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ABSTRACT OF THE DISSERTATION 

 
Hyperdynamic Spatiotemporal Cerebral Dynamics  

in Response to Cardiac Arrest and Resuscitation 
 

By 
 

Christian Jean-Paul Crouzet 
 

Doctor of Philosophy in Biomedical Engineering 
 

 University of California, Irvine, 2018 
 

Professor Bernard Choi, Chair 
 
 

Annually, over 550,000 people in the United States suffer cardiac arrest (CA) and 

initial survival rates remain low (10-30%). Approximately 85 to 90% of survivors have 

impaired cognitive function, which leads to decreased quality of life for survivors, 

increased burden on caregivers, and direct costs of over $6 billion/year. To improve 

neurological recovery and understand how the brain recovers following CA, a critical need 

exists to investigate physiological processes that impact the brain. In collaboration with Dr. 

Yama Akbari’s lab, we developed a multi-modal platform with high temporal (10s of 

milliseconds) and spatial (~50µm) resolution. The platform combined laser speckle 

imaging (LSI), arterial blood pressure (ABP), and electroencephalography (EEG) to monitor 

cerebral blood flow (CBF), peripheral blood pressure, and brain electrophysiology, 

respectively.  We applied this platform to an asphyxial CA and resuscitation preclinical 

model established in Dr. Akbari’s lab and characterized the hyperdynamic spatiotemporal 

cerebral dynamics that occur before, during, and after asphyxial CA and resuscitation.  

The beginning of neurological recovery post-CA is the moment at which brain 

electrical activity resumes. We assessed the temporal evolution of CBF prior to this time 
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point, and found two distinct CBF phases. The first phase is a hyperemic (increase in CBF) 

period that occurs 5-10min after resuscitation, which is followed by a period of prolonged, 

stabilized hypoperfusion (decrease in CBF). We found that brain electrical activity resumes 

after the CBF hyperemic period, but before CBF stabilizes hypoperfused. CBF and MAP data 

were then used to develop an empirical model to predict when brain electrical activity 

resumes to within 10% accuracy. The link between hemodynamics and the resumption of 

brain electrical activity, suggests that clinicians may be able to utilize and develop 

hemodynamic-altering therapeutics that modify the beginning of neurological recovery.  

 Next, we analyzed pulsatile CBF and femoral ABP waveforms in response to CA and 

resuscitation. Pulsatile blood flow is important due to its impact on oxygen uptake, 

vascular tone, and cellular metabolism. Our study revealed that CBF pulsatility is altered 

significantly from baseline within 2h after resuscitation, but ABP pulsatility changes little. 

Interestingly, ABP pulsatility and not CBF pulsatility correlates with short-term 

neurological outcome. These results suggest that simultaneous monitoring of CBF and ABP 

pulsatility is necessary, and therapeutic modulation of pulsatility post-CA may lead to 

changes in neurological outcome. 

 Lastly, we analyzed spatiotemporal CBF changes during three hyperdynamic 

periods: (1) entering CA, (2) within 5min after resuscitation, and (3) from hyperemia to 

hypoperfusion (i.e., 5 to 20min after resuscitation). Spreading CBF waves were visualized 

during each phase. We found that an increase in total CBF prior to the onset of spreading 

wave (1) was associated with worse neurological outcome, waves (1) and (3) propagated in 

opposite directions, and waves (2) and (3) resembled a well-known phenomenon called 
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cortical spreading depression. These spatiotemporal characteristics are complex, yet may 

have clinical importance to neurological outcome. 

Collectively, these findings highlight the complex nature of the hyperdynamic 

cerebral response to CA and resuscitation. The multi-modal platform and results suggest a 

novel therapeutic approach involving modulation of hemodynamics during hyperdynamic 

periods of CA may improve neurological outcome. 
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INTRODUCTION 

Annually, over 550,000 people in the United States suffer cardiac arrest (CA) while 

initial survival rates remain poor (10-30%)1. Approximately 85 to 90% of survivors have 

impaired cognitive function, which leads to decreased quality of life for survivors, 

increased burden on caregivers, and direct costs of over $6 billion/year1,2. CA causes 

inadequate cerebral blood flow (CBF), which results in a cascade of events that lead to 

neuronal cell death within three minutes3–5. Reperfusion after resuscitation from CA leads 

to further neuronal damage, due to reactive oxygen species and potential decoupling 

between CBF and metabolism6. Figure 0.1 is a schematic that describes neuronal injury 

during periods of ischemia (absence of CBF) and following resuscitation (CBF reperfusion).  

 

Figure 0.1: Role of CBF in neuronal cell death. Periods of minimal or absent CBF lead to a lack of oxygen 
and therefore loss of ATP production. This leads to a release of the excitotoxic neurotransmitter glutamate 
into the extracellular space, which leads to excitoxic injury and calcium surging into the cell. Calcium surging 
into the cell leads to a feedback loop that further releases more glutamate into the extracellular space. Free 
radicals lead to oxidative stress. Upon successful resuscitation and resumption of CBF, the presence of oxygen 
leads to increased excitotoxicity and acts as a substrate for free radicals that lead to more neuronal injury. 
The periods of absent CBF and CBF reperfusion both lead to a high chance of neurological damage, and CBF is 
critical to understand how nutrients, including oxygen are delivered to the brain. 
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In patients, monitoring brain electrical activity is the most common examination 

method, other than clinical evaluation7. Numerous studies have extensively examined brain 

electrophysiology through the use of electroencephalography (EEG) following resuscitation 

from CA. The evolution of the EEG signal during ischemic periods and following 

reperfusion, and their relationship to neurological outcome is outlined in Figure 0.2. EEG 

studies have made advances at understanding the relationship between brain electrical 

activity and neurological outcome8–12. Furthermore, these studies have investigated 

normothermic, hypothermic and hyperthermic treatments that resulted in hypothermic 

treatments leading to better neurological outcome8,13–15. However, the sole use of EEG 

limits the understanding between the interplay between cerebral hemodynamics and 

electrophysiology.  

 

Figure 0.2: Evolution of EEG signal during and after CA. In the absence of CBF, the brain is depleted of 
oxygen and energy which leads to a silent EEG signal. After CBF reperfusion, the EEG signal may remain 
silent, which leads to poor neurological outcome, or can transition into burst suppression activity. If the EEG 
signal remains in burst suppression activity, poor neurological outcome is the result. However, if the EEG 
signal transitions to complete reactivity, the patient will typically have good neurological outcome, which 
shows the importance of monitoring brain electrical activity through EEG. 

 
A number of studies have also examined cerebral hemodynamic changes in 

response to CA and resuscitation, using a variety of different technologies. These 

technologies include Doppler techniques16–18, positron emission tomography (PET)19,20, 
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and magnetic resonance imaging (MRI)21,22. Hemodynamic studies, in particular with 

relation to CBF, have reported a hyperemic phase about 10min after resuscitation, followed 

by a stabilized hypoperfusion phase, before CBF steadily increases toward baseline over 

24h23. Luxury reperfusion 24h after resuscitation has been reported to be associated with 

worse neurological outcome24.  Although these technologies provide an overall, global view 

of brain hemodynamics, they are limited by their spatial and temporal (~5-30min) 

resolution to resolve hyperdynamic, spatiotemporal changes of entering CA and 

immediately after resuscitation.   

Under normal conditions, the brain is highly regulated as CBF is constant over a 

wide range of mean arterial pressures (MAP)25. Typically, clinical monitoring does not 

perform direct measurement of CBF.  However, after CA and resuscitation, CBF and MAP 

may become dysregulated26, and a need for direct measurement of CBF becomes critical. 

Since MAP is a parameter clinicians depend on to indirectly monitor cerebral perfusion 

after resuscitation, there is a dire need to understand the relationship between CBF and 

MAP during periods of dysregulation. 

To understand the complex neurovascular response to CA, a multimodal approach is 

needed to investigate the relationship between brain electrophysiology and 

hemodynamics, and peripheral blood pressure. The current lack of multimodal approaches 

hinder the development of new therapeutic strategies to improve neurological outcome 

after resuscitation from CA. Furthermore, the lack of high temporal resolution technologies 

limits the ability to identify therapeutic time windows that may improve neurological 

outcome following resuscitation from CA. Although previous studies have vastly expanded 

our understanding of brain functional dynamics following CA, they have two main 
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shortcomings: 1) hemodynamic techniques have poor temporal resolution (~5–30min); 

and 2) lack of simultaneous multi-modal approaches to relate CBF, MAP, and brain 

electrophysiology.  

To address these shortcomings, this work utilized a multi-modal instrument that 

combined laser speckle imaging (LSI), arterial blood pressure, and EEG to simultaneously 

and concurrently monitor CBF, peripheral blood pressure, and brain electrical activity 

before, during, and after CA and resuscitation with high temporal resolution (~20ms).  Due 

to the multimodal approach, several key questions regarding the relationship between 

brain electrophysiology and hemodynamics, and their relationship to peripheral blood 

pressure have been investigated. 

 

What are the temporal characteristics of CBF data and the resumption of EEG activity after 

resuscitation from CA (Chapter 1)? 

Previous EEG studies have found that an isoelectric period occurs immediately after 

resuscitation, until bursting (defined as a sharp increase in EEG amplitude interspersed 

between isoelectric periods) begins.  Furthermore, continuous brain electrical activity 24h 

post-ROSC is associated with improved neurological outcome27. However, few studies have 

examined the initial moment the brain transitions from a silence period to resumption of 

EEG activity after resuscitation from CA28. 

Previous CBF studies have observed different phases associated with CBF after 

resuscitation from CA 23.  The first phase is a hyperemic response immediately after 

resuscitation, followed by a stabilized hypoperfusion phase, and eventually a recovery back 

towards baseline where CBF remains hypo-perfused, returns to normal, or a secondary 
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hyperemic phase occurs.  However, studies have lacked the temporal resolution to quantify 

each phase in terms of time and magnitude.  

The lack of temporal knowledge about the evolution of CBF phases and EEG data 

with respect to brain resumption after resuscitation from CA limits the opportunity to 

develop clinical interventions during the acute recovery period. In this chapter we 

characterized the time and magnitude of the hyperemic peak and stabilized hypoperfusion 

periods from the CBF data. Furthermore, we characterized the exact timing the resumption 

of EEG activity begins using the initial EEG burst. Later in Chapter 1, we use this 

information to develop a predictive algorithm relating the CBF data to the initial EEG burst. 

  

Can we use CBF and MAP data to develop a predictive model for the resumption of EEG 

activity after resuscitation from CA (Chapter 1)? 

 Although CBF reperfusion occurs during resuscitation, the EEG signal typically 

remains silent for a period of time. The EEG signal can transition into burst suppression 

activity, which is the beginning of EEG recovery after CA. However, due to limited 

multimodal monitoring and poor hemodynamic temporal resolution, scientists and 

clinicians have been unable to understand how brain electrical activity resumes following 

resuscitation from CA, which hinders the development of interventions to help patients 

transition from EEG silence.   

Using the multimodal platform of LSI, arterial blood pressure, and EEG we were able 

to better elucidate some of the mechanisms associated with the resumption of brain 

electrical activity after resuscitation from CA. Through the quantification of the temporal 

characteristics of the CBF data and initial EEG burst, we were able to investigate the role of 
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hemodynamics on resuming brain electrical activity. We then were able to develop two 

models to predict the resumption of brain electrical activity using CBF and MAP data.  

 

How does the pulsatile evolution of CBF and femoral artery blood pressure influence short-

term neurological recovery (Chapter 2)? 

 Pulsatile blood flow is important due to its impact on oxygen uptake, vascular tone, 

and cellular metabolism. Studies have shown that pulsatile flow (compared to non-pulsatile 

flow) during cardiac bypass surgery and extracorporeal membrane life support (ECMO) is 

associated with improved neurological and physiological outcomes29–32. Furthermore, 

modulation of pulsatility through mechanically controlled devices is associated with 

reduced cerebrovascular resistance (CVR) and improved oxygen uptake during post-

ischemic reperfusion, which can improve neurological outcome33.  

To better understand the relationship between pulsatility and neurological outcome 

following CA, several gaps in the knowledge base must be addressed. First, low frequency 

(<0.4Hz) studies have only examined survivors or non-survivors of CA, and not 

neurological function or outcome after CA34,35. Second, studies of the pulsatile waveform 

typically focus on CBF and not peripheral hemodynamics associated with the aorta or 

femoral artery. Third, the influence of CVR on CBF and the peripheral pulsatile waveform 

has not been investigated. Finally, clinical studies begin upon hospital admission followed 

by measurements on subsequent days after CA, and hence do not enable study of 

immediate pulsatile signal changes after resuscitation (during ischemia-induced hyperemia 

and hypoperfusion) and their relationship to neurological outcome.  
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To address these gaps, we used an established preclinical model of asphyxial CA 

(ACA) to continuously monitor pulsatile CBF and femoral arterial blood pressure (ABP) 

waveforms associated with the heartbeat. We used CBF and ABP data to obtain a 

measurement of CVR, and electroencephalography (EEG) to measure short-term 

neurological outcome 90min after resuscitation. Using these measurements, we quantified 

CBF and ABP pulsatility immediately after resuscitation and compared changes among 

different phases in the experiment. We also quantified the relationship between CBF and 

ABP pulsatility to CVR, and compared CBF and ABP pulsatility to short-term neurological 

outcome. 

 

What are the spatiotemporal CBF changes during CA, immediately after resuscitation, and 

from the hyperemia to hypoperfusion phase (Chapter 3)? 

 Chapters 1 and 2 assessed the temporal evolution of cerebral blood flow (CBF), 

arterial blood pressure, and brain electrophysiology. Specifically, we examined how CBF 

evolved prior to the moment brain electrical activity resumes after resuscitation (Chapter 

1)36. Furthermore, we examined the effects of pulsatile CBF and femoral arterial blood 

pressure (ABP) waveforms in response to CA and resuscitation, and how they affect short-

term neurological outcome (Chapter 2). However, both these studies lacked the analysis of 

spatiotemporal CBF changes that occur before, during, and after CA and resuscitation.  

Previous studies have shown that a wave of spreading depolarization (SD) occurs in 

rats and humans. These waves are caused by the breakdown of ion channels and are 

visualized using voltage-sensitive dyes and multiple DC and AC electrodes37,38. 

Furthermore, in vitro studies using optical intrinsic signal imaging (OISI) have shown SDs 
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occur in brain sections39. However, to my knowledge, no study has reported visualization of 

spatial CBF changes that occur during SD in global ischemia models, which may be due to a 

lack of capable technologies or insufficient signal-to-noise. 

 SDs are important for a wide-range of different clinical applications. Not only do SDs 

occur during CA, but also during focal-ischemic stroke, traumatic brain injury, and 

migraines. In non-global ischemia studies, spatial changes in CBF have been reported that 

are characterized as a wave of increased CBF that is followed by a wave of decreasing CBF.  

To determine if spatial CBF changes occurred in relation to ACA, we focused on 

three main time-periods based on our previous data: (1) during the same time interval that 

typical SDs occur, (2) immediately after resuscitation prior to the hyperemic peak, and (3) 

from the hyperemic peak to the stabilized hypoperfusion period.  
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CHAPTER 1: Cerebral blood flow is decoupled from blood pressure and 

linked to EEG bursting after resuscitation from cardiac arrest 

This work was originally published in Biomedical Optics Express36. 

1.1 Abstract 

In the present study, we developed a multi-modal instrument that combines laser speckle 

imaging, arterial blood pressure, and electroencephalography (EEG) to quantitatively 

assess cerebral blood flow (CBF), mean arterial pressure (MAP), and brain 

electrophysiology before, during, and after asphyxial cardiac arrest (CA) and resuscitation.  

Using the acquired data, we quantified the time and magnitude of the CBF hyperemic peak 

and stabilized hypoperfusion after resuscitation.  Furthermore, we assessed the correlation 

between CBF and MAP before and after stabilized hypoperfusion.  Finally, we examined 

when brain electrical activity resumes after resuscitation from CA with relation to CBF and 

MAP, and developed two empirical predictive models to predict when brain electrical 

activity resumes after resuscitation from CA.  Our results show that: 1) more severe CA 

results in longer time to stabilized cerebral hypoperfusion; 2) CBF and MAP are coupled 

before stabilized hypoperfusion and uncoupled after stabilized hypoperfusion; 3) EEG 

activity (bursting) resumes after the CBF hyperemic phase and before stabilized 

hypoperfusion; 4) CBF predicts when EEG activity resumes for 5-min asphyxial CA, but is a 

poor predictor for 7-min asphyxial CA using a fixed predictive model; 5) CBF and MAP 

accurately predict when EEG activity resumes for 5- and 7-min asphyxial CA using a robust 

predictive model. Together, these novel findings highlight the importance of using multi-

modal approaches to investigate CA recovery to better understand physiological processes 

and ultimately improve neurological outcome. 
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1.2  Introduction 

According to the American Heart Association, over 500,000 Americans suffer a 

cardiac arrest (CA) per year40.  Although resuscitation efforts have improved41, poor 

neurological outcome is the leading cause of morbidity in CA survivors, and only 8.3% of 

out-of-hospital CA survivors have good neurological recovery42,43.  To improve neurological 

outcome and understand how the brain recovers following CA, a critical need exists to 

investigate physiological processes that impact the brain, such as cerebral blood flow 

(CBF), arterial blood pressure, and brain electrophysiology. 

Many clinical and preclinical studies have investigated the dynamics of brain 

physiology.  These studies have used a multitude of techniques to examine cerebral blood 

flow and electrophysiology following CA, such as Doppler techniques16–18, positron 

emission tomography (PET)19,20, magnetic resonance imaging (MRI)21,22, and 

electroencephalography (EEG)8,9,11,44.  CBF studies have reported a hyperemic phase, 

followed by a stabilized hypoperfusion phase, before CBF steadily increases toward 

baseline over 24h23.  A common metric clinicians use to determine if the brain receives an 

adequate amount of CBF is cerebral perfusion pressure (CPP)45.  CPP is defined as the 

difference between mean arterial pressure (MAP) and intracranial pressure (ICP), which 

represents the pressure gradient that drives CBF.  Studies have examined the impact that 

CBF autoregulation has on patient outcome17, and the dysregulation of CBF from MAP after 

return of spontaneous circulation (ROSC) or resuscitation26.  EEG studies have found that 

an isoelectric period occurs immediately after resuscitation, until bursting (defined as a 

sharp increase in EEG amplitude interspersed between isoelectric periods) begins.  

Furthermore, continuous brain electrical activity 24h post-ROSC is associated with 
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improved neurological outcome27.  Although these studies have vastly expanded our 

understanding of brain functional dynamics following CA, they have two main 

shortcomings: 1) hemodynamic techniques have poor temporal resolution (~5–30min); 

and 2) lack of simultaneous multi-modal approaches to relate CBF, MAP, and brain 

electrophysiology.   

To address these shortcomings, we developed a multi-modal instrument design that 

combines laser speckle imaging (LSI), arterial blood pressure, and EEG to simultaneously 

acquire data before, during, and after CA and resuscitation.  Due to the relatively high 

temporal resolution (~seconds) of our instrument, our results quantify the time and 

magnitude of the hyperemic peak and stabilized hypoperfusion post-ROSC.  Furthermore, 

we assess the correlation between CBF and MAP before and after stabilized hypoperfusion.  

Finally, we show that initial EEG bursting begins after the CBF hyperemic phase and before 

stabilized hypoperfusion. We also show that one predictive model can accurately predict 

the initial EEG burst occurs for less severe CA, while a different and more robust predictive 

model performs equally well for different severities of CA.  Collectively, our findings 

indicate the importance of using multi-modal approaches to better understand the 

physiological processes of CA recovery and ultimately improve neurological outcome. 

1.3  Materials and Methods 

1.3.1  Animal Model 

We performed experiments on 16 male Wistar rats (351  39g in mass).  The 

asphyxial CA model and study protocol (no. 2013-3098) were approved in accordance with 

the Institutional Animal Care and Use Committee at University of California, Irvine.  After 

applying the inclusion criterion that chest compressions lasted shorter than 1min, the final 
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number of rats included for data analysis was 13 (n = 7, 5-min asphyxia; and n = 6, 7-min 

asphyxia).   

1.3.2  Animal Preparation and Surgery 

We developed an asphyxial CA model similar to those used in previous studies8,21.  

Rats were calorically restricted the night prior to CA experiments.  On the day of CA, rats 

were anesthetized and intubated using a 14-gauge endotracheal tube (B. Braun Melsungen 

AG, Melsungen, Germany), which was connected to a TOPO mechanical ventilator (Kent 

Scientific, Torrington, CT) and isoflurane vaporizer.  During surgery, isoflurane was 

maintained at 2% and ventilation settings were maintained at 70 breaths per min (BPM), 

with 12–14cmH2O peak inspiration pressure (PIP) and 3cmH2O peak end expiratory 

pressure (PEEP) in a 50%/50% N2/O2 mixture at 2LPM.  Rectal temperature (Kent 

Scientific, Torrington, CT) was continuously measured and maintained between 36.5 and 

37.5oC.  The rat was then mounted onto a stereotaxic frame (Kopf Instruments, Tujunga, 

CA) to stabilize the head position for surgery.   

A midline incision was performed over the scalp and the scalp retracted to expose 

the skull for EEG electrode implantation (Plastics One Inc., Roanoke, VA).  Two frontal 

electrodes were implanted (2mm anterior and 2.5mm lateral to bregma), and one electrode 

was implanted over the visual cortex (5.5mm posterior to bregma and 4mm left of 

bregma).  A reference electrode was placed 3mm posterior to lambda.  Following the 

implantation of EEG electrodes, a 4mm x 6mm craniectomy was performed over the right 

sensory and visual cortex using a power micro-drill (Roboz Surgical Instrument Co., 

Gaithsburg, Maryland) to enable subsequent optical imaging.  Saline was applied 

periodically to ensure the brain stayed hydrated.  Following the craniectomy, the femoral 
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artery and vein were cannulated using PE-50 tubing (Becton, Dickinson and Company, 

Franklin Lakes, NJ).  Invasive arterial blood pressure was measured continuously using a 

transducer (CWE Inc., Ardmore, PA).  Baseline arterial blood gas (ABG) measurements 

(Abaxis, Union City, CA) were obtained within 30min prior to initiation of asphyxia.  

1.3.3  Asphyxial Cardiac Arrest and Resuscitation 

A timeline of the CA experiments is depicted in Figure 1.1A.  At experiment start 

time, rats were placed on 100% O2, while isoflurane was reduced to 0.5–1% to prepare for 

anesthesia wash out.  At 2min into the experiment, room air (21% O2) was given, isoflurane 

was turned off to wash out anesthesia, and neuromuscular blockade initiated with 1mL of 

intravenous Vecuronium (2mg/kg), flushed with 1mL of heparinized saline.  At 5min, 

asphyxia was initiated by turning the ventilator off and tubing clamped.  Rats were 

subjected to a period of either 5- or 7-min asphyxia.  CA was defined as a systolic blood 

pressure <30mmHg and pulse pressure <10mmHg.  Thirty seconds prior to chest 

compressions, mechanical ventilation was re-initiated at 100% O2 with respiratory rate of 

75–85BPM, PIP of 17.5–18.5 cmH2O, and PEEP of 3cmH2O at 2.5LPM.  Epinephrine 

(0.01mg/kg) and sodium bicarbonate (1mmol/kg) were administered intravenously, 

followed by 2mL of heparinized saline prior to initiation of chest compressions.  Chest 

compressions continued until return of spontaneous circulation (ROSC).  ABGs were 

obtained 10-min post-ROSC and 40 min thereafter, to assess ventilation and modify 

ventilator settings as necessary.   
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Figure 1.1: Cardiac arrest (CA) experimental design and setup.  (A) Diagram of CA timeline.  Experiment 
began (t = 0) with an isoflurane/oxygen mix.  At t = 2min, isoflurane was turned off, Vecuronium 
administered, and animal exposed to room air.  The ventilator was then turned off to initiate the asphyxial CA 
period that lasted 5- or 7-min.  Approximately 1min prior to initiation of cardiopulmonary resuscitation 
(CPR), epinephrine, sodium bicarbonate and saline were administered and the ventilator restarted.  CPR was 
then performed for ~1min until ROSC, after which data acquisition continued for ~90min post-ROSC. (B) 
Schematic of multi-instrument design to perform laser speckle imaging (LSI), arterial blood pressure 
measurements, and electroencephalography (EEG).  (1) LSI camera with laser line filter and adjustable 
camera lens; (2) 809nm light source for LSI to display speckle pattern on rat cortex; (3) EEG wire that 
connected EEG screw electrodes to EEG preamplifier; (4) EEG preamplifier with 0.35Hz high pass filter; (5) 
intubation tubing connected to ventilator; (6) ventilator with adjustable settings; (7) femoral artery catheter; 
(8) syringe to administer fluids for dehydration and remove blood for arterial blood gas (ABG) 
measurements; (9) blood pressure transducer; (10) femoral vein catheter; (11) syringe to administer 
epinephrine, sodium bicarbonate and saline prior to CPR and ROSC; (12) stereotaxic frame with rat mounted; 
(13) brain illuminated by laser light with EEG screw electrodes.  (C)  Magnified view of animal head that 
shows location of EEG electrodes and craniectomy. 

 
1.3.4  Multi-modal Instrument Design and Data Acquisition 

To accomplish our multi-modal approach of monitoring CBF, arterial blood 

pressure, and brain electrophysiology before, during, and after CA and resuscitation, we 

combined LSI, arterial blood pressure, and EEG, as shown in Figure 1.1B.  All technologies 

were simultaneously recorded throughout the entire experiment. 
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To measure CBF, LSI was used.  As an excitation source we used a stabilized 809nm 

laser (Ondax, Monrovia, CA) with a long coherence length.  The laser was sent through 

expansion optics and a ground glass diffuser (ThorLabs, Inc., Newton, NJ) to achieve near-

uniform illumination over the craniectomy region (Figure 1.1C).  The remitted light was 

sent through a laser line filter and raw speckle images were sampled at ~10fps using a 

Point Grey camera (Point Grey Research Inc., Richmond, BC, Canada) with a 10ms exposure 

time. 

To measure arterial blood pressure, systolic and diastolic blood pressures were 

recorded from the femoral artery (Figure 1.1B) at 1Hz.  MAP was calculated from the 

extracted systolic and diastolic blood pressures. 

To perform EEG, screw electrodes were used (Figure 1.1C).  EEG data acquisition 

was recorded from each implanted electrode at 1526Hz with a PZ2 preamplifier (Tucker-

Davis Technologies Inc., Alachua, FL) equipped with a first-order high-pass filter (0.35Hz).  

Acquired data were extracted and further filtering and analysis performed as described in 

the next section.   

1.3.5  Data Processing and Statistical Analysis 

LSI processing used custom-written MATLAB code to process each raw speckle 

image and obtain CBF information.  We used a sliding 5 x 5 square structuring element to 

convert each raw speckle image to a corresponding speckle contrast image.  Eq. 1.1 was 

performed at each location of the structuring element:  

 𝐾 =
𝜎

<𝐼>
  (Eq. 1.1) 

We then converted each speckle contrast image to a speckle flow index (SFI) map 

using a simplified speckle imaging equation46:  
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 𝑆𝐹𝐼 =
1

2𝑇𝐾2 (Eq. 1.2), 

where K is the speckle contrast and T is the exposure time of the camera in seconds.  A 

representative region of interest (ROI) was then selected within the craniectomy to obtain 

an average SFI value and create time-resolved CBF curves.  We then calculated relative SFI 

curves (Eq. 1.3), and applied a sliding median filter of 10s in length.  

 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝐹𝐼 = 100 ×
𝑆𝐹𝐼(𝑡)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑆𝐹𝐼
 (Eq. 1.3) 

Baseline was defined as the mean SFI value the minute prior to asphyxia (to 

minimize isoflurane effects) and thus the relative SFI at baseline was 100.  One minute 

prior to asphyxia was chosen as baseline due to post-anesthesia emergence and 

consequent cerebral hyperemia47,48.  The median-filtered relative SFI curves were used for 

further statistical analyses.  Relative SFI maps were also created by dividing the baseline 

SFI from Eq. 1.3 at each pixel of the SFI map, and a median filter was then applied to images 

taken over a 10s interval. 

We evaluated several CBF characteristics post-ROSC using LSI data.  For LSI, these 

included percent SFI above baseline at hyperemic peak, time from ROSC to hyperemic peak, 

percent SFI below baseline at the onset of stabilized hypoperfusion, and time from ROSC to 

the onset of stabilized hypoperfusion.  Stabilized hypoperfusion was defined as the initial 

time when the relative SFI had less than a  1% change for at least one min post-ROSC.  For 

each CBF characteristics, we compared the 5- and 7-min asphyxial groups using a Student’s 

t-test, where p<0.05 was considered statistically significant and results displayed as mean

 STD. 

To assess the correlation between CBF and MAP, we performed a Spearman 

correlation test for data collected before stabilized hypoperfusion.  To quantify the 
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dysregulation between CBF and MAP, we calculated the median difference between relative 

SFI and relative MAP before and after stabilized hypoperfusion.  The difference before and 

after stabilized hypoperfusion were compared using a paired t-test, where p<0.05 was 

considered statistically significant and results are displayed as mean  STD.   

Raw EEG data were filtered in the following fashion using custom written MATLAB 

(Mathworks Inc., Natick, MA) code.  Data were detrended to remove DC bias and common 

averaged reference to reduce noise and artifacts across channels49.  A finite impulse 

response (FIR) notch filter at 60Hz was used to remove electrical noise, followed by a FIR 

bandpass filter from 1–150Hz.  Signals were then downsampled to 600Hz to reduce 

computational cost.  

To detect the initial EEG burst, we developed an automated algorithm using custom-

written MATLAB code.  Peaks above 20µV were detected the minute prior to asphyxia and 

the mean peak value was calculated.  Following resuscitation, when the EEG amplitude 

exceeded 50% of the mean peak value from baseline in the frontal electrodes, a burst was 

detected.  To identify the presence of the initial EEG burst and minimize the effect of noise 

artifacts, we applied a selection criterion that bursting for five consecutive minutes was 

necessary.  Once bursting occurred for this period, the algorithm reported the initial EEG 

burst time relative to ROSC, which was used in subsequent analysis.  We compared the time 

from ROSC to initial EEG burst for 5- and 7-min asphyxial groups using a Student’s t-test, 

where p<0.05 was considered statistically significant and results are displayed as mean 

STD. 

To quantify the total amount of brain perfusion from ROSC to the initial EEG burst, 

we integrated over time the relative SFI time-course signal from ROSC to initial EEG burst.  
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We used a Spearman correlation test to determine the correlation between total brain 

perfusion and initial EEG burst time.  We then compared the total perfusion from ROSC to 

initial EEG burst for 5- and 7-min asphyxial groups using a Student’s t-test, where p<0.05 

was considered statistically significant and results are displayed as mean  STD.  We 

performed the same correlation and statistical comparison using MAP time-course data.   

To predict when the initial EEG burst occurred, we calculated a predictive burst 

ratio that utilized the total perfusion from ROSC to initial EEG burst and normalized to the 

asphyxial duration (Eq. 1.4). 

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑏𝑢𝑟𝑠𝑡 𝑟𝑎𝑡𝑖𝑜 =
∫ (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝐹𝐼 𝑜𝑟 𝑀𝐴𝑃)

𝐵𝑢𝑟𝑠𝑡
𝑅𝑂𝑆𝐶

𝑎𝑠𝑝ℎ𝑦𝑥𝑖𝑎 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑑𝑡 (Eq. 1.4) 

The predictive burst ratio was calculated for each experiment and the median 

predictive burst ratio obtained from all experiments for relative SFI and MAP, separately.  

The predictive burst ratios for 5- and 7-min asphyxial groups were compared using a 

Student’s t-test, where p<0.05 was considered statistically significant, and results are 

displayed as mean  STD.  For relative SFI and MAP individually, the median predictive 

burst ratio was used to predict when the initial EEG burst would occur.  To predict the 

initial EEG burst we created time plots as a function of the predictive burst ratio, which we 

called the cumulative predictive burst ratio.  To determine the cumulative predictive burst 

ratio, the upper bound of the integral in Eq. 1.4 was replaced with time, and incremented 

by each measurement time point.  We then optimized the bounds of a linear fit to the 

cumulative predictive burst ratio.  To obtain the optimal bounds of the linear fit, a range of 

lower and upper bounds were chosen from 0- to 6-min post-ROSC in 0.25min increments.  

All possible combinations for the linear fit were tested for each experiment.  The bound 

combination that minimized the median predicted burst time error from all experiments 
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was extracted.  This analysis determined the bounds of the linear fit would be from 0.25- to 

6-min post-ROSC.  The slope (m) and y-intercept (b) were obtained from the linear fit.  

Using Eq. 1.5, we extrapolated and predicted the initial EEG burst time. 

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑢𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 = 𝑚 × (𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑏𝑢𝑟𝑠𝑡 𝑟𝑎𝑡𝑖𝑜) + 𝑏 (Eq. 1.5) 

To analyze the performance of the model using CBF and MAP, we computed the 

percent error of the predicted burst time to the actual burst time and compared the 5- and 

7-min asphyxial groups.   Results are displayed as median (range). 

A second fitting algorithm, we called the robust predictive model, was used to 

predict the initial EEG burst. The second algorithm used a dynamic fitting method for the 

bounds of the linear fit to the cumulative predictive burst ratio, instead of the fixed bounds 

used in the original algorithm. To determine the bounds of the linear fit, a linear fit was 

applied from immediate post-ROSC to 5min post-ROSC. If the R2 of the fit was greater than 

0.98, then the fit was accepted. If the R2 was below 0.98, then the lower bound was 

incremented by one time-point and another 5min linear fit was performed. This process 

was repeated in an iterative fashion, until the R2 was greater than 0.98 for a 5min linear fit 

period. The slope (m) and y-intercept (b) were then extracted and used in Eq. 1.5 to 

extrapolate to the predicted initial EEG burst time. Similar to the previous model, we 

computed the percent error of the predicted burst time to the actual burst time and 

compared the 5- and 7-min asphyxial groups for both CBF and MAP data.   Results are 

displayed as median (range). 
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1.4  Results 

1.4.1  More severe CA results in longer time to stabilized hypoperfusion 

To quantify the precise magnitude (relative to baseline) and time of the hyperemic 

peak and stabilized hypoperfusion, LSI data were used.  An example of relative SFI maps 

from baseline (Figure 1.2A), CA (Figure 1.2B), hyperemia (Figure 1.2C), and stabilized 

hypoperfusion (Figure 1.2D) are shown.  We quantified each of the four characteristics 

(Figure 1.2E) for both 5- and 7-min asphyxial groups and performed a Student’s t-test to 

compare the groups.  The percent change in SFI above baseline (Figure 1.2F) was non-

significant between 5-and 7-min asphyxia (44.13  11.06% vs 37.11  28.80%, p = 0.28).  

The time from ROSC to hyperemic peak (Figure 1.2G) trended shorter for 5-min asphyxia 

than 7-min asphyxia, but the difference was non-significant (5.19  1.10min vs 5.99 

1.26min, p = 0.12).  The percent change in SFI below baseline (Figure 1.2H) was equivalent 

for 5- and 7-min asphyxial groups (44.95  9.50% vs 42.26  11.40%, p = 0.33).  The time 

from ROSC to stabilized hypoperfusion (Figure 1.2I) was significantly shorter for 5-min 

asphyxia than 7-min asphyxia (15.60  3.67min vs 23.76  5.12min, p = 0.003).  
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Figure 1.2: CBF characteristics.  Median-filtered relative SFI maps from a representative 5-min asphyxia 
experiment acquired during (A) baseline, where black rectangle represents ROI selected to avoid specular 
reflection, and a 1mm scale bar, (B) cardiac arrest, (C) hyperemic peak, and (D) stabilized hypoperfusion.  The 
vertical color bar indicates relative SFI units.  (E) A representative 5-min asphyxia experiment that shows 
relative SFI time course plot with schematic of CBF characteristics.  Black vertical line represents start of 
asphyxia, green vertical line represents ROSC, and purple vertical line represents stabilized hypoperfusion.  
Double-arrowed red line with letter F represents percent SFI above baseline at hyperemic peak, double-
arrowed dark magenta line with letter G represents time from ROSC to hyperemic peak, double-arrowed 
orange line with letter H represents percent SFI below baseline at stabilized hypoperfusion, double-arrowed 
navy blue line with letter I represents time from ROSC to stabilized hypoperfusion.  Comparison between 5- 
and 7-min asphyxial durations for (F) percent SFI above baseline at hyperemic peak (44.13  11.06% vs 
37.11  28.80%, p = 0.28), (G) time from ROSC to hyperemic peak (5.19  1.10min vs 5.99  1.26min, p = 
0.12), (H) percent SFI below baseline at stabilized hypoperfusion (44.95  9.50% vs 42.26  11.40%, p = 
0.33), (I) time from ROSC to stabilized hypoperfusion (15.60  3.67min vs 23.76  5.12min, p = 0.003).  
Asterisk represents significant differences (p < 0.05). 
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1.4.2  CBF and MAP are coupled before stabilized hypoperfusion and uncoupled 

after stabilized hypoperfusion 

To investigate the coupling between CBF and MAP, we examined differences 

between the relative SFI and MAP time courses (Figure 1.3A).  Both relative SFI and MAP 

had a sharp decrease as the asphyxial period began (t = 5min), and each had an overshoot 

phase post-ROSC (t ~ 15min).  After the hyperemic phase, the relative SFI time-course was 

at a large deficit compared to baseline (~70% below baseline), while the MAP returned to 

near baseline (~100mmHg).  To quantify the similarities, we used a Spearman correlation 

test before stabilized hypoperfusion (Figure 1.3B).  Our results show that MAP and CBF are 

highly correlated before stabilized hypoperfusion for each experiment, with highly 

statistically significant correlation coefficients (R = 0.75  0.1, p < 1.4 10-92).  To quantify 

the dysregulation between CBF and MAP, we calculated the median difference between 

relative SFI and relative MAP before and after stabilized hypoperfusion.  The median 

difference between relative SFI and relative MAP before stabilized hypoperfusion was 

significantly higher (CBF and MAP are more close) than after stabilized hypoperfusion (-

16.67  9.13 vs -68.06  11.72, p = 1.5 10-8).   

 

Figure 1.3: CBF and MAP comparison.  (A) A representative 5-min asphyxia experiment that shows relative 
SFI (top) and MAP (bottom) time-course plots.  Black vertical line represents start of asphyxia, green vertical 
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line represents ROSC, and purple vertical line represents stabilized hypoperfusion.  The relative SFI time-
course shows that CBF is much lower than baseline at stabilized hypoperfusion, while the MAP is nearly 
100mmHg at stabilized hypoperfusion.  The gap from ~21- to 23-min on the MAP time-course is due to ABG 
being taken.  (B) The same 5-min asphyxia experiment from (A) that compares MAP and relative SFI before 
stabilized hypoperfusion (blue) and after stabilized hypoperfusion (red).  Before stabilized hypoperfusion 
MAP and relative SFI are significantly correlated for the representative rat (R = 0.77, p = 1  10-93).  After 
stabilized hypoperfusion, CBF is at a major deficit compared to baseline, while MAP is maintained near 
baseline, circled in red. 

 
1.4.3  Initial EEG burst begins after CBF hyperemic phase and before stabilized 

hypoperfusion 

To investigate the relationship between restarting brain electrical activity to CBF 

after resuscitation, we studied the timing of the initial EEG burst with respect to the CBF 

time-course.  First, we determined when the initial EEG burst occurred for 5- and 7-min 

asphyxial durations (Figure 1.4A).  We compared the performance of our automated 

detection algorithm to visual detection of the initial EEG burst.  The mean percent error 

was less than 1% for all experiments.  The time from ROSC to initial EEG burst (Figure 

1.4B) was significantly shorter for 5-min asphyxia than 7-min asphyxia (12.17  2.17min vs 

16.97  3.67min, p = 0.007).   

 

Figure 1.4: Initial EEG burst. (A) A representative 5-min asphyxia experiment that shows EEG time-course 
to illustrate detection of initial EEG burst post-ROSC.  EEG data shown was recorded from the upper-left 
electrode in Figure 1.1C.  Black vertical line represents start of asphyxia, green vertical line represents ROSC, 
and red circle of inset is the first EEG burst detected by automated algorithm post-ROSC.  (B) Comparison 
between 5-min and 7-min asphyxial durations for the time from ROSC to initial EEG burst (12.17  2.17min vs 
16.97  3.67min, p = 0.007).  Asterisk represents significant difference (p < 0.05). 
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We observed the initial EEG burst always occurred as CBF decreased toward 

stabilized hypoperfusion (Figure 1.5A), which led to the hypothesis that a threshold 

amount of CBF is necessary to restart brain electrical activity following resuscitation from 

CA.  We quantified total brain perfusion from ROSC to initial EEG burst as the time-

integrated relative SFI.  We also performed this analysis with MAP, as our previous results 

show MAP and relative SFI are correlated before stabilized hypoperfusion (Figure 1.3B).  

Using the Spearman correlation test, our results show a significant positive correlation 

between time-integrated relative SFI and time to initial EEG burst (R = 0.84, p = 0.0003; 

Figure 1.5B).  Similarly, our results show a significant positive correlation between time-

integrated MAP and time to initial EEG burst (R = 0.80, p = 0.001; Figure 1.5C).   

We then compared 5- and 7-min asphyxial groups.  Our results show that 

significantly less time-integrated relative SFI (1290  140 vs 1781  286, p = 0.002) and 

non-significantly less time-integrated MAP (1331  257 vs 1645  378, p = 0.1) is necessary 

to initiate EEG bursting for 5-min asphyxia than 7-min asphyxia (Figure 1.5D and 1.5E, 

respectively).  These results indicate there is not a threshold of CBF to restart brain 

electrical activity following resuscitation from different severities of asphyxial CA, and thus 

our initial hypothesis was incorrect.  Therefore, based on these results, we normalized the 

time-integrated relative SFI and MAP to the asphyxial duration to create an asphyxial 

invariant threshold; we call this term the predictive burst ratio (Eq. 1.4).  The predictive 

burst ratio had less spread using CBF (256  33) than MAP (252  53).  The predictive burst 

ratio was not significantly different between 5- and 7-min asphyxial durations (Figure 1.5F 

and 1.5G, respectively) for relative SFI (258.0  28.1 vs 254.5  40.8, p = 0.86) and MAP 
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(269.7  47.5 vs 249.7  43.3, p = 0.45).  These calculations suggest that normalizing the 

total perfusion to the asphyxial duration is an appropriate normalization term.   

 

Figure 1.5: Initial EEG burst begins after CBF hyperemic phase and before stabilized hypoperfusion.  
(A) Representative relative SFI and EEG time-courses to illustrate initial EEG burst occurs after CBF 
hyperemic phase and before stabilized hypoperfusion.  EEG data shown was recorded from the upper-left 
electrode in Figure 1.1C.  Black vertical line represents start of asphyxia, green vertical line represents ROSC, 
and red vertical line represents initial EEG burst.  (B and C) AUC from ROSC to burst vs time to burst after 
ROSC shows a significant positive correlation for relative SFI (left) (R = 0.84, p = 0. 0003) and MAP (right) (R 
= 0.80, p = 0. 001).  (D and E) AUC from ROSC to burst is significantly less for 5-min asphyxia than 7-min 
asphyxia for relative SFI (left) (1290  140 vs 1781  286, p = 0.002) and non-significantly time-integrated 
MAP (right) (1331  257 vs 1645  378, p = 0.1).  (F and G) The predictive burst ratio was non-significant 
comparing 5- and 7-min asphyxial durations for relative SFI (left) (258.0  28.1 vs 254.5  40.8, p = 0.86) and 
MAP (right) (269.7  47.5 vs 249.7  43.3, p = 0.45).  Asterisks represent significant differences (p <0.05). 

 
1.4.4  CBF predicts initial EEG burst for 5-min asphyxia, but is a poor predictor for 7-

min asphyxia 

To assess the accuracy of the predictive burst ratio, we performed linear regression 

to the cumulative predictive burst ratio from 0.25- to 6-min post-ROSC and extrapolated 

the linear fit using the median predictive burst ratio to predict the initial EEG burst time 

(Eq. 1.5).  Examples of the predictive model using CBF and MAP for 5- and 7-min asphyxia 



26 
 

are shown in Figure 1.6.  The median percent error for relative SFI and MAP were 8.21% 

(range = 1.57% – 80.97%) and 12.10% (range = 3.39% – 133.92%), respectively.  Since the 

percent error range of predicting the initial EEG burst was large, we assessed how 5- and 7-

min asphyxial groups compared.  The 5-min asphyxial group was associated with a 

considerably lower median percent error than the 7-min asphyxial group for relative SFI 

[3.46% (range = 1.57% – 17.22%) vs 31.22% (range = 7.95% – 80.97%), Figure 1.6C] and 

for MAP [8.01% (range = 3.39% – 23.40%) vs 40.80% (range = 9.34% – 133.92%), Figure 

1.6F], respectively.  These results suggest that CBF and MAP more accurately predict onset 

of EEG bursting for 5-min asphyxia than for 7-min asphyxia, and that CBF predicts better 

than MAP for both 5- and 7-min asphyxial durations. 

 

Figure 1.6: Representative predictive burst times for initial EEG burst using predictive burst model. 
(A) A representative 5-min asphyxial experiment that used CBF data to predict the initial EEG burst time, 
percent error of 3.42% obtained.  (B) A representative 7-min asphyxial experiment that used relative SFI to 
predict initial EEG burst time, a percent error of 39.37% obtained. (C) Burst prediction error for 5- and 7-min 
asphyxial CA using CBF data. Median percent error for 5- and 7-min asphyxia are 3.5% and 31.2%, 
respectively. (D) Same 5-min asphyxial experiment used as (A), but used MAP to predict initial EEG burst 
time, percent error of 12.10% obtained. (A-D) the distance between the green and blue horizontal solid lines 
represent the time error in predicting the initial EEG burst. (E) Same 7-min asphyxial experiment used as (B), 
but used MAP to predict initial EEG burst time, percent error of 52.96% obtained.  Gap from ~140 to ~170 of 
predictive burst ratio is due to ABG being taken. (F) Burst prediction error for 5- and 7-min asphyxial CA 
using MAP data. Median percent error for 5- and 7-min asphyxia are 8.0% and 40.8%, respectively. 
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Using the predictive model with fixed bounds of the linear fit results in large errors 

when predicting the initial EEG burst, as is shown in Figure 1.7. MAP and more severe CA 

are typically characterized by a sharp increase immediately post-ROSC, followed by a 

decrease, before eventually increasing to the large overall hyperemic peak. Due to these 

characteristics, and non-linear changes, the linear fit to the cumulative predictive burst 

ratio results in an over-estimation of the predicted burst time. To overcome this limitation, 

a revised predictive algorithm was developed to minimize the effects of the non-linear 

changes associated with MAP and more severe CA. 

 

Figure 1.7: Representative example of MAP that leads to large error in fixed bounds predictive 
algorithm. (Left) Representative MAP time course for a 7-min asphyxial CA. Boxed region shows the non-
linear changes associated with MAP and more severe CA immediately post-ROSC. Arrowed to the non-linear 
change in the zoomed-in version (middle) of the predictive burst ratio that leads to large prediction error. 

 
1.4.5 Revised predictive algorithm performs just as well for CBF and MAP and 5- 

and 7-min asphyxial CA at predicting initial EEG burst 

To assess the accuracy of the new predictive model, we used the same predictive 

burst ratio. We performed linear regression to the cumulative predictive burst ratio for a 

5min period post-ROSC and extrapolated the linear fit using the median predictive burst 

ratio to predict the initial EEG burst time (Eq. 1.5).  Examples of the predictive model using 

CBF and MAP for 5- and 7-min asphyxia are shown in Figure 1.8.  The median percent error 
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using the CBF and MAP were 8.57% (range = 1.21% – 28.31%) and 9.72% (range = 7.04% – 

33.59%), respectively.  We also assessed how the 5- and 7-min asphyxial groups compared.  

The 5- and 7-min asphyxial groups had very similar percent errors using the CBF data 

[8.57% (range = 1.21% – 18.69%) vs 9.91% (range = 2.45% – 28.31%)] and using MAP 

data [19.02% (range = 7.07% – 26.53%) vs 9.03% (range = 7.04% – 33.59%)], respectively.  

These results show that the new predictive model is more robust at accurately predicting 

both the 5- and 7-min asphyxial durations, as well as the CBF and MAP data. 

 

Figure 1.8: Representative predictive burst times for initial EEG burst using NEW predictive burst 
model. (A) A representative 5-min asphyxial experiment that used CBF data to predict the initial EEG burst 
time, percent error of 1.21% obtained.  (B) A representative 7-min asphyxial experiment that used relative 
SFI to predict initial EEG burst time, a percent error of 4.18% obtained. (C) Burst prediction error for 5- and 
7-min asphyxial CA using CBF data. Median percent error for 5- and 7-min asphyxia are 8.57% and 9.91%, 
respectively. (D) Same 5-min asphyxial experiment used as (A), but used MAP to predict initial EEG burst 
time, percent error of 21.14% obtained. (A-D) the distance between the green and blue horizontal solid lines 
represent the time error in predicting the initial EEG burst. (E) Same 7-min asphyxial experiment used as (B), 
but used MAP to predict initial EEG burst time, percent error of 9.73% obtained.  Gap from ~140 to ~170 of 
predictive burst ratio is due to ABG being taken. (F) Burst prediction error for 5- and 7-min asphyxial CA 
using MAP data. Median percent error for 5- and 7-min asphyxia are 19.02% and 9.03%, respectively. 

 
1.5 Discussion and Conclusion 

Using a multi-modal platform, we demonstrate a number of novel findings 

elucidating the relationship between brain electrical activity and hemodynamics during CA 
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and resuscitation.  Our platform combined LSI, arterial blood pressure, and EEG to 

quantitatively assess CBF, MAP, and brain electrophysiology dynamics during CA and 

resuscitation. 

CBF is known to have distinct phases following resuscitation from CA23.  In this 

study we quantified the precise magnitude (relative to baseline) and time of the hyperemic 

peak and stabilized hypoperfusion post-ROSC (Figure 1.2E-I), due to our system’s relatively 

high temporal resolution (~seconds).  Previous studies have not been able to identify the 

exact time and magnitude of the hyperemic peak and stabilized hypoperfusion post-ROSC 

due to the relatively poor temporal resolution (~5–30min) 19,22,50.  Interestingly, in a 

pediatric model of asphyxial CA, Manole et al.21 and Shaik et al.51 both did not observe a 

hyperemic peak in cortical CBF using MRI and LSI, respectively.  Their results suggest that 

post-ROSC cerebral hemodynamics vary between adults and children.  These varying 

dynamics, may suggest the need to treat adults and children differently following 

resuscitation from asphyxial CA. 

Under normal conditions, the brain is highly regulated as CBF is constant over a 

wide range of MAP.  Previous studies have examined cerebrovascular autoregulation 

following CA.  These studies have generally reported that the lower limit of autoregulation 

increases post-ROSC17.  Our results are in line with these findings, as MAP returned to near 

baseline post-ROSC, while CBF was at a major deficit after the onset of stabilized 

hypoperfusion (Figure 1.3B).  Furthermore, to assess which asphyxial duration had more 

cerebrovascular dysregulation, we compared the median difference between relative SFI 

and relative MAP for 5- and 7-min asphyxial durations after stabilized hypoperfusion.  We 

observed that CBF more closely resembled MAP for 7-min than 5-min asphyxial duration (-
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62.70  14.58 vs -72.65  6.67, p = 0.13).  This result suggests that more severe CA is 

associated with increased cerebrovascular dysregulation, as CBF more closely resembles 

MAP.  Since MAP is a parameter clinicians depend on to indirectly monitor cerebral 

perfusion post-ROSC, our results suggest that direct CBF measurement may be necessary to 

adequately assess and optimize cerebral perfusion for different severities of CA. 

Many studies have investigated the evolution of brain electrical activity post-

ROSC7,52, while few have reported the time point at which EEG activity resumes post-

ROSC8,28.  To our knowledge, only one study analyzed the onset of EEG bursting with 

relation to neurological outcome.  Chen et al. showed a faster onset of EEG bursting in 

hypothermia-treated rats, which also had better neurological outcome at 96h post-ROSC28.  

Our results show that more severe CA, which results in worse neurological outcome9, 

resulted in longer time to initial EEG burst (Figure 1.4B).  However, the mechanism that 

drives the brain to restart following resuscitation is not well understood.  Our data 

suggests that CBF is a key component of this mechanism. 

We observed that the initial EEG burst occurred after the hyperemic peak, but prior 

to stabilized hypoperfusion (Figure 1.5A).  We then investigated whether a threshold of 

CBF is necessary to restart brain electrical activity.  Our results suggest that more perfusion 

is necessary to restart brain electrical activity for 1) a longer time to initial EEG burst 

(Figure 1.5B) and 2) more severe CA (Figure 1.5D).  Due to this, we normalized the total 

perfusion by the asphyxial duration to develop an empirical predictive burst ratio (Figure 

1.5F).  We plan to use the median predictive burst ratio from these experiments to predict 

when the initial EEG burst occurs in future experiments.   
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In the present study, we used two different predictive models to predict the initial 

EEG burst. The first model used rigid bounds for a linear fit from 0.25- to 6-min post-ROSC. 

The median predictive burst ratio from CBF data was then used with the linear fit, which 

performed well at predicting the initial EEG burst for 5-min asphyxia (3.46% error) (Figure 

1.6A), but poorly for 7-min asphyxia (31.22% error) (Figure 1.6B).  These results suggest 

that a threshold of cerebral reperfusion is both necessary and sufficient to restart brain 

electrical activity following 5-min asphyxia, but this condition alone is not sufficient for 

brain electrical activity to resume following 7-min asphyxia.  However, upon visualizing 

non-linear changes in more severe CA and MAP, a second predictive model was used, which 

was more robust and used non-uniform bounds for the linear fit.  

Using the robust predictive model, the same median predictive burst ratio from CBF 

data was then used with the linear fit, which performed equally well at predicting the initial 

EEG burst for 5- (8.57% error) and 7-min (9.91% error) asphyxial CA (Figure 1.8C). 

Furthermore, the median predictive burst ratio from MAP data was then used with the 

linear fit, which also performed equally well at predicting the initial EEG burst for 5- 

(19.02% error) and 7-min (9.03% error) asphyxial CA (Figure 1.8F). Using this predictive 

model shows that either that CBF or MAP can be used to predict the resumption of brain 

electrical activity following resuscitation from CA. Due to the residual error that is still 

present with the robust predictive model, we hypothesize cerebral metabolic deficiency, 

cerebrovascular dysregulation, and an imperfect linear fitting method may be responsible 

for the continued error.  To test this hypothesis, future studies will be focused on 

developing a revised empirical predictive model that utilizes the cerebral metabolic rate of 

oxygen to describe the initial EEG burst53–55.   
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In short, knowledge of when EEG activity will recover may potentially equip 

clinicians with more accurate prognostication, better treatments for post-CA coma, and 

improve neurological outcome. 

Limitations exist in our study.  Despite the statistically significant results and trends 

identified in this study, the power of these findings is limited due to a small sample size.  In 

addition, these experiments used a full craniectomy, which may change the intracranial 

pressure.  In the future we plan to perform experiments with a thinned-skull cranial 

window to minimize this effect. 

In conclusion, we have developed a multi-modal approach to quantify CBF, MAP, 

and brain electrophysiology dynamics with high temporal resolution, in an asphyxial CA 

model. Our multi-modal approach combines LSI, arterial blood pressure, and EEG into a 

preclinical monitoring setup that effectively mimics an intensive care unit.  Our results 

quantify the time and magnitude of the hyperemic peak and stabilized hypoperfusion post-

ROSC.  Furthermore, we show that CBF and MAP are well correlated before stabilized 

hypoperfusion, but CBF is at a large deficit after stabilized hypoperfusion, despite normal 

MAP.  Finally, we demonstrate that EEG bursting begins after the CBF hyperemic phase and 

before stabilized hypoperfusion. We demonstrated that we can predict when the initial EEG 

burst occurs for less severe CA well using a fixed predictive model, but using a robust 

predictive model is able to predict the initial EEG burst for both severities of CA. Together, 

these results indicate the importance of using multi-modal approaches to investigate CA 

recovery to better understand physiological processes and ultimately allow for novel 

therapeutic approaches that improve neurological outcome. 
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CHAPTER 2: Influence of cerebral blood flow and femoral artery 

pulsatility on short-term neurological outcome following resuscitation 

from cardiac arrest in a rat model 

2.1  Abstract 

Background—Impaired neurological function affects 85 to 90% of cardiac arrest (CA) 

survivors. Pulsatile blood flow may play an important role on neurological recovery post-

CA due to its effects on oxygen uptake, vascular tone, and cellular metabolism. In this study, 

we characterized the effects of asphyxial CA (ACA) on acute (<2h post-CA) cerebral blood 

flow (CBF) and femoral arterial blood pressure (ABP) pulsatility and their relationship to 

cerebrovascular resistance (CVR) and neurological outcome. 

Methods and Results—Male Wistar rats were subjected to either 5- or 7-min of ACA 

followed by cardiopulmonary resuscitation. A multi-modal platform that combined laser 

speckle imaging (LSI), ABP, and electroencephalography (EEG) was used to monitor CBF, 

peripheral blood pressure, and brain electrophysiology, respectively. CVR and pulsatile 

CBF and ABP were assessed during baseline, CA, hyperemia (~10min post-resuscitation), 

early hypoperfusion (~20min post-resuscitation), and late hypoperfusion (~60min post-

resuscitation). Short-term neurological outcome was assessed using quantitative EEG 

90min post-resuscitation. We found that CBF pulsatility is significantly altered from 

baseline at all experimental time-points, while ABP pulsatility changes little. The alteration 

of CBF pulsatility is inversely correlated with changes in CVR, but ABP pulsatility had no 

association to CVR. Interestingly, we found that CBF pulsatility is not associated to short-

term neurological outcome, but increased ABP pulsatility is associated with worse short-

term neurological outcome. 
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Conclusions—Our data suggests that simultaneous monitoring of immediate changes in CBF 

and ABP pulsatility may provide early prognostic information and that the use of 

therapeutics to modify pulsatility within 2h post-CA may alter neurological outcome.   

2.2  Introduction 

Annually, over 550,000 people in the United States suffer cardiac arrest (CA) while 

initial survival rates remain poor (10-30%)1. Approximately 85 to 90% of survivors have 

impaired cognitive function, which leads to decreased quality of life for survivors, increased 

burden on caregivers, and direct costs of over $6 billion/year1,2. To improve neurological 

recovery and understand how the brain recovers following CA, a critical need exists to 

investigate physiological processes that impact the brain, such as cerebral blood flow (CBF), 

arterial blood pressure, and brain electrophysiology. 

 A key physiological process that has been shown to be extremely important is 

pulsatile blood flow. Studies have shown that pulsatile flow (compared to non-pulsatile 

flow) during cardiac bypass surgery and extracorporeal membrane life support (ECMO) is 

associated with improved neurological and physiological outcomes29–32. Furthermore, 

modulation of pulsatility through mechanically controlled devices is associated with 

reduced cerebrovascular resistance (CVR) and improved oxygen uptake during post-

ischemic reperfusion, which can improve neurological outcome33.  

The binary case of pulsatile versus non-pulsatile flow strongly supports that 

pulsatile flow is better than non-pulsatile flow29–33. However, aging56,57, stroke58, acute 

brain injury59, small vessel disease60 and CA35 all modulate pulsatile blood flow to a 

different degree. Results from these studies suggest conflicting associations between 

pulsatility and neurological outcome.  
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To better understand the relationship between pulsatility and neurological outcome 

following CA, several gaps in the knowledge base must be addressed. First, low frequency 

(<0.4Hz) studies have only examined survivors or non-survivors of CA, and not 

neurological function or outcome after CA34,35. Second, studies of the pulsatile waveform 

typically focus on CBF and not peripheral hemodynamics associated with the aorta or 

femoral artery. Third, the influence of CVR on CBF and the peripheral pulsatile waveform 

has not been investigated. Finally, clinical studies begin upon hospital admission followed 

by measurements on subsequent days after CA, and hence do not enable study of 

immediate pulsatile signal changes after resuscitation (during ischemia-induced hyperemia 

and hypoperfusion) and their relationship to neurological outcome.  

To address these gaps, we used an established preclinical model of asphyxial CA 

(ACA) to continuously monitor pulsatile CBF and femoral arterial blood pressure (ABP) 

associated with the heartbeat. We used CBF and ABP data to obtain a measurement of 

changes in CVR, and electroencephalography (EEG) to measure short-term neurological 

outcome 90min after resuscitation. Using these measurements, we quantified CBF and ABP 

pulsatility immediately after resuscitation and compared changes among different phases 

in the experiment. We also quantified the relationship between CBF and ABP pulsatility to 

CVR, and compared CBF and ABP pulsatility to short-term neurological outcome. We 

hypothesized that increased CBF pulsatility was associated with improved short-term 

neurological outcome. However, our key finding showed that increased pulsatile ABP is 

associated with worse short-term neurological outcome, and pulsatile CBF is not associated 

with short-term neurological outcome. Collectively, our findings indicate the importance of 
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investigating immediate CBF and ABP pulsatility following resuscitation from CA to 

determine potentially modifiable factors that improve neurological outcome. 

2.3  Materials and Methods 

The ACA model and study protocol (no. 2013-3098) were approved by the 

Institutional Animal Care and Use Committee at University of California, Irvine.   

2.3.1 Animal Preparation 

We used our ACA model to perform experiments on 11 adult male Wistar rats 

(baseline characteristics shown in Table 2.1)36,61,62. Rats were calorically restricted 12-16h 

prior to onset of CA. On the day of CA induction, rats were anesthetized, intubated, and 

connected to a mechanical ventilator via tubing (Kent Scientific, Torrington, CT). During 

surgery, isoflurane was maintained at 2% with a 50%/50% N2/O2 mixture at 2LPM. The 

ventilation settings were maintained at 70 breaths per min (BPM), with 12–14cmH2O peak 

inspiration pressure (PIP) and 3cmH2O peak end expiratory pressure (PEEP). Animal 

temperature was continuously measured with a rectal thermometer (Kent Scientific, 

Torrington, CT) and maintained between 36.5 and 37.5oC. The rat was then positioned on a 

stereotactic frame (Kopf Instruments, Tujunga, CA). 

A midline incision was performed over the scalp and the scalp retracted to expose 

the skull for EEG electrode implantation (Plastics One Inc., Roanoke, VA). Two frontal 

electrodes were implanted 2mm anterior and 2.5mm lateral to bregma, and one electrode 

was implanted over the visual cortex 5.5mm posterior and 4mm left of bregma. A reference 

electrode was implanted 3mm posterior to lambda. Following EEG electrode implantation, 

a 4mm x 6mm craniectomy was created over the right sensory and visual cortices to create 

a window for optical imaging. Saline was applied periodically to ensure the brain remained 
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hydrated. Following the craniectomy, the femoral artery and vein were cannulated. 

Invasive arterial blood pressure from the femoral artery was measured continuously at 

~200Hz. Baseline arterial blood gas (ABG) measurements (Abaxis, Union City, CA) were 

obtained within 30min prior to initiation of ACA.  

2.3.2 Experimental Protocol 

At experiment start time, rats were placed on 0.5–1% isoflurane (balance 100% O2). 

After 2min, inhaled air was changed to room air (21% O2), isoflurane administration 

turned off to wash out anesthesia, and neuromuscular blockade initiated with 1mL of 

intravenous Vecuronium (2mg/kg), flushed with 1mL of heparinized saline. At 5min, 

asphyxia was initiated by turning the ventilator off and clamping the tubing. Rats were 

subjected to a period of either 5- or 7-min asphyxia. Thirty seconds prior to end of 

asphyxial period, mechanical ventilation was re-initiated at 100% O2 with respiratory rate 

of 75–85BPM, PIP of 17.5–18.5 cmH2O, and PEEP of 3cmH2O at 2.5LPM. Epinephrine 

(0.01mg/kg) and sodium bicarbonate (1mmol/kg), followed by 2mL of heparinized saline, 

were administered intravenously. Chest compressions were started at end of asphyxial 

period until return of spontaneous circulation (ROSC) was achieved. ABGs were obtained 

10-min post-ROSC and every 40 min thereafter, to assess and modify ventilator settings as 

necessary.   
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Table 2.1: Baseline Characteristics 

 

2.3.3 Data Acquisition 

As previously described in detail36, we used a multi-modal approach that combined 

laser speckle imaging (LSI), arterial blood pressure, and electroencephalography (EEG) to 

monitor CBF, femoral arterial blood pressure (ABP), and brain electrophysiology before, 

during, and after ACA and resuscitation. Briefly, LSI data was obtained using an 809nm 

laser as the excitation source and images acquired at ~60fps using a Point Grey camera 

with a 10ms exposure time. To measure ABP, systolic and diastolic blood pressures were 

recorded from the femoral artery at ~200Hz. The mean arterial pressure (MAP) was 

calculated at 1Hz from the extracted systolic and diastolic blood pressures waveforms. EEG 

data acquisition was recorded from each implanted electrode at 1526Hz with a first-order 

high-pass filter (0.35Hz).  

2.3.4 Initial Data Processing 

LSI processing used custom-written MATLAB code to process each raw speckle 

image and obtain CBF data. A sliding 5 x 5 square sliding window was used to convert each 

raw speckle image to a corresponding speckle contrast (K) image using the equation K = 
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σ/<I>, where σ is the standard deviation of the intensity and <I> is the average intensity 

within each window. Each speckle contrast image was then converted to a cerebral blood 

flow (CBF) map using a simplified speckle imaging equation CBF = 1/2TK2, where K is the 

speckle contrast and T is the exposure time of the camera in seconds46. A representative 

region of interest (ROI) was then selected within the craniectomy to obtain an average SFI 

value and create time-resolved pulsatile CBF curves.  

 Raw EEG data were filtered using custom written MATLAB (Mathworks Inc., Natick, 

MA) code. Data were detrended and common average referencing was performed using 

each electrode49. A finite impulse response (FIR) notch filter at 60Hz was used, followed by 

a FIR bandpass filter from 1 to 150Hz. Signals were then downsampled to 600Hz to reduce 

memory and computational time. 

2.3.5 Pulsatile Signal Analysis 

To quantify CBF and ABP pulsatile waveform changes in response to ACA, two 

methods were used. The first method used the maximum value of the power spectrum 

(peak power), and the second the difference between the peak and trough values (peak-to-

trough) of the pulsatile waveform signal (shown in Figure 2.3B). CBF and ABP data from 

each experiment were analyzed. Time periods during signal artifact due to bleeding, 

movement and noise, and ABG measurements were removed from further analysis. 

To use the peak power from the power spectrum, an accurate measurement of heart 

rate is needed. Previous papers have used LSI to quantify the heart rate and pulsatile blood 

flow waveform flow from the skin63 and teeth64. However, to our knowledge, LSI has not 

been used to obtain pulsatile CBF data. To ensure accurate CBF peak power quantification 
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from the power spectrum, the CBF heart rate was compared to the gold standard ABP heart 

rate. See results (Figure 2.4) for comparison. 

To obtain the heart rate and extract the peak power from the power spectrum, the 

following steps were performed for both the pulsatile CBF and ABP time courses. First, a 

bandpass filter from 0.5 to 10Hz was used to remove the DC component and very low and 

high frequency content. Next, the time-resolved power spectrum was computed using 10s 

intervals with 2s of overlap. During non-asphyxial periods, the maximum power in the 4 to 

9Hz (240—540 beats/min, typical rat heart rate values) frequency band was extracted 

within each interval. During the asphyxial period, the maximum power from all frequencies 

was extracted within each interval. Time courses of peak power were then normalized to 

the baseline peak power, which is defined as the mean during a one-minute period 

immediately preceding the onset of asphyxia. The heart rate was computed by extracting 

the frequency that corresponded to the peak power. The heart rate calculated from the CBF 

data was compared to the heart rate calculated from the ABP data. The main steps to obtain 

the time courses of peak power are shown in Figure 2.1. 
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Figure 2.1: Data flow to extract normalized power time courses. After obtaining the filtered SFI time 
course, the power spectrum is computed. The max power is obtained, and the corresponding frequency is 
used to calculate the heart rate. Performing these two steps using a sliding window enables the time course of 
the power to be calculated, which is then normalized to the baseline power. 

 
To calculate the peak-to-trough time courses from the pulsatile CBF and ABP 

signals, the following steps were performed. First, a bandpass filter from 0.5 to 10Hz was 

used to remove the DC component and very low and high frequency content. Next, peaks 

and troughs were determined over 1s intervals using the pulsatile signals for the entire 

time course. A 10s sliding average filter was applied to the peak and trough time courses 

separately. The difference between the filtered peak and trough time courses was 

calculated to obtain the peak-to-trough data. Time courses of peak-to-trough were then 

normalized to the baseline peak-to-trough, which is defined as the mean during a one-

minute period immediately preceding the onset of asphyxia. 
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Figure 2.2: Data flow to extract normalized peak-to-trough time courses. After obtaining the filtered SFI 
time course, the peaks (red) and troughs (black) are found for the entire time course. The difference between 
the peaks and troughs is computed to obtain the peak-to-trough time course data. The peak-to-trough time 
course data is then normalized to the baseline peak-to-trough. 

  
2.3.6 Cerebrovascular Resistance 

 Relative cerebrovascular resistance (rCVR) is defined as65,66:  

 rCVR(t) = rMAP(t)/rCBF(t)  (Eq. 2.1) 

rMAP is the MAP normalized by the baseline MAP, which is defined as the mean MAP 

calculated over a one-minute interval immediately prior to onset of asphyxia. rCBF, the 

relative CBF, was calculated as follows. A 10s sliding median filter was applied to the 

pulsatile CBF time courses to remove the pulsatile component. The filtered waveform was 

then normalized to the mean median-filtered CBF calculated over a one-minute interval 
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immediately prior to onset of asphyxia. The rCBF data was then downsampled to 1Hz to 

match the rMAP data, and the rCVR calculated as the quotient of the two waveforms.  

2.3.7 EEG IQ 

To obtain a measurement of short-term neurological outcome, we used a 

quantitative EEG method called information quantity (IQ). The following steps were 

performed to obtain EEG IQ as a function of time. Using a temporal sliding window of 10s 

with 20% overlap, a 5-level discrete wavelet transform (DWT) was applied to the filtered 

EEG data to extract DWT coefficients. From the baseline EEG immediately one minute prior 

to onset of asphyxia, 20 fixed microstates were obtained that encompassed the mean ±3 

standard deviations of the DWT coefficients. A histogram of the continuous EEG recording 

was created using the DWT coefficients with the 20 microstates. The probability 

distribution function was calculated, from the histogram, and the Shannon entropy was 

calculated using the equation: 𝑆𝐸 = − ∑ 𝑝𝑑𝑓(𝑚) log2(𝑝𝑑𝑓(𝑚))𝑀
𝑚=1 . SE is the Shannon 

entropy, M is the number of microstates, and pdf is the probability distribution function 

from the histogram. We used this equation within each window to calculate EEG IQ as a 

function of time. The EEG IQ was then normalized to the baseline EEG IQ, which is defined 

as the mean EEG IQ calculated over a one-minute interval immediately prior to onset of 

asphyxia. An EEG IQ of 0 indicates no brain electrical activity, while an EEG IQ of 1 indicates 

normal brain electrical activity. 

2.3.8 Extracted Parameters and Statistical Analysis 

To assess changes in CBF and ABP pulsatility, the peak power and peak-to-trough 

data was extracted over one minute intervals during baseline, CA, hyperemia, early 

hypoperfusion, and late hypoperfusion. These periods are labeled in Figure 2.3 as B-F and 
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G-K for the CBF and ABP data, respectively. Similarly, rCVR was extracted during the same 

time intervals. To determine the effects of asphyxial duration on peak power, peak-to-

trough, and rCVR, a two-sided Wilcoxon ranked sum test was used to compare 5- and 7-min 

ACA at baseline, CA, hyperemia, early hypoperfusion and late hypoperfusion. To determine 

the response of peak power, peak-to-trough, and rCVR following ACA, a two-sided, paired 

Wilcoxon signed rank test was used. To determine the association between pulsatility and 

rCVR, a Spearman ranked correlation was used. 

To obtain a metric of short-term neurological recovery, the median EEG IQ from 90 

to 100min post-ROSC was determined67,68. To assess the relationship between pulsatility 

and short-term neurological recovery, a Spearman ranked correlation was used.  

2.4 Results 

Following resuscitation from asphyxial cardiac arrest, cerebral blood flow and 

femoral artery, pulsatility characteristics vary considerably (Figure 2.3). Figure 2.3A 

shows representative time courses of CBF (top) and ABP (bottom) following ACA and 

resuscitation experiment. Figure 2.3B-F shows representative 1.5s periods of CBF data 

during specific phases labeled in Figure 2.3A (top). The y-axis of Figure 2.3B-F is rescaled 

to keep the same CBF range in each sub-figure. Figure 2.3B shows baseline (B) pulsatile 

CBF waveform with example of the peak and trough labeled. Figure 2.3C shows CBF 

pulsatility during cardiac arrest (CA) with low amplitude and overall low flow. Figure 2.3D 

shows CBF pulsatility during hyperemia (H). Compared to B, the CBF waveform in this 

phase is higher in amplitude and consists of narrower features. Figure 2.3E shows CBF 

pulsatility during early hypoperfusion (EH). The CBF pulsatility has a lower amplitude than 

during both H and B, with overall lower flow. Figure 2.3F shows CBF pulsatility during late 
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hypoperfusion (LH). The CBF pulsatility has a lower amplitude than during both H and B, 

with overall lower flow. During B, H, and EH respiratory variations are observed as a slow 

frequency oscillation in the CBF data which are not observed during CA and are difficult to 

visualize during LH. 

Figure 2.3G-K shows representative 1.5s periods of ABP data during the same 

specific phases labeled in Figure 2.3A (bottom). The y-axis of Figure 2.3G-K is rescaled to 

keep the same blood pressure range in each sub-figure. Figure 2.3G shows the pulsatile 

ABP waveform during B. Figure 2.3H shows the pulsatile ABP during CA, with a nearly 

featureless waveform. Figure 2.3I shows ABP pulsatility during H, with a return in 

pulsatility and a slightly higher amplitude than during B. Figure 2.3J shows ABP pulsatility 

during EH. Unlike the decreased CBF pulsatility during EH, the ABP pulsatility is near 

baseline levels. Figure 2.3K shows ABP pulsatility during LH, with similar pulsatility to EH. 

During B, H, EH, and LH, respiratory variations are observed as a slow frequency oscillation 

in the ABP data which are not observed during CA. 
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Figure 2.3: Qualitative assessment of pulsatile CBF and ABP changes following resuscitation from ACA. 
(A) CBF (top, blue) and ABP (bottom, red) time courses during a representative ACA and resuscitation 
experiment. (B-F) 1.5s periods of CBF data of phases labeled in (A, top), and the y-axis is rescaled to keep the 
same CBF range in B through F. (B) Baseline pulsatile CBF. (C) CA pulsatile CBF. (D) Hyperemia pulsatile CBF. 
(E) Early hypoperfusion pulsatile CBF. (F) Late hypoperfusion pulsatile CBF. (G-K) 1.5s of ABP data of 
zoomed-in plots labeled in (A, bottom) and the y-axis is rescaled to keep the same blood pressure range in G 
through K. (G) Baseline pulsatile ABP. (H) CA pulsatile ABP. (I) Hyperemia pulsatile ABP. (J) Early 
hypoperfusion phase of pulsatile ABP. (K) Late hypoperfusion phase of pulsatile ABP. 

 LSI enables accurate quantification of heart rate measured from the rodent 

brain (Figure 2.4). To determine if LSI is able to quantitatively resolve CBF heart rate 

changes, heart rate calculations measured from LSI data was compared to the ABP heart 

rate as the gold standard. Figure 2.4A shows time courses of heart rate calculations 

measured from each experiment using CBF data (blue) and ABP data (red). The data 

collectively show excellent agreement across all experiments. Figure 2.4B quantifies the 

linear relationship between the heart rate calculated using all CBF and ABP data. The linear 

relationship was examined in three periods: 1) only asphyxial time points (left), 2) only 

non-asphyxial time points (middle), and 3) combined asphyxial and non-asphyxial time 

points (right). Using only asphyxial time points (n = 358) the R2 = 0.80, using only non-
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asphyxial time points (n = 4615) the R2 = 0.93, and using all experimental time points (n = 

4973) the R2 = 0.94. 

 
Figure 2.4: CBF heart rate calculations agree well with ABP heart rate calculations during all 
experimental phases. (A) Time courses from each experiment that compares ABP and CBF heart rate 
calculations. Data from LSI is in blue and data from peripheral ABP is in red (B) Comparison of ABP and CBF 
heart rate calculations from all experiments during asphyxial (left; n = 358, R2 = 0.80), non-asphyxial (middle; 
n = 4615, R2 = 0.93), and all experimental time points (right; n = 4973, R2 = 0.94). 

Asphyxial duration leads to differences in ABP pulsatility only during the late 

hypoperfusion phase (Figure 2.5). To assess the effects of asphyxial duration on CBF and 

ABP pulsatility, 5- and 7-min ACA were compared during CA, H, EH, and LH. There were no 

significant differences between the normalized peak power and peak-to-trough CBF 

pulsatility metrics for 5- and 7-min ACA experiments during all time points (p > 0.05) 

[Figure 3(A,B)]. There was no significant difference between the normalized peak power 

and peak-to-trough ABP pulsatility metrics for 5- and 7-min ACA experiments during CA, H, 

and EH (p > 0.05) [Figure 2.5(C,D)]. However, during LH, 7-min ACA experiments had 
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significantly more ABP pulsatility than 5min ACA experiments, using both the normalized 

peak power (p = 0.03) and normalized peak-to-trough (p = 0.03) pulsatility metrics [Figure 

2.5(C,D)]. 

 
Figure 2.5: Asphyxial duration does not influence CBF pulsatility, but longer asphyxial duration leads 
to increased ABP pulsatility. (A and B) Two methods of CBF pulsatility (normalized peak to trough and 
peak power) demonstrate that there is no significant difference between 5- and 7-min ACA experiments 
during CA, hyperemia, and early and late hypoperfusion. (C and D) Two methods of ABP pulsatility 
(normalized peak to trough and peak power) demonstrate that there is no significant difference between 5- 
and 7-min ACA experiments during CA, hyperemia, and early hypoperfusion (p > 0.05). During late 
hypoperfusion, 7-min ACA experiments have significantly more pulsatility than 5-min experiments (p = 0.03). 
Experimental phases are baseline (B), cardiac arrest (CA), hyperemia (H), early hypoperfusion (EH), and late 
hypoperfusion (LH), respectively. 

Response of CBF and ABP pulsatility to ACA and resuscitation differs (Figure 

2.6). To assess differences between CBF and ABP pulsatility, the 5- and 7-min ACA groups 

were combined for further analysis. There is no significant difference between CBF and 

ABP pulsatility during H (peak-to-trough: p = 0.15; peak power: p = 0.12), but there is a 

significant difference between CBF and ABP pulsatility during EH (peak-to-trough: p = 

0.003; peak power: p < 0.001) and LH (peak-to-trough: p < 0.001; peak power: p < 0.001). 
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We then compared baseline CBF and ABP pulsatility metrics to the same metrics 

during CA, hyperemia, early hypoperfusion, and late hypoperfusion pulsatility. CA ABP 

pulsatility is significantly less than baseline ABP pulsatility (peak-to-trough: p < 0.001; 

peak power: p < 0.001). CA CBF pulsatility is significantly less than baseline CBF pulsatility 

(peak-to-trough: p < 0.001; peak power: p < 0.001). CBF pulsatility at baseline is 

significantly less than CBF pulsatility during H (peak-to-trough: p = 0.02; peak power: p = 

0.03), and significantly greater during EH (peak-to-trough: p = 0.003; peak power: p < 

0.001) and LH (peak-to-trough: p < 0.001; peak power: p < 0.001). ABP pulsatility at 

baseline is significantly different than ABP pulsatility during EH (peak power: p = 0.01). 

During H and LH, ABP pulsatility is not significantly different from the baseline values. 

 
Figure 2.6: Resuscitation after ACA leads to decreased CBF pulsatility, but ABP pulsatility minimally 
changes. Comparison between CBF (green, circle) pulsatility and ABP (purple, square) pulsatility using 
normalized (A) peak-to-trough metric and (B) normalized peak power metric. Experimental phases are 
baseline, denoted with letter B, cardiac arrest, denoted with letters CA, hyperemia, denoted with letter H, 
early hypoperfusion, denoted with letters EH, and late hypoperfusion, denoted with letters LH. * signifies p < 
0.05, ** signifies p < 0.01, and *** signifies p < 0.001 

Cerebrovascular resistance is correlated to CBF pulsatility, but not ABP 

pulsatility (Figure 2.7). Figure 2.7A illustrates a representative experimental rCVR time 

course. Figure 2.7B demonstrates that baseline rCVR is significantly different from rCVR 
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during CA (p < 0.001), EH (p = 0.002), and LH (p < 0.001). However, rCVR during baseline 

and H are non-significantly different.   

There is a significant negative correlation between CBF pulsatility and rCVR during 

H (R = -0.68, p =0.025) and LH (R = -0.78, p = 0.007). There is a non-significant correlation, 

but a negative trend between CBF pulsatility and rCVR, during EH (R = -0.42, p = 0.20). In 

contrast, there is no significant correlation between ABP pulsatility and rCVR during H (R = 

0.04, p = 0.92), EH (R = 0.34, p = 0.31), and LH (R = 0.16, p = 0.63).  

 
Figure 2.7: ACA increases rCVR after resuscitation and is correlated to CBF pulsatility but not ABP 
pulsatility. (A) Representative experiment illustrating temporal changes in rCVR. (B) rCVR is significantly 
elevated during CA (p < 0.001), and early (p = 0.002) and late hypoperfusion (p < 0.001), while rCVR remains 
at near baseline levels during hyperemia (p = 0.17). Experimental phases are baseline, denoted with letter B, 
cardiac arrest, denoted with letters CA, hyperemia, denoted with letter H, early hypoperfusion, denoted with 
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letters EH, and late hypoperfusion, denoted with letters LH. (C-E) Comparison between CBF normalized peak 
to trough data and rCVR during hyperemia, early hypoperfusion, and late hypoperfusion. (C) Comparison 
between CBF pulsatility and normalized rCVR during hyperemia (R = -0.68, p = 0.025). (D) Comparison 
between CBF pulsatility and normalized rCVR during early hypoperfusion (R = -0.42, p = 0.20). (E) 
Comparison between CBF pulsatility and normalized rCVR during late hypoperfusion (R = -0.78, p = 0.007). 
(F-H) Comparison between ABP normalized peak to trough data and normalized rCVR during hyperemia, 
early hypoperfusion, and late hypoperfusion. (F) Comparison between ABP pulsatility and normalized rCVR 
during hyperemia (R = 0.04, p = 0.92). (G) Comparison between ABP pulsatility and normalized rCVR during 
early hypoperfusion (R = 0.34, p = 0.31). (H) Comparison between ABP pulsatility and normalized rCVR 
during late hypoperfusion (R = 0.16, p = 0.63). 

In general, CBF and ABP pulsatility metrics do not predict short-term 

neurological outcome (Figure 2.8). Figure 2.8A illustrates a representative experimental 

EEG IQ time course. As seen in Figure 2.8(B-D), there is no significant trend between EEG 

IQ 90min post-ROSC and CBF peak-to-trough during H (R = -0.20, p = 0.58), EH (R = 0.21, p 

= 0.56), and LH (R = 0.13, p = 0.73). There is no significant trend between EEG IQ 90min 

post-ROSC and ABP peak-to-trough during H (R = -0.32, p = 0.37) and EH (R = -0.52, p = 

0.13). However, there is a significant negative trend comparing EEG IQ 90min post-ROSC 

and ABP peak-to-trough during late hypoperfusion (R = -0.76, p = 0.016) (Figure 2.8G). 
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Figure 2.8: Changes in CBF pulsatility do not influence short-term neurological recovery, while 
increased ABP pulsatility is associated with worse short-term neurological recovery. (A) 
Representative experiment that shows temporal changes in EEG IQ. (B-D) Comparisons between CBF 
normalized peak to trough data during hyperemia, early hypoperfusion, and late hypoperfusion to EEG IQ 
90min post-ROSC. (B) Comparison between CBF pulsatility during hyperemia and EEG IQ 90min post-ROSC 
(R = -0.20, p = 0.58). (C) Comparison between CBF pulsatility during early hypoperfusion and EEG IQ 90min 
post-ROSC (R = 0.21, p = 0.56). (D) Comparison between CBF pulsatility during late hypoperfusion and EEG IQ 
90min post-ROSC (R = 0.13, p = 0.73). (E-G) Comparisons between ABP normalized peak-to-trough data 
during hyperemia, early hypoperfusion, and late hypoperfusion to EEG IQ 90min post-ROSC. (E) Comparison 
between ABP pulsatility during hyperemia and EEG IQ 90min post-ROSC (R = -0.32, p = 0.37). (F) Comparison 
between ABP pulsatility during early hypoperfusion and EEG IQ 90min post-ROSC (R = -0.52, p = 0.13). (G) 
Comparison between ABP pulsatility during late hypoperfusion and EEG IQ 90min post-ROSC (R = -0.76, p = 
0.016).  

 
2.5 Discussion 

Pulsatile blood flow is important because of its impact on oxygen uptake, vascular 

tone, and cellular metabolism69. Previous studies have investigated pulsatility following 

CA14,24,23,70; however, they have examined patients after admission to the ICU, have not 

examined acute changes in CBF and ABP pulsatility, and have rarely compared CBF and 

ABP pulsatility to neurological outcome. In this study, we used a clinically-translatable 
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preclinical model of ACA and multi-modal platform36 to demonstrate several key 

associations between acute CBF and ABP pulsatility changes immediately after 

resuscitation from ACA and their relationship to rCVR and short-term neurological 

outcome. First, we show that different severities of ACA do not influence CBF pulsatility, 

but more severe ACA is associated with increased ABP pulsatility during late 

hypoperfusion (Figure 2.5). Next, we show that CBF and ABP pulsatility differ significantly 

during the hypoperfusion period after resuscitation from ACA (Figure 2.6). Furthermore, 

CBF pulsatility is significantly different from baseline during all points in the experiment, 

while ABP pulsatility is only significantly different from baseline during CA (Figure 2.6A). 

In addition, rCVR is associated with changes in CBF pulsatility, but not ABP pulsatility 

(Figure 2.7). Finally, the key result of the paper is that CBF pulsatility does not influence 

short-term neurological outcome, but increased ABP pulsatility is associated with worse 

short-term neurological outcome (Figure 2.8). 

Poor neurological recovery remains a common occurrence for CA survivors. After 

resuscitation from CA it is known that overall CBF is diminished, while ABP recovers to 

baseline levels35,36. van den Brule et al35, and others have shown that the low frequency 

pulsatile component of CBF and MAP is decreased after resuscitation from CA. 

Furthermore, these studies showed that increased variability in CBF and MAP signals 72h 

after admission to the ICU were associated with a higher chance of survival35,34. These 

studies suggested that alterations in low frequency variability is associated with impaired 

myogenic response and autonomic regulation35, and excessive vasoactive components51. 

Our results demonstrate that the heartrate frequency of pulsatile CBF decreased after 

resuscitation, while ABP pulsatility remained similar to baseline levels (Figure 2.6). We 
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postulate that the difference between CBF and ABP pulsatility is due to autonomic 

dysregulation and changes in CVR. Previous studies show that CVR is elevated during the 

hypoperfusion phase after resuscitation71, which is in agreement with our data (Figure 

2.7B). However, previous studies did not compare CVR to CBF and ABP pulsatility. Our 

imaging approach provided the requisite capabilities to demonstrate that CVR is associated 

with CBF pulsatility but not ABP pulsatility (Figure 2.7C-H). Collectively, these data suggest 

that the brain is attempting to minimize the pulsatile CBF it receives. 

CA14,24,70 and non-CA60,72–74 studies have examined the heartrate frequency to 

quantify CBF and ABP pulsatility. Based on the collective published results, controversy 

exists regarding whether higher or lower pulsatility is related to better neurological 

outcome. For example, the following results have been reported: 1) CA studies have 

examined the MCA and showed that a lower PI is associated with good outcome14, 2) there 

is no relationship between PI and survivability up to 72h after admission to the ICU24, and 

3) the good neurological outcome group had higher PIs in the initial 48h after admission to 

the ICU70. Results by van den Brule et al35 and Lemiale et al24 suggest that pulsatile CBF 

changes are due to increased level of vasoconstrictors and cerebral arterial resistance, but 

that mortality depends on the presence of luxury perfusion. However, the CA studies do not 

comment on how CBF pulsatility impacts neurological outcome. Non-CA studies showed 

that patients with higher pulse pressure, which is analogous to ABP peak-to-trough 

measured in this study, have 1) increased likelihood to develop restenosis after 

percutaneous transluminal coronary angioplasty72, 2) increased central pulse pressure and 

carotid PI with higher prevalence of subcortical infarcts and worse cognitive function in the 

aging population73, 3) increased aortic pulse pressure and MCA PI was associated with 
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more severe forms of leukoaraiosis60, and 4) higher carotid artery PI is associated with 

higher incidence of stroke74.  

Mitchell et al73 and Webb et al60 state that increased stiffening of the aorta is 

associated with reduced wave reflection and therefore, transmission of excessive 

pulsatility into the brain can lead to microvascular structural brain damage and impaired 

cognitive function60,73. The results in the present study are in agreement with this, as we 

show that increased ABP pulsatility is associated with worse short-term neurological 

outcome (Figure 2.8G). However, the findings these studies are due to chronic increases in 

pulsatility, which led to cerebral microvascular problems. The results presented in our 

study are related to short-term changes in ABP pulsatility that occur over the course of less 

than 2h. Upon examination of the correlation coefficient and p-values from Figure 2.8E 

through 2.8G, the correlation coefficient increases from hyperemia (Figure 2.8E) to late 

hypoperfusion (Figure 2.8G), suggesting that a further increase in measurement time may 

yield a stronger correlation. In sum, although the data shows that CBF pulsatility is not 

associated to short-term neurological outcome, potentially due to the influence of CVR 

(Figure 2.7), the data suggests that increased levels of ABP pulsatility worsen short-term 

neurological outcome. Future studies should focus on analyses of CBF and ABP pulsatility 

in conjunction with administration of different therapeutics to determine optimal drug 

selection during CPR and improve neurological recovery after resuscitation from CA. 

Although the findings of this study warrant further investigations, there are several 

limitations. First, global ROIs over the craniectomy were chosen for the CBF data, and 

therefore did not separate between arteriolar and venular pulsatility. In separate analyses, 

ROIs were taken exclusively from arterioles, resulting in a decreased signal-to-noise ratio 
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of the pulsatile waveform. Although the data analyses produce statistical significance and 

trends, the power of these findings is limited due to the small sample size and complexity of 

experiments. Furthermore, these experiments used a full craniectomy, which may change 

the intracranial pressure and affect pulsatile CBF changes. A chronic cranial window may 

mitigate such effects. In addition, the correlations in this study combined the 5-and 7-min 

ACA groups due to the small sample size. The correlations should be done in larger, 

separate groups and utilize linear regression models. Furthermore, our metric of 

neurological outcome, which has been correlated to more accepted outcomes67,68, is not 

based on cognitive, behavioral, or histopathological outcomes. Finally, the results in this 

study only measured acute pulsatility changes. Use of a wearable imaging device75 will 

enable chronic monitoring of CBF pulsatility. 

2.6 Conclusions 

 In conclusion, we used our preclinical model of ACA and multi-modal platform to 

demonstrate several key associations between acute CBF and ABP pulsatility changes 

immediately after resuscitation from ACA and their relationship to rCVR and short-term 

neurological outcome. Our results demonstrate that rCVR is related to changes in CBF 

pulsatility, but not ABP pulsatility. We also demonstrate that CBF pulsatility does not 

influence short-term neurological outcome, but increased ABP pulsatility is associated with 

worse short-term neurological outcome. Collectively, our findings indicate the importance 

of investigating acute CBF and ABP pulsatility immediately following resuscitation from CA. 

However, future studies that modify and monitor CBF and ABP pulsatility are required to 

assess their effects on neurological outcome. 
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CHAPTER 3: Spreading cerebral blood flow waves  

during cardiac arrest and after resuscitation 

3.1  Abstract 

Background— Our previous studies assessed cerebral blood flow (CBF), arterial blood 

pressure, and brain electrophysiology in a preclinical model of CA (global ischemia) and 

resuscitation. Dr. Akbari’s lab has visualized spreading depolarizations (SDs) as ultra-slow 

potential waves (<1Hz) using AC-electrocorticography. An extremely powerful and 

potentially clinically translatable finding is that the earlier the onset of SD in rats that 

underwent 8-min ACA, the better the neurological outcome 24h following resuscitation. In 

this study we explored spatiotemporal CBF changes during three hyperdynamic periods: 

(1) entering CA, (2) within 5min after resuscitation, and (3) from hyperemia to 

hypoperfusion (i.e., 5 to 20min after resuscitation).  

Methods and Results—Male Wistar rats were subjected to either 5- or 7-min of ACA 

followed by cardiopulmonary resuscitation. A multi-modal platform that combined laser 

speckle imaging (LSI), ABP, and electroencephalography (EEG) was used to monitor CBF, 

peripheral blood pressure, and brain electrophysiology, respectively. Spreading CBF waves 

were visualized during each phase. We found that an increase in total CBF prior to the 

onset of spreading wave (1) was associated with worse neurological outcome, waves (1) 

and (3) propagated in opposite directions, and waves (2) and (3) resembled a well-known 

phenomenon called cortical spreading depression.  

Conclusions—Our results demonstrate that there are complex spatiotemporal changes in 

CBF that occur before, during, and after CA and resuscitation, and modifying the timing of 

these spatial CBF changes may lead to changes in neurological outcome. 
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3.2  Introduction 

 Our previous studies have assessed cerebral blood flow (CBF), arterial blood 

pressure, and brain electrophysiology. Specifically, we examined the temporal evolution of 

CBF prior to the moment brain electrical activity resumes after resuscitation (Chapter 1)36. 

Furthermore, we examined the effects of pulsatile CBF and femoral arterial blood pressure 

(ABP) waveforms in response to CA and resuscitation, and how they affect short-term 

neurological outcome (Chapter 2). However, both these studies lacked the analysis of 

spatiotemporal CBF changes that occur before, during, and after CA and resuscitation. 

 In animals, global cerebral ischemia leads to complete electrocerebral silence within 

~30seconds76,77. This period has been called nonspreading depression, as brain electrical 

activity becomes silent everywhere, and does not propagate from multiple locations. After 

a period of 1 to 5min from the onset of nonspreading depression, the ion gradients across 

cellular membranes completely break down78. This is termed anoxic depolarization, which 

is a spreading depolarization (SD) that may begin in multiple locations and spatially spread 

in the tissue at a rate of 2-6mm/min77. Previous studies have shown the propagation of SDs 

in rats and humans through the use of voltage-sensitive dyes79,37 and multiple DC and AC 

electrodes76. Furthermore, in vitro studies using optical intrinsic signal imaging (OISI) have 

shown SDs occur in brain sections39. However, to my knowledge, no study has reported 

visualization of spatial CBF changes that occur during SD in global ischemia models, which 

may be due to a lack of capable technologies or not enough signal-to-noise. 

 SDs are important for a wide-range of different clinical applications. Not only do SDs 

occur during CA, but also during focal-ischemic stroke80,81, traumatic brain injury38,82,83, 

subarachnoid hemorrhage84 and migraines85. During CA, a single terminal SD occurs. 
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However, during focal-ischemic stroke, traumatic brain injury, and migraines, SDs can be 

recurrent. In non-global ischemia studies, spatial changes in CBF have been reported. These 

changes are characterized as a wave of increased CBF or hyperemia that is followed by a 

wave of decreasing CBF and remains in a decreased CBF or oligemic state for a period of 

time84,86,87. In these studies, recurrent SD events have typically been associated with worse 

neurological outcome84. However, the relationship between terminal SDs and neurological 

recovery is poorly understood, due to the limited ability to examine post-resuscitation 

dynamics following terminal SD. 

 Dr. Yama Akbari’s lab has developed a preclinical model of CA (global ischemia) and 

resuscitation. Due to resuscitation being a critical component of the preclinical model, the 

relationship between features that occur during CA, such as terminal SDs, and neurological 

outcome can be investigated. During CA, Dr. Akbari’s lab has visualized SDs as ultra-slow 

potential waves (<1Hz) using AC-electrocorticography. An extremely powerful and 

potentially clinically translatable finding is that earlier onset of SD in rats that underwent 

8-min ACA, the better the neurological outcome 24h following resuscitation (Figure 3.1). 

 

Figure 3.1: Earlier EEG slow-wave is correlated with better neurological outcome. The onset of the SD is 
plotted on the x-axis, and the neurological outcome on the y-axis. The neurological deficit score (NDS) is 
measured between 0-70, where 70 is the best neurological outcome, and 0 is the worst neurological outcome. 
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 Although SDs, in general, have been fairly characterized, a large number of recent 

studies involving SDs highlight their importance. Based on previous studies and Dr. 

Akbari’s preliminary data, we decided to conduct an exploratory study of spatiotemporal 

CBF changes that occur during hyperdynamic periods associated with CA and resuscitation. 

We focused on three main time-periods based on our previous data: (1) during the same 

time interval that typical SDs occur, (2) immediately after resuscitation prior to the 

hyperemic peak, and (3) from the hyperemic peak to the stabilized hypoperfusion period. 

Surprisingly, we visualized spreading CBF changes during each phase. A spreading wave 

during phase (1) was associated with a spatial decrease in CBF that resembled a “spreading 

ischemia” wave seen in stroke literature88,89. A spreading wave during phase (2) was 

associated with a spatial increase in CBF the resembled a “spreading hyperemia” wave. A 

spreading wave during phase (3) was associated with a spatial decrease in CBF that 

resembled the “spreading ischemia” wave, and we called the “spreading oligemia” wave 

due to CBF remaining at a higher level. Due to the novel preclinical CA and resuscitation 

model, these results show that there are complex spatiotemporal CBF changes that occur 

before, during, and after CA and resuscitation, and these spatial changes in CBF may have 

clinical importance to neurological outcome.  

3.3  Materials and Methods 

3.3.1 Animal Preparation 

The ACA model and study protocol (no. 2013-3098) were approved by the 

Institutional Animal Care and Use Committee at University of California, Irvine.   

We used our ACA model to perform experiments on 11 adult male Wistar rats36,61,62. 

Rats were calorically restricted 12-16h prior to onset of CA. On the day of CA induction, rats 
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were anesthetized, intubated, and connected to a mechanical ventilator (Kent Scientific, 

Torrington, CT). During surgery, isoflurane was maintained at 2% with a 50%/50% N2/O2 

mixture at 2LPM. The ventilation settings were maintained at 70 breaths per min (BPM), 

with 12–14cmH2O peak inspiration pressure (PIP) and 3cmH2O peak end expiratory 

pressure (PEEP). Animal temperature was continuously measured with a rectal 

thermometer (Kent Scientific, Torrington, CT) and maintained between 36.5 and 37.5oC. 

The rat was then positioned on a stereotactic frame (Kopf Instruments, Tujunga, CA). 

A midline incision was performed over the scalp and the scalp retracted to expose 

the skull for EEG electrode implantation (Plastics One Inc., Roanoke, VA). Two frontal 

electrodes were implanted 2mm anterior and 2.5mm lateral to bregma, and one electrode 

was implanted over the visual cortex 5.5mm posterior and 4mm left of bregma. A reference 

electrode was implanted 3mm posterior to lambda. Following EEG electrode implantation, 

a 4mm x 6mm craniectomy was created over the right sensory and visual cortices to create 

a window for optical imaging. Saline was applied periodically to ensure the brain remained 

hydrated. Following the craniectomy, the femoral artery and vein were cannulated. 

Invasive arterial blood pressure from the femoral artery was measured continuously at 

~200Hz. Baseline arterial blood gas (ABG) measurements (Abaxis, Union City, CA) were 

obtained within 30min prior to initiation of ACA. 

3.3.2 Experimental Protocol  

At experiment start time, rats were placed on 0.5–1% isoflurane (balance 100% O2). 

After 2min, inhaled air was changed to room air (21% O2), isoflurane administration 

turned off to wash out anesthesia, and neuromuscular blockade initiated with 1mL of 

intravenous Vecuronium (2mg/kg), flushed with 1mL of heparinized saline. At 5min, 
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asphyxia was initiated by turning the ventilator off and clamping the tubing.  Rats were 

subjected to a period of either 5- (n=6) or 7- (n=5) min asphyxia. Thirty seconds prior to 

end of asphyxial period, mechanical ventilation was re-initiated at 100% O2 with 

respiratory rate of 75–85BPM, PIP of 17.5–18.5 cmH2O, and PEEP of 3cmH2O at 2.5LPM. 

Epinephrine (0.01mg/kg) and sodium bicarbonate (1mmol/kg), followed by 2mL of 

heparinized saline, were administered intravenously. Chest compressions were started at 

end of asphyxial period until return of spontaneous circulation (ROSC) was achieved. ABGs 

were obtained 10-min post-ROSC and every 40 min thereafter, to assess and modify 

ventilator settings as necessary.   

3.3.3 Data Acquisition 

As previously described in detail36, we used a multi-modal approach that combined 

laser speckle imaging (LSI), arterial blood pressure, and electroencephalography (EEG) to 

monitor CBF, femoral arterial blood pressure (ABP), and brain electrophysiology before, 

during, and after ACA and resuscitation (Figure 3.2). Briefly, LSI data was obtained using an 

809nm laser as the excitation source and images acquired at ~60fps using a Point Grey 

camera with a 10ms exposure time. The mean arterial pressure (MAP) was calculated at 

1Hz from the extracted systolic and diastolic blood pressures waveforms. EEG data 

acquisition was recorded from each implanted electrode at 1526Hz with a first-order high-

pass filter (0.35Hz).  
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Figure 3.2: Cardiac arrest (CA) experimental design and setup.  (A) Diagram of CA timeline.  Experiment 
began (t = 0) with an isoflurane/oxygen mix.  At t = 2min, isoflurane was turned off, Vecuronium 
administered, and animal exposed to room air.  The ventilator was then turned off to initiate the asphyxial CA 
period that lasted 5- or 7-min.  Approximately 1min prior to initiation of cardiopulmonary resuscitation 
(CPR), epinephrine, sodium bicarbonate and saline were administered and the ventilator restarted.  CPR was 
then performed for ~1min until ROSC, after which data acquisition continued for ~90min post-ROSC. (B) 
Schematic of multi-instrument design to perform laser speckle imaging (LSI), arterial blood pressure 
measurements, and electroencephalography (EEG).  (1) LSI camera with laser line filter and adjustable 
camera lens; (2) 809nm light source for LSI to display speckle pattern on rat cortex; (3) EEG wire that 
connected EEG screw electrodes to EEG preamplifier; (4) EEG preamplifier with 0.35Hz high pass filter; (5) 
intubation tubing connected to ventilator; (6) ventilator with adjustable settings; (7) femoral artery catheter; 
(8) syringe to administer fluids for dehydration and remove blood for arterial blood gas (ABG) 
measurements; (9) blood pressure transducer; (10) femoral vein catheter; (11) syringe to administer 
epinephrine, sodium bicarbonate and saline prior to CPR and ROSC; (12) stereotaxic frame with rat mounted; 
(13) brain illuminated by laser light with EEG screw electrodes.  (C)  Magnified view of animal head that 
shows location of EEG electrodes and craniectomy. 

 
3.3.4 Initial Data Processing 

LSI processing used custom-written MATLAB code to process each raw speckle 

image and obtain CBF data. A sliding 5 x 5 square sliding window was used to convert each 

raw speckle image to a corresponding speckle contrast (K) image using the equation K = 

σ/<I>, where σ is the standard deviation of the intensity and <I> is the average intensity 
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within each window. Each speckle contrast image was then converted to a cerebral blood 

flow (CBF) map using a simplified speckle imaging equation CBF = 1/2TK2, where K is the 

speckle contrast and T is the exposure time of the camera in seconds90,46. A representative 

region of interest (ROI) was then selected within the craniectomy to obtain an average SFI 

value and create time-resolved CBF curves. We then calculated relative CBF (rCBF) curves 

(Eq. 3.1), and applied a sliding median filter of 10s in length.  

 𝑟𝐶𝐵𝐹 = 100 ×
𝑆𝐹𝐼(𝑡)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑆𝐹𝐼
 (Eq. 3.1) 

Baseline was defined as the mean SFI value the minute prior to asphyxia (to 

minimize isoflurane effects) and thus the rCBF at baseline was 100.  One minute prior to 

asphyxia was chosen as baseline due to post-anesthesia emergence and consequent 

cerebral hyperemia47,48.  The median-filtered relative CBF curves were used for further 

analyses. To create CBF images with increased signal to noise, each individual CBF map 

taken over a one-second interval was averaged. These CBF images were used for further 

spatiotemporal analysis. 

Raw EEG data were filtered using custom written MATLAB (Mathworks Inc., Natick, 

MA) code. Data were detrended and common average referencing was performed using 

each electrode49. A finite impulse response (FIR) notch filter at 60Hz was used, followed by 

a FIR bandpass filter from 1 to 150Hz. Signals were then downsampled to 600Hz to reduce 

memory and computational time.  

To detect the initial EEG burst, we developed an automated algorithm using custom-

written MATLAB code.  Peaks above 20µV were detected the minute prior to asphyxia and 

the mean peak value was calculated.  Following resuscitation, when the EEG amplitude 

exceeded 50% of the mean peak value from baseline in the frontal electrodes, a burst was 
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detected.  To identify the presence of the initial EEG burst and minimize the effect of noise 

artifacts, we applied a selection criterion that bursting for five consecutive minutes was 

necessary.  Once bursting occurred for this period, the algorithm reported the initial EEG 

burst time relative to ROSC, which was used in subsequent analysis.  We compared the 

spreading oligemia wave in the last post-ROSC period to the timing of the initial EEG burst. 

3.3.5 Spatiotemporal Analysis of CBF Maps 

 To determine if spatial changes in CBF occurred during ACA and resuscitation, 

videos of the second-averaged CBF images were made. The videos were used to 

characterize the periods of spreading CBF waves. The spatial onset and completion 

locations of each wave and their corresponding times were extracted after visual 

inspection of each video. To calculate the speed of the wave, the distance between the onset 

and completion locations and the duration of the waves were used. The rCBF values from 

the rCBF time-course curves at the onset and completion times were extracted. To assess 

directionality of the spreading waves, each wave was assigned one of six directions: 1) 

medial, 2) anterior, medial, 3) posterior, medial, 4) lateral, 5) anterior, lateral, or 6) 

posterior, lateral. To examine if there was a relationship between rCBF at the onset and the 

direction of wave propagation the directions were compared to the rCBF value at the onset 

of each spreading wave. To quantify the total amount of brain perfusion prior to the onset 

of spreading ischemia, we integrated over time the rCBF time-course signal from the onset 

of asphyxia to the onset of spreading ischemia. 

3.3.6 Vessel Diameter 

Custom-written MATLAB code was used to compute vessel diameter using the 

second-averaged CBF images. First, the user defined the centerline for a given vessel of 
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interest. Next, the user defined the bounds for a line that was perpendicular to the 

centerline. For each time point, the CBF values from the perpendicular line were extracted, 

and a Gaussian was fitted through the CBF values. If the R-squared of the Gaussian fit was 

greater than 0.9, the full-width half-maximum (FWHM) was computed from the Gaussian 

fit, if the value was less than 0.9, the diameter was assigned a not-a-number value. This 

process is repeated for as many vessels as desired. A flow chart is shown in Figure 3.3. 

 

Figure 3.3: Method to compute vessel diameter from SFI maps. User defines the centerline for a given 
vessel of interest. Then, the user defines the bounds for a line that is perpendicular to the centerline. The CBF 
values from the perpendicular line are extracted, and a Gaussian is fit to the CBF values. If the R-squared of 
the Gaussian fit was greater than 0.9, the full-width half-maximum (FWHM) is computed from the Gaussian 
fit, if the value was less than 0.9, the diameter is assigned a not-a-number value.  

 
3.3.7 EEG IQ 

To obtain a measurement of short-term neurological outcome, we used a quantitative 

EEG method called information quantity (IQ). The following steps were performed to 

obtain EEG IQ as a function of time. Using a temporal sliding window of 10s with 20% 

overlap, a 5-level discrete wavelet transform (DWT) was applied to the filtered EEG data to 
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extract DWT coefficients. From the baseline EEG immediately one minute prior to onset of 

asphyxia, 20 fixed microstates were obtained that encompassed the mean ±3 standard 

deviations of the DWT coefficients. A histogram of the continuous EEG recording was 

created using the DWT coefficients with the 20 microstates. The probability distribution 

function was calculated, from the histogram, and the Shannon entropy was calculated using 

the equation: 𝑆𝐸 = − ∑ 𝑝𝑑𝑓(𝑚) log2(𝑝𝑑𝑓(𝑚))𝑀
𝑚=1 . SE is the Shannon entropy, M is the 

number of microstates, and pdf is the probability distribution function from the histogram. 

We used this equation within each window to calculate EEG IQ as a function of time. The 

EEG IQ was then normalized to the baseline EEG IQ, which is defined as the mean EEG IQ 

calculated over a one-minute interval immediately prior to onset of asphyxia. An EEG IQ of 

0 indicates no brain electrical activity, while an EEG IQ of 1 indicates normal brain 

electrical activity. 

3.4 Results 

During ACA, a wave of decreasing CBF was visualized in each experiment. Figure 3.4A 

shows a representative experiment of a spreading ischemia wave. A decrease in CBF 

propagates from the anterior, lateral region of the craniectomy towards the posterior, 

medial region of the craniectomy (Figure 3.4A). After combining the ACA durations, the 

onset and completion times of the spreading ischemia wave are 2.21±0.29min and 

3.21±0.27min after the onset of asphyxia, respectively (Figure 3.4C). The speed of the 

spreading ischemia wave is 4.76±1.10mm/min. A representative example of the rCBF time 

course with the spreading ischemia window labeled is shown in Figure 3.4B. From the 

onset to the completion of the spreading ischemia wave, the rCBF decreases from 

20.80±11.85% to 4.19±1.80% (Figure 3.4D). 
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Figure 3.4: Characterization of spreading ischemia wave during CA. (A) A representative 5-min ACA 
experiment that shows a spreading ischemia (decrease in rCBF) wave propagate from the upper-right to the 
lower-left regions of the craniectomy. The time above each image is the time after the onset of asphyxia. (B) A 
representative rCBF time course with the window of spatial propagation labeled with dashed lines. (C) 
Characterization of the onset and completion times of the spreading ischemia wave (n=11). The average 
speed of the wave is 4.76mm/min. The 5-and 7-min asphyxial durations are represented by blue circles and 
red squares, respectively. (D) Characterization of the onset and completion rCBF values from the rCBF time 
course at the onset and completion of the spreading ischemia wave (n= 11). The 5-and 7-min asphyxial 
durations are represented by blue circles and red squares, respectively. 

 
 During the time period of spreading ischemia, vasoconstriction occurs. Figure 3.5A 

shows representative images of a single vessel being analyzed over time, with a line-scan 

through the vessel of interest. Figure 3.5B shows the percent change in vessel diameter for 

9 vessels averaged from a single rat as a function of time during the asphyxial period. At 

~2.45min after the onset of asphyxia, vasoconstriction is visualized, which coincides with 

the onset of spreading ischemia. The completion of the spreading ischemia wave occurs 

after the vessel diameter has decreased by ~15%. 
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Figure 3.5: Spreading ischemia during CA coincides with vasoconstriction. (A) A representative 7-min 
ACA experiment that shows images of a single vessel being analyzed over time with a line-scan (black line) 
through the current vessel of interest. The time above each image is the time after the onset of asphyxia. (B) 
The same representative experiment as in (A) that shows the percent change in vessel diameter for 9 vessels 
averaged as a function of time during the asphyxial period. The onset and completion of the spreading 
ischemia wave are labeled with a red circle. The black solid line is the mean over the 9 vessels, and the gray is 
the standard deviation error bars. 

 
More total CBF perfusion prior to the onset of spreading ischemia is associated with 

worse EEG signal recovery. Figure 3.6A shows that the 5- and 7-min ACA experiments 

exhibit a near-linear trend for each respective group. One data point in each group does not 

follow this trend and are labeled with orange arrows. Figure 3.6B shows two 

representative rCBF time courses from 7-min ACA experiments with good (green) and poor 

(black) neurological recovery. 

 

Figure 3.6: More total perfusion prior to onset of spreading ischemia is associated with worse EEG 
signal recovery. (A) 5- (n=5) and 7-min (n=5) ACA experiments that shows a near-linear trend for each 



72 
 

respective group. One data point in each group (5- or 7-min ACA) goes against the linear trend, highlighted 
with orange arrows. (B) Two representative 7min ACA rCBF time courses with good (green) and poor (black) 
neurological recovery. The green and black circles in (A) are the same green and black time courses in (B). 

 
After resuscitation, a wave of increasing CBF was visualized in each experiment. 

Figure 3.7A shows a representative experiment of a spreading hyperemia wave. An 

increase in CBF propagates the anterior region of the craniectomy and has a circular-type 

pattern towards the posterior region of the craniectomy. The onset and completion times 

of the waves are 2.97±0.84min and 4.36±1.12min post-ROSC (Figure 3.4C). The speed of 

the propagating wave is 3.54±0.76mm/min. A representative example of an rCBF time 

course with the onset and completion marked with black-dashed vertical lines is shown in 

Figure 3.4B. rCBF increases from 83.91±33.53% at the onset to 134.91±33.50% at the 

completion of the spreading hyperemia wave (Figure 3.4D). The rCBF increases during the 

spreading hyperemia period by 51.00±18.91%. 

 

Figure 3.7: Characterization of spreading hyperemia wave during immediate post-ROSC phase. (A) A 
representative 5-min ACA experiment that shows a spreading hyperemia (increase in rCBF) wave propagate 
in a circular pattern from the top to the bottom region of the craniectomy. The time above each image is the 
time post-ROSC. (B) A representative rCBF time course with the window of spatial propagation labeled with 
black dashed vertical-lines. (C) Characterization of the onset and completion times of the spreading 
hyperemia wave (n=11). The average speed of the wave is 3.54mm/min. The 5-and 7-min asphyxial durations 
are represented by blue circles and red squares, respectively. (D) Characterization of the onset and 
completion rCBF values from the rCBF time course at the onset and completion of the spreading hyperemia 
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wave (n= 11). The 5-and 7-min asphyxial durations are represented by blue circles and red squares, 
respectively. 
 

After the hyperemia period, but before the stabilized hypoperfusion period, a wave of 

decreasing CBF was visualized in 9 out of 11 experiments. Both cases were due to bleeding 

over the imaging area. Figure 3.8A shows a representative experiment of a spreading 

oligemia wave. A decrease in CBF propagates from the medial to the lateral region of the 

craniectomy. The onset, burst, and completion times are 11.14±2.62 min, 13.89±2.41min, 

and 15.08±3.08min post-ROSC, respectively (Figure 3.8C). The onset of the spreading 

oligemia wave always precedes the initial EEG burst. A representative example of an rCBF 

time course is shown in Figure 3.8B. rCBF decreases from 137.01±23.80% at the onset to 

79.51±25.75% at the burst to 57.67±8.63% at the completion of the spreading oligemia 

wave (Figure 3.8D). From the onset to the completion of the spreading oligemia wave, a 

large drop in the rCBF occurs (79.34±25.11%). 

 

Figure 3.8: Characterization of spreading oligemia wave from hyperemia to stabilized hypoperfusion 
post-ROSC. (A) A representative 5-min ACA experiment that shows a spreading oligemia (decrease in rCBF) 
wave propagate from left to right within the craniectomy. The time above each image is the time post-ROSC. 
(B) A representative rCBF time course with the window of spatial propagation labeled with dotted lines. (C) 
Characterization of the onset, burst, and completion times of the spreading oligemia wave (n=9). The 5- and 
7-min asphyxial durations are represented by blue circles and red squares, respectively. (D) Characterization 
of the onset, burst, and completion rCBF values from the rCBF time course at the onset, burst, and completion 
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of the spreading oligemia wave (n= 9). The 5-and 7-min asphyxial durations are represented by blue circles 
and red squares, respectively. 

 
 We found that the spreading ischemia and spreading oligemia waves propagate in 

opposite directions. The decrease in rCBF associated with the spreading ischemia waves all 

propagated towards the medial region of the brain with some anterior or posterior 

directionality (Figure 3.9C). However, the decrease in rCBF associated with the spreading 

oligemia waves all propagated towards the lateral region of the brain with some anterior or 

posterior directionality (Figure 3.9D). We also calculated the rCBF value at the onset of the 

spreading waves with respect to their directionality. We found that during both the 

spreading ischemia and oligemia waves, a higher rCBF at the onset of the wave was 

associated with an anterior, medial directionality (wave began in posterior, lateral region) 

[Figure 3.9E, F]. 
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Figure 3.9: Spreading ischemia and spreading oligemia waves propagate in opposite directions. (A) A 
representative rCBF time course during asphyxia with the window of spreading ischemia with the spatial 
propagation labeled with dashed lines.  (B) A representative rCBF time course post-ROSC with the window of 
spreading oligemia with the spatial propagation labeled with dashed lines. (C) A representative 5-min ACA 
experiment that shows a spreading ischemia wave propagate from the upper-right to the lower-left regions of 
the craniectomy. The time above each image is the time after the onset of asphyxia. The image on the right 
shows that all spreading ischemia waves propagate towards the medial region of the brain. (D) A 
representative 5-min ACA experiment that shows a spreading oligemia wave propagate from left to right 
within the craniectomy. The time above each image is the time post-ROSC. The image on the right shows that 
all spreading oligemia waves propagate towards the lateral region of the brain. (E) rCBF at the onset of 
spreading ischemia wave associated to directionality (n=11). (F) rCBF at the onset of spreading oligemia 
wave associated to directionality (n=9). 

 
 We found that the spreading hyperemia and spreading oligemia waves resembled 

CSD-like features. Figure 3.10A shows a rCBF time course post-ROSC. The spreading 

hyperemia and spreading oligemia periods are labeled with two sets of vertical-dashed 

lines. A hyperemia period is seen from ~3.5min to 11min post-ROSC. The spreading 
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hyperemia and oligemia waves are shown in Figure 3.10B top and bottom, respectively. 

Upon comparison of a traditional CSD that was induced through KCl being applied to the 

brain (Figure 3.10D), there are visual similarities. First, the rCBF time courses following 

resuscitation from CA (Figure 3.10A) and following KCl application (Figure 3.10C) both 

have hyperemic periods that are followed by periods of stabilized rCBF. Furthermore, the 

images from the KCl experiment have a spatial increase in rCBF from right to left that is 

followed by a decrease in rCBF. Although the increase and decrease in rCBF are in non-

similar directions during the two propagation windows post-ROSC, there is still an increase 

and decrease phase of rCBF that is similar to the KCl-induced spreading CBF wave. 
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Figure 3.10: Spreading hyperemia and spreading oligemia waves resemble cortical spreading 
depression (CSD)-like features. (A) A representative rCBF time course post-ROSC with the windows of 
spreading hyperemia (1) and spreading oligemia (2) labeled with vertically-dashed lines. (B) A 
representative 5-min ACA experiment that shows a spreading hyperemia wave (top) and spreading oligemia 
wave (bottom). The time above each image is the time post-ROSC. (C) A representative rCBF time course 
associated with KCl-induced CSD (D) A representative KCl experiment that shows a spreading wave 
propagate from right to left within the craniectomy. The time above each image is the time after KCl 
administration. 

 
3.5 Discussion 

Spreading depolarizations (SDs) are complex phenomena related to many clinically 

important applications91. Global cerebral ischemia studies have shown that a breakdown of 

ion membranes leads to a spreading wave of depolarization that propagates at a rate of 2-
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6mm/min77. However, the results presented here show for the first time that there are also 

spatial CBF changes in the form of a spreading ischemia wave that propagates during a 

similar time-point as the traditional SD wave (Figure 3.4A). The spreading ischemia wave 

presented here propagates at a rate of 4.76±1.10mm/min (Figure 3.4C), which is similar to 

previous spreading depolarization studies.  

At the same time the spreading ischemia wave is visualized, vasoconstriction also 

occurs in the cerebral cortex vessels. Shin et al, performed a middle cerebral artery 

occlusion (MCAO) in the rat cortex, and visualized anoxic depolarization that was 

accompanied with a spreading decrease in CBF and vasoconstriction80. These results 

highlight the striking similarities between our global ischemic event through CA and a focal 

ischemic event through MCAO. Spreading ischemia during CA was an unexpected finding. 

However, spreading ischemia during CA and focal-ischemic stroke may be driven by similar 

underlying membrane potential changes. However, spreading ischemia may be the last 

event that precedes anoxic depolarization and the breakdown of membrane potentials. 

Future studies will need to directly relate these timings to determine the causal 

relationship between the two phenomena. 

Preliminary data by Dr. Akbari’s lab shows that the earlier the onset of SD during CA 

is associated with better neurological outcome 24h after resuscitation (Figure 3.1). 

Although the association is strong, it is unclear what the underlying mechanism is between 

earlier onset of SD and better neurological outcome. The data presented here suggests that 

total CBF prior to onset of spreading ischemia may be a potential mechanism. Our data 

shows that more total CBF perfusion prior to the onset of spreading ischemia is associated 

with worse neurological outcome (Figure 3.6). A couple hypothesis that may explain why 
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more total perfusion prior to onset of spreading ischemia results in poor neurological 

outcome are presented here. The first hypothesis is associated with the fact that 

electrocerebral silence begins ~30s after the onset of asphyxia. After electrocerebral 

silence begins, the brain is utilizing little to no oxygen, while still receiving CBF. We 

hypothesize that increased total CBF perfusion during electrocerebral silence may result in 

increased free radical production92. The second hypothesis is associated with the fact that 

an earlier onset of SD may result in a larger amount of energy stores, due to less used prior 

to onset of SD. We hypothesize that after resuscitation, the increased energy stores may be 

better utilized to regain neurological function and result in better neurological outcome. 

Further testing of these hypotheses are needed to determine the mechanisms associated 

with this interesting phenomena Dr. Akbari’s lab has encountered and our CBF data 

supports. This hyperdynamic period associated with death may potentially be modifiable 

through the use of therapeutics to alter neurological recovery. 

The data presented here demonstrates that during CA, a spreading ischemia wave 

propagates from the lateral region of the brain to the medial region of the brain (Figure 

3.9C). Farkas et al79 showed that anoxic depolarization, induced through cardiac 

administration of KCl and subsequent CA, resulted in a propagating wave of electrical 

activity changes from the frontal lateral corner to the dorsal medial corner of the 

craniotomy79. These results suggest that the spreading ischemia and anoxic depolarization 

may be similar phenomena and even linked to one another. However, Farkas et al, also 

used LSI to examine CBF changes, state that “…there was no longer any detectable change 

in CBV (i.e., MAP, CBF, and arteriolar diameter had settled to “death” values)…”. The data 

presented here contests this statement, as we visualize clear spatiotemporal changes in 
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CBF (Figure 3.4) and vessel diameter (Figure 3.5B) during the period of anoxic 

depolarization. Furthermore, Jarvis et al showed that when brain sections are deprived of 

O2 and glucose, a propagating wave of depolarization originates in the lateral region of the 

brain section and finishes in the medial region of the brain section, which is in agreement 

with the directionality results of the spreading ischemia wave.  

Interestingly, we visualized a second wave of decreasing CBF that occurred between 

hyperemia and stabilized hypoperfusion post-ROSC. The directionality of these waves was 

in the opposite direction of the spreading ischemia wave during CA. All the spreading 

oligemia waves propagated towards the lateral region of the brain (Figure 3.9D). Due to 

many previous studies lacking the capabilities to analyze post-ROSC changes, this is the 

first demonstration of a spatial CBF wave propagating during this time period after 

resuscitation. One potential hypothesis for the directionality associated with the spreading 

ischemia wave is based on the following. The anterior and middle cerebral arteries supply 

the medial and lateral regions of the brain with blood, respectively. The anterior cerebral 

artery is able to alter its diameter more than the middle cerebral artery. We hypothesize 

that a decrease in blood pressure (e.g., during CA) leads to an increased dilation of the 

anterior cerebral artery compared to the middle cerebral artery, which would cause the 

CBF delivered to the medial region remain elevated and decrease later compared to the 

lateral region of the brain. After CA there is cerebrovascular impairment, which leads to 

reduced vascular tone of cerebral vessels. We hypothesize that increased cerebrovascular 

impairment alters the ability of the anterior cerebral artery to change its vessel diameter 

and make adjustments to CBF after resuscitation, which causes the spreading wave to 
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propagate in the opposite direction. Although these hypotheses are unfounded, new 

technologies may be needed to determine its association and potential clinical implications. 

Cortical spreading depressions (CSDs) are seen in traumatic brain injury, focal 

ischemic stroke, and migraines. CSDs are characterized by a negative deflection of DC 

potential with a subsequent wave of increased CBF or hyperemia. The return of the DC 

potential coincides with the peak hyperemic response from the CSD93. Next, a wave of 

decreasing CBF occurs and remains in this decreased CBF or oligemic state for a period of 

time94.. Our data suggests that in the acute period following resuscitation from CA that a 

CSD may occur (Figure 3.10). Within 5min after resuscitation, a spreading hyperemia wave 

occurs, which is followed by a spreading oligemia wave. However, the spreading hyperemia 

and oligemia waves propagate in dissimilar directions following resuscitation. In a 

traditional CSD, the spreading hyperemia and following decrease in CBF are in the same 

direction. Furthermore, CSDs induce the depressed EEG signal for 5 to 15min91. Following 

CA, a period of EEG silence is observed36. The resumption of brain electrical activity (initial 

EEG burst) occurs after the onset of the spreading oligemia wave, which may suggest this 

event is triggering the restarting of brain electrical activity. 

3.6 Conclusions 

  SDs have been fairly characterized, and a large number of recent studies 

involving SDs highlight their importance. Based on previous studies and Dr. Akbari’s 

preliminary data, we decided to conduct an exploratory study of spatiotemporal CBF 

changes that occur during hyperdynamic periods associated with CA and resuscitation. We 

focused on three main time-periods based on our previous data: (1) during CA when 

typical SDs occur, (2) immediately after resuscitation prior to the hyperemic peak, and (3) 
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from the hyperemic peak to the stabilized hypoperfusion period. We visualized spreading 

CBF waves during each phase. Spreading wave (1) was associated with a spatial decrease in 

CBF that resembled a “spreading ischemia” wave seen in stroke literature88,94. 

Furthermore, we found that an increase in total CBF prior to the onset of spreading wave 

(1) was associated with worse neurological outcome. Spreading wave (2) was associated 

with a spatial increase in CBF the resembled a “spreading hyperemia” wave. Spreading 

wave (3) was associated with a spatial decrease in CBF that resembled the “spreading 

ischemia” wave, and we called the “spreading oligemia” wave since the CBF remained at a 

higher level87. We also found that waves (1) and (3) propagated in opposite directions and 

waves (2) and (3) resembled a well-known phenomenon called cortical spreading 

depression (CSD). Due to the novel preclinical CA and resuscitation model, these results 

show that there are complex spatiotemporal changes in CBF that occur before, during, and 

after CA and resuscitation, and modifying the timing of these spatial CBF changes may 

affect neurological outcome.  
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CHAPTER 4: Summary and Conclusions 

Annually, over 550,000 people in the United States suffer cardiac arrest (CA) while 

initial survival rates remain poor (10-30%)1. Approximately 85 to 90% of survivors have 

impaired cognitive function, which leads to decreased quality of life for survivors, 

increased burden on caregivers, and direct costs of over $6 billion/year1,2. CA causes 

inadequate cerebral blood flow (CBF), which results in a cascade of events that lead to 

neuronal cell death within three minutes5,3,4. Reperfusion after resuscitation from CA leads 

to further neuronal damage, due to reactive oxygen species and potential decoupling 

between CBF and metabolism6. Due to a lack in technologies that monitor hyperdynamic 

physiological changes in response to CA and resuscitation, we developed a multi-modal 

platform with high spatial and temporal resolution to monitor CBF, arterial blood pressure 

and brain electrophysiology. Using this platform, we used an asphyxial CA (ACA) 

translational preclinical model aimed to better understand how the brain recovers 

following CA and ultimately to improve neurological outcome. 

We first examined temporal changes associated with CBF and the resumption of 

brain electrical activity after resuscitation from CA.  Our results quantified the time and 

magnitude of the hyperemic peak and stabilized hypoperfusion post-ROSC.  Furthermore, 

we showed that CBF and MAP are well correlated before stabilized hypoperfusion, but CBF 

is at a large deficit after stabilized hypoperfusion, despite normal MAP.  Finally, we 

demonstrated that EEG bursting begins after the CBF hyperemic phase and before 

stabilized hypoperfusion. We demonstrated that we can predict when the initial EEG burst 

occurs for less severe CA well using a fixed predictive model, but using a robust predictive 

model is able to predict the initial EEG burst for both severities of CA. The link between 
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hemodynamics and the resumption of brain electrical activity, suggests that clinicians may 

be able to utilize and develop hemodynamic-altering therapeutics that modify the 

beginning of neurological recovery. 

 Next, we examined temporal CBF and ABP pulsatility changes following 

resuscitation from CA. We demonstrated several key associations between acute CBF and 

ABP pulsatility changes immediately after resuscitation from ACA and their relationship to 

rCVR and short-term neurological outcome. Our study revealed that CBF pulsatility is 

altered significantly from baseline within 2h after resuscitation, but ABP pulsatility changes 

little. Furthermore, our results demonstrate that rCVR is related to changes in CBF 

pulsatility, but not ABP pulsatility. We also demonstrate that CBF pulsatility does not 

influence short-term neurological outcome, but increased ABP pulsatility is associated with 

worse short-term neurological outcome. Collectively, our findings indicate the importance 

of investigating acute CBF and ABP pulsatility immediately following resuscitation from CA. 

However, future studies that modify and monitor CBF and ABP pulsatility are required to 

assess their effects on neurological outcome. 

 Last, we focused on spatiotemporal changes during hyperdynamic periods of CA and 

resuscitation.  We focused on spatiotemporal CBF changes during three hyperdynamic 

periods: (1) entering CA, (2) within 5min after resuscitation, and (3) from hyperemia to 

hypoperfusion (i.e., 5 to 20min after resuscitation). We visualized spreading CBF waves 

during each phase. Spreading wave (1) was associated with a spatial decrease in CBF that 

resembled a “spreading ischemia” wave seen in stroke literature86,88. Furthermore, we 

found that an increase in total CBF prior to the onset of spreading wave (1) was associated 

with worse neurological outcome. Spreading wave (2) was associated with a spatial 
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increase in CBF the resembled a “spreading hyperemia” wave. Spreading wave (3) was 

associated with a spatial decrease in CBF that resembled the “spreading ischemia” wave, 

and we called the “spreading oligemia” wave since the CBF remained at a higher level. We 

also found that waves (1) and (3) propagated in opposite directions and waves (2) and (3) 

resembled a well-known phenomenon called cortical spreading depression (CSD). These 

spatiotemporal characteristics are complex, yet may have clinical importance to 

neurological outcome. 

Collectively, these findings highlight the complex nature of the hyperdynamic 

cerebral response to CA and resuscitation. The multi-modal platform revealed previously 

unknown phenomena. Each finding presented here may lead to the development of novel 

therapeutic approaches to modulate hemodynamics during periods of CA and resuscitation. 

These modifications may ultimately lead to improvement of neurological outcome for CA 

survivors. 
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