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Rbstract

This paper presents empirical tests of option price
boundaries and of analytical and numerical models #for
pricing options., Results are based on a data set of about
36,000 option prices, Contracts studied include index
options from the American, New York, and Chicago Board
Exchanges, gold options from Comex, silver options from
the Toronto Futures Exchange, debt options from the Amex
and Chicago Board of Trade, and currency aptions from the
FPhiladelphia stock exchange.
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Lemgruber, Ron Masulis, Sheridan Titman, Robert Whaley,
and seminar participants at The University of Alberta,
University of British Columbia, U.C.L.A., and The 0Ohic
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I. INTRODUCTION

The past several years have witnessed many innovations in
contingent claims markets, Options on stock indices,
governaent debt, foreign currencies, commodities, and futures
contracts have appeared in North American markets in the past
three years. A quick glance at The Wall Street Journal will
reveal options trading on over a dezen indices, two metals,
seven agricultural commodities, five foreign currencies, and

half a dozen government debt instruments.

Rside from providing more data for academic study, the
profusion of new contracts offers new opportunities for
investors, Banks, insurance companies, institutional
investors, and purchasers and suppliers of agricultural and
industrial commodities can engage in hedging strategies
previously unattainable. Individual investors, speculators,
and futures traders also enjoy new choices with the emergence
of these markets. Before plunging into these new instrumentes,
the investor may pose several questions., Do the new markets
provide the liquidity desired by investors who wish to trade
frequently or trade in large wvolumes? Are the markets
sufficienty bread and mature to provide rational pricecs at
which %o trade? Can the theory of finance provide option
pricing models which are sufficiently accurate to be useful
to the options investor? This paper will address some of the

questions which the appearance of these new options gives



rise to,.

The paper is organized ac follows. Section Il describes
the new contracts and the dats base which has been created to
study them. Section Il presents empirical results on
violations of pricing boundaries while Section IV describes
and tests option pricing models for accuracy against actual
prices. Results indicate that boundaries are infrequently
vicolated and models are fairly accurate. Section V is a

summary and conclusion,

11. DESCRIPTION OF OPTION CONTRACTS AND DRTR SETY

Options on stock indices, precious metals, government
debt instruments, and foreign currencies have appeared on
North American options exchanges in the last three years.
Table 1 is a summary of the characteristics of the contracts
studied in this paper. Contracts inciuded are from the
American Stock Exchange <(#Amex), Chicago Board Options
€xchange (CBOE), Chicago Board of Trade (CBT), Commodity
Exchange {Comex), New York Stock Exchange (NYSE D,
Philadelphia Stock Exchange <(PHLX)>, and Toronto Futures
Exchange (TFE) while underlying assets include three stock
market indices, five government debt instruments, tuo
precious metals and five foreign currencies. Table 2 provides

a summary of market activity for a randomly selected day.



Yolume and open interest are particuiarly broad for the
index, gold futures, and t-bond ¢futures optioncs while spot

debtt and silver options are lescs widely traded.

Table 3 summarizes the data set which has been collected
for the empirical tests. Cloging silver option prices were
copied from The Globe & Mail, a Toronto newspaper. The
Chicago Board of Trade supplied transactions prices for
treasury bond options while transactions prices for foreign
cbrrency options are from the Ohico State
University/Philadelphia Stock Exchange data base. All other
option prices are closing prices as reported in The Wall
Street Journal. Prices for the underlying asset and the rate
of return on a treasury bill to match each option‘s time to
expiration were also collected from these sources. In total,
there are almost thirty-eight thousand option prices in the
data set. Index, t-bond futures, and gold futures options
are most hesvily represented while there are relatively few
prices for the less heavily traded spot debt and silver
options, For each type of option listed in Table 3, the total
number of option prices in the =ample is reported along with
the =maller number of option prices used to generate implied
standard deviations which are used as the variance parameter
for the option pricing models. The number of options used to
calculate these variance estimates is smaller than the total
number of options because low value or very short maturity

options were excluded from these calculations.



IIT. BOUNDARY CONDITIONS: THEORY & EMPIRICAL TESTS

This section presents and tests several boundary
conditions on option prices, Frequent wviolations of these
boundaries will suggest that the markets for the options are
inefficient or, at the very least, are so thin that
non-synchronous prices for options and the underlying asset
lead to frequent boundary viclations in the prices reported
in the neuspaper., Frequent vioclations also indicate that the
prices may be too inaccurate to be of use in further
empirical tests. As noted in Phillips & Saith (1980) and
Bhattacharya (1983, the toundary viclations do not
necessarily represent opportunities for profitable arbitrage

swhen closing prices are use in the tests,

The following symbols are employed in this section and
throughout the paper:

C - price of an American call opfion

P — price of an American put option

8 -~ price of underlying asset

¥ - exercise price of option

T - time to expiration of option

t - current time

r - risk free domesztic interest rate

d - continuous dividend yield on underlying asset

PY¥Cint, T} ~- present value of the interest accruing

on underlying asset over option’s life



F -~ price of underlying asset for a futures option
exp( ) - exponential function

logC ) -~ natural log function

Boundaries and early exercise conditions are derived in
Merton «(1973), Galai C1978), Ramaswamy & Sundaresan (19845,
and Whaley <(1984), The bondaries tested here are as
follous.

1. EARLY EXERCISE: C > S - X and P > X - 8, also C > F - X
and P > X - F for futures options,
ii.> EUROPEAN LOWER BOUNDARY

a. Underlying asset pays no dividend or a continuous
dividend: € > Swexp{-dT} - Xxexp{-rT2

b. Underlying asset is a bond paving fixed coupon: C >
S - PVWint,T) - X*exp{-rTI

For a currency aption, the foreign interest rate is the
continuous *“dividend® wshich the underlying asset pays. The
above European louer boundaries will be wvalid for American
calls {if there is no likelihood of early exercise. 0OFf
course, if the wunderlying asset pays no dividends, early
exercise will never occur and the boundaries hold.
Additionzlly, a sufficient condition for no early exercise of
an American call on an asset payving a continuous dividend is
(Merton ¢1973)):

rT¥ > dTS €12

The continuous dividend assumption is reasonable for a call

option on a currency unless the option is deep in the money



or has a very short time to expiration. For call options on
coupon bonds, a sufficient condition for no early exercise
is¢

(i~exp(~-rT2>X > P¥int, T) (2>

There is little likelihood of this condition being viclated
execpt for deep in the money or close to expiration options.
dhile it is reasonable to test the prices of American calls
on currencies and bonds

a2against the European louwer bound, this will not be the

case for calles on ?utures1or for any American put.

Stock index options are difficult to test because the

dividend yield is never known with certainty and because the

index is not explicitly traded on any market.

iii.> AMERICAN PUTS AND CALLS ON FUTURES OPTIONS: Feexp{-rT}

- X< C~-P < F - Reexp(-rT)

This {inequality may be broken into two parts for empirical

testing:

8. F >C - F + Xeexpl{~rT}
B.) P L C - Frexp{-rT> + A
Because these conditions are not as widely known as the
2
others, proof of the inequalities follows,
Yo prove part a.), set up a portfolio consisting of a

written call, bought put, F-X#exp{-rT} in discount bonds, and



a purchased “rollover® futures strategy. This strategy

consists of buying explr) futures contracts the first day,

exp{2r) futures contracts the second day, and so on so that

exactly exp(rT) contracts are owned on the last day. The

fallowing table shows the initial cost of the portfolio,

value if there is early exercise, and value at expiration:

IF EXERCISED AT EXFIRATION:

POSITION COST AT <7 FCT XK FCTI>K
Write call -C -F{to+X 0 —-F{T o+
Buy put F Fit) X-F(T) 0
Buy
futures 0 (F{tO-FOx CFCTH»-Fox LF(TO-F)>
rollover expirt) exp{rT} wexpl{rT)
Lend F-X*®x F-X% Fexptrt)-x= Fexp{rTl Fexp{rTl
exp(~-rT) exp{-rt) expf{-r(T-t3) -¥ -X
Yotal P+F P(ED+F{L ) FOT = FCTOox
ot 1 {explrt)- Cexp{riT {expi{rT)}
exp 124X(1~ 1320 -13>0
C-rT} expl~r{T-t3)>
-C >0
The portfolio always has positive wvalue so the initial cost

must be pesitive.

Therefore,

PrC-F+Rnexpl{-rTl.

To prove part

b.Y, set up a portfolio consisting of a bought call, written

put, Faexp{-rT)-X borrowed, and a sold "rollover® futures

strategy. This strategy consists of selling exp{-r(T-1))

futures contracts the first day, exp(-r{(T-2)) ¢futures

contracts the second day, and so on so that exactly one

contract is sold on the last day. The following table shows

the initial cost of the partfolio, wvalue if there is early



exercise, and wvalue at expiration:
IF EXERCISED AT EXPIRATION:
POSITION cosT AT 4T FCT <K FLTadx
Buy call C L) 0 FCTo-%
Write put -P -X+F{t) -X+F(T) 0
Sell
futures 0 -{F(t)-F O -F{T+F -F{TO+F
rollover expir(T-t i)
Borrow Fx ~Fx* ~F -F+ -F+
exp(-rT) exp exp(r{T-t) >+ X K
-% C-r7Td Kon exp{rT2 expi{rtl
+% wexpl{-rtd
Total c CLt I+ H# Ko
-P {expirtl- {exp {exp
~F% fo+F( L)% {rTl) {r1i-
exp{-r7) <(i-expl{-rx -12 -1
+¥% (T-£ 23>0 b1 >0
The portfolic siways has positive wvalue so the initial cost

must be positive. Therefore, P<{C-Feexp{-rTI+X, Similar

conditions hold for foreign currency options,

iv.) MWEAK PUT-CALL PARITY FOR AN ASSET WHICH PRAYS NO
DIVIDEND: P > C -~ S + Xsexpl{-rT)
This can be proved by starting with put call parity for

European puts, p, and calls, c:

p=c-S5+X*expl-rT) (28>

there is no chance of early

Yhen the asset pays no dividend,

exercise and the European and American calls are equal in

value so we may write:

p=C -8+ Xeexpl-rT) ¢29)



However, the American put is at least as valuable as the

European so we may write:

P >p=LC -85 2 Xeexp(-rt) (35)

Thic is equivalent to iv,) above.

Yable 4 is a sumpmary of previous empirical research on
violations of boundary conditions by American option prices,
Galai <(31978) and Bhattacharya <(£1983) find that CBOE call
optionzs on stocks violate boundaries only about 12 to 2% of
the time. Beckers (19845, Bodurtha & Courtadon (1985b), and
Stiastri & Tandon (1984) find that prices for options on gold
and foreign currencies violate boundaries anywhere from 0% to
about 15% of the time. Halpern & Turnbull (1985) find
violations of baundaries by Toronto Stock Exchange options

among 9% or more of their transactions prices.

Tables 5, 6, 7, and 8 present results of boundary
wiolation tests for the data set of index, metal, debt,
and currency options collected,. The
foreign interest rates are imputed from prices
of ¥futures contracts on the currencies for each.day.3
The tables show boundary violation frequencies of 5% or less
for most markets., Exceptions are early exercise of puts for
some indices, currencies, and gold ¥futures, and many

boundaries for the less-heavily traded spot debt and silver

options.



Although the frequency of boundary vioclations is
interesting, the size of the violations is a more important
indicator of market inefficiency or non-synchronous prices,
The summary statistics for ex post violations describe the
profits a trader would earn if he could initiate trades at
the prices wuwhich violate the boundary. This is a somewhat
unrealistic strategy because closing prices are used in the
tests, Even if transactions prices were employed, it is
likely that prices would correct themselves quickly and a
trader would be unable to actually set up a position to
expleit a wiolation he has observed. The ex post cash flous
are, on average, so small and highly variable that they do
not represent & profitable return to a riskless arbitrage
strategy. The ex ante cash flows described in the tables
summarize the profits from a strategy with which a trader
observes a boundary violation but must wait until the next
trading day to initiate transactions to attempt to exploit
the wviolation. The profits froa this strategy are, on
average, negative or insignificant and highly variable. The
ex ante strategy does not represent an opportunity for

profitable riskless arbitrage.

These simple ex post and ex ante trading strategies
using closing prices are not completely realistic or
representative of all possible arbitrage trading strategies
available to participants in these options markets.

Nonetheless, the results indicate that no obvious large

10



arbitrages are available in these markets. Furthermore, the
iow frequency of boundary violations suggest that the option

prices in the sample are not seriously inaccurate.

I¥. OPTION PRICING MODELS: THEORY & EMPIRICAL TESTS

This section provides a brief description of the basic option
valuation models used and tests their accuracy in predicting
market prices for the options wuhich have been collected for
this study. Black & Scholes (1973) provide the analytical
solution for a European call on a non-dividend paying stock
and Merton (¢1973) adapts the formula for wuse when the
underlying asset pays a continuous dividend yield, d.
Assuming the stock index pays a continuous dividend and
returning to expression (32) above, we can see that it is
unlikely that such a call will be exercised early unless it
is wvery deep in the money. However, we know that the
dividend stream paid on a stock index is not smooth and
continuous and must determine whether the "lumpiness® of the
dividend stream will often induce early exercise and render
the European formula inappropriate. Returning to expression
(32, we may imagine an extreme case where the dividends for
the entire gquarter are paid in one lump. Assuming a dividend
yield of 5% a year, this would represent a payment of 1.23%
of the value of the stock index. Substituting into (1), the
sufficient condition for no early exercise becomes:

r7 > .0125 8/X £6)

11



Assume an interest rate of 107, rearrange, and we get:
T > .123 /X% 7

What this suggests is that early exercise due to an uneven
dividend stream will be a possibility for deep in-the-money
or short maturity calls on 2 stock index. However, we will
employ the continuous level dividend stream assumption for
simplicity ‘s sake. Although a no early exercise assumption is
appropriate for European calls on index options, no such
assumption can be made for American calls on indices or
futures options or any American put on any asset. These
options may be exercised at any time without regard to the
level or pattern of dividends paid on the underlying asset.
Thus, we must employ & model which accounts for early
exercise when valuing these contracts. In this paper, three
basic types of models which incorporate the early exercisce

preoblem are employed.

The first model %o be used is the binomial madel of
Cox, Ross, & Rubinstein (1979). Appendix A describes and
illustrates the workings of this model. The basic idea is as
follows, Assume the underlying asset can only jump up by a
certain amount or jump down by a certain amount for a given
unit of time. Knowing the size of the possible up or douwn
jumps and given a riskless asset, we can set up a portfolio
consisting of riskless assets and the underlying asset such
that this portfolio exactly matches the return to an option

spanning the unit of time, Given the portfolioc weights for

12



this wmimicking portfolio and given the current price of the
riskless asset and underlying asset, we can determine the
current price of the option. Although the assumption that
the underlying asset can only jump up or down by a certain
amount over a given time period sounds unrealistic, we can
assume that this time period is quite small and use the
binomial wmethod repeatedly to calculate a value which is
quite accurate. In this paper, binomial models with up to
300 such “"time-steps®” over the life of an option are used,
The added attraction of the binomial model is that it can be

modified for early exercise conditions and payouts at each

step.

The second wmodel to be employed is the approximation
created by Geske & Johnson {1984) to value American puts on
stocks. HAppendix B provides a description of the intuitieon
behind the Geske-Johtnson extrapolation method. The basic
idea is as follows. Geske & Johnson (1984) recognize that an
American option, W(T), is equivalent to an infinite serieg of
compound options because the American option may be exercised
at any instant prior to expiration. Although it would be
computationally intractable to value such an infinite series
of options, the authors recognize that the wvalue of this
serjies can be closely approximated by a weighted average of
other option prices which can be calculated with relative
ease, We can calculate the value of the corresponding

European option, w(T), and the value of a "semi-American”

13



option which can be exercised at only & few points in time,
w(T/2,T> is a "semi American” option which can be exercised
only at times T/2 and T. We know that W(T) > w(T/2,T) > wi(T)
because any additional opportunity to exercise carries
positive wvalue. Although it is hard to value W(T) directly,
Geske & Johnson C(1%84) provide a method to combine the wvalues
of the European options and the “semi-American”" option to
approximate the value of the American option., Rdditional
accuracy can be obtained at additional computational cost by
adding more "semi-American” coptions to the weighted average,
The advantasge of this method is that it accounts for early
exercise, is coamputationally inexpensive, and can be made
arbitrarily accurate by increacsing the number of “semi-
American® options in the approximation., Furthermore, it may
be modified easily to account for a continuous dividend

stream.

The third wmodel ¢to be used is a numerical procedure
developed by Courtadon £1%82) which allows for a stochastic
short term rate of interest. Appendix C provides a more
detailed degscription of the method. The idea is similar to
that for the binomial model: we start at expiration and work
backuwards through time to get the wvalue of the option.
However, this method requires an estimate of a risk aversion
parameter and specification of a particular stochastic
process for the short interest rate., The sclution algorithm

employed is the explicit finite difference approach cutlined

14



by Brennan & Schwartz (1983>, The advantage to the Courtadon
method 1is that it assumes a stochastic short term interest
rate and thus, is appropriate for valuing options on treasury

bills.

We will use the Geske-Johnson two-point approximation,
modified for continuous dividends, to value options on stock
indices. Gold futures optionc are valued wusing 3 modified
binomial model with 300 time steps. Silver calls are valued
with the Black~-Scholes formula while silver puts are valued
with the Geske-Johnson method., Long term government bond
options are wvalued using a 100 step binomial model modified
for the receipt of bond interest payments., Options on
treasury bills are valued with an explicit finite difference
numerical procedure, Treasury bond futures options are valued
with a binomial model with twenty time steps per month and
modified to account for the effective rate of interest paid
on the spot debt underlying the futures contract. Finally,
options on foreign currencies are valued with the Geske-
Johnson method modified for the receipt of interest which

foreign currency deposits earn.

Table 9 presents a summary of previous empirical work on
the accuracy of option pricing models. In & study of
out-of-the-money Amsterdam gold options, Beckers (1984) finds
that closing prices deviate from model prices by about 16x.

Bodurtha & Courtadon £1985a) use numerical integration to

15



vaiue foreign currsncy options and find average deviations
between model and transactions prices of about six to ten
cents, Shastri & Tandon €1984) use the Geske-Johnson
technique to value foreign currency options and find average
deviations between model and trancsactions prices of about
four to twenty-one cents. Using CBOE stock options, Whaley
£1982) finds that prices generated from the Roll (1977) calls
model deviate about 12 to 2% from actual prices while
8lomeyer & Johnson (1964) find deviations between market and
mode) prices which average thirty or forty cents.
Dieirich-Caupbell & Schuartz €1984) find that model generated
prices for options on government bonds deviate from closing
prices by about thirty to sixty cents, Studies of Chicago
Mercantile Exchange S+P 500 and West German mark futures
options by Shastri & Tandon (1985) and Whaley (1984) yield

similar results,

Table 10 presents a summary of our empirical tests for
index, precious metal, debt, and currency options. In all
cases, the standard deviation used in the option pricing
models was estimated with the implied standard deviations
solved out of the previous day’'s option prices. for implied
standard deviations, AN efficient algorithm, the
Newton-Raphson gradient method, is employed. Each asset
ordinarily has several options trading each day and each of
these does not necessarily produce an identical ISD. Thus,

the I18D‘s must be aagregated to produce the best estimate of

16



the true volatility of the underlving asset. Before
aggregating, all ISD’s which may be unreliable are discarded,
An 1ISD is discarded if it was generated from an option which

is:

i.> Low-priced, that is, less than #%.50 for debt and
silver options, $.10 for foreign currency optiong,
$.05 for treasury bill options, and %$1.00 for all
other options. Because option prices move in
increments of 1/8, 1/4, or 1/10, low priced options

may not reflect underlying parameters accurately.

ii.?> Close to expiring, that is, has 1less than four

weeks until expiration.

iii.) Vioclating the immediate esarly exercise bound or is
within ten cents of the bound for debt and silver
options, wmithin five cents for currency options, or

within twenty five cents for other options,

The 18D‘s from the options remaining in the sample are
combined into simple and weighted averages, the latter with
weights proportional to the option’s elasticity with respect
to the wvolatility parameter, The idea behind this weighting
scheme 1is to give the greatest weight to those options which
are most sensitive to the volatility parameter. Regressions

reported in Bailey (1985) are used to determine which WISD

17



measure is the best predictor of volatility and this is used
as the variance parameter in tersting the models., Returning to
Table 10, the deviations hetween market and model prices seem
quite small on average., S+P 100 puts have an average market
price of %3.79 while the model calculates an average price of
$3.75. Calls on Comex gold futures have an average market
price of %17.04 and an average aodel price of $16.35. Ffuts
on 10,3752 coupon 1long term U.S, Treasury bonds have an
average market price of $3.63 and average model price of
$3.58, Calls on German marks have an average market price of
%1 .10 and an average model price of $1.10. Although the
deviations seem insignificant, we wmust determine what
constitutes an acceptable level of model error: how small is
“small enough®™? YThere is no obvious answer to this

question.

Tables t1 through 23 provide more detailed summary
statistics on price deviations by grouping the options
according to time to expiration &nd degree to which the
option is or out-of-the-money. Most interesting are the
statistice on the average absolute value of the deviation
between model and actual prices. Although the average
deviation may be small or zero, individual dollar differences
may be quite large., For example, CBOE S+P 100 puts have an
average deviation of only about four cents. Houwever, the
average absolute deviation is over thirty cents. The other

options have similarly large average absolufe deviations.

18



What this means is that there are many large positive and
large negative deviations which happen to average to a feuw
cents., Once again, it is difficult tc judge whether the
models are "accurate” or *"inaccurate” just by examining these

statistics.,

Tables 24 through 36 present regressions which relate the
pricing errors to different parameters in the option pricing
models. The dependent wvariable is the difference between
market and model prices while explanatory variables are the
standard deviation estimate, degree to which the option is in
or out-of the money, and time to expiration of the option.
There is a strong negative relation between the price
difference and the standard deviation and also between the
price difference and the time to maturity. For some of the
options, there is a significant relation betuween price
difference and degree to which the option is in or
out-ocf-the-money. However, the sign of the relationship is
different for different options so it is not possible to

generalize about this bias.

V. SUMMARY AND CONCLUSIONS

Boundary conditions and option pricing models have been
tested on a data set of 38,000 prices for options on stock

indices, metals, debt, and currencies. Option prices adhere

19



to the boundaries most of the time and the pricing models are
reasonably accurate predictors of option prices. Lacking more
information an how investors use option pricing models, it is
difficult to Judge whether the pricing models are
sufficiently accurate to be useful. Finally, it is impoirtant
tc note that markets for some of the debt snd currency
optiong have a low level of volume and open interest. These
markets may not offer sufficient liquidity #for large

investors,

290



FOOTHOTES:

1.3 UWe would imagine that a call on an asset which will
not pay any dividend will never be exerciszed early. However,
this doeg not hold for calls on a futures option., The lower
bound on a European futures option is:

c > max{(0, <F~-X)wexpl~rT2) (F1>
An American futures option which will not be exercised early
will be subject to this bound. However, the American call is
subject to the boundary far early exercise:

€ > max(0, F-X) (F2)
It is not always the case that the Eurcpean bound will be
larger than the early exercise bound, Thus, a
hold-until—~expiration strategy will not always dominate early
exercise and we cannot assume that the American call on a

futures option vwill never be exercised early.

2.) Thanks to Robert Whaley for this proof.

3. 1If we can observe the futures price, F, the spot
price, S, the riskless interest rate, r, and the time to
maturity of the futures contract, T, we solve for the
continuous dividend, d, using the cost of carry relationship:

F = Seexp{T{1r-d))} (F3>
The continuous dividend may be the dividend wield on & stock
index, Fforeign interest rate paid on a currency, or effective

interest rate paid on a bond., In some cases, such as treasury

21



bond #futures, we cannot directly observe the spot price of
the asset. HNonetheless, we may solve for the effective rate
of interest on bonds by using the prices of two futures
contracts of differing maturities in a similar fashion. We
‘may rewrite (F3) as;

S = Fhexp(-T(r-dl) (F4)
The relation will also hold #for another futures contract on
the same asset which has price F° and time to maturity 77,
where T’ does not equal T:

S = F uwexp(-T'Cr-d)2 CF3)
Setting the right~hand sides of (F4)> and (F5) equal, we may

solve for d.

22
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APPENDIX A: AMERICAN BINOMAL OPTION YALUATION

Suppose that the price of an asset will either jump
up at rate u or douwn at rate d over a period of time.
We may set u and d as a function of the estimated
standard deviation of the rate of price change of the
asset C(u=exp(SD*sqrt{T2>) and d=exp(~-SD%sqrt{T)3>. The
initial cost of an asset with price S is § soc we may
draw a diagram representing the present and possible
future values of a 1long position in the asset as
follows:

us
s<
ds
Suppose that there also exists a riskless asset which
yields one dollar with certainty at the end of the time
period. Its present price will be 1/C1+R). Finally,
suppose that there exists a call option on the asset
with striking price X which will expire at the end of
the time period. We do not know its present price, C,
but know that at expiration it will be worth
maxt 0,uS-X> or max(0,dS-X}, depending on how the asset
price moves. He may drau a diagram as follous:
<::::::-C(u>=max(0, uS-%J
€ Cidi)=max{D, dS-XI
To solve for C, we construct a portfolio consisting of

a number of units of the asset, N(S)>, and a number of

riskless assets, NCR)D, chosen to mimic the
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end-of-period return of the call option. Formally,
N(S)> and N(R) must satisfy two equations:

N(SOHwuUS + NCROx( 1) = CCu)d (A1

HCSOdxdS + NCRO#( 1) = €(d) {R2)
Using algebra, we can easily solve for N(S) and N(RD,
Because the portfolio (N(S) NIR>} exactly duplicates
the payoffs on the call, it must sell for the same
price as the call. Yhe present cost of N(S) units of
the asset is N(S)*S8 while the present cost of HN(R)
riskless assets is N{RI1+R)>. Thue, the price of the

call must be N{(S»™S + N(R)I{(1+R),

A two period example illustrates how the binomial
model can be expanded for greater accuracy and to
account for possible early exercise:

Clu,ud=max{l,uuS-x2
CCud=max{Clu),us-%3¥{
C=max{C,5-X3< CCu, dd=max{ 0, udS~K>
C(di=max{C{d),d5-X3<
Cid,d)=max{0,dd5-K3
Gver the course of tuo time steps, the asset price may
have ¢two upticks, two downticks, or one of each. To
value the call, we start at expiration and work back to
solve for Clu) and €{d)., If C{u) or C{(d) are uworth less
than tre cash flou from immediate exercise, the program
sets them equal to this cash flow. Finally, we work

back one more step to solwve for C, the present price of

‘the option, once again checking for early exercise.
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The American binomial method may easily be
modified ¢€o walue puts by altering the terminal value
of the option to correspond to a put, that is, max €0,
®X-uS) and max €0, X-dS2. To value coupon debt, we
recognize that an initial investment in a bond will
yield a coupon, c, in addition to the uncertain future
value of the bond:

ug *+ ¢
B<
dB + ¢
Similarly, to w~alue a Fforeign currency option, we
recognize that an investment in foreign currency will
yield interest at the foreign rate r’ so that the

terminal walue of such an investment will be either

uwt+r 28 or dii+r 3§,

To wvalue a futures option, we note that a futures
1contract requires a zero initial investment and pays
off the difference bestween the initial futures price
and the future uncertain price:

uF - F

ﬂ<

dF - F
Alternately, we may assume that a certain relationship
exists hetween spot and futures prices at all times and
use the spot asset plus debt to create a hedge to
duplicate the futures option. In this work, it is
assumed that the futures contract equals the spot price

times exp{T*{r-dl)}, where T is the time until maturity
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of the contract, r the interest rate spanning this
time, and d the cost (storage) or benefit (coupon or
dividend payment) to holding the spot asset. fFor gold,
we assume storage it costless so that d=0. For treasury
bonds, we impute d out of two futures prices for each
day. The advantage to this method is that the implied
standard deviations produced this way are in terms of
the spot asset, not futures contracts of varying
maturities, Finally, for all options, we may set the
size of the time period to be so small that there are
tundreds of time steps over the life of the option and
the true random behaviour of the underlying asset price

is closely approximated.
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APPENDIX B: GESKE-JOHNSON WALUATION BY APPROXIMATION

We wish to value an American option, W<T), which
may be exercised at any instant prior to ite expiration
at time T, Begin by calculating the value of the
corresponding European optien, w(T), which can be
exercised only at time T. Continue by calculating the
value of a “"semi-Anmerican* option, w(T/2,7T>, which can
be exercised only at times T/2 and T, the value of
w(T/3,2T7T/3,T), and so on. Because the right to
exercise conveys positive value we may write:

WCTY > wlT/3,27/3,T) > wlT/2,7T) > wT) (B1)

Me may graph the values as follouws:

w{T?> SO 0 HCNC KN B K X
w(T/2,7T) 5 30 MK B XN HEK KM K KK KX

w(T/3,2773,7> KX XN KX KK KK KK KKK KK N KK KK X

T ?

Option Value
We wish teo avoid calculating W(T) directly because of

the complexity of accounting for an infinite number of
poscsible exercise points. However, the diagram shous
that the wvalues for the series of “semi-American”
options approach the value of the American option WY,
8y taking an appropriately weighted combination of the
European and *gsemi-American® options, we can

extrapclate to estimate the value of the American
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option., The curved line represents this extrapolation

process,
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RPPENDIX c: COURTADON MODEL FOR VYALUATION WITH

STOCHASTIC INTERESY RATE

Amex treasury bill optione allow the holder to buy
or sell a #fixed characteristic security, a U.S.
Treasury bill with 13 weeks until maturity, at any time
prior to coption expiration. The bill price is sensitive
to short <term interest rates so we may not make the
usual assumaption of a2 constant interest rate spanning
the life of the gption. Courtadon (1982) assumes a flat
term structure and a mean reverting process for the
interest rate, r:

dr = ale-rldt + srdz <C1)

Parameters a and m are speed of adjustment and mean
respectively while sr is the standard deviation of the
process and dz is a Weiner process with zero mean and
unit varjance, The price, R(r,t2, of an asset dependent
an the interest rate must follow the w»aluation
squation:

2 2
172 sr Alr,r) + (ala-rd)-Lsr)Alr) - ra ¢+ ACtd = 0 <(C2)
Alr), Alr,r), and A{(t) are partial derivatives while L
is the coefficient of risk aversion. Expiration, early
exercise, &and other rational boundary conditions are
used with the abowve differential equation to value the

asset,
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An explicit finite difference scheme is used to
calculate treasury bill and treasury bill option
prices. The method is similar to the binomial in that
it works backuwards from the option’s expiration to get
its current w~alue. However, the finite difference
method does not rely on the binomial’s riskless hedging
technique but rather transforms the partial derivatives
in the wvaluation equation to finite differences. Ve
employ the transformed variable, s = 1/{1+40r), and use
parameter estimates from Dietrich~-Campbell & Schwartz
{19845, Speed of adjustment, a, is estimated to equal
.558 while risk aversion, L, is estimated to equal .26,
The daily long interest rate implied in treasury bond
futures prices is used as m, the value to which r tends

to revert.
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Table 1

OPTION CONTRACT SPECIFICATIONS

Exchange

American
Stock
Exchange
(AMEX)

Chicago
Board
Options
Exchange
(CBOE)

Chicago
Board of
Trade (CBT)

Commodity
Exchange
(COMEX)

New York
Stock
Exchange
(NYSE)

Philadelphia
Stock
Exchange
(PHLX)

Underlying Asset Price in newspapers
1. $100 times Amex Major per 1% of asset
Market stock index
2. $200000 face value of U.S. per $100 face value
Treasury bills with 13
weeks to maturity
1. 8100 times S+P 100 Index per 1% of asset
2. $100000 face value of U.S. per $100 face value
Treasury 14%s Nov 06/11 bonds
3. 8100000 face value of U.S. pef $100 face value
Treasury 12%s Aug 08/13 bonds
4. 5100000 face value of U.S. per $100 face wvalue
Treasury 10.375%s Nov
07/12 bonds
One $100000 face value per $100 face value
CBT Treasury bond futures
contract
One Comex gold futures per ounce
contract (100 ounces)
$100 times NYSE Index per 1% of asset
1. 50000 Canadian dollars per 10000 units of
2. 6250000 Japanese yen foreign currency
3. 62500 Swiss francs for yen, per 100 units
4, 12500 U.K. pounds for others.
5. 62500 West German marks

Toronto
Futures
Exchange
(TFE)

100 ounces of silver per ounce, U.S. funds



Table 2

MARKET ACTIVITY: JANUARY 17TH, 1984

Trading Volume Open Interest
(# of contracts): (# of contracts):
Puts Calls Puts Calls
INDEX OPTIONS:
CBCE S§+P 100 34567 41215 202976 249992
Amex Major Market 6241 6095 47433 68907
NYSE 2468 4010 50684 66244
COMMODITY OPTIONS:
Comex Gold Future 845 1562 8441 18639
TFE Silver 376 674 8471 2635
DEBT OPTIONS:
CBOE U.S. Bonds 191 339 4248 6619
Amex U.S. T Bills &
U.S. Notes 90 70 S92 900
CBT T-Bond Future 6121 5723 35450 64538

CURRENCY OPTIONS:
PHLX C$,Y,fs,L,DM 583 1442 16856 25434



Table 3

DATASET SUMMARY STATISTICS:

§ of Calls # of Puts

Uzed Used
Data Data for for

Option Begins Ends Total 1I5D’'s Total ISD’'s
CBOE S+P 100 1JUL83 30APR8B4 2819 1403 2819 1237
Amex Major Mkt 1JULS83 30APR8B4 1929 1088 1844 906
NYSE Index 23SEP83 30APR84 1379 706 1223 438
Comex Gold 1JUL83 30APR84 4915 3487 4441 2588
TFE Silver 1JUL83 30APR84 1223 760 443 229
CBOE 14% Nov 06 1JULS83 30APR8B4 342 209 219 137
CBOE 12% RAug 08 9AUGS83 30APR84 626 402 285 224

CBOE 10.375%

Nov 07 1JUL83 30APR84 452 274 255 156

Amex T-Bill 1JUL83 30APRB4 183 99 198 81
CBT T-Bond 1JUL83 30APR84 3089 1292 2298 1390
PHLX C$ 1JUL83 30APR84 291 182 163 78
PHLX Yen 1JUL83 30APR8B4 1246 1082 554 351
PHLX fs. 1JUL83 30APR84 1223 964 595 336
PHLX pound 1JUL83 30APR84 839 752 438 385

PHLX DM 1JUL83 30APR84 1621 1218 797 431



Table 4
PREVIOUS RESULTS: VIOLATIONS OF BOUNDARIES BY AMERICAN OPTIONS

Ex Post Violations:

(table continued next page)

# of Average
Paper Data Options Boundary Frequency §$ Size
1. Beckers Closing 581 P>C-S+X* 81 $§ 1.94
(1984) prices for exp{-rT> per
Amsterdam option
gold options
2. Bhattacharya Transactions 86137 C>8-X 120 $12.57 per
(1983) prices for contract
CBOE calls on 54735 C>5-X*
stocks exp{-rT) 4127 $ 9.58 per
-PV(DIV)
contract
3. Bodurtha & Transactions 37824 C>5-X 359 -
Courtadon prices for
(1985b) PHLX foreign 14085 P>X-S 984 -
currency
options 4511 C<LS+P-X=* 3 -
exp{-xT>
3998 P<X+C-S* 22 -
exp{-r'T>
4. Galai Closging 16327 C>58-X 281 $35.00 per
(1978) prices contract
for CBOE 16327 C>S-X=*
calls on exp{-rT} 482 $41.70 per
stocks -PV(DIV) contract
&. Halpern & Trangactions 315202 C>S8-X 12786 $.348 per
Turnbull prices for option
(1985) Toronto Stock
Exchange call 315202 C>S-Xx* 32989 $.366 per
options exp{-rT> option
-PV(DIV)



Shastri &
Tandon
(1984)

Notes:

Table 4 (continued)

Ex Post Violations:

# of Average
Data Options Boundary Frequency § Size
Closing 3019 C>Sexp{-r'T>»
prices for ~X* 81 $59.25 per
Philex foreign exp{-rT? contract
currency
options 1726 P>Xexp{-rT2
~-S* 52 $54.71 per
exp{-r'TY) contract
3019 C>s8-X 38 $53.69 per
contract
1729 P>X-8 178 $73.64 per
contract
1038 P<C+X-
S* 17 $114 .88 per
exp{-r'T> contract
"r'" represents foreign interest rate

Authors of studies 4. and 6. found that an ex ante or
lagged test produced ingignificant or highly variable
"arbitrage profits" from boundary violations. Authors
of studies 2. and 3. found that adding transactions
costs also reduced "arbitrage profits" to insignificance.



BOUNDARY VIOLATIONS:

Index &
Boundary

Table §

INDEX OPTIONS

$ Per 1% of Underlying Asset:

Ex Post Violations
Mean S§.D. Min Max

Ex Ante Vieclations

Mean §.D. Min

—— e . - " A S . S e h e S Gmh WAN S R e A T e e e e WA e e e e e W W R T TR G W T G AT T T GSS M M s S e s o G e

CBOE
S+P 100:

C>5-X
pP>X-8§

Amex
Major Mkt:

C>S-X
P>X-8
NYSE Index:
C>5-X

P>X-8

Observations:
Bound
Viol-
Ttl ated
2819 75
2819 231
1929 33
1844 151
1379 43
1223 110

.72

.55

.44

.74

.33

.85

5.34

.62

10.

.90

.40

.23

.24

.64

16

.18

.27

.27

.01

.28

.04

.79

.42

.67

.99

.05

.38

Max
.34 18.
.64 3.
.51 2.
.86 7.
.81
.84 8.

17

46

05

62

.50

10



BOUNDARY VIOLATIONS:

Cormmodity&
Boundary

Comex Gold
Future:
CO>F-X
P>X-F

P>C-F+X*
exp{-rT>?

P<C-Fexp{-rT>
+X

TFE Silver:
C>8-X

C>5-Xexp{-rT)
P>X-8

P>C-S+X*
exp{-rT2

Observations:
Bound
Viol~-
Ttl ated
4915 85
4441 602
40091 80
4091 28
1223 37
1223 82
443 123
261 77

COMMODITY OPTIONS

Ex Post Violations
Min

Table 6

Mean S§.D.

11.

.25
.51

.88

18

.19

.16

.76

.11

17.

.57

.47

40

.60

.22
.19
.68

.14

§ Per Ounce:

Max Mean

" ———_ i T —— T — ——— W . e —— A T S e AR S B e G e MBS W SN G S e R W G TR N e W e S Wt M M M S SES Gm G SN e D M e e e Mee R

36.3 -

86.4

141.1 1

21.9 -7.

1.27 -.

1.47

3.07

.26

.15

.00

30

03

.02

.60

.05

12.

.46

.65

02

.17

.20

.31

.82

.14

Min

-11.

-29.

-18.

-21.

Ex Ante Vioclations
§.D.

.50

.02

.73

.29

Max

.40

.47

.07

.43



Table 7

BOUNDARY VIOLATIONS: DEBT OPTIONS

Obgservations: $ Per $100 of Face Value:
Bound
Issue & Viol- Ex Post Viclations Ex Ante Violations
Boundary Ttl ated Mean S.D. Min Max Mean §.D. Min Max

- v > —- ————— S - " " - - — - - S AAA = — T W o e A e e M i P G WP W S A S e e R GO W W i S G L Gk R R S T S S v A e e S s

CBOE 14% 11/06

C>S(BID)Y~X 342 8 .53 1.04 0.0 3.09 .37 1.13 - .31 3.09
P>X-S5(ASK) 219 9 1.39 3.60 0.0 11.00 -.31 .68 ~-1.50 .28
C>S(BID)~

PV(int,T)-

Xexp{-rT2? 342 1 3.03 0.0 3.03 3.03 -.50 0.0 -.50 -.50
CBOE 12% 8/08
C>8(BID)-X 626 35 3.73 5.02 0.0 12.53 .41 2.61 -1.25 12.53
P>X~5(A8K) 285 8 1.63 1.90 0.0 5.53 -.42 .40 - .97 0.0
C>S(BID)-

PV(int,T)-

Xexp{-rT2 626 20 5.89 4.87 0.0 11.72 77 3.22 -1.73 11.69
CBOE 10.375%

11/707:
C>S(BID)Y-X 452 4 .34 .31 0.0 .78 -.72 1.16 -2.44 0.0
P>X-S(ASK) 255 21 1.20 2.56 0.0 11.52 -.17 .39 ~-1.50 .16
C>S(BID)~

PV({int,T)-

Xexp{-rT2 452 3 .26 .29 0.0 .87 ~-.59 .24 -~-.86 -.4
Amex T-Bill:
C>S(BID)Y-X 183 51 .30 .71 0.0 2.25 .16 .61 ~-.20 2.25
P>X~-S(ASK) 198 27 .07 .06 0.0 .27 .00 .09 -.23 .10
CBT T-Bond Fut:
C>F-X 3089 31 .03 .02 .01 .09 0.0 .04 -~-.11 .06
P>F-X 2298 119 .02 .02 0.0 .06 ~.01 .05 -—.45% .06
P>C~-F+X* 1719 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

exp{-rT2
P<C-F=* 1719 2 .19 .14 .09 .29 -2.99 1.68 ~-4.17 -1.80

exp{-rTi+X



Table 8

BOUNDARY VIOLATIONS: FOREIGN CURRENCY OPTIONS

Observations: 8 Per unit of foreign currency:
Bound

Issue & Viol- Ex Post Violations Ex Ante Violations

Boundary Tt1l ated Mean S§.D. Min Max Mean S.D. Min Max

PHLX Cs$:

C>5-X 291 1 .03 0.0 .03 .03 0.0 0.0 0.0 n.o

C<S+P-X=* 79 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
exp{-rT2

P>X-8 163 17 .09 .26 0.0 .68 -.03 .11 -.28 .12

P<X+C-S* 79 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
exp{-x'T>

PHLX Yen:

C>S-X 1246 18 .04 .03 .01 .12 0.0 .06 -.12 .i2

C<S+P—-X=* 414 2 .22 .12 .13 .31 -.22 .31 -.44 0.0
exp{-rT2

P>X-§ 544 18 .07 17 0.0 .74 -.06 .14 -39 .05

P<X+C-S* 414 3 .14 .08 .06 .22 -.05 .05 ~-.11 -.01
exp{-r'T>

Phlx fs.:

c>s-X 1223 1 .03 0.0 .03 .03 0.0 0.0 .0 0.0

C<S+P-X* 390 10 .09 .18 .01 .58 -.02 .23 -.21 .58
exp{-rT

P>X-8 595 74 .05 .10 0.0 .88 ~-.03 .11 -.26 .14

P<X+C-8* 390 5 .06 .05 .01 .12 ~-.07 .09 -.16 .03
exp{-r‘T2

(Table 8 continued next page)



Table 8 (continued)

Bound
Issue & Viol- Ex Post Viclations Ex Ante Vioclations
Boundary Ttl ated Mean S.D. Min Max Mean S.D. Min Max
PHLX pound:
Cc>5-X 839 13 .13 .07 .02 .23 ~-.04 .20 -.58 .23
C<S+P-X* 257 2 .11 .08 .06 17 -1 .66 -1.18 -.25
exp{-rT2
P>X-8 438 17 .08 .04 .02 .20 —-.04 .16 -.40 .20
P<X+C-5* 257 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
exp{-r'T2
PHLX DM:
C>s~-X 1621 12 .03 .02 0.0 .05 ~-.01 .03 -.07 .05
C<S+P-X* 638 5 .07 .06 .01 .13 -.03 12 -.20 .13
exp{-rT2
P>X-8§ 797 92 .06 .20 0.0 1.90 -.01 .32 -1.83 1.90
P<X+C~-8% 638 7 .04 .04 0.0 .10 -.08 .12 -.33 .02

exp{-r’'T)



PREVIOUS RESULTS:

—— - . 4 O . m . ve M v Om e S e e Aen A e Y . G e S W WO e fen e S e wh Sk T ek MM TR AR T TUY S Y M G P S M S SME WA M Gms G n e M e S e s S e e e

1.

Beckers
(1984)

Blomeyer
& Johnson
(1984)

Bodurtha
&
Courtadon
(1985a)

Dietrich-
Campbell &
Schwartz
(1984)

Closing

prices for
Amsterdam
gold calls
(X>S8 only)

Transactions
prices for
CBOE stock
options

Transactions
prices for
PHLX foreign
currency
options

Closing
prices for
CBOE and
Amex options
on U.S.
Treasury
securities

(table continued next page)

Table 9

10295

18027

3326 calls

1788 puts

2514 calls
on bonds

1279 puts
on bonds

2514 calls
on bonds

1279 puts
on bonds

395 calls
on T-bills

497 puts
on T-bills

Model used

and

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES

resulting average
deviation (market - model)

Black-Scholes;

Geske~-Johnson four point

16 .68%

extrapolation for American

puts;

$.386 or 23.9%

Roll’s model for calls with
one remaining known

dividend;

$.268 or 5.95%

Parkinson numerical method;

~-7.07%

Parkinson numerical method;

—-13.24%

1 interest

1 interest

2 interest

2 interest

2 interest

2 interest

rate

rate

rate

rate

rate

rate

model;

model;

model;

nodel;

model;

nmodel;

$.57

.55

.33

.30

.04

.03



#

of options

Table 9 (continued)

Model used and
resulting average
deviation (market-model)
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5. Shastri &
Tandon
(1984

6. Shastri &
Tandon
(1985)

7. Whaley
(1982)

8. Whaley
(1984)

Transactions
prices for
PHLX foreign
currency
options

Transactions
prices for
Chicago Merc
S+P 500 and
DM futures
options

Closing
prices

for CBOE calls

on stocks

Transactions
prices for
Chicago Merc
S+P 500
futures
options

30655 calls

8438 puts

28524 calls
and 19555
puts for S+P
22310 calls

and 8214
puts for DM

15582

14886 calls

13607 puts

Geske-Johnson; absolute
deviation of $.048 to $.21

Geske-Johnson; absolute
deviation of $.049 to $.158

Geske~-Johnson; absolute
deviationg of $92 to
$159 per contract

Gegke-John=on; absolute
deviations of 5§24 to
$§144 per contract

Roll’s model for calls
with one known remaining
dividend; $.0097

Geske~-Johnson; $-.08 for
calls and §$.03 for puts



Table 10

SUMMARY OF RESULTS ON DEVIATIONS OF MODEL PRICES FROM MARKET PRICES

Puts: Calls:

Average Average Average Average

Market Model Market Mcdel

Price Price Price Price
CBOE S+P 100 $ 3.79 $§ 3.75 $§ 4.89 $§ 4.87
Amex Major Market 3.38 3.41 3.26 3.37
NYSE Index 2.25 2.27 2.51 2.60
Comex Gold Futures 27.79 27 .87 17.04 16.35
TFE Silver 1.22 1.20 , 1.22 1.23
CBOE 14% Nov 06 bond 5.00 4.79 1.58 1.59
CBOE 12% Aug 08 bond 2.50 2.39 1.92 1.92
CBOE 10.375% Nov 07 bond 3.63 3.58 1.73 1.70
Amex 13 week T-Bill .51 .65 .38 .49
CBT T-Bond Futures . 1.78 1.79 .99 .98
PHLX Canadian § .60 .64 .49 .50
PHLX Japanese Yen .64 .74 1.39 1.40
PHLX Swiss franc .75 .83 1.02 1.02
PHLX U.K. pound 2.53 2.65 2.76 2.69

PHLX West German DM .71 .76 1.10 1.10



Table 11

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES:

dividend for American puts and calls.

P-Px

Mean

SD

/P-Px/

Mean

CALLS:

Geske-Johnson two point approximation with continuous

/C~Cx/

CBOE S+P 100 OPTIONS
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MODELS:
PUTS:
N
All 2559
5>X 1523
X>8 1086
t<.125 968

.125<E<. 25 1092

.25<t<. 375 289

.375<t<.5 209

.5<t 1

The * denotes model price.

Options violating the inmediate early

.036

.030

. 045

.053

.011

.117

.101

.153

.557

. 442

.692

.526

.556

.666

.509

.00

.346

.263

.468

. 277

.362

.463

.422

.153

. 437
. 356
.511
. 450
. 422
.492
.300

.00

exercise bound are excluded.

2724

1144

1580

1100

1170

262

189

.072
- .043
.018
101
.090

.513

.483
.349

.582

.07

.618

.43

.351

.508

.238

.224

. 351

. 609

.474

.812

.426

.221

464

.888

.406

.29



Table 12
DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: AMEX MAJOR MKT OPTIONS

MODELS: Geske~Johnson twe point approximation with continuous
dividend for American puts and calls.

PUTS: CALLS:
P-Px /P-Px/ C-Cx /C-Cx/

N Mean 8D Mean SD N Mean SD Mean SD
All 1642 -.029 .538 .292 .453 1838 -.104 .582 .375 .458
8>X 724 -.099 .605 .371 .478 682 -.047 .670 .421 .523
X>s 918 -.045 .479 .230. .423 1156 -.137 .521 .347 .412
t<.125 544 .026 .548 .223 .501 642 .029 .481° .254 .409
.125<t<.25 680 -.073 .560 .322 .464 764 -.135 .631 .412 .496
.25<t<.375 208 -.027 .407 .282 .293 211 -.150 .570 .455 .373
.375<t<.5 189 -.022 .553 .388 .394 192 -.338 .558 .502 .416
.5<t 21 -.122 .470 .344 .335 29 ;.345 .818 .631 .615

The * denotes model price.

Optiong violating the immediate early exercise bound are excluded.



Table 13
DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: NYSE INDEX OPTIONS

MODELS: Geske-Johnson two point approximation with continuous
dividend for American puts and calls.

PUTS: CALLS: -
P-Px /P-Px/ C-Cx /C~Cx/
N Mean SD Mean SD N Mean SD Mean 8D
All 1077 -.019 .690 .319 .612 1300 -.094 .320 .235 .237
S>X 628 -.014 .608 .272 .543 549 -.009 .358 .267 .239
X>s 449 -.026 .792 .385 .692 751 -.156 .273 .212 .232
£<.125 446 .044 .761 .285 .707 518 -.028 .263 .178 .195
.125<t<. 25 472 .005 .667 .342 .595 594 -.120 .333 .254 .24¢6
.25<t<.375 140 -.281 .377 .362 .299 168 -.220 .383 .341 .281
.375<t<.5 19 -.205 .224 .261 .151 20 -.015 .290 .243 .149
.5<t 0 .0 .0 .0 .0 o -.0 - .0 .0 .0

The * denotes model price.

Options violating the immediate early exercise bound are excluded.



Table 14

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: COMEX GOLD FUTURES
OPTIONS

MODELS: Binomial model with 300 time steps for American puts and
American calls.

PUTS: CALLS:
P-P*» /P-Px/ C-C* /C-C*/

N Mean SD Mean SD N Mean 8D Mean SD
All 3434 - .08 2.68 1.21 2.39 3533 .68 1.63 1.15 1.35
F>X 2433 -.34 2.92 1.34 2.61 927 .70 1.88 1.06 1.70
X>F 1001 .55 1.85 .88 1.72 2606 .68 1.54 1.18 1.20
t<.125 543 .01 2.78 1.03 2.58 432 .31 2.57 1.18 2.33
.125<t<.25 859 ~-.18 2.05 .95 1.83 845 .51 1.54 .98 1.29
.25<t<.375 892 -.18 2.63 1.17 2.37 931 .48 1.15 .90 .86
.375<t<.5 445 -.07 3.39 1.40 3.09 466 .54 1.26 1.01 .92
.5<t 695 .09 2.82 1.59 2.83 859 1.34 1.56 1.67 1.22

The * denotes model price.

Options selling for lese than $§1 or violating the immediate early
exercise boundaries are excluded.



Table 15
DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: TFE SILVER OPTIONS

MODELS: Black~-Scholes model for calls, Geske-Johnson two point
approximation for puts

PUTS: CALLS:
P-Px* /P-Px/ C-Cx /C-Cx/

N Mean SD Mean SD N Mean 8D Mean SD
All 265 .016 .145 .101 .104 810 -.008 .186 .106 .152
S>X 59 .048 .170 .109 .139 447 -.026 .155 107 .114
X>s 206 .007 .135 .099 .092 363 .014 .216 .106 .189
t<.125 197 .027 .137 .097 .100 533 -.005 .175 .097 .146
.125<t<. 25 3 -.034 .048 .049 .023 7 -.028 .056 .041 .045
.25<t<.375 13 .000 .139 .105 .086 28 .007 .185 .123 .135
.375<tL.5 18 .046 .212 .121 .178 64 -.030 .173 .089 .151
.5<t 34 -.052 .137 .115 .090 178 -.009 .221 .140 .171

The * denotes model price.

Options selling for less than $.5 or violating the immediate early
exercise boundaries are excluded.



Table 16

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: CBOE GOVERNMENT BOND
OPTIONS

MODELS: Binomial model with 100 time steps for American puts and
American calls.

PUTS: CALLS:
P-P* /P-P*/ C-C* /C~Cx/

N Mean SD Mean SD N Mean SD Mean SD
All 548 .115 .654 437 .508 923 .007 .496 .301 .394
S>X 251 .137 .656 .435 .509 380 -.040 .396 .271 .291
X>s 297 .097 .653 .420 .509 543 .041 .553 .322 .451
t<.125 221 .320 .367 .368 .318 307 .099 .394 243 .325
.125<t<.25 165 .136 .695 .415 .573 302 .025 .580 .312 .489
.25<t<.375 113 -.123 .669 .444 .513 215 -.115 .449 .340 .315
.375<t<.5 17 -.101 1.16 .666 .949 69 -.009 .525 .342 .396
.5<t 32 -.438 .933 .707 .43 30 -.186 .563 .418 .415

The * denotes model price.

Optiong selling for less than $.5 or violating the immediate early
exercise boundaries are excluded.



Table 17

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES AMEX 13 WEEK T-BILL
OPTIONS

MODEL: Courtadon stochastic interest rate model for American puts
and calls.

PUTS: CALLS:
P-Px* /P-Px/ C-C* /C-C*/

N Mean 8D Mean SD N Mean 8D Mean SD
All 129 -.145 .286 .236 .217 127 -.114 .265 .192 .214
S>X 67 -.058 .275 .186 .209 71 -.141 .293 .232 .226
X>s 62 -.239 .270 .290 .213 56 -.081 .222 .142 .188
t<.125 13 -.117 .240 .213 .153 12 -.095 .283 .145 .258
.125<t<. 25 53 -.108 .271 .195 .216 53 -.127 .220 .176 .183
.25<t<.375 34 -.153 .302 .252 .224 33 -.036 .273 .185 .202
.375<t<.5 10 -.252 .196 .270 .167 18 -.210 .235 .239 .204
.5<t 19 -.196 .360 .318 .252 11 -.148 .413 .272 .337

The * denotes model price.

Options selling for less than §.05 or viclating the immediate early
exercise boundaries are excluded.



Table 18

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: CBT T-BOND FUTURES
OPTIONS

MODELS: Binomial model with 20 time steps per month for American puts
and calls.

PUTS: CALLS:
P-P* /P-P*/ C~-Cx* /C-C*x/

N Mean SD Mean SD N Mean SD Mean SD
All 2157 -.003 .116 .089 .075 2987 0.014 .160 .121 .106
F>X 1232 -.033 .101 .082 .068 679 -.205 .150 .212 .141
X>F 925 .036 .123 .098_.082 2308 0.079 .089 .094 .074
t<.125 343 -.090 .111 .109 .092 331 -.052 .088 .072 .073
.125<t<.25 539 -.061 .075 .078 .060 667 -.040 .128 .092 .098
.25<t<.375 535 .013 .096 .075 .061 689 .014 .166 .125 .110
.375<t<.5 375 .030 .090 .074 .058 581 .031 .162 .131 .100
.5<t 365 .104 .114 120 .097 709 .085 .172 .158 .110

The * denotes model price.

Options selling for less than $§.5 or violating the immediate early
exercise boundaries are excluded.



Table 19

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: PHLX CANADIAN DOLLAR
OPTIONS

MODELS: Geske-Johnson two point approximation for American puts and
calls modified for receipt of interest on foreign deposits

PUTS: CALLS:
P-Px /P-Px/ C-C* /C~Cx/

N Mean 5D Mean 8D N Mean SD Mean 8D
All 96 -.042 .131 .094 .101 220 -.01 .116 .081 .083
5>X 48 -.029 .134 .081 .111 85 -.016 .110 .084 .073
X>s 48 -.056 .128 .107 .088 135 -.006 .120 .080 .089
t<. 125 5 .033 .096 .059 .080 8 .019 .071 .064 .026
.125<t<. 25 33 -.049 .087 .073 .067 46 -.012 .065 .051 .042
.25<t<. 375 31 -.004 .109 .075 .077 60 .001 .091 .066 .061
.375<tL.5 15 -.115 .154 .143 .137 46 -.033 .131 .088 .101
.5<t 12 -.064 .214 .152 .158 60 -.004 .155 .118 .101

The * denotes model price.

Options violating the immediate early exercise bound are excluded.



Table 20

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: PHLX JAPANESE YEN
OPTIONS

MODELS: Geske-Johnson two point approximation for American puts and
calls modified for receipt of interest on foreign deposits

PUTS: CALLS:
P-Px /P-Px/ C-C* /C-Cx/

N Mean SD Mean SD N Mean SD Mean SD
All 531 -.099 .092 .110 .078 1223 -.012 .128 .090 .092
s>X 309 -.085 .084 .096 .071 541 -.037 .139 .099 .104
X>s 222 -.118 .101 .131 .084 682 .007 .115 .083 .079
t<.125 75 -.054 .071 .067 .059 140 -.0582 .062 .066 .047
.125<t<.25 195 -.094 .081 .103 .069 313 -.039 .074 .067 .051
.25<t<.375 128 -.105 .091 .116 .075 231 -.023 .117 .080 .088
.375<t<.5 71 -.107 .089 .116 .076 236 .025 .115 .092 .072
.5<t 62 -.146 .127 .169 .095 303 .014 .188 .134 .132

The * denotes model price.

Options violating the immediate early exercise bound are excluded.



Table 21

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: PHLX SWISS FRANC
OPTIONS

MODELS: Geske-Johnson two point approximation for American puts and
calle modified for receipt of interest on foreign deposits

PUTS: CALLS:
. P-P% /P-Px/- C-C* /C-Cx/

N Mean §SD Mean SD N Mean 8D Mean SD
All 521 -.080 .130 .112 .103 1207 .002 .142 095 .106
S>X 250 -.065 .091 .087 .071 244 .011 .165 .112 .112
X>s 271 -.094 .155 135 .121 963 -.001 .135 .088 .103
t<. 125 83 -.067 .077 .081 .064 171 ~-.029 .085 .059 .068
.125<t<. 25 172 -.077 .084 .092 .067 335 -.015 .078 .057 .055
.25<t<.375 113 -.085 .113 .112 .086 242 .008 .145 097 .108
.375<t<.5 82 -.094 .215 159 .172 224 .000 .153 .111 .105
.5<t 71 -.079 .162 .143 .108 235 .043 207 .157 .141

The * denotes model price.

Options violating the immediate early exercise bound are excluded.



Table 22

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: PHLX U.K. POUND
OPTIONS

MODELS: Geske-Johnson two point approximation for American puts and
calls modified for receipt of interest on foreign deposits

PUTS: CALLS:
P-P* /P-Px/ C-Cx* /C-Cx/

N Mean SD Mean SD N Mean 8D Mean 8D
All 400 -.125 .591 .292 .529 811 .023 .521 .278 .441
S>X 226 -.079 .583 .265 .525 256 .043 .531 .347 .403
X>8 174 -.185 .599 .362 .5135 555 .013 516 246 .454
t<. 125 67 -.055 .241 .185 .163 103 -.080 .229 .157 .184
.125<t<.25 125 -.239 .501 .318 .455 223 -.093 .578 .237 .535
.25<t<. 375 99 -.054 .238 .195 .145 170 .006 .289 .216 .191
.375<t<.5 50 -.151 .736 .378 .647 137 .001 .667 .317 .586
.5<t 59 -.061 1.10 .446 1.00 178 .261 .538 .430 .415

The * denotes model price.

Optione violating the immediate early exercise bound are excluded.



Table 23

DEVIATIONS OF MODEL PRICES FROM MARKET PRICES: PHLX WEST GERMAN MARK
OFTIONS

MODELS: Geske-Johnson two point approximation for American puts and
calls modified for receipt of interest on foreign deposits

PUTS: CALLS:
P-P=* /P-Px/ C-C* /C-Cx/

N Mean SD Mean SD N Mean SD Mean 8D
All 702 -.052 .101 .084 .076 1607 -.003 .143 186 .113
5>X 395 -.026 .083 .065 .058 588 ~.014 .149 .102 .110
X>s 307 -.084 .113 .109 .089 1019 .003 .138 .077 .115
£<. 125 115 ~-.023 .066 .051 .047 211 -.018 .062 .048 .043
.125<t<.25 228 -.064 .078 .079 .062 389 ~.019 .095 .065 .072
.25<t<.375 164 -.051 .105 .091 .074 355 -.0058 .158 .087 .132
.375<t<.5 105 -.051 .112 .089 .084 342 .014 .141 .091 .109
.5<t 90 -.058 .153 .121 .109 310 .010 .201 .134 .149

The * denotes model price.

Options violating the immediate early exercice bound are excluded.



Table 24

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
CBOE S+P 100 OPTION

Ragression AO t(A0) Al t(Al) R*x*x2 (ADJ)
P = A0 + Al Px ~.024 -1.63 1.016 359.7 .981
P-Px = A0 + Al WISD .847 11.86 -5.301 -11.48 049
P-Px = A0 + Al (X-5) .047 4.11 .004 3.10 .004
P-Px = A0 + Al t .017 .99 .108 1.36 .001
C = A0 + Al C* .046 1.71 .995 246.84 957
C-Cx = A0 + Al WISD .503 3.93 -3.191 -3.79 .005
C-Cx = A0 + Al (S5-X) .046 2.41 .010 5.19 .009
C-Cx = A0 + Al t .600 22.2 -3.414 -27.29 .214

The * denotes model price.



Table 25

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
AMEX MAJOR MARKET OPTION

Regression AO t(A0) Al t(Al) Rx%2 (ADJ)
P = A0 + Al P* -.068 -3.55 1.011 247.51 .973
P-Px = A0 + Al WISD .626 9.89 -4.068 -10.57 .064
P-P+ = AQ0 + Al (X-8) -.024 -1.85 .008 3.56 .¢08
P-Px = A0 + Al t .010 .45 -.207 -1.96 .002
C = A0 + Al C+# -.038 -1.89 .980 219.70 .963
C-C+x = A0 + Al WISD 1.193 21.05 -8.123 -23.41  .229
C-C* = A0 + Al (S-X) -.089 -6.08 .006 2.72 .004
C-C* = A0 + Al t .066 2.76 -.901 -8.46 .037

The * denotes model price.



Table 26

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
NYSE INDEX OPTION

Ragression A0 t(A0) Al t(Al1) Rx*2 (ADJ)
P = A0 + Al Px .002 .09 .990 106.91 .914
P-Px = A0 + Al WISD 1.550 11.54 -10.49 -11.82 .114
P-P* = A0 + Al (X-8) -.022 -1.04 -.004 -.78 .001
P-P* = A0 + Al t .123 3.01 -.910 -4.05 .015
C = A0 + Al Cx -.154 -12.28 1.023 293.26 .985
C-Cx = A0 + Al WISD .697 12.17 -5.265 -13.97 .130
C-C* = A0 + Al (S-X) -.074 -8.12 .011 7.15 .037
C-C+ = A0 + Al t .003 .17 ~-.615 -6.32 .029

The * denotes model price.



Table 27

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
COMEX GOLD FUTURES OPTION

Regression A0 t(A0) Al t(Al) R*x%x2 (ADJ)
P = A0 + Al Px -.057 - .88 .999 588.7 .990
P-Px = A0 + Al WISD 2.302 6.09 -13.37 -6.35 .011
P-Px = A0 + Al (X-F) .029 .65 ~-.004 -3.77 .004
P-Px = A0 + Al t -.196 -2.12 . 363 1.44 .001
C = A0 + Al C* .724 18 .47 .997 583.8 .989
C-Cx = A0 + Al WISD 2.224 9.82 -8.59 -6.84 .013
C-Cx = A0 + Al (F-X) .484 14 .41 -.006 -10.20 .028
C~-Cx = A0 + Al t .087 1.0 1.85 12.50 .042

The * denotes model price.



Table 28

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
TFE SILVER OPTION

Regression A0 t(RO0) Al t(A1)> R#x%2 (ADJ)
P = A0 + Al Px .012 .77 1.003 3.7 . 870
P-Px = A0 + Al WISD .389 6.17 -1.038 -5.906 .119
P-P* = A0 + Al (X-8) .011 1.09 .007 .86 .002
P-P* = A0 + Al L .013 1.50 -.029 ~1.29 .006
C = A0 + Al Cx .095 6.33 .915 82.4 .893
C-C+* = A0 + Al WISD .638 15.15 -1.845 -15.5 .224
C-Cx = A0 + Al (5-X) ~.006 -.97 ~-.029 -4.53 .024
C-C+x = A0 + Al t -.009 ~-1.34 -.008 -.59 0.000

The * denotes model price.



Table 29

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
CBOE GOVERNMENT BOND OPTIONS

Regression AO t(A0) Al tC(Al) R#*x%2 (ADJ)
P = A0 + Al P* .242 5.73 .962 101.7 .949
P-P%* = A0 + Al WISD .738 7.5¢ -5.19 -6.57 .073
P-P* = A0 + Al (X-8) .128 4.41 -.010 -1.54 004
P-Px = A0 + Al t .43 9.43 -1.628 -8.43 .115
C = A0 + Al C» .256 9.15 .86 65.46 .823
C-Cx = A0 + Al WISD .579 9.65 -4.869 -9.85 .095
C-Cx = AD + Al (5-X) -.010 =~-.60 -.023 -3.90 .016
C~-Cx¥ = AO0 + Al © .150 4.92 -.686 -5.49 031

The * dencotes model price.



Table 30

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
AMEX 13 WEEK T-BILL OPTIONS

Regression A0 t(A0) Al t(A1) R*x*x2 (ADI)
P = A0 + Al Px .019 .44 . 748 13.49 .589
P-P* = A0 + Al WISD .082 1.04 -.781 -3.02 .087
P-Px = A0 + Al (X-8) -.170 ~-7.42 -.096 ~-5.78 .208
P-Px = A0 + Al t -.066 -1.34 -.281 -1.83 .026
C = A0 + Al Cx .024 .73 .716 13.47 .592
C-Cx = A0 + Al WISD .231 3.56 -1.137 -5.63 .202
C-C* = A0 + Al (S-XD -.108 -4.70 -.093 -2.68 .054
C-Cx = A0 + Al t ~-.086 -1.77 -.101 -.65 .003

The * denotes model price.



Table 31

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:

CBT T-BOND FUTURES OPTIONS

Regression

P = A0 + Al Px

P-P* = A0 + Al WISD
P-P* = A0 + Al (X-F)
P-Px = A0 + Al t

C = A0 + Al Cx

C-Cx

n
kg
[«
+

Al WISD

C-Cx

i
™
o
+

Al (F-X)
C-Cx = A0 + Al t

The * denoteg model price.

0.

t(A0)

-.055 ~10.3
001 ¢.10
.001 0.41
.012 -28.4
.115 40.0
.014 1 .42
.069 ~22.6
.084 18.6

.028

.03¢

.010

.368

.907

.004

.024

.280

t(Al)

13,

31.

542.

-41

18.

28

68

30

.04

.79

56

Rx*2 (ADJ)

.996

.000

.075

.317

.989

.000

.369

.103



Table 32

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
PHLX CANADIAN DOLLAR OPTIONS

Regression A0 tC(A0) Al t(Al) R*x*x2 (ADJI)
P = A0 + Al P* .007 .33 .922 35.37 .930
P-P* = A0 + Al WISD .127 3.68 -5.259 -5.25 .226
P-P*x = A0 + Al (X-8) ~-.042 -3.09 -.013 -.72 .005
P-P* = A0 + Al t .001 .03 -.138 -1.64 .027
C = A0 + Al C» .032 2.60 .915 46.73 .909
C-Cx = A0 + Al WISD .069 3.22 -2.779 -3.94 .066
C~-Cx = A0 + Al (S§-X) -.016 ~-1.95 -.016 -1.95 .017
C-Cx = A0 + Al ¢ -.004 -.21 -.015 -.33 .000

The * denotes model price.



Table 33

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
PHLX JAPANESE YEN OPTIONS

Regqressgion A0 t(A0) Al t(A1l) R*x%2 (ADJ)
P = A0 + Al P=x -.064 —-10.34 .952 144 .32 .975
P-P* = A0 + Al WISD .212 7.92 -3.02 -11.73 .206
P-Px = A0 + Al (X-S) -.105 -26.08 -.019 -5.92 .062
P-Px = A0 + Al t -.062 -7.89 ~-.132 -5.48 .053
C = A0 + Al C* .005 .75 . 987 261.23 .982
C~-Cx = A0 + Al WISD .205 7.37 -2.13 -7.88 .048
C-Cx = AQ0 + Al (S8-X) -.013 -3.54 -.011 -4.64 .017
C-C* = A0 + Al t -.062 -8.27 .143 7.55 .044

The * denotes model price.



Table 34

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
PHLX SWISS FRANC OPTIONS

Regression A0 t(AO) Al t(A1) R*x*2 (ADJ)

- - o~ ——— - — .~ . . S R S S - W S . —— b . s S S e S AR MR M G Y S O e et e BV M T A e . S G e e G M At e s ame b s

.090 -10.42 1.012 128.61 .970

|

P = A0 + Al P*

P~-Px = A0 + Al WISD .445 8.71 -5.261 -10.34 .171
P-Px = A0 + Al (X-8) -.080 -14.14 .003 .63  .001
P-P* = A0 + Al t -.073 -6.66 -—.025 -.79 .002
C = A0 + Al Cx -.002 -.26 1.003 204.14 .972
C~-Cx = A0 + Al WISD .605 16.48 -6.031 -16.51 .184
C-Cx = A0 + Al (S-X) .002 .45 .000 .16 .000
C~-C+ = A0 + Al t ~.038 -4.50 .122 5.55 .023

The * denotes model price.



Table 35

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
PHLX U.K. POUND OPTIONS

Regression A0 t(a0)> Al t(Al1) Rx*x*x2 (ADJI)

P = A0 + Al Px .076 1.64 .924 66.98 .918
P-P*x = A0 + Al WISD 2.24 21.89 ~-25.41 -23.54 .582
P-P+ = AQ + ALl (X-5) -.132 -4.39 -.009 -1.19 003
P-Px = A0 + Al ¢t -.121 -2.10 -.015 -.09 .000
C = A0 + Al Cx .027 1.03 .998 134 .48 .957
C-Cx = A0 + Al WISD 1.491 14.44 -15.88 -14.40 .204
C-C* = A0 + Al (S5-X) .013 .67 =-.004 -1.11 .001
C-Cx =

A0 + A1l t -.203 -5.60 .674 7.14 .059

The * denotes model price.



Table 36

REGRESSIONS OF MODEL DEVIATIONS ON MODEL PARAMETERS:
PHLX WEST GERMAN MARK OPTIONS

Regression A0 t(A0)Y Al (A1) R*x%x2 (ADJ)
P = A0 + Al Px -.036 ~6.70 .979 193.73 .981
P-P*x = A0 + Al WISD .389 13.93 -4.09 -15.90 .265
P-P+* = A0 + Al (X-5) -.054 -14.39 -.016 -5.80 .045
P-Px = A0 + Al t -.045 -5.93 -.025 -1.09 .002
C = A0 + Al C* .010 1.98 .987 276.54 .979
C-Cx = A0 + Al WISD .355 12.65 -3.34 -12.86 .093
C-Cx = A0 + Al (5-X) -.010 -2.79 =~.010 -5.89 .021
C-Cx = A0 + Al t ~.027 ~-3.70 .073 3.70 .008

The * denoctes model price.





