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Abstract

Developing a sufficiently accurate classical force field representation of molecules is key to 

realizing the full potential of molecular simulation as a route to gaining fundamental insight into a 

broad spectrum of chemical and biological phenomena. This is only possible, however, if the many 

complex interactions between molecules of different species in the system are accurately captured 

by the model.

Historically, the intermolecular van der Waals (vdW) interactions have primarily been trained 

against densities and enthalpies of vaporization of pure (single-component) systems, with 
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occasional usage of hydration free energies. In this study, we demonstrate how including physical 

property data of binary mixtures can better inform these parameters, encoding more information 

about the underlying physics of the system in complex chemical mixtures. To demonstrate this, 

we re-train a select number of the Lennard-Jones parameters describing the vdW interactions of 

the OpenFF 1.0.0 (Parsley) fixed charge force field against training sets composed of densities and 

enthalpies of mixing for binary liquid mixtures as well as densities and enthalpies of vaporization 

of pure liquid systems, and assess the performance of each of these combinations. We show 

that retraining against the mixture data improves the force field’s ability to reproduce mixture 

properties, including solvation free energies, correcting some systematic errors that exist when 

training vdW interactions against properties of pure systems only.

Graphical Abstract

Introduction

Atomistic molecular simulations are a popular and effective method for examining 

biomolecular systems in silico, revealing molecular insights in protein folding, protein-

ligand binding, membrane transport, and many other phenomena. For many of these use 

cases, quantitative accuracy is required for meaningful predictions. One critical example is 

binding free energy calculations for protein-ligand compounds. These calculations are an 

important step in the computational drug discovery process, but are only useful to medicinal 

chemists if predictions are sufficiently accurate and rapid.1 Consequently, there has been 

much interest in producing improved parameter sets for the simple fixed charge functional 

forms common to most modern force fields. One key type of parameters are the parameters 

that specify the Lennard-Jones (LJ) interaction terms, which are used in standard organic 

and biomolecular force fields to capture the short-range attractive and repulsive non-bonded 

interactions that drive many important biomolecular processes.

The simplest method for obtaining LJ parameters is estimation from experimental 

correlations,2 as in the original CHARMM3 and GROMOS4 force fields. This method has 

a low computational overhead but very limited accuracy. Training LJ parameters against 

experimental properties is more computationally expensive, but became the predominant 

method in small molecule force fields, facilitated by the increase in computational power 

required to simulate those properties. This method has been used by many force fields, 

including OPLS,5 CGenFF,6 GAFF,7 and GROMOS.8 The dominant parameterization 

paradigm is to train the LJ parameters against liquid density (ρl) and heat of vaporization 
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(ΔHvap) measurements, as in the original OPLS parameterization by Jorgensen et al.9 

These two physical property targets are used because they are simple to calculate from 

simulation,10 are dependent on the molecular volume and attractive forces, and together 

constrain the LJ ϵ and σ parameters better than they do individually. Densities and 

enthalpies are related to the derivatives of free energy with respect to volume and 

temperature, respectively; accurately reproducing the free energy is the target for most 

force fields. We note that while this is the dominant choice, alternatives exist; notably, the 

GROMOS 53A68 and 2016H6611 force fields both use solvation free energies in addition 

to ρl and ΔHvap. Additionally, ab initio calculations can be used to inform parameterization, 

for example, using rare-gas interaction energies and geometries to produce initial parameter 

estimates subsequently refined with physical property data.12,13 More recently, methods 

to produce LJ parameters entirely from ab initio data, using atom-in-molecule electron 

density partitioning,14,15 or the exchange hole dipole model16 have been proposed. Still, 

parameterization against small molecule ρl and ΔHvap is the dominant paradigm.17,18

Training against ΔHvap in particular has some problematic aspects. Using fixed charge 

force fields, predictions of ΔHvap require performing simulations in both liquid phase and 

gas phase, which means that the same parameters must capture two different polarization 

states19,20 to reproduce experimental measurements of ΔHvap. There has been significant 

discussion on how to account for this polarization cost, which also arises in the calculation 

of hydration and solvation free energies.20–22 Methods suggested include calculating an 

explicit polarization cost20 or using semi-polarized charges,14,23 but the issue has not been 

definitively resolved. Additionally, some compounds, such as acids, can form clusters in the 

gas phase,24,25 which are not generally represented in gas phase simulations used to predict 

ΔHvap.

Another major issue is the availability of modern experimental ΔHvap data. The NIST 

ThermoML Archive26 is the one of the largest open databases for physical property 

measurements, and contains roughly 500 total ΔHvap data points, where a “data point” in 

this context is defined as an experimental measurement for a specific compound at a given 

temperature T, pressure p, and mole fraction x. In contrast, the ThermoML Archive contains 

over 60,000 measurements of pure densities. The ThermoML Archive is certainly not the 

only location of ΔHvap data (it lacks data prior to the year 2003, and many measurements of 

ΔHvap date to the mid-20th century), but it is challenging to obtain uncertainty estimates,27 

rigorous provenance,28 or fully computer-readable forms for these older measurements. 

This makes it difficult to systematically vet the experimental procedures and outputs when 

curating large scale datasets for parameter optimizations.

The limitations of parameterizing intermolecular interactions based off of pure properties 

alone have been noted previously; given two molecules A and B, accurate prediction of A-A 

interactions and B-B interactions does not imply accurate prediction of A-B interactions. 

Simulated ΔHvap measurements for A and B, calculated as in equation 1, can measure the 

cohesive energies of A-A and B-B systems, but are unlikely to capture A-B interactions 

unless A and B are very similar molecules. In equation 1, ΔV refers to the difference in 

molar volume between the liquid and gas phases.
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ΔHvap = Ugas − Uliquid + PΔV (1)

Another illustrative example is the work of Kamath et al.29 on azeotropes of acetone/

methanol and chloroform/methanol systems, where force fields that accurately reproduced 

the pure components of these systems were unable to predict the azeotropic phase behavior 

until reparameterized against simulation of those mixture systems. In addition, Statistical 

Associating Fluid Theory30 (SAFT) can be used to predict the behavior of mixtures; 

in particular, the SAFT-γ group contribution method has been used by Mueller and 

coworkers31–34 to produce coarse-grained force fields for molecular fluid simulations and 

accurately predict the behavior of mixtures.33 Another important example is the Kirkwood-

Buff Force Field35–37 (KBFF) of Smith and coworkers, which aims to achieve better 

treatment of solute-solvent interactions by capturing the concentration-dependent activities 

via Kirkwood-Buff theory.36 Using Kirkwood-Buff integrals, the macroscopic activity 

can be related to microscopic solution structures obtained from simulation. Their efforts 

have focused on adjusting charge parameters, along with some LJ parameters, to match 

Kirkwood-Buff integral values and better capture solute-solvent interactions. This method 

has been used to parameterize a wide range of systems, from simple systems35 to a complete 

protein and peptide force field.38

For a fixed charge small molecule force field geared towards biomolecular systems in 

heterogeneous condensed phase, our approach to capturing mixture interactions must be 

general, transferable, and focused on the LJ parameters, as charges for small molecules 

ligands are often generated from semi-empirical methods like AM1-BCC rather than being 

determined a priori. To ensure transferability, we need high-quality sources of diverse data 

to train against. Therefore, properties of mixtures such as the densities (ρl(x)) and enthalpies 

of mixing (ΔHmix(x)) of binary mixtures are an attractive alternative to the properties of pure 

systems for several reasons:

1. Properties of mixtures, especially in the cases of mixtures that deviate strongly 

from ideality, are sensitive to interactions between functional groups that are 

not generally present in the pure substances used to train LJ parameters.39,40 

Calculated as in equation 2, simulated enthalpies of mixing directly capture 

the A-B interactions that enthalpies of vaporization miss. This is especially 

important for capturing solute-solvent interactions.

ΔHmix x1, x2 = Hmix − x1H1 − x2H2 (2)

2. The nature of mixture data allows users to more easily include a diverse 

spectrum of interactions in their training sets. For example, mixtures of drug-like 

molecules with pharmaceutically relevant solvents or amino acid analogues can 

in principle be readily included in training sets to allow the LJ parameters of 

solvents, ligands, and bio-polymers to be self-consistently trained.

3. Although computing some properties of mixtures may require multiple 

simulations, most such properties (including those studied here) do not require 

simulations in different phases, minimizing error caused by polarization 
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differences. There may be some difference in polarization of molecules between 

more polar and less polar liquids, but this difference is significantly less than 

the difference between two phases, especially since liquid mixtures are, by 

definition, miscible and the components must therefore have dielectric constants 

that are not completely dissimilar.

4. Including mixture data adds the ability to vary training set data by composition; 

data points can be selected at (T, P, x) rather than just (T, P), probing the balance 

between pure and mixture interactions.

5. Many data points for mixture properties are available in modern sources such 

as the ThermoML Archive. In particular, binary ΔHmix(x) measurements are 

much more abundant in the ThermoML archive compared to pure ΔHvap. For the 

moieties and conditions of interest in our study, there are 382 binary mixtures 

with ΔHmix(x) measurements (generally available at multiple concentrations), 

compared to 24 single-component ΔHvap measurements that fit the same criteria. 

For density measurements, both mixture and pure component data points are 

relatively abundant, with 4000 data points for pure substances and 900 binary 

mixtures matching our criteria. We estimate that there is sufficient binary mixture 

training data to parameterize small molecules containing carbon, hydrogen, 

oxygen, nitrogen, chlorine, and bromine.

In this study, we aim to rigorously assess whether it is more beneficial to train the 

intermolecular LJ parameters of a force field on solely pure substance data, binary mixture 

data, or a combination of both, with an emphasis here on density-related properties (ρl, 

ρl(x)) and enthalpic properties (ΔHvap, ΔHmix(x)). A combination of density and enthalpic 

data should be generally sufficient to constrain the LJ σ and ε parameters, with densities 

providing the most information about σ and enthalpic properties providing information 

on ε via the cohesive forces between molecules, though there is of course some partial 

cross-correlation between parameters.41

Starting with the OpenFF 1.0.0 (Parsley) force field42, we use this data to train 12 Lennard-

Jones parameters (σ and ε for 6 LJ types) against data for alcohols, esters, ethers, ketones, 

acids, and alkanes, with property measurements chosen from four training sets containing 

different combinations of physical properties. To test the performance of the refitted force 

fields, we benchmark the results of this optimization against a larger test set of physical 

property measurements for the same moieties, consisting of ρl (x), ΔHmix (x), ρl, and ΔHvap 

measurements.

Methods

Optimization strategy

The studies proposed are constructed with the following workflow, as shown in Figure 1.

1. Sourcing a training set of molecules and selecting particular measurements for 

each molecule (or pair of molecules) of interest.
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2. Optimizing only the selected LJ parameters against the training set using 

ForceBalance43 in combination with the OpenFF Evaluator framework44, 

starting from the OpenFF 1.0.0 (Parsley)45 force field parameters.

3. Assessing the performance of the trained force field against a test set of 

measurements using the OpenFF Evaluator framework.

The goal of the study was to assess whether training the LJ parameters against properties 

of mixtures, as well as combinations of pure/mixture properties, is more beneficial than 

training against properties of pure systems. Other force field parameters, namely the valence 

and electrostatic parameters, were not optimized.

Organic Mixture Studies—We selected four combinations of physical property data 

types (densities of pure compounds and binary mixtures, heats of vaporization of pure 

compounds, and enthalpies of mixing of binary mixtures) to optimize against (shown in 

Table 1).

1. (ρl, ΔHvap) (“pure only”): Includes only density ρl, and enthalpy of vaporization 

ΔHvap, data points. This is the type of training set which has most commonly 

been used5–7 for training the non-bonded interaction force field parameters, and 

is therefore included as a historical baseline.

2. (ΔHmix(x), ρl(x)) (“mixture only”): Includes only density ρl (x) and enthalpy 

of mixing ΔHmix (x) data points measured for binary mixtures. This data set 

allows us to explore whether mixture data alone is sufficient to constrain the 

non-bonded force field parameters during training, and if force field trained 

without pure compound data points will be able to accurately reproduce pure 

compound data.

3. (ΔHmix(x), ρl(x), ρl) (“mixtures + pure density”): A combination of ρl (x), 

ΔHmix (x), and ρl data points. This extension of the “mixture only” training set 

is included to explore whether including the density of pure systems helps to 

constrain the optimization, or whether ρl(x) alone is sufficient.

4. (ΔHmix(x), ρl(x), ρl, ΔHvap) (“pure and mixture”): A combination of the “pure 

only” and the “mixture only” training sets. This data set tests whether including 

pure ΔHvap alongside ΔHmix(x) improves the parameterization of the cohesive 

energies between molecules, or whether ΔHmix(x) alone is sufficient.

The measurements in the training set are for molecules composed of carbon, hydrogen 

and oxygen only (including alcohols, esters, ethers, ketones, acids and alkanes). These 

compounds cover a wide range of fluid phase polarizabilities, with relative permittivities 

ranging from 1.9 (hexane46) to 35.7 (methanol47).

Data set selection

All training sets considered here are composed of only alcohols, esters, ethers, ketones, acids 

and alkanes that have ample density and enthalpic data available, and contain only data 

points measured at near-ambient conditions (288.15–323.15K, 0.95–1.05 atm). This set of 

moieties, containing only carbons, hydrogens and oxygens, was chosen to limit the scope 
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of the study and focus specifically on the choice of training data for a set of molecules. 

The molecules included exercise a total of 9 LJ types, of which 6 are optimized, shown in 

Table 2. A table showing which LJ types are exercised by each molecule in the training set 

is available in Supporting Information Section S2.1. The three parameters included that are 

not optimized are all hydrogen parameters; an explanation of why they are not optimized is 

given in the “Parameters optimized” section.

We enforce the criteria that all measurements in the data set contain only the molecules 

in Figure 2. This criteria controls for the identity of molecules used in the optimization; 

whether the measurements used in fitting are from pure substance or binary mixtures, they 

are restricted to the same set of molecules. We note that some values for ρl (x) are obtained 

through the conversion of Vexcess (x) and ρl where ρl (x) is not directly available.

Pure substance training set—The “pure only” training set is composed of one ρl and 

one ΔHvap measurement for each of the selected molecules (Figure 2). These molecules 

were manually chosen to include a selection of esters, ethers, ketones, alcohols and alkanes 

which included long/short chain, branched/unbranched, and cyclic/acyclic characteristics, 

where data was available. The ρl measurements were sourced from the NIST ThermoML26 

archive. The ΔHvap measurements were sourced directly from the literature, as very limited 

data for the moieties of interest is available in the ThermoML Archive. Many data points 

were curated from the Majer et al. review27, where care was taken to select data points 

which were deemed as reliable by the authors, and for which at least three independent 

measurements had been made and were in reasonable agreement. In total, 28 molecules were 

chosen for a total of 56 data points (28 ρl data points48–72 and 28 ΔHvap data points25,73–83). 

For ΔHvap of acids, measurements were sourced which correspond to an infinitely dilute 

gas (as computed in25), which corresponds to the gas we simulate. This is done because 

carboxylic acids tend to associate in the gas phase.

Mixture training set—The binary mixtures selected for the mixture training set (Figure 

3) are composed of the molecules included in the pure training set, and were manually 

chosen to include a diverse set of interactions. These property measurements were sourced 

directly from the NIST ThermoML26 archive using the OpenFF Evaluator’s built-in data 

selection tools. Where available, three ρl (x) and three ΔHmix (x) data points were included 

for each binary mixture, one each at 25%, 50%, and 75% composition, or as close to these 

values as possible given data availability. These compositions were chosen so as to ensure 

that the set included both components in excess to the other as well as in close to equal 

amounts. Compositions between 25–75% should capture most of the relevant information, as 

deviations from ideality for many mixtures are maximized near an equal mixture. Mixtures 

with compositions close to pure (e.g. > 0.9) were excluded, as when the concentration of 

one component becomes small, our simulation boxes (1000 total molecules) would have a 

very low number of molecules of that component. In total, measurements made for 33 binary 

mixtures were selected for a total of 195 data points. This is significantly more than the 56 

total data points in the pure data set, but it is drawn from a number of mixtures similar to 

the number of compounds in the pure training set. We note that after training was complete, 
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we discovered that one ΔHmix(x) data point in the mixture training set was transcribed into 

ThermoML incorrectly (described in Supporting Information, Section 4).

Test set—The test set was chosen to include measurements of ρl (x), ΔHmix (x), ρl, 

and ΔHvap as in the training set. Additionally, a set of non-aqueous solvation free energy 

(ΔGsolv) measurements for the same moieties included in the training set was sourced from 

the MNSolv database.84 Unlike the training set, we do not require that all pure substance 

and binary mixture measurements in the test set must be sourced from the same set of 

molecules. Instead, given the limited amount of diverse ΔHmix (x) and ΔHvap data for 

the selected moieties, focus was given to selecting as diverse a test set as possible which 

maximally exercised the re-trained parameters. Data points from pure substances included 

in the training set were excluded from the test set, as well as mixture data points from 

mixtures included in the test set. The test set did include binary mixtures for which one of 

the two components was present in the training set; for example, a mixture of ethanol and 

pentanol would be permissible in the test set even if data points for ethanol/propanol and 

butanol/pentanol were both included in the training set. This expands the test set to types of 

mixtures that were not included in the training set; for example, mixtures containing either 

an alcohol or ketone are in the training set, but alcohol/ketone mixtures are only included 

in the test set. The set was also selected to contain substances as distinct as possible from 

the training set, and from other molecules in the test set. Mixtures including carboxylic acids 

were not included in the test set due to low data availability.

In order to select a maximally diverse test set from the pool of molecules available in the 

ThermoML Archive or MNSolv Database, a distance metric based on molecular fingerprints 

was defined to determine how distinct any two substances are. Then, binary mixtures were 

selected by a greedy optimization that maximized this distance metric. For a more detailed 

description of this process, see the Supporting Information Section S1.

The substances included for pure substance (ρl and ΔHvap) measurements were then 

chosen to match the components of the test set mixture properties where available; these 

were supplemented with measurements for similar molecules that exercise the same LJ 

parameters. This resulted in a test set consisting of 236 ΔHmix (x) (from 43 unique 

molecules), 385 ρl (x) (from 60 unique molecules), and 85 ΔGsolv measurements (from 

31 unique molecules), which was supplemented with a hand-selected test set of 29 ΔHvap 

and 29 ρl pure component measurements.

Physical property simulations

All estimates of the physical property values were performed using the OpenFF Evaluator44 

package version 0.1.085 using the default estimation workflow schemas, which are outlined 

in detail in the OpenFF Evaluator documentation.86 Where possible, simulations are reused 

to calculate physical properties. For example, simulations of a pure liquid phase can be 

reused in calculations of ρl, ΔHvap and ΔHmix.

Pure Liquid Simulations—Pure liquid properties were calculated by simulation in the 

NPT ensemble, at the temperature and pressure from the corresponding physical property 

reference. These were performed with the default OpenFF Evaluator simulation workflow, 
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in which a box of 1000 molecules of the target substance were placed in a simulation 

box using PackMol,87 with parameters then assigned using the OpenFF Toolkit version 

0.6.0.88 An energy minimization and 0.2 ns equilibration run were then performed using 

OpenMM. Subsequently, the molecules were simulated for 2 ns. For all simulations, a 

Langevin integrator with BAOAB89 splitting and a 2 fs timestep, and the default OpenMM 

Monte Carlo barostat, were employed to ensure simulation in the correct NPT ensemble. 

Uncorrelated and well-equilibrated snapshots were used to compute the ensemble averages 

of any observables, according to the procedure outlined by Chodera.90 All uncertainties in 

the average observables were computed by bootstrapping with replacement, and propagated 

through any further calculations, assuming a Gaussian error model. Densities are estimated 

using ensemble averages from these simulations.

Locations of scripts to run the simulations and reproduce the results in this study are 

available in the Code and Data Availability section.

Enthalpy of Vaporization Calculations—Enthalpies of vaporization require a pure 

liquid simulation, as described in Section, as well as a gas phase simulation. This gas 

phase simulation is performed for a single molecule in the NVT ensemble, with periodic 

boundaries disabled, using the same Langevin integrator as used with the liquid simulations. 

These simulations are run for 30 ns instead of the liquid phase 2 ns to converge statistics 

with only a single molecule. Enthalpies are calculated using Equation 1.

Mixture Properties—Mixture densities were simulated with a similar workflow to the 

pure liquid simulations, but with the molecules in the initial box split proportionally between 

the two chemical species according to the experimental mole fraction. Densities of binary 

mixtures are straightforward to calculate as they do not require more than one simulation; 

the process is the same as for densities of single component liquids. Binary enthalpies 

of mixing are calculated according to equation 2, where the enthalpies of the individual 

simulated components (H1, H2) are multiplied by their mole fractions in the mixture, and 

then subtracted from the enthalpy of the simulated mixture Hmix(x1, x2).

Enthalpies used in this calculated were simulated with a set of 3 simulations: one for each 

pure component, and one for the mixture. Each of these simulations followed the standard 

workflow for a pure or mixture property.

Solvation Free Energies—Solvation free energies were calculated using the default 

OpenFF evaluator workflows, along with the YANK software package version 0.25.291,92 

for performing alchemical free energy calculations. The alchemical cycle used in the 

calculation is the same as described in Shivakumar et al.,93 and involves 1) the removal 

of a solute molecule from a box of solvent and 2) the annihilation of the solute molecule in 

gas phase. Calculation of step 1) involves an alchemical pathway along which non-bonded 

interactions are gradually turned off. Values of the λ variable that describes this pathway are 

automatically determined by YANK. Liquid phase simulations are set up in a similar fashion 

to those used in our other simulations, but with 2000 molecules rather than 1000 to reduce 

statistical uncertainty; gas phase simulations use the same settings as in the calculation of 

enthalpies of vaporization.
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Optimization

For stochastic gradient descent optimizations, we need to estimate gradients of the 

observables of interest as a function of force field parameters. In this paper, gradients 

are calculated using a reweighted finite difference scheme, where the derivative dO
dx  of 

an observable O with respect to a parameter x is calculated using the central difference 

method with a relative step (Δx/x) size of h = 10−4. Values of O at x − h and x + h are 

estimated by reweighting from the sampled ensemble using pymbar,94 which is accurate 

for the properties of interest over the small step size h. All optimizations were performed 

using the ForceBalance software package using the built-in OpenFF Evaluator target.43,44 

Optimizations were run using the Levenberg-Marquardt95 non-linear least squares algorithm 

with adaptive trust radius96,97 to iteratively minimize the objective function until it was 

observed to fluctuate around a minimum value in each optimization. This algorithm has 

been used successfully with ForceBalance for force field optimization previously.43,98 In 

all cases 12 iterations was sufficient to meet this criteria. Each iteration consists of 1) 

estimation of each physical property measurement in the training set using the current 

force field parameters, 2) comparison of those estimated values to the experimental values 

in ThermoML, 3) adjustment of the target parameters with the ForceBalance optimizer. 

A weighted least squares objective function, χ, was used to measure deviations of the 

reference and estimated physical property values. An L2 penalty function based on the norm 

of the parameter displacement vector (from the initial parameters) is used to regularize the 

optimization, with a prior over the ForceBalance mathematical parameters43 of 0.1 for ε and 

1.0 for σ.

χ(θ) = ∑
n = 1

N 1
Mn

∑
m = 1

Mn ymref − ym(θ)
dn

2
(3)

where N is the number of types of properties (e.g. density, enthalpy of vaporization, etc.), 

Mn is the number of data points of type n, ymref is the experimental value of data point m 

and ym(θ) is the estimated value of data point m using the current force field parameters. 

The denominator dn is an inverse weight with the same units as property type n chosen so 

that that each property type contributed approximately equally to the objective function. For 

example, for the pure training set, ~ 50% of the objective function value is due to ρl data, 

and ~ 50% is due to ΔHvap. This a priori approximation was made as it is unclear that any 

one type of property should be weighted more than another.

Parameters optimized—Both the training and test sets, each containing only molecules 

composed of carbon, hydrogen, and oxygen, exercise a total of 18 SMIRNOFF LJ 

parameters (9 different SMIRKS parameter types with one ε and σ per SMIRKS). These 

LJ parameters in OpenFF 1.0.0 have not been optimized since their inception in the first 

SMIRNOFF format force field,99 and are taken chiefly from AMBER parm94,100 with the 

exception of the hydroxyl hydrogen parameter discussed below. Of these parameters, 12 

were optimized, with the remaining 6 held constant at their initial OpenFF 1.0.0 values. 

The parameters held constant (all for hydrogens) were not optimized because either the 

parameter correspond to a specific context that was not sufficiently constrained by the 
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training data set or, in the case of [#1:1]-[#8] (hydroxyl hydrogen), the OpenFF 1.0.0 ε 
value is explicitly set to a very small nonzero value (ε = 5.27 × 10−5) and not reoptimized. 

This is a slight modification of the AMBER hydroxyl hydrogen parameter100 (HO, ε = 0) to 

avoid unphysical effects caused by the AMBER parameterization.101 Here each parameter is 

uniquely identified by a SMIRKS pattern which encodes the chemical environment to which 

the parameter will be applied.99 These parameters, along with brief descriptions, are listed in 

Table 2.

Testing

Tests of force field performance were performed by taking the final force fields produced 

from each optimization and estimating each data point in the test set using OpenFF 

Evaluator. All property calculations were made using the same property prediction 

workflows as in the optimizations.

To assess the improvement of the refitted force fields relative to OpenFF 1.0.0, we calculate 

the mean shift in absolute error for each of the physical property types in the benchmark 

set. This metric describes the average improvement (or regression) in a refitted force field’s 

ability to reproduce test set physical properties compared to a reference force field, and is 

described in Equation 4 for a generic observable O.

Δ ΔOsim − exp ff0 ff1 = 1
N ∑

n = 1

N
Osim, ff1 − Oexp − Osim, ff0 − Oexp n (4)

In this equation, Osim,ffx is the simulation estimate of O with a given force field, and Oexp 

is the experimental value of O. The reference force field ff0 is always chosen as OpenFF 

1.0.0 in this analysis. The average is taken over the test set of N physical properties of one 

specific type (e.g. over the 236 ΔHmix(x) measurements in our test set). When bootstrapped 

95% confidence intervals are calculated with this metric, bootstrapping is performed over 

paired measurements in two force fields, capturing the correlation between force fields that 

is lost when bootstrapped errors are calculated individually.

We also calculate kernel density estimates (KDE)102,103 of the distribution of individual 

shifts (|Osim,ff1 − Oexp| − |Osim,ff0 − Oexp|)n to visualize the differences in improvement 

for the different force fields. KDE plots are generated using the seaborn104 0.11.2 data 

visualization package, with a Gaussian kernel and bandwith calculated with the method of 

Scott.105

Results & Discussion

Optimization

Parameter Changes—The objective function was observed to decrease by 50–70% for 

each of the four optimizations performed, indicating improvements against the training set 

in all cases (see Supporting Information Section S2.1). This improvement was achieved 

with relatively small changes in the target parameters, as most of the refitted parameters 

changed only slightly from their initial values, varying less than 5% in most cases (Figure 
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4). A notable exception is ε for [#1:1]-[#6X4] (hydrogen attached to tetravalent carbon), 

which changes up to 40% depending on the optimization. We also note that the σ for 

[#8X2H1+0:1] (hydroxyl oxygen) changes much more when trained against mixture data 

(−0.4 % for “pure only” vs. −1.7–2.8% for sets containing mixture data).

Training Set Property RMSE—We examine the performance of the trained force fields 

on the training set, as well as the changes in parameters after optimizations. This detailed 

look at the optimization sheds light on which parameter changes are driving the specific 

property improvements that result in an improved force field. Using the RMSE for each 

target property as a metric and grouping by property and chemical environment, it is clear 

that most of the different moieties in the training set are improving when trained against 

either pure or mixture data. This is evident when training against both the “pure only” data 

set in Figure 5 and the “mixture only” data set in Figure 6. Improvements in both pure and 

mixture training data for the other two (mixed) optimizations were also observed, which are 

shown in supporting information (Section S2.6.2,S2.7.2).

One notable exception is ketones, as pure ketone densities and “Ketone > Ether” binary 

densities were both degraded upon training. Given that this occurs for both pure and mixture 

training data, it is unlikely that it is a symptom of the training sets selected. We also note that 

ketone ΔHvap RMSEs are improved, alongside both densities and ΔHvap RMSEs for esters, 

which utilize the same [#8:1] generic carbon parameter. It is likely that these properties are 

improved at the expense of ketone densities. By examining the first derivatives of the density 

contribution to the objective function with respect to the force field parameters, again 

partitioned by moiety (Figure 7), we see that modifying the [#1:1]-[#6X4] (hydrogen 

attached to tetravalent carbon), [#6X4] (tetravalent carbon), and [#8:1] (generic oxygen) 

has an opposite effect on ketone objectives compared to the objective for other moieties. 

This suggests that the force field lacks the degrees of freedom required to accurately 

capture carbons and hydrogens in ketone environments alongside the other environments 

represented by the same SMIRKS patterns. It is possible that including a more specific 

hydrogen or carbon parameter for this environment might improve prediction of ketone 

densities. Another possibility is that the LJ parameters are compensating for deficiencies in 

the AM1-BCC electrostatic model, which was not optimized in this study. This result will 

be explored in further work as it is beyond the scope of the current study. However, analyses 

such as these point out how additional interaction types can be motivated by the large sets of 

data generated by this sort of study.

Test Set Performance

Overall Results—Benchmarking simulations of the test set physical property 

measurements were performed for OpenFF 1.0.0 and each of the refitted force fields.

Mean shift and and shift distributions (metrics described in the Methods section) for the test 

sets of each of the four physical properties used in training are shown in Figure 8.

We observe that for both ρl and ρl(x), the refitted force fields all offer mild improvements 

over OpenFF 1.0.0, with no significant differences between them. This is consistent with 

our expectations as densities are generally well predicted in the initial force field. On 
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the other hand, for ΔHmix(x), all refitted force fields improve relative to OpenFF 1.0.0, 

but the improvements of the three force fields trained with mixture data (“mixture only”, 

“mixtures + pure density”, and “pure and mixture”) are significantly larger (0.2 kJ/mol 

vs 0.1 kJ/mol for “pure only”), indicating that training against mixture data significantly 

improves performance on our ΔHmix(x) test set. This is also clearly visible in the KDE plot, 

where the distributions for the sets containing mixtures are shifted relative to the “pure only” 

set. A significant number of measurements are improved by >0.75 kJ/mol when trained 

against mixtures, whereas almost no measurements achieve this improvement when trained 

against the “pure only” set. Similarly, for our ΔHvap test set, we observe that the two force 

fields trained against sets that include ΔHvap data (“pure only” and “pure and mixture”) offer 

significant improvements over OpenFF 1.0.0, whereas the two sets that do not include ΔHvap 

(“mixture only”, “mixtures and pure density”) do not improve relative to the initial force 

field. Again, this can be seen clearly in the KDE plot, where the peak of the distributions for 

force fields trained with ΔHvap data are shifted left compared to the other force fields.

This data shows, perhaps unsurprisingly, that force fields trained against ΔHvap and 

ΔHmix(x) will do better at reproducing those respective properties. In this view, one could 

assume that training against the “pure and mixture” set, which contains both types of 

enthalpy data, is the best strategy. However, the utility of improved ΔHvap predictions 

is questionable for a force field intended to be used for biomolecular systems where 

vaporization does not typically occur.

With this in mind, benchmarking on the non-aqueous ΔGsolv test set serves as a more neutral 

test of the different force fields’ abilities to capture the appropriate interaction strengths 

between molecules. A plot of the mean shifts for the ΔGsolv test set, as well as a KDE plot of 

the shift distribution, is shown in Figure 9.

The mean shift of ΔGsolv absolute errors relative to OpenFF 1.0.0 show that training against 

the “mixture only” set provides an improvement over the initial force field, whereas training 

against the “pure only” set degrades ΔGsolv predictions. This is also reflected in the KDE 

plot, where the peak of the shift distribution is shifted right for the two sets that contain 

ΔHvap (“pure only”, “pure and mixture”) compared to the two that do not (“mixture 

only” and “mixtures + pure density”), suggesting that refitting to ΔHvap hinder attempts 

to reproduce properties like ΔGsolv. It is important to note that the initial LJ parameters used 

in this force field were fitted to ΔHvap simulation when originally determined,106? and that 

the RMSE of OpenFF 1.0.0 on the ΔGsolv test set is 3.3 kJ/mol, so reasonably accurate 

predictions can be obtained with LJ parameters trained against ΔHvap. However, training 

against mixture data can offer additional improvements to performance.

These results indicate that mixture properties can replace physical properties of pure systems 

as a target for training LJ parameters, particularly in cases where more and more chemically 

diverse data is available for mixtures. Training against the “pure only” set does lead a 

significant improvement to ΔHmix (x) against the baseline; however, training directly against 

the “mixture only” set yields a much larger improvement. It appears that training against 

properties of mixtures alone sufficiently constrains the optimization, and includes enthalpic 

information that the traditional pure dataset alone does not. We also note that augmenting a 
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traditional pure data training set with mixture data (such as the “pure and mixture” set) can 

improve treatment of mixture properties without degrading performance on pure properties.

Results by chemical environment—Notably, training against the mixture properties 

appears to have corrected a systematic error in the enthalpy of mixing, which training 

against pure properties alone is not able to correct. This can be inferred from the KDE plot 

for ΔHmix(x) in Figure 4, where the shift of the secondary peak indicates that performance is 

improving for a subset of molecules. More specific evidence is obtained from a simulation/

experiment parity plot for ΔHmix(x), where a systematic underprediction of alcohol/ester 

(green points) and alcohol/ketone (orange points) mixture enthalpies is corrected (Figure 

10). The improvement in the treatment of alcohol/ketone mixtures was achieved without 

directly including these mixtures in the training set.

This is particularly significant as alcohol/ester and alcohol/ketone mixture enthalpies have 

strong deviations from ideal solution behavior. Namely, ketone and esters are both hydrogen 

bond acceptors only and thus do not form hydrogen bonds in the pure phase. However when 

mixed with a hydrogen bond donor (an alcohol) they do. This change is likely related to the 

reduction in σ for the [#8X2H1+0:1] (hydroxyl oxygen), noted in Figure 4. This reduction 

is much larger (1.7%–2.8% vs. 0.4% for “pure only”) for force fields refit against mixture 

data. This is where mixture properties, and especially their ability to more readily capture 

complementary interactions, appear to be advantageous over pure properties.

Conclusions

Using our automatic data set selection and force field optimization workflow, we re-

parameterized select LJ parameters of the OpenFF 1.0.0 force field against training sets 

containing combinations of pure (ρl, ΔHvap) and mixture (ρl(x), ΔHmix(x)) properties for 

alkanes, alcohols, esters, ethers, ketones, and acids. These training sets were controlled such 

that the same molecules are used in both pure and mixture training sets, to isolate the effect 

of the different data types used. Through iterative optimization of parameter sets, new force 

fields were produced that all exceeded the performance of the initial force field on some 

parts of the test set. Furthermore, we observe that training LJ parameters against mixture 

data constrains the optimization in a comparable or superior manner to optimizing with the 

traditional pure properties commonly used in LJ parameterization.

Training against mixture properties, specifically ΔHmix (x), is a compelling alternative for 

capturing enthalpic contributions to LJ interactions to ΔHvap. Training against ΔHvap is 

problematic due to limited data coverage and quality, as well as changes in molecular 

polarization between liquid and gas phase simulations. Mixture property datasets also offer 

expanded datasets by varying composition, and are more widely available in the ThermoML 

Archive. Moreover, we have shown here how mixture properties offer significant advantages 

over pure properties as an optimization target, especially in those cases of interactions which 

deviate strongly from ideality. These advantages lead to improved LJ parameters sets and 

better agreement with experiment. Given that we control for the identity of the molecules 

in the training set, this demonstrates that mixture properties contain information about 

intermolecular interactions that pure component property measurements do not.
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While some parameter sets we demonstrate in this work improved both enthalpies of 

vaporization and enthalpies of mixing, in our view, improvements in the properties of 

mixtures are a better metric of force field improvement than pure or phase change properties 

for force fields intended for use in biomolecular simulations, since simulations typically 

take place in mixed aqueous or other liquid phases. This is supported by our finding 

that force fields trained against mixture data improve predictions of ΔGsolv, whereas 

force fields trained against only pure data (including ΔHvap) degrade those predictions. 

The same interactions captured in solvation free energies should also be informative 

for properties of pharmaceutical/biomolecular interest, such as binding affinities. For this 

reason, optimization of LJ parameters against mixture property targets is planned to be the 

standard going forward for our OpenFF force fields. It is also important to note the scope 

of the study is limited to LJ parameters, and that other parameters, such as electrostatics, 

torsions, and 1–4 atomic scalings will impact the accuracy of these mixture properties. We 

anticipate that the automated property prediction in our parameterization workflow, along 

with the wider chemistry covered by the mixture properties in the ThermoML Archive, will 

lead to more accurate LJ parameters for general small molecule force fields.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data and Code Availability

Scripts to run the simulations and reproduce the results in this study are available at https://

github.com/SimonBoothroyd/binary-mixture-publication.

The training and test data sets used in this publication are also available in this repository 

in .csv and .json formats.

To provide feedback on performance of the OpenFF force fields, we highly recommend 

using the issue tracker at http://github.com/openforcefield/openforcefields. For toolkit 

feedback, use http://github.com/openforcefield/openforcefield. Alternatively, inquiries may 

be e-mailed to support@openforcefield.org, though responses to e-mails sent to this address 

may be delayed and GitHub issues receive higher priority. For information on getting started 

with OpenFF, please see the documentation linked at http://github.com/openforcefield/

openforcefield, and note the availability of several introductory examples.

References

(1). Bottaro S; Lindorff-Larsen K Biophysical Experiments and Biomolecular Simulations: A Perfect 
Match? Science 2018, 361, 355–360. [PubMed: 30049874] 

(2). Slater JC; Kirkwood JG The Van Der Waals Forces in Gases. Physical Review 1931, 37, 682–697.

(3). Brooks BR; Bruccoleri RE; Olafson BD; States DJ; Swaminathan S; Karplus M CHARMM: 
A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of 
Computational Chemistry 1983, 4, 187–217.

(4). Van Gunsteren WF; Karplus M Effect of Constraints on the Dynamics of Macromolecules. 
Macromolecules 1982, 15, 1528–1544.

(5). Jorgensen WL; Maxwell DS; Tirado-Rives J Development and Testing of the OPLS All-Atom 
Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of the 
American Chemical Society 1996, 118, 11225–11236.

(6). Vanommeslaeghe K; Hatcher E; Acharya C; Kundu S; Zhong S; Shim J; Darian E; Guvench 
O; Lopes P; Vorobyov I; Mackerell AD CHARMM General Force Field: A Force Field for Drug-
like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. 
Journal of Computational Chemistry 2010, 31, 671–690. [PubMed: 19575467] 

(7). Wang J; Wolf RM; Caldwell JW; Kollman PA; Case DA Development and Testing of a General 
Amber Force Field. Journal of Computational Chemistry 2004, 25, 1157–1174. [PubMed: 
15116359] 

(8). Oostenbrink C; Villa A; Mark AE; Gunsteren WFV A Biomolecular Force Field Based on the 
Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 
53A6. Journal of Computational Chemistry 2004, 25, 1656–1676. [PubMed: 15264259] 

(9). Jorgensen WL; Madura JD; Swenson CJ Optimized Intermolecular Potential Functions for Liquid 
Hydrocarbons. Journal of the American Chemical Society 1984, 106, 6638–6646.

(10). Monticelli L, Salonen E, Eds. Biomolecular Simulations: Methods and Protocols; Methods in 
Molecular Biology; Humana Press, 2013.

(11). Horta BAC; Merz PT; Fuchs PFJ; Dolenc J; Riniker S; Hünenberger PH A GROMOS-
Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 
Parameter Set. Journal of Chemical Theory and Computation 2016, 12, 3825–3850. [PubMed: 
27248705] 

(12). Yin D; MacKerell AD Combined Ab Initio/Empirical Approach for Optimization of Lennard–
Jones Parameters. Journal of Computational Chemistry 1998, 19, 334–348.

(13). Chen IJ; Yin D; MacKerell AD Combined Ab Initio/Empirical Approach for Optimization of 
Lennard-Jones Parameters for Polar-Neutral Compounds. Journal of Computational Chemistry 
2002, 23, 199–213. [PubMed: 11924734] 

Boothroyd et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/SimonBoothroyd/binary-mixture-publication
https://github.com/SimonBoothroyd/binary-mixture-publication
http://github.com/openforcefield/openforcefields
http://github.com/openforcefield/openforcefield
http://github.com/openforcefield/openforcefield
http://github.com/openforcefield/openforcefield


(14). Cole DJ; Vilseck JZ; Tirado-Rives J; Payne MC; Jorgensen WL Biomolecular Force Field 
Parameterization via Atoms-in-Molecule Electron Density Partitioning. Journal of Chemical 
Theory and Computation 2016, 12, 2312–2323. [PubMed: 27057643] 

(15). Kantonen SM; Muddana HS; Schauperl M; Henriksen NM; Wang L-P; Gilson MK Data-Driven 
Mapping of Gas-Phase Quantum Calculations to General Force Field Lennard-Jones Parameters. 
Journal of Chemical Theory and Computation 2020, 16, 1115–1127. [PubMed: 31917572] 

(16). Mohebifar M; Johnson ER; Rowley CN Evaluating Force-Field London Dispersion Coefficients 
Using the Exchange-Hole Dipole Moment Model. Journal of Chemical Theory and Computation 
2017, 13, 6146–6157. [PubMed: 29149556] 

(17). Dauber-Osguthorpe P; Hagler AT Biomolecular Force Fields: Where Have We Been, Where Are 
We Now, Where Do We Need to Go and How Do We Get There? Journal of Computer-Aided 
Molecular Design 2019, 33, 133–203. [PubMed: 30506158] 

(18). Hagler AT Force Field Development Phase II: Relaxation of Physics-Based Criteria… or 
Inclusion of More Rigorous Physics into the Representation of Molecular Energetics. Journal 
of Computer-Aided Molecular Design 2019, 33, 205–264. [PubMed: 30506159] 

(19). Berendsen HJC; Grigera JR; Straatsma TP The Missing Term in Effective Pair Potentials. The 
Journal of Physical Chemistry 1987, 91, 6269–6271.

(20). Swope WC; Horn HW; Rice JE Accounting for Polarization Cost When Using Fixed Charge 
Force Fields. I. Method for Computing Energy. The Journal of Physical Chemistry B 2010, 114, 
8621–8630. [PubMed: 20540503] 

(21). Swope WC; Horn HW; Rice JE Accounting for Polarization Cost When Using Fixed Charge 
Force Fields. II. Method and Application for Computing Effect of Polarization Cost on Free 
Energy of Hydration. The Journal of Physical Chemistry B 2010, 114, 8631–8645. [PubMed: 
20540502] 

(22). Muddana HS; Sapra NV; Fenley AT; Gilson MK The SAMPL4 Hydration Challenge: Evaluation 
of Partial Charge Sets with Explicit-Water Molecular Dynamics Simulations. Journal of 
Computer-Aided Molecular Design 2014, 28, 277–287. [PubMed: 24477800] 

(23). Cerutti DS; Rice JE; Swope WC; Case DA Derivation of Fixed Partial Charges for Amino 
Acids Accommodating a Specific Water Model and Implicit Polarization. The Journal of Physical 
Chemistry B 2013, 117, 2328–2338. [PubMed: 23379664] 

(24). Clague ADH; Bernstein HJ The Heat of Dimerization of Some Carboxylic Acids in the 
Vapour Phase Determined by a Spectroscopic Method. Spectrochimica Acta Part A: Molecular 
Spectroscopy 1969, 25, 593–596.

(25). Konicek J; Wadsö I; Munch-Petersen J; Ohlson R; Shimizu A Enthalpies of Vaporization of 
Organic Compounds. VII. Some Carboxylic Acids. Acta Chemica Scandinavica 1970, 24, 2612–
2616.

(26). Frenkel M; Chiroco RD; Diky V; Dong Q; Marsh KN; Dymond JH; Wakeham WA; Stein SE; 
Königsberger E; Goodwin ARH XML-based IU-PAC Standard for Experimental, Predicted, and 
Critically Evaluated Thermodynamic Property Data Storage and Capture (ThermoML) (IUPAC 
Recommendations 2006). Pure and Applied Chemistry 2006, 78, 541–612.

(27). Majer V; Svoboda V; Kehiahan H Enthalpies of Vaporization of Organic Compounds: A Critical 
Review and Data Compilation; Blackwell Scientific Oxford, 1985; Vol. 32.

(28). Pontolillo J; Eganhouse R The Search for Reliable Aqueous Solubility (Sw) and Octanol-Water 
Partition Coefficient (Kow) Data for Hydrophobic Organic Compounds; DDT and DDE as a Case 
Study; USGS Numbered Series 2001–4201, 2001.

(29). Kamath G; Georgiev G; Potoff JJ Molecular Modeling of Phase Behavior and Microstructure 
of Acetone-Chloroform-Methanol Binary Mixtures. The Journal of Physical Chemistry B 2005, 
109, 19463–19473. [PubMed: 16853515] 

(30). Chapman WG; Gubbins KE; Jackson G; Radosz M SAFT: Equation-of-state Solution Model for 
Associating Fluids. Fluid Phase Equilibria 1989, 52, 31–38.

(31). Lobanova O; Mejía A; Jackson G; Müller EA SAFT-γ Force Field for the Simulation of 
Molecular Fluids 6: Binary and Ternary Mixtures Comprising Water, Carbon Dioxide, and 
n-Alkanes. The Journal of Chemical Thermodynamics 2016, 93, 320–336.

Boothroyd et al. Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(32). Rahman S; Lobanova O; Jiménez-Serratos G; Braga C; Raptis V; Müller EA; Jackson G; 
Avendaño C; Galindo A SAFT-γ Force Field for the Simulation of Molecular Fluids. 5. 
Hetero-Group Coarse-Grained Models of Linear Alkanes and the Importance of Intramolecular 
Interactions. The Journal of Physical Chemistry B 2018, 122, 9161–9177. [PubMed: 30179489] 

(33). Herdes C; Ervik Å; Mejía A; Müller EA Prediction of the Water/Oil Interfacial Tension 
from Molecular Simulations Using the Coarse-Grained SAFT-γ Mie Force Field. Fluid Phase 
Equilibria 2018, 476, 9–15.

(34). Zheng L; Bresme F; Trusler JPM; Müller EA Employing SAFT Coarse-Grained Force Fields 
for the Molecular Simulation of Thermodynamic and Transport Properties of CO2–n-Alkane 
Mixtures. Journal of Chemical & Engineering Data 2020, 65, 1159–1171.

(35). Weerasinghe S; Smith PE A Kirkwood–Buff Derived Force Field for Sodium Chloride in Water. 
The Journal of Chemical Physics 2003, 119, 11342–11349.

(36). Ploetz EA; Bentenitis N; Smith PE Developing Force Fields from the Microscopic Structure of 
Solutions. Fluid Phase Equilibria 2010, 290, 43–47. [PubMed: 20161692] 

(37). Ploetz EA; Smith PE A Kirkwood–Buff Force Field for the Aromatic Amino Acids. Physical 
Chemistry Chemical Physics 2011, 13, 18154–18167. [PubMed: 21931889] 

(38). Ploetz EA; Karunaweera S; Bentenitis N; Chen F; Dai S; Gee MB; Jiao Y; Kang M; 
Kariyawasam NL; Naleem N; Weerasinghe S; Smith PE Kirkwood–Buff-Derived Force Field 
for Peptides and Proteins: Philosophy and Development of KBFF20. Journal of Chemical Theory 
and Computation 2021, 17, 2964–2990. [PubMed: 33878263] 

(39). Fischer J; Möller D; Chialvo A; Haile JM The Influence of Unlike Molecule Interaction 
Parameters on Liquid Mixture Excess Properties. Fluid Phase Equilibria 1989, 48, 161–176.

(40). Dai J; Li X; Zhao L; Sun H Enthalpies of Mixing Predicted Using Molecular Dynamics 
Simulations and OPLS Force Field. Fluid Phase Equilibria 2010, 289, 156–165.

(41). Stroet M; Koziara KB; Malde AK; Mark AE Optimization of Empirical Force Fields by 
Parameter Space Mapping: A Single-Step Perturbation Approach. Journal of Chemical Theory 
and Computation 2017, 13, 6201–6212. [PubMed: 29125748] 

(42). Qiu Y; Smith DGA; Boothroyd S; Jang H; Hahn DF; Wagner J; Bannan CC; Gokey T; Lim 
VT; Stern CD; Rizzi A; Tjanaka B; Tresadern G; Lucas X; Shirts MR; Gilson MK; Chodera 
JD; Bayly CI; Mobley DL; Wang L-P Development and Benchmarking of Open Force Field 
v1.0.0—the Parsley Small-Molecule Force Field. Journal of Chemical Theory and Computation 
2021,

(43). Wang L-P; Martinez TJ; Pande VS Building Force Fields: An Automatic, Systematic, and 
Reproducible Approach. The Journal of Physical Chemistry Letters 2014, 5, 1885–1891. 
[PubMed: 26273869] 

(44). Boothroyd S; Wang L-P; Mobley D; Chodera J; Shirts M The Open Force Field Evaluator: An 
Automated, Efficient, and Scalable Framework for the Estimation of Physical Properties from 
Molecular Simulation. ChemRxiv 2021,

(45). Qiu Y; Smith DG; Boothroyd S; Wagner J; Bannan CC; Gokey T; Jang H; Lim VT; Lucas 
X; Tjanaka B; Shirts MR; Gilson MK; Chodera JD; Bayly CI; Mobley DL; Wang L-P 
Openforcefield/Openforcefields: Version 1.0.0 ”Parsley”. Zenodo, 2019.

(46). Mopsik FI Dielectric Constant of N-Hexane as a Function of Temperature, Pressure, and Density. 
Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry 
1967, 71A, 287–292.

(47). Pereira SM; Iglesias TP; Legido JL; Rivas MA; Real JN Relative Permittivity Increments for 
{xCH3OH+ (1 -x)CH3OCH2(CH2OCH2)3CH2OCH3} fromT= 283.15 K toT= 323.15 K. The 
Journal of Chemical Thermodynamics 2001, 33, 433–440.

(48). Giner B; Villares A; Martín S; Lafuente C; Royo FM Isothermal Vapour–Liquid Equilibrium for 
Cyclic Ethers with 1-Chloropentane. Fluid Phase Equilibria 2007, 251, 8–16.

(49). Alcalde R; Aparicio S; Dávila MJ; García B; Leal JM Liquid–Liquid Equilibria of Lactam 
Containing Binary Systems. Fluid Phase Equilibria 2008, 266, 90–100.

(50). Cháfer A; Lladosa E; de la Torre J; Burguet MC Study of Liquid–Liquid Equilibrium of 
the Systems Isobutyl Acetate+acetic Acid+water and Isobutyl Alcohol+acetic Acid+water at 
Different Temperatures. Fluid Phase Equilibria 2008, 271, 76–81.

Boothroyd et al. Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(51). Wang Y; Gao H; Yan W Excess Molar Enthalpies of Diethyl Malonate+ (1-Butanol, 2-Methyl-1-
Propanol, 1-Pentanol, n-Heptane, and Ethyl Acetate) at T= (288.2, 298.2, 313.2, 328.2, 338.2, 
and 348.2K) and P=101.3kPa. Fluid Phase Equilibria 2010, 291, 8–12.

(52). Cháfer A; de la Torre J; Lladosa E; Montón JB Liquid–Liquid Equilibria of 4-Methyl-2-
Pentanone+1-Propanol or 2-Propanol+water Ternary Systems: Measurements and Correlation 
at Different Temperatures. Fluid Phase Equilibria 2014, 361, 23–29.

(53). Keshapolla D; Singh V; Gupta A; Gardas RL Apparent Molar Properties of 
Benzyldimethylammonium Based Protic Ionic Liquids in Water and Ethanol at Different 
Temperatures. Fluid Phase Equilibria 2015, 385, 92–104.

(54). Martínez-Baños L; Embid JM; Otín S; Artal M Vapour–Liquid Equilibrium at T=308.15K 
for Binary Systems: Dibromomethane+n-Heptane, Bromotrichloromethane+n-Heptane, 
Bromotrichloromethane+dibromomethane, Bromotrichloromethane+bromochloromethane and 
Dibromomethane+bromochloromethane. Experimental Data and Modelling. Fluid Phase 
Equilibria 2015, 395, 1–8.

(55). Requejo PF; Calvar N; Domíınguez Á; Gómez E Application of the Ionic Liquid 
Tributylmethylammonium Bis(Trifluoromethylsulfonyl)Imide as Solvent for the Extraction of 
Benzene from Octane and Decane at T = 298.15 K and Atmospheric Pressure. Fluid Phase 
Equilibria 2016, 417, 137–143.

(56). Ortega J; Navas A; Plácido J Thermodynamic Study of (Alkyl Esters+α,ω-Alkyl 
Dihalides) IV: HmEandVmE for 25 Binary Mixtures {xCu-1H2u-1CO2CH3+(1-x)α,ω-
BrCH2(CH2)v-2CH2Br}, Where U=1 to 5, A=1 and V=ω=2 to 6. The Journal of Chemical 
Thermodynamics 2007, 39, 128–141.

(57). Dragoescu D; Teodorescu M; Barhala A Isothermal (Vapour+liquid) Equilibria and Excess Gibbs 
Free Energies in Some Binary (Cyclopentanone+chloroalkane) Mixtures at Temperatures from 
298.15K to 318.15K. The Journal of Chemical Thermodynamics 2007, 39, 1452–1457.

(58). Tôrres RB; Ortolan MI; Volpe PLO Volumetric Properties of Binary Mixtures of Ethers and 
Acetonitrile: Experimental Results and Application of the Prigogine–Flory–Patterson Theory. 
The Journal of Chemical Thermodynamics 2008, 40, 442–459.

(59). Morávková L; Wagner Z; Linek J Volumetric Behaviour of Binary Liquid Systems Composed of 
Toluene, Isooctane, and Methyl Tert-Butyl Ether at Temperatures from (298.15 to 328.15)K. The 
Journal of Chemical Thermodynamics 2009, 41, 591–597.

(60). Dragoescu D; Barhala A; Teodorescu M (Vapour+liquid) Equilibria and Excess Gibbs Free 
Energies of (Cyclohexanone+1-Chlorobutane And+1,1,1-Trichloroethane) Binary Mixtures at 
Temperatures from (298.15 to 318.15)K. The Journal of Chemical Thermodynamics 2009, 41, 
1025–1029.

(61). Ghanadzadeh Gilani H; Ghanadzadeh Gilani A; Shekarsaraee S; Uslu H (Liquid+liquid) 
Equilibrium Data of (Water+phosphoric Acid+solvents) Systems at T=(308.2 and 318.2)K. The 
Journal of Chemical Thermodynamics 2012, 53, 52–59.

(62). Cobos A; Hevia F; González JA; García De La Fuente, I.; Alonso Tristán, C. Thermodynamics 
of Amide+ketone Mixtures. 1. Volumetric, Speed of Sound and Refractive Index Data for N,N-
dimethylformamide+2-Alkanone Systems at Several Temperatures. The Journal of Chemical 
Thermodynamics 2016, 98, 21–32.

(63). Daoudi H; Ait kaci A; Tafat-Igoudjilene O Volumetric Properties of Binary Liquid Mixtures 
of Alcohols with 1,2-Dichloroethane at Different Temperatures and Atmospheric Pressure. 
Thermochimica Acta 2012, 543, 66–73.

(64). Sharma VK; Malik S; Solanki S Thermodynamic Studies of Molecular Interactions in 
Mixtures Containing Tetrahydropyran, 1,4-Dioxane, and Cyclic Ketones. Journal of Chemical 
& Engineering Data 2017, 62, 623–632.

(65). Matsuda H; Inaba K; Nishihara K; Sumida H; Kurihara K; Tochigi K; Ochi K Separation Effects 
of Renewable Solvent Ethyl Lactate on the Vapor–Liquid Equilibria of the Methanol + Dimethyl 
Carbonate Azeotropic System. Journal of Chemical & Engineering Data 2017, 62, 2944–2952.

(66). Ouyang G; Huang Z; Ou J; Wu W; Kang B Excess Molar Volumes and Surface Tensions of 
Xylene with 2-Propanol or 2-Methyl-2-propanol at 298.15 K. Journal of Chemical & Engineering 
Data 2003, 48, 195–197.

Boothroyd et al. Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(67). George J; Sastry NV Densities, Excess Molar Volumes at T = (298.15 to 313.15) K, Speeds 
of Sound, Excess Isentropic Compressibilities, Relative Permittivities, and Deviations in Molar 
Polarizations at T = (298.15 and 308.15) K for Methyl Methacrylate + 2-Butoxyethanol or 
Dibutyl Ether + Benzene, Toluene, or p-Xylene. Journal of Chemical & Engineering Data 2004, 
49, 1116–1126.

(68). Kato M; Kodama D; Sato M; Sugiyama K Volumetric Behavior and Saturated Pressure for 
Carbon Dioxide + Ethyl Acetate at a Temperature of 313.15 K. Journal of Chemical & 
Engineering Data 2006, 51, 1031–1034.

(69). Ranjbar S; Momenian SH Densities and Viscosities of Binary and Ternary Mixtures of 
(Nitrobenzene + 1-Bromobutane), (1-Bromobutane + Methylcyclohexane), (Nitrobenzene + 
Methylcyclohexane), and (Methylcyclohexane + Nitrobenzene + 1-Bromobutane) from (293.15 
to 308.15) K. Journal of Chemical & Engineering Data 2011, 56, 3949–3954.

(70). Dohnal V; Řehák K Thermal and Volumetric Properties of Four Aqueous Aroma Compounds at 
Infinite Dilution. Journal of Chemical & Engineering Data 2012, 57, 1822–1828.

(71). Zorebski E; Waligóra A Densities, Excess Molar Volumes, and Isobaric Thermal Expansibilities 
for 1,2-Ethanediol + 1-Butanol, or 1-Hexanol, or 1-Octanol in the Temperature Range from 
(293.15 to 313.15) K. Journal of Chemical & Engineering Data 2008, 53, 591–595.

(72). Postigo MA; Mariano AB; Jara AF; Zurakoski N Isobaric Vapor-Liquid Equilibria for the Binary 
Systems Benzene + Methyl Ethanoate, Benzene + Butyl Ethanoate, and Benzene + Methyl 
Heptanoate at 101.31 kPa. Journal of Chemical & Engineering Data 2009, 54, 1575–1579.

(73). Cihlář J; Hynek V; Svoboda V; Holub R Heats of Vaporization of Alkyl Esters of Formic Acid. 
Collection of Czechoslovak Chemical Communications 1976, 41, 1–6.

(74). Majer V; Wagner Z; Svoboda V; Čadek V Enthalpies of Vaporization and Cohesive Energies for a 
Group of Aliphatic Ethers. The Journal of Chemical Thermodynamics 1980, 12, 387–391.

(75). Majer V; Svoboda V; Hála S; Pick J Temperature Dependence of Heats of Vaporization of 
Saturated Hydrocarbons C5-C8; Experimental Data and an Estimation Method. Collection of 
Czechoslovak Chemical Communications 1979, 44, 637–651.

(76). Snelson A; Skinner HA Heats of Combustion: Sec-Propanol, 1,4-Dioxan, 1,3-Dioxan and 
Tetrahydropyran. Transactions of the Faraday Society 1961, 57, 2125–2131.

(77). Svoboda V; Uchytilová V; Majer V; Pick J Heats of Vaporization of Alkyl Esters of Formic, 
Acetic and Propionic Acids. Collection of Czechoslovak Chemical Communications 1980, 45, 
3233–3240.

(78). Majer V; Svoboda V; Uchytilová V; Finke M Enthalpies of Vaporization of Aliphatic C5 and C6 
Alcohols. Fluid Phase Equilibria 1985, 20, 111–118.

(79). Uchytilová V; Majer V; Svoboda V; Hynek V Enthalpies of Vaporization and Cohesive Energies 
for Seven Aliphatic Ketones. The Journal of Chemical Thermodynamics 1983, 15, 853–858.

(80). Byström K; Månsson M Enthalpies of Formation of Some Cyclic 1,3- and 1,4-Di- and Poly-
Ethers: Thermochemical Strain in the –O–C–O– and –O–C–C–O– Groups. Journal of the 
Chemical Society, Perkin Transactions 2 1982, 565–569.

(81). Wolf G Thermochemische Untersuchungen an Cyclischen Ketonen. Helvetica Chimica Acta 
1972, 55, 1446–1459.

(82). Wadsö I; Murto M-L; Bergson G; Ehrenberg L; Brunvoll J; Bunnenberg E; Djerassi C; Records 
R A Heat of Vaporization Calorimeter for Work at 25 Degrees C and for Small Amounts of 
Substances. Acta Chemica Scandinavica 1966, 20, 536–543.

(83). Lipp SV; Krasnykh EL; Verevkin SP Vapor Pressures and Enthalpies of Vaporization of a 
Series of the Symmetric Linear N-Alkyl Esters of Dicarboxylic Acids. Journal of Chemical & 
Engineering Data 2011, 56, 800–810.

(84). Marenich AV; Kelly CP; Thompson JD; Hawkins GD; Chambers CC; Giesen DJ; Winget P; 
Cramer CJ; Truhlar DG Minnesota Solvation Database (MNSOL) Version 2012. 2020.

(85). Boothroyd S; Madin O; Wagner J; Setiadi J; Thompson M; Rodríguez-Guerra J Openforcefield/
Openff-Evaluator: 0.1.0 OpenFF Evaluator. Zenodo, 2020.

(86). Boothroyd S Common Workflows - OpenFF Evaluator Documentation. https://
openff-evaluator.readthedocs.io/en/stable/properties/commonworkflows.html#simulation-layer, 
Accessed April 13th, 2022.

Boothroyd et al. Page 20

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://openff-evaluator.readthedocs.io/en/stable/properties/commonworkflows.html#simulation-layer
https://openff-evaluator.readthedocs.io/en/stable/properties/commonworkflows.html#simulation-layer


(87). Martínez L; Andrade R; Birgin EG; Martínez JM PACKMOL: A package for building initial 
configurations for molecular dynamics simulations. Journal of Computational Chemistry 2009, 
30, 2157–2164. [PubMed: 19229944] 

(88). Wagner J; Mobley DL; Chodera J; Bannan C; Rizzi A; Camila,; Bayly C; Lim NM; Lim V; 
Sasmal S; Rodríguez-Guerra J; Zhao Y; Lee-Ping, Openforcefield/Openforcefield: 0.6.0 Library 
Charges. Zenodo, 2019.

(89). Leimkuhler B; Matthews C Rational Construction of Stochastic Numerical Methods for 
Molecular Sampling. Applied Mathematics Research eXpress 2013, 2013, 34–56.

(90). Chodera JD A Simple Method for Automated Equilibration Detection in Molecular Simulations. 
Journal of Chemical Theory and Computation 2016, 12, 1799–1805. [PubMed: 26771390] 

(91). Rizzi A; Chodera J; Naden L; Beauchamp K; Albanese S; Grinaway P; Prada-Gracia D; 
Rustenburg B; ajsilveira,; Saladi S; Boehm K; Gmach J; Rodríguez-Guerra J Choderalab/Yank: 
0.25.2 - Bugfix Release. Zenodo, 2019.

(92). Wang K; Chodera JD; Yang Y; Shirts MR Identifying Ligand Binding Sites and Poses Using 
GPU-accelerated Hamiltonian Replica Exchange Molecular Dynamics. Journal of Computer-
Aided Molecular Design 2013, 27, 989–1007. [PubMed: 24297454] 

(93). Shivakumar D; Williams J; Wu Y; Damm W; Shelley J; Sherman W Prediction of Absolute 
Solvation Free Energies Using Molecular Dynamics Free Energy Perturbation and the OPLS 
Force Field. Journal of Chemical Theory and Computation 2010, 6, 1509–1519. [PubMed: 
26615687] 

(94). Shirts MR; Chodera JD Statistically Optimal Analysis of Samples from Multiple Equilibrium 
States. The Journal of Chemical Physics 2008, 129, 124105. [PubMed: 19045004] 

(95). Levenberg K A Method for the Solution of Certain Non-Linear Problems in Least Squares. 
Quarterly of Applied Mathematics 1944, 2, 164–168.

(96). Moré JJ; Sorensen DC Computing a Trust Region Step. SIAM Journal on Scientific and 
Statistical Computing 1983, 4, 553–572.

(97). Dennis JE; Gay DM; Walsh RE An Adaptive Nonlinear Least-Squares Algorithm. ACM 
Transactions on Mathematical Software 1981, 7, 348–368.

(98). Wang L-P; McKiernan KA; Gomes J; Beauchamp KA; Head-Gordon T; Rice JE; Swope WC; 
Martíınez TJ; Pande VS Building a More Predictive Protein Force Field: A Systematic and 
Reproducible Route to AMBER-FB15. The Journal of Physical Chemistry B 2017, 121, 4023–
4039. [PubMed: 28306259] 

(99). Mobley DL; Bannan CC; Rizzi A; Bayly CI; Chodera JD; Lim VT; Lim NM; Beauchamp KA; 
Slochower DR; Shirts MR; Gilson MK; Eastman PK Escaping Atom Types in Force Fields Using 
Direct Chemical Perception. Journal of Chemical Theory and Computation 2018, 14, 6076–6092. 
[PubMed: 30351006] 

(100). Cornell WD; Cieplak P; Bayly CI; Gould IR; Merz KM; Ferguson DM; Spellmeyer DC; Fox 
T; Caldwell JW; Kollman PA A Second Generation Force Field for the Simulation of Proteins, 
Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society 1995, 117, 
5179–5197.

(101). Mobley DL; Bannan CC; Rizzi A; Bayly CI; Chodera JD; Lim VT; Lim NM; Beauchamp KA; 
Shirts MR; Gilson MK; Eastman PK Open Force Field Consortium: Escaping Atom Types Using 
Direct Chemical Perception with SMIRNOFF v0.1. bioRxiv 2018, 286542.

(102). Rosenblatt M Remarks on Some Nonparametric Estimates of a Density Function. The Annals of 
Mathematical Statistics 1956, 27, 832–837.

(103). Parzen E On Estimation of a Probability Density Function and Mode. The Annals of 
Mathematical Statistics 1962, 33, 1065–1076.

(104). Waskom ML Seaborn: Statistical Data Visualization. Journal of Open Source Software 2021, 6, 
3021.

(105). Scott DW Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd ed.; John 
Wiley & Sons: New York, 1992.

(106). Jorgensen WL; Tirado-Rives J The OPLS [Optimized Potentials for Liquid Simulations] 
Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and 

Boothroyd et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Crambin. Journal of the American Chemical Society 1988, 110, 1657–1666. [PubMed: 
27557051] 

Boothroyd et al. Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: LJ optimization workflow used in this study.
A training dataset consisting of physical property measurements for organic molecules is 

selected from the NIST ThermoML database. Starting with the OpenFF 1.0.0 (Parsley) force 

field, the physical properties in the training dataset are estimated using the force field and 

the OpenFF Evaluator software package.LJ parameters are then adjusted by minimizing the 

difference between the simulation results and experimental training data via a regularized 

least-squares procedure as implemented in the ForceBalance package.43
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Figure 2: The 28 molecules were included in the “pure only” training set.
The pure data used in our training sets contains one ρl and one ΔHvap measurement per 

molecule, measured at close to ambient conditions (P=1 atm, T=298K), yielding a training 

set of 28 molecules with 56 data points total.
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Figure 3: The 33 pairs of molecules (shown as boxed pairs) which were chosen for the mixture 
training sets.
The mixture data used in our training sets contains one ρl (x) and one ΔHmix (x) 

measurement per mixture for three different compositions if multiple compositions were 

available (close to 25%, 50% and 75%) measured at close to ambient conditions (P=1 atm, 

T=298 K), yielding a training set of 33 binary mixtures with 187 data points total.
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Figure 4: The 4 different training sets generally drive the parameters in the same direction and 
to similar magnitudes, indicating all data sets encode somewhat similar parameter information.
Changes in parameter values for each of the training sets considered in this paper are 

shown as bar graphs above. The percent change in the each parameter for each of the 

training sets relative to their starting value taken from the OpenFF 1.0.0 force field. One 

notable difference between the “pure only” set and the sets containing mixtures is the 

[#8X2H1+0:1] (hydroxyl oxygen) σ parameter, which is reduced by only 0.4% in the “pure 

only” (orange) set, but reduced by 1.7–2.8% in the other sets.
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Figure 5: Optimization generally improves training set RMSEs of pure properties for all force 
fields trained against pure properties.
Figure shows categorized RMSE vs. experiment of ρl (left panel) and Hvap (right panel) 

measurements in the “pure only” training set, estimated using the initial parameters (OpenFF 

1.0.0, blue points) and the final parameters after 12 optimization iterations (“pure only”, 

orange points). RMSEs are categorized by chemical environment, and error bars represent 

95% confidence intervals computed by bootstrapping with replacement for 1000 iterations. 

The results from the other training sets containing pure properties (“mixtures and pure 

density”, “pure and mixture”) are statistically equivalent, with the exception of ketone 

pure densities (statistically better in the “pure only” set), and alcohol heats of vaporization 

(statistically inferior in the “pure only” dataset). Figures for other optimization are available 

in Supporting Information Section S2.6.2,S2.7.2.

Boothroyd et al. Page 27

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Optimization improves RMSEs of mixture properties for all training sets.
Figure shows categorized RMSE vs. experiment of ρl (x) (left panel) and ΔHmix (x) 

(right panel) measurements in the “mixture only” training set, estimated using the initial 

parameters (OpenFF 1.0.0, blue points) and the final parameters after 12 iterations (“mixture 

only”, orange points). RMSEs are categorized by chemical environment, where “Ether 

> Ketone” denotes a mixture with ether molecules in excess of ketone molecules, and 

“Ether ≈ Ketone” denotes a mixture with ether and ketone molecules in roughly equal 

compositions, etc. Error bars represent 95% confidence intervals computed by bootstrapping 

with replacement for 1000 iterations. The results from the other training sets containing 

mixture properties (“mixtures and pure density”, “pure and mixture”) show statistically 

equivalent improvements in training set RMSEs, and are available in Supporting Information 

Sections S2.6.2,S2.7.2
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Figure 7: Parameter gradients indicate that ketone measurements targets drive parameters for 
hydrogen, carbon, and oxygen in opposite directions as other moieties.
The data show the contribution of the first derivatives of the force field parameters to the 

pure density data portion of the objective function for the “pure only” training set. Dotted 

lines correspond to the same moieties as solid lines of the same color, and indicate that 

magnitude of gradient is small, and is shown enlarged to a magnitude of 1 in this figure. 

The data indicate that the ketone measurements in the training set (orange dotted line) 

are pulling the hydrogen parameter [#1:1]-[#6X4], general tetravalent carbon parameter 

[#6X4], and generic oxygen parameter [#8:1] in opposite directions from the other 

chemical environments (all other lines). This suggests that adding a separate parameter (or 

parameters) to explicitly address ketone environments is likely to improve parameterization.
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Figure 8: Benchmarking metrics for the test data sets of ρl, ρl(x), ΔHmix(x), ΔHvap. 
Benchmarking indicates that densities are well predicted in all cases, test set ΔHvap is improved 
when training against ΔHvap, and test set ΔHmix(x) is improved when training against ΔHmix(x).
Upper panels show mean shift in absolute error from OpenFF 1.0.0 (the starting point 

for each of these optimizations). Negative values indicate that the refitted force field’s 

performance on the test set is improved related to OpenFF 1.0.0. Lower panels show kernel 

density estimates of the distribution of absolute error shifts from OpenFF 1.0.0. Negative 

values indicate improvement relative to OpenFF 1.0.0, whereas positive values indicate 

degradation. Error bars in upper panels represent 95% confidence intervals, bootstrapped 

over pairs of measurements between OpenFF 1.0.0 and the refitted force fields.

Boothroyd et al. Page 30

J Chem Theory Comput. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9: Benchmarking metrics for the ΔGsolv test data set shows that training against “mixture 
only” set improves ΔGsolv predictions, whereas training against “pure only” set degrades 
predictions.
Left panel shows mean shift in absolute error from OpenFF 1.0.0 (the starting point 

for each of these optimizations). Negative values indicate that the refitted force field’s 

performance on the test set is improved related to OpenFF 1.0.0. Right panel shows kernel 

density estimate of the distribution of absolute error shifts from OpenFF 1.0.0. Negative 

values indicate improvement relative to OpenFF 1.0.0, whereas positive values indicate 

degradation. Error bars in upper panels represent 95% confidence intervals, bootstrapped 

over pairs of measurements between OpenFF 1.0.0 and the refitted force fields.
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Figure 10: Training against measurements of liquid mixtures corrects systematic error in 
alcohol/ester and alcohol/ketone enthalpies of mixing.
This figure shows a comparison of the estimated and experimentally measured ΔHmix (x) 

data points for the test set, plotting for force fields optimized against the “mixture only” and 

“pure only” training sets, as well as the baseline OpenFF 1.0.0 (Parsley) force field. The 

systematic error in alcohol/ester and alcohol/ketone mixtures (highlighted green and orange 

points) is significantly reduced when training against the properties of mixture, but not when 

training against properties of pure systems.
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Table 1:
Four training sets containing different combinations of pure and mixture data were 
considered in this study.

These training sets are composed of measurements of pure-component liquid density (ρl), pure-component 

enthalpy of vaporization (ΔHvap), binary mixture densities (ρl(x)), and binary enthalpies of mixing (ΔHmix(x)). 

These measurements cover a set of alcohols, esters, ethers, ketones, acids and alkanes, which is further 

described in Figures 2 and 3. The 4 training sets in this study are labeled based on which of these 

measurements are included.

Properties Included

Training Data set Pure properties Mixture properties

ρ l ΔHvap ρl(x) ΔHmix(x)

“pure only” Yes Yes No No

“mixture only” No No Yes Yes

“mixtures + pure density” Yes No Yes Yes

“pure and mixture” Yes Yes Yes Yes
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Table 2:
All atoms with LJ parameter types exercised by the training and test sets, categorized by 
whether they are re-optimized in this study.

SMIRKS atom types are applied hierarchically, with more specific types superseding less specific types, 

as described in Mobley et al.99 Each of these atom types has a σ and ε parameter that describe the Lennard-

Jones interactions; with 6 SMIRKS types included in the optimization, 12 Lennard-Jones parameters were 

optimized. In the “illustration” figures, any atomic index including a ‘*’ is a wildcard, representing any atom, 

or group of atoms.

SMIRKS Pattern Description Illustration

Atoms with Optimized Parameters

[#1:1]-[#6X4] Hydrogen attached to tetravalent carbon

[#6:1] Generic carbon

[#6X4:1] Tetravalent Carbon

[#8:1] Generic oxygen

[#8X2H0+0:1] Divalent oxygen attached to zero hydrogens

[#8X2H1+0:1] Divalent oxygen attached to one hydrogen
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SMIRKS Pattern Description Illustration

Atoms with Fixed Parameters

[#1:1]-[#6X4]
-[#7,#8,#9,#16,#17,#35]

Hydrogen attached to tetravalent carbon attached to N/O/S/Halogen

[#1:1]-[#6X3]
(~[#7,#8,#9,#16,#17,#35])
~[#7,#8,#9,#16,#17,#35]

Hydrogen attached to trivalent carbon attached to 2 N/O/S/Halogen 
atoms

[#1:1]-[#8] Hydrogen attached to generic oxygen
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