UCLA

Presentations

Title

The Durability and Fragility of Knowledge Infrastructures: Lessons Learned from Astronomy

Permalink

https://escholarship.org/uc/item/01r7h46q

Authors

Borgman, Christine L. Sands, Ashley E. Golshan, Milena S. et al.

Publication Date

2016-10-16

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-nc-nd/4.0/

The Durability and Fragility of Knowledge Infrastructures: Lessons Learned from Astronomy

Christine L. Borgman

Distinguished Professor and Presidential Chair in Information Studies

University of California, Los Angeles

http://christineborgman.info

@scitechprof

Co-authors:

UCLA: Ashley E. Sands, Milena S. Golshan

UIUC: Peter T. Darch

ASIST Paper Presentation Copenhagen, Denmark October 16, 2016

Christine Borgman

Peter Darch

Ashley Sands

Irene Pasquetto

Bernie Randles

Milena Golshan

https://knowledgeinfrastructures.gseis.ucla.edu

Jack Meadows, 1934-2016

The founder of the University of Leicester's astronomy department, who had a minor planet named in his honour, has died

August 18, 2016

By Jack Grove

Twitter: @jgro_the

Meadows, A. J. (1974). *Communication in Science*. London: Butterworths.

Knowledge Infrastructures

- What new infrastructures, divisions of labor, knowledge, and expertise are required for data-intensive science?
- How are multi-disciplinary, data-intensive scientific infrastructures established – and dismantled?
- How do data management, curation, sharing, and reuse practices vary among research areas?

Knowledge Infrastructures: Intellectual Frameworks and Research Challenges

Report of a workshop sponsored by the National Science Foundation and the Sloan Foundation

University of Michigan School of Information, 25-28 May 2012

Research Questions

- How has astronomy developed, deployed, and managed knowledge infrastructures for their data?
- What factors contribute to the durability and fragility of knowledge infrastructures in astronomy?

DURABLE

Durability and Fragility

Durability

- Persistence over time
- Serves intended purposes
- Resources invested in care and maintenance

Fragility

- Subject to failure or degradation
- Uncertain investments in sustainability

DURABLE

Research Methods

- Document analysis
 - Public and private documents and artifacts
 - Official and unofficial versions of scientific practice
- Ethnography
 - Observing activities on site
 - Embedded for days or months at a time
- Interviews
 - Questions based on our research themes
 - Compare multiple sites over time

Seamless Astronomy

projects.iq.harvard.edu/seamlessastronomy

Alberto Accomazzi, Christopher Beaumont, Douglas Burke, Raffaele D'Abrusco, Rahul Davé, Christopher Erdmann, Pepi Fabbiano, Alyssa Goodman, Edwin Henneken, Jay Luker, Gus Muench, Michael Kurtz, Max Lu, Victoria Mittelbach, Alberto Pepe, Arnold Rots, Patricia Udomprasert (Harvard-Smithsonian CfA); Mercé Crosas (Harvard Institute for Quantitative Social Science); Christine Borgman (UCLA); Jonathan Fay & Curtis Wong (Microsoft Research); Alberto Conti (Space Telescope Science Institute)

Astronomy Knowledge Infrastructures

- Observations: continuity over millennia
- Astronomy became digital: 1970s-
- Array of stakeholders: international
- Private and public funding: renewal
- Consensus mechanisms: Decadal survey

WIRE

Aladin

NVO

IVOA

SDSS

Gemini

Subaru

Keck

Planck

Dataverse

GitHub

STARRS

LSST

Pan-

VAO

WWT

ADSASS

Jupyter

Zenodo

Note-

book

DES

DDT

WISE

Intrastructure: General chronology									
Astronomy Infra- structure	1960-1985	1986-1990	1991-1995	1996-2000	2001-2005	2006-2010	2011-		
NASA funded infrastructure observatories missions centers archives &	GSFC IPAC IRAS STScI	Hubble (HST) NED	ADS IRSA SATC	Chandra HEASARC 2MASS MAST NExScl Spitzer	SOFIA Spitzer Suzaku Swift	Fermi (FGST) Herschel Kepler Palomar (PTF)	NuSTAR		

arXiv

VizieR

data tools

Other

centers

surveys

data tools

standards

infrastructure

observatories

SAO

CfA

CDS/

FITS

SIMBAD

Figure 1. Relationships between Publications, Objects, Observations and the corresponding major actors in the curating process and their activities (in red).

Accomazzi, A., & Dave, R. (2011). Semantic Interlinking of Resources in the Virtual Observatory Era. *arXiy*2 1103.5958. Retrieved from http://arxiv.org/abs/1103.5958

Data Standards and Infrastructure Fabric

VO Standards

- Standard Format: VOTable
- Access Protocols: ADQL, TAP, SIAP, SSAP

and others

13

ADS Collaborators

Slide: A. Accomazzi

Seamless Astronomy: ADS All Sky Survey

Some Durability Features

- Data Standards
 - Flexible Image Transport System (FITS)
 - Coordinate systems
- Metadata and Discovery Systems
 - Centre de Données Astronomiques de Strasbourg (CDS)
 - NASA Extragalactic Database (NED)
 - Astrophysics Data System (ADS)
- Infrastructure Fabric

ads

Virtual Astronomy Observatory

International Virtual Observatory of Astronomy

https://ned.ipac.caltech.edu/level5/ Golombek/Golombek2_2.html

Observatoire astronomique de Strasbourg

Some Fragility Features

Ground vs. Space-Based Missions

– Ground: SDSS, LSST, Keck

Space: Hubble, Chandra

Empirical vs. Theoretical Inquiry

- Empirical: acquire and analyze observations

- Theoretical: models, simulated data

Sky Surveys vs. Investigator-Led Inquiry

- Surveys: Systematic documentation of night sky

Investigators: Question-driven studies

FITSNAME	FILENAME	DIMENS	BITPI	BSCALE	BZERO	0
1	null_image		8			
TABLE	u2711y01t.trl	1Fx58R	1Fx58	3		
2	null_image		8			
TABLE	u2717z01p.trl	1Fx58R	1Fx58	3		
3	u27l1y01t_cvt.c0h	800x800x4	-32F	1.	0.	U
TABLE	u27l1y01t_cvt.c0h.tab	49Fx4R	49Fx4			
4	u2711y01t_cvt.c1h	800x800x4	16S	1.	0.	U
TABLE	u2711y01t_cvt.c1h.tab	49Fx4R	49Fx4			
5	u27l1y01t_cvt.d0h	800x800x4	16S	1.	0.	U
TABLE	u27l1y01t_cvt.d0h.tab	49Fx4R	49Fx4			
6	u2711y01t_cvt.q0h	800x800x4	16S	1.	0.	U
TABLE	u2711y01t_cvt.q0h.tab	49Fx4R	49Fx4			
7	u27l1y01t_cvt.q1h	14x800x4	16S	1.	0.	U
TABLE	u27l1y01t_cvt.q1h.tab	3Fx4R	3Fx4R			
8	u27l1v01t_cvt.shh	965	16U	1.	0.	U
TABLE	u2711y01t_cvt.shh.tab	3Fx1R	3Fx1R			
9	u27l1y01t_cvt.x0h	14x800x4	16S	1.	0.	U
TABLE	u27l1y01t_cvt.x0h.tab	3Fx4R	3Fx4R			

https://ned.ipac.caltech.edu/level5/ Golombek/Golombek2_2.html

Conclusions

- Infrastructures are fragile
- Durability is an accomplishment
- Visible infrastructure
 - Instruments
 - Institutions
- Invisible infrastructure
 - Data, metadata, provenance...
 - Information work

Telescope for the Sloan Digital Sky Survey, Apache Point, New Mexico

Slide: Michael Kurtz, Harvard-Smithsonian Center for Astrophysics

Acknowledgements

Christine Borgman

Irene Pasquetto

Peter Darch

Bernie Randles

Ashley Sands

Milena Golshan

Big Data, Little Data, No Data: Scholarship in the Networked World

- Part I: Data and Scholarship
 - Ch 1: Provocations
 - Ch 2: What Are Data?
 - Ch 3: Data Scholarship
 - Ch 4: Data Diversity
- Part II: Case Studies in Data Scholarship
 - Ch 5: Data Scholarship in the Sciences
 - Ch 6: Data Scholarship in the Social Sciences
 - Ch 7: Data Scholarship in the Humanities
- Part III: Data Policy and Practice
 - Ch 8: Releasing, Sharing, and Reusing Data
 - Ch 9: Credit, Attribution, and Discovery
 - Ch 10: What to Keep and Why

