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Identification and molecular characterization of a new ovarian 
cancer susceptibility locus at 17q21.31
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Abstract

Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully characterized. 

Most identified common susceptibility variants lie in non-protein-coding sequences. We 

hypothesized that variants in the 3′ untranslated region at putative microRNA (miRNA) binding 

sites represent functional targets that influence EOC susceptibility. Here, we evaluate the 

association between 767 miRNA binding site single nucleotide polymorphisms (miRSNPs) and 

EOC risk in 18,174 EOC cases and 26,134 controls from 43 studies genotyped through the 

Collaborative Oncological Gene-environment Study. We identify several miRSNPs associated 

with invasive serous EOC risk (OR=1.12, P=10−8) mapping to an inversion polymorphism at 

17q21.31. Additional genotyping of non-miRSNPs at 17q21.31 reveals stronger signals outside 

the inversion (P=10−10). Variation at 17q21.31 associates with neurological diseases, and our 

collaboration is the first to report an association with EOC susceptibility. An integrated molecular 

analysis in this region provides evidence for ARHGAP27 and PLEKHM1 as candidate EOC 

susceptibility genes.

Genome wide association studies (GWAS) have identified hundreds of genetic variants 

conferring low penetrance susceptibility to cancer1. More than 90% of these variants lie in 

non protein-encoding sequences including non-coding RNAs and regions containing 
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regulatory elements (i.e. enhancers, promoters, untranslated regions (UTRs))1. The 

emerging hypothesis is that common variants within non-coding regulatory regions 

influence expression of target genes, thereby conferring disease susceptibility1.

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression post-

transcriptionally by binding primarily to the 3′ UTR of target messenger RNA (mRNA), 

causing translational inhibition and/or mRNA degradation2-4. MiRNAs have been shown to 

play a key role in the development of epithelial ovarian cancer (EOC) 2. We 5,6 and others 7 

have found evidence that various miRNA-related single nucleotide polymorphisms 

(miRSNPs) are associated with EOC risk, suggesting they may be key disruptors of gene 

function and contributors to disease susceptibility 8,9. However, studies of miRSNPs that 

affect miRNA-mRNA binding have been restricted by small sample sizes and therefore have 

limited statistical power to identify associations at genome wide levels of significance7-9. 

Larger-scale studies and more systematic approaches are warranted to fully evaluate the role 

of miRSNPs and their contribution to disease susceptibility.

Here, we use the in silico algorithms, TargetScan 10,11 and Pictar 12,13 to predict 

miRNA:mRNA binding regions involving genes and miRNAs relevant to EOC, and align 

identified regions with SNPs in the dbSNP database (Methods). We then genotype 1,003 

miRSNPs (or tagging SNPs with r2>0.80) in 18,174 EOC cases and 26,134 controls from 43 

studies from the Ovarian Cancer Association Consortium (OCAC) (Supplementary Table 

S1). Genotyping was performed on a custom Illumina Infinium iSelect array designed as 

part of the Collaborative Oncological Gene-environment Study (COGS), an international 

effort that evaluated 211,155 SNPs and their association with ovarian, breast, and prostate 

cancer risk. Our investigation uncovers 17q21.31 as a new susceptibility locus for EOC, and 

we provide insights into candidate genes and possible functional mechanisms underlying 

disease development at this locus.

Results

Association analyses

Seven hundred and sixty-seven of the 1,003 miRSNPs passed genotype quality control (QC) 

and were evaluated for association with invasive EOC risk; most of the miRSNPs that failed 

QC were monomorphic (see Methods). Primary analysis of 14,533 invasive EOC cases and 

23,491 controls of European ancestry revealed four strongly correlated SNPs (r2=0.99; 

rs1052587, rs17574361, rs4640231, and rs916793) that mapped to 17q21.31 and were 

associated with increased risk (per allele odds ratio (OR) = 1.10, 95% CI 1.06-1.13) at a 

genome-wide level of significance (10−7); no other miRSNPs had associations stronger than 

P<10−4 (Supplementary Fig. S1). The most significant association was for rs1052587 

(P=1.9×10−7), and effects varied by histological subtype, with the strongest effect observed 

for invasive serous EOC cases (OR=1.12, P=4.6×10−8) (Table 1). No heterogeneity in ORs 

was observed across study sites (Supplementary Fig. S2).

Rs1052587, rs17574361, and rs4640231 reside in the 3′UTR of microtubule-associated 

protein tau (MAPT), KAT8 regulatory NSL complex subunit 1 (KANSL1/KIAA1267), and 

corticotrophin releasing hormone receptor 1 (CRHR1) genes, at putative binding sites for 
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miR-34a, miR-130a, and miR-34c, respectively. The fourth SNP, rs916793, is perfectly 

correlated with rs4640231 and lies in a non-coding RNA, MAPT-antisense 1. 17q21.31 

contains a ∼900kb inversion polymorphism14 (ch 17: 43,624,578-44,525,051 MB, human 

genome build 37), and all three miRSNPs and the tagSNP are located within the inversion 

(Fig. 1).

Chromosomes with the non-inverted or inverted segments of 17q21.31, respectively known 

as haplotype 1 (H1) and haplotype 2 (H2), represent two distinct lineages that diverged ∼3 

million years ago and have not undergone any recombination event 14. The four 

susceptibility alleles identified here reside on the H2 haplotype that is reported to be rare in 

Africans and East Asians, but is common (frequency >20%) and exhibits strong linkage 

disequilibrium (LD) among Europeans 14, consistent with our findings. The H2 haplotype 

has a frequency of 22% among European women in our primary analysis (Table 1) but only 

3.2% and 0.3% among Africans (151 invasive cases, 200 controls) and Asians (716 invasive 

cases, 1573 controls), respectively.

To increase genomic coverage at this locus, we evaluated an additional 142 non-miRSNPs at 

17q21.31 that were also genotyped as part of COGS in the same series of OCAC cases and 

controls. We also imputed genotypes using data from the 1000 Genomes Project15. These 

approaches identified a second cluster of strongly correlated SNPs (r2>0.90) in a distinct 

region proximal to the inversion (centered at chromosome 17: 43.5 MB, human genome 

build 37) that was more significantly associated with the risk of all invasive EOCs (P= 10−9) 

and invasive serous EOC specifically (P= 10−10) than the cluster of identified miRSNPs 

(Fig. 1). Association results and annotation for SNPs in this second cluster are shown in 

Supplementary Table S2; this cluster includes three directly genotyped SNPs (rs2077606, 

rs17631303, and rs12942666), with the strongest association observed for rs2077606 among 

all invasive cases (OR=1.12, 95% CI: 1.08-1.16), P=7.8×10−9) and invasive serous cases 

(OR=1.15, 95% CI: 1.12-1.19, P=3.9×10−10). These SNPs were chosen for genotyping in 

COGS because they had shown evidence of association as modifiers of EOC risk in BRCA1 

gene mutation carriers by the Consortium of Investigators of Modifiers of BRCA1/2 

(CIMBA)16. Several imputed SNPs in strong LD (r2>0.90) were more strongly associated 

with risk than their highly correlated genotyped SNPs (Supplementary Table S2). This risk-

associated region at 17q21.31 is distinct from a previously reported ovarian cancer 

susceptibility locus at 17q2117; neither the genotyped or imputed SNPs we report here are 

strongly correlated (maximum r2= 0.01) with SNPs from the 17q21 locus (spanning 

46.2-46.5 MB, build 37).

Genotype clustering was poor for rs2077606, but clustering was good for its correlated SNP, 

rs12942666 (r2=0.99), and so results for this SNP are presented instead (Supplementary Fig. 

S2; Table 1). Subgroup analysis revealed marginal evidence of association for rs12942666 

with endometrioid (P=0.04), but not mucinous or clear cell EOC subtypes (Table 1), and 

results were consistent across studies (Supplementary Fig. S4). Rs12942666 is correlated 

with the top-ranked miRSNP, rs1052587 (r2=0.76) (Fig. 1). To evaluate whether 

associations observed for rs12942666 and rs1052587 represented independent signals, 

stepwise logistic regression was used; only rs12942666 was retained in the model. This 
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suggests that the cluster which includes rs12942666 is driving the association with EOC risk 

that was initially identified through the candidate miRSNPs.

Functional and molecular analyses

To evaluate functional evidence for candidate genes, risk-associated SNPs, and regulatory 

regions at 17q21.31, we examined a one megabase region centered on rs12942666 using a 

combination of locus specific and genome-wide assays and in silico analyses of publicly 

available datasets, including The Cancer Genome Atlas (TCGA) Project18 (see Methods). 

Rs12942666 and many of its correlated SNPs lie within introns of Rho GTPase activating 

protein 27 (ARHGAP27) or its neighboring gene, pleckstrin homology domain containing, 

family M (with RUN domain) member 1 (PLEKHM1) (Supplementary Table S2). There are 

another 15 known protein-coding genes within the region: KIF18B, C1QL1, DCAKD, 

NMT1, PLCD3, ABCB4, HEXIM1, HEXIM2, FMNL1, C17orf46, MAP3K14, C17orf69, 

CRHR1, IMP5, and MAPT (Fig. 2a).

To evaluate the likelihood that one or more genes within this region represent target 

susceptibility gene(s), we first analyzed expression, copy number variation, and methylation 

involving these genes in EOC tissues and cell lines (Fig. 2b-g; Supplementary Tables S3 and 

S4). Most genes showed significantly higher expression (P<10−4) in EOC cell lines versus 

normal ovarian cancer-precursor tissues (OCPTs); ARHGAP27 showed the most pronounced 

difference in gene expression between cancer and normal cells (P=10−16) (Fig. 2b and 

Supplementary Table S3). For nine genes, we also found overexpression in primary high-

grade serous (HGS) EOC tumors versus normal ovarian tissue in at least one of two publicly 

available datasets, The Cancer Genome Atlas (TCGA) of 568 tumors 18and/or the Gene 

Expression Omnibus (GEO) series GSE18520 dataset consisting of 53 tumors19 (Fig. 2c and 

Supplementary Table S3). Analysis of DNA copy number variation in TCGA revealed 

frequent loss of heterozygosity in this region rather than gains (Supplementary Fig. 5a-b; 

Supplementary Methods). We observed significant hypomethylation (P<0.01) in ovarian 

tumors compared to normal tissue for DCAKD, PLCD3, ACBD4, FMNL1, and PLEKHM1 

(Fig. 2d and Supplementary Table S4), which is consistent with the overexpression observed 

for DCAKD, PLCD3, and FMNL1. Taken together, these data suggest that the mechanism 

underlying overexpression may be epigenetic rather than based on copy number alterations.

We evaluated associations between genotypes for the top risk SNP rs12942666 (or a 

tagSNP) and expression of all genes in the region (expression quantitative trait locus (eQTL) 

analysis) in normal OCPTs, lymphoblastoid cell lines (LCLs), and primary tumors from 

TCGA. We observed significant eQTL associations (P<0.05) in normal OCPTs only for 

ARHGAP27 (P=0.04) (Fig. 2e; Supplementary Table S3). Because rs12942666 was not 

genotyped in tissues analyzed in TCGA, we used data for its correlated SNP rs2077606 

(r2=0.99) to evaluate eQTLs in tumor tissues. Rs2077606 genotypes were strongly 

associated with PLEKHM1 expression in primary HGS-EOCs (P=1×10−4) (Fig. 2f; 

Supplementary Table S3). We also detected associations between rs12942666 (and 

rs2077606) genotypes and methylation for PLEKHM1 and CRHR1 in primary tumors 

(P=0.020 and 0.001, respectively) using methylation quantitative trait locus (mQTL) 

analyses (Fig. 2g; Supplementary Table S4). Finally, the Catalogue of Somatic Mutations in 
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Cancer (COSMIC) database 20 showed that nine genes in the region, including PLEKHM1, 

have functionally significant mutations in cancer, although for most genes mutations were 

not reported in ovarian carcinomas (Supplementary Table S3).

Taken together, these data suggest that several genes at the 17q21.31 locus may play a role 

in EOC development. The risk-associated SNPs we identified fall within non-coding DNA, 

suggesting the functional SNP(s) may be located within an enhancer, insulator, or other 

regulatory element that regulates expression of one of the candidate genes we evaluated. 

One hypothesis emerging from these molecular analyses is that rs12942666 (or a correlated 

SNP) mediates regulation of PLEKHM1, a gene implicated in osteopetrosis and 

endocytosis 21 and/or ARHGAP27, a gene that may promote carcinogenesis through 

dysregulation of Rho/Rac/Cdc42-like GTPases 22. To identify the most likely candidate for 

being the causal variant at 17q21.31, we compared the difference between log-likelihoods 

generated from un-nested logistic regression models for rs12942666 and each of 198 SNPs 

in a 1 MB region featured in Supplementary Table 2. As expected, the log likelihoods were 

very similar due to the strong LD; no SNPs emerged as having a likelihood ratio greater than 

20 for being the causal variant.

To explore the possible functional significance of rs12942666 and strongly correlated 

variants (r2>0.80), we then generated a map of regulatory elements around rs12942666 

using ENCODE data and FAIRE-seq analysis of OCPTs (Supplementary Methods). We 

observed no evidence of putative regulatory elements coinciding with rs12942666 or 

correlated SNPs (Fig. 3a). A map of regulatory elements in the entire 1 MB region can be 

seen in Supplementary Fig. 5c-f. We subsequently used in silico tools (ANNOVAR23, 

SNPinfo24, and SNPnexus25) to evaluate the putative function of possible causal SNPs 

(Supplementary Methods). Of 50 SNPs with possible functional roles, more than 30 reside 

in putative transcription factor binding sites (TFBS) within or near PLEKHM1 or 

ARHGAP27; 12 SNPs may affect methylation or miRNA binding, and two are non-

synonymous coding variants predicted to be of no functional significance (Supplementary 

Table S2).

Since most of the top-ranked 17q21.31 SNPs with putative functions (including two of the 

top directly genotyped SNPs, rs2077606 and rs17631303), are predicted to lie in TFBS 

(Supplementary Table S2), we used the in silico tool, JASPAR 26 to further examine TFBS 

coinciding with these SNPs. Two SNPs scored highly in this analysis (Supplementary Table 

S5); the first, rs12946900, lies in a GAGGAA motif and canonical binding site for SPIB, an 

Ets family member27. Ets factors have been implicated in the development of ovarian cancer 

and other malignancies28, but little evidence supports a specific role for SPIB in EOC 

etiology. The second hit was for rs2077606, which lies in an E-box motif CACCTG at the 

canonical binding site for ZEB1 (chr. 10p11.2), a zinc-finger E-box binding transcription 

factor that represses E-cadherin29,30 and contributes to epithelial-mesenchymal transition in 

EOCs 31.

We analyzed expression of SPIB and ZEB1 in primary ovarian cancers using TCGA data; 

we found no significant difference in SPIB expression in tumors compared to normal tissues 

(Fig. 3bi). In contrast, ZEB1 expression was significantly lower in primary HGS-EOCs 
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compared to normal tissues (P=0.005) (Fig. 3bii). We validated this finding using qPCR 

analysis in 123 EOC and OCPT cell lines (P=8.8 ×10−4) (Fig. 3biii). Since rs2077606 lies 

within an intron of PLEKHM1, this gene is a candidate target for ZEB1 binding at this site. 

Our eQTL analysis also suggests ARHGAP27 is a strong candidate ZEB1 target at this locus; 

ARHGAP27 expression is highest in OCPT cell lines carrying the minor allele of rs2077606 

(P=0.034) (Figure 3ci). Although we observed no eQTL associations between rs2077606 

and ZEB1 expression in LCLs (Figure 3cii), we found evidence of eQTL between rs2077606 

and ZEB1 expression in HGS-EOCs (P=0.045) (Figure 3ciii). ZEB1 binding at the site of the 

common allele is predicted to repress gene expression while loss of ZEB1 binding conferred 

by the minor allele may enable expression of ARHGAP27, consistent with the eQTL 

association in OCPTs (Fig. 3ci). Although this data supports a repressor role for ZEB1 in 

EOC development and suggests ARHGAP27 may be a functional target of rs2077606 (or a 

correlated SNP) in OCPTs through trans-regulatory interactions with ZEB1, it is important 

to investigate additional hypotheses as we continue to narrow down the list of target 

susceptibility genes, SNPs, and regulatory mechanisms that contribute to EOC susceptibility 

at this locus.

Discussion

The present study represents the largest, most comprehensive investigation of the 

association between putative miRSNPs in the 3′ untranslated region and cancer risk. This 

and the systematic follow-up to evaluate associations with EOC risk for non-miRSNPs in 

the region identified 17q21.31 as a new susceptibility locus for EOC. Although the 

miRSNPs identified here may have some biological significance, our findings suggest that 

other types of variants in non-coding DNA, especially non-miRSNPs at the 17q21.31 locus, 

are stronger contributors to EOC risk. It is possible, however, that highly significant 

miRSNPs exist that were not identified in our study because a) they were not pre-selected 

for evaluation (i.e. they do not reside in a binding site involving miRNAs or genes with 

known relevance to EOC, or they reside in regions other than the 3′UTR3,4) and/or b) they 

were very rare and could not be designed or detected with our genotyping platform and 

sample size, respectively. Despite these limitations, the homogeneity between studies of 

varying designs and populations in the OCAC and the genome-wide levels of statistical 

significance imply that all detected associations are robust. Furthermore, molecular 

correlative analyses of genes within the region suggest that cis-acting genetic variants 

influencing non-coding DNA regulatory elements, miRNAs, and/or methylation underlie 

disease susceptibility at the 17q21.31 locus. Finally, these studies point to a subset of 

candidate genes (i.e. PLEKHM1, ARHGAP27) and transcription factors (i.e. ZEB1) that may 

influence EOC initiation and development.

This novel locus is one of eleven loci now identified that contains common genetic variants 

conferring low penetrance susceptibility to EOC in the general population 17,32,33,34. 

Genetic variants at several of these loci influence risks of more than one cancer type, 

suggesting that several cancers may share common mechanisms. For example, alleles at 

5p15.33 and 19p13.1 are associated with estrogen-receptor-negative breast cancer and 

serous EOC susceptibility 32,35, and variants at 8q24 are associated with risk of EOC and 

other cancers 17,36. Genetic variation at 17q21.31 is also associated with frontotemporal 
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dementia-spectrum disorders, Parkinson's disease, developmental delay, and alopecia 37-42. 

Through COGS, the CIMBA also recently identified 17q21.31 variants as modifying EOC 

risk in BRCA1 and BRCA2 carriers (P<10−8 in BRCA1/2 combined)16. In particular, 

rs17631303, which is perfectly correlated with rs2077606 and rs12942666, was among the 

top-ranking SNPs detected by CIMBA16. Consistent with our findings, CIMBA also provide 

data that suggests EOC risk is associated with altered expression of one or more genes in the 

17q21.31 region16. Thus, results from this large-scale collaboration support a role for this 

locus in both BRCA1/2 and non-BRCA1/2 mediated EOC development. Before these 

findings can be integrated with variants from other confirmed loci and non-genetic factors to 

predict women at greatest risk of developing EOC and provide options for medical 

management of these risks, continued efforts will be needed to fine map the 17q21.31 region 

and to fully characterize the functional and mechanistic effects of potential causal SNPs in 

disease etiology and development.

Methods

Study population

Forty-three individual OCAC studies contributed samples and data to the COGS initiative. 

Nine of the 43 participating studies were case-only (GRR, HSK, LAX, ORE, PVD, RMH, 

SOC, SRO, UKR); cases from these studies were pooled with case-control studies from the 

same geographic region. The two national Australian case-control studies were combined 

into a single study to create 34 case-control sets. Details regarding the 43 participating 

OCAC studies are summarized in Supplementary Table S1. Briefly, cases were women 

diagnosed with histologically confirmed primary EOC (invasive or low malignant potential), 

fallopian tube cancer, or primary peritoneal cancer ascertained from population- and 

hospital-based studies and cancer registries. The majority of OCAC cases (>90%) do not 

have a family history of ovarian or breast cancer in a first-degree relative, and most have not 

been tested for BRCA1/2 mutations as part of their parent study. Controls were women 

without a current or prior history of ovarian cancer with at least one ovary intact at the 

reference date. All studies had data on disease status, age at diagnosis/interview, self-

reported racial group, and histologic subtype. Most studies frequency-matched cases and 

controls on age-group and race.

Selection of Candidate Genes and SNPs

To increase the likelihood of identifying miRSNPs with biological relevance to EOC, we 

reviewed published literature and consulted public databases to generate two lists of 

candidate genes: 1) 55 miRNAs reported to be deregulated in EOC tumors compared to 

normal tissue in at least one study 43-46, and 2) 665 genes implicated in the pathogenesis of 

EOC through gene expression analyses 47,48, somatic mutations 49, or genetic association 

studies 50,51. Many genes were identified through the Gene Prospector database51, a web-

based application that selects and prioritizes potential disease-related genes using a highly 

curated, up-to-date database of genetic association studies.

Using each candidate gene list as input, we identified putative sites of miRNA:mRNA 

binding with the computational prediction algorithms TargetScan version 5.1 10,11 and 
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PicTar 12,13 and Supplementary Methods). Each algorithm generated start and end 

coordinates for regions of miRNA binding, and database SNP (dbSNP)52 version 129 was 

mined to identify SNPs falling within the designated binding regions. Of 3,246 unique 

miRSNPs that were identified, 1102 obtained adequate design scores using Illumina's Assay 

Design Tool. The majority (n=1085, 98.5%) of the 1102 SNPs resided in predicted sites of 

miRNA binding (and therefore represent miRSNPs), while the remainder (n=17) are 

tagSNPs (r2 > 0.80) for miRSNPs that were not designable or had poor to moderate design 

scores. Ninety nine of the 1102 SNPs failed during custom assay development, leaving a 

total of 1,003 SNPs that were designed and genotyped.

Genotyping and QC

The candidate miRSNPs selected for the current investigation were genotyped using a 

custom Illumina Infinium iSelect Array as part of the international Collaborative 

Oncological Gene-environment Study (COGS), an effort to evaluate 211,155 genetic 

variants for association with the risk of ovarian, breast, and prostate cancer. Samples and 

data were included from several consortia, including OCAC, the Breast Cancer Association 

Consortium (BCAC), the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), 

and the Prostate Cancer Association Group to Investigate Cancer- Associated Alterations in 

the Genome (PRACTICAL). Although one of the primary goals of COGS was to replicate 

and fine-map findings from pooled genome-wide association studies (GWAS) from each 

consortia, this effort also aimed to genotype candidate SNPs of interest (such as the 

miRSNPs). The genotyping and QC process has been described recently in our report of 

OCAC's pooled GWAS findings34. Briefly, COGS genotyping was conducted at six centers, 

two of which were used for OCAC samples: McGill University and Génome Québec 

Innovation Centre (Montréal, Canada) (n=19,806) and Mayo Clinic Medical Genomics 

Facility (n=27,824). Each 96-well plate contained 250ng genomic DNA (or 500 ng whole 

genome-amplified DNA). Raw intensity data files were sent to the COGS data coordination 

center at the University of Cambridge for genotype calling and QC using the GenCall 

algorithm.

Sample QC—One thousand two hundred and seventy three OCAC samples were 

genotyped in duplicate. Genotypes were discordant for greater than 40 percent of SNPs for 

22 pairs. For the remaining 1,251 pairs, concordance was greater than 99.6 percent. In 

addition we identified 245 pairs of samples that were unexpected genotypic duplicates. Of 

these, 137 were phenotypic duplicates and judged to be from the same individual. We used 

identity-by-state to identify 618 pairs of first-degree relatives. Samples were excluded 

according to the following criteria: 1) 1,133 samples with a conversion rate (the proportion 

of SNPs successfully called per sample) of less than 95 percent; 2) 169 samples with 

heterozygosity >5 standard deviations from the intercontinental ancestry specific mean 

heterozygosity; 3) 65 samples with ambiguous sex; 4) 269 samples with the lowest call rate 

from a first-degree relative pair 5) 1,686 samples that were either duplicate samples that 

were non-concordant for genotype or genotypic duplicates that were not concordant for 

phenotype. A total of 44,308 eligible subjects including 18,174 cases and 26,134 controls 

were available for analysis.
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SNP QC—The process of SNP selection by the participating consortia has been 

summarized previously34. In total, 211,155 SNP assays were successfully designed, 

including 23,239 SNPs nominated by OCAC. Overall, 94.5% of OCAC-nominated SNPs 

passed QC. SNPs were excluded if: (1) the call rate was less than 95% with MAF > 5% or 

less than 99% with MAF < 5% (n=5,201); (2) they were monomorphic upon clustering 

(n=2,587); (3) p values of HWE in controls were less than 10−7 (n=2,914); (4) there was 

greater than 2% discordance in duplicate pairs (n=22); (5) no genotypes were called 

(n=1,311). Of 1,003 candidate miRSNPs genotyped, 767 passed QC criteria and were 

available for analysis; the majority of miRSNPs that were excluded were monomorphic 

(n=158, 67%). Genotype intensity cluster plots were visually inspected for the most strongly 

associated SNPs.

Population stratification

HapMap DNA samples for European (CEU, n=60), African (YRI, n=53) and Asian (JPT

+CHB, n=88) populations were also genotyped using the COGS iSelect. We used the 

program LAMP 53 to estimate intercontinental ancestry based on the HapMap (release no. 

23) genotype frequency data for these three populations. Eligible subjects with greater than 

90 percent European ancestry were defined as European (n=39,773) and those with greater 

than 80 percent Asian or African ancestry were defined as Asian (n=2,382) or African 

respectively (n=387). All other subjects were defined as being of mixed ancestry (n=1,766). 

We then used a set of 37,000 unlinked markers to perform principal components analysis 

within each major population subgroup. To enable this analysis on very large sample sizes 

we used an in-house program written in C++ using the Intel MKL libraries for eigenvectors 

(available at http://ccge.medschl.cam.ac.uk/software/).

Tests of association

We used unconditional logistic regression treating the number of minor alleles carried as an 

ordinal variable (log-additive model) to evaluate the association between each SNP and 

EOC risk. Separate analyses were carried out for each ancestry group. The model for 

European subjects was adjusted for population substructure by including the first 5 

eigenvalues from the principal components analysis. African- and Asian- ancestry-specific 

estimates were obtained after adjustment for the first two components representing each 

respective ancestry. Due to the heterogeneous nature of EOC, subgroup analysis was 

conducted to estimate genotype-specific odds ratios for serous carcinomas (the most 

predominant histologic subtype) and the three other main histological subtypes of EOC: 

endometrioid, mucinous, and clear cell. Separate analyses were also carried out for each 

study site, and site-specific ORs were combined using a fixed-effect meta-analysis. The I2 

test of heterogeneity was estimated to quantify the proportion of total variation due to 

heterogeneity across studies, and the heterogeneity of odds ratios between studies was tested 

with Cochran's Q statistic. The R statistical package ‘r-meta’ was used to generate forest 

plots. Statistical analysis was conducted in PLINK54.
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Imputation of genotypes at 17q21.31

To increase genomic coverage, we imputed genotype data for the 17q21.31 region (chr17: 

40,099,001-44,900,000, human genome build 37) with IMPUTE2.2 55 using phase 1 

haplotype data from the January 2012 release of the 1000 genome project data 15. For each 

imputed genotype the expected number of minor alleles carried was estimated (as weights). 

IMPUTE provides estimated allele dosage for SNPs that were not genotyped and for 

samples with missing data for directly genotyped SNPs. Imputation accuracy was estimated 

using an r2quality metric. We excluded imputed SNPs from analysis where the estimated 

accuracy of imputation was low (r2<0.3).

Functional studies and in silico analysis of publicly available datasets

We performed the following assays for each gene in the one megabase region centered on 

the most significant SNP at the 17q21.31 locus (see Supplementary Methods): gene 

expression analysis in EOC cell lines (n=51) compared to normal cell lines from ovarian 

cancer precursor tissues (OCPTs)56, including ovarian surface epithelial cells (OSECs) and 

fallopian tube secretory epithelial cells (FTSECs) (n=73), and CpG island methylation 

analysis in high grade serous ovarian cancer (HGS-EOC) tissues (n=106) and normal tissues 

(n=7). Genes in the region were also evaluated in silico by mining publicly available 

molecular data generated for primary EOCs and other cancer types, including The Cancer 

Genome Atlas (TCGA) analysis of 568 HGS EOCs18, the Gene Expression Omnibus series 

GSE18520 dataset of 53 HGS EOCs 19, and the Catalogue Of Somatic Mutations In Cancer 

(COSMIC) database20.

We used these data to 1) compare gene expression between a) EOC cell lines and normal 

cell lines and b) tumor tissue and normal tissue from TCGA, 2) compare gene methylation 

status in HGS-EOCs and normal tissue, 3) conduct gene expression quantitative trait locus 

(eQTL) analyses to evaluate genotype-gene expression associations in normal OCPTs, 

lymphoblastoid cells, and HGS-EOCs, and 4) conduct methylation quantitative trait locus 

(mQTL) analyses in HGS-EOCs to evaluate genotype-gene methylation associations. Data 

from ENCyclopedia Of DNA Elements (ENCODE) 57 were used to evaluate the overlap 

between regulatory elements in non-coding regions and risk-associated SNPs. ENCODE 

describes regulatory DNA elements (e.g. enhancers, insulators and promotors) and non-

coding RNAs (e.g. miRNAs, long non-coding and piwi-interacting RNAs) that may be 

targets for susceptibility alleles. However, ENCODE does not include data for EOC 

associated tissues, and activity of such regulatory elements often varies in a tissue specific 

manner 57,58. Therefore, we profiled the spectrum of non-coding regulatory elements in 

OSECs and FTSECs using a combination of formaldehyde assisted isolation of regulatory 

elements sequencing (FAIRE-seq) and RNA sequencing (RNA-seq) (Supplementary 

Methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regional association plot for genotyped and imputed SNPs at 17q21.31
The middle portion of the plot contains the region of the inversion polymorphism (ch 17: 

43,624,578-44,525,051, hg build 37), with the four blue dots representing the candidate 

miRSNPs (rs4640231, rs1052587, and rs17574361) and the tagSNP, rs916793. rs1052587 in 

the 3′UTR of MAPT has the strongest signal (P=4.6×10−8) among the miRSNPs. The cluster 

on the left side of the plot (around 43.5 MB) contains highly correlated SNPs (r2=0.99), 

including three directly genotyped intronic SNPs, rs2077606 and rs17631303 in PLEKHM1 

(P=3.9 × 10−10 and P=4.7 × 10−10, respectively), and rs12942666 in ARHGAP27 (P=1.0 × 

10−9). The linkage disequilibrium between each plotted SNP and the top-ranked SNP in the 

region with the best clustering, rs12942666, is depicted by the color scheme; the deeper the 

color red, the stronger the correlation between the plotted SNP and rs12942666. The top 

miRSNP, rs1052587, is moderately correlated (r2=0.76) with rs2077606, rs17631303, and 

rs12942666 in our study population. (n=8,371 invasive serous cases and n= 23,491 controls, 

of European ancestry).
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Figure 2. Expression and methylation analyses at the 17q21.31 ovarian cancer susceptibility 
locus
(a) Genomic map and LD structure. The location and approximate size of 17 known protein 

coding genes (grey) and one microRNA (blue) in the region are shown relative to the 

location of rs12942666. Orange indicates the location of the inversion polymorphism, and 

green indicates the region outside the inversion.

(b) Gene expression (EOC and normal cell lines). Gene expression analysis in Epithelial 

Ovarian Cancer (EOC) cell lines (T; n=51) compared to normal ovarian surface epithelial 

cells (OSECs) and fallopian tube secretory epithelial cells (FTSEC) (N; n=73) (* p<0.05, 

**p<0.01, ***p<0.001).

(c) Gene expression (Primary EOCs and Normal Tissue). Boxplots of The Cancer Genome 

Atlas (TCGA) Affymetrix U133A-array based gene expression in primary high-grade serous 

ovarian tumors (T; n=568) and normal fallopian tube tissues (N; n=8). Where data were not 

available in TCGA, gene expression data from the Gene Expression Omnibus series 

GSE18520 dataset containing 53 high-grade serous tumors and 10 normal ovarian tissues 

are shown (indicated by a red asterisk).

(d) Methylation (Primary Tumors and Normal Tissue). Methylation analysis of 106 high-

grade serous ovarian tumors compared to normal ovarian tissues (n=7). Methylation data 

were generated for CpG site(s) associated with each gene using the Illumina 450 

methylation array. Pairwise analysis of methylation for an individual CpG for each gene is 

based on the CpG with most significant inverse relationship to gene expression (i.e. cis 

negative), for a subset of 43 tumors having available gene expression data. Statistically 

significant cis-negative probes are indicated by a red open circle.
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(e) Expression quantitative trait locus (eQTL) analysis (OSECs/FTSECs). eQTL analysis 

comparing expression for each gene to genotype for the most statistically significant SNP at 

17q21.31 (rs12942666), for 73 normal OSEC/FTSEC lines. Data are presented as box plots 

comparing expression levels in cases carrying rare homozygotes/heterozygotes, with cases 

homozygous for the common allele.

(f) Expression quantitative trait locus (eQTL) analysis (Primary EOCs). eQTL analysis 

comparing expression for each gene to genotype using level 3 gene expression profiling data 

from Agilent 244K custom arrays and level 2 genotype data from the Illumina 1M-Duo 

BeadChip for 568 high-grade serous ovarian cancer patients from TCGA. In all panels * 

p<0.05, **p<0.01, *** p<0.001. Grey X's indicate data not available. Here, genotype data 

for rs2077606 is used (rather than rs12942666) because rs12942666 was not genotyped in 

the TCGA dataset.

(g) Methylation quantitative trait locus (mQTL) analysis (Primary EOCs). mQTL analysis 

showing methylation status in 227 high-grade serous EOCs relative to rs12942666 genotype.
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Figure 3. eQTL associations between the rs2077606 susceptibility SNP at 17q21
(a) Analysis of the chromatin landscape at ARHGAP27 and PLEKHM1 in normal ovarian 

surface epithelial and fallopian tube secretory epithelial cells (OSECs/FTSECs) by 

formaldehyde assisted isolation of regulatory elements sequencing (FAIRE-seq). Alignment 

with ENCODE FAIRE-seq tracks (shown) and ChIP-seq tracks (not shown) from non-EOC 

related cell lines reveals open chromatin peaks corresponding to (a) promoters (b) CTCF 

insulator binding sites and (c) H3K4me3 signals, suggestive of a dynamic regulatory region. 

An H3K4me3 signal at a coding ARHGAP27 mRNA variant (c) located between the genes 

is highly pronounced in OSEC/FTSEC, suggesting tissue-specific expression and function. 

Several of the top-ranking SNPs fall within transcription factor binding sites (TFFS) 

(Supplementary Table S2). rs12942666 did not coincide with TFBS, but tightly linked 

SNPs, rs12946900 and rs2077606 fell within predicted binding sites for SPIB and ZEB1, 

respectively.

(b) We analyzed the expression of SPIB and ZEB1 in primary high-grade serous tumors 

from TCGA and found (i) no significant change in SPIB expression but (ii) significant 
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down-regulation of ZEB1 in tumors compared to normal tissues. (iii) QPCR analysis of 

ZEB1 expression in 73 OCPT and 50 EOC cell lines replicated the finding that ZEB1 

expression is lower in cancer cell lines compared to normal precursor tissues. (c) eQTL 

analysis in OSECs/FTSECs for different alleles of rs2077606. There was a (i) significant 

eQTL for ARHGAP27, with the minor (A) allele being associated with increased 

ARHGAP27 expression (P=0.034), (ii) no evidence of an association between rs2077606 

genotypes and ARHGAP27 expression in lymphoblastoid cell lines suggesting this 

association may be tissue-specific. (iii) We observed a borderline significant eQTL 

association between ZEB1 mRNA and rs2077606 in tumors from TCGA, with the minor 

risk allele also associated with lower expression.
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