
at 60◦C for 1 h. Subsequently, the sample was alkylated
with iTRAQ Cysteine-Blocking Reagent [10mM methyl
methanethiosulfonate (MMTS), ABSciex] for 10min at
room temperature. The protein samples were then digested
with 5µg sequencing-grade trypsin (Promega) per 100µg
protein at 37◦C overnight. Labeling of the samples with
iTRAQ labels was performed at room temperature for 2 h.
After labeling, the samples to be compared were mixed
and underwent an off-line strong cation exchange (SCX)
fractionation (ICAT Cation Exchange Buffer Pack, ABSciex)
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to 16 fractions to reduce input MS sample complexity. After
reversed-phase desalting (C18 tips, Pierce Biotechnology),
the samples were re-constituted in water with 0.1% formic
acid, then stored at −20◦C until LC/MS/MS analysis. Western
blotting procedures for validation were performed using the
same individual protein lysates employed for initial iTRAQ
labeling.

LC/MS/MS Analysis
Samples were analyzed using an Eksigent NanoLC Ultra 2D
(Dublin, CA) and Thermo Fisher Scientific LTQ Orbitrap XL
(San Jose, CA). In brief, peptides were first loaded onto a trap
cartridge (Agilent), then eluted onto a reversed phase PicoFrit
column (New Objective, Woburn, MA) using a linear 120min
gradient of acetonitrile (2–62%) containing 0.1% formic acid
at 250 nL/min flowrate. The eluted peptides were sprayed into
the LTQ Orbitrap XL. The data-dependent acquisition mode
was enabled, and each FTMS MS1 scan (60,000 resolution) was
followed by 6 MS2 scans (alternating CID at unit resolution and
HCD at 7500 resolution on 3 precursor ions). The spray voltage
and ion transfer tube temperature were set at 1.8 kV and 180◦C,
respectively.

Database Search and iTRAQ quantification
Proteome Discoverer 1.2 (Thermo Fisher Scientific) was used
for protein identification and iTRAQ quantification using
Sequest algorithms. The following criteria were followed:
SwissProt mouse database; enzyme: trypsin; miscleavages: 2;
static modifications: methylthio (+45.988 Da on C), iTRAQ8plex
(+304.205 Da on N-terminus and K); dynamic modifications:
oxidation (+15.995 Da on M), deamidation (+0.984 Da on N
and Q); peptide tolerance as 25 ppm; MS2 tolerance as 0.8 Da.
Peptides reported via all search engines were accepted only if
they met the false discovery rate of 5% and a protein group
identification confidence of 99%. For iTRAQ quantification,
the reporter ion intensities in MS2 spectra (m/z 114–117,
integration width tolerance 50mmu) were used to calculate the
expression ratios among the different conditions (Hippocampus:
WT and BTBR). Initial protein identification lists were then
subjected to additional quality controls. Hence, confidence limits
of acceptable control sample (114, 115 labels) variation from
labeling accuracy were set (as a ratio of 114:115 label) as >0.8
and <1.2. Only proteins identified against such control sample
MS2 spectra were considered for further analysis—quantified
proteins generated from analysis against non-compliant 114:115
ratio samples were discarded. Proteins quantified relative control
levels meeting these criteria were next filtered for 116:(114:115)
or 117:(114:115) ratios outside the following limits, <0.8
and >1.2. Therefore, such proteins were accurately and reliably
and differentially co-identified in the BTBR compared to the
control B6 tissues.

Plasma Hormone Analysis
Plasma insulin, leptin, gastric inhibitory polypeptide (GIP,
total), pancreatic polypeptide (PP), and peptide YY (PYY) were
measured using a Linco-Millipore 5-plex kit (EMD Millipore,
Billerica MA) with a Bio-Plex R© 200 suspension array system

(Bio-Rad, Hercules CA). Blood samples from BTBR or B6 mice
were obtained by exsanguination after the ethical isoflurane
euthanasia process. Whole blood was collected (from n =

3 animals per genotype each) in EDTA-containing vacutainer
tubes (BD Bioscience) to prevent coagulation. Blood was then
centrifuged at 12,500 rpm for 12min at 4◦C and plasma
supernatant was removed and stored at−80◦C. Prior to hormone
assays the appropriate standard curve solutions were set up
for accurate quantitation. Multiplexed hormone analyses were
performed using a 96-well plate format. Briefly, 200µl of
proprietary Assay Buffer is added to each well, the plate is then
shaken for 10min at room temperature before being decanted
off. Then 25µl of either hormone standard or control sample
is added to the appropriate wells. Twenty five microliter of
Assay Buffer is then added to the background and sample
wells. Next 25µl of the appropriate matrix solution is added to
background, standards and control wells followed by the addition
of 25µl of neat samples to the sample wells and then 25µl
of proprietary Linco-Millipore beads to each well followed by
overnight incubation at 4◦C. After incubation the individual
well contents were removed and the wells were washed three
times with 200µl of the proprietary wash buffer followed by
the subsequent addition of 50µl of detection antibodies per
well (insulin, leptin, GIP, PP, and PYY) and incubation for 1 h
at room temperature. Next 50ml of streptavidin-phycoerythrin
was added per well and allowed to incubate for a further
30min at room temperature. Following this well contents
were removed and the wells were washed three times with
200µl of wash buffer. Before quantitation using the Bio-Plex
100µl of proprietary Sheath Fluid was added per well. Each
sample was assayed in duplicate on a 96-well plate. Analysis of
quality control standards provided in the kits met expectations,
validating the accuracy of the panels. In addition to the
metabolic hormone panel plasma corticosterone concentration
was measured using Corticosterone Double Antibody RIA
Kit (MP Biomedicals Solon, OH: # 07120103) according to
manufacturer’s instructions. Samples were run on a Packard
Cobra II Gamma Counter.

Statistical Analysis
Statistical analyses were conducted, with GraphPad Prism v. 5.0,
using a Student’s t-test; p ≤ 0.05 was considered statistically
significant throughout the study. Error bars represent 95%
confidence intervals. All data represent means ± standard error
of the mean.

RESULTS

Significant Alterations in BTBR
Hippocampal and Cortical Gene
Transcription Compared to B6
Microarray analysis was performed on BTBR and B6
hippocampal (Table S1) and cortical tissues (Table S2). Using
k-means hierarchical clustering (Chadwick et al., 2011) we found
that both B6 and BTBR tissues specifically clustered according
to genotype (Figure 1A). In addition to the k-means clustering,
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FIGURE 1 | Significant cortical and hippocampal transcriptomic divergence between BTBR and B6 controls. (A) Heatmap of significantly decreased or

elevated transcripts in cortical and hippocampal tissues from BTBR mice compared to tissues from B6 controls. Green blocks = decreased; red blocks = elevated.

(B) VennPlex diagram of significantly regulated [up- (bold italic), down- (underlined), or contra-regulated (red bold: possessing a diverse expression polarity in different

tissues)] transcripts in hippocampal (black line) or cortical (gray line) tissues. Arrows indicate specific transcripts of interest to autistic phenotypes. RT-PCR-mediated

validation of significantly-regulated hippocampal (C) and cortical (D) transcripts. Histogram white bars represent B6 data and black bars represent BTBR

data.*p ≤ 0.05, **p ≤ 0.01.
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we also performed Principal Component Analysis on all of the
transcriptomic datasets and again demonstrated a strong global
divergence between B6 and BTBR mouse cortex/hippocampus
tissues (Figure S1). With respect to comparing the differences
in BTBR cortex and hippocampal tissues (both compared to
their respective B6 controls) we found, using VennPlex analysis
(Table S3) that there was a strong and coherently-regulated
(i.e., expression polarity retained between tissues) overlap
(65 transcripts co-elevated and 113 transcripts co-decreased)
between the BTBR cortex and hippocampus (Figure 1B). We
performed multiple PCR-based validations on selected transcript
targets (brain-derived neurotrophic factor [Bdnf], p21-activated
kinase type 1 [Pak1], cortistatin [Cort], solute carrier family 25
[mitochondrial carrier; phosphate carrier], member 3 [Slc25a3],
Serpin peptidase inhibitor, clade A [Serpina]: chosen to
represent both elevated and decreased transcripts; Figure 1C—
hippocampus; Figure 1D—cortex). Each of these validations
corroborated our array-based transcriptomic data.

Unbiased Bioinformatics Approaches
Reveal Specific Alterations of Functional
Groups and Molecular Pathways in BTBR
Mice
Following identification of significantly up- or downregulated

transcriptomic alterations, our next step was to determine if

coherent functional groups could be constructed from the BTBR

transcriptomic data and how these then potentially relate to

autistic-related pathophysiology (Figure 2). First, we employed
IPA-based canonical pathway analysis of both the hippocampal
(Table S4) and cortical (Table S5) transcriptomic datasets. As
with the transcript identity analysis (Figure 1B), we found a
considerable functional pathway overlap between the two tissues.
Using a pathway scoring system assessing the proportional up- or
downregulated balance of the populated pathway (positive scores
indicate a high degree of elevated transcripts, negative scores
indicate a high degree of decreased transcripts) we found that

FIGURE 2 | Differential canonical signaling pathway analysis of BTBR-specific hippocampal and cortical transcriptomes. (A) VennPlex representation of

IPA canonical signaling pathway annotation of hippocampal (black line) and cortical (gray line) transcriptomic data (VennPlex numerical set description is as described

in Figure 1). (B) Differential IPA signaling pathway scores (% elevated transcripts in given pathway minus % decreased transcripts in the given pathway).
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many of the common pathways between the hippocampus
and cortex were indeed contra-regulated, suggesting a
functional divergence between these tissues in the BTBR
mice (Figure 2A). Upon inspection of the common signaling
pathways (Figure 2B), it was clear that the BTBR phenotype is
underpinned across both tissues by alterations in neurotrophin
signaling, cytoskeletal alterations, and endoplasmic reticulum
stress. In contrast to the cortex, the BTBR hippocampus appeared
to possess a phenotype characterized by reductions in multiple
receptor signaling systems (ephrin B, G protein beta-gamma
signaling, cholecystokinin/gastrin, and HGF), as well as structural
modifications (FAK signaling and macropinocytosis signaling).
To complement our IPA pathway analysis, we also applied
KEGG pathway annotation (using up- or downregulated datasets
separately) to the BTBR (relative to B6 in each case) hippocampal
(Table S6) and cortical (Table S7) data sets. In accordance with
the IPA analysis, we found a strong overlap (25 pathways)

of signaling pathways significantly populated in both tissues
(Figure 3A). For these common KEGG pathways, we found
that several of these were populated by elevated or decreased
transcriptome datasets in both tissues (metabolic pathways,
protein processing in the endoplasmic reticulum, and regulation of
actin cytoskeleton). Therefore, these pathways indicate a generic
form of pathology across both tissues in the BTBR mice. In
contrast to these bimodal KEGG pathways, many signaling
pathways associated with neural activity were specifically
upregulated (gap junction, long-term depression and potentiation,
Parkinson’s disease, and adherence junction), while the pathways
populated by downregulated transcripts were strongly related to
metabolic stress responses (p53 signaling pathway, peroxisome,
complement and coagulation cascades, and ribosome biogenesis
in eukaryotes; Figure 3B). Our ability to identify functional
groups from our experimental transcriptome datasets strongly
suggests that these functional groups potentially play a role

FIGURE 3 | Differential KEGG pathway analysis of BTBR-specific hippocampal and cortical transcriptomes. (A) VennPlex representation IPA canonical

signaling pathway annotation of hippocampal (black line) and cortical (gray line) transcriptomic data (VennPlex numerical set description is as described in Figure 1).

(B) Differential KEGG pathway population matrix of 25 (A) commonly-controlled pathways between hippocampal and cortical tissues. Differential pathway regulation

(elevated—red; decreased—green) was generated using data from up- or downregulated input transcriptomic sub-datasets.
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in the presentation of the ASD-like phenotype in BTBR mice.
Consequently, bioinformatics can possibly be used to detect
specific functional groups and signaling pathways responsible
for the ASD-like phenotype observed in BTBR mice.

In addition to performing a curated pathway analysis (KEGG
and IPA), we also wished to employ an orthogonal natural
language processing-based informatics approach to more
effectively appreciate the functional phenotypic status of the
BTBRmice. Therefore, we used our previously developed natural
language processing-based platform, Textrous! (Chen et al.,
2013b) in the collective processing mode to generate hierarchical
wordclouds, using natural language nouns extracted from
multiple biomedical text resources (PubMed Abstracts (http://
www.ncbi.nlm.nih.gov/pubmed/) including Online Mendelian
Inheritance in Man (http://www.omim.org/) and Jackson
Laboratories Mouse Genomatics Mammalian Phenotypes
Database (http://www.informatics.jax.org/searches/MP_form.
shtml). The use of freeform quantitative wordclouds to convey
complex non-canonical signaling-activity relationships is
becoming more and more recognized as a novel technique
to investigate high-dimensionality data (Baroukh et al., 2011;
Cheung et al., 2012; Lynch et al., 2015). The hierarchical
wordclouds created using Textrous! collective processing from
the hippocampus (Textrous! output: Table S8) and cortex
(Textrous! output: Table S9) generated an extra level of inference
with respect to the pathological alterations occurring in the
two BTBR tissues (Figures 4A,B). Using the natural language
processing-based Textrous! analysis, it became apparent that
a greater neurotrophic/neurosynaptic phenotype is present
in the hippocampus (Figure 4A). To quantify this finding
from the hierarchical wordclouds, we assessed the nature of
the nouns possessing a greater differential Z- and Cosine
Similarity score in the hippocampus compared to the cortex
(Figure 4C-Z-score: Figure 4D-Cosine Similarity). In both
cases (Figures 4C,D), it became clear that nouns possessing
greater hippocampal Z- and Cosine Similarity scores are tightly
linked to neurosynaptic activity (neurotrophic, brain-derived,
neurotrophins, neuroplasticity, and synapses). To more clearly
crystallize this specific BTBR hippocampal phenotype, we
extracted all the derived nouns and noun-phrases, manually
dismantling them into individual nouns, forming a global textual
cloud (Wordle [http://www.wordle.net/]: word occurrence scores
were calculated using WriteWords [http://www.writewords.org.
uk/word_count.asp]; Table S10). In this cloud structure, the size
of the noun is correlated to the occurrence score measured from
the dismantled noun phrases that are generated using Textrous!
collective processing. Using this gestalt-level of natural language
analysis, in which the impact of every significantly-altered
transcript is considered, it is clear that a profound alteration in
synaptic, memory, and plasticity functions are evident in this
tissue (Figure 4E).

Differential BTBR vs. Control B6
Hippocampal Protein Expression
To further build upon the important transcriptomic differences
in the BTBR hippocampus compared to B6 controls, we
subsequently analyzed overall proteomic alterations in this tissue

using iTRAQ-based quantitative mass spectrometry (Table S11).
Using iTRAQ labeling of control B6 and BTBR hippocampal
tissue we identified and generated iTRAQ ratios for 2907 proteins
common between these two genotypes—from this reliable
expression ratios of proteins expressed differentially expressed in
BTBR mice hippocampi compared to control B6 hippocampi we
found that 101 proteins were elevated and 12 were decreased in
the BTBR hippocampus (Table S11). To exemplify the protein
identification and quantitation process, two representative MS2

spectra (b- and y-ion mediated peptide identification) and
iTRAQ reporter ion quantitative spectra (114, 115, 116, and 117
labels) are displayed in Figure 5A (acylglycerol kinase [Agk]) and
Figure 5B (Rho-associated coiled-coil containing protein kinase
2 [Rock2]). Next, we confirmed our mass spectrometry results
using selective western blots of proteins identified using iTRAQ
as upregulated (syntaxin binding protein 1 [Stxbp1], TOM1-like
protein 2 [Tom1l2], Agk, growth associated protein 43 [Gap43])
or downregulated (Rock2, ADP-ribosylation factor-like 1 [Arl1];
Figures 5C–H). Upon comparing the hippocampal proteins
(Figures 5H–J) and the transcripts (Figures 5K,L) differentially
expressed between BTBR and control B6 mice we found five
factors commonly identified in these two tissues (Figure 5M).

Comparative Transcriptomic and
Proteomic Analysis Reveals Important
Potential Central and Peripheral
Physiological Connectivity in the BTBR
Setting
To further investigate the molecular signaling profile of the
BTBR hippocampus, we cross-analyzed our two different forms
of high-dimensionality data (i.e., transcriptomic and proteomic).
When comparing the identities of differentially-regulated
factors (Figure 6A), we found that the two datasets were
largely distinct aside from four factors: (1) integrin-associated
protein form (Iap); (2) Wolframin syndrome 1 (Wfs1); (3)
nucleoporin 133 (Nup133); (4) transient receptor potential
cation channel, subfamily C, member 4 (Trpc4), which were
higher in both datasets in BTBR compared to B6 mice; and (5)
Slc25a3, which was lower at the transcript level, but upregulated
at the protein level. We also performed both KEGG (Table
S12, Figure 6B) and IPA canonical pathway analyses (Table
S13, Figure 7C) on differential hippocampal BTBR protein
datasets. With respect to the KEGG pathway comparative
analysis (Figure 6B), we found that both datasets resulted in
the population of nine common signaling pathways clustering
in three domains: (1) metabolic (metabolic pathways, protein
processing in endoplasmic reticulum, and RNA transport); (2)
neurodegenerative (Huntington’s disease, Alzheimer’s disease,
and Prion disease); and (3) cellular architecture (regulation of
actin cytoskeleton, endocytosis). Comparing this KEGG analysis
with a similar IPA signaling analysis (Figure 6C), we again found
that multiple pathways, linked again to cytoskeletal activity
(breast cancer regulation by Stathmin 1, rac signaling, and actin
cytoskeleton signaling) and also receptor platform signaling (IL-8
signaling and ephrin B signaling) were significantly populated
by both datasets (transcriptomic and proteomic). In order to
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FIGURE 4 | Textrous!-based hierarchical wordcloud investigation of BTBR-specific hippocampal and cortical transcriptomes. Hierarchical wordcloud

generated using Textrous! Collective Processing of significantly-regulated hippocampal (A) or cortical (B) transcripts. Regional proximity of words within the

hierarchical wordcloud indicates synergistic functions: increased word text size and increased red hue indicates strength of association between words and the

collective contents of the input dataset. Differential Z-score (C) and Cosine Similarity score (D) analysis between words commonly associated with both hippocampal

and cortical input transcriptomic datasets. (E) Specific hippocampal global Collective Processing dismantled noun and noun-phrase word cloud: text size indicates

relative word occurrence score (text color is randomly assigned).

draw stronger links between our empirical high-dimensionality
data and the existing literature corpus related to autism, we then
employed GeneIndexer-based latent semantic-indexing (LSI),
as previously described (Chadwick et al., 2010), to investigate
the relative contribution of individual differentially-altered
transcripts and proteins in the hippocampus of BTBR mice
to the ASD-like phenotype observed in this murine model. In
brief, LSI assesses the strength of correlation between specific
transcripts/proteins to “user-defined” interrogation terms by

performing textual correlations across large scientific abstract
text databases. Using interrogation terms that have been
previously associated with the ASD-like phenotype in the BTBR
mouse and in human clinical cases of ASD (“autism,” “autistic
disorder,” “autistic spectrum disorder,” “ADHD,” “ASD,” and
“obsessive”), we sought to detect strong implicit correlations
with significantly altered transcripts/proteins present in our
empirical hippocampal high-dimensionality datasets. LSI
analysis (transcripts—Table S14; proteins—Table S15) revealed
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FIGURE 5 | iTRAQ- and transcriptomic-based identification and quantification of BTBR-modulated hippocampal proteins. Identification of hippocampal

proteins significantly up-regulated in BTBR mice compared to B6 controls via iTRAQ-based quantitative mass spectrometry. An example of the (A) isolation and

identification of Agk MS2 peptide ions (b daughter ions in red, y daughter ions in blue) and below iTRAQ mass tag reporter ions of Agk peptides found to be elevated

in BTBR mice compared to B6 controls. An example of the (B) isolation and identification of Rock2 MS2 peptide ions (b daughter ions in red, y daughter ions in blue)

and below iTRAQ mass tag reporter ions of Rock2 peptides found to be lower in BTBR mice compared to B6 controls. Western blot validation of alterations in

hippocampal protein expression levels. Validation of alterations in hippocampal protein expression levels in BTBR mice compared to B6 controls via Western blotting.

Validation of mass spectrometric identification of altered protein expression levels of the following proteins: Stxbp1 (C), Tom1l2 (D), Rock2 (E), Agk (F), Gap43 (G),

and Arl1 (H). Protein expression levels were measured as Fluorescent Units-Background fluorescence per square pixel (FU-B/px2) relative to Actin. *p ≤ 0.05,

**p ≤ 0.01, ***p ≤ 0.001. White bars represent B6 data and black bars represent BTBR data. (I) Total hippocampal protein expression variation between BTBR and

control B6 mice. (J) Reliable and differentially-regulated hippocampal proteins between BTBR and B6 mice (red circles indicated upregulated proteins, green circles

indicate downregulated proteins: solid filled circles represent common factors identified at both protein and transcript level). (K) Total hippocampal transcript

expression variation between BTBR and control B6 mice. (L) Reliable and differentially-regulated hippocampal transcripts between BTBR and B6 mice (red circles

indicated upregulated proteins, green circles indicate downregulated proteins: solid filled circles represent common factors identified at both protein and transcript

level). (M) Hippocampal proteins/transcripts commonly identified in both proteomic and microarray analyses. Bars outlined with black lines represent transcriptomic

data and those outlined in blue represent proteomic data.

that many previously identified autism-related factors were
significantly altered in the hippocampus of BTBR mice. The
top 10 most strongly autism-correlating empirically-identified
transcripts/proteins are depicted in a heatmap format in

Figures 6D,E (elevated compared to control = red; decreased
compared to control = green). From the transcript analysis,
we identified the involvement of neurexin 1 (Yangngam et al.,
2014) and Wolframin syndrome 1 (Wfs1; Chakrabarti et al.,
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FIGURE 6 | Latent semantic indexing-based interpretations of hippocampal transcript/protein expression patterns. (A) VennPlex representation of BTBR

transcript (black line) and protein (gray line) hippocampal expression profiles (VennPlex numerical set description is as described in Figure 1). Slc25a3 was found to be

decreased (green text) in the transcript dataset, while elevated (red text) in the protein dataset. Arrows indicate specific transcripts/proteins of interest to autistic

phenotypes. (B) VennPlex representation of BTBR transcript (black line) and protein (gray line) hippocampal KEGG pathway annotation profiles. Arrows indicate

specific KEGG pathways common to both datasets. (C) VennPlex representation of BTBR transcript (black line) and protein (gray line) hippocampal IPA canonical

signaling pathway annotation profiles. Arrows indicate specific KEGG pathways common to both datasets. (D) Latent Semantic Indexing (LSI) interrogation matrix of

significantly-regulated hippocampal transcripts (Top 10 correlating transcripts) extracted using input autism-related search terms (autism—autistic disorder—autistic

spectrum disorder—ADHD—ASD—obsessive). (E) Latent Semantic Indexing (LSI) interrogation matrix of significantly-regulated hippocampal proteins (Top 10

correlating proteins depicted) extracted using input autism-related search terms (autism—autistic disorder—autistic spectrum disorder—ADHD—ASD—obsessive).

Green block = decreased; Red = elevated; black = no correlation identified.

2009). From the protein analysis, we again identified Wfs1 as
a strong autism-related link, Fam120c (De Wolf et al., 2014),
and Bassoon (Bsn; Yoshida et al., 2011). Therefore, the only
factor that was strongly implicated in both the transcriptomic
and proteomic hippocampal BTBR profiles was Wfs1. The Wfs1
protein has long been implicated in the generation of its titular
disease, Wolfram Syndrome, which is an inherited autosomal
recessive neurodegenerative disorder (Inoue et al., 1998; Hardy
et al., 1999; for review see Rigoli et al., 2011) associated with
visual/auditory sensory atrophy and also significant diabetic
pathophysiologies. Since many neurodegenerative phenotypes
are strongly influenced by metabolic activity (Cai et al., 2012;
Janssens et al., 2014; Wang et al., 2014), we investigated whether
the consistent alteration of Wfs1 in BTBR mice was associated
with any systemic metabolic alterations.

Significant Alterations in Body Weight and
Gut and Metabolic Hormones Were Found
in BTBR Mice Compared to B6 Mice
We assessed differences in body weight and plasma
gut and metabolic hormone levels between age/gender-
matched BTBR and B6 mice. BTBR mice were found
to have significantly increased body mass compared to
B6 animals (Figure 7A). Fasting glucose, plasma insulin,
leptin, GIP, peptide YY, pancreatic polypeptide, and
corticosterone levels were also measured (Figures 7B–H).
BTBR mice showed significantly decreased plasma GIP
levels and significantly increased plasma peptide YY and
plasma corticosterone levels compared to B6 animals
(Figures 7E,F,H).
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FIGURE 7 | Significant alterations in body weight, and gut and metabolic hormones in BTBR mice compared to B6 controls. Significant alterations in

body weight, and gut and metabolic hormones in BTBR mice compared to B6 mice. (A) Alterations in body weight in BTBR mice compared to B6 controls. Alterations

in fasting glucose (B), plasma insulin (C), leptin (D), GIP (E), peptide YY (F), pancreatic polypeptide (G), and corticosterone levels (H) in BTBR mice compared to B6

controls. *p ≤ 0.05, **p ≤ 0.01. Histogram white bars represent B6 data and black bars represent BTBR data.

DISCUSSION

Despite the fact that the behavioral phenotype of the BTBR
mouse model of autism has been extensively characterized, the
unusual alleles in the BTBR genetic background that contribute
to its well-replicated social deficits and repetitive behaviors
remain to be determined. In the current study, we have identified
a considerable number of transcriptomic and proteomic changes

in the BTBR mouse model of ASD compared to B6 mice,
which we later validated using iTRAQ, real-time PCR, and
western blotting to confirm altered expression levels (Figures 1,

5). Importantly, many of these significantly altered transcripts
and proteins, as well as downstream targets of these genes and
proteins, have been found to be dysregulated in previous studies

of BTBR mice or the human clinical ASD population. Similar to
what we observed in the current study, deficits in mature BDNF
have been observed in humans with ASD (Sheikh et al., 2010) and
a decrease in BDNF mRNA levels has been observed in young
BTBR mice (Stephenson et al., 2011); mature BDNF levels were
also significantly decreased in the aged BTBR hippocampus and
cortex compared with the aged B6 (Jasien et al., 2014).

MAPK3 alterations have been noted in young BTBR mice
(Zou et al., 2011; Seese et al., 2014), aged BTBR mice (Jasien
et al., 2014), and in the clinical ASD population (Yang et al.,

2013). Mutations of multiple genes that have been previously
identified in autistic patients were found to be altered in BTBR
mice compared to B6 mice, including neurexin 1 (Feng et al.,
2006; Szatmari et al., 2007), REEP3 (Castermans et al., 2007),
DRD1 (Feng et al., 1999; Hettinger et al., 2008), GABRG2 (Blatt
et al., 2001), NOS1AP (Delorme et al., 2010), and NDN (Cai
et al., 2008). Furthermore, we have detected significant alterations
in transcripts that are downstream targets of effectors known
to be dysregulated in the clinical autistic population: Caskin1,
which binds to neurexin 1 (Hsueh, 2006), and HOMER31, which
binds to SHANK1 and SHANK3 (Abrahams and Geschwind,
2008). SHANK3, in particular, is a very important candidate
gene in the ongoing debate of ASD etiology. Known to play a
critical role in synaptic function, multiple studies have linked
alterations in SHANK3 functionality within the ASD phenotype
in a human clinical population (Durand et al., 2007; Bourgeron,
2009). Furthermore, SHANK3 heterozygous mice show deficits
in synaptic function and plasticity, in addition to demonstrating
reduced reciprocal social interactions reminiscent of the ASD
phenotype (Bozdagi et al., 2010; Yang et al., 2012), while SHANK1
knockout mice show reductions in ultrasonic vocalizations
and scent marking behavior (Wöhr et al., 2011). Moreover,
a number of the genes we found to be significantly altered
in the BTBR mouse, while not directly linked to ASD, have
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been implicated in diseases with a similar trajectory: TSC2
(tuberous sclerosis; Persico and Bourgeron, 2006), PAK1 (FXS;
Hayashi et al., 2007), Nr4a2 (Parkinson’s, schizophrenia, and
manic depression; Lybaek et al., 2009), intellectual disability
(Smith et al., 2005), Alzheimer’s disease (Pardo and van Duijn,
2005), Slc6a13 (anxiety disorders; Saus et al., 2010), and Adra2c
(ADHD; Cho et al., 2008). Similarly, there have been instances
in which we have identified genes from the same gene family as
those that have previously been linked to ASD: Slc25a3 (Ramoz
et al., 2004) and CADM3 (Fujita et al., 2010). Slc25a3 was also
found to be altered in the aged BTBR mice compared to the B6
mice (Jasien et al., 2014). With future, more extensive studies
employing greater mice populations there will be the potential
to uncover potential associations between transcript expression
profiles and genomic idiosyncracies within the BTBRT+Itprtf/J
model (Jones-Davis et al., 2013).

While it is important to identify the individual genes
and proteins dysregulated in both animal models of ASD
and in the human clinical population, it is perhaps more
worthwhile, given the interconnected network nature of the
central nervous system, to examine the functional relationships
between multiple coherently-regulated genes and proteins. As
a result, we employed IPA canonical signaling pathway, KEGG
signaling pathway, and Textrous! natural language processing-
based informatics analyses to identify significantly altered
functional groups and pathways in BTBR mice compared
to B6 animals (Figures 2–4, 6). Importantly, many of the
significantly altered functional groups and pathways we have
identified here have also been indicated in previous studies
and, furthermore, have been suggested as a possible etiological
mechanism of ASD, including “axon guidance” (Suda et al., 2011),
“neurogenesis” (McCaffery and Deutsch, 2005), and “regulation
of actin cytoskeleton” (Durand et al., 2012). Our previous
informatics analyses of aged BTBR hippocampi demonstrated
a strong bias toward degenerative phenotypes associated with
calcium management factors and metabolic instabilities (Jasien
et al., 2014).

We believe that the rational application of combinatorial
informatic approaches are capable of detecting signaling
pathways associated with the ASD-like phenotype, in addition
to individual transcriptomic and proteomic alterations that
contribute to the ASD-like phenotype generation. Similarly the
altered metabolic phenotype we observed in the BTBR mice,
potentially associated with Wfs1 expression modulation, have
been corroborated in the past, with BTBR mice having increased
insulin resistance and higher fasting insulin levels (Rabaglia et al.,
2005; Flowers et al., 2007). Increased corticosterone levels have
also been found in BTBR mice compared to B6 controls (Frye
and Llaneza, 2010; Silverman et al., 2010). Notably, Wolfram
Syndrome, also known as DIDMOAD (diabetes insipidus,
insulin-deficient diabetes mellitus, optic atrophy, and deafness),
has been strongly associated with significant disruptions
in endoplasmic reticulum functionality (Figure 7B, “protein
processing in endoplasmic reticulum”), membrane trafficking
(Figure 7B, “endocytosis”), and calcium homeostasis (Krey and
Dolmetsch, 2007). In using wide-scale bioinformatics techniques
on an animal model in which the ASD-like phenotype has

already been extensively characterized, we aimed to identify the
genes and proteins responsible for the presentation of ASD-
like phenotypes in this inbred strain mouse model. Given the
similarity in presentation of symptoms in BTBR mice compared
to the clinical ASD population, we hoped to discover similar
parallels between relevant genes and proteins that could be
extrapolated to a human clinical population. We hoped that
these approaches would lead to the identification of previously
undiscovered potential causes of ASD. Given the many links to
current clinical literature, we believe that bioinformatics offers
specific advantages into the etiology of ASD that studying the
pure behavioral phenotype of the BTBR mouse, or genetic
mutations in specific ASD families, in and of themselves do
not. The first advantage bioinformatics offers is simply the
sheer wealth of data gained from genome-wide studies, which
allows for a more complete analysis. Second, using unbiased
bioinformatics approaches can lead to the discovery of previously
unidentified connections, such as our discovery that Caskin1
is significantly altered in BTBR mice. Uncovering previously
unknown transcriptomic or proteomic changes associated with
the ASD-like phenotype has the potential to lead to novel
therapeutic targets for the treatment of ASD. Several groups that
have already discovered the merit of wide-scale transcriptomic
and proteomic studies have produced complex interactomes
that offer a more complete disease profile of ASD (Sakai
et al., 2011; Voineagu et al., 2011). In order to ultimately
succeed in characterizing the etiology of ASD and subsequently
develop effective and targeted therapeutics for these disorders,
we believe that bioinformatics and similar wide-scale approaches
to studying disease etiology are indispensable avenues of study.
Finally, due to the fact that our quantitative transcriptomic
and proteomic analyses were strongly correlated with previous
literature, we believe it is possible to predict complex behavioral
phenotypes from bioinformatics analyses alone. To this effect, we
hope that our study and other similar examinations will offer new
directions for uncovering the etiology of ASD and its potential
therapies.
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Figure S1 | Principal component analysis of murine transcriptomic data.

(A) The three-dimensional Principal component analysis (PCA: using SAS JMP® )

chart indicates the relative spatial positions of the transcriptomic data (expressed

as z-scores) obtained from the cortex and hippocampus of control B6 mice

(n = 3, B6-1, B6-2, and B6-3) and their BTBR counterparts (n = 3, BTBR-1,

BTBR-2, and BTBR-3). The specific PCs (x, y, and z: %) for the overall analysis are

indicated in to the right of three-dimensional plot. Essentially, a strong genotype

clustering is observed between B6 controls and BTBR, as well as a considerable

spatial separation between cortical and hippocampal tissues in each murine

genotype group.
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