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Rates of hospital-acquired infections, specificallymethicillin-resistant
Staphylococcus aureus (MRSA), are increasingly being used as indi-
cators for quality of hospital hygiene. There has beenmuch effort on
understanding the transmission process at the hospital level; how-
ever, interhospital population-based transmission remainspoorly de-
fined. We evaluated whether the proportion of shared patients
between hospitals was correlated with genetic similarity of MRSA
strains from those hospitals. Using data collected from 30 of 32 hos-
pitals in Orange County, California, multivariate linear regression
showed that for each twofold increase in the proportion of patients
shared between 2 hospitals, there was a 7.7% reduction in genetic
heterogeneity between the hospitals’ MRSA populations (permuta-
tion P value = 0.0356). Pairs of hospitals that both served adults had
more similar MRSA populations than pairs including a pediatric hos-
pital. These findings suggest that concerted efforts among hospitals
that share large numbers of patients may be synergistic to prevent
MRSA transmission.

Methicillin-resistant Staphylococcus aureus (MRSA), one of
themost common and virulent nosocomial pathogens, is also

an increasingly important cause of community-acquired disease.
MRSA strains, particularly those associated with hospitals, are
often resistant to multiple antibiotics, limiting treatment options.
S. aureus is carried asymptomatically in∼30% of healthy adults and
is shown to be amajor cause of invasive disease among hospitalized
patients (1); MRSAmakes up a growing proportion of nosocomial
S. aureus infections in many countries. The circulation of a small
number ofMRSA clones that characterizes the current epidemic is
thought to be mainly the result of between-patient transmission
rather than de novo appearance of resistance in patients exposed to
antibiotics (2), because the appearance of a new MRSA strain
requires acquisition of a mec resistance element, a relatively rare
event. The level of genetic variation occurring in S. aureus within
identifiable clonal lineages allows the use of genetic markers to
track transmission of these lineages and sublineages (3, 4).
The prevalence of MRSA varies considerably both within and

between countries (5, 6). About 30% of the S. aureus causing
bloodstream infections is methicillin resistant in the United King-
dom, whereas that proportion is ∼1% in The Netherlands and
Scandinavian countries (7). Among countries with high endemic
MRSA infection rates, the proportion is highest in large teaching
hospitals (6, 8), where the highest frequency of new emerging
MRSA clones has also been reported (9–12). The proposed reasons
include increased antibiotic use and increased prevalence of med-
ical procedures and serious medical conditions associated with
MRSA acquisition and disease (13). BecauseMRSA can be carried
asymptomatically for a long time (14), readmission could introdu-
ce a previously acquired strain into a newhospital (15). Thus, failure
of one hospital’s infection control could in principle affect the
prevalence of MRSA in other hospitals that share patients with it
(16). Previous studies have suggested that patient transfer or patient
referral patterns (17) could affect the prevalence of MRSA in
hospitals (1, 2, 16, 18, 19), on the basis of theoretical arguments and

observations that clones of MRSA appear in neighboring hospitals.
Population genetics can provide a test of the hypothesis that patient
sharing plays an important role inMRSAdynamics: If so, onemight
expect that hospitals that share large numbers of patients would also
tend to share genetically similar populations of MRSA.
In the current study, we sought to investigate whether the pattern

of genetic relatedness among MRSA isolates from hospitals within
Orange County (OC), California, was consistent with a significant
role for patient sharing in determining the population of MRSA
strains within a hospital. OC is well suited for this study because it is
the fifth largest county in theUnited States, and it has relatively low
population flow from three of its four sides. A finding that MRSA
isolates from hospitals that share more patients tend to be related
to one another would provide an independent line of evidence for
the importance of patient transfer in spreading MRSA from hos-
pital to hospital. For S. aureus genotyping, we used the spa locus,
which encodes protein A, a species-specific protein known for its
IgG binding capacity (3). This locus features highly polymorphic
internal regions due to short tandem repeats (STRs) (20) and
therefore serves as a good target for molecular genotyping (spa
typing). This genotyping method has been demonstrated to be
useful in researching transmission, outbreaks, or geographic dis-
tributions (3, 21, 22). Using spa typing, we sought evidence on how
MRSA strains “travel” with patient flow, to infer how patient
transfer might influence MRSA spread among hospitals.

Results
Summary of Overall Approach. We used Wright’s F statistics to
measure genetic heterogeneity between MRSA populations in
hospitals and groups of hospitals and used pairwise regression
analysis supplemented by group-level analysis as our methods, as
described in Materials and Methods.
In the pairwise regression analysis, we calculated the heterozy-

gosity of each pair of hospitals (HR) (for each pair we regard the two
hospitals as a group) and the heterozygosity of each single hospital
within a pair (HS). FSR was calculated for each pair of hospitals
accordingly and was used as our response variable to measure the
genetic dissimilarity between a pair of hospitals. A positive coeffi-
cient for a predictor of FSR indicates that hospitals are more diver-
gent from one another, whereas a negative coefficient indicates that
hospitals are more similar to one another.
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The distribution of FSR is shown in Fig. S1A. We found that
the distribution of this pairwise FSR is significantly skewed, so we
log-transformed this variable in the regression analysis, and the
new distribution is shown in Fig. S1B. This procedure was also
carried out for the main predictor variable, patient flow, as
shown in Fig. S1 C and D.
In group-level analysis, we used the FST statistics calculated from

heterozygosity of all 30 hospitals (HT) and heterozygosity of each
individual hospital (HS) to measure heterogeneity or the reduction
of heterozygosity from the total population level to the individual
hospital level. For this study, FST = 0.0853, and HT and HS from
which it is calculated = 0.719 and 0.658, respectively. As FRT mea-
sures the reduction of heterozygosity when hospitals are grouped
compared with the total 30 hospitals, this result implies that the best
possible grouping (that is, each singlehospital is viewedasonegroup)
could do no better than to achieve an FRT = 0.0853 (FRT = FST).

Predictors of Similarity Between Pairs of Hospitals. Individual categorizing
variables. Table S1 shows the characteristics of all 30 hospitals. For
pairwise analyses described below, dichotomous variables for pri-
vate insurance proportion, Medicaid coverage, hospital size, and
proportion Hispanic were created to reflect above-cut point or
below-cut point values.
Pairwise analysis of similarity. For each of the 435 hospital pairs, we
calculated and log-transformed FSR to get log-FSR, serving as a
measure of population differentiation between them. We per-
formed multivariate regression on the relationship of log-FSR to
log-transformed patient flow and to pairwise geographic distances
between hospitals, average isolates collected, and the dichotomous
variables mentioned above. The P values presented in all of our
regression analyses are multiple Mantel test permutation P values,
used to account for dependency between observations involving
pairs of hospitals. The results are presented in Table 1. Greater
patient flow between a pair of hospitals (log flow) was associated
with reduced pairwise FSR, i.e., greater similarity in MRSA pop-
ulations between hospitals (coefficient = −0.115, P value =
0.0356). Another predictor of similarity in MRSA populations was
for both to be nonpediatric (ped00, coefficient =−0.801, P value=
0.0448). Univariate analyses are shown in Table S2.
In addition, we calculated Pearson correlation coefficients for

each pair of the 13 variables to assess collinearity of predictors. We
found relatively large correlation between the proportion of His-
panic patients and Medicaid coverage (coefficient for ethnicity11
and medicaid11 = 0.581 and for ethnicity00 and medicaid00 =
0.564), and between the average number of isolates collected and
hospital size (coefficient for SSize and size11 = 0.616 and for SSize
and size00=−0.680). This result suggests that these variablesmight
have had small and insignificant effects in our models due to

collinearity. We thus performed multivariate analyses with each
(group) of these variables removed in turn, as shown in Tables S3–
S6. The results of these models were consistent with those in the
primary analysis. In these alternative models, the coefficient of log
flow ranged from −0.110 to −0.134 (vs. −0.115 in the base model)
and remained statistically significant. Exclusion of sample size led to
a statistically significant increase in similarity between pairs of large
hospitals, compared with pairs containing a small and a large hos-
pital (Table S3). Exclusion of hospital size variables led to a statis-
tically significant association between larger sample size and greater
similarity between the hospitals (Table S4). Neither exclusion of the
ethnicity variables (Table S5) nor exclusion of the Medicaid varia-
bles (Table S6) produced a statistically significant association with
the other, but with Medicaid excluded there was a trend toward
greater similarity of hospitals having >20% Hispanic patients.
Although the correlation between patient flow—our main

variable of interest—and geographical distance was not as large
(coefficient for log flow and dist = −0.378), we conducted an-
other multivariate analysis with distance excluded, as shown in
Table S7. The result suggested that by removing the distance
predictor, a slightly greater degree of similarity was associated
with greater patient flow (coefficient = −0.128).
Two of the hospitals have fewer isolates available (hospital 21,

six isolates; hospital 29, four isolates). To verify that our results
were not driven by them, we removed them from the dataset and
ran the full multivariate regression again. The coefficient on
patient flow was almost unchanged (−0.114) although the
Mantel P value increased to 0.053 (Table S8).
As we hypothesized, our results based on the full multivariate

model showed that hospitals sharing more patients have signifi-
cantly more similar MRSA populations, after adjustment for
other possible confounders. For each factor of 2 increase in pa-
tient flow (see Materials and Methods for definition), there is an
associated 1–2−0.115 = 7.7% reduction in pairwise FSR between
the hospitals, whereas the interquartile range of hospital pairs for
log flow was −11.51 to −8.74, which corresponds to a 19.8% re-
duction in pairwise FSR. Another variable was also statistically
associated with increased similarity of MRSA populations: Hos-
pitals that both served adult patients tended to have populations
that were more similar to one another. Visual inspection sug-
gested that none of these results were driven by individual outliers.

Predictors of Similarity at the Group Level. Estimating grouping
efficiency. We used group-level analysis to supplement our results
in pairwise analysis. This method divides hospitals into groups by
a given criterion and calculates FRT for the grouping. FRT here
measures the reduction of heterozygosity caused by grouping
relative to all hospitals without grouping and serves as a mea-

Table 1. Results of pairwise multivariate analysis

Variable no. Variable name Description Coefficient P value*

1 Log_flow Log-transformed pairwise patient flow −0.115 0.0356
2 SSize Average sample size of MRSA isolates provided by a pair of hospitals −0.010 0.2474
3 Medicaid11 Indicator of both hospitals having Medicaid >10% −0.342 0.2476
4 Medicaid00 Indicator of both hospitals having Medicaid no more than 10% −0.191 0.5510
5 Private11 Indicator of both hospitals having private insurance >35% 0.041 0.8742
6 Private00 Indicator of both hospitals having private insurance no more than 35% 0.081 0.7068
7 Size11 Indicator of both hospitals having annual admission >10,000 −0.133 0.7198
8 Size00 Indicator of both hospitals having annual admission no more than 10,000 −0.026 0.9404
9 Ethnicity11 Indicator of both hospitals having >20% Hispanic patients −0.077 0.8102
10 Ethnicity00 Indicator of both hospitals having no more than 20% Hispanic patients −0.166 0.5714
11 Ped00 Indicator of both hospitals being mainly nonpediatric −0.801 0.0448
12 Ped11 Indicator of both hospitals being pediatric 0.368 0.5022
13 Dist Distance between a pair of hospitals in kilometers 0.004 0.7066

*Permutation P values were calculated by multiple Mantel test permutation. P values that reached significance are in boldface type.
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surement of between-group heterogeneity—that is, a meaningful
grouping should give a higher FRT. In group analysis, “T” refers all
30 hospitals (MRSA population), “R” refers to a group of hos-
pitals, and “S” refers to a single hospital.
We first show the evaluation criteria for groupings. In Fig. 1, the

red line gives the theoretical best FRT any grouping can achieve, and
the “X”s and error bars show how well random groupings can per-
form.Weuseda genetic algorithm to search for groupingswithnearly
the best possible results attainable for a given number of groups,
and we constructed random groups to give the null distribution of
FRT; seeMaterials and Methods for details of these approaches.
Clearly, with more groups it is possible to obtain a higher value

of FRT; in the limiting case of 30 groups each representing one
hospital, we would have had FRT = FST. Thus, we want
a grouping scheme to have high FRT while also having a relatively
low number of groups.
Fig. 1 also gives evaluations of grouping by a few individual

criteria (corresponding to some of the predictors in pairwise
analysis). Roughly, these results agree with that from the pair-
wise analysis. Details can be found in Table S9, and the result of
network grouping is described below.
Grouping by the information theoretic approach (network grouping). This
method creates groups of hospitals such that there is more fre-
quent patient sharing within each group than between groups.
The method used to create groups within the patient-sharing
network uses an information theoretic approach (23) that creates
groups on the basis of minimizing the expected description
length of an idealized random walk on the network; for details
see ref. 23. The four groups are illustrated in Fig. S3.
Given this grouping scheme, the HR, or the heterozygosity on

groups, is found to be 0.705, and we calculated FRT = 0.0204
(Fig. 1), with P value = 0.050. At four groups of hospitals, the
maximum FRT by genetic algorithm is 0.0448, and thus the
grouping is achieving 45.5% of the best achieved by the GA.

Discussion
This study used patient sharing data together with spa genotyping
of MRSA strains to analyze how genetic similarity of MRSA
depends on patient sharing networks in Orange County hospitals.

In the United States, patient sharing is driven by both the pa-
tient and the health provider (24). Patients may choose services at
different locations and are influenced by many factors, including
their insurance policy, which may restrict patients’ choice of
hospitals. Changes in insurance policies, transfers to more ad-
vanced hospitals for better care, and other reasons might cause
patient moves between hospitals. Many theoretical studies have
addressed the association between MRSA prevalence and patient
referral between hospitals (for example, see refs. 2 and 15), and
a positive correlation has been predicted. We address this ques-
tion from a bacterial population genetic perspective (25, 26), using
systematic samples from hospitals within a single county.
We found that the extent of patient sharing between hospitals

predicts the extent of genetic similarity between isolates ofMRSA
obtained from them.Using both pairwise and group-level analysis,
we found that the more patients were shared between hospitals,
the more similar their MRSA appeared at the spa locus. Re-
gression analysis for pairs of hospitals showed significantly more
similarity betweenMRSA frompairs of hospitals that sharedmore
patients, after accounting for other potential predictors including
physical distance. Meanwhile, our group-level analysis found that
the grouping that classified hospitals on the basis of patient
sharing gave an FRT that was significantly better than that of
randomly generated grouping schemes.
Agent-based models using these data have found that out-

breaks in one hospital could translate to increases in MRSA
burden in another hospital (27). The finding that greater patient
sharing is associated with greater genetic similarity of MRSA
strains, after adjusting for possible confounders, supports the
idea that patients track contagious pathogens across hospitals.
This result is important given the perhaps unexpectedly large
volume of patient sharing that occurs during routine medical
care in US hospitals (17).
Patients in Orange County tend to be admitted to hospitals

close to their homes. As a result, it is likely that similarities in
MRSA strains found in patients who reside near one another
could be caused by shared exposure to the same hospitals, as well
as by transmission within the community. The finding that hos-
pitals caring for adult patients had more similar MRSA strains
than pediatric hospitals may be a further indicator (beyond our
findings about patient flow) that MRSA genotypes segregate
with patient sharing patterns, since pediatric and adult medical
care is segregated in the United States. More definitive studies
showing reduction in MRSA burden and strain similarities fol-
lowing regional hospital collaboratives are needed to further
understand the contagious impact of sharing patients and the
magnitude of prevention that is achievable.
To date, despite a number of theoretical studies suggesting the

possible benefits of interventions coordinated among groups of
hospitals sharing patients and the possible “externalities” of high
MRSA rates in one hospital increasing those in neighboring hos-
pitals, policies such as Medicare reimbursement treat MRSA
infections as a problem of the individual hospital, with the effect, as
has been argued, that “current Medicare rules subsidize MRSA
pollution” (ref. 28, p. 163–182). A possible reason for this seeming
disconnect between modeling evidence and policy is the lack of
direct empirical evidence that populations of MRSA in one hos-
pital can be traced to sharing of patients from other hospitals at the
local level. Many prior empirical studies have documented the
spread of clones between hospitals, regions, or countries or have
shown that individuals with MRSA colonization are transferred
between hospitals. Other studies, which showed that referral hos-
pitals had the highest rates of MRSA infection, did not disentangle
whether this association was due to greater numbers of transferred
patients, sicker patients, or other factors. This study provides rig-
orous evidence for the role of patient sharing within a local area in
leading to measurable changes in the MRSA population in in-
dividual hospitals over a sustained period; moreover, the genetic

Fig. 1. FRTs by various grouping methods. The uppermost horizontal line
represents the maximum value FRT can achieve under any condition (which is
FST of the total population of 30 hospitals). FRTs attained by the genetic al-
gorithm (GA) serve as an estimate of the largest FRT attainable in practice by
numerical optimization. The mean and 95% confidence interval (CI) of
random grouping display the distribution of randomly generated FRTs at
a given number of groups, serving as an estimation of “background”. Other
symbols of various colors stand for FRTs of different groupings, the detailed
description of which can be found in the main text.
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evidence provided here is an independent line of evidence that
confirms the importance of patient sharing. This finding implies
that there is hope for synergistic impact to reduce MRSA, with
concerted efforts by hospitals to implement prevention strategies
together. Had we found that MRSA strains were indiscriminately
found throughout all hospitals, this result would have suggested
that a county-wide approach to MRSA containment would be
necessary. Instead, it appears possible that targeted approaches
might well produce substantial impact when applied to a small
group of hospitals that are strongly connected by patient sharing.
There are several limitations to our study. First, our measure of

patient sharing considered transfer of patients between hospitals, in
both directions and regardless of theirMRSA colonization status. A
more directly relevant measure, if it were available, would be the
transfer of patients colonized withMRSA from each hospital to the
other (19). On the other hand, the demonstration here that overall
patient transfer is a predictor ofMRSA similarity between hospitals
suggests that overall patient transfer is an adequate surrogate for the
effect of sharing of MRSA-colonized patients, at least for analyses
of this type. A related limitation is that whereas 92% of adults in the
data set for patient transfer had identifiers (thus only 8% were
untracked), the majority (86%) of children lacked such identifiers.
However, of these, 63% were <6 mo of age, and a large proportion
of these would have been hospitalized at birth and would not have
been readmitted (17). Second, the current study did not assess the
impact of strains categorized as hospital-onset (HO)-MRSA vs.
community-onset (CO)-MRSA (3). We did not assess this distinc-
tion partly because community and healthcare reservoirs are mixing
and because, at a hospital level, there were often too few strains to
make these types of evaluations. Moreover, all strains were treated
equally, assessing only whether they were distinguishable by our
typingmethod. Third, patient sharing data could be used in different
ways that take into account patient sharing directedness, time of
transfer, and length of stay in hospitals, which might provide other
interesting findings but were not implemented due to data limi-
tations. Fourth, unmeasured or residual confounding of the asso-
ciation between patient flow and MRSA population similarity is
a possibility, as in all such studies. A potential confounder of par-
ticular concern is that hospitals that transfer many patients may also
draw from the same patient population, so that similarity of the
catchment populations leads to importation of similar strains, which
could explain MRSA population similarities independent of any
causal effect of patient sharing. To address this problem, we in-
cluded in our model a variable for distance between the two hos-
pitals; compared with a model omitting distance (Table S7), the
baseline model (Table 1) had a similar, but slightly smaller effect of
patient sharing. Moreover, distance between hospitals was not
a significant predictor in the baselinemodel, nor was it significant in
univariate analysis, whereas patient sharing was. In addition, we
included variables for shared demographic characteristics of
patients, to further eliminate spurious associations with patient
sharing that are in fact caused by similar patient populations.
Nonetheless, because none of these variables perfectly captures
similarities in patient populations, it is possible that the association
between patient sharing and genetic similarity of MRSA remains
biased by some of these factors. Specific spa types associated with
pediatric and adult patients in this population have been described
recently (29). Fifth, although the spa genotypingmethod used in the
current study is widely used as a fast and reliable genotyping tech-
nique for S. aureus, we might obtain more meaningful results if we
used higher-resolution typing systems. Finally, we noticed that some
of our hospitals have relatively fewer isolates available. Although
the exclusion of these hospitals did not qualitatively affect the results
of our pairwise analysis, we found that removing hospitals 21 and 29
made our network grouping result insignificant. Themain reason for
this loss of statistical significance is that each hospital has a spa type
that is rare among all hospitals (appearing only in the hospitals that
are in the same networking group), and its removal, combined with

the fact that these hospitals have fewer isolates, made the distri-
bution of random FRTs generated by random grouping higher. Al-
though we preserved these hospitals in group-level analysis as we
believe these rare isolates indicated within-group similarity, more
isolates from these hospitals, if possible, are strongly desired.
In summary, we found that patient sharing patterns across

hospitals are likely to be correlated with MRSA genetic hetero-
geneity, along with several other hospital characteristics. This
study is a unique regional analysis of a relatively enclosed large
metropolitan region of 3 million people. It performs a compre-
hensive analysis of whether hospitals that share patients also share
MRSA strains. It provides evidence of local ecosystems within
a single region that are associated with shared patients and sug-
gests that certain groups of local hospitals could make concerted
and synergistic efforts to reduce the prevalence of important re-
sistant pathogens and reduce healthcare-associated disease.

Materials and Methods
Study. We conducted a population-based, prospective collection of clinical
isolates of MRSA from 30 of 32 hospitals in OC, California as described else-
where (17). The geographical distribution of these hospitals is shown in Fig. S4.
This study was approved by the Institutional Review Board of the University of
California Regents.

Isolate collection, specimen- and hospital-level data, and laboratory
methods are described in SI Text.

Measuring the Genetic Similarity in MRSA Between Pairs or Groups of
Hospitals. We adopted a standard measure of genetic similarity: Wright’s F
statistics (30). F statistics detect population substructure measured by a given
genetic locus of interest. Onefirst calculates the “heterozygosities” of this locus
ondifferent levels; here, heterozygosity corresponds to theprobability that two
randomly chosen isolates will differ at the locus of interest. Three hierarchical
levels of population were used in this study: (i) subpopulations (S) refer to the
bacteria isolated from a single hospital, (ii) “regions” (R) refer to the bacteria
from a subset (group) of hospitals less than the 30 total hospitals in our study,
and (iii) the total population (T) refers to all bacteria included in our study. Note
that in pairwise analysis, we only have R (a pair of hospitals) and S (a single
hospital)—T is not used in the pairwise analysis. If there is any population
substructure, then the heterozygosity calculated for the total populationwill be
higher than the weighted average of that calculated for each group in-
dividually. In this report, we use the term “heterogeneity” to refer to high F
statistics implying genetic differentiation between different populations.

Formally, heterozygosity of a population (in terms of one genetic locus) is
defined as oneminus the sum of squared allele frequencies. Let pi (i = 1, 2, . . .)
represent the frequency of allele i; then the heterozygosity of this locus is
given by

H ¼ 1−
Xk

i¼1

p2
i ;

whereH stands for heterozygosity, and k is the total number of alleles present.
Here, in the total population T (the MRSA population of all hospitals

involved) we calculate the heterozygosity of this total population (HT), using

HT ¼ 1−
Xk

i¼1

p2
Ti

with each allele’s frequency (pTi
) and the number of different alleles (k) in

the total population. HS, the heterozygosity of subpopulations (individual
hospitals) is calculated similarly to HT, except that first, we do the calculation
restricted to each subpopulation and then calculate HS as the average of all
of the computed subpopulation heterozygosities,

HS ¼ 1
n

Xn

i¼1

HSi

HSi ¼ 1−
Xki

j¼1

p2
ij ;

where n is the total number of subpopulations, HSi is the heterozygosity of
subpopulation i, ki is the number of different alleles in subpopulation i, and
pij is allele j’s frequency in subpopulation i.
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Between these two levels, another level, the regional heterozygosityHR (in
the current study, a region means a group of hospitals we classified), is also
calculated similarly: We take a group of hospitals and compute the het-
erozygosity of that group. Afterward, HR is just the weighted average of all
these regional heterozygosities, with the number of hospitals in each group
being the weights. It can be shown that HT ≥ HR ≥ HS (equal signs hold when
there is no population substructure). Then, the F statistics we used are
defined as

FSR ¼ HR −HS

HR

FRT ¼ HT −HR

HT

FST ¼ HT −HS

HT
:

Measurement of MRSA Population Similarity—Pairwise Analysis of Hospitals.
Potential individual predictors. To assess patient demographic factors that might
account for genetic similarity of MRSA found in pairs of hospitals, we defined
the following dichotomous variables. For dichotomized proportions, the
subscript zero indicates a proportion less than or equal to the break point.
Hospitals were classified for whether they were or had the following:

Over 35% of patients privately insured
Over 10% of patients on Medicaid
Over 20% of patients Hispanic
Over 10,000 admissions per year
Pediatric hospital (vs. adult).

Pairs of hospitals were classified as 00, 01/10, or 11 on each of these
variables, and genetic similarity was assessed for hospitals that were similar
on these variables (00 or 11) compared with pairs containing hospitals that
were different (01/10).

The predictor of primary interest was patient flow. Using previously
published data (17) on the number of times any patient was transferred
between two hospitals (including possible multiple transfers of the same
patient or discharge from the first before admission to the second, with an
intervening stay at home), the flow of patients from hospital A to hospital B,
TAB, was defined as the proportion of hospital B’s patients in a year who had
a previous stay in hospital A during the year. The average flow between
hospital A and B was then defined as (TAB + TBA)/2 and was used in our
analyses. A more detailed definition can be found in SI Text.
Linear regression analysis. We used multivariate linear regression to assess the
predictors of genetic similarity between the MRSA populations in pairs of
hospitals and used univariate regression for each single variable as a sup-
plement. The response variable that measures heterogeneity was pairwise
FSR—the reduction in heterozygosity when two hospitals are viewed as
a whole. We log-transformed these two variables to obtain normally dis-
tributed data. As some of the hospital pairs have flow = 0, we added 0.00001
(∼50% of the smallest available data) to all flow data to perform the log
transformation. To account for other possible predictors, we adjusted for
the demographic variables described in the previous section by also using
two indicator variables for each demographic variable. Standard regression
P values do not account for the dependence among the observations in-
duced by the fact that the response variables are genetic “distances” be-
tween pairs of hospitals. To adjust for this nonindependence, we performed
multiple Mantel permutation tests (univariate Mantel test for univariate
analyses) to generate permutation P values for all regression analyses and
referred to these P values as permutation P values, as described elsewhere
(31). Briefly, we constructed a genetic distance matrix for our response
variable—pairwise FSR from our data, with each element in the matrix—and
dij corresponds to the log-FSR of hospitals i and j and comes from the row of
data that records the pairwise information of these two hospitals (i.e., pa-
tient flow, distances, etc.). Then we shuffled this matrix by each hospital—in
other words, we shuffled the rows and columns in the same way 5,000 times,
and the resulting matrices were flattened and paired back with predictor
variables to conduct 5,000 regressions. Two-tailed P values were calculated
from the distribution of t statistics of corresponding coefficients generated.

In addition, for each pair of hospitals, we also adjusted for (i) sample size,
by using the average number of spa-typed isolates of the two hospitals, and

(ii) distance between the two hospitals, calculated on the basis of their
longitudinal and latitudinal data, in kilometers.

Univariate plots of the response vs. individual predictors were checked
visually for outliers.

Measurement of MRSA Population Similarity—Analysis of Groups of Hospitals.
As a complementary approach, we considered whether grouping the hos-
pitals into a small number of groups on the basis of the demographic
characteristics used above of their patient populations or, of more direct
interest, on the basis of their patterns of patient sharing, would create groups
that captured some of the population genetic structure of the MRSA in the
hospitals. To assess this possibility, we sought both to assess the extent to
which the best possible grouping could create groups that are genetically
homogeneous (the value of FRT obtained by an optimal grouping) and to
assess how much genetic structure would be captured in randomly con-
structed groupings of all 30 hospitals (the range of FRT values obtained by
random groupings). The first assessment was done by using a genetic al-
gorithm (GA) to give an approximate numerical value because an exhaus-
tive/exact method is computationally infeasible, and the second assessment
was done by creating groupings in which hospitals were randomly assigned
to group membership.
GA—Evaluation of grouping efficiency. To establish a standard for the possible
extent to which any grouping scheme of hospitals could define genetically
similar MRSA populations (“grouping scheme” or “grouping” refers to a spe-
cific group assignment of all hospitals), we attempted to find the groupings of
hospitals (using no information about the hospitals themselves) that maxi-
mized FRT—the measure of genetic heterogeneity between groups—by using
a GA. We implemented this method by generating random groupings at
a given number of groups and evaluating FRT for each grouping and then
evolving the groupings by enriching and combining groupings with high FRT.
The goal was to approximate the optimal groupings at a given number of
groups to serve as a reference of maximum FRT. This method was repeated for
groupings with two, four, or six groups (we primarily used two and four
groups, and the result of six groupswas used to show the trendof FRTwhen the
number of groups increases). These groupings are referred to asGAgroupings.
Details of this algorithm can be found in SI Text and Fig. S2.
Evaluation of null distribution of FRT. To evaluate whether groupings of hospitals
based on any given measurement contain information about the genetic
structure of the MRSA population (FRT) greater than expected by chance
alone, we created a null distribution of FRT for randomly chosen groupings
that divided hospitals into two, four, and six groups. For each given number
of groups, we randomly generated 15,000 groupings and tabulated the
distribution of FRT from these results (these groupings are referred to as
random groupings of k groups). We obtained the mean and 95% coverage
interval of FRTs for these random groupings. The P value (double sided) of
a given FRT for a particular grouping is defined by the proportion of ran-
domly generated FRTs that are of equal distance or farther away from the
mean than it is.
Grouping of hospitals by prespecified categories. We first grouped all hospitals
using categorizing variables specified in Measurement of MRSA Population
Similarity—Pairwise Analysis of Hospitals , including private insurance pro-
portion, Medicaid coverage, size (annual admission), ethnicity (Hispanic),
and pediatric vs. adult-only hospitals (the groups are named by their
grouping criteria).
Grouping of hospitals by the information theoretic approach (network grouping). For
patient sharing, we used the algorithm of ref. 23 to identify “modules” or
neighborhoods within the network of hospitals on the basis of patient flow.
To do so, we considered each hospital as a “node” in the network and be-
tween each hospital constructed an undirected edge representing patient
sharing with weight determined by the proportion of shared patients, as
given in Measurement of MRSA Population Similarity—Pairwise Analysis of
Hospitals. The algorithm defines neighborhoods—roughly speaking—as sets
of nodes in which an imaginary random walker, traversing edges of the
network with probabilities proportional to the edge weight, would be much
more likely to stay within a set. Thus, sets of nodes that are well connected
with one another will tend to be in the same group; in our case, sets of
hospitals that share many patients with one another will tend to be in the
same group, and sets of hospitals that do not share many patients with one
another will tend to be in different groups. Technical details of this method
are given in SI Text, which summarizes the account given in ref. 23. This
method is referred to as network grouping.
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