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The University of Adelaide, SA 5005, Australia 

 

Abstract 

The anchoring-and-adjustment heuristic (Tversky & 

Kahneman, 1974) predicts elicitation of an initial estimate 

will prompt subsequent minimum and maximum estimates to 

lie close to the initial estimate, resulting in narrow ranges and 

overconfidence. Evidence for this, however, is mixed; while 

Heywood-Smith, Welsh & Begg (2008) observed narrower 

subsequent ranges, Block and Harper (1991) report ranges 

became wider. One suggestion has been that this reflects a 

difference between expert and novice reactions to elicitation 

tasks. The present study investigated whether the interplay 

between expertise and number preferences leads to the 

paradoxical effects of an initial estimate. Participants with 

high expertise make precise estimates whereas participants 

with less expertise prefer rounded numbers, which could, 

potentially, reduce the impact of anchors. We confirm that 

expertise affects the precision of estimates and observe results 

indicative of the theorized effect – an interaction between 

expertise and elicitation method on range widths. 

Keywords: anchoring; overconfidence; number preference; 
precision 

 

In fields where empirical data is limited or unavailable, 

decisions are often based on expert judgment. For example, 

current industry practice in petroleum exploration requires 

exploration geologists to provide 80% confidence ranges on 

relevant factors (e.g., rock porosity, reservoir thickness) 

prior to drilling (Hawkins, Coopersmith, & Cunningham, 

2002). A typical result, however, is overconfidence 

(Lichtenstein, Fischhoff, & Phillips, 1982), where the level 

of confidence reported is much higher than the proportion of 

ranges containing the true value. This bias has been 

observed not only in oil and gas industry personnel (Welsh, 

Bratvold, & Begg, 2005), but in a multiplicity of experts 

including clinicians (Christensen-Szalanski & Bushyhead, 

1981), business managers (Russo & Schoemaker, 1992) and 

social scientists (Tetlock, 1999). Theoretical interest in 

factors affecting overconfidence is therefore shared by 

technical and psychological disciplines alike. 

A popular explanation for overconfidence stems from the 

anchoring-and-adjustment heuristic, first suggested by 

Tversky and Kahneman (1974): people start from an initial 

value, an anchor, which they insufficiently adjust from to 

provide a range. While this anchoring-and-adjustment 

explanation has received support (Russo & Schoemaker, 

1992; Heywood-Smith, Welsh & Begg 2008), several 

studies found that requesting a best initial estimate resulted 

in wider ranges, that is, reduced overconfidence (see, e.g., 

Block & Harper, 1991; Clemen 2001; Juslin, Wennerholm 

and Olsson, 1999; Soll & Klayman, 2004; Winman, 

Hansson, & Juslin, 2004).   

Yaniv and Foster (1995) theorized there is a trade-off 

between accuracy and informativeness in uncertain 

judgment tasks. The precision or “graininess” in estimates is 

used to convey confidence. On the aforementioned 

calibration task, for example, an individual uncertain of 

their knowledge should produce a wide, less precise range 

to represent uncertainty. However, although wider ranges 

are more likely to encompass the true value, as estimates 

become less precise (i.e., “grainier”), they also become less 

informative of the true value. 

There is a possibility that, in order to boost 

informativeness, experts in a topic are more inclined to 

generate precise estimates than laypeople. Should this 

indeed be the case, such a difference in number preference 

may help clarify the relationship between anchoring and 

overconfidence.  

Such number preferences could place limits on the 

minimum width of a range that vary by elicitation method. 

For example, an individual who prefers to give estimates in 

multiples of 100 (to characterize their uncertainty about the 

true values) may generate a range of 100-200. If requested 

to provide an initial best guess, using the same scale this 

person would estimate either 100 (prompting a wider range 

of 0-200) or 200 (range: 100-300). The wider range 

resulting from this preference for round numbers would 

therefore remove any anchoring effect the initial best guess 

had on the end-points (and, thereby, reduce 

overconfidence). Where uncertainty is high and precision 

low, this effect may be sufficient to overwhelm any 

anchoring effect resulting from the best guess. In contrast, 

an expert’s tendency to produce precise estimates (i.e., 

fewer trailing zeros) will reduce or avoid this effect and thus 

any effect of anchoring resulting from the best guess will be 

observable. 

Research Aims 

The aim of this study is to investigate the effect an initial 

best guess of a true value has on the width of elicited ranges 

at different gradations of expertise. It was hypothesized that 

individuals with less expertise would prefer to report 

estimates in rounded numbers. A best guess would be made 

as, for example, a multiple of 10. Subsequent adjustment 

from this anchor would be made on the same scale to obtain 

minimum and maximum estimates, thereby reducing the 

impact of anchoring. Conversely, highly expert individuals 

would report precise estimates. Anchoring on the best guess 

would therefore be more apparent as adjustments for ranges 

are made on a smaller scale. 
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Method 

Participants 

Participants were 307 undergraduate psychology students 

studying at the University of Adelaide (83 males and 224 

females), aged 16 to 53 years (M = 20.07, SD = 4.68) who 

participated for course credit. 

Materials 

Two purpose-designed 20-item questionnaires were used to 

assess number preference and the effect of an initial best 

guess at different gradations of self-rated expertise. The 

questionnaires comprised Australian Football League (AFL) 

and general knowledge trivia. There were two experimental 

conditions – best guess first and range only. For example, 

on the AFL trivia item “In what year did the Adelaide 

Crows join the AFL?”; participants in the best guess first 

condition would provide their best estimate of the actual 

answer before a range (i.e., a low and a high guess) which 

they were 80% confident contained the actual answer. 

Participants in the range only condition did not provide an 

initial best guess. In addition to these confidence intervals, 

participants rated their confidence that their answer 

contained the true value, on a 3-point scale: 1 (Absolutely 

no idea), 2 (I had a vague idea) and 3 (I felt that I knew). 

Confidence was assessed as the average of all confidence 

ratings across questions. 

Procedure 

Data was collected online using SurveyMonkey. In addition 

to demographics (age and gender), participants were asked 

to self-rate their expertise: “What percentage of the 

Australian population do you have more knowledge of AFL 

than?”  

Participants were also asked about their engagement in 

football-related activities, i.e., “How many AFL games do 

you watch per week?”; and “How many years have you 

been following AFL?” Other questions were scored on 

rating scales: “Do you play football?” (0 = No; 1 = Yes); 

“How often do you attend AFL games?” (0 = Never to 5 = 

Weekly); “How often do you read or watch news reports 

about football?” (0 = Never to 4 = Daily). 

Allocation to one of the two conditions (best guess first or 

range only) was randomized, but all participants completed 

the AFL questionnaire before the general knowledge 

questionnaire. 

 

Results 

Scoring 

 

Range To enable comparisons across questions with 

answers of varying magnitudes, the distance between 

minimum and maximum estimates on each question was 

recorded as the relative range –the maximum minus the 

minimum estimate, divided by the true value. Higher scores 

indicated wider ranges. 

 

Precision Number preference was assessed in terms of 

precision – the number of final zeros in an estimate. For 

example, an estimate of 100 (2 final zeros), would be scored 

at precision 2. Lower scores therefore indicated greater 

precision.  

 

Error As our error measure we used proportional error. 

This was calculated as the average of all error scores 

proportional to the true value. For the range only condition, 

error was assessed as the absolute difference between the 

midpoint of the participant’s provided range and the true 

answer. For the best guess first condition, error was 

measured as the absolute difference between their best guess 

and the true answer for each question. Thus, higher scores 

denoted greater error. 

Preliminary Analyses                                                                                                                             

Preliminary analyses were conducted to ensure expertise on 

the AFL questionnaire was appropriately measured by self-

ratings. 

Spearman rank order correlations confirmed self-rated 

AFL expertise correlated positively with football-related 

activities. The number of games watched weekly (ρ = .54), 

years individuals followed AFL (ρ = .54), reading or 

watching AFL news (ρ = .46) and AFL game attendance (ρ 

= .42) all had moderate correlations with self-rated expertise 

(all p < .001). The correlation between actually playing 

football and self-rated expertise was weak (ρ = .19, p = 

.001).   

Looking at correlations between self-rated AFL expertise 

and error on each of the AFL trivia questions in the range 

only condition, 18 of 20 reached significance in the 

predicted negative direction, ranging from ρ = -.15, p = .03 

to ρ = -.46, p < .001. Only one correlation between self-

rated AFL expertise and error was positive, ρ = .23, p = 

<.01.  

Similarly, in the best guess first condition, 18 of the 20 

correlations between self-rated AFL expertise and error 

reached significance in the predicted negative direction, 

ranging from ρ = -.18, p = .03 to ρ = -.47, p < .001. The 

same item produced a positive correlation between self-

rated AFL expertise and error, ρ = .27, p = <.01.  

A non-parametric one-tailed sign test indicates the overall 

negative trend (i.e., 18 out of 20 correlations in the negative 

direction) is, itself, significant, p = 2.0x10
-4

. 

Mean correlations between AFL expertise and error in the 

range only and best guess conditions were ρ = -.15, p < .001 

and ρ = -.19, p < .001, respectively. 

Table 1 shows that participants’ confidence calculated 

from the AFL questionnaire (i.e., the average of all of a 

person’s confidence ratings reported in that questionnaire) 

had a moderate, positive correlation with self-rated expertise 

(ρ = .56, p <.001).  The correlation between confidence and 

error (ρ = -.72, p <.001), however, was higher than the 
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correlation between self-rated expertise and error (ρ = -.47, 

p <.001), indicating that confidence itself was a good 

measure of people’s degree of expertise. Given this, the 

confidence measure calculated from the general knowledge 

questionnaire was used to indicate expertise in general 

knowledge. The correlation between confidence and error 

on the general knowledge task was weaker but in the 

predicted direction (ρ = -.31, p <.001; see Table 2). 

 

Table 1: Spearman correlation matrix for AFL 

questionnaire variables 

 
1 2 3 4 5 

1 Expertise - <.001 <.01 <.001 <.001 

2 Conf. .56 - <.01 <.001 <.001 

3 Precision -.16 -.16 - <.001 .14 

4 Range -.42 -.58 .46 - <.001 

5 Error -.47 -.72 .07 .56 - 

Note: Lower triangle cells show the correlation ρ. Upper 

triangle cells show the p-value. N = 263. Precision, range 

and error are averages across questions. 

 

Table 2: Spearman correlation matrix for general 

knowledge questionnaire variables 

 

 
1 2 3 4 

1 Conf. - <.001 <.001 <.001 

2 Precision  -.31 - <.001 <.001 

3  Range -.21 .58 - <.001 

4  Error -.31 .24 .47 - 

Note: Lower triangle cells show the correlation ρ. Upper 

triangle cells show the p-value. N = 280. Precision, range 

and error are averages across questions. 

 

Defining Expertise 

 

Expertise in AFL Self-ratings of AFL expertise were split 

such that participants rating their knowledge as less than 

that of 50% of the Australian population were grouped ‘low 

expertise’. Remaining participants who rated their 

knowledge as greater than or equal to 50% were grouped 

‘high expertise’. 

 

 

Expertise in General Knowledge Participants who 

reported an average confidence rating of less than 2 were 

grouped ‘low expertise’. Remaining participants with an 

average confidence rating greater than or equal to 2 were 

‘high expertise’.  

Interactions between Expertise and Elicitation 

Method 

It was hypothesized that eliciting a best guess first would 

cause observable anchoring in high expertise participants; 

while a best guess in low expertise participants could 

prompt a greater widening of range end-points. 

Figure 1 shows that, on the AFL questionnaire, best 

guesses led to wider ranges in both expertise groups and 

high expertise participants gave narrower ranges
1
 (range 

only tM20 = .041, CI95 = .030, .053; best guess first tM20 = 

.074, CI95 = .056, .096) than low expertise participants 

(range only tM20 = .110, CI95 = .097, .124; best guess first 

tM20 = .176, CI95 = .155, .198).  

The same pattern was found for expertise and condition 

on the general knowledge questionnaire: the best guess first 

condition produced wider ranges and participants with high 

expertise had narrower mean ranges (range only tM20 = 

.109, CI95 = .092, .128; best guess first tM20 = .150, CI95 = 

.125, .178) than participants with low expertise (range only 

tM20 = .157, CI95 = .145, .170; best guess first tM20 = .265, 

CI95 = .241, .290). 

 

 
Figure 1: 20% trimmed mean range and 95% confidence 

intervals for low and high expertise participants in range 

only (RO) and Best guess first (BG) conditions of the AFL 

questionnaire (left) and general knowledge questionnaire 

(right). AFL low expertise RO N = 105; BG N = 82. High 

expertise RO N = 45; BG N = 31. General knowledge low 

expertise RO N = 116; BG N = 84. High expertise RO N = 

47; BG N = 33.  

 

Visual inspection of the pattern of results is suggestive of 

an interaction effect of expertise on condition on both AFL 

and general knowledge questionnaires: that is, the results 

suggest that the ranges given by low expertise people are 

being more strongly affected by the inclusion of a best guess 

than those of experts. Standard two-way analyses of 

                                                           
1Variables violated the assumptions of standard parametric 

procedures; therefore 20% trimmed means are reported to improve 

robustness against outliers and skewness (Keselman, Algina, Lix, 

Wilcox, & Deering, 2008). Confidence intervals around these 

means were calculated using a percentile bootstrap method with 

10,000 bootstrap samples (see Erceg-Hurn & Mirosevich, 2008). 
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variance
2
, however, indicated these interactions were not 

significant on either the AFL (F(1, 259) = .29, p = .59, 

partial η
2
= .001), or the general knowledge questionnaire 

(F(1, 276) = .04, p = .84, partial η
2
 = .00). It is worth noting 

that Levene’s test on range in the general knowledge 

questionnaire indicated the assumption of homogeneity of 

variance was not met (F(3, 276) = 7.57, p < .001). 

Given that the ANOVAs checking for these interactions 

were conducted on the ranks for range, there are also 

concerns regarding the statistical power of the test, 

particularly as there is a further loss of power in the 

ANOVA result for the general knowledge task resulting 

from the combination of unequal variances with uneven 

sample sizes. In short, the reliability of the ANOVA results 

is questionable. 

As a result of this and the direct observations of Figure 1, 

which seem to imply an interaction effect of noticeable 

strength, we conducted an additional analysis.  

Testing for an interaction effect between expertise and 

elicitation method is non-trivial in this case. This is because 

we wish to test the interaction on the 20% trimmed means 

(not the mean or median), controlling for possible main 

effects, without assuming normality. To do so, we 

constructed a nonparametric permutation-based test. Our 

test statistic was the extent to which the cell-20% trimmed 

means deviated from the values predicted by a model 

consisting solely of main effects (the extent of this variation 

is formalized via the standard deviation). The distribution of 

this statistic under the null hypothesis is estimated by 

constructing 100,000 random permutations of the grouping  

variables (i.e., elicitation method and expertise status). The 

p-value is estimated as the probability of observing a 

deviation from the main effect model predictions as large as 

or larger than the observed value. For the AFL data, the 

observed value of .034 is highly significant relative to the 

null distribution that has mean .01 and std. dev .005 (p < 

.001). For the general knowledge data, we obtained a test 

statistic of .04, evaluated against a null distribution with 

mean .01 and std. dev .006 (p < .001). 

Main Effect of Precision 

Figure 2 confirms the prediction that high expertise 

participants would produce more precise estimates (range 

only tM20 = .168, CI95 = .133, .204; best guess first tM20 = 

.165, CI95 = .124, .208) than low expertise participants 

(range only tM20 = .282, CI95 = .258, .306; best guess first 

tM20 = .301, CI95 = .274, .329) on the AFL questionnaire. 

High expertise participants also provided more precise 

estimates (range only tM20 = .433, CI95 = .395, .471; best 

guess first tM20 = .492, CI95 = .448, .537) than less expert 

participants (range only tM20 = .560, CI95 = .536, .584; best 

guess first tM20 = .586, CI95 = .558, .613) on the general 

knowledge items. 

                                                           
2 Because data was skewed, a rank transformation was performed 

on all observations for the range of estimates, with the lowest rank 

of “1” assigned to the smallest observation (see Conover & Iman, 

1981). 

Additional Findings 

A main effect of precision on condition was found for high 

expertise on the general knowledge questionnaire: estimates 

were more precise in the range only condition (tM20= 

.433,CI95 = .395, .471; best guess first tM20= .492, CI95 = 

.448, .537; see Figure 2). 

As depicted in Figure 3, on general knowledge items, 

high expertise participants produced less error (range only 

tM20 = 8.830, CI95 = 6.979, 11.036; best guess first tM20 = 

10.647, CI95 = 8.280, 13.379) than participants with low 

expertise (range only tM20 = 17.448, CI95 = 15.602, 19.521; 

best guess first tM20 = 15.578, CI95 = 13.879, 17.648).   

On the AFL questionnaire, participants with high 

expertise (range only tM20 = 5.935, CI95 = 4.041, 9.362; best 

guess first tM20 = 2.711, CI95 = 1.685, 4.712) showed less 

error than low expertise participants in the best guess first 

condition only (range only tM20 = 9.039, CI95 = 7.558, 

11.903; best guess first tM20 = 6.647, CI95 = 5.298, 8.558). 

 

 
Figure 2: 20% trimmed mean precision and 95% confidence 

intervals for low and high expertise participants in range 

only and best guess first conditions of the AFL 

questionnaire (left) and general knowledge questionnaire 

(right). Sample sizes as in Figure 1. 

 

 
Figure 3: 20% trimmed mean

 
error and 95% confidence 

intervals for low and high expertise participants in range 

only and best guess first conditions of the AFL 

questionnaire (left) and general knowledge questionnaire 

(right). Sample sizes as in Figure 1. 
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Note on Analyses 

It is important to note that although expertise was 

discretized in the above analyses, preliminary linear 

regression analyses
3
 with full continuous variables showed 

the same pattern of results.  

Discussion 

The results of this study showed main effects of both 

expertise and elicitation method (group). Participants with a 

high level of expertise reported estimates with greater 

precision than participants with less expertise and, in both 

cases, people who were asked for a best estimate first tended 

to give wider ranges. 

The most interesting result, however, is the interaction 

between these two. While difficult to analyze, due to 

violations of the assumptions of parametric tests and the 

accompanying loss of power in alternative tests, our 

interpretation of the data, both visually, from Figure 1 and 

statistically, using a specifically designed permutation test, 

lead us to conclude that people with low expertise were 

disproportionately affected by the inclusion of a best guess 

in both the AFL and general knowledge questions. 

That is, less expert people, when asked to estimate a range 

after having their best guess elicited, increase the width of 

those ranges more than do more expert people. 

This, we argue, may result from their greater preference 

for rounded numbers, which causes a sort of ‘buffering’ 

effect, whereby people’s estimates are forced wider because 

their best guess is already occupying one of the numbers 

that they would otherwise have used as the end-point of 

their range. 

Caveats 

However, a number of caveats should be taken into account 

when considering our results, including the difficulties we 

have encountered in analyzing the data. Traditional, 

parametric tests fail to yield reliable results when their 

assumptions are violated, yet their non-parametric 

equivalents often result in a loss of power – which makes 

the observation of interaction effects particularly difficult. 

This has necessitated our creation of a specific test for the 

interaction that we could see in Figure 1. 

Other concerns relate to the degree of expertise and 

number preference observed in our data. Less than a third of 

our sample rated themselves as better than 50% of the 

population in the AFL questions and confidence was lower 

on the general knowledge questions. With a mean self-rated 

expertise of less than 30% our sample may, as a result, 

suffer from restricted range, which would undermine the 

strength of any observed effects. The fact that expertise was 

self-rated and correlated with the other measures less well 

                                                           
3Distributions of variables were skewed. Thus, a rank 

transformation was performed on all observations, with the lowest 

rank of “1” assigned to the smallest observation. 

than a 3-point confidence rating also suggests that our 

division between high and low expertise may be more 

arbitrary than we would hope. 

Similarly, the degree of number preference shown on the 

AFL task, in particular, is extremely low, with the group 

averages ranging from .075 to .2 – indicating that, at most, 

people used an extra zero on every fifth estimate. This is 

much lower than rates observed in other experiments (see, 

e.g., Welsh, Navarro & Begg, in press, where an equivalent 

value above .9 was observed). 

Given this it could, reasonably, be argued that our 

experiment underestimates the magnitude of differences 

between experts and non-experts – particularly on tasks 

where uncertainty is higher. 

This may also explain the observation that both our 

‘expert’ and ‘non-expert’ groups widened their ranges as a 

result of the inclusion of a best guess, rather than seeing 

narrower ranges in the expert group due to an anchoring 

effect. Otherwise, we would need to conclude that our 

experiment adds further evidence to the case against 

anchoring playing any significant role in causing 

overconfidence. Instead, as has been the case in the majority 

of instances, we observe that an initial best guess tends to 

widen rather than narrow subsequently elicited ranges, 

although by different amounts. 

Future Research 

As noted above, a key concern with the current analyses 

relates to the definition of expertise. While the self-ratings 

that we used did correlate in the expected manner with all of 

our variables, the fact that a simple 3-point confidence scale 

was a better predictor is concerning, as is the observation 

that so few of our sample regarded themselves as being of 

above average expertise on the task. 

To combat this, additional experiments, specifically 

targeting samples expected to have higher than average 

knowledge of the domain in question are required, along 

with pre-experimental testing to directly measure this 

knowledge. This will enable direct comparisons between 

people with genuinely high expertise and the general 

populace and thereby clarify the remaining question of 

whether true experts will actually be made more 

overconfident by the inclusion of a best guess in a range 

elicitation task. 

Conclusions 

Given the above, it seems reasonable to conclude that 

expertise does, differentially, affect people’s response to 

different elicitation methods. This is of great importance for 

the transfer of elicitation techniques between laboratory and 

applied settings as it suggests that effects observed in the 

laboratory may not be the same as those seen in practice. 

That is, an elicitation effect, shown to be of benefit in 

laboratory testing, still needs to be tested on experts before 

we can state, with certainty that it improves elicited values. 
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