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Abstract—We introduce a scalable observer architecture to
estimate the states of a discrete-time linear-time-invariant (LTI)
system whose sensors can be manipulated by an attacker. Given
the maximum number of attacked sensors, we build on previous
results on necessary and sufficient conditions for state estimation,
and propose a novel multi-modal Luenberger (MML) observer
based on efficient Satisfiability Modulo Theory (SMT) solving. We
present two techniques to reduce the complexity of the estimation
problem. As a first strategy, instead of a bank of distinct
observers, we use a family of filters sharing a single dynamical
equation for the states, but different output equations, to generate
estimates corresponding to different subsets of sensors. Such an
architecture can reduce the memory usage of the observer from
an exponential to a linear function of the number of sensors.
We then develop an efficient SMT-based decision procedure that
is able to reason about the estimates of the MML observer to
detect at runtime which sets of sensors are attack-free, and use
them to obtain a correct state estimate. We provide proofs of
convergence for our algorithm and report simulation results to
compare its runtime performance with alternative techniques.
Our algorithm scales well for large systems (including up to 5000
sensors) for which many previously proposed algorithms are not
implementable due to excessive memory and time requirements.
Finally, we illustrate the effectiveness of our algorithm on the
design of resilient power distribution systems.

I. INTRODUCTION

Large and complex cyber-physical systems (CPSs) (e.g.,
power grids, water and gas distribution systems) are increas-
ingly being deployed today as a promising response to key in-
frastructural and societal challenges, ranging from transporta-
tion, energy, security, to health-care. In these systems, sensors
and cyber components (e.g., digital processors and networks)
instrument the physical world to make it “smarter.” However,
cyber components are also the source of new, unprecedented
vulnerabilities to malicious attacks. Striking examples of ad-
versarial attacks include the Stuxnet virus targeting SCADA
systems [1] as well as the injection of false data in power
systems [2], or the non-invasive sensor spoofing attacks in
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automotive systems [3]. Independently of the nature of the
attack, i.e., whether it originates from the cyber or physical
portion of the system, it eventually results into corrupted
sensor measurements. Using these measurements to control
the operation of the CPS can finally lead to life-threatening
situations.

A possible strategy to build resilient cyber-physical systems
is to equip them with algorithms that are able to recognize
the presence of an adversarial attack on their sensors and
reconstruct the actual system state independently of the attack,
by relying on the measurements collected from uncorrupted
sensors. This is the approach advocated in this paper.

The problem of state reconstruction in the presence of
attacks, also denoted as secure state estimation, has recently at-
tracted considerable attention from the control community [4]–
[12]. The first category of works [4], [7]–[10], [12] performs
state estimation by analyzing the sensor information collected
within a time window of finite length. This is, for instance, the
case for the algorithms based on solving an L0 optimization
problem, proposed by Fawzi et al. [4] and Pajic et al. [7], the
game-theoretic approach proposed by Mo et al. [9], and the
Gramian-based observer by Chong et al. [6]. The second cat-
egory of results in the literature focuses, instead, on designing
recursive observers and filters [5], [6], [8], [11]. Observers
and filters show a higher promise of scalability, as they are
able to incorporate new information as it becomes available
in real time. Moreover, they offer better performance in the
presence of noise and modeling errors, since they make use
of all the available measurements from the beginning of the
observation window to the current time instant t. Observers
would be, however, ineffective unless they are coupled with
an efficient procedure that can quickly identify and disregard
the malicious measurements.

The problem of reconstructing the state under sensor at-
tacks is closely related to fault-tolerant state reconstruction.
The robust Kalman filter, described in [13], and the robust
principal component analysis (PCA) [14] are approaches to
fault-tolerant state reconstruction closer to the results in this
paper, at the technical level. In robust Kalman filtering the
state estimate updates are obtained by solving a convex L1

optimization problem that is robust to outliers. Similarly, a
PCA robust to outliers is developed in [14]. However, no
theoretical guarantees are known regarding the performance
of these techniques in the presence of malicious attacks.



The complexity of CPSs is arguably the hardest challenge
for the deployment of resilient and secure designs. Identifying
which sensors are under attack is combinatorial in the number
of sensors; while brute-force strategies show poor scalabil-
ity [5], [6], [11], problem relaxations tend to weaken the
security guarantees [8]. The situation is exacerbated by the
“trillion devices” scenario posed by the Internet of Things.
Devising scalable algorithmic solutions to secure CPS design
is, therefore, highly desirable [15].

In this paper, we address the design of observers that can
accurately reconstruct the state of a cyber-physical system
under sensor attacks, while being suitable to be deployed in
real-time and on large scale systems. At the heart of our
approach is a Satisfiability Modulo Theory based algorithm
which further improves on the scalability of our previous
solutions [10], [16] while addressing both memory and runtime
efficiency. In particular, the work in [10], [16] focuses mainly
on the case where the state of the system is estimated from
data collected within a finite window length. However, when
bounded noise exists in the system, estimating the state using
finite amount of data leads to poor performance in terms of the
state estimation error [10]. Therefore, in this work, we propose
designing a Luenberger-like observer that can incorporate
new measurements as they become available. Thanks to the
recursive nature of the Luenberger observer, noise is “averaged
out” as new information become available. Our contributions
can be summarized as follows:
• We propose, to the best of our knowledge, the first state

estimation algorithm that combines the robustness of an
observer to bounded noise with the efficiency of SMT-
based detection of corrupted sensors;

• We present a novel observer architecture whose memory
usage scales linearly with the number of system states
and sensors;

• We demonstrate the scalability of our approach on large
CPS examples, showing that it outperforms previously
proposed techniques.

The rest of the paper is organized as follows. Section II
presents the mathematical formulation of our problem while
Section III introduces the overall observer architecture. The
design is detailed in Sections IV and V. In Section VI
we provide the theoretical analysis of our algorithm and its
convergence guarantees. Numerical experiments showing the
scalability of the proposed approach for large systems as well
as a power system design example are discussed, respectively,
in Section VII and Section VIII. Finally, Section IX concludes
the paper.

II. PROBLEM FORMULATION

A. Preliminaries
The symbols N,R and B denote the sets of natural, real, and

Boolean numbers, respectively. The symbols ∧ and ¬ denote
the logical AND and logical NOT operators, respectively. The
support of a vector x ∈ Rn, denoted by supp(x), is the set
of indices of the non-zero elements of x. If S is a set, |S|
is the cardinality of S. For a vector x ∈ Rn, we denote by
‖x‖2 the 2-norm of x and by ‖M‖2 the induced 2-norm of
a matrix M ∈ Rm×n. We also denote by Mi ∈ R1×n the ith

row of M . Finally, for the set Γ ⊆ {1, . . . ,m}, we denote by
MΓ ∈ R|Γ|×n the matrix obtained from M by removing all
the rows except those indexed by Γ.

B. System and Attack Model
We consider a system under sensor attacks of the form:

x(t+1) = Ax(t) +Bu(t) + µ(t), (II.1)

y
(t)
i =

{
Cix

(t) + ψ
(t)
i if ith sensor is attack-free

Cix
(t) + a

(t)
i + ψ

(t)
i if ith sensor is under attack

(II.2)

where x(t) ∈ Rn is the system state at time t ∈ N,
u(t) ∈ Rm is the system input, and y

(t)
i ∈ R is the

observed output from the ith sensor where i ∈ {1, . . . , p}.
Matrices A,B, and C1, . . . , Cp represent the system dynamics
and have appropriate dimensions. An attacker can corrupt
the sensor measurements yi by either spoofing the sensor
output or manipulating the data transmitted from the sensor
to the controller. Independently of the nature of the attack,
its effect can be described by the attack signal a(t)

i . We do
not assume bounds, statistical properties, or restrictions on
the time evolution of the elements in a

(t)
i . We only assume

that the attacker has access to a fixed subset of sensors of
cardinality s ≤ s; whether a specific sensor in this subset
is attacked or not may change with time. As shown in [8,
Theorem III.2], [4, Proposition 2], and [6, Theorem 1]1, the
upper bound on the maximum number of sensors under attack
s is a characteristic of the system and can be computed a priori
from the system parameters (the number of sensors p and the A
and Ci matrices). We will elaborate on how this upper bound
is exploited in the design of an observer in Section III. Finally,
the vectors µ(t) ∈ Rn and ψ(t) = (ψ

(t)
1 , . . . , ψ

(t)
p ) ∈ Rp

represent, respectively, the process (i.e., modeling) noise and
the measurement noise, which we assume to be bounded, i.e.,
there exist bounds ψi and µ such that:

‖ψi(t)‖2 ≤ ψi, ‖µ(t)‖2 ≤ µ, ∀t ∈ N, ∀i ∈ {1, . . . , p}.
C. Observer Design Problem

We assume that each sensor can be in one of two modes,
i.e., either attack-free or under attack. The attacker has access
to at most s sensors and the attacker can, at any point of time,
decide to switch his attack signal on or off. Since at most s
sensors can be corrupted, the system can be, at each time, in
any of

∑s
k=0

(
p

p−k
)

modes, corresponding to the specific sets
of sensors being under attack.

Since the attacked sensors are unknown a priori, designing
a secure Luenberger observer entails two main steps. We first
need to detect the system mode by identifying the sensors
which are under attack. Then, we can construct the state
estimate from the attack-free sensors. We formally define our
task as follows.

Problem II.1. (Secure Luenberger Observer Design) Given
the linear system under attack defined in (II.1) and (II.2),
construct an estimate x̂(t) such that:

lim sup
t→∞

∥∥∥x(t) − x̂(t)
∥∥∥

2
≤ ρ

(
ψ, µ

)
1This result was derived for continuous-time LTI systems.



for some constant ρ ∈ R+ which depends on the noise bounds
ψ = (

∑p
i=1 ψ

2

i )
1
2 and µ.

In other words, we are interested in an estimate x̂(t) such
that the norm of the state estimation error

∥∥x(t) − x̂(t)
∥∥

2
converges to a ball centered at the origin and whose radius
is just a function of the noise bound. In particular, in the
noiseless case, the observer asymptotically converges to the
actual system state, independently of the attack.

We observe that estimating the state of a system in the
presence of sensor attacks is not always feasible, in general. To
establish conditions under which such an estimation is indeed
feasible, hence the secure Luenberger observer design problem
can be solved, we resort to the notion of s-sparse observability
for discrete-time systems [8] (or, similarly, the one of M -
attack observability [6]) defined as follows.

Definition II.2. (s-Sparse Observable System) The linear
control system under attack defined by (II.1) and (II.2) is said
to be s-sparse observable if for every set Γ ⊆ {1, . . . , p} with
|Γ| = p− s, the pair (A,CΓ) is observable.

Informally, a system is s-sparse observable if it remains
observable after eliminating any choice of s sensors. In the
absence of sensor and process noise, the conditions under
which the state can be estimated in spite of sensor attacks
were studied in [4], [6], [8], where it is shown that, if s is
the maximum number of corrupted sensors, 2s-sparse observ-
ability is necessary and sufficient for secure state estimation.
Therefore, in what follows, we assume that the 2s-sparse
observability condition always holds. Moreover, we introduce
below a convenient and compact notation to describe the main
results of this paper.

D. Notation

For a set of τ ∈ N measurements (with τ ≤ n), we
can arrange the outputs from the ith sensor at different time
instants as follows:

Ỹ
(t)
i = Oix(t) + E

(t)
i + FiU

(t) + Ψ
(t)
i

where:

Ỹ
(t)
i =


y

(t)
i

y
(t+1)
i

...
y

(t+τ−1)
i

 , E(t)
i =


a

(t)
i

a
(t+1)
i

...
a

(t+τ−1)
i

 , U (t) =


u(t)

u(t+1)

...
u(t+τ−1)

 ,

Ψ
(t)
i =


0 0 . . . 0 0
Ci 0 . . . 0 0
...

. . .
...

CiA
τ−2 CiA

τ−3 . . . Ci 0




µ(t)

µ(t+1)

...
µ(t+τ−1)

+


ψ

(t)
i

ψ
(t+1)
i

...
ψ

(t+τ−1)
i

,

Fi=


0 0 . . . 0 0

CiB 0 . . . 0 0
...

. . .
...

CiA
τ−2B CiA

τ−3B . . . CiB 0

,Oi=


Ci
CiA

...
CiA

τ−1

.

Since all the inputs in U (t) are known, we can further simplify
the output equation as:

Y
(t)
i = Oix(t) + E

(t)
i + Ψ

(t)
i , (II.3)

where Y (t)
i = Ỹ

(t)
i − FiU (t). We also define:

Y (t) =

Y
(t)
1
...

Y
(t)
p

 , E(t) =

E
(t)
1
...

E
(t)
p

 ,Ψ(t) =

Ψ
(t)
1
...

Ψ
(t)
p

 ,O =

O1

...
Op


(II.4)

to denote, respectively, the vector of outputs, attacks, noise,
and observability matrices related to all sensors over the same
time window of length τ . With some abuse of notation, Yi, Ei
and Oi are also used to denote the ith block of Y,E, and
O. Similarly, we denote with YΓ, EΓ, ΨΓ, and OΓ the blocks
indexed by the elements in the set Γ.

Because of our assumptions on the system noise, there exists
a uniform upper bound on its magnitude, denoted by Ψi ∈ R+,
i.e., the following inequality

∥∥∥Ψ
(t)
i

∥∥∥
2
≤ Ψi holds for all time

t ∈ N. With some abuse of notation, for the set Γ ⊆ {1, . . . , p}
we denote with ΨΓ ∈ R+ the bound on the noise for the set
of sensors indexed by Γ, i.e.,∥∥∥Ψ

(t)
Γ

∥∥∥2

2
=
∑
i∈Γ

∥∥∥Ψ
(t)
i

∥∥∥2

2
≤
∑
i∈Γ

Ψ
2

i = Ψ
2

Γ.

By the same abuse of notation, we drop the subscript Γ for the
special case in which Γ is the set of all sensors, i.e., Ψ = ΨΓ

when Γ = {1, . . . , p}.

III. OBSERVER ARCHITECTURE

In this section we detail the overall architecture of the
proposed observer. For ease of presentation, we focus on the
noiseless case (i.e., when µ(t) and ψ(t) are equal to zero
for all t ∈ N). We extend our results to the noisy case in
Section VI-C.

A. Exhaustive-Search-Based Observer
We recall that the states of the attacked system (II.1) can

be estimated if and only if, for every subset Γ of {1, . . . , p}
with at least p− 2s̄ elements, the pair (A,CΓ) is observable.
We could exploit this result to construct an observer for every
set Γ with p − s̄ elements (which is greater than p − 2s̄) as
follows:

x̂
(t+1)
Γ = Ax̂

(t)
Γ +Bu(t) + LΓ(y

(t)
Γ − ŷ

(t)
Γ )

ŷ
(t)
Γ = CΓx̂

(t)
Γ , (III.1)

where x̂Γ denotes the state estimate generated from the input
u and output yi, i ∈ Γ. Note that LΓ can be chosen such
that the eigenvalues of A− LΓCΓ are strictly within the unit
disk since the pair (A,CΓ) is observable. Clearly, since at
least one subset of p − s̄ sensors are attack-free, we expect
the output error dynamics ‖YΓ −OΓx̂Γ‖2 of at least one of
these observers to decay. Our aim would then be to select the
state estimate whose estimation error is no worse than the one
generated by the attack-free sensors. We refer to this approach
as the “exhaustive-search-based observer.”



Such a brute force observer would have, however, two major
disadvantages:
• Memory complexity: running

(
p
p−s
)

estimators as de-
fined in (III.1), each of which produces an estimate
x̂Γi
∈ Rn, results in updating a vector of length n

(
p
p−s
)

at each sample time. This requires an amount of memory
that is exponential in the number p of sensors.

• Computational complexity: after producing all the(
p
p−s
)

estimates, they must still be analyzed to select the
best state estimate based on some performance criterion.
This analysis further adds to the computational complex-
ity of the estimators.

Our main goal is, therefore, to develop a new, scalable
observer architecture that overcomes the disadvantages above.

B. Multi Modal SMT-Based Observer
To reduce memory complexity, we propose to replace the

bank of
(
p
p−s
)

observers with a single multi-modal Luenberger
(MML)-observer which is still able to produce all the estimates
of the naive observer. The MML-observer uses the input
u(t) and measurements y(t) collected from all the sensors to
update an extended state estimate ẑ(t). Whenever needed, the
extended state estimate ẑ(t) can be transformed into a state
estimate x̂(t)

Γ that matches the data corresponding to the set of
sensors indexed by Γ. We show in Section IV that the memory
usage for the extended state estimate ẑ(t) scales linearly with p
as opposed to the exponential scaling of the exhaustive-search-
based observer (III.1).

Although the MML-observer reduces the memory require-
ments, we would still need to analyze all the

(
p
p−s
)

estimates
to detect the attack-free sensors. We harness the underlying
combinatorial nature of this problem by leveraging techniques
from efficient satisfiability solving. To do so, we reformulate
the estimation problem as a satisfiability problem as follows.

First, we recall that there is at least one set of sensors
Γ? with cardinality |Γ?| ≥ p − s such that all the sensors
indexed by this set are attack-free. Then, by Proposition A.2
in the appendix, we can conclude that the output error∥∥∥Y (t)

i −Oix̂(t)
Γ?

∥∥∥2

2
decays exponentially over time, i.e.,∥∥∥Y (t)

i −Oix̂(t)
Γ?

∥∥∥2

2
≤ γiλ̄t, ∀i ∈ Γ?

where γi and λ̄ are design parameters independent of the
specific set Γ?. By defining a binary indicator variable bi ∈ B
such that bi = 0 when the ith sensor is attack-free and bi = 1
otherwise, the problem of constructing a secure Luenberger
observer can be formulated as the search for an estimate
η(t) = (x̂(t), b(t)) ∈ Rn × Bp such that η(t) |= φ(t) ∀t ∈ N,
where φ(t) is defined as:

φ(t)::=

p∧
i=1

(
¬b(t)i ⇒

∥∥∥Y (t)
i −Oix̂(t)

∥∥∥2

2
≤γiλ̄t

)
∧

(
p∑
i=1

b
(t)
i ≤s

)
.

The first part of φ(t) asks for an estimate x̂(t) and an assign-
ment for the attack indicator variables b(t) = (b

(t)
1 , . . . , b

(t)
p )

such that the discrepancy between the state estimate and
the measured outputs decreases exponentially with time. The
second clause requires, instead, that the number of attacked

pseudo
Boolean

(pB)
SAT-solver

Check that: ∀i ∈ Γ(t)∥∥∥Y (t)
i −Oix̂(t)

Γ(t)

∥∥∥
2
≤ γλ̄(t)

(T -SOLVE.CHECK)

Generate Conflict Certificates
(T -SOLVE.CERTIFICATE)

T -SOLVE

SMT-BASED CONFLICT DRIVEN LEARNING

Multi Modal Luenberger (MML)
Observer

ẑ(t+1) = Aẑ(t) +B

[
u(t)

y(t)

]
y

(t)
1

y
(t)
2

y
(t)
p

Extract

x̂
(t)

Γ(t) = TΓ(t) ẑ(t)

Y
(t)

Γ(t) , x̂
(t)

Γ(t)Γ(t)

ẑ(t)

φ
(0)
B

x̂(t)

Γ(t)

Γ(t)

φ
(t)
cert

Fig. 1. Architecture of the proposed observer. The observer consists of two
main blocks: a Multi-Modal Luenberger (MML) observer that computes an
extended estimate ẑ(t), which can then be transformed into the state estimate
x̂

(t)
Γ , for any set Γ, and an SMT-based conflict-driven learning algorithm that

searches for the correct set of sensors Γ.

sensors be no greater than s. As denoted by the time argument
in φ(t), at each time t, a new formula must be satisfied.

Following the lazy approach to Satisfiability Modulo Theory
solving, our architecture uses a pseudo-Boolean2 satisfiability
(pB-SAT) solver to reason about possible assignments for
the Boolean variables b(t). The pB-SAT leverages the David-
Putnam-Logemann-Loveland (DPLL) algorithm [17] to sug-
gest a set of sensors that are attack-free. The sensor choice is
then passed to the MML-observer to transform the extended
state estimate ẑ(t) into a corresponding state estimate x̂(t),
which is used to check the satisfiability of the formula φ(t).
If φ(t) is not satisfied, the selected estimate (and the related
sensor set) is incorrect. The observer will then implement a
learning procedure to produce a succinct explanation for the
infeasibility, i.e., to highlight which sensors are responsible
for it. This conflict-driven learning mechanism is instrumental
to speed-up the process of detecting and isolating the attacked
sensors. The overall architecture is summarized in Figure 1.
In the following sections, we give details for each of the two
building blocks, i.e., the MML-Observer and the SMT-based
conflict-driven learning.

IV. MULTI-MODAL LUENBERGER (MML) OBSERVER

In this section we explain how to replace the bank of
(
p
p−s
)

observers (III.1) with only one observer which is able to
produce the estimates computed by all those observers.

Step 1: We start by rewriting the observer (III.1) with initial
state x̂(0)

Γ = 0 as:

x̂
(t+1)
Γ = ÃΓx̂

(t)
Γ + B̃Γũ

(t), x̂
(0)
Γ = 0 (IV.1)

η
(t)
Γ = x̂

(t)
Γ . (IV.2)

2A pseudo-Boolean constraint is a linear constraint over Boolean variables
with integer coefficients



where ÃΓ := A − LΓCΓ, B̃Γ :=
[
B LΓ

]
, y(t) :=

[y
(t)
1 . . . y

(t)
p ]>, and ũ(t) := [u(t) y(t)]>. The columns of

LΓ corresponding to the output yi, i ∈ Γ, are equal to those
of LΓ and the other columns are zero.

Step 2: The next step is to choose the observer gain LΓ such
that ÃΓ = A−LΓCΓ has the same characteristic polynomial:

d(s) := sn + a1s
n−1 + · · ·+ an (IV.3)

for all Γ. We note that this step can be always done thanks to
the 2s-sparse observability property.

Step 3: The final step is to find a linear change of coordi-
nates TΓ which transforms the observer (IV.1) and (IV.2) into
the following Controllable Canonical Form (CCF)3:

ẑ
(t+1)
Γ = Aẑ

(t)
Γ +Bũ(t), ẑ

(0)
Γ = 0 (IV.4)

η
(t)
Γ = CΓẑ

(t)
Γ , (IV.5)

where ẑ(t+1)
Γ ∈ Rnl, l = m+ p, and:

TΓA = ÃΓTΓ, TΓB = B̃Γ, CΓ = TΓ,

such that:

A =


−a1I` −a2I` . . .−an−1I` −anI`
I` 0` . . . 0` 0`
0` I` . . . 0` 0`
...

...
. . .

...
...

0` 0` . . . I` 0`

, B=


I`
0`
...

0`
0`


where a1, . . . , an are the coefficients of the characteristic
polynomial (IV.3). Note that we dropped the subscript Γ from
A and B in (IV.4). This follows from step 2 which ensures
that all observers, for all sets Γ, have the same characteristic
polynomial and hence they all have the same matrix A along
with the fact that the definition of the matrix B does not
depend on the set Γ.

To find such transformation, we use Proposition 2.3 in [18]
on the realization of linear time-invariant systems to obtain
the matrix TΓ as:

RΓ =
[
B̃Γ ÃΓB̃Γ . . . Ãn−1

Γ B̃Γ

]

R′ =


I` a1I` a2I` . . . an−1I`
0` I` a1I` . . . an−2I`
...

. . . . . . . . .
...

0` . . . 0` I` a1I`
0` . . . 0` 0` I`


TΓ = RΓR′. (IV.6)

Finally, by noticing that all observers are initialized to the
same initial condition and they all share the same state update
equation, we can rewrite all observers (IV.4) and (IV.5) as:

ẑ(t+1) = Aẑ(t) +Bũ(t), ẑ(0) = 0 (IV.7)

η
(t)
Γ = CΓẑ

(t), (IV.8)

3The purpose of using the CCF is to obtain an observer system with a
state equation that is independent of the set Γ (as shown in Step 3), which
allows the multi-observer to be implemented as a family of systems that share
a single state equation, but with different output equations.

ũ ∈ Rm+p

x̂Γ ∈ Rn

ηΓ ∈ Rn

x̂Γ ∈ Rn

B̃Γ

TΓ TΓ

C̄ΓB̄

Ā

ÃΓ

I

ẑ ∈ Rn(m+p) ẑ ∈ Rn(m+p)

Fig. 2. Commutative diagram of the observers (IV.1), (IV.2) and (IV.7), (IV.8).

where we dropped the dependency on the set Γ in (IV.7). In
other words, the observer defined by (IV.7) and (IV.8) updates
the intermediate state ẑ(t) based on all sensor measurements
while still being able to transform ẑ(t) in the sensor dependent
output x̂(t)

Γ for any sensor set Γ.

Remark IV.1. The size of ẑ is n(m+p), i.e., it grows linearly
with the number of sensors p. This eliminates the need for a
state vector that is exponential in p as in the case of the
exhaustive-search-based observer.

The discussion in this section is summarized in Figure 2
and in the following result.

Theorem IV.2. Let the linear dynamical system defined
by (II.1) and (II.2) be 2s-sparse observable. The observer
defined by (IV.7) and (IV.8) generates the same output ηΓ

as the original bank of observers (IV.1), (IV.2) for every input
ũ and for any set of sensors Γ. Moreover, the size of ẑ grows
linearly with the number of outputs p.

Proof. Since the linear system, defined by (II.1) and (II.2),
is 2s-sparse observable, the pair (A,CΓ) is observable for all
Γ. Hence, we can always choose LΓ such that every matrix
ÃΓ satisfies the same characteristic polynomial (IV.3). Routine
calculations show that:

TΓA = ÃΓTΓ, TΓB = B̃Γ, CΓ = TΓ, (IV.9)

for all Γ. Finally, the claim on the size of ẑ follows from
Remark IV.1.

V. SATISFIABILITY MODULO THEORY
(SMT)-BASED ENGINE

As discussed in Section III-B, the SMT-based engine has
three objectives: (i) hypothesize which sensors are attack-free
and hence select the mode of the MML-observer; (ii) check
whether the selected set of sensors is, indeed, attack-free;
and (iii) generate conflicts (counterexamples) to speed up the
search over the possible sensor sets. In this section, we give
details on these tasks.

A. Hypothesizing the Attack-free Sensors
Searching for the attack-free sensors is combinatorial in

nature. At each time instance t, we need to select a set Γ(t)

containing at most p − s sensors. To do this, we use the
indicator variable b(t) = (b

(t)
1 , . . . , b

(t)
p ) ∈ Bp, where we use

b
(t)
i = 0 to denote that sensor i is considered attack-free at



Algorithm 1 T -SOLVE.CERTIFICATE
(
I, x̂(t)

I

)
1: Compute the residues for i ∈ I
2: ri :=

∥∥∥Y (t)
i −Oix̂(t)

I

∥∥∥2

2
− γiλ̄t

3: Normalize the residues
4: ri := ri/ ‖Oi‖22,
5: Sort the residues in ascending order
6: r sorted := sortAscendingly({ri|i ∈ I});
7: Choose sensor indices of p− 2s smallest residues
8: r min := Index (r sorted[1 : p− 2s]);
9: Search linearly for the certificate

10: status = UNSAT; counter = 1; I ′ = I
11: while status == UNSAT do
12: I ′ := I ′ \ r min[counter];
13: x̂

(t)
I′ := TI′ ẑ

(t)

14: if ∃i ∈ I ′ s.t.
∥∥∥Y (t)

i −Oix̂(t)
I′

∥∥∥2

2
> γiλ̄

t then
15: φconf-cert :=

∑
i∈I′ bi ≥ 1;

16: counter := counter + 1;
17: else
18: status := SAT;
19: return φconf-cert

time t. At any point in time, the set of hypothesized attack-
free sensors Γ(t) can then be extracted from b(t) using

Γ(t) = {1, . . . , p} \ supp
(
b(t)
)
.

We then ask the PB-SAT-SOLVE for an assignment over
b
(0)
i (at time t = 0) that satisfies the following constraint:

φ
(0)
B :=

p∑
i

b
(0)
i ≤ s,

ensuring that at most s sensors are regarded as attacked. If the
state estimate produced by the MML observer from Γ(t) does
not satisfy ∥∥∥Yi −Oix̂(t)

Γ(t)

∥∥∥2

2
≤ γiλ̄t ∀i ∈ Γ(t), (V.1)

i.e., it is not bounded by the exponentially decaying en-
velope, then a new conflict clause is generated by T -
SOLVE.CERTIFICATE. This clause takes the form

φ
(t)
cert =

∑
i∈I(t)

b
(t)
i ≥ 1

for some set I(t) ⊆ Γ(t), providing a certificate that at least
one of the sensors indexed by the set I(t) is under attack. De-
tails on how to select I(t) are given in the next subsection. The
certificate generated at time t is then conjoined to the formula
φ

(t−1)
B to create a new Boolean formula φ(t)

B = φ
(t−1)
B ∧ φ(t)

cert
that needs to be satisfied by the pB-SAT solver, thus leading
to a new candidate set of attack-free sensors.

B. Learning a Conflict Clause

Whenever the set of hypothesized attack-free sensors Γ(t)

does not satisfy (V.1), we need to generate a compact Boolean

certificate that explains the conflict. A trivial certificate could
be easily generated as mentioned above:

φ
(t)
triv-cert =

∑
i∈Γ(t)

b
(t)
i ≥ 1, (V.2)

indicating that at least one of the sensors, which was initially
assumed as attack-free (i.e., for which bi = 0), is actually
under attack; one of the bi variables should then be set to one
in the next assignment of the pB-SAT solver. However, φtriv-cert
does not provide much information, since it only excludes the
current assignment from the search space, and can still lead
to exponential execution time [10], [16]. In fact, the generated
certificates heavily affect the overall execution time of an SMT
solver. Smaller certificates prune the search space faster [10].

To find such a certificate, we need to search for a subset
I(t) ⊆ Γ(t) whose elements cannot all be attack-free. To this
end, we start by removing one sensor at a time from the
original set and re-run the test (V.1) on the set of remaining
sensors. This procedure repeats as long as the residual sensor
set is conflicting. Finally, we generate the certificate:

φ
(t)
conf-cert =

∑
i∈I(t)

b
(t)
i ≥ 1. (V.3)

Termination of the above procedure is guaranteed regardless
of the order in which the sensors are chosen. In practice,
different orderings may lead to different execution times. In
Algorithm 1 we describe a heuristic based on the procedure
in [10].

C. Strict versus Relaxed Conflict Clause Learning
Whenever a set of sensors does not pass the test (V.1), we

need to learn a conflict clause and search for a new set of
sensors. As the estimation algorithm must run in real time,
a natural question is when to terminate the iterative process
between hypothesizing a new set of sensors and learning
a conflict clause. In particular, we propose two termination
schemes, namely, strict conflict clause learning and relaxed
conflict clause learning.

In the strict conflict clause learning, as shown in Algo-
rithm 2, new sets of candidate attack-free sets are repetitively
generated until we find a set Γ(t) that satisfies (V.1). This
scheme maintains the following property invariant for all t:∥∥∥Yi −Oix̂(t)

Γ(t)

∥∥∥2

2
≤ γiλ̄t, ∀i ∈ Γ(t) (V.4)

On the other hand, in the relaxed conflict clause learning in
Algorithm 3, a new set of candidate attack-free sensors and
conflict clause are generated only once per time step. We call
this scheme “relaxed” since it allows for (V.4) to be violated
at some times.

Figure 3 emphasizes the difference between the two learning
schemes using the IEEE-14 power bus example discussed in
Section VIII. As shown a the top, the norm of the output
estimation error ‖Yi −Oix‖2 is guaranteed to be always below
the decaying bound γiλ̄t. However, this occasionally comes at
the cost of large execution time. The relaxed scheme allows,
instead, the output estimation error to exceed the bound but
achieves a constant execution time performance, which may
be much better than the one of the strict observer. In the
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Fig. 3. Difference between strict and relaxed conflict clause learning. The
top figure represents the output estimation error ‖Yi −Oix‖2 as a function
of the decaying upper bound γiλ̄

t. The bottom figure shows, instead, the
execution time of both the schemes.

Algorithm 2 STRICT SECURE LUENBERGER OBSERVER

1: status := UNSAT, φ
(t)
B := φ

(t−1)
B ;

2: while status == UNSAT do
3: b(t) := PB-SAT-SOLVE

(
φ

(t)
B

)
;

4: Γ(t) = {1, . . . , p} \ supp
(
b(t)
)

5: x̂
(t)

Γ(t) := TΓ(t) ẑ(t);

6: if ∃i ∈ Γ(t) s.t.
∥∥∥Yi −Oix̂(t)

Γ(t)

∥∥∥2

2
> γiλ̄

t then

7: φ
(t)
cert := T -SOLVE.CERTIFICATE

(
Γ(t), x̂

(t)

Γ(t)

)
;

8: φ
(t)
B := φ

(t)
B ∧ φ

(t)
cert;

9: else
10: status := SAT;
11: ẑ(t+1) := MML-OBSERVER-UPDATE

(
ẑ(t), u(t), y(t)

)
;

next section, we discuss the theoretical guarantees of both the
schemes.

VI. CONVERGENCE ANALYSIS

We provide proofs of convergence for the two observer
architectures introduced in Section V-C. We start by recalling
the following result.

Proposition VI.1 (Proposition II.6 [10]). Let the linear
dynamical system defined in (II.1) and (II.2) be 2s-sparse
observable. There exists a δ2s ∈ R+ such that:

0 < δ2s ≤ λmin

{
OTΓ2s

OΓ2s

}
for any set Γ2s ⊂ {1, . . . , p} with |Γ2s| ≥ p− 2s.

In the rest of this paper, we refer to δ2s as the 2s-restricted
eigenvalue of the system defined in (II.1) and (II.2). Using
this notion of restricted eigenvalue, we can characterize the
convergence of the proposed observers.

Algorithm 3 RELAXED SECURE LUENBERGER OBSERVER

1: φ
(t)
B := φ

(t−1)
B ;

2: b(t) := PB-SAT-SOLVE
(
φ

(t)
B

)
;

3: Γ(t) = {1, . . . , p} \ supp
(
b(t)
)

4: x̂
(t)

Γ(t) := TΓ(t) ẑ(t);

5: if ∃i ∈ Γ(t) s.t.
∥∥∥Yi −Oix̂(t)

Γ(t)

∥∥∥2

2
> γiλ̄

t then

6: φ
(t)
cert := T -SOLVE.CERTIFICATE

(
Γ(t), x(t)

)
;

7: φ
(t)
B := φ

(t)
B ∧ φ

(t)
cert;

8: ẑ(t+1) := MML-OBSERVER-UPDATE
(
ẑ(t), u(t), y(t)

)
;

A. Convergence of the Strict Secure Observer

Theorem VI.2. Let the linear dynamical system defined
in (II.1) and (II.2) be 2s-sparse observable. There exist con-
stants 0 < λ̄ < 1 and κ ∈ R+ such that the state estimation
error

∥∥x(t) − x̂(t)
∥∥

2
produced by the secure Luenberger Ob-

server defined in Algorithm 2 at time t is bounded from above
as ∥∥∥x(t) − x̂(t)

∥∥∥2

2
≤ κλ̄t.

Moreover the state estimation error satisfies

lim
t→∞

∥∥∥x(t) − x̂(t)
∥∥∥2

2
= 0

Proof. First, it follows from the 2s-sparse observability and
Proposition A.2 in the Appendix that there exist observer gains
such that the error dynamics of the attack-free observer is
stable. In other words, there exist constants γi and 0 < λ̄ < 1
and sets Γ(t) such that (V.1) holds. Hence, we conclude that
the following inequality hold:∥∥∥Yi −Oix̂(t)

Γ(t)

∥∥∥2

2
≤ γiλ̄t, ∀i ∈ Γ(t) ∀t ∈ N (VI.1)

We now define I(t) = Γ(t) \ supp(E(t)), and I ′(t) =
supp(E(t)). Then, the following holds:∥∥∥Y (t)

Γ(t) −OΓ(t) x̂(t)
∥∥∥2

2
=
∥∥∥OΓ(t)(x(t) − x̂(t)) + E

(t)

Γ(t)

∥∥∥2

2

=
∥∥∥OI(t)(x(t) − x̂(t))

∥∥∥2

2
+
∥∥∥OI′(t)(x(t) − x̂(t)) + E

(t)

I′(t)

∥∥∥2

2

(a)

≤
∑
i∈Γ(t)

γiλ̄
t

(b)

≤ γλ̄t (VI.2)

where inequality (a) follows from (VI.1), which ensures that
Algorithm 2 always returns an estimate η(t) = (x̂(t), b(t)) that
satisfies φ(t) for all t. Inequality (b) is, instead, obtained by
setting γ =

∑p
i=1 γi.

We now observe that, because the attacker can corrupt at
most s sensors, the cardinality of supp(E(t)) is bounded by
s, i.e., |supp(E(t))| ≤ s. Then, because the pB-SAT solver
assumes at most that s sensors can be under attack, then the
set Γ(t) = {1, . . . , p}\supp(b(t)) has a cardinality bounded by
p− s, i.e., |Γ(t)| ≥ p− s. Using these two facts we conclude
that the cardinality of I(t) = Γ(t) \ supp(E(t)) is bounded



by p − 2s, i.e. |I(t)| ≥ p − 2s. Hence, by using (VI.2), we
conclude∥∥∥OI(t)(x(t) − x̂(t))

∥∥∥2

2
≤ γλ̄t

⇒ δ2s

∥∥∥x(t) − x̂(t)
∥∥∥2

2
≤ γλ̄t ⇒

∥∥∥x(t) − x̂(t)
∥∥∥2

2
≤ γ

δ2s
λ̄t

and the result holds with κ = γ
δ2s

.

B. Convergence of the Relaxed Secure Observer
Theorem VI.3. Let the linear dynamical system defined
in (II.1) and (II.2) be 2s-sparse observable. The state estima-
tion error produced by the secure Luenberger Observer defined
in Algorithm 3 satisfies

lim
t→∞

∥∥∥x(t) − x̂(t)
∥∥∥2

2
= 0

Proof. It follows from the 2s-sparse observability and Propo-
sition A.2 in the Appendix that there exist observer gains
such that error dynamics of the attack-free observer is stable.
Therefore, there exist constants γi and 0 < λ̄ < 1, and sets
Γ(t) such that (V.1) holds. However, since Algorithm 3 may
terminate before finding such Γ(t), the condition (V.1) may
not always hold in the case of the relaxed observer.

On the other hand, we note that: (i) there are finitely many
choices for the set Γ(t) since the indicator Boolean variable
b(t) can take at most a finite number of values; (ii) whenever
a certificate φ(t)

conf-cert is learnt, at least one assignment of b(t)

is ruled out of the search space. Therefore, there exists a time
t′ such that the following holds:∥∥∥Yi −Oix̂(t)

Γ(t)

∥∥∥2

2
≤ γiλ̄t, ∀i ∈ Γ(t) ∀t ≥ t′. (VI.3)

We can the follow the same line of reasoning as in the proof
of Theorem VI.2 starting with time t′ to conclude on the
convergence of the relaxed scheme.

C. Extension to the Noisy Case
Our convergence results can be extended to the noisy case

by replacing (V.1) with the following inequality:∥∥∥Yi −Oix̂(t)

Γ(t)

∥∥∥2

2
≤γiλ̄t+αi

t−1∑
m=0

λ̄t−m−1+βi ∀i∈Γ(t),

(VI.4)

where γi, αi and βi are defined in Proposition A.2 in the
Appendix. It is crucial to note that all the constants γi, αi
and βi do not depend on the knowledge of the attack-free set
of sensors and can be computed offline. The following result
is a direct extension of the argument used in Theorems VI.2
and VI.3. For this reason, we omit its proof.

Theorem VI.4. Let the linear dynamical system defined
in (II.1) and (II.2) be 2s-sparse observable. The state esti-
mation error produced by the secure Luenberger Observers
defined in Algorithm 2 and Algorithm 3, where the tests in
line 6 and 5, respectively, are replaced with tests that check
whether (VI.4) holds, satisfies

lim sup
t→∞

∥∥∥x(t) − x̂(t)
∥∥∥2

2
≤ ρ(ψ

2
, µ2),

where ρ(ψ
2
, µ2) is given by:

ρ(ψ
2
, µ2)=

1

δ2s

(
Ψ +

√
α

1− λ̄
+ β

)2

, α=

p∑
i=1

αi,β=

p∑
i=1

βi,

and αi, βi and λ̄ are as defined in Proposition A.2.

VII. NUMERICAL EVALUATION

As shown by Theorem IV.2, the memory requirement of
our observer architecture grows linearly with the number of
sensors and system states, a substantial improvement over
traditional architectures. In fact, by assuming a number of
sensors ranging from 500 to 5000 with 100 sensors being
under attack, previously proposed observer- or filter-based
algorithms [5], [11] would not be directly implementable,
since they would require a bank of

(
500
400

)
= 2.0417 × 10107

observers or filters for a system with 500 sensors. Since each
observer or filter updates a vector of n elements, this results
into 2.0417 × 10107 × n memory units to implement a tradi-
tional architecture. Similarly, for a system with 5000 sensors,
previous algorithms require

(
5000
4900

)
× n = 3.1201× 10211 × n

memory units. Our MML observer uses, instead, only 500×n
memory units for a system with 500 sensors or 5000 × n
memory units for a system with 5000 sensors, which is a
substantial decrease in terms of memory requirements.

Therefore, in this section, we focus on the evaluation of
the time required to search for the attack-free sensors, and
compare the performance of the proposed observer against the
solution obtained by: (i) our previously proposed IMHOTEP-
SMT algorithm, which uses data collected over a finite win-
dow length; (ii) the L1\Lr algorithm [4]. Since the search
space increases exponentially with the number of sensors p,
we generate a set of random systems (i.e., random matrices A,
B and C) for an increasing number of sensors p, assuming that
the number of states n is fixed. For each system, we generate
a random initial state x(0) and input sequence u(t).

We run the experiments multiple times, by randomly se-
lecting each time 100 sensors as being under attack. We
report the worst case execution time in Figure 4. All the
experiments were executed on an Intel Core i7 3.4-GHz
processor with 8 GB of memory. The proposed observers
are implemented in MATLAB while the pseudo-Boolean SAT
solver is implemented using the SAT4J solver [19].

As shown in Figure 4, the relaxed conflict clause learning
algorithm outperforms the other algorithms by at least an order
of magnitude. Moreover, as the number of sensors increases,
the gap between the relaxed conflict clause learning algorithm
and other algorithm increases. The relaxed learning algorithm
takes approximately 274 s, in the worst case, for a system with
5000 sensors, which shows that our approach is indeed suitable
to be deployed on large scale systems. On the other hand, the
worst case execution time of the strict learning algorithm is
comparable to the one of the finite-window-length algorithm.
This is mostly due to the fact that, in the worst case, the strict
learning algorithm may end up with finding all the needed
conflict clauses to reveal the attack-free set, after which no
further learning is needed.
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Fig. 4. Worst case execution time for different algorithms.

VIII. CASE STUDY: POWER SYSTEMS

Power systems are an important example of CPSs for which
attacks have been recently documented [2]. In this paper, we
consider the IEEE 14-bus power network shown in Figure 5
(left), composed of 5 synchronous generators and 14 buses.
The state of each generator includes rotor angle and frequency.
The overall system has 35 sensors: 14 sensors measure the real
power injections at every bus, 20 sensors measure the real
power flows along every branch, and one sensor measures
the rotor angle of generator 1. The matrices A, B, and C
modeling the power network are derived in [5]. While the
IEEE 14-bus can model the power generation and distribution
within a small geographical area, our objective is to test
the performance of the proposed algorithms for large scale
systems. To emulate the power generation and distribution
over a larger geographical area, we instantiate the IEEE 14-bus
system multiple times and connect these instances together, as
shown in Figure 5 (right).

Since the scalability of our algorithm is evaluated in detail
in the previous section, in this case study we focus on
the performance of the proposed observer in terms of the
estimation error

∥∥x(t) − x̂(t)
∥∥

2
when the model of the system

is imperfect (the process noise µ is set to 0.5) and the sensors
are noisy (ψi = 0.5 ∀i ∈ {1, . . . , p}) as the size of the
power grid increases. In fact, a major concern in secure state
estimation is the ability of an intruder to use the uncertainty in
the model and the noise in sensors to mount its attack [7]. We
compare the estimation performance of the proposed observer
against the performance of the previously proposed IMHOTEP-
SMT solver [10], [16], which uses sensor data collected over
a finite window length. As shown in Table I, the proposed
observer performs better in terms of estimation error, which
is to be expected as the observer averages out the noise over
time. This advantage becomes substantial as the size of the
system (hence the norm bound ψ

2
=
∑p
i=1 ψi) increases.

IX. CONCLUSIONS

We addressed the problem of designing large-scale cyber-
physical systems that are resilient to sensor attacks. We
proposed a novel, scalable, multi-modal Luenberger (MML)
observer that can isolate the sensors under attack and estimate
the state of the underlying dynamics from the remaining

Fig. 5. The IEEE 14-bus power network (left) and twelve connected instances
of the IEEE 14 bus (right). Each set of colored nodes represent the five
generators in an IEEE 14 bus.

#Generators #Sensors #Attacks SMT-based IMHOTEP-
Observer SMT

5 35 10 0.520 0.461
10 70 20 0.447 1.185
15 105 30 0.571 2.322
20 140 40 0.614 2.733
25 175 50 0.599 3.889
30 210 60 0.332 4.250
35 245 70 0.697 4.754
40 280 80 0.643 5.504
45 315 90 0.702 6.291
50 350 100 0.829 6.797
55 385 110 1.363 9.297

TABLE I
NORM OF ESTIMATION ERROR

∥∥x(t) − x̂(t)
∥∥

2
(EVALUATED AT THE END

OF SIMULATION TIME) IN THE POWER GRID TEST CASE FOR A
FINITE-WINDOW-LENGTH ALGORITHM AND THE PROPOSED OBSERVER.

sensors. Our architecture has a memory requirement that scales
linearly with the system size and adopts an efficient SMT-
based search algorithm to harness the computational com-
plexity of identifying the set of attacked sensors. Numerical
results show that the proposed observer outperforms other
state-of-the-art algorithms in terms of memory requirements
and computational complexity, and is suitable to be deployed
on large scale systems. When applied to a power grid case
study, the MML observer allows for a better estimation error
in the presence of model uncertainties and sensor noise.
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APPENDIX

Proposition A.1. Consider the following linear dynamical
system:

x(t+1) = Ax(t) + u(t) (A.1)

where A is a stable matrix. Then, there exist constants
0 < λ < 1 and κ ∈ R+ such that the function V

(
x(t)
)

=

x(t)TPx(t), with P = PT > 0, satisfies

V
(
x(t+1)

)
≤ λV

(
x(t)
)

+ κ
∥∥∥u(t)

∥∥∥2

2

and ATPA− P = −I .

Proof. The proof follows a similar argument as the proof of
Lemma 1 in [20] and hence is omitted for brevity.

Using Proposition A.1, we can study the convergence of the
Luenberger observer that uses the attack-free set of sensors.
In particular, we can bound the norm of the estimation error
as shown in the following result.

Proposition A.2. Let Γ? denote the set of p − s sensors
which are attack-free for all times t ∈ N. Let x̂(t)

Γ? be the
state estimated by the Luenberger observer that uses only the

sensors indexed by Γ?. The following holds for any sensor
i ∈ Γ? and for all t ∈ N:∥∥∥Y (t)

i −Oix̂(t)
Γ?

∥∥∥2

2
≤ γiλ̄t + αi

t−1∑
m=0

λ̄t−m−1 + βi

where:

(A− LΓCΓ)TPΓ(A− LΓCΓ)− PΓ = −I
λP = max

Γ⊂{1,...,p}
|Γ|=p−s

λmax{PΓ}, λP = min
Γ⊂{1,...,p}
|Γ|=p−s

λmin{PΓ}

γi =
2 ‖Oi‖22 λP

∥∥Y (0)
∥∥2

2

λP δ
2
2s

, Ψ = µ+ ψ max
Γ⊂{1,...,p}
|Γ|=p−s

‖LΓ‖2 ,

αi =
2 ‖Oi‖2 κΨ

2

λP
, βi = 2Ψ

2

i λ̄ = 1− 1

2λP

κ = max
Γ⊂{1,...,p}
|Γ|=p−s

‖PΓ(A− LΓCΓ)‖22 + ‖PΓ‖2

Proof. We start by writing the error dynamics of the Luen-
berger observer corresponding to Γ? as:

e(t+1)
x = x(t+1) − x̂(t+1)

Γ? = Aee
(t)
x + µ(t) + LΓ?ψ

(t)
Γ? , (A.2)

where e(t)
x = x(t) − x̂(t)

Γ? and Ae = A − LΓ?CΓ? . It follows
from the 2s-sparse observability that the pair (A,CΓ?) is
observable and hence there exists an observer gain L? such
that the error dynamics (A.2) is stable. Therefore, by applying
Proposition A.1 we conclude that there exists a function
V
(
e

(t)
x

)
= e

(t)T

x Pe
(t)
x with P = PT such that:

V
(
e(t+1)
x

)
≤ λ̄V

(
e(t)
x

)
+ κ

∥∥∥µ(t) + LΓ?ψ
(t)
Γ?

∥∥∥2

2

≤ λ̄tV
(
e(0)
x

)
+ κΨ

2
t−1∑
m=0

λ̄t−m−1,

from which we conclude that:∥∥∥e(t)
x

∥∥∥2

2
≤ λmax{P}
λmin{P}

λ̄t
∥∥∥e(0)

∥∥∥2

2
+

κΨ
2

λmin{P}

t−1∑
m=0

λ̄t−m−1.

(A.3)

Accordingly, simple algebraic manipulations show that the
following bound holds for each sensor i ∈ Γ?:∥∥∥Y (t)

i −Oix̂(t)
∥∥∥2

2
=
∥∥∥Oie(t)

x + Ψi

∥∥∥2

2

(a)

≤ 2
∥∥∥Oie(t)

x

∥∥∥2

2
+ 2Ψ

2

i

(b)

≤ γiλ̄
t + αi

t−1∑
m=0

λ̄t−m−1 + βi,

where (a) follows from Cauchy-Schwarz inequality along with
the definition of Ψi and (b) follows from (A.3) and from the
fact that the Luenberger observer is initialized at zero, and
therefore the following inequality holds∥∥∥Y (0)

Γ? −OΓ? x̂(0)
∥∥∥

2
=
∥∥∥Y (0)

Γ?

∥∥∥
2

=
∥∥∥OΓ?x(0)

∥∥∥
2
≥ δ2s

∥∥∥e(0)
x

∥∥∥
2
,

combined with the fact that
∥∥Y (0)

∥∥
2
≥
∥∥∥Y (0)

Γ?

∥∥∥
2
.




