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Modelling Time-Varying Exchange Rate Dependence

Using the Conditional Copula

Abstract

Linear correlation is only an adequate means of describing the dependence between two random
variables when they are jointly elliptically distributed. When the joint distribution of two or more
assets is not elliptical the linear correlation coefficient becomes just one of many possible ways
of summarising the dependence structure between the variables. In this paper we make use of
a theorem due to Sklar (1959), which shows that an n-dimensional joint distribution function
may be decomposed into its » marginal distributions, and a copula, which completely describes
the dependence between the n variables. We verify that Sklar’s theorem may be extended to
conditional distributions, and apply it to the modelling of the time-varying joint distribution of the
Deutsche mark - U.S. dollar and Yen - U.S. dollar exchange rate returns. We find evidence that the
conditional dependence between these exchange rates is time-varying, and that it is asymmetric:
dependence is higher during appreciations of the U.S. dollar against the mark and the yen than
during depreciations of the dollar. We also find strong evidence of a structural break in the

conditional copula following the introduction of the euro.

KEYWORDS: time series, copulas, exchange rates, dependence.
J.E.L. Codes: (32, C51, C52, F31.



1 Introduction

The concept of dependence is of central interest to all economists, practitioners and academics
alike. Linear correlation, the most widely used and quoted measure of dependence, is just one
simple means of summarising the dependence between two random variables. For variables that
have an elliptical joint distribution linear correlation is sufficient to describe their dependence,
however if their joint distribution is not elliptical, then linear correlation becomes just one of many
possible ways of summarising the dependence structure. In this paper we make use of a theorem due
to Sklar (1959), which shows that an n-dimensional joint distribution function may be decomposed
into its n marginal distributions, and a copula, which completely describes the dependence between
the n variables!.

By using an extension of Sklar’s theorem we are able to exploit the success we have had in the
modelling of univariate distributions by first specifying models for the marginal distributions of a
multivariate distribution of interest, and then specifying a copula. As an example, let us consider
the modelling of the joint distribution of two exchange rates: the Student’s t distribution has
been found to provide a reasonable fit to the conditional univariate distribution of daily exchange
rate returns, see Bollerslev (1987) for example. A natural starting point in the modelling of the
joint distribution of two exchange rates might then be a bivariate t distribution. However, the
bivariate Student’s ¢ distribution has the restrictive property that both marginal distributions have
the same degrees of freedom parameter. Studies such as Bollerslev (1987) have shown that different
exchange rates have different degrees of freedom parameters. In Section 4.3 below we show that
even the very flexible BEKK model for the conditional variance-covariance estimated assuming a
bivariate t density for the standardised residuals fails goodness-of-fit tests of the specified density
when estimated on the Deutsche mark - U.S. dollar and the Yen - U.S. dollar exchange rates.
The condition that both exchange rate returns have the same degrees of freedom parameter is
simply too restrictive. Note also that this is possibly the most ideal situation: where both assets
have univariate distributions from the same family, the Student’s ¢, and very similar degrees of
freedom, 5.8 for the mark and 4.4 for the yen. We could imagine situations where the two variables
of interest have quite different marginal distributions: a stock return and an exchange rate, for
example, where no obvious choice for the bivariate density exists. Decomposing the multivariate
distribution into the marginal distributions and the copula allows for the construction of better
models of the individual variables than would be possible if we constrained ourselves to look only
at existing multivariate distributions.

Despite the fact that copulas were introduced as a means of isolating the dependence structure

'The word copula comes from Latin for a ‘link’ or ‘bond’, and was coined by Sklar (1959), who first proved the
theorem that a collection of marginal distributions can be ‘coupled’ together via a copula to form a multivariate
distribution. It has been given various names, such as dependence function (Galambos, 1978 and Deheuvels, 1978),
uniform representation (Kimeldorf and Sampson, 1975, and Hutchinson and Lai, 1990) or standard form (Cook and
Johnson, 1981).



of a multivariate distribution over forty years ago, they have not been widely used in econometrics.
One possible reason for this is that, in general, no analytical expressions exist for the parameters
of a particular copula, and so maximum likelihood, or some other estimation method, is usually
required. A further reason may lie in the fact that interest in modelling (and forecasting) the entire
density of a random variable has only risen in the last few years. With the computational resources
now available, and the growing interest in density and quantile models, the time seems ripe for

copula theory to be applied to economic problems.

The aim of this paper is two-fold. Firstly, we show in Section 2 that the existing theory of
(unconditional) copulas may be extended to the conditional case, thus allowing us to use copula
theory in the modelling of time-varying conditional dependence. Time variation in the conditional
first and second moments of economic time series has been widely reported, and so allowing for
time variation in the conditional dependence between economic time series seems natural. The
second aim of this paper is to show how we may apply the theory of conditional copulas in the
modelling of time-varying exchange rate dependence. We examine daily Deutsche mark - U.S. dollar
(DM-USD) and Japanese yen - U.S. dollar (Yen-USD) exchange rates over the period January 1991
to October 2000. The modelling of the entire conditional joint distribution of these exchange
rates, rather than just, say, the conditional means, variances and linear correlation, has a number
of attractive features: the first is that given the conditional joint distribution we can, of course,
obtain the conditional means, variances and correlation, so this type of modelling nests solely
modelling conditional moments. Secondly, we can obtain the time-paths of any other dependence
measure of interest, such as rank correlation, which can capture non-linear dependence, or measures
of dependence in the extremes, such as tail dependence?. Dependence during extreme events has
been the subject of much recent analysis in the financial contagion literature. Further, there are
economic situations where the entire conditional joint density is required, such as the pricing of
financial options with multiple underlying assets, see Rosenberg (2000), or in the calculation of
portfolio Value-at-Risk (VaR), see Hull and White (1998).

In our empirical application we find that the dependence between the DM-USD and Yen-
USD exchange rates is asymmetric, in that they are more dependent during appreciations of the
U.S. dollar (or alternatively, during depreciations of the mark and the yen) than they are during
depreciations of the U.S. dollar. We also report evidence that the conditional dependence between
these exchange rates is time-varying, though formally testing this is complicated by the presence of a
nuisance parameter. Finally, we find strong evidence of a structural break in the conditional copula
following the introduction of the euro in January 1999, with these two exchange rates exhibiting

much weaker dependence after the break than before.

The structure of the remainder of this paper is as follows. Section 2 introduces the theory of

the conditional copula, and Section 3 discusses some of the issues regarding the evaluation and

2This measure will be discussed in more detail in Section 4.



comparison of copula models. In Section 4 we apply the theory of conditional copulas to the
modelling of the time-varying joint distribution of the Deutsche mark - U.S. dollar and Yen - U.S.
dollar exchange rates. In that section we discuss how we allow for time variation in the conditional
dependence, and how the competing copulas compare. In Section 5 we summarise our results, and
discuss other potential applications of conditional copulas in economics. Finally, we provide the

proofs of any theorems in Appendix A.

2 The Theory of the Conditional Copula

In this paper we will focus on bivariate distributions, but it should be noted that the theory of
copulas is applicable to the more general multivariate case. The two random variables considered
will be denoted X and Y, with distributions F' and G respectively. Their joint distribution will be
denoted H. We will assume in this paper that the marginal distribution functions, F’ and G, are
continuous. The assumption of continuity is not required, but simplifies some of the presentation.
Throughout this paper we will denote the distribution (or c.d.f.) of a random variable using an
upper case letter, and the corresponding density (or p.d.f.) using the lower case letter. Also note
that we will denote the extended real line as R = R U {4o0}.

In Section 2.1 below, we introduce the copula via standard theory on the distribution of random

variables. Following that, the more general theory of conditional copulas is presented.

2.1 The Copula and Transformations of Random Variables

Consider two random variables U and V', each a particular transformation of X and Y: let U =
F(X) and V = G(Y). That is, U and V are the probability integral transforms of X and Y
respectively. (The probability integral transform will be discussed below.) We will now attempt
to find the joint density of U and V according to basic results in mathematical statistics on the
distribution of transformations of random variables. One standard reference for this is Casella and
Berger (1990). We will denote the joint density of U and V' as ¢, which turns out to be the ‘copula
density’.

Since F and G are strictly increasing and continuous, we have that X = F~! (U) and Y =
G (V) and %5 = ()7 = (Z99) " = F 0 and 35 = ()7 = (22) =gt

Note also that ‘?)—)‘5 = % = 0. Then,

ax  ax

c(u,v) = h(X(U)ay(U))" g_;q g_}‘i‘
ou oV

0X oY

= h(Fﬁl(u),Gfl(v))-%-W
_h (F~' (u),G7" (v))
) = FETw) @ W) .

Equation (1) shows that the copula density of X and Y is equal to the ratio of the joint density,




h, to the product of the marginal densities, f and g. From this expression we can obtain a first
result on the properties of copulas: if X and Y are independent, then the copula density takes
the value 1 everywhere, since in that case the joint density is equal to the product of the marginal
densities. We can also use the above equation to derive an expression for h as a function of z and

y instead:

h (F_1 (u) ,G_1 (v)) = f (F_1 (u)) g (G_1 (v)) ¢ (u,v)
h(z,y) = f(z)-gy) c(F(z),G(y)) (2)

Equation (2) is the ‘density version’ of Sklar’s (1959) theorem: the joint density, h, can be
decomposed into product of the marginal densities, f and ¢, and the copula density, c¢. Sklar’s
theorem holds under more general conditions than the ones we imposed for this illustration, and

below we discuss the general proof.

2.2 The Theory of the Conditional Copula

For an introduction to the general theory of copulas the reader is referred to Nelsen (1999) or
Chapter 6 of Schweizer and Sklar (1983). We will start with a few very basic, but very important,
definitions based on those in Nelsen (1999). The seond condition below refers to the ‘H-volume’
of a rectangle [x1, 23] X [y1,y2] in R?, denoted by Vj. This is simply the probability of observing
a point in the region [z1,22] X [y1,y2]|. It is expressed in the following way as it generalises more

easily to the multivariate case.

Definition 1 A conditional bivariate distribution function is a right continuous function H : R* —

[0, 1] with the properties:
1. H(z,—oo|F) = H(—00,y|F) =0, and H(oco,00|F) =1
2. Vi ([z1, 2] X [y1,92]) = H (w2, y2|F) — H (21,92|F) — H (22, y1|F) + H (21,31 F) > 0 for all
w1, 22,91,y2 € R, and 1 < xa, y1 < yo.

where F is some conditioning set.

The first condition simply provides the upper and lower bounds on the distribution function.
The second condition ensures that the probability of observing a point in the region [x1, 2] X [y1, y2]
is non-negative3. The conditional marginal distributions of X and Y are defined as F (x|F) =
H (z,00|F), and G (y|F) = H (c0,y|F). We now define the focus of this paper; the conditional

copula.

31f we set 20 = x1 + ¢ and y2 = y1 + ¢ and let ¢ — 07L7 then it becomes clear that this definition is just the

generalisation of the condition that if the bivariate density exists, it must be non-negative on the domain of H.



Definition 2 A two-dimensional conditional copula is a function C : [0,1] x [0,1] — [0, 1] with the

following properties:
1. C(u,0|F) = C(0,v|F) =0, and C(u,1|F) =u and C(1,v|F) =wv, for every u,v in [0,1]

2. Vo ([ur,uz] x [v1,v2] |F) = C (ug,v2|F) — C (u1,v2|F) — C (ug,v1|F) + C (w1,v1|F) > 0 for
all uy,ug,vi,ve € [0,1], such that uy < uz and vy < vs.

where F is some conditioning set.

The first condition of Definition 2 provides the lower bound on the distribution function, and
ensures that the marginal distributions, C (u, 1|F) and C (1,v|F), are uniform. The condition that
Ve is non-negative has the same interpretation as the second condition of Definition 1: it simply
ensures that the probability of observing a point in the region [u1,ug] X [v1,v9] is non-negative.

By drawing on the above conditions for the conditional copula, and extending its domain to
R?, we may alternatively define a conditional copula as the conditional bivariate distribution of a
pair of random variables (U, V') having margins that are Unif (0,1). The extension of the domain

to R? is accomplished as follows:

( 0 for u <0 orwv <0, )
C (u,v|F) for (u,v) € [0,1] x [0,1],
Let C*(u,v|F) = u for u € [0,1],v > 1,
v for u > 1,v € [0,1],
1 foru>1,v > 1.

\

This alternative definition of the conditional copula as the conditional bivariate distribution of
a pair of random variables (U, V) having margins that are Unif (0,1) becomes even more intuitive
when we consider a transformation known as the probability integral transformation. The random
variable Uy = F (X¢|F) is the probability integral transform of X, and is known to have the
Unif (0,1) distribution, regardless of the original distribution, F'. This result was first introduced
by Fisher (1932), see Casella and Berger (1990) for more details?.

The link between this transformation and the theory of copulas now becomes clear: the copula
is the joint distribution function of the probability integral transforms of each of the variables X
and Y with respect to their marginal distributions, ' and G. We now move on to an extension of

the the key result in the theory of copulas: Sklar’s (1959) theorem for conditional distributions:

“The probability integral transform has also been use in the context of goodness-of-fit tests as far back as the
1930s, see K. Pearson (1933) for example. More recently Diebold, et al. (1998) extended the probability integral
transform theory to the time series case, and proposed using it in the evaluation of density forecasts. We will discuss

this further in Section 3 below.



Theorem 3 (Sklar’s Theorem for Continuous Conditional Distributions) Let H be a con-
ditional bivariate distribution function with continuous margins F and G, and let F be some
conditioning set. Then there exists a unique conditional copula C : [0,1] x [0,1] — [0,1] such
that

H(x,y|F) = C(F(z|F),GW|F)IF), VoyeR (3)

Conversely, if C is a conditional copula and F and G are the conditional distribution functions
of two random wvariables X and Y, then the function H defined by equation (3) is a bivariate

conditional distribution function with margins F and G.

The density function equivalent of (3) is useful for maximum likelihood analysis, and is obtained

quite easily, provided that F' and G are differentiable, and H and C are twice differentiable.

pair) = I
_ POWER) CERIR) 9F @) 90 wIF)
AEGIFICWR)  or 0y
= LA 417 g 1)
heglF) = clrlF)-fGlF)-g(IF), Yoy e @)

where u = F (z|F), and v = G (y|F).

We can also obtain a corollary to Theorem 3, analogous to that of Nelson’s (1999) corollary to
Sklar’s Theorem, which enables us to extract the conditional copula from any conditional bivariate

distribution function, but first we need the definition of the ‘quasi-inverse’ of a function.
Definition 4 The quasi-inverse, FY | of a distribution function F is defined as:
FOY () =inf{x: F(x) > u}, forue|0,1]. (5)

If I is strictly increasing then the above definition returns the usual functional inverse of F,

but more importantly it allows us to consider inverses of non-strictly increasing functions.

Corollary 5 Let H be any conditional bivariate distribution with continuous marginal distribu-
tions, F and G, and let FCU and GCY denote the (quasi-) inverses of the marginal distribu-
tions. Finally, let F  be some conditioning set. Then there exists a unique conditional copula
C :10,1] x [0,1] — [0, 1] such that

C (u,v|F)=H (FH) (u|F),GEY (v|F) |.7-') . Yu,v € [0,1] (6)



This corollary completes the idea that a bivariate distribution function may be decomposed into
three parts. Given any two marginal distributions and any copula we have a joint distribution, and

from any given joint distribution we can extract the implied marginal distributions and copula.

To provide some idea as to the flexibility that the above framework gives us, we now consider
various joint distributions, all with standard normal marginal distributions and all implying a
linear correlation coefficient, p, of 0.5. The contour plots of these distributions are presented in
Figure 1. In the upper left corner of this figure is the standard bivariate normal distribution
with p = 0.5. The other elements of this figure show the dependence structures implied by other
copulas, with each copula calibrated so as to also yield p = 0.5. It is quite clear that knowing
the marginal distributions and linear correlation is not sufficient to describe a joint distribution:
Clayton’s copula, for example, has contours that are quite peaked in the joint lower tail, implying
greater dependence there than in the joint upper tail. Gumbel’s copula implies just the opposite.
The Joe-Clayton copula, which we will discuss in more detail below, is slightly peaked in both joint
tails, though more so in the upper than the lower. The functional forms of the copulas presented

in Figure 1 may be found in Joe (1997).

3 Evaluation of conditional density models

Before moving on to developing models for the conditional copula, we must first establish a means
of evaluating their goodness-of-fit. Measures of goodness-of-fit are not only of importance for
evaluating the fit of a proposed copula, but for testing the specification of the marginal distributions.
Modelling of the conditional copula requires that the models for the marginal distributions be
indistinguishable from the true marginal distributions.

As discussed above, a copula may be viewed as the joint distribution of two uniform random
variables, thus the evaluation of copula models is a special case of the more general problem of
evaluating (multivariate) density models. The density model (or forecast) evaluation literature is
relatively young, and no single method has emerged as best. Studies by Diebold, et al. (1998) and
Diebold, et al. (1999) focus on the probability integral transforms of the data in the evaluation of
the density model, and so are clearly relevant in evaluating copula models.

As mentioned in footnote 4, the probability integral transform has been used in goodness-of-
fit testing as far back as K. Pearson (1933), and since then in Neyman (1937), E. S. Pearson
(1938), Dawid (1984), Kling and Bessler (1989) and Diebold, et al. (1998). Diebold, et al. (1998)
showed that for the time series framework the sequence of probability integral transforms will be
i.d.d. Unif (0,1) if the sequence of densities is correct, and proposed testing the specification of

a density model by testing whether or not the transformed series was ¢.i.d., and Unif (0,1) in



two separate Stages5’6.

ug = Fy (x| Feo1) and vy = Gy (ye| Fr-1), for t = 1,2, ..., T and F; = o (x4, Yt, Tt—1,Y¢1, --.). Diebold,
et al. (1998) propose firstly testing the independence of the first four moments of Uy and V;, by

Let us denote the two transformed series as {us}L_, and {v;}._,, where

regressing (u; — )" and (v; — ©)" on 20 lags of both (u; — )" and (v; —)¥, for k = 1,2,3,4.
Under the null that both {u;}._, and {v;}_, represent i.i.d. samples all coefficients in these re-
gressions should be zero. If the two series {Ut}z;l and {vt}z;l pass the tests for serial dependence,
then we may test the hypothesis that the transformed series are Unif (0,1) via the Kolmogorov-
Smirnov (K-S) test”. Diebold, et al. (1999) extend the results of Diebold, et al. (1998) to the
evaluation of multivariate density models/forecasts. They propose testing the ‘conditional” prob-
ability integral transform: a bivariate distribution may be decomposed into a conditional and
a marginal distribution, Hy (z¢,y:|Fi—1) = Hy, (ye|we, Fio1) - F (24| Fi—1), and Hy (w4, y¢|Fio1) =
Hx i (zt|ye, Fi-1) - G (ye|Fi—1), where H&t (@t|ye, Fe—1) and H§,7t (yt|we, Fr—1) are the conditional
c.d.f.s of X and Y respectively®. The variables U; and V; are defined in the same way as above, and
two new variables are defined: Uf = Hx  (X¢|Y:, Fi—1) and V¢ = Hy (Y;| X, Fi—1). The method
of Diebold, et al. (1999) involves checking that each of {us}l_,, {ve Yy, {u}l_, and {vf}L | are
distributed as i.i.d. Unif (0,1) random variables, using the same tests as for the univariate case. If
this holds, then all marginal and conditional distributions of the bivariate distribution are correctly

specified, implying that the bivariate distribution is correctly specified.

There are two drawbacks of the above approach to evaluating a density model: the main
drawback is that we must test the correctness of the density model separately from testing for

serial dependence in the transformed variables?. The second drawback is that the fact that the

5Ideally we would like to test the joint hypothesis, however no such test is currently available, and so two separate

tests are used.
5Tt should be noted that these tests were developed for the case when the parameters of the proposed model

are known, and not estimated from the sample. Constructing the variables u; and v¢ using parameter estimates is
not innocuous. Indeed, it was known as far back as David and Johnson (1948) that when the probability integral
transform is taken with respect to the correct distribution but using estimated parameters the resulting random
variable does not have the Unif (0,1) distribution; instead it has a distribution that depends on the distribution of
the original (untransformed) random variable. The implications for these specification tests are that we need, as some
authors in the past have done, see Engle and Manganelli (1999) and Diebold et al. (1998), to interpret the tests as
being conditional on the estimated parameters. These tests, then, ignore any estimation error in the parameters. The
best we can hope for is that for large sample sizes the magnitude of the estimation uncertainty is small. Some of the
implications of marginal parameter estimation uncertainty for the application of the theory of copulas to economics

are addressed in Patton (2001).
"See Shao (1999) for the theory underlying this test. In the implementation of this test we first sort the sequences

of transformed variables, {u;};_, and {v;},_,, into ascending order, denoted by {z'};_, and {2/}/_,. The K-S
test statistics are then calculated as D} = max ‘% -zt ‘ and D} = max |% —zf | We may employ a numerical
approximation due to Press, et al. (1989) to obtain the p-values corresponding to the test statistics.

®The conditional c.d.f. s of X and Y are given by H ; (z¢|ye, Fio1) = oHi(ziylZiot) oo g Hyy (yie|we, Fio1) =

Oy
OH(,ye|Fy—1)

oz
“Berkowitz (1999) proposed one solution to this problem. He suggested that instead of testing the {ut}tT:1 series,

10



Kolmogorov-Smirnov test has lower power in the tails of the distribution than in the centre, see
Stephens (1986), and this is a critical region for the construction of Value-at-Risk estimates for
a portfolio assets, for example. We propose here an alternative test, which draws on the interval
forecasting literature and quantifies the intuition that Diebold, et al. (1998) suggest can be gained
by looking at the empirical histograms of the transformed data. Diebold, et al. suggest that by
comparing the number of observations in each bin, otherwise known as a ‘hit’ in that bin, with
what would be expected under the null hypothesis we may gain some insight as to where the model
fails, if at all. For example, too many observations in the bins near zero or one would suggest that
the density model has tails that are too thin. This form of evaluation obviously has its roots in K.
Pearson’s (1900) x? test, see D’Agostino and Stephens (1986) for more details.

In the following test we decompose the density model into a set of ‘region’ models (‘interval’
models in the univariate case), each of which should be correctly specified under the null hypothesis
that the entire density is correctly specified. The specification introduced below is an extension
of the ‘hit’ regressions of Christoffersen (1998) and Engle and Manganelli (1999), proposed to
evaluate interval forecasts, such as Value-at-Risk forecasts. We will describe the test below in a
general setting, and discuss the details of implementation in Section 4.5.

Let W; be the (possibly multivariate) random variable under analysis, and define the support
of Wy as S. Let {Rj}fzo be regions in S such that R; N R; = () if 7 # j, and UJK:()Rj =S. Let
mj¢ be the true probability that W; € R; and let pj; be the probability suggested by the model 0.
Finally, let 11y = [mot, 714, -, Txt] and Py = [pot, pit, ---, Pie] - Under the null hypothesis that the
model is correctly specified we have that P, = II; for t = 1,2,...,7T. Let us define the variables to
be analysed in the tests as Hit] = 1{X; € R;}, where 1 {A} takes the value 1 if the argument, A,
is true and zero elsewhere, and M; = Zf:oj -1{X; € R;j}.

We may test that the model is adequately specified in each of the K 41 regions individually via
tests of the hypothesis Hy : Hit! ~ i.n.i.d.Bernoulli (pjt) versus Hy : Hit] ~ i.n.i.d.Bernoulli (Tjt),
where 7j; is a function of both pj;, and other elements of the time ¢ — 1 information set thought
to possibly have explanatory power for the probability of a hit. This is where our test differs from
those presented in Christoffersen (1998) and Engle and Manganelli (1999): the former proposed
modelling 7;; as a first-order Markov chain to check for first-order serial dependence of the hits,
while the latter proposed using a linear probability model to determine if other variables, such

as lagged hits and also lagged levels of the Value-at-Risk, had significant predictive value. The

say, we may define a new series: {zt =@ ! (us) }j: » where @' is the inverse cdf of a standard normal distribution.
The null hypothesis that {u;},_, is i.i.d. Unif (0,1) may be tested by testing that {z;},_, is i.i.d. N (0,1), which is
possibly easier due to the large number of tests of normality available.

°Given the similarity between this test and Pearson’s x? test it would not be surprising to find that the power
of the test is maximised when the probability mass in each region is equal. For a univariate density model this is
a simple task, however it may be a more difficult task in the more general multivariate case. Also, it may be that
the researcher has a particular interest in certain regions of the support (the lower 10% square, representing the 10%
Value-at-Risk, for example) being correctly specified. For these reasons we consider the case where the probability

mass in each region is possibly unequal.

11



markov chain approach suffers from the drawback that it is difficult to check for the influence of
other variables or longer lags, while Engle and Manganelli’s (1999) model may be improved rela-
tively easily by using a better model for the hits than a linear probability model, which assumes
normally distributed errors. We propose using a logit model for the hits, which yields more effi-
cient parameter estimates, and thus hopefully a more powerful test!!. For more details on the logit

model, see Davidson and MacKinnon (1993) or Greene (1997). The model we propose for m;; is:

L —pjt
it =75 (Zjt, By, pjt) = A <>\j (Zjt, B;) — [—p = D (7)
j
where A (z) = H% is the logistic transformation, Z;; is a matrix containing variables thought

to influence the probability of a hit, 3, is a (k; x 1) vector of parameters to be estimated, and \;
is any function of regressors and parameters such that \; (Z,0) = 0 for all Z. The condition on A;
is imposed so that when (3; = 0 we have that 7; = 7; (Zjt,0,pjt) = pjt, and thus the competing
hypotheses may be expressed as 3; = 0 versus 3; # 0. The parameter 3; may be found via
maximum likelihood, where the likelihood function to be maximised is: £ (7Tj (Zj,ﬁj,pj) |Hitj) =
E:;leHit{ In; (th, ﬁj,pjt) + <1 — Hzt{) -In (1 — T (th,ﬁj,pﬁ)). The test may then quite easily
be conducted as a likelihood ratio test, where LR; = —2- <£ (pj|Hitj) —L <7Tj (Zj, Bj,pj) |Hitj))
~ ij under the null hypothesis that the model is correctly specified in region R;.

We may test whether the proposed density model is correctly specified in all K+1 regions simul-
taneously by testing the hypothesis Hy : M; ~ Multinomial (P;) versus Hy : My ~ Multinomial (I1;),
where again we specify II; to be a function of both P; and variables in the time ¢ — 1 information
set thought to possibly influence the probability of a hit in one of the regions. We propose the

following setup for the elements of 1l;:

o= 7r1<zt,ﬁ,Pt>=A(M(Zu,ﬁl)—ln{l;f“]) (8)
Wz = 7 (Z,B,P)
a N,
_ (1_2;11%)-A(Aj(zjt,ﬁj)—lnl%]), forj=2.,K (9
J
K

7'('? = 1_Zj:17Tjt (10)

11f we wished instead to retain the simplicity of the test of Engle and Manganelli (1999) we could employ an

alternative extension: If we define Hit: = (pi (1 — pi)) /% - (Hit, — p:), then we may use OLS to regress Hit} on a
constant and variables in the time-¢ information set in the same manner as Engle and Manganelli (1999). The test
that all of the parameters in the Hit* regression are zero would also be conducted in the same fashion. Standardising
the variance of the dependent variable in the hit regression, in addition to standardising the mean as in Engle and
Manganelli (1999), is necessary as the conditional variance of Hit; under the null is p¢ (1 — p;), and thus if p; is
time-varying this causes Hit: to be heteroscedastic. In the case that p: is constant this concern obviously does not

arise.
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where A () = H_i_z is the logistic transformation, Z; = [Z1, ..., Zk| and B = [, ..., Bk| . (Let
the length of 3 be denoted Kg.) This rather complicated-looking expression for II; is specified
in such a way that II; (Z;,0,P;) = P, for t = 1,2,...,T for all Z;. Further, it allows each of
the elements of II; to be a function of a set of regressors, Zj;, while ensuring that each 7; > 0
and that Z]K:(ﬂrjt = 1. Again the competing hypotheses may be expressed as 3 = 0 versus
B # 0. The likelihood function to be maximised to obtain the parameter 3is £ (11 (Z, 3, P) |Hit) =
E?ZlZfZO In7j - 1{M; = j}. The joint test may also be conducted as a likelihood ratio test:
LRar, = -2 - <[, (P|Hit) — L (H (Z,B,P) |H7,t)) A X%(g under the null hypothesis that the

model is correctly specified in all K regions.

4 An Application of the Conditional Copula

The theory of copulas has been in use in the applied statistical literature for over twenty years. One
of the earliest applications of copulas was Clayton’s (1978) study of familial tendency in chronic
disease. Other studies have included Cook and Johnson’s (1981) and Genest and Rivest’s (1993)
analysis of hydrogeochemical data used in the exploration for uranium and Oakes’ (1989) analysis
of Fox River flood data. The application of copula theory to economic problems is a much more
recent phenomenon.

Perhaps the earliest paper to propose the use of the theory of copulas in the analysis of economic
problems was Embrechts, McNeil and Straumann (1999), or the more technical version of the
same paper: Embrechts, McNeil and Straumann (2000). In these papers the authors outline the
‘properties and pitfalls’ of correlation as a measure of dependence. Rosenberg (2000) uses copula
theory in the pricing of a financial option having two underlying assets, in his case these assets were
the S&P500 and the DAX 30 (the latter being a price index of thirty blue chip German stocks). Joe
(1997) provides a detailed look at how the use of ARMA processes to model serial dependence may
be generalised to utilise the theory of copulas. Bouyé, et al. (2000) extend this theory by using
copulas to describe serial dependence in continuous time stochastic processes such as Brownian
motion and the Ornstein-Uhlenbeck process. Finally, Costinot, et al. (2000) apply (unconditional)
copulas to the study of dependence between financial markets during extreme events, one example of
which is the 1997-1998 Asian financial crisis. No paper, to our knowledge, has considered applying

to the modelling of time-varying conditional distributions.

Having discussed the extension of copula theory to the conditional case, we now apply the
theory of conditional copulas to the modelling of the conditional bivariate distribution of the daily
Deutsche mark - U.S. dollar (DM-USD) and Japanese yen - U.S. dollar (Yen-USD) exchange rate
returns over the period January 2, 1991 to October 12, 2000. This represents the post-unification
era in Germany (the countries were united in November of 1989, and some financial integration

was still being carried out during 1990) and includes the first twenty-two months of the euro’s reign
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as the official currency of Germany'2.

These two exchange rates are of interest as they are the
two most heavily traded currency pairs, representing close to 50% of total foreign exchange trading
volume (see Melvin, 2000). Given their status, the DM-USD and Yen-USD exchange rates have
been relatively widely studied, see Andersen and Bollerslev (1998), Diebold et al. (1999), Andersen
et al. (2000), amongst others.

In addition to the economic interest in these series, they also represent a statistically interesting
pair of series. While there is generally very little time variation in the conditional means of exchange
rates, it is well documented that the conditional variances of exchange rates vary systematically
over time, see the papers mentioned above, and also Bollerslev (1987), Bollerslev (1990), Engle et
al. (1990), and Kearney and Patton (2000), amongst many others. Thus we have an abundance of
evidence that the conditional marginal distributions vary over time. Evidence also exists that the
dependence between these two assets varies over time: the multivariate GARCH literature, of which
many of the previously mentioned papers are a part, provides ample evidence that the conditional
correlation between these two exchange rates varies over time, suggesting that perhaps the entire
dependence structure may be time-varying, though as mentioned above, there may be better ways of
capturing this time variation in dependence than through conditional correlation. The specification
of a conditional joint distribution via the combination of two time-varying conditional marginal
distributions and a potentially time-varying conditional copula, then, seems perfectly suited to the

problem at hand.

Up until this point we have not much discussed the conditioning set, F, we have merely shown
that the existing results in the statistics literature hold when there exists such a conditioning set.
For time series applications the natural conditioning set to consider is the sigma algebra generated
by all previous observations, i.e., Fy = o(x¢, Yt, Tt—1,Yt—1,---, £1,Y1). With F; defined in this way

we then re-write equation (3) as
Hyi(xe,y1| Fio1) = Co(Fy(w] Fio1), Ge(yel Fio1)| Fi-1), @,y € R, t=1,2,..,T (11)

The above equation makes it clear that the joint distribution of (X¢,Y;) may differ from the
joint distribution of (X;_1,Y;—1). Thus a sample of pairs of observations, {(J:t,yt)}z;l, may not
represent T’ observations of the same joint distribution, but 7" observations from 7" different joint
distributions. Obviously, without assuming some structure we cannot attempt to estimate the
form of H, or that of C', F, or G. What is often assumed is that the functional form of the
distribution remains constant over time, while the parameters of the distribution vary according
to some equation. In modelling the marginal distributions, for example, we will assume that the

conditional means evolve according to an autoregressive process, and that the conditional variances

12The mark is still to be used for transactions in Germany until the end of 2001, but the mark/Euro exchange
rate was fixed on January 1, 1999, and all international transactions are denominated in Euros. See the European

Central Bank web site (http://www.ecb.int) for more information.
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evolve according to a GARCH(1,1) process. The distributions of the standardised innovations in
both margins are assumed to be Student’s ¢ distributions for the entire sample period.

We can similarly think about the evolution of Cy. There are three possible time paths for Cy:
The first is the degenerate case that it does not vary at all. The second case is that the functional
form of the conditional copula remains fixed while the parameters of the conditional copula evolve
through time; an analogous form of time-variation to that assumed for the marginal distributions
in this paper. The third form of time-variation involves changes in both the form of the conditional
copula and the parameters of the conditional copula. Nelsen (1999) shows that any convex linear
combination of copulas is also a copula!®, and so one possible way of modelling the latter form of
time-variation would be to set the conditional copula to a weighted sum of various types of copulas,
each with parameters that may or may not vary through time, and allow the weights to vary over
time. In this paper we will consider only the first and second types of variation in the conditional

copula.

4.1 Description of the Data

As mentioned above, the data set used for this analysis comprises daily Deutsche mark - U.S. dollar
and Japanese yen - U.S. dollar exchange rates over the period 2 January 1991 to 12 October, 2000,
giving us 2513 observations. The data were taken from the database of Datastream International.
As usual, we take the log-difference of each exchange rate, and multiply by 100. Table 1 below

presents some sumimary statistics of the data.
[ INSERT TABLE 1 HERE |

The above table shows that neither exchange rate had a significant trend over the sample
period, both means being very small relative to the standard deviation of each series. Both series
also exhibit slight negative skewness, and substantial excess kurtosis. The Jarque-Bera test of
the normality of the unconditional distribution of each exchange rate strongly rejects the null,
suggesting that neither exchange rate return series is unconditionally normal. We also test for the
presence of serial correlation up to the 20" lag in the squared returns, an indication of ARCH-type
heteroscedasticity, via the ARCH LM test of Engle (1982). As expected, for both series there exists
strong evidence of serial correlation in the squared returns, providing evidence that both F; and

G, are time-varying.

4.2 The Model

In specifying a model of the bivariate density of DM-USD and Yen-USD exchange rates we must
specify three models: the models for the marginal distributions of each exchange rate, and the model

for the conditional copula. The models for the marginal distributions must be close enough to the

'3We used this result to construct the ‘Mixture of Normals’ copula presented in Figure 1.
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unknown true distributions that we cannot reject a test that the probability integral transformations
of each of the marginals is i.7.d. Unif(0,1). Of course, we do not expect that we will be able to
find the actual data generating process; we merely want to get as close as possible to it. In
addition to the transforms of each marginal being independent of their own lags, they must also
be independent of each other’s lags. Recall that the conditioning set for each marginal distribution
(and the conditional copula) must be the same, thus each transformed variable must be independent
of the information in the conditioning set of its marginal distribution. Tests of these conditions are

discussed in Section 4.3 below.

4.2.1 The models for the marginal distributions

The models employed for the marginal distributions are presented below. We will denote the log-
difference of the DM-USD exchange rate as the variable X;, and the log-difference of the Yen-USD

exchange rate as the variable Y;.

X =yt O1p X1 + & (12)

hi = wz+ B hi 1+ azetQ—l (13)
Uz D

T e =t 14

htw(Uq: — 2) €t Vg ( )

Yio = py+ 1y Yio1 £ ¢igyYio10 + (15)

WY = wy+ By + it (16)

Uy D
— Y =2t 17
hi (vy —2) = o

That is, the marginal distribution for the DM-USD exchange rate is assumed to be completely
characterised by an AR(1), t-GARCH(1,1) specification, while the marginal distribution for the
Yen-USD exchange rate is assumed to be characterised by an AR(1,10)-t--GARCH(1,1) specifica-
tion!4. In our particular case it happened that we only needed univariate models for these two
marginal distributions (no lags of the ‘other’ variable appear in either variable’s model). This will

not always be so.

"“The marginal distribution specification tests, described in Section 4.3, suggested that the model for the conditional
mean of the Yen-dollar exchange rate return needed the tenth lag. This lag was not required for the DM-dollar

exchange rates.
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4.2.2 The models for the copula

In selecting a copula to use, we must have a clear idea of the properties of the data under analysis.
Many of the copulas presented in the statistics literature are best suited to variables that take on
extreme values in only one direction: survival times (Clayton, 1978), concentrations of particular
chemicals (Cook and Johnson, 1981 and Genest and Rivest, 1993), flood data (Oakes, 1989).
However, exchange rates have extremes in both directions: large positive and negative returns.
For the purposes of comparison, we will specify and estimate two alternative copulas, the
Gaussian copula and the Joe-Clayton copula, both with and without time variation. The first
copula considered, the Gaussian (or Normal) copula is the dependence function associated with

bivariate normality, and is extracted via Corollary 5. It is given in equation (18) below.

—(7“2 —2prs + 82)

&1 (u) d1(v) )
C(u,v|p) = i é QWMGXP{ 2(1—p?)

}drds,—1<,0<1 (18)

where @71 is the inverse of the standard normal c.d.f.

The transformations ®~! (u) = ®~'oF (x) and ®~! (v) = ®~'oG (y) transform the variables X
and Y, which are distributed according to F' and G, into standard normal random variables. The
normal copula takes as arguments the standard normal transforms of X and Y, and assumes that
they are jointly normally distributed. This is how we are able to back out the dependence implied
by bivariate normality. We estimate two forms of the normal copula: one assuming a constant
correlation parameter, p, and the other allowing p; to vary over time. We propose the following

evolution equation for p;:

10
~ 1 _ _
pr = A wp+ﬂp-pt1+a'1_0.zlq) Yug5) - @7 (v ) (19)
=

where A (z) = L__z:z is the modified logistic transformation, designed to keep p, in (—1,1) at

all times.

Equation (19) reveals that we assume p; follows something akin to a restricted ARMA(1,10)
process: we include p, ; as a regressor to capture any persistence in the dependence parameter,
and the mean of the product of the last ten observations of the transformed variables ®~! (u;_ ;)
and &1 (v¢—;), to capture any variation in dependence.

The second copula that will be used is the ‘BB7’ copula of Joe (1997), which we will refer to

as the Joe-Clayton copula, as it is constructed by taking a particular Laplace transformation of
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Clayton’s copula'®. The unconditional version of this copula is

_ 1/k
C(u,v|k,y)=1— <{[1—(1—u)"“]7+[1—(1—y)”}7—1} 1M> k21, v>0 (20)

Joe (1997) asserts that this copula has a number of nice properties: it collapses to Clayton’s
copula when k = 1, and the Fréchet-Hoeffding upper bound!® is approached when either parameter
approaches infinity. One of the most useful properties of the Joe-Clayton copula, for our purposes,
is the way in which the parameters of the copula relate to a particular measure of dependence

known as tail dependence. This measure of dependence is defined below.

Definition 6 If the limit

ii_r)% PriU<elV<e Fl= ;i_I%Pr V<elU<eF] = gi_I>I(1)C(€,€|f) Je =T

exists, then the conditional copula C exhibits lower tail dependence if % € (0,1] and no lower
tail dependence if TV = 0. Similarly, if the limit

%i_)n% PrU > 6|V >6,F] = %1_{% PrV > 6|U > 6,F] zélgn (1=26+C(6,0|F))/(1—=0) =
7.U

exists, then the conditional copula C exhibits upper tail dependence if TV € (0,1] and no upper

tail dependence if TV = 0.

Tail dependence is an interesting measure of dependence as it captures the behaviour of the
random variables during extreme events. Informally, it measures the probability that we will observe
an extremely large positive (negative) realisation of one variable, given that we have observed that
the other variable also took on an extremely large positive (negative) value. As an example, the
bivariate normal distribution (and thus the normal copula) has 7¥ = 7 = 0 for correlation not
equal to one, meaning that in the extreme tails of the distribution the variables are independent.
The bivariate Student’s t distribution, on the other hand, has both 7Y # 0 and 7% # 0 for
correlation not equal to one, implying that even at the most extreme tail of the distribution (indeed,
the limit of the distribution) the variables are dependent. The Joe-Clayton copula allows upper
and lower tail dependence to range anywhere from zero to one.

Joe (1997) writes that the tail dependence parameters of the Joe-Clayton copula are given
by: 7% (k,7) = 27Y7 and 7Y (k,7) = 2 — 2/%. Notice that the lower tail dependence is defined
completely by v, and the upper tail dependence is defined completely by «. We will use the one-

to-one mapping of each of the parameters of the Joe-Clayton copula to a tail dependence measure

5For more details on the construction of this copula or on Laplace transformations in copula theory, the reader is
referred to Joe (1997).
6The Fréchet-Hoeffding upper bound is a theoretical upper bound on the value that a joint distribution can take

at any given point. This upper bound corresponds to perfect positive dependence between the two random variables.
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to assist us in defining an evolution equation for the parameters. The difficulty in specifying how
the parameters evolve over time lies in defining the forcing variable for the equation. Unless the
parameter has some interpretation, as p does in the normal copula, it is very difficult to know
what might (should) influence it to change. In view of this, we will define the time variation in the
Joe-Clayton copula in terms of time variation in the upper and lower tail dependence measures,
and then find the parameters of the copula that correspond to the given upper and lower tail

dependence measures at each point in time. The evolution equations for the Joe-Clayton copula

are:
1 10
U U
e =N wy+ Byt +au- 1—0;|ut_j — Vt—j (21)
1 10
L L
Ty =A|wp —l—ﬁLTt_l-i—OzL 1—021|Utg — Vt—j (22)
J:
where A () = 14—% is the logistic transformation, used to keep 7V and 7 in (0, 1) at all times.

In the above equations we propose that the upper and lower tail dependence parameters each
follow again an ARMA(1,10)-type model. The right hand side of the model for the tail dependence
evolution equation contains an autoregressive term, B;7¢ ; and B.7F ;, and a forcing variable.
Identifying a forcing variable for a time-varying limit probability is somewhat difficult: limits are
not really an empirical concept. We propose using the mean absolute difference between u; and
vy over the previous ten observations as a forcing variable!”. The intuition behind this can be
explained with the aid of Figure 2. If X and Y are perfectly positively dependent (otherwise
known as ‘comonotonic’) then the transformed variables U and V' will all lie on the main diagonal
of the unit square. The absolute value of the difference between u; and v; is proportional to the
minimum distance from the point (u¢, v¢) to the main diagonal, and we thus use the mean absolute
difference between u; and v; over the previous ten observations as an indication of how far from
comonotonicity the data were.

As the upper and lower tail dependence measures are one-to-one functions of the two conditional
copula parameters, we can compute the , and x; implied by a particular 7" and 7{ as follows: ~,
=(1F) = — [logy ()] ~and Ky = k(1Y) = [logy (2 —77)] ~'_ Thus, in addition to specifying the
evolution of the tail dependence parameters over the sample, equations (21) and (22) also specify

the evolution of the parameters of the copula.

Y7A few variations on this particular forcing variable were used, such as weighting the observations by how close
they are to the extremes, or by using an indicator variable for whether the observation was in the first, second, third

or fourth quadrant. No significant improvement was found, and so we have elected to use the simplest model.
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4.2.3 Estimating the model

Maximum likelihood is the natural estimation procedure to use in this context: in specifying
models for the two marginal distributions and the copula, we have defined a joint distribution
function for the two exchange rates, and thus a joint likelihood. Further, the procedure employed
to develop the joint distribution lends itself naturally to multi-stage estimation of the model.
Although estimating all of the coefficients simultaneously yields the most efficient estimates, the
large number of parameters can make numerical maximisation of the likelihood function difficult.
In this paper we make use of two-stage maximum likelihood results, see White (1994) for the
general theory and Patton (2001) for the details on applying the theory to the estimation of copula
models. Under the usual conditions the estimates obtained via maximum likelihood are consistent
and asymptotically normal. We adjust the standard errors of the copula parameter estimates to
reflect the fact that they are based on marginal distribution parameters estimated in an earlier
stagels.

The Broyden, Fletcher, Goldfarb and Shanno (BFGS) algorithm was used to maximise the
likelihood. The Matlab code written to carry out the computations for this paper, as well as the
data set used, will be available on the author’s web site in the near future. The results of the

estimations are presented below.

4.2.4 For Comparison: Normal and Student’s ¢t BEKK models

For the purposes of comparison we also estimate two alternative models using existing techniques
(the results are not presented in the interests of parsimony, but are available from the author
upon request). For both of the additional models we first model the conditional means of the two
exchange rate returns series, using the models in equations (12) and (15). We then estimate one of
the more flexible multivariate GARCH models on the residuals: the BEKK(1,1) model introduced
by Engle and Kroner (1995). This model is written as:

Ht = C/C -+ B/Ht_lB + A'e;_let_lA (23)
hr K 0 b b
where H, — ;:ty ty = 11 o | b apy  a 7 s the
hy™ Iy cl2 €22 ba1  b22 a1 @

conditional variance of X at time ¢, and h;” is conditional covariance between X and Y at time .

The two models differ in their assumption regarding the joint distribution of the residuals:
the first model assumed bivariate normality, while the second assumes a bivariate Student’s ¢

distribution.

18 We have estimated these models both via one-stage (simultaneous) maximum likelihood and the two-stage method
described in the text. The parameter estimates and standard errors obtained from the two proceedures were not very

different, and so we have elected to present the more concise two-stage estimation results.
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4.3 Results for the Marginal Distributions

The parameter estimates and standard errors for marginal distribution models are presented in
Table 2. From this table we see that the degrees of freedom parameter for the two exchange rates
are indeed different: 5.8073 for the DM-USD margin and 4.3817 for the Yen-USD margin, implying
that the distribution of Yen-USD exchange rate returns has fatter tails than the corresponding
distribution for the DM-USD exchange rate. The t-statistic for the significance of difference in the
degrees of freedom parameters is 1.9192, indicating that they are not significant different at the 5%
alpha level' (though they would be at the 5.5% alpha level).

[ INSERT TABLE 2 HERE |

In Table 3 we present the results of the LM tests for independence of the probability integral
transforms, U and V, of the original data and the Kolmogorov-Smirnov (K-S) tests for the cor-
rectness of the density specification. Both of these tests were introduced in Section 3. This table
indicates no evidence of serial correlation in the first four moments of U and V, suggesting that
the the AR and GARCH models proposed for the conditional means and variances of the two

20 The Kolmogorov-Smirnov test for the correctness of the

exchange rate returns are adequate
density specification yields p-values of 0.8706 and 0.9114, suggesting that the density specifications

are also adequate.
[ INSERT TABLE 3 HERE |

In light of the possible low power of the K-S test, we employ the hit tests discussed in Section
3 to check for the correctness of the dynamic and the density specifications in particular regions
of the support. We chose to use the five following regions: the lower 10% tail, the interval from
the 10* to the 25! quantile, the interval from the 25! to the 75" quantile, the interval from the
75t to the 95" quantile, and the upper 10% tail. These regions represent economically interesting
subsets of the support - the upper and lower tails are notoriously difficult to fit, and so checking for
correct specification there is important, while the middle 50% of the support contains the ‘average’
observations. We use as regressors (‘Z;;’ in the notation of Section 3) a constant, to check that
the model implies the correct proportion of hits, and three variables that count the number of hits
in that region in the last day, week and month, to check that the model dynamics are correctly
specified?!. The A;j functions are set to simple linear functions of the parameters and the regressors:

Aj (th,ﬁj) = Zji - ;. The results of the tests in the individual regions and the joint test for all

19 A1l tests in this paper will be conducted at the 5% alpha level.
2OWe also checked for serial correlation in the first four moments of the (un-transformed) standardised residuals of

the two exchange rate models. These also indicated that no serial dependence was present.
21'We also conducted this test including as additional regressors three variables that counted the number of hits

in the corresponding region of the other variable’s support over the last day, week and month. The results did not

change significantly.
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five regions are presented in Table 4 below. For comparison, we also present the results of the hit

tests for the Normal BEKK and t-BEKK models discussed in the previous section.
[ INSERT TABLE 4 HERE |

Table 4 shows how clearly the assumption of conditional normality for these exchange rate
returns is rejected. The joint density model found by estimating the AR models for the mean
and a BEKK(1,1) model for the variance, with a bivariate normal distribution assumed for the
standardised residuals fails in 3 out of 5 regions for the DM-USD margin and in 4 out of 5 regions
for the Yen-USD margin. Both margins fail the joint test that all regions are correctly specified.
The DM-USD margin of the t-BEKK model passes the hit test in all regions, and passes the joint
test. The Yen-USD margin, on the other hand, fails the hit test in the lower tail region, and fails
the joint test. Thus we conclude that even the very flexible BEKK model is not appropriate when
used with the assumption of a bivariate Student’s ¢ distribution - a more flexible specification of
the joint distribution is required.

The model for the DM-USD marginal distribution to be used with the copula models (denoted
‘Copula DM’) passes both the individual and the joint tests that all regions are correctly specified.
The ‘copula Yen’ model fails in the lower tail region, but passes the joint test. We take the finding
that both marginal models for the copula distributions pass the joint test as evidence that they
are near enough to the Unif (0,1) distribution for us to move on to modelling the copula. That
the t-BEKK model for the Yen-USD margin fails the joint test, while the more flexible ‘copula
Yen’ model passes suggests that although the difference in the degrees of freedom parameters of
the DM-USD margin and the Yen-USD margin was not significant at the 5% alpha level, it is still

important.

4.4 The Four Models’ Results

We now present the results of the estimation of the four models described in Section 4.2. Recall
that the four models proposed all assumed that the marginal distributions of the exchange rates
are described by an AR-tGARCH models, and differ only in their specification of the conditional
copula. The first two models assume that the conditional copula is constant, while the second
two allow for time variation in the parameter(s) of the conditional copula. Note that even with a
constant copula the resulting conditional bivariate density is time varying due to the variation in
the marginal distributions. The results for the various copula models are collected and presented

in Table 5.

4.4.1 The constant normal copula

The first conditional copula model estimated was the normal copula with constant correlation. The
parameter of this copula, p, is equal to 0.4560, indicating a relatively high amount of association

between these two exchange rates. We can also find the implied unconditional correlation between
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the standardised residuals of the variables. The calculation of this correlation involves the evalua-
tion of a double integral, and we approximate this quantity numerically using quadrature??. The
implied unconditional residual correlation is 0.4141, a figure quite close to the unconditional corre-
lation of the standardised residuals of the two models, and also to that between the raw exchange

rate return series; those two figures being 0.4468 and 0.4335 respectively.

[ INSERT TABLE 5 HERE |

4.4.2 The constant Joe-Clayton copula

The second conditional copula model we discuss is the model formed by joining the marginal
distributions using a Joe-Clayton copula with constant tail dependence. The parameters k and -y
imply unconditional tail dependence measures of 7V = 0.3197 and 7" = 0.1921, suggesting that
there is greater dependence between these two series in large ‘up’ days than in large ‘down’ days. A
large ‘up’ day corresponds to one where the US dollar appreciated heavily against the mark and the
yen, and similarly a large ‘down’ day corresponds to a day when the US dollar depreciated heavily
against the mark and the yen. Taken together, these results suggest that the limiting probability of
the dollar appreciating heavily against the mark, given that it has appreciated heavily against the
yen, is about one-third. (As tail dependence is a symmetric concept, it does not matter on which
of the two currencies one conditions on the dollar having appreciated against.) The corresponding
depreciation probability is about one-fifth, meaning that the exchange rates are less dependent
in bad markets (for the US dollar) than in good markets. We can test for the significance of
the asymmetry in the dependence between these two exchange rates, by testing whether 7V is
significantly different from 7. The test statistic for this is simply the difference, 0.1275, divided by
the standard deviation of this difference, which is approximately?3 0.0437. This leads to a t-statistic
(p-value) of 2.9197 (0.0035), indicating that the asymmetry in the dependence between these two
exchange rates is indeed significant.

The unconditional correlation between the standardised residuals implied by the Joe-Clayton
copula parameters is 0.4267, quite close to the correlation implied by the constant Normal copula.
Thus both copulas imply approximately the same linear dependence between the two exchange

rates, while differing on the other forms of dependence that may exist.

4.4.3 The time-varying normal copula

The third model estimated was the normal copula with time-varying correlation, as described

in equations (18) and (19). The positive sign of 3, indicates, as expected, a positive relationship

22We use Gauss-Legendre quadrature, with ten nodes for each margin, leading to a total of 100 nodes. See Judd

(1998) for more on this technique.
23As this is a test of a nonlinear restriction of the estimated parameters, we approximate the variance of the

restriction using a Taylor series expansion of the nonlinear function of the estimated parameters about the function

evaluated at the true parameters. For more details, see Chapter 7 of Greene (1997).
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between the correlation parameter at time ¢ and that at time t+1. A plot of the implied conditional
correlation over the sample period, presented in the top panel of Figure 4, confirms this.

From this graph we can see that the first two and a half years was a period of higher correlation
than the average (the conditional correlation is generally above the unconditional correlation drawn
with a dashed line). This is followed by about a year of lower than average correlation, and then
another increase in correlation that lasts about two years. We can see that towards the end of the
sample the conditional correlation volatility increases, and finally in February 2000 the conditional
correlation went negative. The period of higher volatility in the conditional correlation corresponds
to the lead up to the introduction of the euro in Germany, while the last 22 months of data represent
the first months of the euro’s life. It might be reasonable to expect that a structural break in
the dependence relation between the DM-USD and Yen-USD exchange rates occurred upon the
introduction of the euro, and we investigate this possbility in Section 4.6. From the current results
it certainly does appear that the dependence has changed, though it is not clear from the sample
whether the dependence between these exchange rates will remain negative or return to its historical

level.

[ INSERT FIGURE 4 HERE |

4.4.4 The time-varying Joe-Clayton copula

The fourth and final model estimated is that using the time varying Joe-Clayton copula described
in equations (20) to (22). As expected, the coefficients on the mean absolute difference between
u; and v for the previous ten periods, ay and af, are negative, indicating that a smaller mean
difference leads to an increase in tail dependence. Both autoregressive parameters are positive, as
expected.

An interesting finding from these results is that the upper tail dependence measure appears
more persistent that the lower tail dependence measure: the coefficient [3;; is greater than (3, and
the coefficient on the forcing variable in the lower tail dependence equation, «ag,, is greater than ay.
In Figures 6 and 7 we present the time path of the tail dependence measures and the time path of

the implied copula parameters.
[ INSERT FIGURE 6 HERE ]
[ INSERT FIGURE 7 HERE |

In Figure 7 we immediately see that the upper tail dependence is consistently higher than the
lower tail dependence, in fact, on over 99% of the days in the sample estimated conditional upper
tail dependence was greater than conditional lower tail dependence. The greatest difference in
the tail dependence measures was over 0.50; a very large amount for a probability. As with the
conditional correlation from the time varying normal copula, we see that there were two episodes

of increased dependence between these exchange rates, each about two years long. Also similar to
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the results from the normal copula is the reduced dependence between these exchange rates since
the introduction of the euro: both the upper and lower tail dependence measures were below their
unconditional levels for the final year of the sample. As the Joe-Clayton copula is parameterised by
the upper and lower tail dependence measures, it cannot capture negative dependence: tail depen-
dence is a positive dependence concept. The lowest possible tail dependence is zero, corresponding
to independence. Thus while the normal copula suggests that the dependence relation became
negative in the last ten to twelve months of the sample, the Joe-Clayton copula results imply that
the dependence has been reduced, but is still positive. This constraint on the Joe-Clayton copula
is a drawback, and clearly if one thought that there was a significant chance of the conditional
dependence being negative one would have to choose a copula that could capture this change in the
direction of the dependence. We will determine in the next section whether this constraint of the
Joe-Clayton copula lead to it performing worse than the normal copula in tests of goodness-of-fit.

In Figure 5 we present the time series of conditional correlation implied by the results for the
time-varying Joe-Clayton copula. The conditional correlation at each point in the sample is com-
puted via numerical integration, and we present for the purposes of comparison the unconditional
correlation implied by the constant Joe-Clayton copula in this figure also. We can see that the
shape of the time path of the conditional correlation is similar to that observed for the conditional
tail dependence, with two pronounced periods of increased dependence, and declining dependence
towards the end of the sample. We present this particular measure of dependence to show how
the two copula functional forms differ in their predictions of a common dependence measure. This
shows just how dependent the implied conditional correlation is on the copula functional form as-
sumption - most previous studies that estimate equations for the conditional correlation assume

bivariate normality, and so would obtain a result similar to the top panel of Figure 4.

[ INSERT FIGURE 5 HERE |

4.4.5 Summary of results

In summary, these results show that we have substantial evidence of asymmetric depedence, and
qualitative evidence of time-varying dependence. Asymmetry in the constant Joe-Clayton copula
was found to be significant, and indicates that dependence is greater during appreciations of the
U.S. dollar than during depreciations of the U.S. dollar. Further evidence in support of asymmetry
was found in the results from the time-varying Joe-Clayton copula model: on over 99% of days in
the sample the upper tail dependence measure was greater than the lower tail dependence measure.
Time variation in the conditional copula seems significant: when the parameters of the conditional
copulas are allowed to vary through time, they deviate quite substantially from the parameter
found when conditional dependence is assumed to be constant.

We compared the normal and the Joe-Clayton copula results by looking at the residual condi-

tional correlation implied by each of the models. We found that the estimate of the conditional
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correlation varied somewhat with the choice of copula model, indicating that which copula is chosen
is not innocuous, even for simple measures of dependence like linear correlation.

It should be noted, indeed it is one of the main benefits of using copula theory, that we could
have chosen any other dependence measure to compare the copula models. Knowledge of the
conditional copula and marginal distributions is sufficient for one to compute any measure of

conditional dependence that may be of interest.

4.5 Comparing the Alternative Models

The evaluation of these models is more involved than usual, as we wish to evaluate the entire
conditional bivariate density model, not merely a particular set of conditional moments of the
bivariate density. Further, the fact that most of the models considered are not nested in other
models as special cases means that standard hypothesis testing theory is not available to us. A
naive estimate of the likelihood ratio statistic comparing the time-varying Joe-Clayton to the time-
varying normal copula yields a value of 21.61, giving a p-value of 0.0001 in favour of the Joe-Clayton
copula, however, these figures are strictly speaking not valid. Vuong (1989) presents a means of
conducting likelihood ratio tests of non-nested hypotheses, but only for i.7.d. data, and so we cannot
directly compare the likelihoods.

Additionally, testing for the significance of time-varying dependence versus constant dependence
is complicated by the fact that, like testing for homoscedasticity versus a GARCH(1,1) alternative,
at least one parameter is unidentified under the null hypothesis?*. Here the naive likelihood ratio
statistics (p-values) for the significance of time variation in the normal and Joe-Clayton copulas
are 85.16 (0.0000) and 96.99 (0.0000) respectively. These figures, though, cannot be interpreted
in the standard way, due to the presence of the unidentified nuisance parameter; we present the

figures merely for illustrative purposes. We now turn to the tests described in Section 3.

It turned out that all four copula models pass the LM and Kolmogorov-Smirnov tests (described
in Section 4.3) that the sequences {u§}_| and {vf}]_, arei.i.d. Unif (0,1), implying that we cannot
reject any of the null hypotheses that a model is correctly specified?®. This is a surprising result,
as the four models are clearly quite different. The result that all models pass the K-S test may
indicate the possible low power of this test rather than that all four models are adequately specified.
We thus turn to the hit tests for (hopefully) a more powerful test of goodness-of-fit.

26

We divide the support of the copula into seven rectangular regions®, each of which with an

economic interpretation, and one ‘remnant’ region. The regions are presented graphically in Figure

24 Andrews and Ploberger (1994) propose a means of overcoming the presence of a nuisance parameter that is
unidentified under the null. This test, however, does not lend itself easily to models that require more difficult

maximum likelihood estimation, rather than simple OLS.
25The results of these tests are omitted due to space constraints, but are available from the author on request.
26Using rectangular regions makes computing the probability of a hit in that region implied by the copula model,

C , particularly simple: it is just the C-volume of the region, defined in Section 2.

26



3. Regions 1 and 2 correspond to the lower and upper 10% Value-at-Risk for each variable. The
ability to correctly capture the probability of both exchange rates taking on extreme values si-
multaneously is of critical importance to portfolio managers and macroeconomists, amongst many
others. Regions 3 and 4 represent moderately large up and down days: days in which both ex-
change rates were somewhere between their 10* and 25, or 75" and 90", quantiles. Region 5 is
the ‘median’ region: days when both exchange rates were in the middle 50% of their distributions.
Regions 6 and 7 are the extremely asymmetric days, those days when one exchange rate was in the
upper 25% of its distribution while the other was in the lower 25% of its distribution. This part of
the support is important for diversification reasons: if we can correctly model these areas we may

better diversify risk.
[ INSERT FIGURE 3 ]

We again specify a simple linear function for A;, that is: \; (th,ﬁj) = Zjt - 3, and we include
in Zj; a constant term, to capture any over- or under-estimation of the unconditional probability
of a hit in region j, and three variables that count the number of hits that occurred in the past
day, one week and one month, to capture any violations of the assumption that the hits are serially
independent. The results for each of the seven regions, for the four models considered are presented
below. For the joint test we define the zeroth region as that part of the support not covered by

regions one to seven.
[ INSERT TABLE 6 HERE |

Table 6 reveals that both the constant the time-varying normal copulas pass the hit tests for
all regions and pass the joint test. Both the constant and the time-varying Joe-Clayton copulas
pass the hits tests in all but region 2, the upper tail region, and both fail the joint test. This
result is somewhat surprising, as the Joe-Clayton copula was selected for inclusion in this study
because it offered the ability to flexibly model the upper and lower tails of the joint distribution,
whereas the normal copula is more restrictive. From these results it would appear that although
the Joe-Clayton copula yielded a substantially higher likelihood, it does not perform as well as the
model using the normal copula. One possible explanation for this lies in the fact that the Joe-
Clayton copula, as mentioned above, cannot capture negative dependence. The time path of the
conditional correlation implied by the time-varying normal copula suggested that the dependence
between these two exchange rate returns became negative following the introduction of the euro,
and thus the Joe-Clayton would be inappropriate. In the next section, we investigate the behaviour

of these exchange rates before and after the introduction of the euro, allowing for a structural break.
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4.6 A Structural Break - The Euro

On the 1% of January, 1999 the euro was introduced. Eleven European countries?” agreed to an
irrevocable conversion rate between their currencies and the new euro, the conversion rate for the
Deutsche mark is 1 euro = 1.95583 marks?®. In this final section we examine the impact that the
introduction of the euro had on the conditional joint distribution of these exchange rates.

The data used in this study is comprised of daily Deutsche mark - U.S. dollar and Japanese yen
- U.S. dollar exchange rates over the period 2 January 1991 to 12 October, 2000, which includes 461
observations in the period following the introduction of the euro. There are substantial reasons to
believe that both the marginal distribution of the mark and the joint distribution of the DM-USD
and Yen-USD exchange rate returns underwent a structural break on January 1, 1999. The DM-
USD exchange rate is now ‘pegged’ to the euro-USD exchange rate, with the euro essentially being
a portfolio of eleven currencies, and the percentage return, obtained by taking the log-difference of
the level of the exchange rate, on the DM-USD exchange rate is by definition exactly equal to that
on the euro-USD exchange rate. Thus what drives the dynamics in the observed DM-USD returns
in the post-euro sample are the determinants of the euro-USD exchange rate. Factors relating
to the mark will still have a large impact on the euro-USD exchange rate, due to the relative
importance of the German economy within the eleven countries, but they will obviously not be the
sole determinants.

We can examine the impact on the introduction of the euro on the joint distribution of the
DM-USD and Yen-USD exchange rates by allowing the parameters of the joint distribution to
change between the pre- and post-euro subsamples. Note that allowing the parameters to change
pre- and post-euro is equivalent to increasing the information set, previously defined as F; =
o (xt, Y, Tt—1,Yt—1, ---,£1,Y1), to include an exogenous indicator variable, W, which takes the value
0 in the pre-euro sample and 1 in the post-euro sample. Thus we now define the information set as
Ft = 0(Xt, Y, Wit 1, Tt—1, Yt—1, -, T1,Y1). One of the minor complications that arise when moving
from the standard (unconditional) copula case to the conditional copula case is that all components
of the joint distribution (the two marginal distributions and the copula) must be based on the same
information set. This implies that although we have no reason to expect that the Yen-USD marginal
distribution also underwent a structural break upon the introduction of the euro, we must allow

for it.

The model allowing for structural break was constructed by assuming the same functional forms
of the marginal distributions and copula, but allowing each parameter to change in the post-euro
period. To minimise the number of additional parameters in the new models, we conducted tests

for the significance of the change in the parameter, and imposed constancy on those parameters

2"The eleven participating nations are: Austria, Belgium, Finland, France, Germany, Ireland, Italy, Luxembourg,

The Netherlands, Portugal and Spain.
28The complete list of conversion rates for all eleven currencies now linked to the Euro may be found at

http://www.ech.int/press/pr981231_2.htm.
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that were not significantly different in the two periods. We tested for dependence of the new
transformed variables, denoted U? and V;?, on the euro indicator variable by regressing each of
the first four moments on a constant (to remove the mean) and the indicator variable. If the new
model is correctly specified with respect to the new, larger information set, then the coefficient on
the indicator variable in this regression should be zero.

The only parameter that was significantly different in the DM margin in the pre-euro and post-
euro samples, according to LR tests, was the parameter for the unconditional mean return, . It
turned out, however, that although the constant in the GARCH model for the DM margin was not
significantly different from the first period to the second, it was needed in order for the indicator
variable to have no explanatory power for UP.?? When allowing both p, and w, to change from
the first period to the second Utb passed the regression tests of independence of the euro indicator
variable. The LR test for the significance of the structural break yielded a test statistic (p-value)
of 9.5354 (0.0085), indicating that the break is significant. It should be pointed out that we do
not include monetary policy variables in our models. A change in interest rate policy in Germany
following the introduction of the euro, for example, may explain at least a part of the change in
DM dynamics. We leave the investigation of this as a possible explanation for future work.

We conducted tests for the significance of the changes in the parameters of the Yen margin
between the pre- and post-euro periods, and found none to be significant. Further, the original
transformed variable, V;, passed the regression tests for independence of the euro indicator variable.
The results of the estimation of the models allowing for a structural break are presented in Table
7 below. We have included the results for the Yen margin even though they did not change from

those presented in Table 2 for the purposes of comparison with the new DM margin.
[ INSERT TABLE 7 HERE. ]

Table 7 reveals that the average rate of depreciation of the DM against the USD rose from
0.0128% per day during the pre-euro sample to 0.0981% per day, a substantial increase. The
unconditional daily variance of the DM-USD exchange rate implied by the GARCH parameters
rose over 40% from 0.5316 to 0.7674, while the annualised unconditional standard deviation®° rose
from 11.57% to 13.91%. We again used the LM and K-S tests to check the new proposed marginal
distributions, in the pre-euro, post-euro and joint samples. Both margins passed all tests in all
three time periods®'. In Table 8 below, we present the results of the joint test that each margin
is correctly specified in the five regions used in the previous tests. (Both marginal distributions

passed all tests for the individual regions.) This table shows that both margins pass the joint test

in all three samples.

298pecifically, the first moment of the transformed variable obtained from the distribution only allowing for a break

in p, had a significant coefficient on the indicator variable in the simple regression test.
30This is approximated by taking the square root of the unconditional daily variance multiplied by 252, the average

number of trading days in a year.
31The complete results are omitted due to space constraints, but are available from the author on request.
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[ INSERT TABLE 8 HERE. |

In Table 9 we present the results of allowing the parameters of the four copula models previously
discussed to change following the introduction of the euro. The likelihood ratio test statistics (p-
values) for the significance of the structural break for the four models are: 134.0548 (0.0000),
107.7615 (0.0000), 69.3381 (0.0000) and 59.2717 (0.0000) - clearly the structural break is very
significant in all copula models.

The results for the two constant copulas clearly indicate that the dependence between the DM-
USD and the Yen-USD exchange rate returns decreased substantially following the break. The
constant normal copula results suggest that residual correlation fell from 0.4929 before the break
to 0.0773 after the break. The constant Joe-Clayton copula parameters suggest that upper and
lower tail dependence fell from 0.3964 and 0.2542 before the break to 0.0001 and 0.0018 after the
break. The implied correlation from the constant Joe-Clayton copula fell from 0.4983 to 0.0781 -
very similar results to those from the constant normal copula. As for the previous results, we can
test the significance of the asymmetry implied by the constant Joe-Clayton copula, both before and
after the break. The test statistic (p-value) for the pre-euro period is 3.1303 (0.0017), rejecting
the null hypothesis of symmetry in the pre-euro period. In the post-euro period the test statistic
(p-value) is -0.0269 (0.9785), indicating that no evidence of asymmetry is present in the post-euro
data.

[ INSERT TABLE 9 HERE. ]

The time paths of the parameters and implied correlations in the models of the previous section
suggested that the conditional dependence between these exchange rates changed following the
introduction of the euro. By allowing the time paths to depend explicitly on which sub-period the
data are from we obtain very strong evidence that the dependence changed. We initially allowed
all parameters of the time-varying copulas to change following the break, but found that the results
suggested that the conditional dependence was constant in the post-euro sample3?. Specifically,
the time path of the parameters of both the time-varying normal copula and the time-varying Joe-
Clayton matched very closely the dependence implied by the constant version of the same copula
in the post-euro sample. For both the normal and the Joe-Clayton copulas, then, we imposed the
condition that dependence be constant following the break, though it was allowed to vary before
the break. The implied correlation from the two copulas can be seen in Figures 8 and 9 below.
The time paths of the parameters of the Joe-Clayton copula and the conditional tail dependence

are presented in Figures 10 and 11 below.

[ INSERT FIGURES 8 TO 11 HERE. |

32 Again, we face the problem of an unidentified nuisance parameter in testing for the significance of time variation

in the conditional dependence, and so we must rely on qualitative methods to assess its importance.
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In Figure 11 we see that the conditional upper tail dependence is consistently greater than the
conditional lower tail dependence in the pre-euro sample. In fact, on no day in the pre-euro sample
was conditional lower tail dependence greater than conditional upper tail dependence. The mean
difference between the two tail dependence measures was 0.1857, implying that these exchange
rates were much more dependent during appreciations of the US dollar than they were during
depreciations of the US dollar.

Figures 8 through 11 make it very clear that a large change in the dependence structure took
place when the mark became linked to the euro. The change in the marginal distribution of the
mark is difficult to detect graphically: the change in p,, while substantial, is drowned out by the
large amount of noise in the returns, and the change in w, is not significant. Thus the structural
break could possibly be overlooked if only considering the marginal distribution of the DM-USD
exchange rate returns. The structural break in the conditional copula, however, is unmistakeable.

In Table 10 below we present a summary of the results of the hit tests on the copula models
with an indicator variable for the euro. All models passed all tests for the individual regions, and
as Table 10 below reports, all models passed the joint test that the copula is well specified for all

eight regions.
[ INSERT TABLE 10 HERE. ]

A formal means of selecting which of the copulas is better given that all pass tests of goodness-of-
fit is not currently available. As the time-varying Joe-Clayton copula has the highest log-likelihood,
however, one could justify its selection as the model of choice on information theoretic grounds: a
higher log-likelihood means that the time-varying Joe-Clayton copula is closer to the true copula
than the next best alternative, as measured by the Kullback-Leibler information criterion®?. It is
acknowledged that the fact that the normal copulas pass the specification tests may indicate that
the asymmetry implied by the Joe-Clayton copula is not significant, and thus that the normal copula
is a good approximation. However, as the Joe-Clayton copula has symmetry as a special case, and
symmetry appears to be strongly rejected, we instead infer that the passing of the specification
tests by the normal copula models is evidence of the difficulty the tests considered have in rejecting

models close to the true distribution.

5 Conclusion

The theory of copulas provides a means of thinking more generally about the dependence between
random variables. The linear correlation coefficient provides a very convenient summary of the
association between two variables, but it is by no means the only measure of interest. The use of

copulas in the analysis of economic data is a quite recent phenomeon, however the growing interest

#33ee White (1994) for more on this interpretation of the log-likelihood.
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in density forecasting and in quantile-based measures of risk suggest that the theory of copulas
may enjoy wider use in the future.

In this paper we showed that the existing theory of copulas may be extended to the conditional
case, allowing us to use it in the analysis of time-varying conditional dependence. We applied the
theory of conditional copulas to model the time-varying conditional joint distribution of the daily
Deutsche mark - U.S. dollar and Yen - U.S. dollar exchange rates, over the period from January
1991 to October 2000. AR - tGARCH models were employed for the marginal distributions of each
exchange rate, and two different copulas were estimated: the copula associated with the bivariate
normal distribution, and the Joe-Clayton copula, which allows for asymmetric dependence in the
joint distribution. We allowed for time-variation in the dependence structure between the two
exchange rates by allowing the parameters of the two copulas to evolve over the sample period,
employing an evolution equation similar to the GARCH model for conditional variances. For
comparison, we also estimated constant versions of each of these copulas.

Some attention was paid to tests of the relative goodness-of-fit of the copulas analysed. Goodness-
of-fit testing in our study was complicated by the fact that we wished to test the adequacy of the
entire density, rather than just a set of moments from this density, and by the fact that many of
our models were non-nested. We employed an extension of the ‘hit’ tests of Christoffersen (1998)
and Engle and Manganelli (1999) to test for the goodness-of-fit of the four models considered, and
proposed a new test for evaluating the performance of multiple interval forecasts simultaneously.

Our results indicate the presence of time variation in the conditional dependence between these
two exchange rates, though formally testing for its significance is complicated by the presence of
a nuisance parameter unidentified under the null of constant dependence. We find substantial
evidence that the dependence function is asymmetric; specifically, dependence is greater during
appreciations of the U.S. dollar (or alternatively, during depreciations of the mark and the yen)
than during depreciations of the U.S. dollar. Finally, we report strong evidence of a structural break
in the conditional copula following the introduction of the euro in January 1999. The dependence
between these exchange rates falls dramatically following the break.

This paper has presented just one example of an economic question that copula theory may
assist us in answering. Many further applications or extensions are possible. For example, to
estimate the Value-at-Risk of a portfolio, one needs a model for the entire joint density of the
assets in the portfolio. Constructing such a model is made much simpler using the conditional
copula framework. Further, copulas may be used to construct models for multivariate density
forecasting, an area gaining interest in finance and econometrics. The use of conditional copulas
in the more general multivariate case is possible, though some care may be required to keep the
model tractable. Also, other forms of time variation in the dependence between two or more assets
may be explored: in this paper we considered allowing the parameter of the copula to vary through
time, holding the form of the copula fixed. An alternative to this may be to consider conditional

copulas that vary in functional form, perhaps in a Markov switching model.
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7 Appendix A: Proofs (draft).

The proof of Sklar’s (1959) theorem is simplified with the following two lemmas.

Lemma 7 Let x1 < xo and y1 < yo, then
Y (x) = H(x,y2|F) — H(x,y1|F) is a non-decreasing function of x, and
Y(y) = H(x2,y|F) — H(z1,y|F) is a non-decreasing function of y.

Proof of Lemma 7. From the definition of a bivariate distribution function we know
that H(zo,y2|F) — H(z2,y1|F) — H(x1,y2|F) + H(x1,11|F) = 0, so H(we,y2|F) — H(w2,y1|F)
> H(x1,y2|F) — H(x1,y1|F) for all 21 < x9,y1 < yo € R. Similarly for 7¥(y). m

Lemma 8 |H (x2,y2|F) — H(z1,31|F)| < |F(2l F) = F(2:1|F)| +|G(y2|F) — G(y1]|F)]

Proof of Lemma 8. By the triangle inequality we have:
|H (x2,y2|F) — H(w1,y1|F)| < [H(w2,y2|F) — H(wy,y2|F)| + [H (21, y2|F) — H(z1, 41| F)|
Assume x1 < 9 and y; < ys, then by the above lemma we have
H (w2, y1|F) — H(z1, 1 |F) < H(wa,y2|F) — H(z1,y2|F)
< H(w2,00|F) — H(z1,00|F)
= F(2|F) — F(2:1]F)
Considering the case when x; > 22 and applying the same logic leads us to
H(z1, 91| F) = H(wo, 11| F) < F(a1|F) — F(a2| F)
So we have
|H (z2,y1F) — H(x1,51|F)| < |F(22|F) — F(a1]|F)|
Similarly for y we find that
|H (1, 2| F) — H(x1,y1|F)| < |G(y2lF) — G(y1|F)]
and so
|H (w2, y2|F) — H (w1, y1|F)| < |H (w2, 2| F) — H(wr,y2|F)| + |H (21, y2|F) — H(x1, 1| F)]
< |F (2] F) = F(1 | F)[ + |Gyl F) — G(y:|F)| =

A

Proof of Theorem 3.  From Lemma 8 we know that: |H(x2,ys|F) — H(z1,y1|F)| <
|F (22| F) — F(x1|F)| +|G(y2|F) — G(y1|F)|. Thus, if xo = x1 and yo = yi, then H(za,ys|F) =
H(x1,y1|F). The function C is defined by the set of ordered pairs:

{(F@IF),GWIF)) , Hz,ylF) 2y € R).

That C is a copula must be verified: the domain of C' is clearly [0, 1] x [0, 1], as this is the range
of F and G. The range of C is similarly determined to be [0, 1] as this is the range of H. We now
check the two conditions for C' to be a copula, as given in Definition 2.

1] Since F' and G are continuous, we know that the inverse functions F~! and G~! are
well-defined. So,

C(u,0|F) = H(F~Y(u|F),GL(0|F)|F)
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= H(F~'(u|F), —oo|F)
= 0, by the definition of a distribution function, and,
C(0,0|F) = H(E(0|F), G~ (v|F)|F)
= H(~00,G ' (v|F)|F)
= 0, also by the definition of a distribution function.
Further,
Clu, 1|F) = H(F '(u|F),G 1(1|F)|F)
H(F~'(u|F), 00|F)
F(F Y (ulF)|F)
U

and
C(1,0|F) = H(F'(1|F), G (v|F)|F)
= H(co,G ' (v|F)|F)
G(G (v]F)|F)

2] For this part, let u; = F (2;]F), v; = G (y;|F), and consider the points x1,22,y1,y2 € R
s.t. 1 <o and y; < yo. Then,
Ve ([ur, ug] X [v1,v2]) = Cug, va|F) — Cur,v2|F) — Clug, v1|F) + C(ur,v1|F)
— H (02,0 F) — H (1, 1lF) — H (w3, 51|F) + H (a1,91|F)
= Vi ([z1, 22] X [y1,92])
> 0, by the fact that H is a conditional distribution function.
Thus the function C' defined above is a conditional copula.
The proof of the converse requires us to verify the conditions that make H a distribution
function, given F' and G are distribution functions, and C' is a copula.
H(z,—o00|F) = C(F(x|F),G(—0|F)|F)
= C(F(x|F),0|F)

=0
and
H(—00,y|F) = C(F(—oo|F),G(y|F)|F)
= C(0,Gy|F)|F)
=0
Further,
H(z,00|F) = C(F(x|F),G(co|F)|F)
= C(F(=|F),1|F)
= F(x|F)
and

H{(oo,y|F) = C(F(0|F), G(y|F)|F)
= C(L,G(y|F)IF)
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— G(ylF)
We now need to show that Vi > 0.
Vi ([x1, 2] X [y1,42]) = H (2,y2|F) — H (21, y2|F) — H (x2,y1|F) + H (21, y1|F)
= C(F (22 F), G (92| F) |F) = C (F (11| F) , G (92| F) | F)
—C(F (22| F), G (1|F) |F) + C(F (21| F) , G (51| F) |F)
= C (ug,v2|F) — C (u1,v2|F) — C (ug,v1|F) + C (u1,v1|F)
= Vo ([u1, ug] x [v1,v2])
> 0 by the fact that C' is a conditional copula.
This completes the proof of the converse. m
Proof of Corollary 5. This proof follows directly from that of Theorem 3, letting x =
FED (u)F) andy = GV (v]F), and noting that u = F (FCV (u|F) |F) and v = G (GEY (0| F) | F)
Yu,v € [0,1]. m
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8 Tables and Figures

Table 1: Summary Statistics
DM-USD Yen-USD

Mean 0.0166 —0.0091
Std. Deviation 0.6682 0.7320
Skewness —0.1353 —0.6465
Kurtosis 5.0041 8.4321
Jarque-Bera stat 428.22 3264.81
Jarque-Bera p-val 0.0000 0.0000
Median 0.0331 0.0078
Maximum 3.1874 3.5711
Minimum —3.3195 —6.5818
ARCH LM stat 8.5868 12.9933
ARCH LM p-val 0.0000 0.0000

Note: This table presents some summary statistics of the data used in this paper. The data are 100
times the log-differences of the daily Deutsche mark - U.S. dollar and Japanese yen - U.S. dollar exchange
rates. The sample period runs from January 1991 to October 2000, yielding 2513 observations.

Table 2: Results for the Marginal Distributions
DM Margin Yen Margin
Coeff Std Err Coeff Std Err
e 0.0276*  0.0111 Hoy 0.0144  0.0111
01, 0.0142  0.0200 ¢y 0.0043  0.0195
¢10y 0.0664"  0.0183
wy  0.0039  0.0030 Wy 0.0059  0.0034
B, 0.9485* 0.0161 By 0.9453* 0.0161
oy 0.0448"  0.0126 Qy 0.0458* 0.0125
vy  95.8073* 0.6383 Uy 4.3817*  0.3800
LLx = —2,379.4945, LLy = —2,469.7595
An ¢ * 7indicates that the parameter is significant
at the 5% level.

Note: An asterix indicates that the parameter is significant at the 5% level.
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Table 3: LM Tests of independence and

Kolmogorov-Smirnov Tests of the Density

(uy —a) (vr — D)

First moment 34.8434 30.9334
p-value 0.7131 0.8553
Second moment 33.2698 36.4737
p-value 0.7757 0.6429
Third moment 33.5627 41.0963
p-value 0.7645 0.4366
Fourth moment 33.8072 42.9562
p-value 0.7550 0.3595
K-S Stat 0.0119 0.0112
K-S p-value 0.8796 0.9114

Note: This table presents the results of LM tests of the independence of the first four moments of the
variables U; and V;, described in the text. We regress (u; — @)" and (v; — 7)* on twenty lags of both
variables, for k = 1,2,3,4. The test statistic is (7" — 40) - R? for each regression, and is distributed under

the null as X1210-

Table 5: Results for the Copula Models
Coeff Std Err cL
Constant Normal p 0.4560*  0.0167 291.9811

Constant K 1.3356*  0.0348 296 .8704
Joe-Clayton ¥ 0.4202*  0.0384
Time-Varying wp,  0.0015 0.0052 334.5621
Normal ap, 0.1212*  0.0160

B, 2.0684*  0.0250
Time- Varying wy  —2.0621*  0.2056 345.3665
Joe-Clayton ay —0.9192  0.8966

By 4.4548%  0.2938

wr —1.3444* 0.5876

ar,  —6.5119*  3.1394

Br  4.1406*  0.5880

Note: An asterix indicates that the parameter is significant at the 5% level. ‘CL’ stands for the copula
likelihood at the optimum.
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Table 4: Hit test results for the marginal distributions

Normal Normal

BEKK BEKK | ¢t BEKK ¢ BEKK | Copula Copula

DM Yen DM Yen DM Yen
Test stat 1 5.1095  14.5768 | 8.8698 9.9004 7.3911  10.0053
p-value 1 0.2762  0.0057 | 0.0644 0.0421 0.1166 0.0403
Test stat 2 30.0152 16.5288 | 7.2563 7.8860 4.3805  5.4210
p-value 2 0.0000 0.0024 | 0.1229 0.0958 0.3570  0.2468
Test stat 3 53.5698 79.2013 | 6.7396 4.5611 3.7318  2.7020
p-value 8 0.0000 0.0000 | 0.1503 0.3354 0.4435 0.6089
Test stat 4 2.6915  5.2890 | 1.1491 1.8842 1.5011  3.7060
p-value 4 0.6107 0.2589 | 0.8864 0.7570 0.8264  0.4473
Test stat 5 18.9513 19.9437 | 6.6647 5.1809 2.8474  3.8913
p-value 5 0.0008  0.0005 | 0.1547 0.2692 0.5837  0.4209
Test stat ALL  73.8875 86.9531 | 22.4174  26.3902 | 15.0387 24.6226
p-value ALL 0.0000  0.0000 | 0.1302 0.0488 0.5218 0.0768

Note: ‘Test stat’ refers to the likelihood ratio statistic testing the null hypothesis that the model is
correctly specified. ‘P-value’ refers to the area in the right tail of the distribution of the test statistic, a X?l
random variable for the individual region tests and a X% random variable for the joint test.The numbers

1 through 7 refer to the regions of the marginal distribution support described in the text. ‘ALL’ refers to

the joint test of all regions simultaneously.
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Table 6: Hit test results for the copula models

Constant  Constant Time-varying Time-varying
Normal Joe-Clayton Normal Joe-Clayton
Test stat 1 9.4482 7.3304 7.4209 6.6815
p-value 1 0.0508 0.1194 0.1152 0.1537
Test stat 2 4.1361 9.8002 2.2563 16.0750
p-value 2 0.3879 0.0439 0.6887 0.0029
Test stat 3 6.4374 6.1412 6.4108 6.5137
p-value 3 0.1688 0.1888 0.1705 0.1639
Test stat 4 1.9063 1.8627 1.4813 1.4595
p-value 4 0.7530 0.7610 0.8300 0.8338
Test stat 5 8.2495 6.7740 7.9588 3.3560
p-value 5 0.0829 0.1483 0.0931 0.5001
Test stat 6 2.8800 6.9902 0.9284 3.1363
p-value 6 0.5781 0.1364 0.9205 0.5353
Test stat 7 6.5945 8.4697 0.6086 3.2932
p-value 7 0.1589 0.0758 0.9621 0.5100
Test stat ALL  37.8357  46.1668 26.9924 41.4195
p-value ALL 0.1015 0.0167 0.5187 0.0491

Note: ‘Test stat’ refers to the likelihood ratio statistic testing the null hypothesis that the model is
correctly specified. ‘P-value’ refers to the area in the right tail of the distribution of the test statistic, a X121
random variable for the individual region tests and a X%S random variable for the joint test.The numbers
1 through 7 refer to the regions of the copula support depicted in Figure 3. ‘ALL’ refers to the joint test of

all regions simultaneously.
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Table 7: Results for the Marginal Distributions
Pre- and Post-Euro periods
DM Margin Yen Margin
Coeff Std Err Coeff Std Err
pk o 0.0128  0.0120 fy 0.0144  0.0111
2 0.0982*  0.0268
¢, 0.0111  0.0200 ¢y, 0.0043  0.0195
b0y 0.0664"  0.0183
1 0.0037  0.0029 Wy 0.0059  0.0034
w2 0.0053  0.0038
B, 0.9485* 0.0160 By 0.9453* 0.0161
o,  0.0446*  0.0125 ayy 0.0458*  0.0125
vy  95.6860* 0.6180 Uy 4.3817*  0.3800
LLx = —2,374.7268, LLy = —2,469.7595

Note: An asterix indicates that the parameter is significant at the 5% level. ‘CL’ stands for the copula
likelihood at the optimum. The superscripts on the parameters refer to the period before or after January

1, 1999. Note that the Yen margin did not change between these two periods.

Table 8: Multinomial test results for the marginal distributions,with structural break

Full Sample Pre-Euro Post-Euro

DM Yen DM Yen DM Yen
Test stat ALL 14.2945  35.0488 16.2624  25.8905 13.1024 21.4322
p-value ALL 0.5768 0.1685 0.4348  0.0556 0.6653 0.1625

Note: ‘Test stat’ refers to the likelihood ratio statistic testing the null hypothesis that the model is
correctly specified. ‘P-value’ refers to the area in the right tail of the distribution of the test statistic, a X%b‘

random variable, for the joint test. ‘ALL’ refers to the joint test of all regions simultaneously.
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Table 9: Results for the Copula Models
Pre- and Post-Euro Periods
Coeff Std Err cL
Constant Normal —p' 0.5435*  0.0146 359.0085
p>  0.0855 0.0508

Constant k! 1.4678*  0.0428 850.7512
Joe-Clayton yb 05061 0.0451

k2 1.0001 0.0442

v2 0.1101 0.0580
Time-Varying w}) —0.1834*  0.0038 369.2312
Normal af 0.0483*  0.0159

B, 254100 0.0121
P> 0.0866  0.0492
Time-Varying w%, —2.1136*  0.0688 374.5024
Joe-Clayton ole —0.5691*  0.2211
U 4.4315* 0.0788
wh  —1.7832%  0.3468
b —2.9472  1.9843
L 42067 0.2631
R? 1.0001  0.0519
72 0.1098  0.0575

Note: An asterix indicates that the parameter is significant at the 5% level. ‘CL’ stands for the copula
likelihood at the optimum. The superscripts on the parameters refer to the period before or after January

1, 1999.

Table 10: Multinomial test results for the copula models,with structural break
Full Sample Pre-Euro Post-Euro

Constant 24.9467 28.3683 32.3445
Normal 0.6307 0.4451 0.2607
Constant 36.0588 38.3891 30.0025
Joe-Clayton 0.1411 0.0913 0.3631
Time-varying 24.3990 25.0714 32.3137
Normal 0.6603 0.6239 0.2619
Time-varying 34.9416 33.7263 30.4127
Joe-Clayton 0.1716 0.2100 0.3438

Note: Above we report the test statistic and p-value for the multinomial test for the goodness-of-fit of

each copula model.
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Normal Copula, p = 0.5 Student’st Copula, p=0.5,u0 =3
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Joe-Clayton Copula, K = 1.42, y=0.47 Mixed Normal Copula, p,=0.95, p, =0.05, w=0.5
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Figure 1: Contour plots of various distributions all with standard normal marginal distributions

and linear correlation coefficients of 0.5.
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Figure 2: Motivation for the choice of forcing variable in the specification of the time-varying

Joe-Clayton copula.
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Figure 3: Regions used in the hit tests
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Conditional Correlation in the Normal Copula
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Figure 4: Time-varying correlation estimates from the two Normal copulas.

Conditional Correlation in the Joe-Clayton Copula
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Figure 5: Time-varying correlation estimates from the two Joe-Clayton copulas.
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Parameter value

Conditional Tail Dependence

Time path of the parameters of the Joe-Clayton copula
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Figure 6: Time-varying parameters of the Joe-Clayton copulas.

Time path of the tail dependence in the Joe-Clayton copula
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Figure 7: Time-varying tail dependence in the Joe-Clayton copulas.
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Conditional Correlation in the Normal Copula (Pre- and Post-Euro)
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Figure 8: Time-varying correlation estimates from the Normal copulas allowing for a structural
break at the introduction of the Furo on Jan 1, 1999.
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Figure 9: Time-varying correlation estimates from the Joe-Clayton copulas allowing for a structural
break at the introduction of the Furo on Jan 1, 1999.
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Time path of the parameters of the Joe-Clayton copula (Pre- and Post-Euro)
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Figure 10: Time-varying parameters of the Joe-Clayton copulas allowing for a structural break at
the introduction of the Euro on Jan 1, 1999.

Time path of the tail dependence in the Joe-Clayton copula (Pre- and Post-Euro)
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Figure 11: Time-varying tail dependence from the Joe-Clayton copulas allowing for a structural
break at the introduction of the Furo on Jan 1, 1999.
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