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Abstract. This paper compares skew-linear and multilinear matroid representations. These
are matroids that are representable over division rings and (roughly speaking) invertible
matrices, respectively. The main tool is the von Staudt construction, by which we translate
our problems to algebra. After giving an exposition of a simple variant of the von Staudt
construction we present the following results:

• Undecidability of several matroid representation problems over division rings.

• An example of a matroid with an infinite multilinear characteristic set, but which is
not multilinear in characteristic 0.

• An example of a skew-linear matroid that is not multilinear.

Keywords. Matroids, division ring representations, subspace arrangements, c-arrange-
ments, multilinear matroids, von Staudt constructions, word problem, Weyl algebra,
Baumslag–Solitar group
Mathematics Subject Classifications. 05B35, 52B40, 14N20, 52C35, 20F10, 03D40

1. Introduction

The thread of this paper winds around the von Staudt construction. We collect some examples
and theorems which discuss and compare the basic properties of skew-linear and multilinear
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matroid representations. With the von Staudt construction, such representability of matroids
reduces to and from questions about matrix rings and division rings.

Skew-linear matroids are those representable over a division ring; multilinear matroids are,
roughly speaking, those representable in invertible matrices. Definitions appear in Section 2,
while Section 1.2 describes some appearances of multilinear matroids in mathematics and com-
puter science.

1.1. Results

Our main results are:

1. Recognizing skew-linear matroids is algorithmically undecidable1.

2. It is possible for a matroid which is not multilinear over a field of characteristic 0 to have
an infinite (multilinear) characteristic set. However, if the multilinear characteristic set of
a matroid contains 0 then it is infinite.

3. Not every skew-linear matroid is multilinear.

These theorems can be compared to the following known facts, whose proofs are rather
different despite the similar statements:

1. Recognizing multilinear matroids is algorithmically undecidable[KY22].

2. A matroid with infinite skew-linear characteristic set can be represented over a skew-field
of characteristic 0. However, there is a matroid with skew-linear characteristic
set {0} [EH91].

3. Not every multilinear matroid is skew-linear [PvZ13].

The main tool used throughout the paper is a construction essentially due to von Staudt
[vS57], which reduces the solvability of a system of polynomial equations to a sequence of
matroid representation problems. This works in both the skew-linear and the multilinear settings
(the skew-linear case is classical). We work with a simple version of the construction, and
provide detailed exposition.

Our results are proved by use of von Staudt constructions in conjunction with the following
algebraic theorems:

1. The word problem for division rings is undecidable (and slight refinements of this theo-
rem) [Mac73].

2. The Weyl algebra over a field of characteristic 0 has no nontrivial finite-dimensional repre-
sentations. However, the Weyl algebra over a field of characteristic p is finite-dimensional
over its center (see [EGH+11] for example).

1The result is somewhat finer: we show that there is a division ring D such that it is undecidable whether a
matroid is D-linear, and that it is also undecidable whether a matroid is representable over a division ring of a given
characteristic.
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3. There is a system of polynomial equations in noncommuting variables that has a solution
in some division ring, but which cannot be solved in matrices over a field (Theorem 6.5 –
this seems to be new).

1.2. Related work

This paper is related to [PvZ13], in which Pendavingh and van Zwam define skew partial fields
and matroid representations over them. This is a simultaneous generalization of both classes of
matroid representations considered here. Several characterizations of representability are given
in that paper, and it is proved that not every multilinear matroid is skew-linear. We answer a
question posed there by showing that not every skew-linear matroid is multilinear, either.

Parts of this paper are also parallel to a part of [EH91], in which the authors describe a
variant of the von Staudt construction over division rings and give some examples of skew-linear
matroids with interesting characteristic sets.

Our results on undecidability owe their existence to Macintyre’s paper [Mac73] on the word
problem in division rings. The results in that paper were improved and refined in [Mac79], but
we do not use the latter paper here.

It is possible that multilinear matroids first appeared in [GM88], Goresky and Macpherson’s
work on stratified Morse theory. They defined c-arrangements (objects dual to multilinear ma-
troids) as examples of subspace arrangements to be studied from a topological viewpoint.

Multilinear matroids also appear in cryptography and network coding: in cryptography, their
ports are access structures of perfect ideal secret sharing schemes (it is not known if this construc-
tion yields all such access structures). See [SA98, BBEPT14] for details. In network coding,
the multilinear representability problem is equivalent to certain network capacity problems, in
which only linear coding functions are permitted: see [ESG10], compare also [DFZ07].

1.3. History and applications of the von Staudt construction

The authors are not historians; this subsection reflects their point of view and their interaction
with this circle of ideas.

In [vS57], von Staudt introduced the algebra of throws. This is a geometric construction,
based on the cross-ratio, for adding and multiplying points on a projective line. Using it, poly-
nomial algebraic relations can be translated into corresponding point-and-line configurations
(cf. [RG11, VY65]).

This construction and its variants can be used to prove the coordinatization theorem of pro-
jective geometry, namely that a Desarguesian projective plane is necessarily isomorphic to the
projective plane over a division ring (see [VY65] for example). Together with Pascal’s theorem,
it is also the tool used to prove that Hilbert’s axioms for plane Euclidean geometry accurately
capture the notion of a real inner product space of dimension 2 [Hil02].

In matroid theory, it has perhaps most notably been applied by Mnëv to prove his universality
theorem for the realization spaces of oriented matroids [Mnë88]. One version of this theorem
states that the space of solutions to a system of real polynomial equations and strong inequalities2

2The solution space to such a system is called a basic primary semialgebraic set.
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is homotopy equivalent to the realization space of an oriented matroid. This is a highly technical
result, and the use of the construction requires great care.

Via the von Staudt construction, representability of Dowling geometries corresponds to sets
solvability of purely multiplicative equations. See [BBEPT14, KY22] for two related applica-
tions.

1.4. Outline of the paper

In Section 2 we recall the definitions of multilinear and skew-linear matroid representations,
provide a short discussion of the projective plane over a division ring (which is later used in the
von Staudt construction,) and define projective equivalence of representations.

In Section 3 we describe a simple variant of the von Staudt construction, and prove the basic
theorem relating polynomial equations in noncommuting variables with representation problems
for the matroids produced by the construction.

Section 4 is devoted to the undecidability of certain problems regarding skew-linearity of
matroids.

Section 5 discusses characteristic sets and constructs an example of a matroid which is mul-
tilinear over all prime characteristics, but not over characteristic 0.

Finally, in Section 6 we prove that not every skew-linear matroid is multilinear.

2. Skew-linear and multilinear representations of matroids

We start by defining a convenient notation used in this section. LetA be a matrix whose columns
are indexed by the set {1, . . . , n}. For an (ordered) set X ⊆ {1, . . . , n} we denote by AX the
submatrix of A induced by the columns in X .

2.1. Skew-linear representations

Unless otherwise stated, a vector space over a division ring D will have D acting on the right
in this paper. In particular, Dr will always be considered a right vector space of dimension r
over D. So if V is a vector space over D, then a set of vectors {w1, . . . , wn} ⊆ V is independent
over D if

w1λ1 + · · ·+ wnλn = 0 =⇒ λ1 = · · · = λn = 0

for any λ1, . . . , λn ∈ D.
If E is a finite set and V is a vector space over D, then any map φ : E → V gives rise to

a matroid M(φ) on E in which a set F ⊆ E is independent if and only if the set of vectors
{φ(e) : e ∈ F} is linearly independent over D. We say that a matroid M on E is representable
over D if there is a map φ : E → V so that M = M(φ), and then such φ is a representation
of M . A matroid is skew-linear if it is representable over some division ring D.

Several trivial operations preserve that φ : E → V is a representation of M over D. First
of all, we may as well assume that V is spanned by the image of φ. Since then V is isomorphic
to Dr, where r is the rank of M , we may as well assume that V = Dr.
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If φ′ : E → Dr arises by taking φ′(e) = φ(e)λe with λe ∈ D \ {0} for all e, then
M(φ′) = M(φ) = M , as scaling does not affect linear dependence. Writing

[v] := {vλ | λ ∈ D \ {0}}

for the rescaling class of a vector v ∈ Dr, the rescaling class of the representationφ is essentially
an assignment of the non-loops e of M to points of a projective space over D:

e 7→ [φ(e)] ∈ DPr−1 := {[v] | v ∈ Dr \ {0}}.

We will often prefer this perspective on representations φ, since the exact rescaling of a repre-
sentation is usually a lesser concern and the projective view on matroids of rank 3 renders them
as geometric configurations in the projective plane DP2. We will briefly discuss the projective
plane over a division ring D below.

We will consider an r × E matrix A with entries in D as a representation φ : E → Dr by
taking φ(e) equal to the e-th column of A. We will not hesitate to write representations φ in this
fully equivalent matrix form, if only for conciseness, and also write M(A) for M(φ).

If A and A′ are r×E matrices with entries in D, then we say that A and A′ are projectively
equivalent if A′ = Y AΛ for an invertible r × r matrix Y and an invertible diagonal E × E
matrix Λ. If A and A′ are projectively equivalent, then M(A) = M(A′). We obtain:

Lemma 2.1. Let M be a matroid of rank r on ground set E, and let B be a basis of M . If M is
representable over D, then there is an r × E matrix A so that M = M(A) and AB = I .

In keeping with our convention that independence means right independence, the rank of a
matrixA overD is the maximum cardinality of a right independent subset of columns ofA. This
equals the maximum cardinality of a left independent subset of rows of A. If Y, Z are invertible,
then A and A′ := Y AZ have the same rank.

2.2. Multilinear representations

If V is a vector space over a field and c is a natural number, then Gr(c, V ) denotes the set of
c-dimensional linear subspaces of V .

A c-arrangement is a map φ : E → Gr(c, V )∪{{0}} so that for each F ⊆ E, the dimension
of ∑

e∈F

φ(e)

is a multiple of c. A c-arrangement φ determines a matroid M(φ) on E in which a set F is
independent if and only if

dim
∑
e∈F

φ(e) = c|F |

Equivalently, M(φ) is the matroid on E with rank function r : 2E → N determined by

r(F ) :=
1

c
dim

∑
e∈F

φ(e)
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If F is a field, then we say that a matroid M is c-linear over F if there is a c-arrangement
φ : E → Gr(c, V )∪{{0}} such that M = M(φ), where V is some vector space over the field F.
A matroid M is multilinear (over F) if it is c-linear (over F) for some c.

As before, there are simplifying assumptions we can make about a presumed c-arrangement
φ : E → Gr(c, V ) ∪ {{0}} representing a matroid M on E. We may assume that
V =

∑
e∈E φ(e), and since by definition of a c-arrangement we have dim

∑
e∈E φ(e) = cr

where r is the rank of M , we may as well put V = Fcr. If φ′ : E → Gr(c, V ) ∪ {{0}} is such
that for some invertible matrix Y we have φ′(e) = Y φ(e) for all e, then evidently φ′ is also a
c-arrangement and M(φ′) = M(φ) = M .

For each e ∈ E, we denote e := {(e, 1), . . . , (e, c)} and let

F := F × {1, . . . , c} =
⋃
e∈F

e

for eachF ⊆ E. Then any rc×E matrixA uniquely determines a mapφwhich sends each e ∈ E
to the span of the columns of the submatrix Ae. Each map φ : E → Gr(c, V ) ∪ {{0}} is
determined by an rc × E matrix A in this manner, simply by picking a basis we,1, . . . , we,c of
each linear subspaceφ(e) ⊆ V = Fcr and taking the vectorwe,i as the (e, i)-th column ofA. The
matrix A is not unique, since we have the freedom to choose any basis we,1, . . . , we,c for each e
in the construction. If any two rc× E matrices A,A′ determine the identical c-arrangement φ,
then it is straightforward that A′ = AΛ where Λ is an invertible E × E block diagonal matrix
with blocks {e× e : e ∈ E}, that is, Λ(e,i),(f,j) ̸= 0 only if e = f .

We will say that two rc × E matrices A,A′ are projectively equivalent if A′ = Y AΛ for
some invertible matrix Y and block matrix Λ as above. We obtain:

Lemma 2.2. Let M be a matroid of rank r on ground set E, and let B be a basis of M . If M is
c-linear over F, then there is an rc× E matrix A so that M = M(A) and AB = I .

The identity matrix AB = I of this lemma induces a partition of the rc rows of A into sets
b ⊆ {1, . . . , rc} for b ∈ B, so that the nonzero rows of Ab are indexed by b for each b ∈ B.
With this partition of rows, A is a block matrix with rows indexed by b and columns by e
for b ∈ B, e ∈ E. In keeping with this observation, we will write c-linear matrix represen-
tations A as block matrices with c× c blocks throughout this paper.

2.3. A brief review of the projective plane

We review some definitions and set up notation for projective planes coordinatized by division
rings. A reference for this section is [Har67, Chapter 6].

Let D be a division ring. We say that two vectors (a, b, c), (a′, b′, c′) ∈ D3 are (scaling)
equivalent, notation (a, b, c) ∼ (a′, b′, c′), if there exists a λ ∈ D \ {0} such that
(a′, b′, c′) = (aλ, bλ, cλ). The equivalence class of (a, b, c) is denoted

[a : b : c] := {(aλ, bλ, cλ) | λ ∈ D \ {0}}.
The (right) projective plane DP2 over a D has points

{[a : b : c] | (a, b, c) ∈ D3 \ {(0, 0, 0)}}.
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A projective line is a subset of the form ℓ = {[a : b : c] | (a, b, c) ∈ L\{(0, 0, 0)}}whereL ⊆ D3

is a linear subspace of dimension 2. So ℓ is a projective line if and only if there are linearly
independent vectors (a, b, c) and (a′, b′, c′) ∈ D3 such that

ℓ = {[aλ+ a′µ : bλ+ b′µ : cλ+ c′µ] | λ, µ ∈ D, not both zero} ,

Since a pair of nonzero vectors (a, b, c) and (a′, b′, c′) ∈ D3 is linearly independent if and only
if [a : b : c] ̸= [a′ : b′ : c′], a projective line is determined by any two of its points. Since any
two distinct linear subspaces of D3 of dimension 2 intersect in a line, any two distinct lines in a
projective plane intersect at a unique point.

A projective transformation ofDP2 is a bijectionDP2 → DP2 such that the image and preim-
age of every projective line is again a projective line. One part of the fundamental theorem of
projective geometry states that any such transformation is given by composing an automorphism
of D with a map defined on representatives in D3 by

[x, y, z] 7→

A

xy
z

T

where A ∈ M3(D) is an invertible matrix.
The affine plane D2 can be embedded in the projective plane by the map φ : D2 → DP2

given by
φ : (x, y) → [1 : x : y] .

This map takes an affine line ℓ = {(x, y) + (x′, y′)λ | λ ∈ D} in D2 to the projective line ℓ′

spanned by [1 : x : y] and [0 : x′ : y′], and φ[ℓ] = ℓ′ \ {[0 : x′ : y′]}. Thus two affine lines are
parallel if and only if they are mapped to projective lines whose intersection point lies on the
“line at infinity”

{[0 : x′ : y′] | (x′, y′) ∈ D2 \ {0}}.

2.3.1 Notation

Our convention is to denote by O (for origin) the point [1 : 0 : 0], and to call the line spanned
by x∞ := [0 : 1 : 0] and y∞ := [0 : 0 : 1] the line at infinity. We further denote x1 := [1 : 1 : 0]
and y1 := [1 : 0 : 1].

2.3.2 Matroid representations and DP2

Let M be a loop-free matroid of rank 3 on the ground set E = [n]. A representation of M over
a division ring D is essentially a configuration of points {pi}i∈[n] in DP2. Each column

[
x
y
z

]
of the matrix of the representation corresponds to a point [x : y : z] of DP2, and three points
of M are dependent precisely when the corresponding points in DP2 lie on a line. Under this
correspondence, a set of parallel elements of M is a single point of DP2, indexed several times.

Note that passing from nonzero elements of D3 to their images in the quotient DP2 causes
essentially no loss of information. This is because multiplying a column of the matrix of a
representation by a scalar from the right gives a projectively equivalent representation.
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•
O •

a •
b

•
c •

d

Figure 2.1: The matroid M appearing in Lemma 2.3.

The next lemma will be useful. To state it, we define M to be the simple rank 3 matroid
on E = {O, a, b, c, d} with rank 2 flats {O, a, b} and {O, c, d} (see Figure 2.1).

Lemma 2.3. Let E and M be the ground set and matroid defined in the preceding paragraph.
Let N be a matroid on a set E ′ ⊇ E such that the restriction N |E is M .

1. LetD be a division ring. Any matrixA overD representingM is projectively equivalent to

O a b c d
1 1 0 1 0

0 1 1 0 0
0 0 0 1 1

.

2. Let F be a field. Any matrix A representing M as a c-arrangement over F is projectively
equivalent to

O a b c d
I I 0 I 0

0 I I 0 0
0 0 0 I I

.

In particular, any matrix A representing N over a division ring D or multilinearly over a field F
is projectively equivalent to a matrix A′ such that A′

E is of the form above.

Remark 2.4. The division ring case can easily be proved using the fundamental theorem of
projective geometry, together with the fact that the points of DP2 representing a, . . . , d form a
projective frame.

Proof of Lemma 2.3. Denote by φ the function on E that takes each e ∈ E to the corresponding
point of D3 (in case (1)) or to the corresponding 3c × c matrix over F (in case (2)). Note that
formally, in the multilinear caseφ is not a representation as defined above (it does not take values
in c-dimensional subspaces of F3c, but in block matrices).
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We have φ(a) = φ(O)λ + φ(b)µ and φ(c) = φ(O)λ′ + φ(d)µ′ for appropriate λ, µ, λ′, µ′

in D (in case (1)) or in Mc(F) (in case (2)). By replacing φ(b) with φ(b)µλ−1 (which spans the
same subspace) we may assume µ = λ, and similarly we may assume λ′ = µ′.

Multiplying A from the left by the left inverse of the matrix | | |
φ(O) φ(b) φ(d)
| | |


(with columns φ(O), φ(b), φ(d)) is a projective equivalence, and takes φ(O), φ(b), φ(d) to

[
1
0
0

]
,[

0
1
0

]
,
[
0
0
1

]
(with 1 replaced by I in the multilinear case,) and takes φ(a), φ(c) to

[
λ
λ
0

]
,
[
λ′
0
λ′

]
,

respectively. Multiplying the a-column of A from the right by λ−1 and the b-column from the
right by λ′−1 is a projective equivalence, corresponding to multiplying A from the right by a
diagonal matrix (or block diagonal matrix, in case (2)) and this yields the result.

3. Von Staudt constructions in matrices and division rings

In this section we describe a variant of the von Staudt construction, which gives a method for
turning the solvability of a system of polynomial equations into a matroid representation prob-
lem.

3.1. The geometric idea

The basic geometric idea is most easily pictured in the real affine plane: see Figure 3.1. We
begin with two lines, an “x-axis” and a “y-axis” intersecting at an origin point O. In Figure 3.1,
we represent these axes by two perpendicular lines. We choose distinguished unit points x1, y1
on the axes with |Ox1| = |Oy1| = 1.

First consider the situation in Figure 3.1a. The segments xkyk and x1y1 are parallel, imply-
ing |Oxk| = |Oyk|. Similarly, we see

|Oyk|
|Oy1|

=
|Oxi|
|Oxj|

because xjy1 is parallel to xiyk. Rearranging and using |Oxk| = |Oyk|, we find

|Oxk| · |Oxj| = |Oxi| ,

a multiplicative relation.
Now consider Figure 3.1b. Define the point rk to be the intersection point of the line

through y1 parallel to the x-axis and the line through xk parallel to the y-axis. The trian-
gles Oy1xj and xkrkxi are similar, since corresponding segments are parallel. In fact, the two
triangles are congruent because |Oy1| = |xkrk|: this follows from the fact that Oy1rkxk is a
parallelogram. The congruence of the two triangles gives |xkxi| = |Oxj|, so

|Oxi| = |Oxk|+ |xkxi| = |Oxk|+ |Oxj| .
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•
O

•
x1

•
xj

•
xk

•
xi

•y1

•yk

(a) A diagram exhibiting a multiplicative relation.

•
O

•
x1

•
xj

•
xk

•
xi

•y1 •
rk

(b) A diagram exhibiting an additive relation.

Figure 3.1: Two diagrams motivating the following von Staudt constructions.

The equation |Oxi| = |Oxk|+ |Oxj| is the desired additive relation.
In both cases, the given data was a point and line configuration in which certain lines are

parallel, together with the position of x1 and y1 on their respective lines. Since matroid rep-
resentations in rank 3 naturally live in a projective plane, we replace the affine plane by the
projective plane in the following construction.

3.2. The construction

The von Staudt construction encodes equations of the form Xi = Xj + Xk or Xi = Xj · Xk

in the circuits of a matroid. We begin by showing that any system of polynomial equations is
equivalent to one in which each equation is of one of these forms.

Recall that Z⟨X1, . . . , Xn⟩ is the ring generated over Z by n noncommuting variables. A
polynomial equation (with integer coefficients) in the variables X1, . . . , Xn is an expression of
the form P = Q, where P,Q ∈ Z⟨X1, . . . , Xn⟩.

Throughout this article, we assume all systems of equations to be finite.

Definition 3.1. An equation in the variables X1, . . . , Xn is called atomic3 if it is of one of the
following forms:

1. Xi = Xj +Xk with 1 ⩽ i, j, k ⩽ n or,

2. Xi = Xj ·Xk with 1 ⩽ i, j, k ⩽ n.

A system of equations is called atomic if it consists of atomic equations together with X0 = 0
and X1 = 1.

Let P = Q be a polynomial equation in the variablesX1, . . . , Xn. A solution to this equation
in a division ring D is a tuple (d1, . . . , dn) ∈ Dn such that

P (d1, . . . , dn) = Q(d1, . . . , dn)

in D. Similarly, a solution in c × c matrices over a field F is a tuple (A1, . . . , An) ∈ (Mc(F))n

such that P (A1, . . . , An) = Q(A1, . . . , An).
3In [RG99], a related concept is called Shor normal form.
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•
O

•
x1

•
xj

•
xk

•
xi

•
x∞

. . . . . . •
xn

•
y∞

•
y1

•yk

•
z1

•
zj

•
O

•
x1

•
xj

•
xk

•
xi

•
x∞

. . . . . . •
xn

•
y∞

•
y1

•yk

•
z1

•
zj

(a) Part of MP for P : Xi = Xj ·Xk.

•
O

•
x1

•
xj

•
xk

•
xi

•
x∞

. . . •
xn

•
y∞

•
y1

•
rk

•
z1

•
zj

•
O

•
x1

•
xj

•
xk

•
xi

•
x∞

. . . •
xn

•
y∞

•
y1

•
rk

•
z1

•
zj

(b) Part of MP for P : Xi = Xj +Xk.

Figure 3.2: The two building blocks of the von Staudt matroid MP . The elements and circuits
corresponding to the polynomial P are depicted in blue. These pictures correspond to the ones
shown in Figure 3.1 after adding the line at infinity.

Lemma 3.2. Let P be a system of polynomial equations. Then there exists an N ∈ N and a
system of polynomial equations P ′ in the variables X0, . . . , XN such that:

(i) The system P ′ is atomic.

(ii) For any division ring D, the system P has a solution in D if and only if P ′ has a solution
in D.

(iii) For any field F and natural number c, P has a solution in Mc(F) if and only if P ′ has a
solution in Mc(F).

Proof. We describe an explicit way to construct the system P ′. The statements on equivalent
solvability follow immediately.

First replace any positive integer n by the expression
∑n

i=1 X1. Replace any 0 by the vari-
able X0. Subsequently, replace any negative integer m by a new variable X ′ together with the
equation X0 = X ′ +

∑−m
i=1 X1.

Now consider a monomialXi1 ·. . .·Xik . Introducing new variablesX ′
2 . . . , X

′
k the monomial

can be replaced by the single variable X ′
k after adding the new equations

X ′
2 = Xi1 ·Xi2 , X ′

3 = X ′
2 ·Xi3 , · · · X ′

k = X ′
k−1 ·Xik .

Similarly, a sum of variables Xi1 + . . . + Xik can be replaced by a single variable, using the
same process with · replaced by +.

Lastly, add the equations X0 = 0 and X1 = 1 to the system P ′.

As a running example we consider the Weyl algebra equation XY − Y X = 1. We consider
this equation and the closely related Weyl algebra in more detail in Section 5.2.
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Example 3.3. By Lemma 3.2 there is an atomic system of equations that has a solution in an
arbitrary division ring D if and only if the Weyl algebra equation XY − Y X = 1 has a solution
in D. In this case, the equations are

X0 = 0, X1 = 1, X2 ·X3 = X4, X3 ·X2 = X5, X1 +X5 = X4.

We denote the system of these equations by PW . Given a solution in a division ring or in-
vertible matrices to the system PW , setting X = X2 and Y = X3 is a solution to the equa-
tion XY − Y X = 1.

Let P be an atomic system of equations. We construct a collection of dependencies MP of
the set EP (i.e. dependent sets) as follows.

1. Begin with the ground set

EP = {O, x∞, y∞} ∪ {xi}Ni=1 ∪ {yi}Ni=1 ∪ {zi}Ni=1.

Define each subset of size 3 of one of the sets

{O, x∞} ∪ {xi}Ni=1, {O, y∞} ∪ {yi}Ni=1, and {x∞, y∞} ∪ {zi}Ni=1

to be a dependency in MP .

2. We now add dependencies to MP for each equation:

i. For each equation of the form Xi = Xj ·Xk, add the dependency {xi, yk, zj} depicted
in Figure 3.2a.

ii. For each equation of the form Xi = Xj + Xk, add an element rk to the ground set
together with the dependency

{y1, rk, x∞} , {xk, rk, y∞} , {xi, rk, zj}

depicted in Figure 3.2b.

3. Finally, define each subset of size 4 of EP which does not yet contain a dependency to be
a dependency.

Remark 3.4. We are looking for matroids having the just described set of dependencies as cir-
cuits. It is however possible that MP is not the family of circuits of a matroid. If P contains
an equation of the form Xi = Xj · Xi, then MP contains the two dependencies {xi, yj, zi},
{xi, y1, zi}, but has no dependency contained in {xi, y1, yj}. Thus MP does not satisfy the cir-
cuit elimination axiom.

Nevertheless, we can discuss its matroidal weak images, which are defined as follows.

Definition 3.5. A matroid M ′ is a weak image of a collection of dependencies M on the same
ground set if every dependency of M contains a circuit of M ′.
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This enables us to define the set of von Staudt matroids associated to a system of equations.

Definition 3.6. Let P be an atomic system of equations. If MP is a matroid, we call it the
principal von Staudt matroid of P . The family of von Staudt matroids associated to P is the set
of matroidal weak images M ′

P of MP which satisfy the following conditions:

1. M ′
P is loop-free.

2. The restrictions of MP and M ′
P to {O, x1, y1, x∞, y∞} are identical: the five points are

distinct, forming two lines which intersect at O.

3. No element xi ̸= x∞ is parallel to x∞ in M ′
P .

We denote this set by MP .
The family MP is always finite, and can be computed from P . It is possible to replace MP

with a family of simple matroids having the same properties by replacing eachM ∈ MP with its
simplification, or in other words, by deleting all but one from each maximal subset of mutually
parallel elements of each M ∈ MP .

We continue our example of the Weyl algebra equation XY −Y X = 1 in the context of von
Staudt matroids.

Example 3.7. We define the Weyl matroid MW to be the principal von Staudt matroid of the
atomic system of equations PW . It can be checked that the circuits defining MW satisfy the
circuit elimination axiom and MW is therefore actually a matroid in this case.

Part of the Weyl matroid is drawn in Figure 3.3: the circuits of the equations X2 ·X3 = X4,
X3 ·X2 = X5 and X1 +X5 = X4 are depicted as curves and segments.

The following theorem describes the relation between solvability of P and representability
of members of MP .

Theorem 3.8. Let P be an atomic system of equations in the variables X0, . . . , XN , and let MP
be the family of von Staudt matroids associated to P .

(i) IfP has a solution over a division ringD, then at least one member ofMP is representable
over D.

(ii) If a matroid in MP is representable over a division ring D then P has a solution in D.

(iii) If a matroid in MP has a multilinear representation of order c over a field F, then P has
a solution in Mc(F), with all matrices invertible or 0.

The assumption that P is atomic can be dropped: given a general system of equations, we
can apply Lemma 3.2 to reduce to the atomic case.
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•
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•
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•
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•
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•
x5

•y2

•y3

•y1
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•
O

•
x∞

•
y∞

•
x4

•
x5

•y2

•y3

•y1

• z2

• z3

• z1

• r5

Figure 3.3: A geometric representation of a part of the Weyl matroid MW .

Proof of Theorem 3.8 (i). Let D be any division ring. Suppose the substitution X0 = 0,
X1 = a1 = 1, X2 = a2, . . . , XN = aN is a solution of P for some a1, . . . , aN ∈ D. Consider
the following map ρ from the ground set of MP to DP2:

O 7→ [1 : 0 : 0] ,

xi 7→ [1 : ai : 0] for all 1 ⩽ i ⩽ N,

yi 7→ [1 : 0 : ai] for all 1 ⩽ i ⩽ N,

x∞ 7→ [0 : 1 : 0] ,

y∞ 7→ [0 : 0 : 1] ,

zi 7→ [0 : ai : −1] for all 1 ⩽ i ⩽ N,

ri 7→ [1 : ai : 1] for all 1 ⩽ i ⩽ N.

We show that this map represents some matroid in MP . First we need to verify that the
conditions described in Definition 3.6 hold.

The matroid represented by ρ is loop-free (there is no “0 point” in DP2). Similarly, no ρ(xi)
is parallel to ρ(x∞) (for i ̸= ∞), because ρ(x∞) is on the line at infinity and other ρ(xi) are not.
The restriction of ρ to {O, x1, y1, x∞, y∞} represents the same matroid as the restriction of MP
to this subset: it is easy to see the images of the five points are distinct, and that the lines spanned
by {ρ(x1), ρ(x∞)} and {ρ(y1), ρ(y∞)} meet at ρ(O).

What remains is to show that the images of circuits of MP are dependent. This is trivial for
triples of elements all lying on the flat spanned by O and x∞ or O and y∞ or x∞ and y∞. In all
three cases the resulting subsets are of size at least 3, and lie on a projective line.

Now consider a triple {xi, yk, zj} for some indices 1 ⩽ i, k, j ⩽ N . By construction, such a
triple is a circuit of MP only in the following situations.
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1. i = k and j = 1,

2. i = j and k = 1,

3. The equation Xi = Xj ·Xk is in P .

Note that in all three cases it is true by definition that ai = aj · ak.
Taking representatives in D3 for ρ(xi), ρ(yk), ρ(zj) and writing them as columns, we have a

dependence  1ai
0

 · 1 +

 1
0
ak

 · (−1) +

 0
aj
−1

 · ak =

 0
ai − aj · ak

0

 = 0.

Now suppose P contains the equation Xi = Xj + Xk for some indices 1 ⩽ i, j, k ⩽ N .
In this case MP contains the circuits {y1, rk, x∞}, {xk, rk, y∞}, and {xi, rk, zj}. The images
under ρ of each of these circuits are dependent, because10

1

 · 1 +

 1
ak
1

 · (−1) +

01
0

 · ak = 0,

 1
ak
0

 · 1 +

 1
ak
1

 · (−1) +

00
1

 · ak = 0,

and  1ai
0

 · 1 +

 1
ak
1

 · (−1) +

 0
aj
−1

 · (−1) = 0,

where in the last equality we used the assumption ai = aj + ak.
It is also clear that any subset of size 4 of the image of ρ is dependent.

Proof of Theorem 3.8 (ii). Let ρ be a representation of a member of MP in a division ring D.
Then by Lemma 2.3, there exists a projective transformation which takes O, x1, y1, x∞, y∞
to the elements [1 : 0 : 0], [1 : 1 : 0], [1 : 0 : 1], [0 : 1 : 0], and [0 : 0 : 1] in DP2,
respectively. By composing with such a transformation, we may assume ρ maps O, . . . , y∞
to [1 : 0 : 0], . . . , [0 : 0 : 1].

This ensures that for all 1 ⩽ i ⩽ N , ρ maps

xi 7→ [1 : ai : 0], yi 7→ [1 : 0 : a′i], zi 7→ [0 : a′′i : −1],

for some suitable elements ai, a′i, a′′i ∈ D.
Since ρ represents some matroid inMP , it maps each circuit ofMP to a set of rank at most 2.
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Consider the circuit {xi, yi, z1} for some i, and take representatives in D3 for its image un-
der ρ:  1ai

0

 ,

 10
a′i

 ,

 0
1
−1

 .

A dependence between these columns is a solution λ1, λ2, λ3 ∈ D to the equation 1 1 0
ai 0 1
0 a′i −1

 ·

λ1

λ2

λ3

 = 0.

It is clear that any solution must have λ1 = −λ2 and λ3 = a′i · λ2. Thus any nonzero solution
has λ1 ̸= 0, and we may without loss of generality take λ1 = 1, λ2 = −1, and λ3 = −a′i. The
columns are known to be dependent, which implies (by considering the middle row of the matrix
equation above) that ai = a′i.

Applying the same considerations to circuits of the form {xi, y1, zi} shows ai = a′′i for each i.
Now we claim that substituting X0 = 0, X1 = a1 = 1, and Xi = ai yields a solution to the

atomic equations in P . The proof is essentially the same as the proof that ai = a′i.
Suppose an equation Xi = Xj · Xk is in P . By assumption, the matroid represented by ρ

contains the circuit {xi, yk, zj} in this case. Taking representatives for ρ(xi), ρ(yk), and ρ(zj)
in D3 and using the existence of a nontrivial dependence, we have 1ai

0

 · λ1 +

 1
0
ak

 · λ2 +

 0
aj
−1

 · λ3 = 0

where λ1, λ2, λ3 are not all 0. Considering the first row we see λ1 = −λ2, and considering the
last row we see λ3 = ak·λ2. Thus λ1 ̸= 0 (or the dependence is trivial) so we may assume λ1 = 1.
Substituting and considering the second row, we obtain ai − aj · ak = 0.

Similarly, consider an equation Xi = Xj + Xk in P . Then, the matroid represented by ρ
contains the element rk together with the circuits {y1, rk, x∞}, {xk, rk, y∞}, and {xi, rk, zj}.
The first two circuits imply ρ(rk) = [1 : ak : 1]. In the same way as for a multiplicative equation
in P , we obtain ai = aj + ak.

Therefore the tuple (a1, . . . , aN) ∈ DN solves P .

The same proof of Theorem 3.8 (ii) works mutatis mutandis for Theorem 3.8 (iii). The
elements in the division ring are replaced by the invertible matrices in Mc(F) together with the
zero matrix, and the projective transformation of DP2 is replaced with a projective equivalence
of multilinear representation matrices.

The solution to P corresponding to a multilinear representation of a matroid M ∈ MP will
always have all matrices invertible or zero, because if a c× c matrix A is neither 0 nor invertible
then

rk

Ic Ic
0 A
0 0


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is not a multiple of c (the two columns of this block matrix correspond to the images of O and
some element xi in a representation).
Remark 3.9. The converse of Theorem 3.8 (i) fails for multilinear representations due to the
failure of certain ranks to be multiples of c: for any c ⩾ 2, there are pairs of invertible c × c
matrices A,A′ such that

rk

Ic Ic
A A′

0 0

 /∈ cN.

It is impossible for a solution of a system P having Xi = A and Xj = A′ to correspond to a
multilinear representation of any M ∈ MP when A,A′ have this property.

4. Undecidability in division rings

We summarize some results of Macintyre on the undecidability of the word problem in division
rings, see [Mac73], and also [Mac79] for refinements. Using these, it is easy to deduce the next
theorem.

Theorem 4.1. The following problems are undecidable.

1. Given a matroid, decide whether it is skew-linear.

2. Fix p prime or 0. Given a matroid, decide whether there exists a division ring of charac-
teristic p over which it is representable.

Further, there exists a division ring D such that the following problem is undecidable: given a
matroid, decide whether it is representable over D.

This is similar to the multilinear case – cf. [KY22]. For linear matroid representations the
situation is simpler: there is an algorithm to decide whether a given matroid is linear, and also
an algorithm to decide whether a matroid is linear over a fixed finite or algebraically closed field.
The linear characteristic set is also computable, see for instance [Oxl11, Theorem 6.8.14].

4.1. Macintyre’s results

This section summarizes part of [Mac73] for the reader’s convenience.
Let L be the language of group theory, having the constant 1 and the functions ·,−1. Mac-

intyre also uses it for the multiplicative theory of division rings, with the additional conven-
tion 0−1 = 0 (this is used only to make sure −1 is always defined, and 0 plays no role).

A universal Horn sentence in L is an expression of the form:

∀x1 . . . ∀xn

(
m∧
i=1

Ai(x1, . . . , xn) = Bi(x1, . . . , xn)

)
=⇒ A(x1, . . . , xn) = B(x1, . . . , xn)

where each expression of the form Ai(x1, . . . , xn) (and similarly Bi, A,B) is a product of some
sequence of the variables x1, . . . , xn and their inverses. We will call the equations Ai = Bi

(excluding A = B) the equations of the Horn sentence, A = B its implication.
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A Horn sentence in L is true in division rings if it is true in every division ring. It is true in
groups if it is true in every group.

Given a universal Horn sentence H in L, the main theorem of [Mac73] produces a universal
Horn sentence H ′ in L, computable from H , such that H is true in groups if and only if H ′ is
true in division rings.

The proof contains a construction for each prime number p or 0, of a division ring Dp of
characteristic pwith the following property: Dp has elements x̄1, . . . , x̄n satisfying the equations
of H ′, and x̄1, . . . , x̄n satisfy the implication of H ′ if and only if H ′ is true in division rings.

4.2. Proof of Theorem 4.1

We begin by noting that the truth of a Horn sentence in division rings can be reduced to a
sequence of representation problems for matroids.

Lemma 4.2. Let D be a class of division rings. If it is decidable whether a matroid is repre-
sentable over at least one member of D, then the truth of Horn sentences in D is decidable.

This lemma will be applied with D equal to either a single division ring, the class of all
division rings, or the class of division rings having a fixed characteristic.

Proof. Given a Horn sentence H in L of the form:

∀x1 . . . ∀xn

(
m∧
i=1

Ai(x1, . . . , xn) = Bi(x1, . . . , xn)

)
=⇒ A(x1, . . . , xn) = B(x1, . . . , xn),

the equations Ai = Bi for i = 1, . . . ,m form a system of equations in the variables x1, . . . , xn

and their inverses. To this system we add a variable y together with the equation:

(A(x1, . . . , xn)−B(x1, . . . , xn))y = 1,

to ensure A = B does not hold.
This yields a system of equations inLwhich can be solved in at least one division ringD ∈ D

if and only if H is false in D.
To handle the convention 0−1 = 0, we split into 2n cases, one for each subset of the variables.
Let S ⊂ [n] (these will be the variables with value 0). For each i ∈ S, replace each oc-

currence of x−1
i by xi and add the equation xi = 0 to the system. By adding equations of the

form
xix

′
i = 1

for all i /∈ S and replacing each occurrence of x−1
i with x′

i for such i, we obtain a polynomial
system in 2n− |S| noncommuting variables.

Let MS be the family of von Staudt matroids associated with this system. This is a finite
family which can be computed from H . It is clear that some element M ∈ MS is skew-linear
over some division ring D ∈ D if and only if H is false in D and there is a counterexample
with {i ∈ [n] | xi = 0} = S.

Thus, at least one matroid in
⋃

S⊂[n]MS is representable over at least one element of D if
and only if H is false in D. Since

⋃
S⊂[n] MS is finite and computable from H , this proves the

lemma.
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The proof of the theorem is now straightforward:
By Macintyre’s results, there is a Horn sentence H ′, computable from H , which is true in

all division rings if and only if H is true in all groups. This remains true when restricting to
division rings of a fixed characteristic. The truth of a Horn sentence in groups is undecidable
(this is the uniform word problem). Together with Lemma 4.2, this proves the first two parts
of Theorem 4.1.

Let G = ⟨s1, . . . , sn|r1, . . . , rk⟩ be a finitely presented group in which the word problem is
undecidable. Let w = w(s1, . . . , sn) denote a word in the generators of G. Then w = e in G if
and only if the Horn sentence H given by

∀s1 . . . ∀sn
(

k∧
i=1

ri(s1, . . . , sn) = 1

)
=⇒ w(s1, . . . , sn) = 1

is true in groups. By the choice of G, there is no algorithm which decides whether w = e
as w ranges over all words in the generators. In other words, consider the collection of all Horn
sentences with the same equations ri(s1, . . . , sn) = 1 as H: there is no algorithm to decide
whether a sentence from this collection is true in groups.

Using this, we prove the third claim of Theorem 4.1: Macintyre’s results produce a single
division ring D, dependent only on the equations ri = 1 of H (and not on w), in which H ′ is
true if and only if H is true in groups. Thus, representability of matroids over D is undecidable.

5. Multilinear characteristic sets

5.1. Introduction to characteristic sets

We begin with a comparison of linear, skew-linear, and multilinear characteristic sets of ma-
troids.

Definition 5.1 ([ANLY00]). The multilinear characteristic set of a matroid M is the set

{p | M has a multilinear representation over a field of characteristic p}.

The linear and skew-linear characteristic sets are defined analogously.
Linear characteristic sets of matroids are well-understood: if M is a matroid, its linear char-

acteristic set is either finite or cofinite. The latter case occurs if and only if the set contains 0.
Any finite set of primes is the linear characteristic set of a matroid, and is also complementary to
some linear characteristic set. These results are explained in [Oxl11, Section 6.8], which refers
to Rado, Vámos, Reid, and Kahn [Rad57, Vám71, BK80, Kah82].

Skew-linear characteristic sets are more complicated: they need not be finite or cofinite, and
there is a matroid with skew-linear characteristic set {0}. Like in the linear case, an infinite skew-
linear characteristic set must contain 0: this follows from the compactness theorem of first-order
logic. See [EH91, Section 3.4] for both of these results.

The focus of this article lies on multilinear characteristic sets which are different from both of
these. Like in the linear situation, if a multilinear characteristic set contains 0 then it is cofinite.
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However, there exists a matroid with multilinear characteristic set equal to the set of all prime
numbers, that is, only 0 is excluded.

We do not yet know whether there exists an infinite multilinear characteristic set with an
infinite complement.

Lemma 5.2. Let M be a matroid. If the multilinear characteristic set of M contains 0 then it
contains all but finitely many primes.

Proof. Suppose M has a multilinear representation of order c over a field of characteristic 0.
Then, just like in the linear case, the multilinear representation matrices ofM of the same order c
are the solutions of a certain polynomial system with coefficients in Z. The set of characteristics
over which such a system can be solved is always finite or cofinite, and contains all but finitely
many primes if it contains 0: this is a theorem in commutative algebra and can be proved for
instance using Chevalley’s theorem on constructible sets, see [BV03, Appendix B] for details.

The proof can be used to show part of the characterization for linear characteristic sets. It also
shows that if M has a multilinear characteristic set which does not contain 0, then its multilinear
representations of any fixed order have only finitely many characteristics.

5.2. An infinite multilinear characteristic set excluding 0

We construct an explicit example of such a characteristic set using the Weyl algebra. The Weyl
algebra W over a field F is defined to be the free algebra over F generated by the two elements X
and Y , modulo the two-sided ideal generated by the element XY −Y X−1. It is an Ore domain
and admits a division ring of fractions, which we denote by Ŵ , see [Coh95, Section 6.1] for
details.

Recall that we described in Example 3.3 the atomic system of equations PW that has a solu-
tion in a division ring D if and only if the Weyl algebra equation XY − Y X = 1 has a solution
in D:

X0 = 0, X1 = 1, X2 ·X3 = X4, X3 ·X2 = X5, X1 +X5 = X4.

Furthermore recall that we defined the Weyl matroid MW to be the principal von Staudt
matroid of the atomic system of equations PW in Example 3.7.

Theorem 5.3. (i) The Weyl matroid MW is representable over the division ring Ŵ .

(ii) The Weyl matroid MW is not multilinear over any field of characteristic 0. Furthermore,
the matroid MW is not multilinear over a field of characteristic p with p > 0 if the order is
not a multiple of p.

(iii) The Weyl matroid MW is multilinear over a field of characteristic p for any p > 0 and
order p.

In particular, the multilinear characteristic set of MW is the set of all prime numbers.
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Proof. By definition, the equation XY − Y X = 1 has a solution in the Weyl algebra W and
therefore also in its division ring of fractions Ŵ . The same holds for its induced atomic sys-
tem PW . Theorem 3.8 (i) then implies that some von Staudt matroid of the polynomial sys-
tem PW is representable over the division ring Ŵ . Since X, Y,XY, Y X, 1 are all distinct in Ŵ
and do not satisfy any atomic polynomial equation apart from the ones in PW , this representable
matroid over Ŵ is in fact the principal von Staudt matroid MW .

Assume MW is multilinear of order c over some field F. Theorem 3.8 (iii) then implies
that there are matrices A1, . . . , A5 ∈ GLc(F) ∪ {0} that are a solution to the equations in PW .
Thus, A2A3 − A3A2 = Ic. Taking the trace of the matrices in this equation yields

c = tr(Ic) = tr(A2A3 − A3A2) = tr(A2A3)− tr(A3A2) = 0,

in F. The Weyl matroid MW is therefore not multilinear of order c for any c ⩾ 1 over any field
of characteristic 0. Furthermore, if F is a field of characteristic p > 0, the order c must be a
multiple of p.

To prove claim (iii), we note that the division ring of fractions of the Weyl algebra over a
field F of characteristic p is finite-dimensional over its center, and hence embeds in a matrix ring
over a field L extending F. It follows that ranks of matrices over the division ring agree (up to a
constant factor p2) with the ranks of corresponding block matrices over L. The rest of the proof
is the same as the proof of skew-linearity of the Weyl matroid (using the Weyl algebra over a
field of characteristic p).

For completeness we also give a detailed computational proof.
We show that MW is multilinear of order p over the field Fp(λ, µ), where p is any prime

number and λ, µ are two algebraically independent elements over Fp. Consider the following
two p× p matrices over Fp(λ, µ):

A :=


λ 1 0 . . . 0
0 λ 2 . . . 0

0 0 λ
. . . 0

... ... . . . . . . p− 1
0 0 0 0 λ

 , B :=


0 0 0 . . . µ
1 0 0 . . . 0
0 1 0 . . . 0
... ... . . . . . . ...
0 0 0 1 0

 .

A direct computation yields

AB :=


1 0 0 . . . λµ
λ 2 0 . . . 0

0 λ 3
. . . 0

... ... . . . . . . 0
0 0 0 λ 0

 , BA :=


0 0 0 . . . λµ
λ 1 0 . . . 0

0 λ 2
. . . 0

... ... . . . . . . 0
0 0 0 λ p− 1

 ,

which implies AB −BA = Ip.
Next consider the following 3×EW block matrix W of p×p blocks where EW is the ground
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set of MW and we write · for a p× p zero matrix for better readability:

O x∞ y∞ x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 z1 z2 z3 z4 z5 r5
Ip · · Ip Ip Ip Ip Ip Ip Ip Ip Ip Ip · · · · · Ip

· Ip · Ip A B AB BA · · · · · Ip A B AB BA BA
· · Ip · · · · · Ip A B AB BA −Ip −Ip −Ip −Ip −Ip Ip

.

To show that the matrix W is indeed a multilinear representation of order c of some matroid
we need to verify that the rank of all block column minors of W is a multiple of p. This is trivial
to check but slightly tedious. Therefore, we omit this part of the proof here. In the appendix we
prove some parts of this verification as an example. The argument relies on the fact that λ and µ
are algebraically independent elements over Fp.

As a second step, we claim that W is actually a multilinear representation of the matroid MW

over Fp(λ, µ). The fact AB − BA = Ip implies that the substitution X1 = Ip, X2 = A,
X3 = B, X4 = AB, and X5 = BA is a solution to the equations in PW . Further note that
the block columns of the matrix W exactly correspond to the images of the map ρ in the proof
of Theorem 3.8 (i) after passing from division ring elements to suitable c × c matrices. Thus,
the analogous arguments as in this proof show that the multilinear representation given by W
respects the circuits of MW prescribed by the von Staudt constructions. That is, the minor of
the block columns of a three element circuit of MW has rank 2p. It can also be verified that the
minors of block columns of a triple of W which is not a circuit of MW has rank 3p.

Hence, MW is multilinear over the field Fp(λ, µ) for all prime numbers p ⩾ 2.

6. A skew-linear, nonmultilinear matroid

In this section we prove the following theorem.

Theorem 6.1. There exists a skew-linear matroid which is not multilinear.

Definition 6.2. For nonzero integers m,n, the Baumslag–Solitar group BS(m,n) is

⟨a, b | bamb−1a−n⟩.

We will work with BS(2, 3), which has the following properties:

1. The group BS(2, 3) is not residually finite. That is, there exists an element w ∈ BS(2, 3)
with w ̸= 1 that is in the kernel of every homomorphism from BS(2, 3) to a finite group.
Such an element is given byw = [bab−1, a−1], where [x, y] = xyx−1y−1 is the commutator
of the elements x and y.

2. The group BS(2, 3) is a subgroup of the multiplicative group of some division ring DBS.

property (1) was proved by Meskin in [Mes72]. property (2) follows from a theorem of Lewin
and Lewin, see [LL78]. To apply their theorem, we need to know that BS(2, 3) is torsion-free:
this is a very special case of Wise’s results in [Wis09].

The next lemmas recast these properties in a more convenient form.
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Lemma 6.3. If A,B are invertible c× c matrices over a field, and BA2B−1 = A3, then

BAB−1A−1BA−1B−1A = I.

Proof. Suppose A,B are invertible c × c matrices over a field satisfying BA2B−1 = A3. By
Mal’cev’s theorem (see [Mal40]), the groupG generated byA,B is residually finite (the theorem
applies to any finitely-generated group of matrices over a field). Thus, if

g = BAB−1A−1BA−1B−1A ̸= I,

there exists a finite group H and a homomorphism G → H such that g has a nontrivial image
in H . Pre-composing such a homomorphism with the homomorphism BS(2, 3) → G given
by a 7→ A, b 7→ B gives a contradiction to property (1).

Lemma 6.4. There exists a division ringD and nonzero elements a, b ∈ D such that ba2b−1 = a3

and
bab−1a−1ba−1b−1a ̸= 1.

This is clear from property (2) above, together with the fact that w is nontrivial in BS(2, 3).

Theorem 6.5. The following polynomial system has a solution in the division ring DBS , but has
no solution in matrices over any field.

xx′ = 1, yy′ = 1, yx2y′ = x3, z(yxy′x′yx′y′x− 1) = 1. (6.1)

(In matrices, by 1 we mean the identity matrix of the appropriate size.)

Proof. This is a straightforward application of the two previous lemmas: The first two equa-
tions mean x, y are invertible with inverses x′, y′, respectively. The third is then equivalent
to yx2y−1 = x3, and the last means yxy−1x−1yx−1y−1x− 1 has some multiplicative inverse z,
so it is nonzero (and invertible in any division ring).

Applying Theorem 3.8 to the system (6.1) gives Theorem 6.1.
More explicitly: One of the von Staudt matroids associated to the system of the previous

theorem has a representation in some division ring D (since the system has a solution there).
However, none of these matroids has a multilinear representation, since the system has no solu-
tion in matrices.

A. Proof of Theorem 5.3, second part

In this appendix, we complete the proof of Theorem 5.3 by checking that all block column minors
of the matrix W given in Section 5 have rank a multiple of p. We do not show this in all cases
but rather present some cases as an example of the general technique.

In the proof, we use the following statements regarding the rank of block matrices.
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Lemma A.1. Let F be a field. Let M1,M2,M3 ∈ Mk(F) be invertible k × k matrices.

(i) The block matrix
[

Ik Ik
M1 M2

]
has rank k + rank(M1 −M2).

(ii) The block matrix
[ Ik Ik 0
M1 0 M3
0 M2 −Ik

]
has rank 2k + rank(M3M2 −M1).

(iii) The block matrix
[ Ik Ik Ik
M1 0 M3
0 M2 Ik

]
has rank 2k + rank(M1 +M3M2 −M1M2).

The proofs of these statements are by Gaussian elimination via block column operations from
the right and are left to the reader.

To prove that all block column minors of the matrixW given in Section 5 have rank a multiple
of p it suffices to consider pairs and triples of block columns: Since the rank of any set of block
columns is at most 3p we can remove some elements of any set of size at least four to a pair or
triple with equal total rank. Thus, it suffices to consider pairs and triples of block columns in
the following. We split up the discussion into two parts.

Proposition A.2. All pairs and triples of block columns of the matrix W that do not involve r5
are of rank 2p or 3p.

Proof. First, we consider pairs of block columns out of the sets {x1, . . . , x5}, {y1, . . . , y5},
and {z1, . . . , z5}. Lemma A.1 (i) and slight variations thereof imply that such a pair of
block columns is of rank p + rank(M1 − M2) where M1,M2 are two matrices out of the
set {Ip, A,B,AB,BA}. The explicit descriptions of A,B,AB,BA given in Section 5 together
with the fact that λ and µ are algebraically independent elements over Fq yields that M1 −M2

is invertible for all M1,M2 ∈ {Ip, A,B,AB,BA} with M1 ̸= M2. Thus, all pairs of block
columns not involving r5 are of rank 2p.

Now consider a triple {xi, yk, zj} for 1 ⩽ i, j, k ⩽ 5. Lemma A.1 (ii) implies that the
corresponding block column minor has rank 2p+rank(MjMk−Mi) where M1, . . . ,M5 are the
matrices Ip, A,B,AB,BA, respectively. Thus, it can be verified using the explicit description
of these matrices in Section 5 that the matrix Mj ·Mk −Mi is either zero or invertible. Hence,
the corresponding block column minor has rank 2p or 3p.

To complete the proof we need to consider pairs and triples involving the element r5.

Proposition A.3. The pairs of block columns of the matrix W that involve r5 are of rank 2p. The
block columns of all triples involving r5 have rank 2p or 3p.

Proof. Any pair involving r5 clearly has rank 2p since r5 is the only block column with invertible
blocks in each row.

So consider any triple T involving r5. If the triple also contains one of the ele-
ments {x0, x∞, y∞} the block column minor clearly has rank 3p. Suppose T = {xi, yj, r5}
for some 1 ⩽ i, j ⩽ 5. In this case we can apply Lemma A.1 (iii) to conclude that the block
minor T has rank 2p+ rank(Mi +BAMj −MiMj) where the matrices M1, . . . ,M5 are again
defined to be Ip, A,B,AB,BA, respectively. Using the explicit description given in Section 5
together with the fact that λ and µ are algebraically independent over Fp one can again verify
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that the matrix Mi+BAMj−MiMj is invertible for all 1 ⩽ i, j ⩽ 5. Hence, the corresponding
block column minor has rank 3p.

The cases T = {xi, zj, r5} and T = {yi, zj, r5} for 1 ⩽ i, j ⩽ 5 can be checked analogously
via a variation of Lemma A.1 (iii). Therefore, we omit these two last cases. The only difference
occurs at the triple {r5, x4, z1} which corresponds to a block matrix of rank 2p as required by
the circuits in the definition of the von Staudt matroids.

Acknowledgements

The first author would like to thank Oren Becker for helpful discussions of the Weyl algebra.
Furthermore, we are grateful to the anonymous referees for their careful reading and for the
valuable suggestions which helped us improve the exposition of this article.

References

[ANLY00] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Net-
work information flow. IEEE Transactions on Information Theory, 46(4):1204–
1216, 2000.

[BBEPT14] Amos Beimel, Aner Ben-Efraim, Carles Padró, and Ilya Tyomkin. Multi-linear
secret-sharing schemes. In Theory of cryptography, volume 8349 of Lecture Notes
in Comput. Sci., pages 394–418. Springer, Heidelberg, 2014. doi:10.1007/

978-3-642-54242-8_17.
[BK80] Tom Brylawski and Douglas G Kelly. Matroids and combinatorial geometries.

Dept. of Mathematics, University of North Carolina at Chapel Hill, 1980.
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