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Abstract of the Dissertation

Comprehensive Pyrometry of Incandescent

Multiwalled Carbon Nanotubes and Graphene in the

Visible and Near Infrared

by

Scott Benjamin Singer

Doctor of Philosophy in Physics

University of California, Los Angeles, 2012

Professor Brian Christopher Regan, Chair

Pyrometry via blackbody radiation is used to measure temperature of systems throughout

physics. The spectrum, described by Planck’s law, depends solely on the temperature T and

surface area A of a black source. However, the derivation of Planck’s law considers only

the limit where wavelength λ≪ L, the linear dimension of the source. Many nanosystems,

however, exist in the opposite limit, λ & L, in the visible and near infrared.

We investigate this subwavelength limit of thermal radiation by bringing multi-walled

carbon nanotubes, for which r ≪ λ . L, to incandescence via joule heating. Their light is

measured in an optical microscope, and their geometry is measured with a transmission elec-

tron microscope. With complete knowledge of the source geometry and the photon emission,

a full characterization of the temperature, thermal conductivity, and electrical conductivity

of each nanofilament is possible. We find that the filaments emit highly polarized light with

suprablack effective emissivities, indicative of thermal radiation originating in a phase co-

herent manner from the nanotube’s volume as opposed to its surface area, in concordance

with classical electromagnetism.

Multiwavelength pyrometry is then performed on graphene, which has linear dimen-

sions in the classical blackbody limit and theoretical gray emission. This pyrometry allows
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us to measure the number of layers in the graphene, a result confirmed with absorption

measurements in agreement with Kirchoff’s law of thermal radiation. Light emitted from

incandescent graphene’s bulk is found to be unpolarized, yet exhibits polarization as high as

20% near the sheet edge in accordance with diffraction theory. However, light polarized to

5% is observed originating from the bulk away from the hot region, which we attribute to

anisotropy in the temperature gradient.

We also find that as temperature of a nanotube and graphene increases, the signal in

the near infrared becomes suppressed compared to the emission models. As trapped surface

states and contaminants on graphene samples shift the Fermi energy away from the Dirac

point, long wavelength transitions become disallowed. Thus, this infrared effect owes to the

transparency at long wavelengths of carbon nanostructures with a Fermi level shifted away

from the Dirac point, implying that broadband optical modulation in the visible and near

infrared is attainable through gating and heating of carbon nanotubes and graphene.
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CHAPTER 1

Introduction

1.1 Pyrometry

1.1.1 Planck’s Law of Thermal Radiation

Max Planck’s description of the thermal radiation of a “blackbody” in 1900 remains one of the

most important results of physics, historically as well as scientifically. The thermal radiation

spectra seen experimentally by Lummer and Pringsheim[3], and Rubens and Kurlbaum[4],

had been described by Wien[5] as

I(λ, T )

dλdA
=

2hc2

λ5
e−C2/λT , (1.1)

where I(λ, T ) represents the power flux from within plane waves of wavelength between λ and

λ+dλ across an area dA; here h = 6.626×10−34 J·s is Planck’s constant, c = 2.998×1017 nm/s

is the speed of light in a vacuum, C2 = hc/kB = 1.44 × 107 nm·K is the second radiation

constant, and kB = 1.381 × 10−23 J/K is Boltzmann’s constant. Equation 1.1, known as

Wien’s law, fits observed thermal spectra at short wavelengths, yet underestimates it at

longer wavelengths. Planck corrected Wien’s law by considering the electromagnetic field

inside the blackbody as a system of Hertzian oscillators with discretized energy, obtaining

the well known Planck’s law[6],

I(λ, T )

dλdA
=

2hc2

λ5
1

eC2/λT − 1
. (1.2)

For oblique incidence, the effective area is modified by a Lambertian factor, dA′ = cos θdA,

and the complete spatial distribution for blackbody radiation is

I(λ, T, θ)

dλdAdΩ
=

2hc2

λ5
cos θ

eC2/λT − 1
. (1.3)
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Planck’s assumption of quantizing the allowed energies of electromagnetic radiation was

an important step in the development of quantum physics. Furthermore, Planck’s law has

proved valid and unaltered since its formulation at the turn of the twentieth century.

1.1.2 Pyrometry

While many methods exist for determining the temperature of a system, ranging from mea-

suring the shot noise[7] to observing fiducials with known melting temperatures[8], fitting

thermal radiation to Planck’s law is the only method with spans all the decades of accessible

temperatures. The cosmic microwave background (CMB) fits a Planck spectrum correspond-

ing to 2.725 K on average, and anisotropies in this very low temperature point to interesting

physics from the early universe[9]. On the other side of the temperature scale, a Planck

fit of starlight reveals that stars have surface temperatures in excess of 104 K. In fact, the

International Temperature Scale ITS-90[10] uses Planck’s law to define and standardize tem-

peratures above 1235 K, the melting point of silver. From extremely cold to extremely hot,

Eq. 1.2 can be utilized to determine the temperature of metals, plasmas, stars, and many

other physical systems.

1.1.3 Challenges of Pyrometry

In practice, exact pyrometry of a thermal body proves difficult because few objects outside

of stars are black to a good approximation. The absolute emission of a material is modified

by its emissivity ϵ(λ, T,Ω), which represents the fraction of light produced in comparison

to Eq. 1.3. For a “graybody”, or ϵ independent of wavelength, a fit to Planck’s law is still

possible; such a graybody assumption is often employed in pyrometry.

By Kirchoff’s law of thermal radiation and the principle of detailed balance, this emis-

sivity is equal to the absorptivity of the material[11]. Absorptivity is related to the complex

dielectric constant ε, which is related to the optical conductivity σ(ω) by

ε = ε∞ + i
4πσ(ω)

ω
, (1.4)

where ω = 2πc/λ, and ε∞ represents the material, DC dielectric response. The optical
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conductivity is directly related to the electron-photon interaction, which increases in com-

plexity with the band structure of the material. Furthermore, absorption also depends on

the surface quality of the sample, and surface roughness will alter the local reflection and

transmission.

Two-color, or ratio, pyrometry circumvents this issue by comparing the intensity at two

wavelengths within a range where ϵ is assumed to vary weakly with wavelength. However,

the uncertainty in this method can be large[12]. An alternative method of pyrometry is to

fit to a functional form of ϵ(ω). Fitting the functionality of the emissivity directly produces

errors increasing uncontrollably with the number of data points[13]; assuming a functional

form for the fit does not have such errors[14], but necessitates a model for ϵ(ω)[15].

Carbon nanostructures have well-defined molecular structures, so surface inhomogenities

are minimized and do not affect the absorption. Furthermore, these well-defined structures

allow complete calculation of the electronic bands, and fully realized models for the emissivity

can be obtained.

1.2 Carbon Nanostructures

1.2.1 Electronic Devices

Recently, carbon nanostructures have become promising materials for the fabrication of

advanced electronic and optical devices. Graphene, an atomically thin sheet of sp2 bonded

carbon, is a zero-bandgap semiconductor and has mobilities in excess of 105 cm2/V · s[16],

far superior to typical semiconductor technology. The performance of graphene devices

is directly affected by graphene’s thermal and optical properties. Its planar structure is

conducive to incorporation into transistors, where the performance is restricted by current

saturation. This current saturation stems from self-heating and scattering between the

electrons and optical phonons[17, 18]. Graphene has been observed to emit as a graybody[19,

17, 20, 21] with emissivity 2.3% equal to its absorption in the visible[22, 23]; this broadband

thermal emission allows graphene to be utilized as an optical modulator[24, 21], an optical

absorber[25], or incandescent display[20].
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Rolling a graphene sheet into a cylinder produces a carbon nanotube (CNT). A nan-

otube’s electronic properties are related to its size, becoming semiconducting or metallic

depending on the diameter. Since the length of a carbon nanotube is much larger than its

width, it can be used as a sensitive polarization detector or source. Cylindrical and ellip-

soidal carbon grains are also theorized to comprise stellar dust, which are directly observable

via thermal radiation[26, 27]. The thermal response of the emission or absorption of CNTs

thus has importance to astronomy as well as device physics.

1.2.2 Thermal Stability

Equation 1.3 is monotonically increasing with T ; thus, higher temperatures increase the sig-

nal from an object. Materials limit the temperatures acheivable in a laboratory environment,

with carbon and transition metals such as tungsten, molybdenum, and tantalum among the

few with melting points near or above 3000 K in 1 atm. Referring to Eq. 1.1, the intensity

peaks at λ2000 K ≈ 1438 nm and λ3000 K ≈ 959 nm. Therefore, large signal, in addition to

accessibility of equipment, make it advantageous to measure light from bodies at T & 2000 K

in the visible and near infra-red (NIR) spectrum (ranging from ∼ 300 nm to ∼ 1200 nm),

and both graphene[28] and carbon nanotubes[29] can be heated to this range before device

failure.

1.2.3 Experimentally Accessible Subwavelength Radiators

Two distinct morphologies of carbon nanotubes exist–single-walled carbon nanotubes (SWC-

NTs) consisting of a single carbon layer, and multi-walled carbon nanotubes (MWCNTs) con-

sisting of several concentric SWCNTs. SWCNTs have several quantum properties arising

from their cylindrical geometry, including quantized conductance and distinct electrical sub-

bands; this quantization leads to strong spectral peaks. On the other hand, the electronic

properties of MWCNTs lie in the classical limit; MWCNTs are thus broadband spectral

sources, proving optimal for using classical methods to analyze their thermal radiation.

A carbon nanotube has a typical diameter ∼ 10 nm and length & 1 µm; thus in the

visible-NIR, r ≪ λ . L, outside the typical blackbody assumption that the length scale
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r ≫ λ. Since CNTs have a cylindrical geometry, bringing them to incandescence via joule

heating is straightforward; furthermore, the temperature profile will be described by the one-

dimensional heat equation. Therefore, multi-walled carbon nanotubes make ideal candidates

to probe the properties of blackbody radiation in this extraordinary size regime, where effects

such as enhanced coherence[30, 31] and emission are expected.

1.3 Band Theory of Graphene and Carbon Nanotubes

1.3.1 The Graphene Lattice

The two-dimensional allotrope of carbon, graphene, provides the foundation for the physical

structure of buckyballs, CNTs, and graphite. A two-dimensional network of sp2 bonded

carbon atoms forms a honeycomb lattice. This honeycomb lattice is comprised of a trigonal

lattice with primitive vectors

a⃗1 =
ag
2
(
√
3x̂+ ŷ)

a⃗2 =
ag
2
(
√
3x̂− ŷ)

(1.5)

and basis

r⃗1 = −
ag
2
x̂

r⃗2 =
ag
2
x̂,

(1.6)

where the primitive vector length a is related to the length of the C-C bond aC−C by ag =
√
3aC−C ≈ 2.461 Å. The unit cell, which has area |⃗a1 × a⃗2| =

√
3a2g/2, contains 2 carbon

atoms, and is illustrated in Fig. 1.1 along with the lattice and primitive vectors. We denote

the two sublattices as “A” and “B”, comprised of all locations R⃗A = ν1a⃗1 + ν2a⃗2 + r⃗1 and

R⃗B = ν1a⃗1 + ν2a⃗2 + r⃗2 respectively for ν1, ν2 integers.

1.3.2 CNT Structure

We construct a single-walled carbon nanotube from graphene by imposing the periodic

boundary condition equating all lattice points separated by the chiral vector C⃗ = na⃗1+ma⃗2

, for fixed integers n and m. This nanotube, denoted an (n,m) SWCNT, has the circumfer-
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Figure 1.1: The honeycomb graphene lattice. Sublattices A and B are represented by red

and blue sites, respectively, and shaded area represents the unit cell. The vectors R⃗ indicate

nearest-neighbors to an atom on the A sublattice, as used in the tight-binding calculation of

electronic bands.
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ence |C⃗| = ag
√
n2 +m2 + nm. The unit cell of this SWCNT is larger than graphene’s unit

cell, and the number of atoms per unit length[32] is

N

L
=

4√
3ag

√
n2 +m2 + nm =

4√
3a2g
|C⃗|. (1.7)

Several concentric single-walled nanotubes form a multi-walled carbon nanotube (MWCNT).

The spacing of walls in a MWCNT equals the interlayer spacing in graphite δ = 3.4 Å. A

MWCNT with inner and outer radii a and b, respectively, has

N =
8π√
3a2g

n∑
i=1

[a+ (i− 1)δ] (1.8)

carbon atoms, where n = (b− a)/δ is the number of walls. A 1 µm long SWCNT of radius

2 nm has ≈ 5 × 105 carbon atoms, and a 10-wall, 1 µm long MWCNT with inner and

outer radii 2 nm and 5 nm has ≈ 8 × 106 carbon atoms. Thus, MWCNTs and SWCNTs

of reasonable length exist in the large particle limit, where electron and phonon bands are

continuous rather than quantized, as well as the thermodynamic limit, where temperature

T is well-defined on a nanotube.

1.3.3 Thermal Phonon Lengths

With carbon nanostructures supporting a well-defined temperature, the wavelength of a

typical phonon at temperature T determines the minimum length scale on which it makes

sense for the temperature to vary. The thermal phonon wavelength is λph = hvs/kBT where

vs is the speed of sound. We approximate the speeds of sound in graphene and MWCNTs

by the speeds of sound in graphite: vTA = 12.3 km/s and vLA = 21.0 km/s for the transverse

and longitudinal modes, respectively[32]. Thus, λph ≈ 1 µm/T ≈ 3 nm at room temperature.

Because typical graphene sheets and MWCNTs have lengths L on the order of several µm,

λph ≪ L, and temperature gradients are also well-defined.

1.3.4 Electronic Bands of Graphene

The electronic transitions within a thermal body drive the emission of its electromagnetic ra-

diation. The graphene lattice’s simplicity and high symmetry allows direct calculation of the
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electronic energy bands governing these transitions using a tight-binding model. Graphene’s

reciprocal lattice, shown in Fig. 1.2, is a trigonal lattice with reciprocal lattice vectors

b⃗1 =
2π

ag

(
x̂√
3
+ ŷ

)
b⃗2 =

2π

ag

(
x̂√
3
− ŷ
)
.

(1.9)

Electron wavevectors k⃗ can be translated to equivalent points in reciprocal space by any

reciprocal lattice vector G⃗ = v1⃗b1 + v2⃗b2 for v1, v2 integers, and thus this translation does

not alter the physics of that electron. Thus, we restrict our discussion to the first Brillouin

zone (BZ), also shown in Fig. 1.2 along with points of high symmetry designated the Γ, M,

and K points.

The tight-binding model supposes only that an electron can “hop” from an orbital of one

lattice atom onto the orbital of the atom’s nearest-neighbor with some probability. For a

given Hamiltonian Ĥ, the probability that an electron on the A sublattice hops to one of

the nearest neighbors on the B sublattice is the hopping integral

t = ⟨ϕA(r −R)|Ĥ|ϕB(r −R− ag/2)⟩. (1.10)

Because the π-orbitals of the C-C bond overlap slightly, the overlap integral

s = ⟨ϕA(r −R)|ϕB(r −R− ag/2)⟩ (1.11)

relates to the probability of the electron “belonging” to the A sublattice to begin with, and

will affect the transition energies as well.

The energy bands from this method are[32]

E±
g (k⃗) =

ϵ2p ± t
√
|f(k⃗)|2

1± s
√
|f(k⃗)|2

, (1.12)

where ϵ2p is the difference of the sublattices’ 2p orbital energies; ϵ2p = 0 for graphene, but

is non-zero for heterogenous honeycomb structures. The phase factor f(k⃗) sums over the

phase contribution from the 3 nearest neighbors, at relative positions R⃗1, R⃗2, and R⃗3 (see

Fig. 1.1):

f(k⃗) = eik⃗·R⃗1 + eik⃗·R⃗2 + eik⃗·R⃗3

= eikxag/
√
3 + 2e−ikxag/2

√
3 cos

(
kyag
2

)
.

(1.13)
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Figure 1.2: Graphene’s reciprocal lattice. The first Brillouin zone (BZ) is designated, and

wavevectors of high symmetry are designated as the Γ, M, and K points within the BZ.
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The full solution, using the carbon-carbon π-bond values t = −3.033 eV and s = 0.129

[32] is shown in Fig 1.3. However, we are only concerned with low-energy excitations, we

approximate no orbital overlap, or s = 0, and the energy bands of graphene are

Eg(k⃗) = ±t

[
1 + 4 cos

√
3kxag
2

cos
kyag
2

+ 4 cos2
kyag
2

]1/2
. (1.14)

The lower and upper branches of Eg are identified with valence and conduction bands,

respectively. At the K points of the Brillouin zone, EDirac ≡ Ev
g (K⃗) = Ec

g(K⃗) = 0. These

Dirac points represent the level of half-filling for undoped graphene, and thus we set the

undoped Fermi level at EF = EDirac.

With EF = 0, the lowest energy excitations of electrons occur near the K points. We

expand Eg(k⃗
′) near the K point using k⃗′ = K⃗ − k⃗ for small wavevectors |⃗k|ag ≪ 1. The

bands become linear in |⃗k|,

Eg ≈ ±
tag
√
3

2
|⃗k| = ±~vF |⃗k|, (1.15)

where the Fermi velocity vF ≡ tag
√
3/2~ = 9.82 × 105 ≈ 106 m/s. This linear dispersion

indicates that electrons in graphene act as massless fermions that always travel at vF . This

velocity is much larger than typical electron drift velocities, resulting in the observed high

mobility.

Interband electron transitions from the valence to the conduction band (or vice-versa)

correspond to absorption (emission) of a photon. The photon energy for a transition is

related to the promoted (demoted) electron’s wavevector by Eγ = 2~vF |⃗k|. The matrix ele-

ment corresponding to this emission or absorption determines the transition probability, and

calculation of this element using the Kubo formalism[33] or tree-level Feynman diagrams[34]

gives the optical conductivity of graphene

σg =
αc

8

[
tanh

(
hck − 2EF

4kBT

)
+ tanh

(
hck + 2EF

4kBT

)]
, (1.16)

with α ≈ 1/137 the fine-structure constant and the Fermi level drives the chemical potential.

For undoped graphene,

σg =
αc

4
tanh

(
C2

4λT

)
, (1.17)

which takes the wavelength and temperature independent limit σg ≈ αc/4 in the vis-NIR

for T . 2000 K.
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Figure 1.3: The complete valence and conduction bands of graphene shown within the BZ,

solved using a tight binding model with t = −3.033 eV and s = 0.129.
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1.3.5 Electrons and Holes in Graphene

As graphene is a zero-gap semiconductor, transport and subsequent heating is determined

by the concentration of charge carriers. The number of charge carriers per area with k ≡

|⃗k| < kF

n =
gsgv

4π(~vF )2
|E|2 (1.18)

follows from Eq. 1.15 with restricting k⃗ to two dimensions. Here, gs = 2 is the electron spin

degeneracy and gv = 2 is the valley degeneracy owing to the inequivalent K and K′ points in

the BZ, which are related to each other by a rotation of 60◦. Solving for E gives the Fermi

level as a function of concentration

EF = ±~vF
√
πn, (1.19)

taking the +(-) solution when transport is dominated by electrons (holes). Differentiation

of Eq. 1.18 with respect to E gives the density of states for both electrons and holes

D(E) =
2|E|

π(~vF )2
. (1.20)

The total concentration of electrons n is given by integrating D(E) times the Fermi-Dirac

distribution from the bottom of the conduction band, and

n =

∫ ∞

0

D(E)F (E − EF )dE =
2

π(~vF )2

∫ ∞

0

EdE

1 + e(E−EF )/kBT

=
2

π

(
kBT

~vF

)2 ∫ ∞

0

ηdη

1 + eη−ηF
,

(1.21)

where η ≡ E/kBT and ηF ≡ EF/kBT . Similarly, the concentration of holes is found by

integrating to the top of the valence band,

p =

∫ 0

−∞
D(E)F (E − EF )dE =

2

π(~vF )2

∫ 0

−∞

|E|dE
1 + e(E−EF )/kBT

=
2

π

(
kBT

~vF

)2 ∫ ∞

0

ηdη

1 + eη+ηF
.

(1.22)

For pristine, undoped graphene, EF = 0 and the integral evaluates to π2/12. Therefore,

the intrinsic electron and hole densities of graphene are

n = p = ni ≡
π

6

(
kBT

~vF

)2

, (1.23)

which increases quadratically with temperature. At T = 300 K, ni ≈ 8.4× 1010 cm−2.
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1.3.6 Electronic Bands of CNTs

The electronic energy bands of a SWCNT derive from the band structure of graphene by

application of the SWCNT’s periodic boundary condition. The wavefunction of an electron

with wavevector k⃗ obeys the Bloch condition

ϕk⃗(r⃗ + R⃗) = eik⃗·R⃗ϕk⃗(r⃗) (1.24)

for any lattice vector R⃗. When this lattice vector is the chiral vector, r⃗ + C⃗ = r⃗, the single-

valuedness of the wavefunction requires eik⃗·C⃗ = 1, or k⃗ · C⃗ = 2πq for integers q. Substituting

C⃗ = na⃗1 +ma⃗2, this equation places the restriction on the allowed wavevectors,

√
3kx(n+m) + ky(n−m) =

4πq

ag
. (1.25)

There are 2n +m distinct subbands formed by applying this restriction to Eq. 1.14 in the

BZ of graphene; these bands are designated by q ∈ −⌊2n+m
3
⌋, . . . ,−1, 0, 1, . . . , ⌊2n+m

3
⌋ and

are perpendicular to C⃗. Figure 1.4 shows these subbands for a (9,5) SWCNT.

In comparison with graphene, which has no bandgap, the lowest subband of a SWCNT

will exhibit an energy gap relative to its proximity to the K point. For 2n+m divisible by 3,

the K points lie on one of the subbands, and a (n,m) nanotube is metallic or semi-metallic as

opposed to semiconducting. Thus chirality restricts the energy levels available for excitations

in single-walled nanotubes. Because intersubband transitions correspond to excitations along

the nanotube’s circumference and intrasubband transitions correspond to excitations along

the tube length, we expect strong and polarization-dependent spectral contributions at these

transition energies.

As the diameter of the SWCNT increases, 2n+m grows large, and the separation between

subbands decreases. The proximity of subbands to the K points increases as well. A SWCNT

of ∼ 1 nm diameter has ∼ 50 subbands, approaching this metallic limit. Similarly, as the

number of walls increases in a MWCNT, the accessible Brillouin zone approaches that of

graphene. Figure 1.5 shows the subbands for a (85,65) SWCNT, which has diameter ∼ 10 nm

comparable with the average wall diameter of a MWCNT; the subbands become dense in

the Brillouin zone, the Dirac points are always on allowed bands, and the tube is metallic.
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Figure 1.4: The allowed wavevectors of a (9,5) SWCNT. The 2n +m subbands are spaced

along the chiral vector Ĉ, which has been rescaled for display purposes.
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Figure 1.5: The allowed wavevectors of an (85,65) SWCNT. Almost the entire Brillouin zone

of graphene is accessible.
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Once interwall interactions are considered as well, the electrons in a MWCNT can take on

practically any wavevector. Thus, the very metallic MWCNTs no longer have quantization

conditions on allowed electronic energy states. We can treat a MWCNT of even a small

number of walls and diameter & 7 nm as interacting with electromagnetic waves classically,

supporting a well-defined temperature gradient, and having the optical response of graphene.

Thus, using classical thermodynamics and electrodynamics, we can perform a direct analysis

of thermal radiation from a MWCNT with a radius much smaller than visible wavelengths.
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CHAPTER 2

Thermal Radiation Theory of MWCNT Nanofilaments

2.1 Joule Heating a Filament to Incandescence

A MWCNT nanofilament emits thermal radiation in the visible-NIR spectrum at high tem-

peratures, and its analysis requires a complete theoretical model of the spectral and direc-

tionality of this light. This thermal radiation is generated by applying a bias across the

filament, raising the tube’s temperature via Joule heating and bringing it to incandescence.

The nanotube’s ends contact large heat sinks kept at room temperature; thus, we expect a

large temperature gradient from the tube’s center to its end, a length which is of the order

of the wavelength of visible-NIR light. On the other hand, a macroscopic filament, such as a

tungsten wire in everyday incandescent bulbs, supports a constant temperature distribution

over the majority of its length. The temperature distribution along the MWCNT, which

directly affects the amount of light radiated, is described by the 1-D heat equation.

2.1.1 1-D Heat Equation

Because its radii b, a≪ L the length, a MWCNT joule-heated by a current I can be treated

as a one-dimensional wire with heat flowing only along the tube-axis, denoted x̂ without loss

of generality. Considering an infinitesimal segment spanning [x, x+dx], with resistivity ρ(x)

and thermal conductivity κ(x), the rate of heat flux q̇cond through this segment by conduction

is given by Fourier’s Law,[35]

q̇cond = −κ(x)dT
dx
, (2.1)

or in differential form,

dq̇cond = −d
(
κ(x)

dT

dx

)
. (2.2)
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The units of q̇ are power/area, so the differential heat flux due to Joule heating across

the cross-sectional area π(b2 − a2) is

dq̇heat =
dP

π(b2 − a2)
=

I2dR

π(b2 − a2)
=

I2ρ(x)

(π(b2 − a2))2
dx. (2.3)

In steady-state, the heat loss through conduction is equal to the heat gain through Joule

heating, and in equating Eq. 2.2 and Eq. 2.3, we arrive at the steady state 1-D heat equation

d

dx

(
κ(x)

dT

dx

)
+ ρ(x)

I2

(π(b2 − a2))2
= 0. (2.4)

We estimate the time required for a MWCNT to reach steady-state by comparing the input

power to the power necessary to raise the nanotube to some temperature,

RI2 = N
CV T

τ
, (2.5)

where CV ≈ 300 J/mol·K is the high temperature heat capacity for graphite.[36] Using

typical values of R = 10 kΩ, I = 100 µA, and N = 108 atoms, the nanotube reaches a

temperature of 2000 K in no longer than τ ≈ 1 µs. A MWCNT filament reaches steady-

state very fast compared to a typical measurement time of 1/60 s, the time of one powerline

cycle (plc).

The heated MWCNT radiates light, and thus radiation must also be considered a source

of heat loss to the wire. Radiative heat loss per area is given by the Stefan-Boltzmann law

dq̇rad = −(2πb)ϵσSB(T
4 − T 4

0 )

π(b2 − a2)
, (2.6)

where T0 is the temperature of the environment, ϵ is the effective emissivity, and σSB =

5.67 × 10−8 J
m2K4s

is the Stefan-Boltzmann constant. Comparing Eq. 2.6 to Eq. 2.2, the

temperature at which radiative cooling becomes important is

T ∼ 3

√
bκ

2σSB(dx)2
. (2.7)

For a typical nanotube, b ∼ 10 nm, κ ∼ 100 W
m·K , and we take dx ∼ λT ∼ 1 nm, resulting in

a crossover temperature T ∼ 3
√
1019 K3 ∼ 106 K. Therefore, at our operating temperatures,

radiative cooling can be neglected. The resultant form of the heat equation in Eq. 2.4

supports analytic solutions for simple T -dependence of the ratio ρ/κ.
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2.1.2 Constant Resistivity Solution

As a first approximation, we suppose both the thermal conductivity and resistivity are

constant: κ(x) = κ0 and ρ(x) = ρ0. Then Eq. 2.4 can be integrated with respect to x twice

to find

T (x) =
−I2ρ0

2κ0(π(b2 − a2))2
x2 + A1x+ A2. (2.8)

Applying the boundary conditions that the endpoints of the nanotube are at room tem-

perature, T (−L/2) = T (L/2) = T0, allows us to solve for the integration constants and

find

T (x) =
I2ρ0

2κ0(π(b2 − a2))2

(
L2

4
− x2

)
+ T0 = Tmax + (T0 − Tmax)

(
2x

L

)2

,

with Tmax ≡ T0 +
I2L2ρ0

8κ0(π(b2 − a2))2

(2.9)

the maximum temperature, reached at the tube center x = 0. Such a quadratic profile has

been observed for Joule-heated CNTs using spatially-resolved Raman spectrography.[37, 38]

We also note that Tmax can be written as a linear function of the power P dissipated

along the nanotube,

Tmax(P ) = T0 +
L

8κ0π(b2 − a2)
P = T0 + ακP. (2.10)

One obtains the thermal conductivity from the slope ακ and the tube’s geometry by

κ0 =
L

8π(b2 − a2)ακ

. (2.11)

One assumption of this model is that the current-voltage response of the MWCNT is Ohmic.

However, CNTs have been shown to have non-linear I-V responses,[39, 40] so we look to a

more complex model of the nanotube’s thermal behavior.

2.1.3 Linear Resistivity Solution

The electrical behavior of a biased MWCNT is more accurately predicted by solving Eq. 2.4

assuming constant thermal conductivity and resistivity linear with temperature, i.e.

ρ(x) = ρ0

(
1 +

T (x)− T0
Tρ

)
(2.12)
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where Tρ is the CNT’s temperature coefficient with units of K. Equation 2.4 takes the form

d2T

dx2
+

ρ0I
2

κ0(π(b2 − a2))2Tρ
(T − T0 + Tρ) =

d2v

dx2
+

ρ0I
2

κ0(π(b2 − a2))2Tρ
v = 0, (2.13)

which is simply the wave equation in v ≡ T − T0 + Tρ. This equation has solution

v(x) = A1 cos(BIx) + A2 sin(BIx),

where B ≡ 1

π(b2 − a2)

√
ρ0
κ0Tρ

.
(2.14)

Applying the same boundary conditions as before gives the temperature profile

T (x) = T0 + Tρ

[
cos(BIx)

cos(BIL/2)
− 1

]
. (2.15)

Plugging T (x) back into Eq. 2.12 yields the resistivity profile

ρ(x) = ρ0
cos(BIx)

cos(BIL/2)
. (2.16)

Because the nanotube is comprised of elements [x, x+dx] with resistivity ρ(x), it is modeled

as a chain of infinitesimally short resistors in series. Integration of the resistivity profile

along the tube gives the total resistance

R(I) =

∫ L/2

−L/2

dR =

∫ L/2

−L/2

ρ(x)

π(b2 − a2)
dx =

2ρ0
π(b2 − a2)BI

tan(BIL/2), (2.17)

application of Ohm’s law to which gives the voltage drop across the tube as a function of

current,

V (I) =
2ρ0

π(b2 − a2)B
tan (BIL/2). (2.18)

When cos(BIL/2) = 0, a singularity arises in the temperature, resistivity, resistance, and

V-I profile. This singularity manifests as current saturation of the nanotube[39] at

Is =
π2(b2 − a2)

L

√
κ0Tρ
ρ0

. (2.19)

For devices studied, this saturation current is on the order of ∼ 100 µA, and using typical

values of κ0 = 100 W
m K

[39, 41, 8] and ρ0 = 10−5 Ω · m, a 1 µm long and 20 nm wide tube

will have temperature coefficient Tρ ≈ 100 K.
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T ~ x2
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Figure 2.1: Plot of quadratic temperature profile of Eq. 2.9, cosine temperature profile of

Eq. 2.15, and Umklapp solution temperature profile of Eq. 2.22. The quadratic solution is

a good approximation to the other two solutions, especially near the hottest section around

x = 0.
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2.1.4 Umklapp scattering

The thermal conductivity of CNTs, however, is not constant. In fact, at temperatures above

room temperature, the thermal conductivity is dominated by Umklapp scattering,[8] which

has the form

κ(x) =
κ0

1 + T−T0

Tκ

. (2.20)

Once again assuming constant resistivity, the heat equation becomes

0 =
d

dx

(
κ(x)

dT

dx

)
+

P

(π(b2 − a2))L

= κ0Tκ
d2

dx2
log

(
1 +

T − T0
Tκ

)
+

P0

(π(b2 − a2))L
,

(2.21)

which is directly integrable in terms of log
(
1 + T−T0

Tκ

)
. The temperature distribution is

T (x) = Tκ exp

[
PL

8π(b2 − a2)κ0Tκ

(
1− 4x2

L2

)]
− Tκ + T0, (2.22)

with maximum

Tmax(P ) = Tκ exp

[
PL

8π(b2 − a2)κ0Tκ

]
− Tκ + T0. (2.23)

Compared to Eq. 2.10, the power response is no longer linear, but depends on only the two

parameters κ0 and Tκ, which can be extracted from a direct fit with holding T0 = 300 K.

The temperature profiles given by Eqs. 2.9, 2.15, and 2.22 are compared in Fig. 2.1. The

quadratic solution will overestimate the temperature as compared to the cosine or Umklapp

solutions, but the variations are small (< 1%) in the center of the length and worst (∼ 10%)

near the contacts. In fact, the average error over the middle half of the tube is only ∼ 1.6%

compared to the cosine solution and ∼ 4% compared to the Umklapp solution. Because

the hottest parts of the nanotube are in the center and will contribute most to the thermal

radiation, we model the nanotube’s temperature profile as a parabola with minimal error,

while describing the I-V response using the linear resistivity model and Tmax(P ) considering

Umklapp scattering.
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2.2 Radiation Profile of a Nanofilament

2.2.1 The Absorption Cross-section

The heat equation solution for a MWCNT filament has a temperature which varies very

quickly on a length scale much smaller than optical wavelengths; an analytic solution to how

Planck’s law translates this temperature profile into radiation requires careful extension into

the subwavelength regime. Because the energy carried by each photon in the wavelength

range [λ, λ+ dλ] is hc/λ, Planck’s Law in Eq. 1.3 can be rewritten as the photon rate

Ṅp =
c

λ4
dλdΩdA

eC2/λT − 1
, (2.24)

with the superscript p designating the polarization. Integrating over the surface, a macro-

scopic thermal object with emissivity ϵ will radiate at the rate

Ṅp = Aϵ
c

λ4
dλdΩ

eC2/λT − 1
. (2.25)

The combination Aϵ is identified as the emission cross-section Cp
em(λ,Ω), as it represents the

effective area of the surface emitting radiation as compared to a blackbody. Invoking detailed

balance and Kirchoff’s law of thermal radiation, the Cp
em(λ,Ω) = Cp

abs(λ,Ω), the absorption

cross-section. Even subwavelength particles have a well-defined absorption cross-section,

providing the link between two disparate size regimes.

2.2.2 Geometric Optics vs. Boundary Value Absorption

If we consider an object with linear dimension d > λ, we say we are in the geometric optics

limit, and the geometric cross-sectional area A captures the fraction of all photons incident

on the surface equal to its emissivity ϵ. This picture is the typical one for a thermal body,

and a blackbody represents the ultimate bound on thermal radiation on these scales; thus,

0 ≤ ϵ ≤ 1 and Cp
abs ≤ A. Each element of area dA contributes to the radiation independently,

and any body supporting a temperature gradient or emissivity gradient across the surface

can be treated as the superposition of many radiating surfaces.

An object that has one or more dimension . λ is in the opposite limit of relative scale;

nanofilaments are in this regime for wavelengths in the visible-NIR. Instead of the energy
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Figure 2.2: Illustration of the relationship between the boundary value problem and geo-

metric optics paradigms of absorption by an object. The cross-sections Cabs both represent

the effective projected absorbing area, and the absorption coefficient Qabs and emissivity ϵ

are analogous, although Qabs has no upper bound.

being absorbed by an element of surface area, the entire volume contributes to absorp-

tion. This absorption is obtained from the classical solution to a boundary value scattering

problem in electrodynamics.[42] As in geometric optics, the cross-section is Cp
abs is well-

defined; unlike the geometric optics case, however, the absorption coefficient, defined by

Qp
abs(Ω) ≡ Cp

abs(Ω)/A, can have values > 1.[43]

These geometric optics and boundary value pictures represent differing paradigms of

emission; the former supposes the emission is solely determined by the surface and that

each element of surface area emits independently, whereas the latter supposes emission by

the entire volume as a whole. Nevertheless, these two pictures are equivalent through their

analogous cross-sections–the amount of light radiated by a small particle is equivalent to the

amount radiated by a surface with the same geometric cross-sectional area and emissivity

ϵ = Qp
abs–and analysis can be performed by treating a small object as a surface, as illustrated

in Fig. 2.2.
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2.2.3 Photon Emission of a Nanofilament with a Quadratic Thermal Gradient

We thus project the nanotube onto a plane as a rectangle of length L and width 2b with

emissivity Qabs and apply Planck’s law as usual. We define coordinates (l, w) on this plane,

with the nanotube’s axis oriented in the l̂ direction. The rate of photons within a bandwidth

∆λ about λ that this plane emits into dΩ from area element [l, l + dl]× [w,w + dw]

dṄp(l, w) =
c∆λ

λ4
Qp

abs(Ω)H(l − L/2)H(l + L/2)H(w − b)H(w + b)
dldw

eC2/λT (l)−1
dΩ, (2.26)

where H(u) is the Heaviside step function.

The total radiation is obtained from Eq. 2.26 by integrating over the entire plane,

Ṅp =

∫∫ ∞

−∞
dṄp(l, w) =

2bc∆λ

λ4
Qp

abs(Ω)dΩ

∫ L/2

−L/2

dl

eC2/λT (l)−1
, (2.27)

the w-integral resulting in the multiplicative factor 2b. The amount of photons from the

incandescent MWCNT reduces to an integral over a temperature profile-dependent Planck

factor. In the visible-NIR spectrum, and at T . 104 K, exp[C2/λT ]≫ 1, and it is appropriate

to take the Wien approximation (exp[C2/λT ]− 1)−1 ≈ exp[−C2/λT ].

The Planck factor becomes large as T becomes large, so the integral is dominated by

the length over which the temperature profile is highest. We thus expand the temperature

profile of Eq. 2.9 about l = 0, such that

1

T (l)
≈ 1

Tmax

[
1 +

Tmax − T0
Tmax

(
2l

L

)2
]
. (2.28)

The l integral becomes∫ L/2

−L/2

dl

eC2/λT (l)−1
≈
∫ L/2

−L/2

e−C2/λTmax exp

[
−C2(Tmax − T0)

λT 2
max

(
2l

L

)2
]

=

√
λT 2

maxL
2

4C2(Tmax − T0)
e−C2/λTmax

∫ u0

−u0

e−u2

du

=

√
πλT 2

maxL
2

4C2(Tmax − T0)
e−C2/λTmaxerf(u0),

(2.29)

where u0 ≡
√
C2(Tmax − T0)/λT 2

max. Because we are in the Wien approximation, u0 ≫ 1

always, and erf(u0)→ 1. The total photon flux originating from the incandescent MWCNT
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is

Ṅp = Qp
abs(Ω)

2bc∆λ

λ3
L

λ

√
λTmax

C2

πTmax

4(Tmax − T0)
e−C2/λTmaxdΩ. (2.30)

Obtaining Qp
abs(Ω) from a standard electrodynamic boundary value problem thus completely

determines the MWCNT’s radiation profile.

2.3 Mie Theory of MWCNT Absorption

2.3.1 Mie Theory of Classical Electrodynamics

The absorption coefficients Qabs, representing the ratio of absorbed energy to incident energy,

are determined classically by the Mie theory of a scattered electromagnetic wave. The

electromagnetic fields must solve the vector wave equation ∇2Ψ⃗ − k2Ψ⃗ = 0. A plane wave

of wavevector k = 2π/λ is incident on a particle, which both scatters and absorbs some of

the incident power. The extinction coefficient Qext represents the total energy lost from the

incident plane wave, and the scattering coefficient Qsca is the fraction of that energy lost to

scattering. The absorption is found by Qabs = Qext −Qsca. These coefficients are in analogy

to the transmission, reflection, and absorption coefficients of planar geometry by

1−Qext ←→ T,

Qsca ←→ R,

Qabs = Qext −Qsca ←→ A = 1− T −R.

(2.31)

Mie theory is often utilized for modeling the scattering of small particles, particularly

gold nanoparticles[44] and interstellar dust.[27, 45] These models typically assume a spherical

geometry, although some models treat interstellar dust as solid cylinders[27] or ellipsoids.[46,

26] Because a MWCNT consists of several SWCNTs of non-vanishing diameter, the MWCNT

has a core region with the same optical constants as the medium. Thus, we apply Bohren

and Huffman’s treatment of Mie scattering for solid cylinders[43] to the particular case of a

hollow cylinder representing a MWCNT.
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2.3.2 Electromagnetic Fields of the MWCNT

Treating the MWCNT as an infinite cylinder, the wave equation can be easily separated in

cylindrical coordinates (r, ϕ, z). Vector wave solutions are obtained from curling the solutions

of the scalar wave equation around a “pilot” vector p̂: i.e. Ψ = ∇⃗× p̂ψ where ∇2ψ−k2ψ = 0.

In cylindrical coordinates, the scalar wave equation

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2
∂2ψ

∂ϕ2
+
∂2ψ

∂z2
+ k2ψ = 0, (2.32)

has solutions

ψn(r, ϕ, z) = Z(j)
n (ρ)einϕeihz, n ∈ Z (2.33)

where Z
(j)
n (ρ) solves the cylindrical Bessel equation and ρ = r

√
k2 − h2. The superscript (j)

indicates which solution to use:

Z
(1)
n (ρ) = Jn(ρ), Z

(2)
n (ρ) = Yn(ρ)

Z
(3)
n (ρ) = H

(1)
n (ρ) = Jn(ρ) + iYn(ρ), Z

(4)
n (ρ) = H

(2)
n (ρ) = Jn(ρ)− iYn(ρ),

(2.34)

where J(ρ) (Y (ρ)) is the cylindrical Bessel function of the first (second) kind. An orthogonal

set of vector wave solutions solutions are

M⃗
(j)
n = ∇⃗ × (p̂ψn) and N⃗

(j)
n = ∇⃗×M⃗

(j)
n

k
, (2.35)

which are additionally related by M⃗
(j)
n = ∇⃗×N⃗

(j)
n

k
. Choosing p̂ = êz results in the vector

harmonics

M⃗ (j)
n =

√
k2 − h2ei(nϕ+hz)

(
in
Z

(j)
n (ρ)

ρ
êr − Z(j)

n

′
(ρ)êϕ

)

N⃗ (j)
n =

√
k2 − h2
k

ei(nϕ+hz)

(
ihZ(j)

n

′
(ρ)êr − hn

Z
(j)
n (ρ)

ρ
êϕ +

√
k2 − h2Z(j)

n (ρ)êz

)
.

(2.36)

We can now expand the electromagnetic fields interacting with a CNT in terms of M⃗n

and N⃗n. We consider an infinite cylindrical tube oriented with its long axis in the z-direction,

having inner and outer radii a and b, respectively, and with complex index of refraction m.

A plane wave of polarization ϵ̂ propagating in the x-z plane and incident on the cylinder at

an angle ζ as measured from the z-axis, as illustrated in Fig. 2.3, is

E⃗i = ϵ̂E0e
−ik(r sin ζ cosϕ+z cos ζ) =

∞∑
n=−∞

AnM⃗
(1)
n +BnN⃗

(1)
n . (2.37)
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Multiplying both sides by e−inϕ, and integrating over ϕ, we can use the relations∫ 2π

0

dϕe−i[nϕ+kr sin ζ cosϕ] = 2π(−i)nJn(kr sin ζ)∫ 2π

0

dϕe−i[nϕ+kr sin ζ cosϕ] cosϕ = 2πi(−i)nJ ′
n(kr sin ζ)∫ 2π

0

dϕe−i[nϕ+kr sin ζ cosϕ] sinϕ =
2π(−i)nn
kr sin ζ

Jn(kr sin ζ)

(2.38)

and solve for An and Bn. Comparison of the exponentials gives h = −k cos ζ, which allows

us to simplify the harmonics:

M⃗ (j)
n = ei(nϕ+hz)k

x

(
inZ(j)

n (µx)êr − µxZ(j)
n

′
(µx)êϕ

)
,

N⃗ (j)
n = ei(nϕ+hz) k

mx

(
iµxZ(j)

n

′
(µx)êr − n cos ζZ(j)

n (µx)êϕ + µ2xZ(j)
n (µx)êz

)
,

(2.39)

where x ≡ kr, µ ≡
√
m2 − cos2 ζ, and ν ≡ sin ζ.

The incident wave is composed of a “parallel” polarized wave, with electric field in the

x-z plane, and a “perpendicular” polarized wave, with electric field in the y direction. In

terms of the incident angle,

ϵ̂|| = êz sin ζ − êx cos ζ = −êr cos ζ cosϕ+ êϕ cos ζ sinϕ+ êz sin ζ

ϵ̂⊥ = êy = êr sinϕ+ êϕ cosϕ.
(2.40)

Plugging these unit vectors into Eq. 2.37 and utilizing Eqs. 2.38, we find An and Bn for both

polarizations, and the incident fields can be written

E⃗
||
i =

∑∞
n=−∞EnN

(1)
n H⃗

||
i = −i

Z0

∑∞
n=−∞EnM

(1)
n

E⃗⊥
i = −i

∑∞
n=−∞EnM

(1)
n H⃗⊥

i = −1
Z0

∑∞
n=−∞EnN

(1)
n

(2.41)

with En = E0(−i)n/k sin ζ and Z0 = 4π/c the impedance of free space.

Waves that are scattered off the tube will be outward-traveling cylindrical waves at large

r from the tube. As such, we expand the scattered fields in terms of the Hankel function of

the first kind:

E⃗p
s = −

∑∞
n=−∞En(b

p
nN⃗

(3)
n + iapnM⃗

(3)
n ) H⃗p

s = i
Z0

∑∞
n=−∞En(b

p
nM⃗

(3)
n + iapnN⃗

(3)
n ), (2.42)

the superscript p indicating the polarization of the incident wave. Within the nanotube itself,

there exist two regions–internal to the CNT (a < r < b) and the vacuum core (0 ≤ r < b).
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Figure 2.3: Illustration of plane waves incident with angle ζ on a cylindrical tube with

inner and outer radii a and b, respectively. Orientations of incident waves with “parallel”

polarization (E⃗ in the x-z plane) and “perpendicular” polarization (E⃗ in the y-plane) are

shown.
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Because the fields in the core must remain finite as r → 0, we expand them in terms of the

Bessel function of the first kind:

E⃗p
core =

∑∞
n=−∞En(c

p
nN⃗

(1)
n + dpnM⃗

(1)
n ) H⃗p

core =
−i
Z0

∑∞
n=−∞En(c

p
nM⃗

(1)
n + dpnN⃗

(1)
n ). (2.43)

Inside the tube itself, there are no restrictions on the behavior of the fields, so they must be

a linear combination of Bessel and Hankel functions:

E⃗p
int =

∞∑
n=−∞

En[f
p
n(N⃗

(1)
n − N⃗ (3)

n ) + gpn(M⃗
(1)
n − M⃗ (3)

n )

+ ppn(N⃗
(1)
n + N⃗ (3)

n ) + qpn(M⃗
(1)
n + M⃗ (3)

n )]

H⃗p
int =

−i
Z

∞∑
n=−∞

En[f
p
n(M⃗

(1)
n − M⃗ (3)

n ) + gpn(N⃗
(1)
n − N⃗ (3)

n )

+ ppn(M⃗
(1)
n + M⃗ (3)

n ) + qpn(N⃗
(1)
n + N⃗ (3)

n )]

(2.44)

where Z is the impedance inside the tube.

2.3.3 Hollow Cylinder Absorption Coefficients

With the fields thus defined, we consider the amount of energy from the incident plane

wave that is lost to scattering to find the absorption. The total fields outside the tube are

E⃗ = E⃗i + E⃗s and H⃗ = H⃗i + H⃗s, thus the Poynting vector is

S⃗ =
1

2
Re
[
E⃗i × H⃗∗

i + E⃗s × H⃗∗
s + E⃗i × H⃗∗

s + E⃗s × H⃗∗
i

]
. (2.45)

The first term represents energy stored in the incident wave; the second, in the scattered

wave; and the third and fourth terms represent extinction of the incident wave. Thus, we

find the cross-sections per unit length by considering the energy flux through a Gaussian

cylinder of radius R and length L,

Cext =
RL

IiL

∫ 2π

0

S⃗ext · êrdϕ =
R

2Ii

∫ 2π

0

Re
[
E⃗i × H⃗∗

s + E⃗s × H⃗∗
i

]
· êrdϕ,

Csca =
RL

IiL

∫ 2π

0

S⃗sca · êrdϕ =
R

2Ii

∫ 2π

0

Re
[
E⃗s × H⃗∗

s

]
· êrdϕ,

(2.46)
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where Ii = |E⃗i|2/2. Plugging in the fields from Eqs. 2.41 and 2.42 and performing the

integral, the absorption coefficients are found:

Q
||
ext =

C
||
ext

2b
=

4

k(b+ a)
Re

[
b
||
0 + 2

∞∑
n=1

b||n

]

Q||
sca =

C
||
sca

2b
=

4

k(b+ a)

[
|b||0|2 + 2

∞∑
n=1

(
|b||n|2 + |a||n|2

)]

Q⊥
ext =

C⊥
ext

2b
= − 4

k(b+ a)
Re

[
a⊥0 + 2

∞∑
n=1

a⊥n

]

Q⊥
sca =

C⊥
sca

2b
=

4

k(b+ a)

[
|a⊥0 |2 + 2

∞∑
n=1

(
|a⊥n |2 + |b⊥n |2

)]
.

(2.47)

In solving for the coefficients apn and bpn of the scattered field we calculate the absorption

from a CNT.

For a given n, there are 8 independent unknown field coefficients; the boundary conditions

that the transverse components of the E and H fields are continuous across the boundary

give us a system of 8 equations:

(E⃗p
i + E⃗p

s − E⃗
p
int)|r=b × êr = 0 (E⃗p

core − E⃗
p
int)|r=a × êr = 0

(H⃗p
i + H⃗p

s − H⃗
p
int)|r=b × êr = 0 (H⃗p

core − H⃗
p
int)|r=a × êr = 0.

(2.48)

The coefficients apn and bpn can be solved analytically; yet the complete solution proves too

complex to be reproduced simply. However, we arrive at a tractable expression in the CNT

regime of interest by considering the limit of radii a, b≪ 1. In terms of α̃ ≡ ka and β̃ = kb,

this condition corresponds to the limits α̃ ∼ β̃ ≪ 1 and |m|α̃ ∼ |m|β̃ ≪ 1. We then only

need to expand the coefficients for n = 0 and 1 to find the terms of lowest order in α̃ and β̃.

The expansions for Jn(z) and Yn(z) for small z are

J0(z) ≈ 1− z2

4
J ′
0(z) ≈ − z

2
+ z3

16

Y0(z) ≈ 2
π
log
(
z
2

)
Y ′
0(z) ≈ 2

πz

J1(z) ≈ z
2
− z3

16
J ′
1(z) ≈ 1

2
− 3z2

16

Y1(z) ≈ − 2
πz

Y ′
1(z) ≈ 2

πz2
.

(2.49)

From Eq. 2.47, the scattering order will be twice the extinction order, so in the CNT

limit Qabs ≈ Qext. The coefficients of lowest order in α̃ and β̃ are b
||
0, b

||
1, a

⊥
0 , and a

⊥
1 . These
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take on the values

b
||
0 = −iπ

4
(β̃2 − α̃2)(m2 − 1) sin2 ζ b

||
1 = −iπ

4
β̃2(β̃2−α̃2)(m4−1)

β̃2(m2+1)2−α̃2(m2−1)2
cos2 ζ

a⊥0 = −iπ
32

(β̃4 − α̃4)(m2 − 1) sin2 ζ a⊥1 = iπ
4

β̃2(β̃2−α̃2)(m4−1)

β̃2(m2+1)2−α̃2(m2−1)2
.

(2.50)

Plugging these expansions into Eq. 2.47,

Q
||
abs = π(β̃ − α̃)

[
Im(ϵ− 1) sin2 ζ + 2β̃2Im

(
ϵ2 − 1

β̃2(ϵ+ 1)2 − α̃2(ϵ− 1)2

)
cos2 ζ

]
Q⊥

abs = 2π(β̃ − α̃)β̃2Im

(
ϵ2 − 1

β̃2(ϵ+ 1)2 − α̃2(ϵ− 1)2

) (2.51)

where ϵ = m2 the complex dielectric constant. Several important consequences follow from

these expressions. First, the efficiency in both polarizations have dimensionality Q ∼ r/λ, in-

dicating that the cross-sections then have dimensionality C ∼ V/λ; as expected, the thermal

radiation is not proportional to the area, but rather the volume. Second, the perpendicular

absorption per unit length is independent of incident angle, as expected because the perpen-

dicular polarization vector is also independent of ζ. Finally, the absorption is unpolarized at

ζ = 0 where the wave vector lays along the tube axis. In the a→ 0 limit, these coefficients

become

Q
||
abs = πβ̃

[
Im(ϵ− 1) sin2 ζ + 2Im

(
ϵ− 1

ϵ+ 1

)
cos2 ζ

]
Q⊥

abs = 2πβ̃Im

(
ϵ− 1

ϵ+ 1

)
,

(2.52)

which is the result for a solid cylinder.[43]

2.3.4 The Infinite Cylinder Approximation

The electrodynamics boundary value problem that must be solved to find Qabs involves solv-

ing the wave equation, which has solutions that are analytic for highly symmetric geometries;

as such, we approximate our nanotubes as infinitely long cylinders. Typical MWCNT lengths

range from 1 − 4 µm, so L ≫ λ near the blue end of the visible, and this infinite length

approximation is valid. However, in the NIR, L ∼ λ for shorter nanotubes, and thus we

must consider what errors are introduced by the tube’s finite length.

A finite cylinder is approximated as a prolate ellipsoid, the surface

x2

c′2
+
y2

b′2
+
z2

a′2
= 1 (2.53)
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with semiaxes a′ = L/2 > b′ = c′ = r. The coefficients for an incident wave normal to a

semiaxis scattering off an ellipsoid with b≪ λ are given as

Qz
abs =

πx

3
Im

[
ϵ− 1

1 + Lz(ϵ− 1)

]
(2.54)

with the shape factor defined by

Lz =
a′b′c′

2

∫ ∞

0

dq

(z2 + q)
√
(a′2 + q)(b′2 + q)(c′2 + q)

, (2.55)

where z is any one of a′,b′, or c′.[46] These shape factors satisfy the condition La′+Lb′+Lc′ =

1.

These shape factors determine at what ratio a′/b′ a prolate ellipsoid approximates an

infinite cylinder by comparing to the typical infinite cylinder result. It is seen that Eq. 2.54

becomes the solid cylinder result Eq. 2.52 as La′ = 0 and Lb′ = Lc′ = 1/2, up to the geometric

factor π
3
∼ 1. The ellipsoid shape factors La′ ≈ .01 and Lb′ = Lc′ ≈ .495 when a′ = 15b′. As

the radii of MWCNTs are around 10 nm, any nanotube of length & 300 nm may be treated

as an infinite cylinder, provided its physical length is the appropriate length to consider for

scattering.

One alternative concept of length is the amount of the filament that actually contributes

to radiation. For a macroscopic filament, with a constant temperature profile, this ”hot

length” is identical to the physical length. The amount of light the middle sL of the nanotube

will generate as compared to the whole length is the ratio of factors from Eq. 2.29,

I(k) =

∫ sL/2

−sL/2
exp

[
−C2(Tmax−T0)

λT 2
max

(
2l
L

)2]
dl∫ L/2

−L/2
exp

[
−C2(Tmax−T0)

λT 2
max

(
2l
L

)2]
dl

=
erf
(
s
√
C2(Tmax − T0)/λT 2

max

)
erf
(√

C2(Tmax − T0)/λT 2
max

) . (2.56)

We conservatively define the hot length as LT (λ) = sL such that I(s) = .99. As the

error function increases monotonically with argument, and the argument decreases with

increasing wavelength and temperature, the value of s at which 99% of the light is radiated

increases with λ and Tmax. Therefore, a reasonable lower bound on a MWCNT’s hot length

is L1000 K(450 nm) ≈ .38L. Fixing b = 10 nm, for any L & 790 nm, LT is still large enough

to approximate the filament as an infinite cylinder, with the approximation only becoming

better the longer the tube.
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2.3.5 The Graphene Approximation for MWCNT Absorption

To evaluate the Eqs 2.51 for a given tube material, we require the dielectric constant ϵ. In

general, for a complex conductivity σ,

ϵ = 1 + i
4πσ

ω
= 1 + i

σZ0

k
, (2.57)

and knowledge of the 3-D conductivity as a function of wavelength determinesQabs. However,

as a MWCNT is comprised of multiple concentric SWCNTs, which have a 2-dimensional

surface, it is more appropriate to consider a 2-dimensional surface conductivity related to

the 3-D conductivity by σ2D = σ/(b− a).

Assuming a purely real, 2-D conductivity, Eqs. 2.51 simplify to

Q
||
abs(ζ) = πσ2DZ0

[
sin2 ζ

+4β2 (σ2DZ0)
2(β2 + α2) + 4β2(β − α)2

(σ2DZ0)4(β + α)2 + 8(σ2DZ0)2β2(β2 + α2) + 16β4(β − α)2
cos2 ζ

]
Q⊥

abs(ζ) = 4πσ2DZ0β
2 (σ2DZ0)

2(β2 + α2) + 4β2(β − α)2

(σ2DZ0)4(β + α)2 + 8(σ2DZ0)2β2(β2 + α2) + 16β4(β − α)2
.

(2.58)

In the limit of t→ 0 and α, β → x = kr, Eqs. 2.58 further reduce to

Q
||
abs = πσ2DZ0

[
sin2 ζ +

2x2 cos2 ζ

(σ2DZ0)2 + 4x2

]
Q⊥

abs = πσ2DZ0
2x2

(σ2DZ0)2 + 4x2
.

(2.59)

Thermal spectra have been observed for incandescent SWCNTs[47], exhibiting strong peaks

for small radii tubes in the parallel polarization due to intraband absorption and in the

perpendicular polarization due to interband absorption. Our model for MWCNTs, using

an isotropic two-dimensional conductivity σ2D, in the zero-thickness limit, cannot account

for such peaks. However, because of the efficiencies’ linear dependence on conductivity,

substitution of the appropriate conductivity models σ|| and σ⊥ from SWCNT theory will

similarly result in transition peaks.

For MWCNT absorption, because the electronic bands for each tube are similar to

graphene, we equally expect the 2-D conductivity to be similar to that of n-layer graphene.

Tree-level electron-phonon interactions predict a temperature dependent conductivity for
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undoped graphene

σg(T ) =
αc

4
tanh

(
~ck
4kBT

)
=
πα

Z0

tanh

(
C2

4λT

)
, (2.60)

where α = 1/137 is the fine-structure constant[33, 34]. At low temperatures and short

wavelengths, the tanh factor becomes 1, and σg → πα/Z0, corresponding to transmission of

T = 1 − πα ≈ .977, which has been confirmed experimentally[22]. At T & 2000 K, σg(T )

begins deviating from πα/Z0 for longer wavelengths. We estimate this effect at T = 2200 K,

λ = 1100 nm by

σg(Tmax)
∫ L/2

−L/2
e−C2/λT (l)dl∫ L/2

−L/2
σg(T (l))e−C2/λT (l)dl

≈ .955, (2.61)

so we introduce an error of . 4.5% by taking the conductivity constant based on the maxi-

mum temperature, which we do to retain an analytic form for Ṅ . Thus substituting Eqs. 2.58

with σ2D = σg(Tmax) into Eq. 2.30 provides a complete theoretical picture for thermal radi-

ation of a MWCNT filament.
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CHAPTER 3

Nanolamp Construction and Operation

3.1 Device Fabrication

3.1.1 Introduction

To study the thermal radiation of MWCNTS, we fabricate nanolamp devices on silicon

microchips. The filaments are constructed by electrically connecting to a MWCNT with

electron-beam lithography-defined contacts. The MWCNTs are suspended atop a membrane

window, which is thinned to electron transparency such that characterization in a TEM can

be performed. Contact pads allow us to connect the microchips to a power source and apply

a bias, heating the filaments. The architecture of these devices is illustrated in Fig. 3.1. The

fabrication process is modified from a process developed by Dr. Yuwei Fan.

3.1.2 Definition of Membrane Windows

The membrane on which the nanofilament rests consists of an oxide layer that prevents

device shorting to the silicon wafer and a nitride layer acts as an etch stop during the wet

processing of the window. We begin with a 100 mm diameter, 200 µm thick p-doped bare Si

wafer with a pregrown SiO2 layer of either 80 or 800 nm, polished on both sides. We find that

a larger thickness improves processing at later steps, so for wafers with the pregrown 80 nm

oxide, an additional wet thermal oxide growth is performed in a low pressure continuous

vapor deposition (LPCVD) furnace at 1100◦ C by flowing H2 and O2 gas until the thickness

is ∼ 800 nm. An additional growth of 10-20 nm Si3N4 is performed in another LPCVD

furnace with a flow of ammonia (NH3) and dichlorosilane (H2SiCl2). The thickness of both

dielectric films are measured using a normal incidence reflectometer.
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Figure 3.1: Illustration of the nanofilament device architechture. Not to scale.

To release the windows and define the cleavage planes on our wafer, we perform an etch

with potassium hydroxide (KOH). KOH is an anisotropic wet etch with etch selectivities in

the planes (100):(110):(111) of 100:100:1.[48] The angle between the (111) and (100) planes

is θKOH = arctan
√
2. Therefore, for a wafer of a thickness t and an exposed Si length of

distance x0 along the (100) plane, the corresponding dimension of the final hole on the other

side of the wafer is xe = x0 − 2t/ tan θKOH = x0 − 2t/
√
2, as shown in Fig. 3.2. Using this

formula and a desired value for xe, we define the rectangles in the optical lithography to

have the required x0 values.

In fact, the KOH etch seeks out the (111) planes, so defining an etch geometry more

complex than a rectangle will not have the desired results. In general, for a non-convex

pattern, the relevant x0 values are those of the pattern’s bounding rectangle. This correction

applies to misalignment, as well. Because this lithography step has no predefined alignment

marks, the wafer flat is aligned with the lithography mask axis only through visual alignment

to the mask aligner’s wafer chuck. Such alignment allows an error of ∼ 1.5◦ in how parallel

the rectangles are to the true (100) crystal plane. Defining the rectangle lengths as x0

and y0 and the tilt as ϕ, the exposed windows in our wafers have sides of length x′e =

(x0 cosϕ+ y0 sinϕ)− 2t/
√
2 and y′e = (−x0 sinϕ+ y0 cosϕ)− 2t/

√
2.

Using optical lithography, the starting rectangles for both the membranes and wafer

cleavage lines are exposed in a 1.4 µm thick AZ5214 photoresist layer; development in a

solution of 1:6 AZ300K:H2O positive photoresist developer exposes these rectangles. The
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y0
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t

Figure 3.2: Illustration of the xe × ye membrane defined by KOH etching an initial area of

x0 × y0 on a silicon wafer of thickness t.
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remaining photoresist serves as a hard etch mask for the dry etch step, where a CF4/O2

plasma removes the Si3N4 and SiO2 above the Si where the KOH etch is performed. The

photoresist is removed in a bath of Aleg 355 positive photoresist remover, leaving bare silicon

in the desired rectangles and Si3N4 covering the rest of the wafer.

The wafer is designed for two different geometries of windows–a 300 × 10 µm rectangle

and a 20 × 20 µm square. The errors in alignment can produce windows as different as

292 × 25 µm for the rectangles and 28 × 12 µm for the squares. We typically do not see

such extreme differences in the designed geometry, but even at this limit, the windows will

still function as desired. Smaller rectangles define the borders of thirty-two 12.6× 12.6 mm2

squares and sixteen 2.1 × 2.1 mm2 chips within each square; the border dimensions are

defined such that the etch stops before penetrating through the 200 µm wafer (equivalently,

xe < 0).

Once the SiO2/Si3N4 windows have been exposed, delicate care is required as not to

rupture the membranes. Sonication even at the lowest power available in an ultrasonic tank

will destroy the windows, as will the pressure from an N2 gun aimed normal to the wafer.

For membrane thicknesses < 300 nm, the surface tension caused by water evaporation will

also cause membranes to rupture, so all wet processes henceforth are aided by immersion in

isopropanol or methanol prior to evaporative drying.

3.1.3 Optical Lithography of Contacts

A second optical lithography step patterns contacts, alignment marks, and chip identifier

labels on the front of the wafer via backside alignment to marks formed by the KOH. Electron-

beam evaporation deposits 12 nm Cr and 120 nm Au on the wafer. An acetone liftoff removes

the photoresist and deposited metal films where the resist was not exposed, leaving only the

desired electrode pattern. Each chip has four electrodes bordering the windows, which are

connected to macroscopic contact pads of size 500×250 µm at the top of the chip, as visible

in Fig. 3.3, allowing a maximum of three independent devices per chip.

Alignment marks consisting of 10 µm × 10 µm squares are patterned on every wafer

square and every chip for electron-beam lithography alignment. Global alignment marks are

39



Figure 3.3: Optical images of the front and back of the chip. The backside shows the initial

etch geometry for the KOH. The inset shows a zoom-in on the membrane revealed by the

KOH etch.

Figure 3.4: Electrode design surrounding the membrane window. Electrode 3 functions as

the common ground, and a nanotube filament connects to electrode 3 and one of electrodes

1, 2, or 4. Alignment marks on a 30 µm pitch are used in mapping the desired filaments,

and marks on 90 µm square are used for e-beam writer alignment.
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placed on a 9.4 mm pitch centered on the wafer square, and local alignment marks are placed

on a 90 µm pitch centered on the chip membrane. Additional alignment marks are placed

on a 30 µm pitch grid around the membrane for nanotube mapping. Figure 3.4 shows the

electrode configuration around the membrane, along with these alignment marks. Each chip

is also labeled with a unique identifier. Following the optical lithography of the macroscopic

contacts, the wafer is cleaved into wafer squares using a diamond scribe.

3.1.4 Contacting MWCNT Filaments

Nanotube dispersion is performed on each wafer square individually. The nanotubes which

comprise the nanofilaments are purchased from the MER corporation in bulk and separated

for dispersion onto microchips. The preferred recipe for nanotube dispersion is a solution of

2-3 mg of arc-discharge nanotubes in 1 mL of isopropanol. This solution is sonicated and

centrifuged to suspend individual MWCNTs in solution, with all amorphous carbon residue

segregated to the centrifuged pellet. We spin coat .5 mL of this solution onto a wafer square

and let it air dry.

MWCNTs to be contacted are selected for cleanliness, long length, and relative isolation

from other CNTs and detritus on the membrane. Mapping of the nanotubes is performed

using an FEI Nova 600 Dual-beam Focused Ion Beam (FIB) as a scanning electron micro-

scope (SEM). Images are taken at 5000x magnification where the membrane and previously

mentioned alignment marks are visible in the same image. Using beam settings of 2 kV and

.54 pA, the MWCNTs are visible on the membrane, and higher magnification pictures are

taken as necessary to check that the above selection criteria are met.

Electron-beam lithography can achieve a resolution and accuracy of 10 nm, in contrast

to 3 µm resolution provided by optical lithography, and is therefore required for defining

electrical contacts to the nanotubes themselves. We have written Labview software which

loads the SEM images, allows us to draw the desired contacts on the chip, and converts

the pattern to a file compatible with a Vistec EBPG 5000+ES e-beam lithography system.

We expose these patterns on a layer of PMMA 495 A4 e-beam resist using a beam current

of 100 keV and dose of 1400 µC/cm2. Pd has the lowest work function to nanotubes;[49]
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Figure 3.5: (a) SEM image of a chip membrane, with nanotubes as well as alignment marks

visible. The green overlays represent proposed e-beam contacts. (b) Optical image of the

same chip following e-beam lithography.

as such, we evaporate 50 nm Pd and 80 nm Au to create nanotube contacts with low

contact resistance following acetone liftoff. Fig. 3.5 shows the SEM image, Labview-defined

contact patterns, and resultant contacts after lithography. Successful e-beam contacting of

a MWCNT results in an operational nanolamp device.

3.2 Nanotube Characterization

3.2.1 Electrical Probing of Devices

Following the e-beam lithography, we determine which nanotubes have been successfully

contacted and fall within acceptable experimental criteria. The wafer squares are annealed

at 300◦C for a 20 min to improve device resistance. The squares are then cleaved into

their respective chips, and we measure the low-bias I-V response (peak of 1 mV) on each

device in a probe station. Typical filament resistances range between 10 and 30 kΩ, ideal

for operation with applied voltage of 2-4 V, yet even a filament with resistance as high as

100 kΩ will acheive incandescence for biases . 7 V.

The nanolamps reach incandescence in the visible with a large enough signal to saturate

the CCD in ∼ 1 s at applied power P & 100 µW. Figure 3.6 shows the I-V response of a
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Figure 3.6: I(V ) up to operating voltages for a nanolamp device. The fit to an arctangent

has been performed using the data points with |V | > 2 V. The maximum current measured

is 172 µA, and the saturation current is found to be 235 µA.

representative nanolamp device with voltage up to operational bias. The I-V shows three

distinct regions–low bias, intermediate bias, and high bias. At V . .1 V, the devices exhibit

ohmic behavior. At intermediate voltages, the contacts are responsible for the majority of

dissipation, and I(V ) roughly fits a sinh function representative of the Schottky barriers

between the CNT and the contacts[50, 49]. Finally, at operational voltages, the majority

of the power is lost through the nanotube, and the I(V ) fits an arctangent function as

predicted by Eq. 2.18. The solid curve in Fig. 3.6 represents a fit of this arctangent to points

with |V | > 2 V, well covering the range over which this device radiates significantly in the

visible-NIR.
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3.2.2 TEM Characterization of MWCNT Geometry

As complete knowledge of the CNT geometry is necessary for predicting the absorption, the

windows are made electron transparent, such that the nanotubes can be characterized in a

transmission electron microscope (TEM). We etch the membranes on the chips with active

devices until they are thin enough for electron transparency. Chips are suspended about

∼ 2 cm above 49% hydrofluoric acid (HF) for one minute, followed by suspension ∼ 5 mm

above methanol. The etch rate is ∼ 120 nm SiO2/min. The HF vapor above the solution

reacts with the SiO2 membrane to produce H2O and SiF4 vapors, and the methanol vapors

prevents the condensation of the H2O on the membrane, subsequent evaporation of which

tends to rupture the membranes. HF etches Si3N4 as well, but an order of magnitude more

slowly, so this etch results in MWCNT devices supported on very thin nitride membranes

(< 10 nm) if not completely suspended. Once the membranes have been etched, the chips

are baked and probed once more.

We measure the nanotube’s geometry in a FEI Low-base Titan TEM, where high mag-

nification images of the individual MWCNTs are taken. At TEM magnifications, we can

determine whether a device consists of a single, relatively clean and defect free tube versus

a double tube or bundle. Figure 3.7 shows an ideal device which is very straight and free of

defects. The TEM is able to produce images with wall resolution, such as in Fig. 3.8, allowing

full characterization of the inner and outer radii, length, and number of walls. Characterized

nanotube devices are now ready to be loaded into the setup and biased for data collection.

3.2.3 In situ TEM Biasing

We have observed that in operation the current drawn by the nanolamps at constant bias

does not stabilize immediately. To understand what physical changes occur in the system

that alter the resistance of the filament, we observe the nanotube in the TEM while biased

by loading the device in a custom Hummingbird biasing stage. Video capture by the TEM’s

CCD is performed in conjunction with observing the current through the nanotube.

We observe two distinct responses of the nanotube–at lower biases the current increases

before stabilizing, and at higher biases the current decreases before stabilizing. Increases
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Figure 3.7: TEM image of ideal MWCNT filament. The nanotube is extremely straight and

defect free. Image courtesy of Matthew Mecklenburg.
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Figure 3.8: High magnification image of a MWCNT, showing resolution of walls and mea-

surement of inner and outer radii. Image courtesy of Matthew Mecklenburg.
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of the current correspond to the nanotube’s self-cleaning; gold nanoparticles deposited on

the MWCNT surface evaporate, and the number of bamboo defects in the core of the tube

decreases. Decreases in the current, however, correspond with a more interesting physical

effect. At large enough biases, the temperature of the filament becomes high enough to

evaporate the surrounding membrane.

Over a period of several minutes, the membrane near the center of the tube dissociates as

the current lowers. Figure 3.9 shows a series of screen captures from video taken of this effect

in conjunction with I(t) data. As the membrane is an insulator, we interpret this increase

in resistance as resulting from an increase of the nanotube temperature. Because heat is no

longer being lost to membrane, the filament has a smaller effective κ and thus reaches a higher

maximum temperature. This higher temperatures increases the range of the isotherm at the

membrane’s evaporation temperature, and this process continues, asymptotically reaching an

equilibrium state where the current stabilizes. This stabilization occurs near the saturation

current, and we make note of this voltage as the maximum operational voltage, as exceeding

it tends to result in failure of the device.

3.3 Vacuum System

3.3.1 Vacuum System

Once the devices have been characterized, they are loaded in a vacuum chamber for nanolamp

operation. Vacuum is critical to nanotube lifetime, as they have been shown to breakdown

in air at lower biases due to reacting with oxygen or water vapor.[39] In order to reach high

temperatures without device failure, we minimize the amount of possible reactants. The

complete vacuum system is shown in Fig. 3.10 with all additional components utilized for

operation. We pump down in two stages via a turbopump and an ion pump. A residual gas

analyzer (RGA) allows us to leak test the system, and gas cylinders can be connected via

intake plumbing for experiments using different background gases.

A vacuum sufficiently high to prevent nanotube breakdown owing to oxidation is realized

in a spherical octagon chamber from Kimball Physics. This chamber utilizes Conflat fittings
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Figure 3.9: Images nanotube device A1403J and surrounding membrane before and after

membrane evaporation under a constant bias of 2.7 V. The inset shows the current through

the nanotube decreasing with time as the membrane disintegrates, stabilizing after ∼ 30 sec-

onds. Image courtesy of Edward White.
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Figure 3.10: The vacuum system, comprised of vacuum chamber (A), butterfly valve (B),

ion pump (C), residual gas analyzer (D), gas intake (E), roughing gauge (F), gate valve (G),

and turbo pump (H, not shown).

and copper gaskets to reach ultrahigh vacuum (UHV). This vacuum system is capable of

reaching pressures of ∼ 10−8 mbar, and we observe nanolamp lifetimes > 100 hours in

operation. The octagonal chamber fixes the chip’s position exactly and is orthogonal to the

optical axis within machining tolerances.

3.3.2 Nanotube Connection and Positioning

To adjust the chip position, the vacuum chamber is clamped to a z-stage on top of an x-

y stage, both capable of precise positioning on the order of ∼ 10 µm using micrometers

(see Fig. 3.11). The microscope optical axis is defined to be along in the y-direction; thus,

adjusting the y position on the x-y stage provides the coarse focus for the microscope. The

x position on the x-y stage and the z-stage control centering the chip with respect to the

microscope.

An aluminum holder houses the chip, and electrical contact is made via a custom-built

Delrin connector, as seen in Fig. 3.12. The contact wires simultaneously make contact to

the large Au pads on the chip and secure the chip by friction. The wires pass through a
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Figure 3.11: The vacuum chamber sitting on x− y and z-stages is connected to the rest of

the vacuum system by a flexible bellows to allow positioning and coarse focusing.

feedthrough to the outside of the vacuum system for electrical connection. A small lightbulb

is placed in the backside of the aluminum holder for backlighting the chip, which sits atop

a .052” hole. This backlighting allows us to focus on the chip’s membrane. This holder

places the chip < 2 mm from a 1.1 mm thick borosilicate crown glass (BK-7) window in the

chamber, shown in Fig. 3.12.

3.3.3 UHV Pumpdown

Pumpdown is performed in two stages with the turbo and an ion pumps, transitioning

between the two once the roughing gauge reads . 10−5 mbar. Once the ion gauge reaches

. 10−6 mbar, an overnight bake at 90◦C is performed to purge H2O vapor that has adsorbed

into the steel of the chamber. We wrap the system in heating tape and bring the temperature

to ∼ 90◦C and pump out the H2O vapor overnight. Although we flood the system with He2

or N2 gas when it is not in use to prevent buildup of water vapor, the chamber is open to air

during loading and unloading of devices, and without the bake the ion gauge’s lowest reading

is ∼ 10−7 mbar. This process achieves a pressure of ∼ 10−8 mbar. Finally, before operation,

we close the gate valve and turn off the turbopump, as its vibrations are detrimental to
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Figure 3.12: The nanolamp microchip contacted and mounted within the vacuum chamber,

as seen through the BK-7 window.
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imaging.

3.4 Electronics

3.4.1 Nanolamp Circuit

The main cause of device failure is electrostatic discharge (ESD), as a voltage of only a few

volts will draw enough current through the MWCNT to destroy it, so care must be taken

in how we connect to the nanolamp. The electric connector which contacts the four gold

pads on the chip lead outside the vacuum chamber by an electric feedthrough. Outside the

vacuum, these leads connect to a breakout box. A DP6T switch selects which 2 contacts

will be biased.

Protective resistors and switches allow us to connect to the power supply without de-

stroying the filament. Figure 3.13 shows the complete nanolamp circuit. A single pole single

throw (SPST) switch creates a short that bypasses the device completely, allowing a make-

then-break connection and drawing the majority of current from any magnetic pickup from

the vacuum pumps and components. A four pole single throw (4PST) switch creates a short

that bypasses 500 kΩ resistors that are in series with every contact. This switch is open

when connecting the device to the connector, connecting the device to the power supply,

or switching between devices; the resistors will limit the current drawn by any voltage that

had accumulated across leads. During operation, the SPST switch is open while the 4PST

switch is closed.

3.4.2 Operation of Nanolamp

The MWCNT is brought to incandescence by sourcing a voltage from a Keithley 2602 power

supply. The Keithley is capable of sourcing up to 40 V and measuring current with nA

precision every .001 plc (power line cycle) ≈ 16.7 µs. We set a current limit such that the

device cannot draw enough current to destroy itself via electronic pick-up. At operational

voltages, the fluctuations in current are of order . 0.1%. We program the Keithley to send

a trigger pulse to the camera, wait 20 ms for the shutter to open, and operate the nanolamp
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Figure 3.13: Circuit of nanolamp with expanded nanofilament. The MWCNT is a resistive

element, while the metal-CNT contacts form Schottky barriers.

for a specified number of plc at a certain voltage, timed with the camera exposure, to record

the radiation of the incandescent nanofilament.
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CHAPTER 4

Optically Imaging a Nanofilament

4.1 Imaging the CNT

4.1.1 Introduction

To measure the light radiated from the nanotube filament, we have built an optical micro-

scope capable of high-magnification, sub-λ resolution imaging and single photon detection.

Taking an image of the incandescent nanotube filament provides a number of advantages

over simply collecting the total intensity represented by Eq. 2.30. An optical image allow us

to directly confirm from location and orientation that the radiation originates from the nan-

otube, as opposed the contacts, membrane, or nearby contaminants. Furthermore, the size of

the camera’s CCD combined with additional optics allows simultaneous measurement of po-

larization and spectrum dependence of the intensity. The discreteness of the CCD also gives

many independent measurements of temperature and coherence within a single exposure.

However, the limitations of optical microscopy necessitate modifications to Eq. 2.30.

4.1.2 Objective Orientation

To determine how much light is captured by our microscope objective, we must translate the

coordinate system of the MWCNT Mie model into that of the microscope. The coefficients

Qabs of Eq. 2.58 are calculated in the coordinate system of the nanotube, where η is the angle

between incidence and the nanotube axis and ϕ is the angle about the nanotube axis. The

relationship between CNT coordinates and objective coordinates is illustrated in Fig. 4.1,

and the required transformation is η → π/2− θ and ϕ→ θ′, where θ′ is the rotation of θ by

π/2 about the optic axis.
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Figure 4.1: Illustration of the relative orientation of the nanotube axis to the optic axis.
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For an objective having numerical aperture NA = sin θ0 = sin θ′0, simple geometry finds

the nanotube angles that will enter the objective are η ∈ [π/2 − θ0, π/2 + θ0] and ϕ ∈

[−ϕmax(η), ϕmax(η)], where

ϕmax(η) = arctan
[√

tan2 θ0 − cot2 η
]
. (4.1)

Utilizing the symmetry of η and ϕ about the optic axis, the integral of any function f(η) in

nanotube coordinates over the objective’s acceptance cone is

If = 4

∫ π/2

π/2−θ0

f(η) sin ηdη

∫ ϕmax(η)

0

dϕ

= 4

∫ π/2

π/2−θ0

f(η) sin η arctan
[√

tan2 θ0 − cot2 η
]
dη.

(4.2)

We use an objective that has numerical aperture NA = .5, or θ0 = π/6, and we numerically

integrate for the two independent functions of η that arise in Eqs. 2.51, f(η) = 1 and

f(η) = sin2 η (noting that f(η) = cos2 η = 1− sin2 η),

I1 = 4

∫ π/2

π/2−θ0

sin η arctan
[√

tan2 θ0 − cot2 η
]
dη ≈ .955, and

Isin2 = 4

∫ π/2

π/2−θ0

sin3 η arctan
[√

tan2 θ0 − cot2 η
]
dη ≈ .896.

(4.3)

Using these relations, we can integrate Eq. 2.26 over all angles that enter the objective to

find the rate of light of polarization p that enters the optical system from a piece of the

nanotube as∫
NA

dṄp(l, w)dΩ =
2bc∆λ

λ4
Qp

NAe
−C2/λT (l)H(l−L/2)H(l+L/2)H(w−b)H(w+b)dldw, (4.4)

where the total integrated emission efficiencies are

Q
||
NA ≡

∫
NA

Q||dΩ

= πσZ0

[
.896 + .236β2 (σZ0)

2(β2 + α2) + 4β2(β − α)2

(σZ0)4(β + α)2 + 8(σZ0)2β2(β2 + α2) + 16β4(β − α)2

]
,

Q⊥
NA ≡

∫
NA

Q⊥dΩ

= 3.82πσZ0β
2 (σZ0)

2(β2 + α2) + 4β2(β − α)2

(σZ0)4(β + α)2 + 8(σZ0)2β2(β2 + α2) + 16β4(β − α)2
.

(4.5)
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4.1.3 Point Spread Function

As our microscope has limited resolution, the image of the nanotube will be effectively blurred

and spread over a larger area in comparison to the true object. This effect is described by

the point-spread function, or PSF , which transorms a point-source of unit intensity located

at (0, 0) in the object plane into its corresponding image under a particular optical system.

For a system limited by a circular aperture, such as our microscope, the PSF is the Airy

function

PSF (x, y) =
NA2π

λ2

(
2J1((2πNA

√
x2 + y2)/λ)

(2πNA
√
x2 + y2)/λ

)2

(4.6)

where J1 is the cylindrical Bessel function of the first kind, and the normalization is such

that the intensity integrated over the image plane is 1.[51]

The Airy function can be approximated by a gaussian with width s = .21λ/NA,[51] with

the same normalization as above,

PSF (x, y) ≈ I0
NA2π

λ2
e−(x2+y2)/2s2 . (4.7)

This gaussian approximation is shown alongside the original Airy function in Fig. 4.2. Al-

though this approximation only captures 87% of the intensity on the image plane, errors are

. 6% within 2s, deviating the most from center where we expect the effect to be smallest.

Furthermore, the image plane is not actually continuous, but is divided on the CCD into

discrete pixels with linear dimension β. We take the mean value as the center of the pixel

(i, j), ∫∫ β/2

−β/2

e−[(iβ−x)2+(jβ−y)2]/2s2dxdy ≈ β2e−[(iβ)2+(jβ)2]/2s2 . (4.8)

The errors this approximation are also small within a radius of 2s, on the order of 1% at

1100 nm where the gaussian varies more slowly and 6% at 450 nm. While the approximation

of the Airy as a gaussian underestimates the count at the furthest pixels, the averaging over

a pixel overestimates, and the errors partially cancel, giving at most a ∼ 3% miscount where

the signal gets weak, and ∼ 1% at the center. The final PSF for our system becomes, with

NA = .5,

PSF (i, j) =
β2π

4λ2
e−[(iβ)2+(jβ)2]/2(.42λ)2 . (4.9)
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Figure 4.2: Plots of an Airy function normalized to have unit intensity over the plane (blue

curve), gaussian with width s = .42λ and same normalization as the Airy function (red

curve), and gaussian with width s = .42λ normalized to have unit intensity over the plane

(yellow curve), all as functions of ρ =
√
x2 + y2. The gaussian with unit normalization

overestimates the signal near ρ = 0 by a factor of ∼ 87%, but the Airy-normalized gaussian

approximates the Airy function very well out to ρ = 2s.
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4.1.4 Nanotube Image

To determine the final image we expect from the object plane intensity distribution described

by Eq. 4.4, we define (x, y) as the coordinate system in the object plane oriented with the

CCD. For a nanotube centered at (x0, y0), the parameterization of the tube is xt = l cosϕ+x0,

yt = l sinϕ+ y0, where ϕ is the angle the nanotube makes with the CCD axes.

The image of the nanotube on the CCD is the convolution of Eq. 4.4 with the PSF over

the entire object plane:

Ṡp(i, j) = Θλ

∫∫ ∞

∞
dxdydṄp(x, y)PSF (iβ − xt, jβ − yt)

= Θλ

∫∫ ∞

∞
dṄp(l, w)PSF (iβ − l cosϕ− x0, jβ − l sinϕ− y0)dldw,

(4.10)

rotating to tube coordinates, and where Θλ is the transmission efficiency of the optics at

wavelength λ. Because b≪ β, in the w direction we take H(b− w)H(b+ w) ≈ 2bδ(w), and

the integral reduces to one along the length of the tube and find

Ṡp(i, j) ≈ 2b

∫ L/2

−L/2

dṄp(l, w)PSF (iβ − xt, jβ − yt)dl

=
2bc∆λ

λ4
ΘλQ

p
NA

β2π

4λ2

∫ L/2

−L/2

e−C2/λT (l)

× e−[(iβ−l cosϕ−x0)2+(jβ−l sinϕ−y0)2]/2s2dl.

(4.11)

The integral above can be evaluated by once again expanding 1/T (l) as in Eq. 2.28. The

exponential now is a quadratic in l, and completing the square yields

Ṡp(i, j) =
2bc∆λ

λ4
ΘλQ

p
NA

β2π

4λ2
e−C2/λTmax

× e−[(iβ−x0)2(1−η2 cos2 ϕ)+(jβ−y0)2(1−η2 sin2 ϕ)−2η2 cosϕ sinϕ(iβ−x0)(jβ−y0)]/2s2

×
∫ L/2

−L/2

e−(l/η+[(iβ−x0) cosϕ+(jβ−y0) sinϕ]η)2/2s2dl,

η ≡ 1/
√

1 + 8s2C2(Tmax − T0)/λT 2
maxL

2.

(4.12)

Finally, again because the largest contributions come from the center of the tube, we can

extend the integral limits to ±∞ with negligible error, and the integrand becomes a gaussian

whose integral evaluates to ηs
√
2π. We define the geometric factor describing the shape and

orientation of this 2-d gaussian as

Φij ≡ e−[(iβ−x0)2(1−η2 cos2 ϕ)+(jβ−y0)2(1−η2 sin2 ϕ)−2η2 cosϕ sinϕ(iβ−x0)(jβ−y0)]/2s2 , (4.13)
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Figure 4.3: The optical microscope used to collect data from incandescent MWCNTs. An

illustration of major components of the optics is shown for comparison.

whose eccentricity is given by η. The final expression for the count rate detected at pixel

(i, j) becomes

Ṡp(i, j) = ΘλQ
p
NAΦijη

∆λ

λ

2bcs

λ3
β2π
√
2π

4λ2
e−C2/λTmax . (4.14)

4.2 Microscope

4.2.1 Microscope Construction

The construction of our microscope is shown in Fig. 4.3. An infinity-corrected objective

collects the light, a tube lens focuses light exiting the objective, and a CCD camera records

the focused image. The entire optic path is enclosed via anodized aluminum c-mount fittings

to minimize noise in the image due to external light sources.

We have several infinity-corrected objectives that can be installed in the microscope,

ranging from 2x magnification to 100x magnification, but the data collection is performed
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using a Mitutoyo 100x NIR Apochromat objective. This objective is aberration corrected for

1.1 mm of BK7 glass–here, the window to the vacuum chamber. It has numerical aperture

NA = .5 (or equivalently an acceptance angle of 30◦ in air), working distance dw = 12.13 mm,

focal length f = 2 mm, and depth of focus DOF = 1.1 µm. The objective is mounted on

a piezo z-stage for fine focusing of the objective. The piezo can be precisely controlled to

shift the objective up to 250 µm, with a precision of 10 nm. This precision is well within the

objective’s DOF, and allows us to focus on the nanotube with great accuracy.

Diffraction off the exit pupil of the objective, the limiting aperture in our system, de-

termines the resolution. The exit pupil diameter is related to the numerical aperture and

focal length by ϕexit = 2fNA = 2 mm. The ratio ϕexit/2f thus determines the NA and the

resolution s = .21λ/NA = .42λ of the PSF.

The objective is infinity-corrected, i.e. all rays originating from the same point in the

object plane converge at infinity; to form an image, therefore, it is necessary to incorporate

a tube lens to focus the light emerging from the exit pupil. We use a Mitutoyo MT-L tube

lens, which is aberration corrected for wavelengths ranging from 355 to 1064 nm. It has

diameter ϕtube = 22 mm on which light is incident and focal length fT = 200 mm, which

produces an image field up to diameter ϕim = 24 mm.

A Pixis 1024BR camera with its CCD coincident with the image plane of the tube lens

records the image. The CCD consists of a 1024 × 1024 array of pixels each measuring

13 µm× 13 µm, resulting in an image field of 13.3 mm× 13.3 mm, circumscribed by a circle

of diameter ϕCCD = 18.8 mm. Each pixel can bin 216 e−, and read noise nominally ranges

from 3.6 to 5 e− rms at a readout rate of 100 kHz.

The camera is cooled to -70◦C to be single-photon sensitive, and the cooling fan produces

vibrations. To dampen these vibrations, once the camera is aligned with the optics, a 2-

piece c-mount sleeve connecting it to the tube lens is decoupled, such that any remaining

vibrations do not propagate to the objective.
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Figure 4.4: Illustration of how sets of parallel rays propagating in the infinity space with the

same angle with respect to the optic axis are coincident at the same position in the image

plane.

4.2.2 Infinity Space

The region between the objective’s exit pupil and the tube lens is known as the infinity

space. The infinity space is the Fourier transform of real space; light originating from the

same point in the object plane that propagates at different angles instead propagate in the

infinity space at the same angle but with a spatial offset, as illustrated in Fig. 4.4. The

wavefront corresponding to the center of the object plane propagates parallel to the optical

axis, whereas the edge of the image field deviates the most.

Because of this angular spread and the finite size of the tube lens, if the infinity space is

too long, the signal will be vignetted. In the thin lens approximation, a paraxial ray incident

an angle ξ on a lens of focal length f at a distance y from the optical axis will exit at an

angle

ξ′ = ξ − y

f
. (4.15)

Placing the tube lens a distance Di behind the objective, we solve for the maximum value

for Di that forms a complete image on the CCD without vignetting.

The maximal spread originates from the edge of the exit pupil, which at the limit of

visibility will be incident at the edge of the CCD, as shown in Fig. 4.5. Simple trigonometry

gives this maximum angle as ξmax = (ϕtube−ϕexit)/2Di and −ξ′ = (ϕtube−ϕCCD)/2fT . Using
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Figure 4.5: Illustration of the geometry used in the derivation of Eqs. 4.16 and 4.17. The

ray shown is the extremal one that will not be vignetted by the optics.

Eq. 4.15, the maximum distance we can place the tube lens without inducing vignetting is

Di =
(ϕtube − ϕexit)fT

ϕCCD

, (4.16)

corresponding to a maximum angular spread of

ξmax =
ϕCCD

2fT
. (4.17)

For our microscope, we will not experience vignetting for Di ≤ 212 mm. The maximum

infinity space angle the CCD captures is ξmax = 2.7◦, corresponding to imaging at the

corner of the CCD. The paraxial approximation in our infinity space is thus validated, as

all pertinent angles are small. Equation 4.17 yields the relation between angular spread and

CCD shift, as 512 pixels corresponds to an angle of 1.9◦, and

∆x⃗i
∆ξ
≈ 269.5

pixels

deg
. (4.18)

This relation determines the angular deflection optimal for simultaneously imaging orthog-

onal polarizations or a diffracted spectrum of an object.

4.2.3 Measurement of the Magnification

We determine the true magnification of the optics by imaging a Ronchi ruling, shown in

Fig. 4.6. Our CCD consists of an array of 13 µm× 13 µm pixels, so at 100× magnification

we expect the effective pixel linear dimension to be β = 130 nm. The Ronchi ruling utilized
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Figure 4.6: Front-illuminated Ronchi ruling as imaged using our microscope with NIR 100×

objective. The inset shows a line profile, indicated on the image, used in determining the

apparent spacing of line pairs and thus the magnification.

has a spacing of 600 line pairs/mm, so we expect each line pair to span about 12.82 pixels.

Instead we measure 13.09 pixels/line pair, corresponding to a magnification ofM ′ = 102.1×.

This magnification differs significantly from the nominal objective magnification. Mitutoyo

confirms that the objective is calibrated for an accurate dw, such that the nominal value

of M is approximate. Therefore, the true magnification of the microscope is 102.1×, and

β = 127 nm is the effective pixel linear dimension.
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4.2.4 Spherical Aberration Correction

Aberrations introduced into imaging by the optics will distort the image from that predicted

by Eq. 4.14. The objective is corrected for spherical aberration induced by the flat BK-7

vacuum window of 1.1 mm thickness. However, strains from the pressure differential of the

vacuum system will distort the window profile, introducing spherical aberrations that are

not corrected. To quantify the amount present in our imaging it is necessary to calculate

the amount for which the objective corrects.

Using geometric optics, a light ray emanating at an angle θ passing through a window of

thickness t and index of refraction n tilted at an angle ϕw from the optical axis will appear

to be originating from a position on the axis shifted by

SphL(t, n, θ, ϕw) =
t

cosϕw

[
1− cosϕw sin(θ + ϕw)− sinϕw

√
n2 − sin2(θ + ϕw)

tan θ(
√
n2 − sin2(θ + ϕw) + tan θ sin(θ + ϕw))

]
. (4.19)

This equation represents the longitudinal spherical aberration, a shift in the apparent posi-

tion of an image as illustrated in Fig. 4.7. Because the shift is a function of θ, the object’s

position as integrated over the range of θ collected the objective leads to an apparent defocus.

Because the window and chip holder are bolted to be normal to the optical axis, we can

take ϕw → 0 and expect a spherical abberation of

SphL(t, n, θ) = t

(
1− cos θ√

n2 − sin2 θ

)
. (4.20)

BK7’s index of refraction is well known and can be described by the Sellmeier equation,[1]

n2(λ) = 1 +
1.03961212λ2

λ2 − 6.00069867× 103 nm2
+

0.231792344λ2

λ2 − 2.00179144× 104 nm2

+
1.01046945λ2

λ2 − 1.03560653× 108 nm2
,

(4.21)

plotted in Fig. 4.8. Thus the index of refraction at the extreme values of our wavelength range

of interest are n(450 nm) = 1.52532 and n(1100 nm) = 1.50617. Our window’s thickness

is t = 1.1 mm, and the maximum angle accepted by our 100x objective is θ = 30◦. This

gives a maximum aberration that is corrected by the objective of SphL(30
◦) ≈ .43983 mm

at λ = 450 nm and ≈ .42949 mm at λ = 1100 nm. The spherical aberration by a window is

thus two orders of magnitude larger than the DOF, and the correction the objective provides

is essential to imaging.
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Figure 4.7: Illustration of the longitudinal spherical aberration induced by a planar window.
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generated from the Sellmeier coefficients from Ref. [1].
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4.2.5 Aberration From Window Bending

The vacuum window is under a pressure differential, distorting the window away from the

ideal planar geometry and introducing aberration for which the objective does not correct.

This displacement from equilibrium w due to the pressure differential p follows the plate

equation

∇2

(
Et3

12(1− ν2)
∇2w

)
= p (4.22)

where E is the Young’s modulus, ν the Poisson’s ratio, and t the thickness of the window.[35]

The quantities E and ν are constant throughout the window, and with the boundary equa-

tions that the window is circularly clamped at radius r0, the displacement a radius r from

the origin is

w(r) =
3pr40(1− ν2)

16Et3

[
1−

(
r

r0

)2
]2
. (4.23)

Figure 4.9 shows the profile of a window undergoing such a bend. We calculate the spherical

aberration numerically using the values E = 8.2 × 104 N/mm2 and ν = 0.206 for BK-7.[1]

A numerical calculation of the apparent image shift as a function of angle incident on this

window profile by repeated application of Snell’s law. The maximum spherical aberration,

given by subtracting the objective correction from the calculated aberration, is ∼ 80 nm over

the wavelength range. The uncorrected aberration is over an order of magnitude smaller than

the depth of focus; therefore, all spherical aberrations induced by the bending of the BK-7

window will not affect a focused image.

4.3 Infinity Space Optics

4.3.1 Filters

With the use of one of 14 small bandpass color filters, light of a particular wavelength is

singled out and analyzed. Directly behind the objective and piezo focuser are two 10 position

high-speed filter wheels. We have a set of filters from Chroma which transmit wavelengths

from 450 to 1100 nm in 50 nm increments. The bandpass of these filters is ∆λ = 10± 1 nm,

and the central wavelengths differ from nominal by λ = λ0 ± 2 nm, an error on the order of
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Figure 4.9: Profile of the displacement as a function of radius of a window clamped at r0

under a pressure differential p from above.
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∼ 0.1%. Half of these filters are placed in each wheel, with one position per wheel kept open

for total transmission and one blocked for dark current measurements.

4.3.2 Diffraction Grating

A diffraction grating placed in the infinity space produces finer spectral measurement than

provided by the filters. We mount a diffraction grating with line spacing d−1 = 35 grooves/mm

on a rotation stage such that we can orient the diffracted image on the CCD normal to the

tube axis. By Eq. 4.18 and the first-order diffraction condition

d sin θ = λ, (4.24)

this grating produces a wavelength-dependent shift relative to the 0th order maxima of

∆x

∆λ
= .5376 pixels/nm. (4.25)

The diameter of the grating is 20 mm; thus the resolvance at first-order is

λ

∆λ
= 700, (4.26)

implying that at wavelengths below 1300 nm, pixel size limits resolution of wavelength.

The PSF spreading of the image is the dominant limitation of resolution of the diffracted

spot; perpendicular to the tube axis, the number of unresolved pixels is ∆x = s/2β. The

experimental resolvance is thus

λ

∆λ
=
.5376β

.21
≈ 325. (4.27)

Below 650 nm, the resolution is limited by 1 pixel, corresponding to ∆λ ≈ 2 nm; at 975 nm

the resolution is limited by 3 pixels and ∆λ ≈ 6 nm. Therefore, although the range of

wavelengths that can be captured in one exposure is limited by the sensitivity of the optics,

the diffraction grating allows a greater spectral sensitivity over a continuum of wavelengths

compared to the discrete values selected by the filters.

4.3.3 Polarizer

Simultaneous imaging of two independent polarizations of light with our optics is achieved

by the introduction of a Wollaston prism. A Wollaston prism is comprised of two wedges of
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Figure 4.10: Illustration of a Wollaston prism. It is comprised of two wedges of quartz cut

and glued together such that the fast axes are perpendicular. Refraction at the interface

between the wedges separates the two linear polarizations of incident light by an angle ϕ.

a birefringent material combined such that the orientation of the fast and slow axes in the

first wedge is orthogonal to that in the second wedge. Due to the angle θ of the wedge, the

mismatch of the two indices of refraction n|| and n⊥, and Snell’s law, the two orthogonal

polarizations of normally incident light split by an angle ϕ, shown in Fig. 4.10.

Our prism, built by Red Optronics, is made of quartz. Using the indices of refraction of

quartz plotted in Fig. 4.8 and the nominal prism separation ϕ(1064 nm) = 2◦, we calculate

θ = 28.14◦. This value then allows us to calculate ϕ(λ), and applying Eq. 4.18, the corre-

sponding separation on the CCD, plotted in Fig. 4.11. Images belonging to two orthogonal

polarizations appear roughly 550 pixels apart, about half the size of the CCD, easily allowing

simultaneous capture of data of orthogonal polarizations.
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Figure 4.11: Separation angle ϕ and corresponding CCD pixel separation of two orthogonal

polarizations due to the Wollaston prism as a function of wavelength.
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4.4 Calibration

4.4.1 Wavelength-dependent Quantum Efficiency of Microscope

Because the optics reflect and absorb some of the light being collected, not every photon

emitted by the CNT will be recorded by the CCD. To translate between the absolute emission

of the MWCNT and the signal measured on the CCD we must measure the total transmission

of the optics, Θλ, that arises in Eq. 4.14. The microscope and camera’s combined quantum

efficiency is measured using a 45 W tungsten lamp from Newport, for which the spectral

flux at a radial distance of 50 cm has been NIST calibrated. Placing a 100 µm sized pinhole

this distance from the lamp and focusing on the pinhole with the microscope through a glass

window identical to the one in the vacuum chamber allows us to determine the number of

photons entering the optics; the setup is illustrated in Fig. 4.12. All collected photons enter

the system essentially parallel to the optical axis, as the pinhole subtends a very small solid

angle with respect to the tungsten lamp.

The irradiance at a distance of 50 cm from the NIST-calibrated lamp is given as

V (λ) = λ−5e−(A+B/λ)

(
C +

D

λ
+
E

λ2
+
F

λ3
+
G

λ4
+
H

λ5

)
(4.28)

in units of mW/m2nm, with coefficients given in Table 4.1. This irradiance has a fractional

uncertainty in quadrature sum of 2.8% in the wavelength range from 350 to 1300 nm. The

irradiance can be converted to a photon flux per second by dividing by the energy per photon,

and the CCD will see

Ṅ45W,theo =
β2λ∆λ

hc
V (λ), (4.29)

photons per pixel per second. The ratio of the measured count rates to the expected photon

rates gives the efficiency of the combined window, objective, filter, tube lens, and CCD

system,

Θ0(λ) =
Ṡ45W,meas(λ)

Ṅ45W,theo(λ)
, (4.30)

which has units of counts/γ. The subscript indicates that this quantum efficiency is measured

for light entering along the optical axis.

An image of the pinhole at 550 nm is shown in Fig. 4.13. The pinhole fills most of the

field of view, and its diameter of 100 µm is large compared to the thickness, minimizing
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A 41.7133782879188 E -157161.599513603

B -4746.26164221276 F 20868242.470864

C 0.874214800828613 G -297635686.081756

D 271.591151286481 H 0

Table 4.1: Calibration parameters of Eq. 4.28 given for the NIST calibrated tungsten stan-

dard lamp (values from lamp calibration literature).

Figure 4.12: Cartoon of calibration setup, with 45 W standard lamp placed 50 cm behind

pinhole.
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Figure 4.13: Calibration image of pinhole using the 550 nm filter.

diffraction and reflection effects, which are only observed at the very edge of the pinhole.

The calibration images show Airy distortions, which are unique to images taken with a

particular filter. These distortions also increase in size with wavelength, indicating that they

are projections of point defects in the filters themselves. To account for the fluctuations

caused by these defects, we average Ṅ45W,theo over a large ROI of ∼ 105 pixels to obtain the

total quantum efficiency at normal incidence Θ0.

This calibration method yields only the quantum efficiency at normal incidence, yet the

nanotubes studied emit into all solid angles collected by the objective. As has been previously

shown, the paraxial approximation is valid in the infinity space; therefore, any deviations

expected between the quantum efficiencies of off-axis photons and on-axis photons depend

only on the transmission efficiencies of the glass window and the front of the objective,
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assuming losses within the objective itself are independent of entry angle. Designating the

indices of refraction of the imagining medium as n0, the window as n1, and the objective as

n2, the angle-dependent transmission coefficients of the window and objective entrance are

T⊥(θ) =
8n2

0 cos θ cos(θ + κ)
√
n2
1 − n2

0 sin
2 θ

[n0 cos θ +
√
n2
1 − n2

0 sin
2 θ]2[n0 cos(θ + κ) +

√
n2
2 − n2

0 sin
2(θ + κ)]

(4.31a)

T||(θ) =
8n2

0n
2
1n2 cos θ cos(θ + κ)

√
n2
1 − n2

0 sin
2 θ

[n2
1 cos θ + n0

√
n2
1 − n2

0 sin
2 θ]2[n2

2 cos(θ + κ) + n0

√
n2
2 − n2

0 sin
2(θ + κ)]

(4.31b)

for electric field perpendicular and parallel to the plane of the window, respectively, and

where θ is the angle of incidence on the objective as measured from the optic axis and κ is

related to the radius of curvature R of the objective lens, window thickness t, and objective

working distance L by

κ = sin−1

[L+ t
(

n0 cos θ√
n2
1−n2

0 sin
2 θ
− 1
)]

tan θ

R

 . (4.32)

With n1 = n2 ≈ 1.5 for BK-7, n0 = 1, t = 1.1 mm, and L = 11.76 mm, we integrate

over all solid angles accepted by the objective, normalized by the corresponding calculation

in the approximation that Θ(λ) = Θ0(λ). We take two limits of the objective entrance lens’s

shape to bound the error on this approximation: for a planar geometry, R =∞ and∫ π

0
dθ sin θ(T 2

⊥(θ) + T 2
|| (θ))∫ π

0
dθ sin θ(T 2

⊥(0) + T 2
|| (0))

≈ .942, (4.33)

and for a plano-convex geometry, R = 10.8 mm and∫ π

0
dθ sin θ(T 2

⊥(θ) + T 2
|| (θ))∫ π

0
dθ sin θ(T 2

⊥(0) + T 2
|| (0))

≈ .879. (4.34)

Although the objective lens’s exact shape is not known, these two bounds allow us to ap-

proximate the error in setting Θ(λ) = Θ0(λ) at ∼ 10%, overshadowing the error caused by

the lamp fluctuations.

4.4.2 Polarization-dependent Transmission of Wollaston Prism

Placing the Wollaston prism in the calibration setup as described previously, a filter stack is

taken with the prism separation aligned parallel to the optical table (horizontal splitting on

75



Figure 4.14: The polarizer splits the image of the pinhole into two images, with each polar-

ization aligned with the fast axis of one of the prism halfs. A rotation of 90◦ inverts the fast

axes.

the CCD) and a second one with the prism perpendicular (vertical splitting on the CCD). We

define Θ||(Θ⊥) as the quantum efficiency of all the optics for incident light aligned parallel

(perpenicular) to the fast axis of the initial half of the prism.

The standard lamp emits light which may be slightly polarized, so the total rate of

photons emitted is equal to the sum of these two polarizations: Ṅtot = Ṅ|| + Ṅ⊥. The

detected photons are then

Ṡa = Θ||Ṅ||, Ṡb = Θ⊥Ṅ⊥

Ṡc = Θ⊥Ṅ||, and Ṡd = Θ||Ṅ⊥,
(4.35)

where Ṡa (Ṡc) and Ṡb (Ṡd) are the detection rates for the splitting parallel (perpendicular)
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Figure 4.15: Net quantum efficiencies of the microscope, camera, and wollaston prism at

each filter for “parallel” (aligned along fast axis of prism wedge towards objective) and

“perpendicular” (aligned along fast axis of prism wedge towards CCD) polarizations of light.

to the optical table, illustrated in Fig. 4.14. Solving for Θ|| and Θ⊥,

Θ|| =
Ṡa+Ṡd

Ṅtot
and Θ⊥ = Ṡb+Ṡc

Ṅtot
. (4.36)

Figure 4.15 plots the measured values of Θ|| and Θ⊥ used in the analysis of polarized MWCNT

data. The quantum efficiency is highest in the 700-900 nm range, dropping off both at long

wavelengths due to the bandgap of the Si comprising the CCD and at short wavelengths due

to the objective’s sensitivity’s being optimized in the NIR.

4.4.3 Tests of Calibration

To test the calibration, we examine the spectra of macroscopic radiators, which have linear

size r ≫ λ > β. In this dimension limit, the PSF integrates out of the image, and the pixel

count rate is
Ṡ(i, j)

Θλ

= π(NA)2ϵ
2cβ2∆λ

λ4
e−C2/λT , (4.37)
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Figure 4.16: Spectrum and graybody fit to backlight data.

having assumed a Lambertian radiation profile. The intensity is uniform over the image.

The backlight which sits behind the microchip within an aluminum cavity mimics a

blackbody cavity to lowest order. Taking a set of images without a device in the vacuum

chamber produces images with uniformity varying by . 1% over the entire CCD at 100×

magnification. Optimizing the images to average ≥ 2 × 104 counts above background, the

error in the quantity Ṅ = Ṡ/Θλ is

δṄ = Ṅ

√(
δS

S

)2

+

(
δΘλ

Θλ

)2

= Ṅ

√√√√(√S
S

)2

+

(
δΘλ

Θλ

)2

= Ṅ

√
1

S
+

(
δΘλ

Θλ

)2

≈ Ṅ
√
5× 10−5 + .01 ≈ .1Ṅ ,

(4.38)

with the calibration error completely overshadowing the shot noise contribution. The spec-

trum of the backlight, shown in Fig. 4.16, fits the graybody spectrum given by the right

hand side of Eq. 4.37 very well with a temperature of 1930± 40 K.

In addition to the blackbody approximated by the backlight, we construct a radiating

tungsten filament by biasing a length of 10 µm diameter tungsten wire, allowing us to test
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Figure 4.17: Image of incandescent tungsten filament.

Eq. 4.37 for a directly imaged radiator in the object plane. Figure 4.17 shows a representative

image of this tungsten filament. Applying voltages ranging from 0.90 V to 1.10 V produce

the spectra of Fig. 4.18, and the graybody fits indicate that the temperature of the filament

varies by 150 K over this biasing range. Thus, the calibration allows us to measure the

temperature of gray objects over the accessible wavelength range, and we can confidently

apply Θλ to data from MWCNT filaments.
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Figure 4.18: Spectra and graybody fits to tungsten filament at varying powers.
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CHAPTER 5

Pyrometry of MWCNTs

5.1 Optical Data

5.1.1 Gaussian Bright Spot

With the optics constructed and characterized, we take images of incandescent nanotubes

varying over applied power, filter, and polarization. Figure 5.1 shows a representative image

of a nanolamp captured by the full CCD. The nanotube’s bright spot occupies only a few

pixels at 102.1× magnification. The CCD is 16-bit, but we adjust for the noise present in the

least-significant bit, such that a given image saturates at 215 = 32768 counts. We adjust the

exposure time such that the brightest pixel has between 2×104 and 3×104 counts, provided

that the exposure is under 2 minutes. Dark current generates a background noise of ∼ 300

counts, measurable on each picture by averaging a region far away from the nanotube’s

bright spot. As the counting error due to shot noise σS =
√
S, pixels with Sij > 104 counts

are accurate to < 1%. A 2-dimensional gaussian fit to this data gives the angle ϕ and center

(x0, y0) of the nanotube to an accuracy of .1◦ and .01 pixels, respectively. Although the first

Airy bump is visible in a typical exposure, the fit to a gaussian has χ2 ≈ 1, and therefore

supports our model in Eq. 4.14.

5.1.2 Nanotube Location

Operating the backlight in conjunction with the nanolamp, we can determine visually that

the bright spot in Fig. 5.1 originates from the MWCNT, as opposed to a contact or debris

on the membrane heating up. Figure 5.2 shows this backlit membrane with the nanolamp

both off and on. Comparison of the two pictures indicates that the origin of the bright spot
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Figure 5.1: A representative nanolamp exposure taken by the CCD. As most of the CCD

captures no signal other than dark current, a zoomed view of the bright spot is also shown.

The first Airy minimum is visible, but the image very closely approximates the gaussian

predicted by Eq. 4.14.
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Figure 5.2: Images of a chip’s membrane backlit by lightbulb using 500 nm filter. In the left

image the nanolamp is off; in the right image the nanolamp is on. The bright spot is clearly

between the contacts, identifying it with the nanotube.

is directly between the two contacts.

These backlit shots, combined with TEM images, allow us to pinpoint the location where

the nanotube is at Tmax to an accuracy of ∼ 40 nm. Pairwise optimization of the scale, offset,

and rotation between the “nanolamp only”, “nanolamp with backlight”, “backlight only”,

“low magnification TEM”, and “high magnification TEM” images gives the overall trans-

formation parameters to map the optical data onto the high magnification image. Results

of such a mapping with the nanotube whose TEM image is shown in Fig. 3.7 and optical

data in Fig. 5.1 are shown in Figure 5.3, with the nanotube’s midpoint passing through the

brightest pixel.
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Figure 5.3: Merge of optical data in Fig. 5.1 and high magnification TEM image of Fig. 3.7.

The actual CNT midpoint is indicated, as well as the midpoint as determined by the gaussian

fit.
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Figure 5.4: Portion of image showing parallel and perpendicular polarizations captured

simultaneously.

5.1.3 Polarized Spot

As the majority of the image shown in Fig. 5.1 contains no information aside from background

noise, the images belonging to the two orthogonal polarizations can be captured in a single

exposure without overlap. Such an exposure with the majority of background cut out is

shown in Fig. 5.4. The two polarizations seen are defined relative to the Wollaston prism’s

orientation, and care must be taken in identifying this orientation with the nanotube axis.

5.1.4 Diffraction Grating Profile

With both the diffraction grating and wollaston prism installed, a single exposure yields

spectral data for both polarizations. We orient the grating’s axis orthogonal to the polarizer’s

splitting direction, resulting in data such as in Fig. 5.5. The separation of the 1st maxima

of both polarizations changes as a function of wavelength and corresponds to the expected

separation plotted in Fig. 4.11. The peak data is extracted by taking slices perpendicular to

the diffraction grating direction and fitting to a gaussian; the gaussian peaks give Sp(0, 0) as

a function of wavelength and are plotted in Fig. 5.6. The parallel polarization’s distribution

peaks redder than the perpendicular distribution, but both distributions are smooth. Thus,

we confirm that narrow band molecular transition peaks are absent in MWCNT emission.
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Figure 5.5: Image taken of nanolamp using wollaston polarizer and diffraction grating, show-

ing 0th maxima and 1st maxima for each polarization.
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Figure 5.6: Plot of the peak counts in the first diffracted maxima as a function of wavelength.

Cuts are taken every 5 nm.
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5.2 Degree of Nanotube Polarization

Polarization-dependent absorption, emission, or reflection has been reported from macro-

scopic carbon nanotube aggregates such as films,[52, 53] fibers,[54] bundles,[55] and arrays.[56,

57] Individual SWCNTs have shown polarization dependent emission,[58, 59, 60, 61] scattering,[62,

63, 64] and absorption,[59, 65] peaking for the parallel (perpendicular) polarization at intra-

band (interband) transition energies. On the other hand, MWCNTs are in the classical limit;

yet broadband, highly polarization-dependent emission is predicted by the Mie theory[66] or

Rytov formalism[67] for cylinders, with this dependence increasing as the ratio r/λ decreases.

We measure the degree of polarization (DoP) of the light emitted by a MWCNT nanofila-

ment, a quantity which is independent of our setup and thus provides a useful measure of

the accuracy of our Mie model.

5.2.1 Theory

We define the DoP for a MWCNT by

DoP ≡ Ṅ || − Ṅ⊥

Ṅ || + Ṅ⊥
=
Ṡ||(0, 0)− Ṡ⊥(0, 0)

Ṡ||(0, 0) + Ṡ⊥(0, 0)
, (5.1)

which takes on values between 1 (completely polarized along the tube axis) and -1 (completely

polarized perpendicular to the tube axis). Upon substitution of Eqs. 4.14, the explicit

wavelength and temperature dependences of the Planck distribution and calibration factors

cancel, leaving an expression that depends only on the integrated emission efficiencies,

DoP =
Q

||
NA −Q⊥

NA

Q
||
NA +Q⊥

NA

. (5.2)

Utilizing the Mie model developed in Sec. 2.3, the DoP is a quantity with a spectrum

determined by the geometry and conductivity of the MWCNTs. We substitute the integrated

emission efficiencies of Eq. 4.5 to find

DoP =
.896(σZ0)

4(β + α)2 + 3.584(σZ0)
2β2(β2 + α2)− 14.336β4(β2 − α2)

.896(σZ0)4(β + α)2 + 11.224(σZ0)2β2(β2 + α2) + 46.784β4(β2 − α2)
. (5.3)

Again taking the sheet conductivity to be the theoretical conductivity of graphene, σ = σg,
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the degree of polarization becomes

DoP(λ, T ) =

λ4(b+ a)2 tanh4
(

C2

4λT

)
+ A1λ

2b2(b2 + a2) tanh2
(

C2

4λT

)
− A2b

4(b2 − a2)
λ4(b+ a)2 tanh4

(
C2

4λT

)
+ A3λ2b2(b2 + a2) tanh2

(
C2

4λT

)
− A4b4(b2 − a2)

,
(5.4)

with the coefficients A1 = 3.002 × 105, A2 = 9.018 × 1010, A3 = 9.405 × 105, and A4 =

2.943× 1011.

5.2.2 DoP Fitting

To measure the DoP, the nanotube axis must be determined relative to the rotation stage’s

internal coordinate. A rotation stack of images is recorded at each wavelength, rotating the

Wollaston prism through its 360◦ range in 10◦ increments. The intensity of one of the two

spots is tracked over these stacks, and the results for device A1321F are plotted radially in

Fig. 5.7. The data have been normalized such that the minima are equal across wavelengths

for display purposes.

We fit each polarization curve to the function A cos(θ − θ0) + B where θ is the rotation

of the Wollaston prism. The offset θ0 varies by ±1◦ across all wavelengths, and coincides

with the nanotube axis determined by the gaussian fit and transformed to prism coordinates,

shown as a black line in Fig. 5.7. At θ0, the DoP is a maximum, which can be expressed in

terms of the fit parameters A and B by

DoP =
(A+B)−B
(A+B) +B

=
A

A+ 2B
. (5.5)

We fix the rotation stage at θ0 to maximize the DoP and proceed to measure the polarization

over a range of powers.

The DoPs as a function of wavelength for several tubes at their highest operating powers

are shown in Fig. 5.8. The average DoP across all tubes is around 75%, indicating that

MWCNTs are indeed quite polarized. For device A1001F, data taken at a significantly lower

power are also displayed. The solid and open curves correspond to applied powers of 451 and

362 µW, respectively, from which it is evident that the radiation is more polarized at the

lower temperature. This polarization increase with decreasing temperature becomes more
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Figure 5.7: Radial plots of the nanotube’s maximum intensity as a function of polarizer orien-

tation θ at each of the filter wavelengths. Solid curves are fits to the function A cos(θ+θ0)+B.

The black line represents the orientation of the nanotube as determined by comparing optical

and TEM images.
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Figure 5.8: The maximum degree of polarization plotted as a function of wavelength for 5

nanotube devices. The curves with closed (open) squares was acquired from one device at

input powers of 451 (362) µW. The dashed blue curve is the theoretical DoP expected for

a tube with graphene’s conductivity σg and the geometry of the 1190 nm long device. The

red circles are the theoretical DoP for a tube with the same geometry but values for the

conductivity of graphene given at λ = 550 nm as summarized in Ref. [2].

drastic at higher wavelengths, the DoP ranging from being only 0.5% higher at λ = 450 nm

to 7% higher at λ = 1100 nm. This effect is larger than that predicted by the temperature

dependence of σg.

The theoretical DoP as predicted by Eq. 5.3 with σ = σg is also shown in Fig. 5.8 as a blue,

dashed curve. Upon initial inspection, while the average DoP agrees with the experimental

data, the values do not agree very well outside of small wavelengths for a couple of devices.

However, the exact value of σg ranges in the literature, and the DoP at λ = 550 nm as

predicted by the differing σg values summarized in Ref. [2]. The conductivity of multilayered

graphene is uncertain up to a factor of two, which can account for the entire quantitative

range of values seen from our devices.
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The predicted DoP also is monotonically increasing, a feature that the DoPs of our

nanotube devices do not share. Our measured DoPs tend to decrease at long wavelengths,

behavior that, while not universal, is seen in a majority of devices. We attribute such

behavior to the excitation of optical phonons at high temperatures, which have much shorter

wavelengths and thus are more likely to produce unpolarized light than scattering of acoustic

phonons[40], and will consider the origins of this effect when the discussion turns to graphene

emission. Yet while the subtleties of the spectrum are not predicted by the Mie theory of

our nanotubes, the magnitude of the polarization is indeed predicted by the experimental

optical conductivity of graphene to within a factor of 2. Multiwalled carbon nanotubes thus

produce highly polarized light on the order of ∼ 75% on average, large compared to the

typical unpolarized blackbody.

5.3 Pyrometry of Nanofilament

5.3.1 Single Color Pyrometry

With the Mie theory predicting the emission efficiencies of our nanotubes to a factor of 2,

the temperature of the nanolamps can be determined from Eq. 4.14. Since the geometry of

the nanotube and the transmission of the optics are completely determined, the only free

parameter in Eq. 4.14 is T . For each nanotube, images are collected over a range of applied

powers P at the wavelengths accessible using our small-bandpass filters. With the addition

of the Wollaston prism, the light intensity is measured as a function of polarization p as

well. Numerically solving Eq. 4.14 at each pixel (i, j) results in an array of temperatures

Tmax(i, j, λ, P, p).

Our nanotubes radiate in the steady-state during each exposure, with the applied power

fluctuating < 0.1% across images taken at the same bias. It is thus reasonable to combine

the values of Tmax across pixels, polarizations, and wavelengths to obtain the maximum

temperature each nanotube reaches given an applied power, Tmax(P ).

In particular, in a single image, each pixel (i, j) individually represents a measurement of

the same light emission. The corresponding values Tmax(i, j) are shown on one such image
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Figure 5.9: Pixel-by-pixel temperature analysis of Fig. 5.3. Each pixel (i, j) is labeled with

the nanotube’s central temperature Tmax(i, j) as determined from that pixel.
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Figure 5.10: Tmax(λ, P, p) graphed as a function of applied power P for each wavelength λ

and polarization p.

in Fig. 5.9. Since all other factors are equal, the relative weight of each pixel’s value of Tmax

arises solely from the intensity of that pixel. Given a shot noise error of σij =
√
Sij, the

associated weight is wij = 1/Sij. The signal drops off from the nanotube center according to

Φij; within a radius of λ/2 this decrease corresponds to a factor of 4-10. Within a square of

size λ, Tmax(λ, P, p) varies on the order of ∼ 1%, as can be seen in Fig. 5.9, and the weighted

average gives Tmax(λ, P, p) for each exposure.

With the proper weighting, we also combine Tmax(λ, P, p) values across wavelengths for

a device operated at constant power. One device’s temperatures Tmax(λ, P, p) are plotted

as a function of P for each λ in Fig. 5.10. For every wavelength, Tmax is linear in P , self-

consistently supporting the assumption made in approximating the temperature profile as a

quadratic. In fact, most of the curves represent temperatures within a range of ∼ 200 K, with

the exception of the longest wavelengths. For λ > 1000 nm, the lower temperatures represent

that the signal is lower than expected for our model. The parallel polarization should

show essentially a graybody distribution, and such an infrared cutoff has been observed for
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macroscopic fibers comprised of CNTs as well[68].

Because the Planck factor dominates over the other Tmax dependent quantities–the ec-

centricity and the gaussian factor–the error in Tmax is

σTmax =
T 2
maxλ

C2

√
1/Sij +

(σΘ
Θ

)2
+

(
σQ
Q

)2

+ 5
(σλ
λ

)2
. (5.6)

Because we determine the exposure times such that the maximum counts are on the order of

2−3×104 counts, σλ/λ ∼ .001. We take σΘ/Θ ≈ .1, constant with respect to wavelength, as is

the error inherent in the emissivity model σQ. This assumption results in σTmax ∼ λ–reflecting

that the largest errors occur at the longest wavelengths–and allows us to weight Tmax across

wavelengths by wλ = λ−2. The weighted averages are shown for both polarizations of six

nanolamp devices in Fig. 5.11. The weighted standard deviations are about ∼ 100 K, which

we take as the error in Tmax(P, p). Across the devices studied, the values of ∆T p
max(P ) =

|Tmax(P, ||) − Tmax(P,⊥) have an mean of ∼ 70 K, with a maximum discrepancy of 160 K,

consistent with an error of 100 K.

Because polarization data is taken during a single exposure, we expect ∆T p
max = 0. The

discrepancy between the temperatures between the two polarizations can be reduced to 0

by treating the conductivity as a free parameter as well instead of assuming σ = σg. The

dependence of the emission coefficients on the conductivity approximately follow

Q||(σ) ≈ nπσZ0 ∼ σ

Q⊥(σ) ≈ 16π3nδ2

σZ0λ2
∼ 1

σ
;

(5.7)

thus the emission coefficients have opposite behavior with adjustments to σ. Keeping the to-

tal emission rate constant, an increase in emissivity corresponds to a decrease in temperature,

and vice versa; as such, we find σ such that ∆T p
max reduces to 0.

The adjustment is performed by setting the weighted temperatures equal to each other,

which takes the form of the equation∑
λ

1

λ2

(
1

log Γ||(λ) + logQ||(σ)
− 1

log Γ⊥(λ) + logQ⊥(σ)

)
= 0, (5.8)

where Γp(λ) represents the collection of all quantities other than the efficiency in Eq. 4.14.

This equation is solved numerically for σ; the values of σ in units of σg for the six nanotube
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Figure 5.11: Tmax(P, p) shown for six devices. The legend lists each device’s length and radii

in nm; number of walls; maximum current density reached in µA/nm2; optical conductivity in

units of σg; highest temperature reached in K; effective thermal conductivity in W/K·m and

extrapolated room temperature in K from fitting to Eq. 2.10; and room-temperature thermal

conductivity W/K·m, thermal conductivity temperature coefficient in K, and extrapolated

room temperature in K from fitting to Eq. 2.22. Solid horizontal lines indicate temperatures

where the evaporation rates of graphite, SiO2, and Si3N4 equal 1 nm/s. The dashed line

indicates the temperature where the evaporation rate of graphite equals 1 monolayer/s =

.34 nm/s.
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devices is shown in the table of Fig. 5.11. Therefore, the equivalent conductivities of our

nanotubes vary from the theoretical value by no more than ∼ 40%, consistent with our

assessment from the DoP analysis that Q(σ = σg) is accurate to within a factor of 2.

With this adjustment to σ, we obtain Tmax(P ) for our nanolamps. The plots of tempera-

ture as a function of power in Fig. 5.11 are mostly linear, but display a slight curvature. We

fit Tmax(P ) to Eq. 2.10 with free parameters κe and T
′
0, and to 2.22 with free parameters κ0,

Tκ, and T0; the fit values are summarized in the table of Fig. 5.11. The room temperatures

extracted from the linear fit T ′
0 are highly negative, indicating that this fit cannot be extrap-

olated to zero power. Because at low power the contacts dissipate the majority of the power,

such a consequence is to be expected. However, the room temperatures from the Umklapp

fit T0 average ∼ 340 K, close to actual room temperature. Therefore, the exponential fit of

Tmax(P ) is superior to the linear fit, and we expect the values it returns to propagate to the

low temperature limit in a well-defined way.

The room temperature thermal conductivities κ0 range from 240 − 700 ± 10 W/K·m;

these values are consistent with other thermal conductivity measurements ranging between

50−600 W/K·m [39, 41, 8]. For the given values of Tκ, we find that κ0/κ(Tmax = 2000 K) ∼

2. The κe values from the linear fit represent an effective thermal conductivity at high

temperature, and the range from 120− 290± 10 W/K·m is consistent with the parameters

from the Umklapp scattering model. Therefore, modeling the radiating nanotube as an

infinite Mie cylinder allows us to measure not only the temperature of the nanotubes, but

the optical and thermal conductivities as well.

5.3.2 Comparison to Multicolor Pyrometry

Our single-color pyrometry technique can determine a nanotube’s temperature to an accuracy

of ∼ 5%, yet it is instructive to compare results to the multiwavelength techniques often

used to analyze carbon nanotubes. In these analyses, the total emission of photons from

an individual CNT,[69, 47] bundle,[55, 70] or film[71, 72, 73, 74, 75, 76] is captured with a

photodiode or similar detector, and a graybody fit is peformed to the intensity spectrum.

By integrating Eq. 2.30 over solid angle or Eq. 4.14 over the CCD, the total rate of
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Nanotube Single-λ Tmax(||) Single-λ Tmax(⊥) Multi-λ Tmax(||) Multi-λ Tmax(⊥)

A1001C 2020 2180 2690 2360

A1003H 2240 2240 2950 2980

A1008I 2060 2200 2550 2680

A1308G 2050 2050 2510 2340

A1321F 2280 2250 2800 2560

A1321J 2300 2310 2800 2530

Table 5.1: Comparison of the temperatures determined for both polarizations using the

single-color method and σ = σg and using the multi-color method treating the nanotube as

a graybody.

photons emitted into the NA is

Ṅ(λ, P, p) = Qp
NA

2bc∆λ

λ3
L

λ

√
λTmax

C2

πTmax

4(Tmax − T0)
e−C2/λTmax . (5.9)

The emission rate Ṅ is measured by summing over every pixel and taking the transmission

into account:

Ṅ(λ, P, p) =

∑
ij Ṡij

Θλ

. (5.10)

These values of Ṅ are then fit to Eq. 5.9 with Qp
NA and Tmax as free parameters; by assuming

no explicit wavelength dependence for the efficiency, we are treating the CNT as a graybody.

Performing the multiwavelength fit to the 7 nanotubes gives emission coefficients an order

of magnitude smaller than those predicted by Mie theory and temperatures roughly 300-

700 K larger than from the single-color method; these results are summarized in Tables 5.1

and 5.2. Furthermore, whereas the polarization difference ∆T p
max has a mean 70 K for single-

color with a standard deviation of 70 K and a maximum of 160 K, the multicolor fit shows an

average differnece of 190 K with standard deviation 110 K and maximum of 330 K. Therefore,

our single-color method shows more consistency within the data than the multicolor fit does.

98



Nanotube Single-λ Q|| Single-λ Q⊥(0) Multi-λ Q||(0) Multi-λ Q⊥(0)

A1001C 1.208 0.165 .045 .029

A1003H 1.204 0.162 .060 .008

A1008I 0.885 0.142 .078 .010

A1308G 1.769 0.238 .149 .027

A1321F 1.178 0.168 .117 .023

A1321J 1.038 0.162 .111 .029

Table 5.2: Comparison of the normal emission coefficient determined for both polarizations

using the single-color method and σ = σg and using the multi-color method treating the

nanotube as a graybody. The values for the single-color method perpendicular emission

have been evaluated at λ = 500 nm.

5.3.3 Evaporation of Membrane

While the single-color method is more consistent internally than the multi-color method,

we must turn to more physical benchmarks to determine the relative accuracy of these ap-

proaches. Our nanotubes in general sit atop a membrane comprised of SiO2 and Si3N4, which

begins to disintegrate at increasing distance from the center of the tube as the temperature

increases, as seen in Fig. 3.9. This disintegration takes place on the order of seconds to a

minute.

The mass loss of a solid as a function of temperature is given by

∆z

∆t
=
αPg

ρ

√
m

2πRT
, (5.11)

where z is the thickness of the solid, α is the activity, ρ the density, Pg the vapor pressure of

the gas phase, m the molar mass of the gas phase, and R = kBNA is the molar gas constant.

Empirically, the logarithm of the vapor pressure is linear in 1/T , or Pg = 105 exp[−(A +

B/T )] Pa for constants A,B; for Si3N4, A = 20.45 and B = 4.58 × 104 K.[77] With the

activity as α = 4.3× 10−5,[77] a Si3N4 membrane in vacuum at a temperature of ∼ 1700 K

will lose 1 nm/s. A similar analysis for SiO2 using data from Ref. [78] gives the corresponding

1 nm/s loss temperature of 2100 K.

Our membranes have a thickness on the order of 10-20 nm, and the membranes disinte-
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grate in . 1 minute, so these temperatures give a reasonable lower bound and benchmark for

Tmax. The biases at which this disintegration begins is usually 0.1-0.2 V below the highest

bias applied to a nanotube. The temperature analyses give ∆T/∆V ∼ 175 K/.1 V, indicat-

ing that the best estimates of the maximum nanotube temperature based on the nitride and

oxide evaporation lie between 2000 and 2300 K, consistent with our single-color analysis, but

not with the multi-color analysis.

5.3.4 Nanotube Failure

A similar analysis to the membrane evaporation can be performed on the failure points of

the nanotubes using graphite as a model. For graphite, the activity is α = 1, A = 18.3,

and B = 8.723 × 104 K.[79] The loss of 1 nm/s occurs at 2400 K, and a monolayer will

evaporate every second (.34 nm/s) at 2200 K. Of the nanotubes studied above, only 3 failed

during biasing: A1003H, A1008I, and A1321F; the others failed due to ESD, TEM electron

damage, or other external stimuli. Using the single-color model, the temperatures at which

these nanotubes failed were 2390, 2210, and 2260 K, respectively, as opposed to the multi-

color failure temperatures of 3100, 2700, and 2700 K, respectively. Because these nanotubes

all failed within 5 power line cycles, the lower temperatures specified by the single-color

analysis are much more reasonable with a failure mode of carbon evaporation.
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CHAPTER 6

Pyrometry of Graphene

6.1 Graphene versus CNTs

Having characterized the MWCNT temperature, emission, polarization, and optical and

thermal conductivites with single-color pyrometry, we apply similar techniques to its parent

allotrope, graphene. Compared to CNTs, graphene sheets can be fabricated in the classical

thermodynamic limit, with area dimensions ≫ λ. It is expected to behave as a classical

graybody, having a theoretical optical conductivity independent of wavelength in the visible

and NIR. The thermal emission of graphene has been studied at low temperature and in

the infrared[17, 19, 20, 21], yet our technique enables us to study graphene at extreme

temperatures throughout the visible-NIR.

6.2 Graphene Nanosheet Characterization

6.2.1 Fabrication of Graphene Filaments

To make incandescent graphene sheets, graphene is first produced from graphite flakes by

the mechanical exfoliation method[16]. Then it is deposited onto silicon that has a layer

of LPCVD grown 300 nm SiO2. Single and few-layer graphene samples are idenfied on the

oxide substrate by visual inspection, as can be seen in Fig. 6.1(a1) and (b1). A thin layer

of PMMA is spun on top of the graphene and soft baked at 100◦ C. The graphene/PMMA

film is lifted off of the substrate by immersion in a 1 M solution of NaOH, and subsequently

cleaned in water.

are fabricated on the same chips used for the MWCNT devices, which have been processed

through the optical lithography definition of contacts step.
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The graphene is transferred to one of the previously described device chips, which has

been processed through electrode deposition. The PMMA layer, acting as the handle for

the graphene, is positioned over the chip while immersed in water in a probe station. The

previously identified graphene is aligned to the electrodes by positioning the film with the

probes; contact is made after alignment by applying downward force with the probes as the

water evaporates. Finally, the PMMA is removed with acetone and isopropanol, resulting

in the final graphene filament such as those visible in Fig. 6.1 (a2) and (a3). The length of

the active sheet is defined by the electrode spacing, L = 15 µm. The graphene devices are

electrically probed, with active devices having typical resistances of ∼ 1-15 kΩ. As with the

MWCNT devices, we thin the membranes using HF vapor, perform a 300◦ C anneal, and

subsequently image the devices in the TEM.

6.2.2 TEM Characterization of Graphene

Because graphene is only a few-to-one atoms thick, imaging the graphene directly on a

substrate with bright field mode, as seen in Fig. 6.2(a), does not provide sufficient contrast

to fully characterize the sheet’s structure. Instead, we employ dark field imaging methods

to characterize the graphene sheets. A diffraction image of a graphene device is shown in

Fig. 6.2(b). The diffraction peaks correspond to the reciprocal vectors G⃗(v1, v2) = v1⃗b1+v2⃗b2

for integers v1 and v2, and b⃗1 and b⃗2 given by Eq. 1.9. The smallest vector G⃗ has six-fold

degeneracy, with v1, v2 = 0,±1, which represent the three smallest reciprocal lattice points

of the inner ring seen at radius 4π/
√
3ag.

The diffraction pattern in Fig. 6.2(b) has two independent sets of reciprocal vectors; thus

this graphene device has two different grains, rotated an angle with respect to each other as

the two diffraction patterns. By placing an aperture about one of the peaks, we select out

only the electrons diffracted by the grain belonging to that peak when imaging. The two

grains of this device are easily seen in Fig. 6.2(c) and (d) using this dark field method.

102



Figure 6.1: Optical images of graphene devices (a1-a3) N2 and (b1-b3) N6 throughout

fabrication. (a1,b1) Graphene mechanically exfoliated onto 300 nm thick SiO2 on Si;

(a2,b2) graphene transferred to electrode devices; (a3,b3) backlit microscope images of same

graphene sheets. Images courtesy of William Hubbard.
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Figure 6.2: (a) Bright field TEM image of a graphene sheet (b) Diffraction pattern taken

from the same device (c, d) Dark field images taken by selecting only electrons diffracted into

the two independent peaks; the graphene grain corresponding to that peak appears bright

in the image. Images courtesy of Brian Shevitzky.
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6.3 Graphene Polarization

6.3.1 Polarization

We have observed large polarization effects in MWCNTs, owing to their geometric asymme-

try; on the other hand, graphene has a highly symmetric geometry. For an infinite plane of

graphene, symmetry indicates that we expect graphene to behave like a typical blackbody,

emitting completely unpolarized light. However, the finite size of the graphene sheets we

bring to incandescence applies an additional constraint on the electric field; here we consider

the effects finite size might have on polarization.

The finite width of the graphene sheets imposes a Dirichlet boundary condition on the

wavefunction, similar to the periodic boundary condition of SWCNTs. This restriction again

divides the BZ into accessible subbands with splitting along the direction of the width ŵ.

Incident light with “parallel” polarization (E⃗ along the sheet’s length l̂) will preferentially

induce intrasubband transitions, and “perpendicular” polarization will induce intersubband

transitions[80]. Therefore, for graphene nanoribbons (GNRs), whose widths are . 1 µm, we

would expect to see strong polarization effects in the spectrum.

Our graphene sheets, however, are wide enough that the entire BZ is accessible, and the

polarization dependence from allowed transitions disappears. Within the bulk of the sheet,

we treat the problem of absorption as one of an infinitely thin conducting sheet, and referring

to Appendix A find the absorption coefficients

As(θ) =
4 cos θσ2DZ

(2 cos θ + σ2DZ)2

Ap(θ) =
4 cos θσ2DZ

(2 + σ2DZ cos θ)2

(6.1)

for electric field polarized along the plane and perpendicular to the plane, respectively. The

absorption along a fixed direction on the sheet, which we designate as “parallel”, is

A||(θ, ϕ) = As(θ) cosϕ+ Ap(θ) sinϕ. (6.2)

Rotation by π/2 along ϕ gives the similar expression for the “perpendicular” absorption.

Since our optics integrate over all ϕ, the total absorption for both polarizations will

be equal, and we expect to measure unpolarized light being emitted from the graphene.
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Figure 6.3: Polar plot of image intensity as a function of polarizer angle θ. No net polarization

is observed, and fits are to the mean intensity.

We have measured the DoP as a function of wavelength for our sheets, shown in Fig. 6.3.

The polarization is . 1.0% over the 360◦ range, consistent with the slight difference in

transmission of the two halves of the Wollaston prism. Therefore, wide graphene sheets

radiate unpolarized light, as expected for a classical blackbody.

6.3.2 Edge Polarization

The result that graphene should emit unpolarized light stems from the assumption that we

can treat the sheet as infinite in extent. This assumption breaks down near the edge; in the

absorption picture, diffraction must be considered in addition to reflection and transmission.

The problem of diffraction of a plane wave obliquely incident on an infinitely thin resistive

sheet has been considered,[81, 82, 83] and for a qualitative understanding we rewrite the

expression of the diffracted field Ed for a H-polarized (our “perpendicular”) plane wave
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derived as Eq. 33 in [82],

E⊥
d (r, θ) ∼ u

[
F (k, θ)

e−ikr

√
kr

+G(k, θ)e−ku|y|eik
√
1+u2

]
,

u ≡ c2k

2
µ(ϵ− 1).

(6.3)

The first term represents the scattered cylindrical wave, and the second term is a surface

wave; however, both are proportional to the quantity µ(ϵ− 1).

For a non-magnetic resistive sheet, µ = 1 and ϵ = 1 + iσ/ω, and u = iσZ0/2. By the

duality property of electromagnetic waves, we can find the diffracted field for an E-polarized

(our “parallel”) plane wave by E → H, H → E, ϵ ↔ µ. From the definition of u, we see

that in this case, u→ 0. Because both terms in Eq. 6.3 are proportional to 0, the diffraction

term disappears in this case. Thus, we can write the absorption near the edge of graphene

as

A
||
edge = 1−R||

bulk − T
||
bulk = A

||
bulk

A⊥
edge = 1−R⊥

bulk − T⊥
bulk −D⊥

edge = A
||
bulk −D

⊥
edge

(6.4)

where the diffraction coefficient in the far field

D⊥ =
1

2π

∫ 2π

0

1

2
Re [F · F ∗] dθ (6.5)

will be non-zero. Therefore, the graphene sheet will be polarized along the length near its

edge.

Figure 6.4 shows a map of the polarization along the graphene sheet. We record images

over the 360◦ range of our polarizer in 5◦ intervals and pattern match to the graphene sheet.

Extracting a region of interest (ROI) centered around the graphene at each angle allows us

to fit the intensity of each pixel to Sij = Aij cos[2(θ− θ0)] +Bij. We then find the degree of

polarization at each pixel DoP (i, j) = Aij/(Aij + 2Bij). While the center of the graphene

sheet is indeed unpolarized, the edges exhibit polarizations as high as 18%. The maximum

edge polarization as a function of wavelength is shown in Fig. 6.5.

However, we observe that the sheet is polarized about 5% along the sheet’s width away

from the bright spot; we expect the image to be unpolarized here as it is away from an edge.

We attribute this anomalous effect to the fact that the temperature is changing rapidly over a

length scale . λ along the length, but not the width, leading to decreased parallel emission.
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Figure 6.4: DoP map showing relative polarization from device N6 at every pixel in a 100×100

pixel2 region of interest centered on the graphene sheet. The red ROI shows net polarization

along the sheet length at the edge, whereas the blue ROI shows the net polarization along

the sheet width away from the hot spot.
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Figure 6.5: Maximum polarization on the edge of graphene device N2 and minimum polar-

ization in its bulk taken from the ROIs of Fig. 6.4 as a function of wavelength.
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6.4 Graphene Pyrometry

6.4.1 Thermal Profile

By the Stefan-Boltzmann law and assuming the standard emissivity πα, a 15 µm × 15 µm

graphene sheet at 2000 K dissipates roughly 4.7 µW of power by radiation. This power loss

is much smaller than the electrical power applied to a sheet, which we measure to be on the

order of mW. With this result and the fact that current in graphene flows isotropically along

its length, we apply the same 1-D heat equation treatment to graphene as in the MWCNT

case. The temperature distribution and maximum temperature are described by Eqs. 2.9

and 2.22 with the substitution π(b2 − a2)→ L ·W , where W is the sheet width.

Because the graphene length 15 µm > LMWCNT, the temperature varies more slowly with

length along the graphene as compared to the that for the nanotubes. Assuming graybody,

Lambertian emission, the count rate is given by

Ṡp(i, j) = ϵΘλ

(∫
NA

cos θdΩ

)
c∆λ

λ4
β2π

4λ2

∫∫
e−C2/λT (l,w)e−[(l−iβ)2+(w−jβ)2]/2(.42λ)2dldw, (6.6)

using the PSF of Eq. 4.9. Expanding the temperature profile by Eq. 2.28 and making use of

the fact that the W ≫ β, the integral over the w coordinate is performed from −∞ to ∞,

finding

Ṡp(i, j) = ϵΘλ
π

4

β2c∆λ

λ4
.42π
√
2π

4λ
e−C2/λTm

×
∫ L/2

−L/2

exp

[
−
(
4C2(Tm − T0)

λL2T 2
m

)
l2 − (l − iβ)2

2(.42λ)2

]
dl.

(6.7)

As with the MWCNT, completing the square and taking the limit L → ∞ allows the

integral over l to be performed, finding the image of the graphene sheet away from the edges

to be

Ṡp(i, j) = ϵ
(.42)2π2η

2
Θλ

π

4

β2c∆λ

λ4
e−C2/λTme−(iβ)2(1−η2)/2s2 , (6.8)

with η as previously defined in Eq. 4.14. Because L = 15 µm, η ≈ .98, and the gaussian

profile is roughly constant on the scale of a pixel; the peak intensity given by

Ṡp
max = ϵ

(.42)2π2η

2
Θλ

π

4

β2c∆λ

λ4
e−C2/λTm (6.9)
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Figure 6.6: Absolute spectrum as measured from device N2 at maximum operating power,

along with associated graybody fit. An infrared suppression is seen in the signal above

1000 nm that is unseen in the monotonically increasing graybody function.

will be roughly constant over a length ∼ λ/2. The prefactor of (.42)2π2η/2 ≈ .85 < 1

iindicates that the radius of the circle of constant intensity is less than the first minimum in

the Airy function. We can therefore average over ∼ 5− 25 pixels for pyrometry analysis.

6.4.2 Multiwavelength Pyrometry

As with the MWCNT filaments, we measure spectra of graphene over a range of filters,

powers, and polarization. Graphene is expected to be gray in the visible-NIR; thus, we

perform multiwavelength pyrometry to extract the emissivity and temperature. We observe

a suppression in signal at long wavelengths, consistent with MWCNT spectra, that has

a magnitude far larger than the effect predicted by the temperature-dependent term of

Eq. 1.16. As such, we perform our multiwavelength fits to the data representing λ ≤ 1000 nm;

Fig. 6.6 shows one such spectrum and the associated fit.
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Figure 6.7: Representative optical data from devices N2 (left) and N6 (right), along with

ROIs over areas of differing thickness used in pyrometry.

One result of using mechanical exfoliation to produce graphene samples is that often the

sample produced consists of regions with differing numbers of layers, as can be seen in Fig. 6.1.

Therefore, on a large enough device, we can perform pyrometry on independent regions and

measure emissivities consistent with this layer differential. For both these devices, the mean

counts are measured over a square of ∼ 5× 5 pixels2 in two separate regions believed to be

of different thicknesses, shown in Fig. 6.7.

Figure 6.8 and its legend summarize the results for this pyrometry. We find that for each

region, temperatures of both polarizations are consistent; yet the temperature on one end of

the device differs from that at the other. Because of the layer number differential, the sheet

admits a non-isotropic current density, resulting in a slight temperature gradient along the

width of the graphene.

Device N2 is found to consist of subsections with emissivities .13 ± .03 and .16 ± .04,

consistent with being comprised of 6 ± 1 and 7 ± 1 layer graphene, respectively. Similarly,

two emissivities of .04 ± .01 and .06 ± .01 measured on device N6 indicates it consists of a

double layer of graphene with a small triple layer region.

Finally, as with MWCNTs, the thermal conductivity can be determined by fitting Tmax(P )

to Eq. 2.23. We find room temperature thermal conductivities between 5000 and 21000W/m·K,
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Figure 6.8: Temperature as a function of power for devices N2 and N6. Polarizations are

defined by parallel (perpendicular) along the graphene’s length (width). Current densities

are in mA and widths are in mum.
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consistent with values measured previously[84, 85] to within a factor of 4, and that Umklapp

scattering becomes dominant at much lower temperatures for the thinner graphene sample

than for the thicker one.

6.4.3 Absorption and Kirchoff’s Law

In addition to measuring the emissivity by optical pyrometry, the absorption can also be

measured in our setup optically. The membrane on both devices measured had a hole,

allowing the absolute number of photons incident on the membrane by our backlight to

be obtained. Furthermore, having biased the graphene samples to temperatures in excess

of 1800 K each for many hours, the already thinned membrane evaporated has sublimated

underneath the incandescent region of the graphene. The suspension was confirmed using

TEM microscopy, seen in Fig. 6.9.

The reflection of graphene is second-order in πα≪ 1, therefore A = 1−T . The ratio of the

intensity observed on the graphene sheet to that in the membrane hole in a backlit, unbiased

exposure gives the transmission, and therefore the absorption, of the graphene sheets. One

such spectrum is shown in Fig. 6.10. To compare the absorption to the emission, we average

data up to 1000 nm; the absorptions obtained thus are plotted versus the emissivity as a

function of applied power in Fig. 6.11. The absorptivity is found to be consistent with the

emissivity, as expected by Kirchoff’s law.
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Figure 6.9: Bright field TEM image of N6, indicating that the membrane underneath the

graphene has evaporated after many hours of biasing. Image courtesy of William Hubbard.
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Figure 6.10: Absorption as a function of wavelength calculated by measuring transmisson

through the graphene sheets and through holes in the membrane, and their associated means.
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lines are the associated mean absorptivities.
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CHAPTER 7

Conclusion

We have performed absolute pyrometric measurements on fully characterized MWCNTs and

graphene joule-heated to temperatures in excess of 2000 K. By calibrating the optics used

to image the incandescent nanodevices, we obtain spectra in the visible and near infrared of

the total number of photons emitted into the numerical aperture of the microscope with an

error of . 10%. Data from both orthogonal polarizations of light are collected on the CCD

simultaneously using a Wollaston prism in conjunction with the microscope. These data are

recorded over a range of wavelengths and powers.

The emission of a MWCNT is modeled using the classical Mie theory for an infinitely

long hollow cylinder. Each pixel on the CCD records an independent measurement of the

emission; by measuring the CNT’s geometry in a high resolution TEM and assuming that

each nanotube wall has the 2-D conductivity of graphene σgZ0 = πα, we solve Planck’s law

to obtain temperature values. A weighted average across all wavelengths measured yields

the temperature to ±100 K–equivalently, the emissivity consistent with the Mie absorption

coefficient Q to within a factor of 2. In situ observation of membrane evaporation in a

TEM under nanotube bias allows us to correlate our measured temperatures with expected

sublimation temperatures of SiO2 and Si3N4. Similarly, polarization measurements give the

emissivity as within a factor of 2 from Q predicted by Mie absorption.

By enforcing the constraint that the temperature given by both polarizations must be

equal, we solve for the CNT optical conductivity and find that σ0 = (1.0 ± 0.5)πα. The

thermal conductivity is obtained from fitting T (P ) to an Umklapp scattering model, and we

find values for our MWCNTs consistent with the literature.

This technique is applied to incandescent sheets of graphene as well. Our pyrometry

confirms that suspended graphene emits as a graybody with the theoretical emissivity = nπα
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where n is the number of layers. Furthermore, with large graphene sheets, the absorptivity

is also measured and found to match this emissivity, in agreement with Kirchoff’s law of

thermal radiation. The thermal conductivity is also measured to within a factor of 4 of

literature values. Finally, the graphene sheets are found to be unpolarized in their brightest

regions, but display polarization on the order of 18% in the direction of the length near the

edge. Surprisingly, the sheet is also polarized along its width to the order of 7% away from

the bright spot.

The spectra of the graphene samples display infrared suppression at high temperature, an

effect also seen in the MWCNT spectra and polarization. This decrease in signal is believed

to originate from a shift of the Fermi energy due to trapped surface charges, which causes

interband optical transitions to become forbidden. As the CNT energy bands derive from

graphene’s band structure, we conclude that a similar effect arises in MWCNT emission and

supresses polarization as well.

In conclusion, we have demonstrated that pyrometry of thermal emitters with r ≪ λ is

not only possible, but tractable with the classical electrodynamics definition of a cross-section

as the emitting area in Planck’s law. Furthermore, a reasonable emission model not only

yields the temperature of the object, but its optical and thermal conductivities as well. Thus

pyrometry is indeed a powerful tool in probing subwavelength objects at thermal extremes.

The properties of graphene and MWCNTs obtained in this way indicate that precise optical

modulation of the visible thermal spectrum is possible with the correct biasing conditions,

leading the way to novel carbon electrooptical devices.
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APPENDIX A

Absorption Coefficients of an Infinitely-Thin

Conducting Sheet

A.0.4 Incident, Reflected, and Transmitted Waves

Consider two regions of space, designated I and II, separated by an infinitely thin conducting

plane at z = 0. A plane wave propagating in region I is incident on this conductor with angle

θi. The wave is partially reflected, propagating in region I away from the sheet, at angle

θi, and partially transmitted, propagating in region II at angle θt. The angles are related

by Snell’s law: mI sin θi = mII sin θt, where mI and mII are the indices of refraction in the

related region.

The wavevectors of the incident, reflected, and transmitted waves are

k⃗i = kI(sin θix̂+ cos θiẑ)

k⃗r = kI(sin θix̂− cos θiẑ)

k⃗t = kII(sin θix̂+ cos θiẑ)

(A.1)

with kI = 2πmI/λ. Maxwell’s equations give the boundary conditions at z = 0:

(E⃗I − E⃗II)
∣∣∣
z=0
× n̂ = 0

(H⃗I − H⃗II)
∣∣∣
z=0
× n̂ = K⃗free

(A.2)

with K⃗free the free surface current density in the conducting plane.

A.0.5 s-polarization

We must consider two cases of polarization: E⃗i parallel and perpendicular to the surface,

denoted as s and p polarizations, respectively. We shall consider the parallel case first. Since
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we have defined the wavevector to be in the x-z plane, the polarization where the electric

field is always parallel to the surface is the ŷ direction. Thus, E⃗i = Eiŷ, E⃗r = Erŷ, and

E⃗t = Etŷ, and the magnetic fields are given by H⃗ = k⃗ × E⃗/Z, where Z is the impedance of

the medium. By Ohm’s law, the free current is the conductivity by the electric field in the

x-y plane at z = 0:

K⃗free =
σ2D
2

(Ei + Er + Et)ŷ = σ2D(Ei + Er)ŷ = σ2DEtŷ. (A.3)

Solving the four equations of the boundary conditions yields the ratios of the incident

field that is reflected or transmitted:

Er

Ei

=
ZII cos θi − ZI cos θt − ZIZIIσ2D
ZII cos θi + ZI cos θt + ZIZIIσ2D

=
ZII cos θi − ZI

√
1− mI

mII
sin2 θi − ZIZIIσ2D

ZII cos θi + ZI

√
1− mI

mII
sin2 θi + ZIZIIσ2D

Et

Ei

=
2ZII cos θi

ZII cos θi + ZI cos θt + ZIZIIσ2D
=

2ZII cos θi

ZII cos θi + ZI

√
1− mI

mII
sin2 θi + ZIZIIσ2D

.

(A.4)

The reflected and transmitted intensities are found by squaring the norm of these ratios:

Rs(θ) =

∣∣∣∣∣∣
ZII cos θi − ZI

√
1− mI

mII
sin2 θi − ZIZIIσ2D

ZII cos θi + ZI

√
1− mI

mII
sin2 θi + ZIZIIσ2D

∣∣∣∣∣∣
2

T s(θ) =

∣∣∣∣∣∣ 2ZII cos θi

ZII cos θi + ZI

√
1− mI

mII
sin2 θi + ZIZIIσ2D

∣∣∣∣∣∣
2

.

(A.5)

A.0.6 p-polarization

The coefficients for perpendicular polarization are solved in the same manner, with the

following substitution for fields: E⃗i = Ei(− cos θix̂+ sin θiẑ), E⃗r = Er(cos θix̂+ sin θiẑ), and

E⃗t = Et(− cos θtx̂+sin θtẑ), and the corresponding expressions for H⃗. With this polarization,

the free current density is

K⃗free = −
σ2D
2

(cos θi(Ei+Er)+cos θtEt)ŷ = −σ2D cos θi(Ei+Er)ŷ = −σ2D cos θtEtŷ. (A.6)
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The reflection and transmission coefficients are found to be

Rp(θ) =

ZII

√
1− mI

mII
sin2 θi − ZI cos θi − ZIZIIσ2D cos θi

√
1− mI

mII
sin2 θi

ZII

√
1− mI

mII
sin2 θi + ZI cos θi + ZIZIIσ2D cos θi

√
1− mI

mII
sin2 θi

2

T p(θ) =

 2ZII cos θi

ZII

√
1− mI

mII
sin2 θi + ZI cos θi + ZIZIIσ2D cos θi

√
1− mI

mII
sin2 θi

2

.

(A.7)

At normal incidence, θi = θt = 0, Eqs. A.5 and A.7 approach the same values

R(0) = Rs(0) = Rp(0) =

(
ZII − ZI − ZIZIIσ2D
ZII + ZI + ZIZIIσ2D

)2

T (0) = T s(0) = T p(0) =

(
2ZII

ZII + ZI + ZIZIIσ2D

)2

.

(A.8)

A.0.7 Absorption Coefficients

These coefficients are in their most general form, which is useful for measuring the reflection

or transmission for graphene on a substrate. A useful limit, however, occurs when the

graphene is suspended, or when mI = mII . The reflections and transmissions are

Rs =
(

σ2DZ
2 cos θ+σ2DZ

)2
T s =

(
2 cos θ

2 cos θ+σ2DZ

)2
Rp =

(
σ2DZ cos θ

2+σ2DZ cos θ

)2
T p =

(
2

2+σ2DZ cos θ

)2
.

(A.9)

and at normal incidence,

R(0) = Rs(0) = Rp(0) =

(
σ2DZ

2 + σ2DZ

)2

T (0) = T s(0) = T p(0) =

(
2

2 + σ2DZ

)2

.

(A.10)

However, moreso than reflection and transmission, we are interested in absorption, defined

here by A = 1− T −R. The absorption coefficients for a suspended conducting sheet are

As(θ) =
4 cos θσ2DZ

(2 cos θ + σ2DZ)2

Ap(θ) =
4 cos θσ2DZ

(2 + σ2DZ cos θ)2

(A.11)

which both become, at normal incidence,

As(0) = Ap(0) =
4σ2DZ

(2 + σ2DZ)2
. (A.12)
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Figure A.1: Plot of the transmission, reflection, and absorption coefficients at normal inci-

dence for a infinitely thin 2d conduction sheet as a function of s = σ2DZ.

The quantity s ≡ σ2DZ is unitless, and values for R, T , and A, are plotted in Fig. A.1

as a function of s. In the insulator limit, when s is small, transmission dominates; in the

conductor limit, when s is large, reflection dominates. However, for mediocre conductors,

absorption becomes greater than both reflection and transmission, reaching a maximum of

1/2 when s = 2, or σ2D = 2/Z.
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APPENDIX B

TEM Images of MWCNT Devices
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Figure B.1: TEM image of device A1001C. Image courtesy of Matthew Mecklenburg.
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Figure B.2: TEM image of device A1003H. Image courtesy of Matthew Mecklenburg.

126



Figure B.3: TEM image of device A1008I. Image courtesy of Matthew Mecklenburg.
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Figure B.4: TEM image of device A1308G. Image courtesy of Matthew Mecklenburg.
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Figure B.5: TEM image of device A1321F. Image courtesy of Matthew Mecklenburg.
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Figure B.6: TEM image of device A1321J. Image courtesy of Matthew Mecklenburg.
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APPENDIX C

Fabrication Recipe

C.0.8 SiO2 film growth

For new wafers direct from factory, a preclean is not necessary. Otherwise, clean the wafers

with Piranha (5:1 H2SO4:H2O2) for at least an hour to remove organic residue. Native oxides

can be removed with a preclean of Buffered Oxide Etch (BOE).

Place the wafers in the oxidation furnace and grow oxide to the desired thickness. Many

tools are online for calculating the growth time necessary given a starting and ending thick-

ness and temperature (growth rate for oxide slows exponentially). The wet recipe at 1100

◦C has the fastest rate, but at the cost of potentially more pinhole defects. The recipe is not

generally important, and neither are these defects for this process.

A good thickness to work with is around 800 nm. A layer as thin as 300 nm will be gen-

erally stable enough to withstand KOH etching and rinsing if there is not much over etching,

but may rupture under the heat from plasma cleaning. Use the nanospec or ellipsometer to

check the final thickness grown on the wafers.

C.0.9 Si3N4 film growth

Again, for new wafers direct from factory or just out of the oxidation furnace, a preclean is

not necessary. Otherwise, preclean as described in the previous step.

Load the wafers into the LPCVD Nitride furnace. Center the wafers as well as possible

in the boat, placing them two to three slots apart for ideal uniformity. Because the wafers

are polished on both sides, the direction does not matter. Place a bare Si dummy wafer

behind the device wafers with the shiny side facing out of the furnace.
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Load the Nitride.002 program. Check the logbook to see the previous growth rate. The

target thickness of 15 nm is grown in a short enough time that an inaccuracy of ±5 nm

should be expected. On July 8, 2010, the furnace grew about 19 ± 1 nm of Si3N4 in 1 min

30 sec.

After removing the wafers from the furnace, check the nitride thickness on the Si dummy

wafer using the Nanospec or ellipsometer. Check several locations on the wafer to test

uniformity.

C.0.10 First Optical Lithography

Before spinning on the photoresist, dehydrate the wafer by placing it on a hot plate at 150

◦C for 5 minutes and then placing it in the HMDS tank for 10 minutes.

After the wafer has been dehydrated, place it on the 4” wafer chuck in the photoresist

spinner. Program a spinner recipe with that ramps to 4000 rpm at a rate of 1000 rpm/s

and spins for 30 seconds. The second step should ramp back down to 0 rpm. Turn the

vacuum on before spinning, else the wafer tends to fly off during the ramp up. Put at least 3

eyedroppers worth of AZ 5214E photoresist in the center of the wafer. Start the spin coater.

If the photoresist spin coating is not satisfactory, rinse with acetone, IPA, and water in

that order to remove it. After rinsing, it is necessary to redo the dehydration steps. Once it

has been baked above 120 ◦C then an ALEG355 bath is necessary to strip the photoresist!

Following the spin coating, perform a soft bake on a hot plate at 105 ◦C for 1 minute.

Put the KOH mask in the Karl Suss aligner. Make sure that the chrome side will be

pressed against the wafer. If the mask features cannot be focused in the microscope after

WEC, it probably is the wrong side up. Load the wafer photoresist side, ensure that the

wafer calipers are sufficiently centered, and expose using Hard Contact mode for 13 seconds.

The correct alignment for the KOH etch to work properly is to have the wafer flat parallel as

the holes. That is, it should be along one of the mask directions, not at a 45◦ angle. There

should be a marking on the chuck to which to align the wafer.

Make a solution of 1:6 AZ400K Developer:H2O. Immerse the wafer for 45 seconds. Re-
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move and rinse thoroughly with water. Hard bake the wafer on a hot plate at 125 ◦C for

3 minutes. After this step it is ok to take the wafer into normal light. Check features in a

microscope to make sure the patterns are as desired.

C.0.11 Plasma Etch

Using a spatula, apply a bit of cool grease to a clean 400 nm or 500 nm thick carrier wafer.

Place the wafer on cleanroom paper and, using a Q-tip, spread a thin layer of cool grease on

the whole of the wafer. If you use too little, the PR will burn and the oxide will be etched.

If you use too much, it will be harder to remove the grease, creating more scratches on the

oxide where the KOH can get through. A good metric is the grease shouldn’t be glaringly

white, but noticeably there while some shinyness from the wafer can still be seen.

Place the exposed wafer PR side up on the carrier wafer and cool grease, with the major

flats aligned. Use tweezers to apply a bit of pressure to ensure that the wafer sits flat on the

carrier wafer - i.e. that it is in contact with the cool grease everywhere. Clean the bottom of

the carrier wafer and the side of the sandwich as well as possible from cool grease by using

a paper towel or Q-tip with acetone.

Put the carrier wafer/device wafer combo in the STS AOE with the flats aligned to the

mark in the machine. Run the Oxidapic recipe for 1 minute with the RIE power 700 W

and ICP power 100 W. The standard etch rate for this recipe is 300 nm SiO2/min. After

the machine vents, remove wafer and check the thickness of the SiO2 in the holes using

the Nanospec. In general, the 10x magnification should be sufficient to see the holes (the

eyepiece’s dot just needs to rest inside the area of interest), but for smaller features use the

40x objective on the Nanospec. This thickness measurement gives a more accurate value

for the AOE’s etch rate. Based on that etch rate, run the Oxidapic recipe again for the

appropriate length of time to etch the remaining oxide.

C.0.12 KOH Etch

Put the wafer sandwich in a beaker with acetone to help dissolve the cool grease gluing the

two wafers together. Let it sit for at least 30 minutes. When separating the wafers, applying
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a rotational or lateral force to the device wafer is best. Pulling or pushing it transverse to

the wafer is a great way to destroy it; it is not only thinner than the carrier wafer but now

it has been significantly weakened by being etched in important crystal directions. Try to

wedge the wafer tweezers in between the two wafers slightly and then rotate them along

the wafer circumference to start the separation. This should make it significantly easier to

separate.

After cleaning any remaining cool grease off the wafer with acetone, immerse it in the

yellow room’s photoresist stripping tank. It is filled with ALEG355, and should be set for

75 ◦C. After it reaches temperature, put the wafer in a Teflon holder, using the clamp so

that the wafer doesn’t fall out, and lower the wafer into the tank, anchoring it so it doesn’t

fall in. Let the wafer soak for 10 to 20 minutes, remove, and rinse with water.

In a large beaker, create a solution of 30% KOH. Because the KOH in the nanolab is

45% concentration, a mixture of about 1000:500 mL KOH:DI water should be sufficient to

fill the beaker above wafer level. Adding some IPA to the surface will help the etch run at

the proper rate and prevent evaporation of the mixture. Connect the temperature sensor

to the hotplate. Turn the hotplate on to 80 ◦C with a stir bar stirring at 200 rpm. Place

the beaker on the hotplate, lower the sensor into the beaker, and cover. It will take roughly

20-30 minutes for the solution to reach temperature.

Place the device wafers feature side up in the wafer cassette with at least one slot between

wafers and at least 2 or 3 up from the bottom to make room for the spinner. Carefully lower

the cassette into the beaker. The etch theoretically etches at a rate of 1 µm/min - for a

200 µm thick wafer, the etch takes 3 hours and 20 min. KOH also etches SiO2 at a rate of

10 nm/min, so care should be taken not to overetch by more than 30 minutes. After the

etch runs to completion, remove the wafers carefully-as they are much more fragile now-and

rinse them in methanol, as if the membranes have been thinned by overetching a water rinse

might rupture them.
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C.0.13 Second Optical Lithography

Spin AZ 5214E resist on the unetched side of the wafer with the parameters used previously.

Using backside alignment, expose the photoresist with the Electrode mask in the Karl Suss

with the same exposure settings used in the first optical lithography step. There are three

sets of plus-shaped alignment marks on the current mask on axes 45◦ to the wafer flats. The

marks nearest an intersection of e-beam square cleavage lines are easiest to find and do not

fill up the screen on the high magnification. Using these marks should produce alignment

+/- 1 µm. Develop the photoresist as before.

Load the wafer into either the old or new CHA, and use the Cr/Au program. Set the

evaporator to evaporate 60 Åof Cr and 1200 Åof Au at the respective rates of 1 Å/s and 3

Å/s. This is process 18 on the new CHA and it runs for about 3 hours. Place the wafer in

a beaker of acetone for at least 60 minutes to liftoff the metal.

Following metal liftoff, place the wafer on a cleanroom paper towel and use a diamond

scribe to separate it into the 1.2 cm x 1.2 cm ebeam squares.

C.0.14 Nanotube Dispersion

Measure out approximately 250 µg of MWCNT from the green-capped MER bottle or the

arc-discharge stick in a 1.5 mL plastic tube using the analytic balance. Add 1 mL of IPA

with the 1 mL pipette and shake thoroughly. Hold the tube in the ultrasound tank for 5

minutes at power 4 at one of the tank’s antinodes. Usually a ripple effect is seen; the center

of the ripples is the antinode. The nanotubes should start to disperse and the liquid in the

tube should go from clear to a cloudy gray within a minute or two if positioned correctly.

After 5 minutes of sonication, remove the tube and shake for 30 seconds. Repeat the

sonication and shaking 3 more times. Centrifuge the tube at 8000 rpm for 30 minutes, using

a tube with 1 mL water in the opposite slot to equalize the weight distribution. If the

nanotubes have been dispersed sufficiently, the tube should have a uniform dark gray blast

pattern on the half which was facing the outside part of the centrifuge, and the liquid should

be clear or a light gray. If the blast pattern consists predominately of black carbon chunks
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or there is anything macroscopic floating in the liquid, the dispersion most likely did not

succeed at the required densities.

Stick the square to a piece of the blue sticky tape in our lab. Turn on the N2 and vacuum

flows to the spin coater, and place the wafer on the chuck. Turn on the vacuum to make sure

that the wafer is held firmly. Once the vacuum has been turned on, turning it off ruins the

blue tape and will require the use of a new piece. Program C will start spinning the wafer

at 500 rpm for 10 seconds and then ramp up to 3500 rpm. If the wafer does not seem secure

at 500 rpm, stop the spinning and redo the tape.

Once the wafer is spinning at 3500 rpm, using the 100 µL pipette, draw clear liquid from

the tube (avoiding darker gray part of the solution; it is full of carbon junk) and deposit

it on the wafer one drop at a time. Allow the wafer to dry between drops (the wafer will

appear to change from purple to green) lest the nanotubes clump into bundles. For one

ebeam square, apply 400 or 500 µL of solution.

C.0.15 Nanotube Mapping

Load an ebeam square into the FIB by mounting as little of the corner as possible onto a

small of carbon tape. The square should be affixed but still easy to remove so that it won’t

break from application of too much force during removal. If the carbon tape being used is

new, press a clean glove against it a few times to reduce the stickiness. The standard settings

used on the FIB are 2 kV accelerating voltage and spot 3 (53 pA).

Take a picture at 5000x for each electrode with the 10 µm square alignment marks visible.

During the capture the contrast may need to be turned to near 100% and then back down as

the beam scans along the membrane so that the tubes are visible. Find the best nanotubes

on the membrane and take a high magnification picture.

If the nanotube density is too high, plasma clean the square in either the Tegal Asher or

the Technics FRIE (using O2 only) for 2-3 minutes; alternatively, a piranha etch will remove

the tubes as well. If the density is low, plasma cleaning is optional. In either case, redeposit

tubes until the desired density is attained.

The Labview VI “EbeamMaskWriter.vi” allows one to create the pattern used by the
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Vistec e-beam writer. Load the 5000x picture for each electrode, draw contacts to the

nanotube’s position using the closed polygon tool, draw alignment marks, specify whether

the electrode is the left, middle, or right one, and add the grid of squares. Move the big

alignment squares to a location on the membrane away from the contacts. Delete the squares

that lay on or near the nanotube itself and save the file. The pattern will be saved as an

AutoCAD .scr script file.

Run these three script files in AutoCad, and save the resulting pattern as a .dxf file. This

.dxf file can be converted to a .gds file using LinkCAD, which is installed in the nanolab

office. Using the CATS program in the ISNC office, convert the .gds file into a .gpf file with

a resolution between 5 and 40 nm.

C.0.16 Electron-beam Lithography

With the 12.6 mm by 12.6 mm e-beam square in the spin coater, place 3 to 4 drops of PMMA

A4 e-beam resist to cover the square (make sure the PMMA is not expired). Spin the square

for 45 seconds at 6000 rpm, again ramping at 1000 rpm/sec. Bake the resist on a hot plate

set at 180 ◦C for 15 minutes.

Load the chip into the Vistec e-beam writer, and expose the patterns at 100 keV with a

dose of 1400 µC/cm2. Immerse the chip in a solution of MIBK:IPA in a 1:3 ratio for 45 secs,

rinse in IPA, and N2 blow dry. Check the exposure in the optical microscope. The exposed

areas will have a faint blue outline, and the alignment marks should appear to line up at

this magnification. If there is a macroscopic misalignment (probably ¿ 5 µm), remove the

PMMA with a 5 minute acetone soak and redo the lithography.

Use the New CHA to deposit 500 Åof Pd at 1 Å/s and 800 Åof Au at 3 Å/s. This recipe

is 4 on the CHA. Be sure to check that recipe 4 on the controller is set up for Pd/Au before

running. The process takes about 3 hours. Lift off by immersion in acetone for 60 minutes.

While not necessary, a gentle stirring of the acetone or adding more on the chip with the

spray bottle during liftoff helps expedite the process.
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C.0.17 Post-Lithography Characterization

Anneal the chips by heating to 300 ◦C on a hotplate for 20 minutes. If using the Ma-

cor/aluminum hotplate, set the variac to 61%, which allows the aluminum to reach about

305 ◦C at equilibrium. Using the diamond scribe, cut the square into the individual chips

by applying pressure straight down on the top side opposite the KOH cleavage lines.

Probe each device in the probe station. Be sure to turn the Keithley on prior to touching

the probes to the chips, and test the connection by shorting the two probes on a pad before

probing any devices. This also ensures that the probes will discharge safely in the case of

accumulated potential. Probe the devices with an IV of maximum voltage .001 V to prevent

destroying the nanotubes in air. Record the low bias resistances.

C.0.18 HF Vapor Etch

Pour a small amount of 49% concentrated HF into the small Teflon beaker. The HF should

level should be about a centimeter, but no higher than halfway up the beaker. Using plastic

tweezers, position the chips to be etched on the Teflon carrier such that the center of the chip

is above one of the holes. Place the carrier on top of the Teflon beaker and begin timing.

An etch time for 25 seconds is about sufficient for 300 µm thick SiO2. For 800 µm thick, 4

minutes seems to be ideal. One of the by-products of the etch is H2O, which can build up

on the bottom of the chip and rupture the membrane violently if it evaporates and the etch

hasn’t finished. For this reason, it might prove prudent to etch only in 30 second chunks.

Be very careful while handling the HF and always wear safety equipment!

C.0.19 Final Processing

Take the chips to the FIB, and image at 10 kV spot 3 (.13 nA). Now that the tubes should

be connected to at least one electrode they will prove much easier to image, and the higher

accelerating voltage produces a picture that can tell if the tube connected is actually 2 tubes,

and so forth.

Sometimes due to bad liftoff from the optical lithography, the ebeam contacts will be
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broken where they should connect to the optical contacts. Also, perhaps one of the optical

contacts is scratched/broken somewhere. In either case, the FIB can deposit Pt using the

e-beam to mend these contacts. If the break is ¿ 5 µm away from the nanotube, it will

usually survive the process (not the case if ion beam deposition is performed).

Anneal once more at 300 ◦C. Perform a final probe on the good chips, recording the

intact devices. These chips are now ready for TEM.
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