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DISCLAIMER 
 
This document was prepared as an account of work sponsored by the United States Government. While 
this document is believed to contain correct information, neither the United States Government nor any 
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warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would 
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service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply 
its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or 
The Regents of the University of California. The views and opinions of authors expressed herein do not 
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of the University of California. 
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ABSTRACT 
In support of the U.S. DOE SubTER Crosscut initiative, we established a field test facility in a deep mine 
and designed and carried out in situ hydraulic fracturing experiments in the crystalline rock at the site to 
characterize the stress field, understand the effects of rock fabric on fracturing, and gain experience in 
monitoring using geophysical methods. The project also included pre- and post-fracturing simulation and 
analysis, laboratory measurements and experiments, and an extended analysis of the local stress state 
using previously collected data. Some of these activities are still ongoing. The kISMET (permeability (k) 
and Induced Seismicity Management for Energy Technologies) experiments meet objectives in SubTER’s 
“stress” pillar and the “new subsurface signals” pillar. The kISMET site was established in the West 
Access Drift of the Sanford Underground Research Facility (SURF) 4850 ft (1478 m) below ground (on 
the 4850L) in phyllite of the Precambrian Poorman Formation. We drilled and cored five near-vertical 
boreholes in a line on 3 m (10 ft) spacing, deviating the two outermost boreholes slightly to create a five-
spot pattern around the test borehole centered in the test volume 40 m below the drift invert (floor) at a 
total depth of ~1518 m (4980 ft). Laboratory measurements of core from the center test borehole showed 
P-wave velocity heterogeneity along each core indicating strong, fine-scale (~1 cm or smaller) changes in 
the mechanical properties of the rock. The load-displacement record on the core suggests that the elastic 
stiffness is anisotropic. Tensile strength ranges between 3‒7.5 MPa and 5‒12 MPa. Permeability 
measurements are planned, as are two types of laboratory-scale hydraulic fracturing experiments to 
investigate the importance of rock fabric (anisotropy and heterogeneity) on near-borehole hydraulic 
fracture generation. Pre-fracturing numerical simulations with INL’s FALCON discrete element code 
predicted a fracture radius of 1.2 m for a corresponding injection volume of 1.2 L for the planned 
fractures, and negligible microseismicity. Field measurements of the stress field by hydraulic fracturing 
showed that the minimum horizontal stress at the kISMET site averages 21.7 MPa (3146 psi) trending 
approximately N-S (356 degrees azimuth) and plunging slightly NNW at 12°. The vertical and horizontal 
maximum stress are similar in magnitude at 42-44 MPa (6090-6380 psi) for the depths of testing which 
averaged approximately 1530 m (5030 ft). Hydraulic fractures were remarkably uniform suggesting core-
scale and larger rock fabric did not play a role in controlling fracture orientation. Electrical resistivity 
tomography (ERT) and continuous active source seismic monitoring (CASSM) were carried out in the 
four monitoring boreholes during the generation of a larger fracture (so-called stimulation test) at a depth 
of 40 m below the invert. ERT was not able to detect the fracture created, nor did accelerometers placed 
in the West Access Drift, but microseismicity was detected for the first (deepest) hydraulic-fracturing 
stress measurement. The CASSM data have not yet been analyzed. Analytical solutions suggest that the 
fracture radius of the large fracture (stimulation test) was more than 6 m (20 ft), depending on the 
unknown amount of leak-off. The kISMET results for the stress state are consistent with large-scale mid-
continent estimates of stress. Currently we are using the orientation of the stress field we determined to 
interpret a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more 
complete picture of the stress field and its variations at SURF. The efforts on the project have prompted 
recommendations for a host of additional follow-on studies that can be carried out at the kISMET site.  
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EXECUTIVE SUMMARY 

Introduction 

Control of subsurface fluid flow requires engineering of subsurface permeability, which in turn relies on 
the ability to create and design fractures of desired size, aperture, orientation, and connectivity. The 
design and execution of effective fracture creation and fracture stimulation for enhanced geothermal 
systems (EGS) depend on knowledge of key properties such as stress state, rock structure and fabric, 
existing fractures, and permeability. The difficulty of characterizing these properties before and after 
stimulation in the deep subsurface results in incomplete knowledge of the effects of active fracturing and 
stimulation, thereby preventing development of advanced adaptive control of fractures for permeability 
management, a major goal of the U.S. DOE SubTER Crosscut initiative. Similarly, remote monitoring of 
microseismicity associated with fracturing and stimulation can result in uncertain event locations and 
low-resolution mapping of fracturing processes. Deep mine environments offer the possibility of detailed 
characterization and proximal monitoring of intermediate-scale hydraulic fracturing and fracture 
stimulation, which in turn provide high-resolution data sets for improved understanding of stimulation 
and related modeling and simulation developments and testing. 

In order to address the challenges of subsurface energy-related processes involving fractures, fracturing, 
and permeability enhancement, earth scientists from several national laboratories and three universities 
have carried out a $1.35M project to develop a new underground facility called kISMET (permeability (k) 
and Induced Seismicity Management for Energy Technologies) 4850 ft (1478 m) below ground at the 
Sanford Underground Research Facility (SURF) in Lead, South Dakota. The purpose of the new facility 
is to provide a test site for research on stress characterization, permeability enhancement, and induced 
seismicity in crystalline rock. Rocks at SURF comprise a sequence of intensely folded Precambrian 
metamorphic schists, phyllites, and amphibolites cut by a number of Tertiary rhyolite dikes. The kISMET 
experiments meet objectives in SubTER’s “stress” pillar and in the “new subsurface signals” pillar 
through the testing of monitoring of fracturing by active seismic, electrical resistivity tomography (ERT), 
and passive microseismic approaches. 

Following careful site selection in the spring of 2015 based on satisfying multiple practical and scientific 
criteria, we designed a borehole array for the selected site and contracted with First Drilling to drill and 
core five approximately vertical boreholes on 3 m (10 ft) spacing, one center borehole 100 m (328 ft) 
deep, and four surrounding boreholes 50 m (164 ft) deep. The four monitoring boreholes were 
instrumented with active seismic and electrical resistivity monitoring equipment, and accelerometers were 
placed in the 4850L drift for measuring induced microseismicity.  

In mid-2016, we carried out predictive hydrogeomechanical modeling and simulation of fracture 
generation and energy release to aid in the design of the field experiments. Starting in August 2016, we 
carried out hydraulic fracturing-based stress measurements and stimulation that determined the stress 
field. In parallel, laboratory studies on core from the boreholes were initiated to measure key rock 
properties. Following the field testing, analytical solutions were applied using field data to estimate the 
sizes of fractures generated. Work is ongoing in the areas of laboratory measurements and experiments, 
and in analyzing previously collected data that can be used to estimate stress at the SURF site. This report 
summarizes the activities and findings of the kISMET project as of October 31, 2016.   



kISMET: Project Summary 2016  
October 2016 vi 

 

 Rev. 1.0 

Site-Selection and Site Infrastructure 

Several criteria were used to locate the kISMET site, among which were preference for a single lithology 
and simple structure to avoid excessive heterogeneity and complexity, availability of key services such as 
ventilation, power, internet, and sufficient room for drilling and testing activities without impeding access 
in the drift for SURF operations. We also required a site at sufficient depth (thickness of overburden) to 
provide stress conditions representative of deep EGS sites, and we wanted to avoid local stress 
perturbations caused by drifts immediately above, below, or astride the site. On two scouting trips to 
SURF, we inspected several sites. One site stood out for its meeting all of the key criteria. The chosen 
kISMET site is in the West Access Drift on the 4850L in Poorman Formation phyllite in an area of 
double-rail track (extra wide drift) with no other drifts nearby.  

We designed a five-borehole array consisting of four monitoring boreholes surrounding a central injection 
borehole in which stress measurements and stimulation would be carried out. A vertical orientation for the 
test borehole was chosen so it would align approximately with the 1 principal stress direction which at 
this depth, 4850 ft (~1478 m), is approximately vertical due to overburden stress. In order to be drilled 
within the confines of the West Access Drift, we developed a drilling design in which the five boreholes 
are aligned in the drift with the outer-most boreholes drilled slightly deviated such that the four 
monitoring boreholes and central test borehole would form a five-spot configuration around a stimulation 
test volume at a completion depth of 50 m (164 ft). We decided to drill the central experimental borehole 
even deeper (100 m, or 328 ft) in order to provide space at depth to conduct the first stress measurements 
and test the equipment, thus reserving the shallower parts of the borehole to conduct the monitored 
fracturing experiments including the extended fracture test, also called the stimulation test. Borehole 
spacing was chosen on the basis of the desire for proximal monitoring of the initiation and growth of the 
hydraulic fractures, while not having the boreholes so close that the fractures would grow far beyond the 
monitoring boreholes of the test volume. The final decision was on borehole diameter with considerations 
including size of cores to be collected, flexibility in deploying existing monitoring and fracturing 
equipment rather than buying all new equipment, and ease of controlling the drilling in this foliated 
phyllite. Our final design called for four HQ (dia. = 3.78 inches, 96 mm) monitoring boreholes 50 m (164 
ft) deep on 3 m (9.8 ft) spacing, and a central NQ (dia. = 2.98 inches, 75.7 mm) borehole, which was 
drilled to 100 m (328 ft) depth to provide extra test length for stress measurements and equipment 
shakedown. Bids from three drilling contractors were received and we selected First Drilling based on a 
combination of positive factors including cost, experienced drilling crew, and good recommendations.  

A subcontract to SURF was established to install rock bolts and safety mesh, electrical power, internet, 
sump, fresh water supply, and access to a water disposal line, along with escort and logistical support for 
equipment transport from surface to the kISMET site. Approximately eight weeks were spent in preparing 
and approving documentation for safety, work procedures, and contracting. During this time, design, 
procurement, and testing of the fracturing and monitoring equipment were carried out. The First Drilling 
crew began mobilizing at Lead, SD, on June 13, 2016, and finished drilling and coring the final borehole 
on July 20, 2016. During drilling, intermediate gyro surveys were made to monitor the orientation of the 
boreholes, and a final survey was made at the bottom-hole locations at the end of drilling. There was 
100% recovery of core, which consisted of banded and often tightly folded phyllite of the Poorman 
Formation. Only one small open fracture was observed during drilling. Each section of core was 
described and photographed at the site, and then stored in core boxes, which were transported to the 
surface for storage at the SURF core repository. 

Borehole deviation was measured twice after drilling and coring were completed, once using a dedicated 
borehole deviation tool, and a second time using the integrated deviation sensors on the optical 
televiewer. The magnetic deviation data showed a maximum of ~6.5 m (21.3 ft) XY deviation relative to 
surface locations for the two outermost deviated boreholes (kISMET-001 and kISMET-005). The two 
inner vertical monitoring boreholes were shown to deviate less than 0.8 m (2.6 ft) from vertical. While the 
bottom of the central test borehole (kISMET-003) deviated roughly 6 m (19.7 ft) from vertical at 100 m 
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depth, the top 50 m of the borehole deviated only ~2 m (6.6 ft) from the vertical direction, creating a 
nominal five-spot pattern around the test volume at 50 m. Given the conditions, First Drilling did an 
excellent job in meeting our design for a five-spot pattern at 50 m depth in this challenging rock. After the 
field hydraulic fracturing and monitoring activities in August and September 2016, the boreholes were 
capped and covered with enclosures that can be walked on and driven over. Re-use of the kISMET site 
and its borehole array for geoscience studies is possible as-is. With additional cost for drilling out a stuck 
impression packer at 72 m (236 ft) depth in kISMET-003, the full length of the 100 m (328 ft) deep test 
borehole could be made available.   

Laboratory Rock Core Studies 

Laboratory core studies are aiming (1) to characterize the mechanical and hydrological properties of the 
rock (phyllite of the Poorman Formation) and (2) to examine the impact of the rock fabric and in situ 
stress anisotropy on hydraulic fracturing. The rock samples used in the laboratory experiments were 
obtained from core from the central test borehole, kISMET-003. For baseline rock property 
characterization tests, we used X-ray CT imaging and ultrasonic velocity measurements, followed by 
measurements of tensile strength and flow permeability. CT scans of core show well-developed 
laminations that are tightly folded; heterogeneity in rock fabric occurs even at the centimeter scale.  

P-wave velocity was measured using a pair of narrow-band immersion transducers for a range of 
orientations and locations along the cores. For each core, the reference orientation was determined from 
the texture (foliation) on the surface of the cores. Cores exhibited very strong velocity anisotropy (as 
much as 15%) and a well-defined peak orientation, possibly resulting from rock foliation. Velocity 
changes (heterogeneity) along each core indicate strong, fine-scale (~1 cm or smaller) changes in the 
mechanical properties of the rock, possibly due to the well-developed foliation. 

Using short disc-shaped samples of the core (dia. = 25.4 mm, thickness= ~10‒13 mm), Brazilian disc 
tests were conducted. The objective of these measurements is to understand the impact of the foliation 
plane on the tensile strength, crack formation, and crack propagation behavior in the rock. The sample 
plugs have their plug-cylinder axis parallel to the foliation. The load-displacement record suggests that 
the elastic stiffness is anisotropic, especially in samples from core where the rock appears stiffest when 
loaded parallel to the foliation, consistent with the velocity measurements. Tensile strength is also 
strongly anisotropic for sample types where the rock is easier to split when loaded parallel to the foliation. 
Tensile strength ranges between 3‒7.5 MPa and 5‒12 MPa. The foliation, mostly defined by the 
alignment of phyllosilicate minerals, serves as a weak plane and seems to have influenced the fracture 
path of samples loaded diagonally relative to the foliation. Samples are planned to be scanned by X-ray 
CT imaging in order to characterize the morphology of the fractures created in these tests. 

Despite the lack of open fractures and very low-permeability nature of Poorman phyllite at the kISMET 
site, leak-off of injected water into the rock matrix from induced fractures can potentially affect hydraulic 
fracture propagation. Therefore, we will be measuring permeability, including potential anisotropy of 
permeability, of the rock matrix as an important control on hydraulic fracturing. We will be using a 
special experimental setup at LBNL built for very tight, low-permeability rock involving a gas-pressure 
decay permeameter. 

Two types of laboratory-scale hydraulic fracturing experiments are under way to investigate the 
importance of rock fabric (anisotropy and heterogeneity) on near-borehole hydraulic fracture generation. 
The first experiment will be conducted using bi-axially confined cylindrical rock cores at the University 
of Wisconsin-Madison. The objective of this experiment is to examine the effect of the rock fabric alone 
on fracture generation. Thick-wall cylinder fracturing tests will be performed in a conventional triaxial 
apparatus on 50‒75 mm lengths of the core from the stimulation test zone with small boreholes of 1/8‒3/8 
inch (3.175‒9.525 mm) diameter drilled parallel to the core axis for fluid injection. The samples will be 
subjected to a biaxial stress state with an isotropic stress comparable to kISMET in situ stress magnitudes. 
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Water will be injected at a constant flow rate to observe the breakdown pressure. Post-experiment 
samples will be observed either by X-ray CT or by slicing the samples in order to document the fracture 
geometry and to address the possibility that the foliation has affected the fracture geometry and/or the 
breakdown pressure. Differential stress magnitude, flow rate, and injected fluid viscosity are potential 
parameters that will be varied in the tests to help identify possible scale effects and aid comparison with 
field data. 

The second experiment will be conducted at LBNL using cube-shaped samples subjected to triaxial 
stresses (principal stresses) that are close to the estimated in situ stresses. The objective of this experiment 
is to examine how the combined effect of rock fabric and stress anisotropy alters the hydraulic fracture 
generation compared to the fabric effect alone. Small-scale hydraulic fracturing experiments will be 
conducted using 1.5-inch (38.1 mm) cubes cut out of the NQ cores used in the X-ray CT imaging and 
ultrasonic velocity measurements. The experiments will use LBNL’s true-triaxial loading frame including 
acoustic emission measurement capability. During the experiment, estimated anisotropic in situ stresses 
will be applied to a rock cube, which is cut so that the rock fabric is oriented in the desired direction with 
respect to the principal stress axes. Subsequently, fluid will be injected in a small-diameter (~1/8 inch 
diameter (3.175 mm)) analogue borehole to induce a hydraulic fracture. The injection pressure will be 
adjusted to determine the fracture re-opening pressure, which will be correlated to the applied minimum 
horizontal (around the borehole) stress in the experiment. After the experiment, the orientation and 
geometry of the induced hydraulic fracture will be examined either non-destructively using X-ray CT 
and/or ultrasonic waves, or destructively by slicing the rock cube. Results of ongoing and future 
laboratory experiments will be reported in conference proceedings and possibly journal articles. 

Pre-Test Modeling and Analysis 

An important part of the kISMET experimental design was the determination of the injection parameters 
(duration of injection at given flow rate) to produce hydraulic fractures with desired size ranges. A second 
objective of design calculations was to provide an initial conservative estimate of the magnitudes of 
potential seismicity induced by the hydraulic fracturing experiments under various injection scenarios. 
We used INL’s FALCON coupled network flow and quasi-static discrete element model (DEM) to 
predict fracture size, breakdown pressure, fracture re-opening pressure, and energy released by fracturing. 
In the DEM method, the rock volume is represented by an assemblage of randomly generated, non-
uniform-sized elements referred to as particles. The DEM lattice of particles is used to simulate 
mechanical deformation and fracture propagation. Each edge of the tetrahedra defining the lattice 
represents an elastic beam connecting two adjacent DEM particles. In a quasi-static DEM model with a 
mechanical load applied, particles will move and rotate into a new mechanical equilibrium via a 
numerical relaxation procedure. The elastic beams between two particles can be deformed and sustain 
increasing stretching and shearing forces. Once the shearing and stretching forces of a beam exceed some 
pre-defined threshold, that beam will break, mimicking a crack initiation, and the stress will be 
transmitted into neighboring beams which are likely to break sequentially, mimicking crack propagation. 
During each time step, this beam-breaking relaxation process is repeated a number of times until no more 
beams break at the given loading level. The hydraulic fracture propagation is treated here as a quasi-static 
process for computational efficiency. In order to account for the local mechanical heterogeneities due to 
variations of mineral fabrics, random perturbations can be added to the tensile strength, shear strength, 
and stiffness constant of individual beams. It turns out that the randomness of the beam mechanical 
strengths, together with the “disordered” DEM lattice, are critical for generating realistic fracture 
geometry and fracture patterns.  

The Force-Displacement law is used to determine both the translational and rotational motion of each 
particle and the contact forces after particle displacement. Once a mechanical load is applied by the 
injection of fluid, an over-relaxation algorithm is used to relax the DEM network to a new state of 
mechanical equilibrium. If a beam reaches the failure criterion, it will be irreversibly removed from the 
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DEM network. In order to couple fluid flow with the DEM model while appropriately accounting for 
pressure dissipation due to flow along fractures and into the matrix due to leak-off, a conjugate flow 
lattice is constructed. Without any measurements of kISMET-specific rock properties (but using 
representative rock property values determined from previous geotechnical studies conducted at SURF), 
we estimated reasonable values for Young’s modulus, Poisson’s ratio, and tensile strength and ran a 
sample problem that behaved like a linear elastic solid before the load reached its peak failure value and 
failed suddenly. This simulated brittle behavior, typical for crystalline rocks, provided enough confidence 
for proceeding with design calculations. In future work, we plan to more formally calibrate the model 
using laboratory core test data. 

In the design calculations, we used 118,634 DEM particles of variable sizes all randomly generated and 
packed into the model domain to form the DEM lattice and associated conjugate flow network. With 
overburden stress (vertical) oriented in the Z-direction, we placed an open vertical borehole in the domain 
into which fluid is injected at 2 L/min (lpm). The permeability of the rock is set to 10 nanoDarcy (1.0 × 
10-20 m2), representing an ultralow-permeability formation. As the fluid injection starts, the pressure in the 
wellbore builds up (at ~35 seconds after injection starts, or equivalently, after ~1.17 L of injection have 
occurred) and becomes large enough to break the beams between DEM particles adjacent to the wellbore. 
This pressure is the breakdown pressure, which causes a nearly vertical fracture to propagate with a 
stable, reduced pressure called the propagation pressure. One important observation is that once the 
fracture starts to initiate, it will open up a crack with a relatively large radius initially, ~1.2 m, with an 
average aperture of ~2.0 × 10-4 m, similar to the values predicted by the analytical calculations presented 
in Chapter 7. Due to the local mechanical heterogeneity incorporated into the model, the initial crack does 
not assume an ideal bi-wing or penny shape, but rather it exhibits asymmetry. As more fluid is injected, 
the crack continues to propagate more or less along the horizontal maximum compressive stress direction 
(Y-axis in the simulation) and eventually grows into an approximate penny shape.  

Addressing concerns of SURF management and physics experimentalists about induced seismicity, we 
used the results of the DEM numerical simulations to provide an estimate of the energy released during 
fracturing. Assuming each beam breakage is a single seismic event, and that all elastic strain energy 
stored in the beams prior to breaking is used in generating earthquakes, the DEM model provides a 
conservative estimate of the potential seismic magnitude. The largest energy release happens in the model 
at the initial fracture-opening stage, which has the most beam-breakage events. The total energy released 
during the 345 seconds of injection is 0.37 MJ, and the average released energy of each event is 96.9 J. 
This corresponds to events with magnitude of ~ -4 (too small to be any concern in terms of induced 
seismicity). 

As an interesting potential confirmation that the FALCON coupled DEM network-flow model mimics 
important physics of hydraulic fracturing, we note that the simulated magnitude-frequency curve follows 
a power-law scaling behavior similar to the Gutenberg-Richter relation. 

Stress Measurement and Stimulation  

The main purpose of the kISMET project was to carry out hydraulic fracturing experiments at depths of 
approximately 5000 ft (1524 m) for determining the in situ stress field, for testing the creation of a larger 
fracture (stimulation), and for observing the effects of rock fabric on fracturing while monitoring the 
process using various geophysical approaches. Motivation for new measurements of the stress field at 
SURF arose from a long history of highly variable stress measurements, for which the source of 
variability was not well known and could be due to rock heterogeneity, anisotropy, or shortcomings of 
measurement techniques. In order to meet the SubTER goal of developing approaches to control 
fracturing at depth, further understanding of the effects of rock fabric, the stress field, and hydraulic 
fracturing processes is needed.  
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Characterization of the stress field at SURF began in the 1970’s, when the site was an active gold mine, 
and continued ever since for satisfying the stress characterization needs for new mining excavations, and 
later for DUSEL and SURF cavern designs. A compilation of measurements with wide scatter was 
regressed to derive approximate equations for v, HMax, and Hmin as a linear function of depth. The ratio 
of maximum-horizontal-to-vertical stress is between 0.6 and 0.9 and the ratio of minimum horizontal 
stress to vertical stress is between 0.36 and 0.6. More recent measurements provided stress values that 
ranged from close to 62 MPa (9000 psi) to 24 MPa (3500 psi) for the largest and smallest stresses, 
respectively, and were highly variable in both direction and magnitude depending on location and rock 
type at SURF.  

Hydraulic fracturing has become a standard method for determining the in situ state of stress in rock 
masses for use in engineering design, and is one of the few methods available for testing in deep 
boreholes (Haimson, 1978). Although numerous past measurements of in situ stress have been made at 
SURF over the years, the present measurements are the first to be performed using hydraulic fracturing. 
The technology we used at kISMET utilizes a fast and continuous tool-tripping wireline hydraulic 
fracturing system for in situ stress measurements and fracture stimulation. The wireline hydraulic 
fracturing system consists of two major downhole tool assemblies: (1) a straddle packer assembly for 
fracture initiation and propagation (stimulation) within the selected test zone; and (2) an impression 
packer orienting tool assembly for fracture delineation. (We also retained the option of using acoustic 
televiewer logging for fracture delineation). In order to run hydraulic fracturing tests, hydraulic fluid 
pressure is generated by two pneumatic pumps (one for the packers and the other for the test zone 
between the packers). A flow meter is also employed to monitor the flow of water into (and out of) the 
test zone during (de) pressurization. The flow rate of the injection fluid into the fracturing test zone is 
monitored by a turbine flowmeter connected between the surface pump and the high-pressure tubing 
leading to the test zone. The packer and test-zone pressures as well as the flow rate are recorded 
simultaneously on a portable computer at 10 samples/s to allow statistical analysis for determining shut-in 
and fracture reopening pressures.  

To perform a hydraulic fracturing stress measurement, a section of a borehole is hydraulically isolated 
using the flow rate-straddle packer assembly while fracturing fluid (water) is pumped at a low flowrate 
into the packed-off interval, gradually raising the pressure on the borehole wall until a fracture is initiated 
in the rock, indicated by a drop of the fluid pressure. Pumping is stopped allowing the test interval 
pressure to decay. Several minutes into the shut-in phase, the pressure is released and allowed to return to 
ambient conditions. The pressure cycle is repeated three times maintaining a similar flowrate. The key 
measures of breakdown, re-opening, and shut-in pressures are picked from the pressure–time record and 
used in the computation of the in situ stress.  

The testing program was planned to include five hydraulic fracturing stress measurements at depths 
between 60 and 100 m (197 and 328 ft) in the central borehole kISMET-003. After testing in seven zones, 
the access to the borehole below approximately 72 m (236 ft) was lost due to a stuck impression packer, 
preventing characterization of fracture orientations for Tests 1 through 6. In order to make complete stress 
measurements in five intervals as planned, we turned focus to intervals above 72 m (236 ft) in depth 
including the stimulation test zone at 40.2 m (1518.6 m below ground surface), and turned to borehole 
televiewer logging as the way to delineate fracture orientations.  

The stimulation test involved keeping the generated fracture open and propagating during a period of 
constant pressure and low flow rate. Following initiation of the hydraulic fracture as indicated by 
breakdown at 22.7 MPa (3291 psi), five stimulation cycles were conducted. The first two cycles were 
conducted with a relatively low flow rate of 0.48 lpm, while the next three cycles used a relatively high 
flowrate of 0.63 lpm. For each cycle, the steady-state pressures were achieved at 20.1-20.3 MPa (2914-
2943 psi) and maintained for approximately 15 minutes in order to finish one round of ERT data 
acquisition; continuous active source seismic monitoring (CASSM) acquisition takes only ~20 sec.  
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The acoustic borehole televiewer (BHTV) was the backup strategy to the impression packer to delineate 
and orient hydraulic fractures. The BHTV was very successful compared with optical televiewer attempts, 
which could not distinguish the dark fractures from the surrounding dark rock. Pre- and post-test BHTV 
runs provided excellent images of the fractures we generated.   

Test data quality was excellent with well-defined breakdown pressures and clear shut-in pressure 
signatures. The minimum horizontal stress (HMin) values range from 20.0 to 24.1 MPa, averaging 21.7 
MPa (3146 psi), approximately 51% of lithostatic stress. The values have a high level of consistency that 
is typical for hydraulic fracturing stress measurements in low-permeability, relatively uniform rock.  

Maximum horizontal stress (HMax) can be estimated if rock tensile strength is known, measurements of 
which are ongoing in the lab. Maximum horizontal stress can also be estimated from the difference 
between the breakdown pressure Pb achieved in the first pressure cycle, and the fracture reopening 
pressure Pr recorded in the second pressure cycle. The maximum horizontal stress values estimated in this 
way range from 38.7 to 48.2 MPa with an average of 44.1 MPa (6394 psi), close to the lithostatic stress. 
While there is uncertainty in this estimate of HMax, it appears that at this depth, the vertical stress and 
maximum horizontal stresses are similar in magnitude which may be indicative of the cross-over from a 
tendency for strike-slip faulting at shallow crustal depths to a tendency for normal faulting at greater 
depth.  

As for the stress directions, fractures created by hydraulic fracturing in homogeneous rock should align 
with the direction of the maximum horizontal stress (HMax). We obtained fracture orientation information 
from the acoustic televiewer log. The analysis of the acoustic televiewer logs involved digitizing the 
fracture traces and importing them to an Excel spreadsheet, where they were fitted to sinusoidal traces of 
known orientation. The traces were all corrected for magnetic declination and represent orientations 
relative to true North. The quality and consistency of the fracture orientations mirror that of the shut-in 
pressures from the hydraulic fracturing. Overall the data set provides an excellent indicator of the 
minimum horizontal stress (HMin) direction with a 356° trend and 12° plunge indicating fractures that are 
striking N86°E with a dip of 78° to the southeast. The fact that the fractures are not following foliation but 
have a non-vertical, though very steep, dip indicates that the principal stress may be inclined slightly off 
vertical. The uniformity of results across tens of meters of depth in the test borehole suggests that stress 
rather than rock fabric is controlling hydraulic fracture orientations.  

Reviews of midcontinent stress measurements suggest a relatively uniform compressive stress field with a 
maximum horizontal stress (σH) oriented NE to ENE. Our measurements at kISMET are consistent with 
this general direction of the regional horizontal principal stresses (σH trending NE to ENE). The kISMET 
determination of average principal stress magnitudes of σHmax ≈ σv ≈ 2σHmin is also in accord with the 
regional conditions.  

Geophysical Monitoring and Analysis 

Borehole logging and geophysical monitoring were conducted before, during, and after hydraulic 
fracturing stress testing and stimulation at kISMET to assess fracture geometry and the potential use of 
geophysical methods for near-real time monitoring of fracture generation and propagation. Mt. Sopris 
borehole acoustic televiewer, optical televiewer, and full waveform sonic logging were conducted 
focusing on the NQ (center) borehole. Electrical resistivity tomography (ERT) and continuous active 
source seismic monitoring (CASSM) were conducted in the monitoring wells (kISMET-001, -002, -004, 
and -005, aka K1, K2, K4, and K5) during the extended stimulation tests at ~40.2 m depth (132 ft) in the 
center borehole. Passive seismic micro-earthquake (MEQ) monitoring was conducted during all of the 
stress test and stimulation activities. 

Crosswell ERT surveys were conducted to provide information concerning the geologic structure, fabric, 
and heterogeneity of the host rock, and to assess the capability of ERT to image the fracturing in near-real 
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time. Two electrode cables with electrode spacing of 1.6 m (5.25 ft) were used to collect crosswell 
imaging data separately between different well pairs across the kISMET test volume. With electrodes 
deployed in the K2-K4 well pair, crosswell ERT data sets were collected before and after stimulation 
operations using a survey configuration designed to optimize both spatial and temporal imaging 
resolution. With electrodes deployed in the K1-K5 well pair, additional crosswell ERT data sets were 
collected before, during, and after stimulation operations. 

Baseline pre-stimulation data were inverted simultaneously in 3D including explicit modeling of 
boreholes in true dimension and with deviations, along with explicit modeling of borehole fluid 
conductivity. The baseline images revealed steeply dipping electrical conductivity variations consistent 
with the host rock structure and mineralogy at the site. 

We used a computational mesh for ERT data inversion that accounted for borehole geometry variations. 
Within the boreholes, the starting model for the inversion was set to the assumed borehole-fluid 
conductivity, but this starting model fluid conductivity was allowed to be modified by the inversion 
subject to being smoothly varying within the borehole. Fluid conductivities were allowed to vary because 
water samples collected from each well and analyzed after the stimulation revealed significantly different 
fluid conductivity between wells (~500 to > 1000 S/cm).  

Time-lapse images from both the K1-K5 and K2-K4 planes were not able to distinguish the induced 
fracture, likely due to the combined effects of a relatively small fracture zone, changes in borehole fluid 
conductivity during the imaging campaign, and the geometry of the imaging planes with respect to the 
fracture zone.  

ERT surveys have the potential to provide near-real time images of rock structure. We endeavored to test 
this possibility by sending collected data directly from the kISMET site via SURF’s fast underground 
internet to PNNL where the data were inverted. With a 10-minute collection time and similar time for 
inversion at PNNL, the roundtrip collection-to-image time was around 20 minutes. We did not have time 
in the field to refine this workflow to demonstrate near-real time ERT, but this will be a priority in future 
ERT deployments. Measures that can be taken in the future to significantly improve fidelity of the ERT 
data include installation of electrodes on the outside of a PVC casing that is grouted into the monitoring 
boreholes in order to isolate CASSM from ERT while still allowing both approaches to be used 
simultaneously in one borehole. 

Passive seismic monitoring using accelerometers located on concrete footings in the 4850L drift recorded 
continuously during hydraulic fracturing activities. Only the deepest hydraulic fracturing tests produced 
usable signals above background noise. For this test, the accelerometer recorded the breakdown event and 
subsequent fracture re-openings. Shallower hydraulic fracturing events did not produce signals 
discernable above the considerable noise of the pumps at the kISMET site. Future use of passive seismic 
monitoring should use borehole-based accelerometers to minimize noise from equipment in the drift.  

CASSM data were also collected during the stimulation test. These data have not yet been processed as of 
the writing of this report.  

Analytical Solutions for Estimating Fracture Size 

The kISMET hydraulic fracturing experiments allowed determination of the magnitude and orientation of 
the minimum and maximum horizontal stresses (magnitude and orientation) at the kISMET site, but did 
not provide a direct measurement of fracture size. Assuming the penny crack conceptual model is 
appropriate for the hydraulic fracture generated in the kISMET Experiment 11 (stimulation test), we have 
used analytical equations along with data on injection flow rates and volumes to estimate fracture size. 
Using the field data, which showed a total fluid injection volume of 41.8 liters and total bleed-back over 
five cycles of -13.8 liters, the net fluid injection volume is 28.1 liters. Assuming no leak-off (zero rock 
permeability), all of the water goes into fracture creation, i.e., the fluid volume that is creating the 
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fractures is the net volume of injected water minus the bleed back. The analytical equations for this case 
suggest that the fracture expanded to a radius of 7.9 m (26 ft) through stimulation Cycles 2 to 6, with 
relatively small radial growth in the last cycle. The equation estimates that fracture aperture values grew 
from 4.3 × 10-5 m to 8.5 × 10-5 m (0.043 – 0.085 mm).  

In order to estimate fracture size in the case on non-zero rock permeability, i.e., with leak-off, we 
considered bounding calculations that exploit two key assumptions. First, we assume that all fluid that 
was not recovered by the bleed-off disappeared as leak-off into the rock. Second, we assume that the 
fracture was created instantaneously and that leak-off volume permeated the rock over the full-size 
fracture-matrix interface. For the first assumption, we assume that the bleed-off volumes for each cycle 
represent the fluid that created fracture growth, the rest having been lost to matrix leak-off. Under this 
assumption, the estimated radius varies from 1.4 m (4.6 ft) in the initial stimulation to 5.7 m (18.7 ft) at 
the end of Cycle 6. These radius values are approximately 70% of those for the impermeable case, while 
the fracture surface areas are approximately 50% of the impermeable case.  

The assumption that the water not recovered in bleed-off flowed into the rock as leak-off can be tested 
using a simple linear diffusion model of flow from the fracture to the rock assuming a constant fracture-
matrix interfacial area. Assuming a reasonable value of non-zero matrix permeability, we find a close 
match between field data and the equation estimate for cycle time and fracture radius at around 75 
minutes and 6 m (19.7 ft) radius, respectively. This corresponding leak-off estimate is 25.7 liters, which 
compares closely to the observed fluid loss of 28.1 liters. We caution that this agreement may be 
fortuitous given the considerable uncertainty in the hydraulic properties of the rock. Nonetheless, the 
magnitude of the possible leak-off volumes may be a bit surprising given the near-zero porosity and 
impermeable appearance of the core, but it may also be a good illustration of how a large surface area and 
injection pressure can offset a low permeability to create significant leak-off from fractures to matrix.  

Site-Wide Stress Analysis 

The kISMET project results provide a means to leverage the extensive site characterization effort that was 
carried out as part of the previous Deep Underground Science and Engineering Laboratory (DUSEL) 
program. In short, the very consistent and first-ever SURF hydraulic fracturing-based minimum 
horizontal stress measurements we made in the kISMET project provide the basis for the integrated 
interpretation of previous stress measurements. Previous overcoring methods for determining in situ stress 
have shortcomings due to the small scale of the strain on which the measurement is based and the 
variability in rock elastic properties (heterogeneity/anisotropy) assumed to relate stress to strain. 
Integrating hydraulic fracturing-based methods with borehole-breakout methods, as we are currently 
doing, overcomes some of these shortcomings and has become the standard for assessing in situ stress in 
oil and gas reservoirs. Borehole breakouts were logged in many of the sub-horizontal site characterization 
boreholes that were drilled for the DUSEL program. Two DUSEL boreholes, Boreholes J and D, are 
particularly relevant to integrated interpretation to complement both site-wide and kISMET-centric stress 
determination. The integrated analysis and interpretation we are currently undertaking of previous stress 
measurements is expected to provide a much fuller picture of the stress field and its variability at SURF.  

Conclusions and Research Needs 

The kISMET team carried out a successful program of drilling and coring, and subsequent hydraulic 
fracturing for determining the stress field, understanding the effects of rock fabric on fracturing, and 
gaining experience in monitoring the fracturing process. Laboratory measurements of core show strong 
effects of anisotropy. Laboratory-based permeability measurements are planned, as are two types of 
laboratory-scale hydraulic fracturing experiments to investigate the importance of rock fabric (anisotropy 
and heterogeneity) on near-borehole hydraulic fracture generation under controlled laboratory conditions. 
Pre-fracturing numerical simulations with INL’s FALCON code predicted fracture radius values in good 
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agreement with analytical estimates, and negligible microseismicity as observed. Field measurements of 
the stress field by hydraulic fracturing showed that the minimum horizontal stress at the kISMET site 
averages 21.7 MPa (3146 psi) pointing approximately N-S (356 degrees azimuth) and plunging slightly 
NNW at 12°. Hydraulic fractures were remarkably uniform suggesting core-scale and larger rock fabric 
did not play a role in controlling fracture orientation. Monitoring using ERT and CASSM in the four 
monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift, 
were carried out during the long fracturing (stimulation) test. ERT was not able to detect the fracture 
created, while the accelerometers in the drift picked up only the fracturing signal from the first (deepest) 
hydraulic-fracturing stress measurement. The CASSM data have not been analyzed yet. Analytical 
solutions suggest fracture radius of the large fracture was more than 6 m (19.7 ft) depending on the 
unknown amount of leak-off. The kISMET results are consistent with large-scale mid-continent estimates 
of stress. Currently we are using the orientation of the stress field determined at kISMET to interpret large 
numbers of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete 
picture of the stress field and its variations at SURF. 

We have identified several follow-on research activities to address needs in the areas of site 
characterization, additional field tests, modeling refinements, and tests for improving geophysical 
monitoring.  
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1. INTRODUCTION 

Lead Authors: Curt Oldenburg and Pat Dobson 

1.1 Motivation 

The purposeful control of subsurface fluid flow requires engineering of subsurface permeability, which in 
turn relies on the ability to create and design fractures of desired size, aperture, orientation, and 
connectivity. For applications such as geothermal energy and oil and gas production, the reservoirs are 
deep and accessible only by long boreholes (wells). The efficiency of recovery of heat or hydrocarbons 
from these reservoirs is often assisted by stimulation, for example using hydraulic fracturing to enlarge 
and extend existing fractures, or to create new fractures to increase fluid flow. The design and execution 
of effective stimulation depends on knowledge of key properties such as stress state, rock structure and 
fabric, existing fractures, and permeability. Given the remote nature of the subsurface environment, it is 
very challenging to characterize these properties before and after stimulation (e.g., Dusseault, 2011). This 
situation results in incomplete knowledge of the effects of active stimulation as obtained from hydraulic 
testing and geophysical monitoring, thereby preventing development of advanced adaptive control of 
fractures for permeability management. Similarly, distant monitoring of microseismicity associated with 
stimulation can result in uncertain event locations and low-resolution mapping of dynamic fracture-tip 
propagation and hydroshearing processes. In contrast, deep mine environments offer the possibility of 
detailed characterization and proximal monitoring of intermediate-scale fracture stimulation, which in 
turn provides high-resolution data sets for improved understanding of stimulation and related model 
development and testing.  

The response of a reservoir to hydraulic stimulation is dependent on rock properties, stress orientation, 
and the presence and orientation of preexisting fractures (Fig. 1.1). Fracturing is the key to enhancing 
permeability for subsurface energy applications in tight formations. For example, in enhanced geothermal 
systems (EGS), hydraulic fracturing or shearing of existing fractures is used to generate flow paths 
through which water can be injected and produced for energy extraction. Challenges in EGS include 
difficulty in estimating stress state, the frequency, magnitude, and temporal and spatial distribution of 
induced microseismic events, effects of heterogeneous rock properties (e.g., rock fabric and existing 
fractures), and the resulting low heat recovery due to non-optimal fracture networks (Grant and Garg, 
2012). Zang et al. (2014) suggest that for crystalline rocks, tensile crack formation may dominate in the 
near-field area, while hydroshearing of existing fractures may be the dominant process farther away from 
the well bore. In oil and gas production, fracturing to enhance permeability in multiple stages along long 
horizontal wells in organic-rich source rocks can be influenced by rock fabric (e.g., Suarez-Rivera et al., 
2013). Production from hydrocarbon wells is often dominated by a few fractures, resulting in poor zonal 
coverage (Warpinski et al., 2009). Finally, there is a need in many injection- and storage-related 
applications (e.g., geologic carbon sequestration (GCS), deep disposal of produced water, and compressed 
air energy storage) for enhancing and controlling permeability to improve injectivity around the well, and 
to reduce permeability of seals or cap rocks. All of these challenges can be addressed through greater 
knowledge of how stress state, rock fabric, existing fractures, and fracturing approach interact to affect 
permeability creation and associated microseismicity. 
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(HMin) can be approximately determined. Two of the surrounding monitoring boreholes were slightly 
deviated to create a five-spot pattern around a test volume at ~50 m (164 ft) depth. The four monitoring 
boreholes were instrumented with active geophysical and electrical resistivity monitoring equipment. 
Accelerometers were placed in the 4850L drift for measuring micro-induced seismicity. In mid-2016, we 
carried out predictive hydrogeomechanical modeling of the stress field and fracture generation to 
anticipate fracture behavior and induced microseismicity. Starting in August 2016, we carried out the 
actual hydraulic fracturing-based stress measurements and stimulation. In parallel, laboratory studies on 
core from the boreholes were initiated. Following the field tests, analytical solutions were used along with 
field data to estimate fracture size. Research is ongoing to integrate SURF-wide observations of borehole 
breakout with kISMET results to extend the understanding of the stress state at SURF.  

Results of this project can potentially benefit a wide variety of subsurface energy technologies. The 
crystalline rock at SURF means that the most direct beneficiary of the project will be geothermal 
applications (EGS), which often suffer from short-circuiting or low effective hydraulic conductivity, but 
the effects of rock fabric (e.g., Nasseri et al., 1997; Zang et al., 2014) that we investigated are also 
relevant to fracturing in marl and shale, of importance to unconventional hydrocarbon reservoirs. 
Similarly, the fracture propagation monitoring that is enabled by proximal access at the kISMET site 
yielded general knowledge about effects of stress, rock fabric, existing fracture network, and stimulation 
approaches on resulting fracture character. On the induced seismicity side, the work may improve 
understanding of event triggers and wave propagation in fractured anisotropic rock. Finally, microseismic 
monitoring of fracturing has broad applicability, and knowledge gained in the project about wave 
propagation in fractured rock may apply to EGS, GCS, and waste-water injection-related induced 
seismicity. In addition, the kISMET site will provide long-term benefits as an experimental facility for 
collection of community data sets related to SubTER pillar goals (e.g., JASON Report, 2014). 

1.3 Plan of this Report  

A variety of tasks was carried out by LBNL, a team comprising Univ. of Wisconsin-Madison, Golder 
Associates, Stanford University, and Sandia National Laboratories (SNL), hereafter referred to as WGSS, 
our direct national lab collaborators, and the South Dakota School of Mines and Technology. This report 
provides a comprehensive summary of kISMET activities in roughly chronological order from site 
selection, characterization, and drilling and coring (Chapter 2), to laboratory studies on cores collected 
from kISMET site (Chapter 3), to predictive modeling and analyses that we used to design the stress 
measurement and stimulation activities (Chapter 4). In Chapter 5, we summarize the hydraulic fracturing-
based stress measurement and stimulation field activities and analysis. Chapter 6 provides preliminary 
analyses of electrical resistivity tomography (ERT), passive micro-seismic monitoring, and borehole 
continuous active source seismic monitoring (CASSM). We present in Chapter 7 estimates of fracture 
radius and other characteristics of the kISMET hydraulic fractures using analytical solutions. In Chapter 
8, we discuss implications of the measurements for the larger-scale stress field at SURF. Chapter 9 
provides a summary of the project accomplishments to date and suggests topics and approaches for future 
research at the kISMET site.  
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2. SITE-SELECTION AND SITE INFRASTRUCTURE 

Lead Authors: Pat Dobson, Paul Cook, Bill Roggenthen, Drew Siler, Curt Oldenburg, and Jaret Heise 

2.1 Site Criteria and Site Selection 

The kISMET team discussed project objectives and scope with staff from SURF to identify locations that 
met the following criteria: 

• Appropriate lithology that avoids excessive heterogeneity and lithologic complexity; 

• Availability of key services (ventilation, power, water, internet, ground support); 

• Space for drilling, for boreholes, and for equipment without interfering with existing SURF 
infrastructure; 

• Sufficiently far away from sensitive physics experiments;  

• Absence of drifts within 150 m (492 ft) below the site so that (downward) vertical kISMET 
boreholes would be far from existing drifts to avoid stress perturbation;  

• Minimum cost for site improvements such as drilling boreholes and adding infrastructure; 

• Sufficient depth to provide stress conditions representative of deep EGS sites. 

Several site-scouting trips were conducted to investigate potential sites at SURF. Our first trip was 
conducted on Feb. 12, 2015 by Curt Oldenburg, Pat Dobson, and Bill Roggenthen. We were escorted 
underground by Tom Regan, and we also met with Jaret Heise and David Vardiman above ground in the 
SURF offices. Three different sites were considered during this visit: two on the 4850L (Fig. 2.1), and 
one on the 4100L (Fig. 2.2). 
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 Location is in well-ventilated and rehabilitated portion of the 4850 level. 

However, Site 1 also had some key drawbacks for the location of kISMET, including: 

 The location is very close to existing physics laboratories;  

 It is in an area of high traffic, which would require excavation of a side alcove for any drilling 
work. 

This site had the potential to be used to determine in situ stress, but it did not appear suitable for a 
hydraulic stimulation experiment given the proximity to several dedicated physics laboratories. Bill 
Roggenthen and a graduate student at SDSMT have been conducting a cross-drift seismic tomographic 
survey in the area near the so-called Big X (intersection between the East and West Access Drifts near 
Drill Stations 1 & 2 in Fig. 2.3) to look at differences in seismic velocity. They have observed some 
significant differences that appear to correspond with the presence of rhyolite dikes and zones within the 
amphibolite that appear to have more intense fracturing (Fig. 2.4). 

Three of the characterization drill holes at Drill Station 2 have widely varying fluid pressures as 
monitored by pressure gauges. They range from a high of 700 psi (5 MPa or 50 bars) (Fig. 2.5) to values 
of 25 and 5 psi (1.7 and 0.34 bar), indicating that the fracture networks that these boreholes intersect are 
poorly connected. Another borehole near the NASA Astrobiology Institute bioreactor (Hole 3A at Drill 
Station 1) has a static pressure of 1200 psi (8.3 MPa) suggesting that it is connected to fractures that reach 
up to the 2000L to sustain this hydrostatic pressure. 
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any other sites that would meet our criteria. After some consideration, they proposed a fourth candidate 
site, located on the 4850L in the West Access Drift where there is a section of double-wide track within 
450 ft (137 m) of Governor's Corner. This site (circled area in Fig. 2.8) has a number of key advantages: 

 It is located outside of the main traffic area and is distant from existing physics experiments; 

 SURF is in the process of upgrading the structural support in the West Access Drift, which would 
allow kISMET to take advantage of these upgrades at no cost to the project;  

 There is an electrical connection available at Governor’s Corner, along with direct access to water 
and drainage;  

 The site is wide enough to allow a drill rig to operate while still permitting passage past the site. 
And the crown is high enough so that the drill rig can drill and core vertical boreholes without 
needing any excavation at the site; 

 The site is in competent rock (Poorman Formation) and is outside of the zone of rhyolite dikes, 
which create unwanted complexity in stress and lithology.  
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Figure 2.9. Dimensions of site (in decimal ft) on the West Access Drift of 4850L selected for kISMET. 
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inclusion of extra depth in the central borehole to work out the bugs in the fracturing system proved to be 
a very good decision, as will be discussed in the stress measurement section.  

The final decision was what size boreholes to drill. We selected HQ sized holes (dia. = 3.78 inches, 96 
mm) for the monitoring boreholes, as this would give us more flexibility in deploying existing monitoring 
equipment in these holes. We were also informed that it would be easier to control the trajectory of these 
larger diameter holes when drilling through this strongly foliated rock due to the stiffer HQ drilling 
assembly relative to NQ. We chose a smaller diameter NQ hole (dia. = 2.98 inches, 75.7 mm) for the 
central experimental hole. This decision was influenced by the fact that the University of Wisconsin 
already had an NQ high-pressure straddle packer assembly. Although we procured a new dedicated 
packer assembly for our experiments, we kept the Wisconsin packer system in reserve as a backup if 
needed.  

2.3 Selection of a Drilling Contractor 

Our team spent a good deal of time developing criteria for selecting the best drilling system and 
contractor for our project. We contacted three different companies and requested them to provide us with 
drilling proposals that took into consideration all of the site and project requirements of our project. The 
drilling requirements specified the drilling configuration illustrated in Fig. 2.11, and also noted that the 
driller would need to comply with the SURF work and safety requirements. SURF operates on a four-day 
work week underground, so that the drilling plan would need to take this into consideration. The 
proposals from bidders needed to specify the drilling equipment that would be used, its dimensions and 
weight, the required services (power, water, ventilation, etc.), and what additives would be used for the 
drilling fluids. The proposals also needed to detail prior underground drilling experience and whether the 
company had prior experience working at the SURF facility. The bidders were requested to provide us 
with an itemized list of costs for mobilization, rig operation, coring, and all related drilling costs, as well 
as logging tools needed to document the borehole orientations. The bids were to be evaluated using a 
best-value criterion. 

All three companies that we contacted submitted bids. Our team evaluated the proposals by breaking 
down the different components of the proposals. This included: (1) the cost estimates for each component 
of the project, along with the total estimated cost; (2) how realistic the time for conducting the work was 
(given that the actual costs would be impacted by the number of days spent drilling); (3) the suitability of 
the rigs for conducting the drilling work; (4) the experience that the company (and individual drillers who 
would be working on this project) had in working underground, and at the SURF facility in particular; 
and (5) past drilling performance. To evaluate this latter factor, we contacted prior clients to find out how 
their drilling experience turned out. We also had a drilling expert at Sandia National Laboratories review 
the proposals and provide our team with feedback. Based on a combination of factors (low price, realistic 
drilling times, superior rig, experienced drilling crew, and good recommendations), we selected First 
Drilling as our subcontractor for the drilling work. 

2.4 Site Preparation and Logistics 

We engaged SURF as a subcontractor to develop the selected kISMET site on the 4850L so that it would 
be suitable for hosting the drilling operations and subsequent experimental work. SURF provided the 
following site improvements under a time and materials contract: 

 Structural support (rock bolts, mesh, etc.) in the drift and ground work to level the area where the 
drill rig would be located;  

 Electrical power for the drilling via a temporary 480V, 200 Amp line coming from the 
transformer near the #6 Winze, along with 120 V power. A permanent power line was installed 
post-drilling prior to the experimental work.  
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 Excavation of an 18 in × 18 in × 18 in sump at the kISMET site; 

 Installation of pick points to facilitate assembly of the drill rig, along with bolts and anchor points 
to secure the drill rig for each hole;  

 Installation of a fiber optic line with an 8-port switch to accommodate the needs of the monitoring 
equipment for the kISMET experiments, as well as the geophones that will be installed in nearby 
locations; 

 Fresh water from the 6-inch industrial water line that runs in the drift. There is a 2-inch spud with 
a valve that is located within 50 ft of the site. The line has ~80 psi (0.55 MPa) pressure, so no 
pressure reducer is needed, and this line is more than adequate for supplying water for drilling 
and subsequent experimental needs.  

 A water-flush line to be used for disposal of cleaned (desilted) drilling water;  

 A rail car with a spool and an air compressor for the packer system.  

In addition to these services and improvements, SURF also provided an escort to accompany and monitor 
our underground operations. SURF also assisted in the transport of equipment down the Yates shaft and 
over to the kISMET site, as well as the transport of all core boxes up to the surface core repository at 
SURF. 

2.5 Drilling 

Our team (Curt Oldenburg, Pat Dobson, Paul Cook, Herb Wang, and Bill Roggenthen) visited the SURF 
site on April 13, 2016, to meet with the SURF staff and the driller from First Drilling, Bill Wortman. We 
gave an overview presentation to the group, which was followed by a discussion of the scope of work 
planned for the drilling operation. This was followed by a discussion of the health, safety, and 
environmental requirements for working underground and needed documentation. We then reviewed the 
proposed work schedule and discussed the logistics for drilling mobilization, drilling activities, and 
demobilization of the drilling rig. We also presented a memorandum of understanding (MOU) between 
SURF and the kISMET team. Under the terms of the MOU, a representative from each institution 
participating in the project was required to sign the document (MOU-2015-0801). After a safety briefing, 
we then visited the 4850L to inspect site conditions and discuss any needed modifications for work. A 
number of recommendations from this meeting were implemented:  

 Contracting a local surveyor (Randy Deibert of Professional Mapping & Surveying, LLC) to help 
site and align the boreholes; 

 Obtaining the services of the gyro logging company (as part of the drilling contract) to ensure that 
our crew was fully trained in the use of this tool;  

 Making sure that we always had a kISMET team representative on site throughout the drilling 
phase;  

 Having custom core boxes built to accommodate the 5-ft (1.52 m) sections of core so that they 
could remain intact. 

The next 6-8 weeks were spent completing all of the required safety and work-procedure documentation, 
finalizing the subcontracts with First Drilling and Professional Mapping & Surveying, and putting 
together a work schedule and plan for core characterization. These documents included the experimental 
planning statement (EPS), standard operating procedures (SOPs) for all of the drilling activities, a job 
hazard analysis (JHA) of the drilling activities, and a work planning and control (WPC) document for 
LBNL work activities at the SURF site (AU-0199). After all of this documentation was completed, and 
First Drilling had provided SURF with a complete shipping manifest of all of the drilling equipment that 
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was going to be transported underground to the site, along with detailed information on all electrical 
devices and material safety data sheets (MSDS) forms for all chemicals that would be used in the drilling 
process, we were finally given the authorization to proceed from SURF. 

The drilling operation has a number of significant safety hazards, including high pressure hoses, rotating 
rods, and high voltage. The work site was demarcated with barriers – anyone who wanted to pass by 
needed to get permission from the driller, and undergo a short safety briefing from the driller. In most 
circumstances, the driller stopped the rig prior to letting people pass through the area. SURF encouraged 
people to use the East Access Drift to minimize traffic through the area. Everyone at the drill site was 
required to follow the rules of both SURF and First Drilling – this covered all kISMET staff present at the 
drill site. All workers complied with the SURF safety regulations, used specified PPE, and had required 
safety training. First Drilling and kISMET workers were accompanied by a SURF staff member that had 
Facility Guide training. All people who conducted work on site were required to take the site-specific 8-
hour safety training class, a course offered by SURF on a regular basis. 

The First Drilling crew began mobilization at Lead on June 13, 2016. The First Drilling crew used a 20 
HH underground electric/hydraulic core drilling rig with a FMC W11 mud pump. Drilling commenced on 
June 22, and was completed on schedule (and under budget) on July 20. Below is a table with details on 
the drilling of the five boreholes. 

 

Table 2.1. Borehole drilling notes. K001 is shorthand for kISMET-001, etc.  

Borehole Date 
spudded 

Date 
completed 

Type Depth (ft) Depth (m) Core loggers 

kISMET-001 6/22/16 6/27/16 HQ, directional 175 53.3 Paul Cook 

kISMET-005 6/28/16 6/30/16 HQ, directional 175 53.3 Paul Cook 

kISMET-004 7/05/16 7/07/16 HQ, vertical 164.9 50.3 Bill Roggenthen 

kISMET-002 7/07/16 7/11/16 HQ, vertical 164.9 50.3 Bill Roggenthen 

kISMET-003 7/12/16 7/20/16 NQ, vertical 329.9 100.5 Bill Roggenthen 

Drew Siler 

 

The drilling procedure was similar for all boreholes. After drilling the first 10-15 ft (3.0-4.6 m) of each 
borehole into the invert (floor), the borehole was reamed and a 10-ft section of stainless steel casing was 
cemented in place and the first initial directional survey was performed to ensure that the hole was 
oriented properly. The boreholes were surveyed periodically during drilling with the Reflex EZ-Gyro tool 
to ensure that the proper orientation of the holes was maintained. The tool has a reported accuracy of 1 
degree azimuth and 0.3 degrees dip. 

One of the key drilling concerns identified prior to drilling was the highly foliated nature of the rock and 
the associated tendency for the drill bit to deviate off course and follow the foliation. First Drilling 
employed several strategies to help mitigate these concerns. These included:  

 Use of stiff 5-ft drill rod sections; 

 Drilling with lower weight on bit. This resulted in slower penetration rates, but allowed for better 
control of the hole trajectory. The planned drilling schedule was to drill around 50 ft (15.2 m) per 
shift to ensure an accurate drilling trajectory to create the kISMET five-spot at 50 m (164 ft) 
below the invert (floor) of the drift. 
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2.6 Geophysical Borehole Deviation Logging 

Borehole deviation was measured twice after drilling and coring were completed, once using a dedicated 
borehole deviation tool and a second time using the integrated deviation sensors on the optical televiewer. 
Sonde azimuth was estimated using a three-component (3C) flux-gate magnetometer while inclination 
was measured using a 3C accelerometer. Measurements were made every 10 cm (3.94 in) from top-of-
casing (TOC) to the bottom of each borehole (either 50 m or 100 m below grade surface). 

The magnetic deviation data showed a maximum of ~6.5 m (21.3 ft) XY deviation relative to surface 
locations for angled boreholes kISMET-001 and kISMET-005 as shown in Fig. 2.15. While the bottom of 
the stimulation well (kISMET-003) deviated roughly 6 m (19.7 ft) from vertical, the top 50 m of the well 
deviated only ~2 m (6.6 ft) from the vertical direction, confirming the creation of a five-spot pattern at 50 
m depth based on gyro deviation log results. kISMET-002 and kISMET-004 deviate less than 0.8 m from 
vertical, confirming nearly vertical boreholes, consistent with the gyro deviation logging. Figures 2.15a 
and 2.15b show the bull’s eye map-view deviations for all five boreholes with depth superimposed on the 
traces to indicate deviation as a function of depth (Fig. 2.15b). As shown in Fig. 2.15d with no horizontal 
exaggeration, First Drilling did an excellent job in meeting our design for a five-spot at 50 m depth given 
the challenges present with foliated rock. The final surface layout of the boreholes based on the surveying 
work is depicted in Fig. 2.16.  
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Figure 2.16. Survey of surface features including the boreholes at the kISMET site. 
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3. LABORATORY ROCK CORE STUDIES  

Lead Authors:  Seiji Nakagawa, Hiroki Sone, Peter Vigilante, and Tim Kneafsey  

The primary objectives of the laboratory core studies are (1) to characterize the mechanical and 
hydrological properties of the rock (phyllite of the Poorman Formation) from the kISMET site at SURF 
and (2) to examine the impact of the rock fabric and in situ stress anisotropy on hydraulic fracturing. 
These laboratory experiments are complementary to the in situ hydraulic fracturing experiments in that 
they examine properties and behaviors under highly controlled conditions that are not practical for field 
experiments, albeit at smaller scale than the field experiments. Because the laboratory experiments are 
conducted under a controlled and known stress state (magnitude and relative orientations of the principal 
stresses with respect to the anisotropy of the rock), comparison of the laboratory-produced fracturing to 
the fractures produced in situ may lead to more accurate estimation of the in situ stress state and better 
understanding of the observed in situ hydraulic fracturing. The rock samples used in the laboratory 
experiments were obtained from core from the NQ borehole in which the in situ hydraulic fracturing tests 
were conducted. While the more involved laboratory-scale hydraulic fracturing tests are still in progress, a 
series of basic rock property characterization experiments have been completed and are summarized in 
this section along with a discussion of the tests that are still in progress.  

3.1 Baseline Rock Property Characterization 

Before conducting laboratory-scale hydraulic fracturing experiments, a series of baseline rock property 
characterization tests were conducted. Our particular focus was on the impact of rock heterogeneity and 
the anisotropy resulting from the very prominent fabric consisting of foliations and small-scale folds in 
the phyllite. The anisotropy and heterogeneity of the rock properties were investigated by means of X-ray 
CT imaging and ultrasonic velocity measurements, followed by measurements of tensile strength and 
flow permeability. 

3.1.1 X-Ray CT Imaging (LBNL) 

Two core samples (diameter 2.00 inches) were obtained from the kISMET-003 NQ borehole from depth 
levels 258.4–259.9 ft (78.76–79.22 m) (“Long” core) and 250–251 ft (76.2– 76.5 m) (“Short” core) below 
the 4850L West Access Drift invert (floor). X-ray CT imaging was performed using a modified GE 
Lightspeed 16 medical CT scanner at 120 kV and 160mA. The CT data were calibrated by scanning a 
number of cylinders of light-element material with known density and constructing a calibration curve. 
The calibration curve does not account for atomic number, thus densities presented here are probably 
lower than gravimetric densities. 

We present in Fig. 3.1 X-ray CT images of the core. Three cross sections are presented for each core 
segment. The first is a centrally located cross section perpendicular to the core axis. The core was aligned 
so that the laminations appear as vertical stripes in this cross section. The second set of cross sections are 
two core axis-parallel cross sections, one obtained from a vertical plane through the core (along the 
foliation planes), and the other in the plane perpendicular to the foliation. In Fig. 3.1, higher densities are 
presented as brighter shades of gray. Some regions have densities higher than what the instrument could 
measure under these conditions, which causes these regions to show as white spots. The lowest density 
regions in the core of Fig. 3.1 have densities near 2.5 g/cm3. 

Both cores show similar features in that in one direction, the scans appear somewhat uniformly laminated. 
In the perpendicular plane, the layers are quite disturbed and very rough. The core from 250 ft (76.2 m) is 
more heterogeneous than the deeper core. As shown, heterogeneity in rock fabric occurs even at the 
centimeter scale, making it difficult to extract a uniform sample for laboratory testing.  
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Water will be injected at a constant flow rate using an ISCO syringe pump to observe the breakdown 
pressure in this simulated laboratory hydraulic fracturing experiment. Post-experiment samples will be 
observed either by X-ray CT or by slicing the samples in order to document the fracture geometry and to 
address the possibility that the foliation has affected the fracture geometry and/or the breakdown pressure. 
Differential stress magnitude, flow rate, and injected fluid viscosity are potential parameters that will be 
varied in the tests. Such a parametric study can help identify possible scale effects, which validate the 
applicability of fracture mechanics principles (Rummel, 1987) and aid comparison with field data. 

If enough core segments are present, we also intend to perform similar cylindrical fracturing experiments 
with varying controlled foliation orientation to systematically observed the influence of foliation 
orientation on the breakdown pressure and hence the stress measurement interpretations. Preparing a set 
of samples for such a test appears to be challenging due to the extreme core-scale heterogeneity of the 
Poorman Formation. We are planning to obtain larger HQ cores with relatively long intervals of 
consistent lithology and foliation, although these may not necessarily come from the same intervals of the 
kISMET borehole at which stress measurements were made. 

3.2.2 Mini Cube Fracturing Test—In Situ Stress and Texture Anisotropy Effect 
(LBNL) 

Small-scale hydraulic fracturing experiments will be conducted using 1.5-inch cubes cut out of the NQ 
cores used in the X-ray CT imaging and ultrasonic velocity measurements. The experiments will use 
LBNL’s true-triaxial loading frame including acoustic emission measurement capability (Fig. 3.8). With 
this setup, maximum principal stresses of ~9950 psi (68.6 MPa, horizontal stresses) and ~47700 psi (329 
MPa, vertical stress) can be applied. The acoustic emissions can be monitored and their locations 
determined using 12 miniature AE sensors embedded in the loading platens.  

During the experiment, estimated, anisotropic in situ stresses will be applied to a rock cube which is cut 
so that the rock fabric is oriented in the desired direction with respect to the principal stress axes. 
Subsequently, fluid will be injected in a small-diameter (~1/8 inch (3.175 mm) diameter) analogue 
borehole to induce a hydraulic fracture to determine the breakdown pressure. Once the fracture is 
generated, the injection pressure will be temporarily reduced, and then increased again to determine the 
fracture re-opening pressure which will be correlated to the applied minimum horizontal (around the 
borehole) stress in the experiment.  

After the experiment, the orientation and geometry of the induced hydraulic fracture will be examined 
either non-destructively using X-ray CT and/or ultrasonic waves, or destructively by slicing the rock 
cube.  

 



October 2

 

 

(a) Gr

Figure 3.

3.3 D

Laborator
preliminar
anisotropi
help interp
indicates, 
folding, w
fabric sug
heterogen
scale folia
Report, th
orientatio

The strong
cores) bas
surface of
significan
currently 
planes and
the boreho

 

 

 

2016 

rooved loadin

8. (a) Miniatu
apparatus a
which a sm
fractures. (b
emissions.  

Discussion

ry experiment
ry results of r
ic and heterog
pret the field 
local mm-sca

which results i
ggests the beh
neity and fract
ation planes o
he observed h
n.  

g heterogenei
sed upon the e
f the cores and
nt changes in t
identifying th
d the orientat
ole wall imag

ng platens for 

ure laboratory
allows for thre

mall “borehole
b) The experi

 and Conc

ts are still in p
rock character
geneous. This
test results. In
ale foliation p
in strong azim

havior of the i
turing along w
or the borehol
ydraulic fract

ity makes it d
estimated in s
d the oriented
the rock fabri
he core orient
ion of the fold

ge than individ

 

kISMET: Pro

cube samples

y-scale hydrau
ee principal st
e” is drilled, in
iment can be c

clusions 

progress at th
rization indic
s may make it
n particular, a
planes can int
muthal anisotr
n situ hydrau
weak planes (
le axis. And y
tures in the kI

difficult to sel
situ principal 
d images of th
ic over the thi
tations based u
d axes. This m
dual features 

oject Summa

  

s  (b) V

ulic fracturing
tresses to be a
njection into w
conducted wi

e time of writ
cate that the in
t difficult to u
as the “Long 
tersect the ave
ropy around t

ulic fractures m
(such as mica 
yet as will be 
ISMET field 

ect cube samp
stress orienta

he borehole w
ickness of the
upon the over
makes it some
such as foliat

ary 2016  

Velocity heter

g experiment 
applied to a ro
which can be
ith concurrent

ting this kISM
n situ rock at
use small-scal
core” from th
erage foliation
the core axis. 
may be affect

a sheets) that a
shown in Cha
experiments w

ple orientatio
ations. This is
walls are diffic
e coring bit ke
rall textures r
ewhat easier t
tion bands an

rogeneity 

using a cube
ock cube cut 

e used to indu
t monitoring 

MET Summar
the kISMET 
le laboratory 
he 258.4–259
n bands at ste
The complex

ted by local sm
are not aligne
apter 5 of this
were remarka

ons (i.e., orien
s because the 
cult to match 
erf. For this re
resulting from
to match betw

nd mineral-fill

Re

e sample. The 
out of a core 

uce hydraulic 
of acoustic 

ry Report. Th
site is extrem
experiments 
.9 ft interval 
eep angles du
x nature of the
mall-scale 

ed with the lar
s Summary 
ably uniform 

ntations to cut
texture on the
up due to 
eason, we are

m the foliation
ween the core
led fractures. 

35 

ev. 1.0 

 

in 

he 
mely 

to 

ue to 
e rock 

rge-

in 

t the 
e 

e 
n 
e and 

 



kISMET: Project Summary 2016  
October 2016 36 

 

 Rev. 1.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page left intentionally blank. 
  



kISMET: Project Summary 2016  
October 2016 37 

 

 Rev. 1.0 

4. PRE-TEST MODELING AND ANALYSIS 

Lead Authors: Hai Huang, Jing Zhou, Earl Mattson, and Thomas Doe  

4.1 Introduction 

An important part of the kISMET experimental design is the determination of the injection parameters 
(duration of injection at given flow rate) to produce hydraulic fractures with desired size ranges for their 
intended purposes. For the stress-measurement fracturing, it was important to assure that the fractures are 
large enough to be representative of the stress field and produce reasonable stress values, but not so large 
that they penetrate into the main kISMET experiment volume, which is approximately 40 m (131 ft) 
below the drift invert (floor) around the five-spot pattern. For the stimulation experiment conducted in the 
test volume, it was important to create fractures large enough to have a reasonable geophysical signature, 
but not so large that they would extend significantly beyond the monitoring array. 

The second objective of design calculations is to provide an initial conservative estimate of the 
magnitudes of potential seismic activities induced by the hydraulic fracturing experiments under various 
injection scenarios. Vibration and seismicity were pointed out as a concern by SURF staff because of 
potential negative effects on other experiments carried out at SURF.  

Both analytical calculations and numerical simulations were used in the project for estimating the fracture 
size and volume prior to kISMET hydraulic fracturing. In this section, we restrict our presentation to pre-
test analysis of the numerical simulation approach, and we bundle presentation of the analytical methods 
in with post-test analyses of fracture size presented in Chapter 7. The main objective of the pre-test 
modeling and simulation studies reported here is to provide initial estimates of the fracture sizes (length 
and height), geometry, breakdown pressure, and fracture propagation pressure in order to inform the 
design of the hydraulic fracturing experiments. A secondary purpose is to provide some background on 
numerical simulation of hydraulic fracturing and the specific methods that we used in the kISMET 
project.  

4.2 Methodology of Coupled Network Flow-DEM Model 

Hydraulic fracture propagation in crystalline low-permeability rocks is a very complex process, controlled 
by many factors, e.g., in situ stress state, injection rate, fluid viscosity, and rock heterogeneity across 
many scales, ranging from mineral fabrics to natural fractures of varying sizes, and mineral fillings. Very 
often the generated fracture morphology is difficult to monitor and characterize in time during the 
fracturing experiments in the field through existing diagnostic methods. Thus the development of physics-
based hydraulic fracturing models not only provides valuable information to guide fracturing experiment 
design and monitoring planning, but also helps interpret experimental results and monitoring data. A 
robust hydraulic fracturing model should at least include the following physics:  

(1) stress concentration and redistribution before and during fracture propagation; 

(2) pressure dissipation due to viscous flow along discrete fractures and within the formation, and due 
to leak-off from fractures into formation;  

(3) appropriate coupling between fracture opening and fluid flow.  

There have been a number of hydraulic fracturing models with varying levels of physics rigor developed 
using different analytical and numerical approaches (e.g., Economides and Nolte, 2000; Xu et al., 2010; 
Dahi-Taleghani and Olson, 2011; Wu and Olson 2013). In this project, a coupled network flow and quasi-
static discrete element model (DEM) developed by INL called FALCON was applied for pre-test 
fracturing design purposes because it provides a nice balance between simulation run time and rigor of 
modeled physics. 
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Once a mechanical load is applied (the load is imposed by the injection of fluids in this case), an over-
relaxation algorithm is used to relax the DEM network to a new state of mechanical equilibrium in which 
the net forces and moments are zero for all of the DEM particles. If a beam satisfies the von Mises failure 
criterion given by  

 , (4.3) 

it will be irreversibly removed from the DEM network, giving rise to crack initiation and growth. Here ε 
is the longitudinal tensile strain of the beam, and c is the critical longitudinal tensile strain (the maximum 
tensile strain that the bond can sustain), and c is the critical rotational angle above which the beam will 
break, even in the absence of tensile strain. Typical values for c and c (dimensionless) range from ~10-3 
to ~10-2 for rocks and many other polycrystalline brittle solids. This criterion can simulate both tensile- 
and shear-induced rock failures. 

In order to couple fluid flow with the DEM model while appropriately accounting for viscous pressure 
dissipation along fractures (approximated by Couette flow between parallel plates) and through the 
formation (Darcy flow) due to leak-off of hydraulic fracturing fluids, a conjugate flow lattice is 
constructed based on the DEM lattice, as illustrated in the 2D example of Fig. 4.1(b). Conjugate nodes are 
assigned to the centers of polygons (2D DEM lattice) and tetrahedrons (3D DEM lattice). The flow lattice 
is formed by connecting the neighboring conjugate nodes. Assuming Darcy flow is valid, the governing 
equation for fluid flow is 

 , (4.4) 

where  is the porosity of the porous medium, f is the density of the injected fluid, k is the formation 
permeability, µ is the fluid’s dynamic viscosity, p is the pressure, and Q is the injection rate. Fluid 
pressure at each conjugate flow node is updated during each time step. Any pressure alteration will exert 
additional force on the neighboring DEM particles as equivalent body forces through the following 
equations  

 , (4.5) 

 . (4.6) 

It is important to note that before a crack is initiated, the coupled network flow-DEM model reproduces 
the conventional poroelasticity effect. When an elastic beam breaks, a more conductive flow channel will 
be generated which connects the two associated fluid nodes of the flow network with a new permeability 
in the form of 

 
12

2b
k   (4.7) 

where b is the aperture of the fracture (same as the separation distance of the two neighboring DEM 
particles that have been “cleaved,” a direct output of the DEM model). The new permeability will replace 
the original value and is used in the pressure simulations. The leakage from fractures into adjacent porous 
matrix is accounted for by connecting the flow nodes along the fractures with the flow nodes within the 
porous matrix, unlike most other boundary element models that typically only account for fluid flow 
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along fractures. This unique feature allows FALCON to evaluate the leakage of fracturing fluid into the 
porous matrix. 

The simulation of the coupled network flow-DEM processes consists of interleaved fluid flow, 
mechanical relaxation of the DEM network, and beam-breaking steps. During each time step, the new 
fluid pressure field (in both fractures and matrix) is obtained first by solving Eq. 4.4. Then the new fluid 
pressure field is applied to the DEM network according to Eqs. 4.5-4.6, and the DEM network is relaxed 
to a new mechanical equilibrium. The beam that most exceeds the failure criteria, which is usually near a 
crack tip, is then removed from the DEM network and the network is again relaxed into a new state of 
mechanical equilibrium. The mechanical relaxation and beam-breaking are repeated a number of times 
during each time step, mimicking crack initiation and propagation, until no additional beam-breaking 
occurs, at which point the simulation proceeds to a new time step. This quasi-static approach to modeling 
hydraulic fracturing is reasonable because stress build-up and relaxation associated with hydraulic 
fracture propagation often exhibits quasi-static behavior. 

 

4.3 Model Calibration 

4.3.1 Calibration Parameters 

The DEM model parameters, normal force constant (kn), shear force constant (ks), critical tensile strain 
(c), and critical rotational angle (c) must be calibrated to accurately represent the mechanical properties 
of brittle rocks such as Young’s modulus (E), Poisson’s ratio (), tensile strength (T) and compressive 
strength (c) (Huang and Mattson,  2014). Tables 4.1–4.2 list the geological and operational parameters 
chosen for pre-fracturing test simulations, based on the results of Vigilante (2016) who summarized 
current knowledge of stresses and rock mechanical properties at the SURF site. 

 

Table 4.1. Rock properties and operational parameters used in the simulations. 

Parameters Value 

Young’s modulus (GPa) 41 

Poisson’s ratio 

Shear modulus (GPa) 

Density (g/cm3) 

Uniaxial compressive strength (MPa) 

Uniaxial tensile strength (MPa) 

Formation permeability (nanoDarcy) 

Formation porosity 

Injection rate (liter/min = lpm) 

Injection fluid viscosity (Pa s) 

0.23 

17.9  

2.95 

115 

14 

10  

0.06 

2.0 

1.0 × 10-3 

 

Table 4.2. Estimated in situ principal stresses from compilations of Vigilante (2016). 

Principal Stress v HMax HMin 

Value (MPa) 44 30.35 25.07 
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radius initially, ~1.2 m, with an average aperture of ~2.0 × 10-4 m. These predicted values are similar to 
analytical calculations presented in Chapter 7. Due to the local mechanical heterogeneity incorporated 
into the model, the initial crack does not assume an ideal bi-wing penny shape, but rather it exhibits some 
asymmetry. As more fluid is injected, the crack continues to propagate more or less along the horizontal 
maximum compressive stress direction (Y-axis in the simulation) and eventually grows into a penny shape 
(see Fig. 4.5c - Fig. 4.5d). Unlike the uniform crack-front growth, the simulated growth of the crack front 
at any given moment is actually non-uniform, with some parts of the crack front growing and the rest 
periodically static. The uniform growth concept is valid only in a statistical sense during the late stages of 
crack propagation. Also, because there is randomness introduced into the mechanical properties of beams, 
the fracture propagation is not perfectly symmetric at both sides, which is realistic for natural rock 
considering the heterogeneity in the subsurface environment. The generated crack surface versus injected 
fluid volume is summarized in Table 4.3. The crack radius matches with the analytical solution described 
in Chapter 7. The numerical model result shows a similar trend to the analytical solution for fracture 
radius vs. injection volume. 
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5. STRESS MEASUREMENT AND STIMULATION 

Lead Authors: Herb Wang, Moo Lee, Thomas Doe, Bezalel Haimson, Hiroki Sone, Mathew Ingraham, 
Neal Lord, and Peter Vigilante 

5.1 Introduction 

The University of Wisconsin-Madison, Sandia National Laboratories, and Lawrence Berkeley National 
Laboratory conducted hydraulic fracturing and stimulation experiments as part of kISMET project 
sponsored by the U.S. Department of Energy (DOE) SubTER (Subsurface Technology and Engineering 
Research, Development and Demonstration) cross-cut initiative. The kISMET experiments meet 
objectives in SubTER’s “stress” pillar and the “new subsurface signals” pillar by testing the monitoring of 
fracturing by active seismic, electrical resistivity tomography, and passive microseismic monitoring. The 
kISMET facility is located at the 4850L in the West Access Drift near the Davis Campus of SURF (Fig. 
5.1). The tests were conducted in the central hole, kISMET-003 (aka K3, K03, and K003). The borehole 
is vertical with a 7.6 cm (3 in) diameter and 100 m (328 ft) length located in the zone of Precambrian 
metamorphic phyllite. 

A broad objective of the project was to define the in situ state of stress at SURF because questions have 
arisen from the large variability in previous stress measurements. What is the source of the stress 
variability? Is it rock heterogeneity and/or anisotropy? Is it the influence of excavations? Is it related to 
the scale of the overcoring measurement technique? These issues are important to understand in terms of 
larger SubTER goals of controlling the geometry of a “designer” fracture network and induced seismicity. 
A further motivation was to interpret image logs from 1654 meters (5400 ft) of continuously-cored, sub-
horizontal borehole that were part of geotechnical studies at SURF under its previous name (Deep 
Underground Science and Engineering Laboratory, or DUSEL). The image logs showed widespread 
breakouts having variable intensities and orientations in different boreholes and different portions of 
boreholes. They represent a valuable source of data to understand how stresses vary at different spatial 
scales within the underground (Lucier et al., 2009), which is discussed in Chapter 8. Their quantitative 
interpretation, however, requires a well-characterized minimum horizontal stress magnitude and direction.  

The organization of this chapter is as follows. First, we summarize previous measurements of stress at 
SURF. Next we describe the test equipment and experimental procedures that we used at kISMET to 
measure stress by hydraulic fracturing; these methods closely follow the International Society of Rock 
Mechanics (ISRM) protocol described by Haimson and Cornet (2003). Then we present the measured 
stress test data and their interpretation for the minimum horizontal stress magnitude and direction. 
Following this, we present results from the stimulation phase during which fracture growth was controlled 
via low-flow injection rates. The associated CASSM and ERT monitoring experiments are presented in 
Chapter 6. Finally, the relationship of the kISMET results to regional stresses is discussed.  
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5.3.2 Straddle Packer  

The wireline straddle packer assembly consists of three major components: (1) two inflatable packer 
elements; (2) a hydraulic fracturing interval spacer; and (3) a top adaptor for connecting a wireline and 
hydraulic lines. The packer element consists of a high-pressure inner tube and a braided or ribbed steel 
reinforced outer rubber cover. The straddle packer incorporates two separate mandrels with a rigid 
interval spacer. This arrangement enables the interval spacer to be flush with the packer elements, and 
prevents tensile failure by splitting of the interval spacer when very high pressures are required to fracture 
the test zone. The assembly is tripped in the borehole on a wireline operated by a hoist.  

The top straddle packer adaptor accommodates one hydraulic line to both packers, two parallel hydraulic 
lines to the hydraulic fracturing interval, and a port to a downhole release valve (Figs. 5.4 and 5.5). We 
used the two parallel hydraulic lines for interval pressurization and monitoring. One line is connected to 
the pressure generator to supply fracturing fluid and pressure to the fracturing interval. The other parallel 
line is connected to the surface pressure transducer for monitoring the interval pressure without friction 
loss. The monitoring line accurately provides the interval pressure minus the hydrostatic head between the 
surface and the test zone.  

After each test, the packers are deflated by releasing the packer pressure. The pressure relief valve is a 
normally-open valve consisting of a conically shaped piston and a spring acting against the piston. During 
tool tripping to the test depth, the normally-open relief valve allows the packers and all hydraulic lines to 
be filled with the water in the borehole. During packer inflation, fluid is partially blocked by the small 
venting holes drilled inside the piston, and pressure accumulates on the inlet side. The pressure 
differential thus created eventually closes the relief valve. When the pressure is dropped at the conclusion 
of a test by venting the pressure line on the surface, the spring will push the piston to its normally-open 
position and the pressure will be released to a level equal to the water head. This facilitates the deflation 
of packer elements. The fracturing tool can be reset at a different depth in the hole without retrieval.  
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Figure 5.9. Pressure-time and flow rate-time plot obtained in Test #9 in kISMET-003. 

 

The testing program was originally planned to include five hydraulic fracturing stress measurements at 
depths between 60 and 100 m (197 and 328 ft) in borehole kISMET-003, the central stimulation hole for 
the experiment. The upper limit of 60 meters was to provide a 20-m buffer between stress measurement 
zones and the main stimulation zone at 40.3 meters. The straddle packer assembly had a 0.75-m interval 
between the packers, and the packers themselves had 0.9-m sealing lengths. The goal of zone selection 
was to find 3-m long sections with 1-m of rock free of natural fractures with 1-m buffer zones above and 
below that were free of anything that could compromise the packer seal. 

Test zones were selected based on inspection of the core. With the high rock quality, it was possible to 
find zones that were free of open and healed natural fractures with a minimum of quartz or calcite veins.  
Where possible the selection favored rock with less distinct foliation to reduce the likelihood that 
fractures would preferentially be controlled by the rock anisotropy. 

The original target was to have five test zones with approximately equal spacing and a 20-m buffer zone 
to the main stimulation horizon. The buffer zone was based on predictions of fracture sizes in which fluid 
injection of 4 liters for a stress measurement would produce a fracture with a 3.4 m radius and an 
injection of approximately 30 liters for the main stimulation would produce a fracture with about an 8-m 
radius (see Chapters 4 and 7). 

After the deepest original test zone at 95.2 m was found to have an anomalously high shut in pressure, 
two tests were added at 97.3 m and 89.4 m to better define the bounds of the possibly higher stressed 
rock.  

After completing the fracturing in the seven test zones, the access to the borehole below approximately 72 
m (236 ft) was lost due to a stuck impression packer. This prevented access to the deep parts of borehole 
kISMET-003 to obtain fracture orientations for Tests 1 through 6. In order to obtain data for five intervals 
as planned, including fracture orientations, three tests plus the stimulation interval test were carried out 
above 72 m in addition to Test 7. The list of test zones appears in Table 5.1 and Figure 5.10. 
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Following initiation of a hydraulic fracture indicated by breakdown at 22.7 MPa (3291 psi), five 
stimulation cycles were conducted (Fig. 5.11). The first two cycles were conducted with a relatively low 
flow rate of 0.48 lpm, while the next three cycles used a relatively high flow rate of 0.63 lpm. For each 
cycle, the steady-state pressures were achieved at 20.1-20.3 MPa (2914-2943 psi). The steady state P-Q 
was maintained for approximately 15 minutes in order to finish one round of ERT data acquisition 
(CASSM run takes ~20 sec). The amount of fluid injected for each cycle was 7.2, 7.7, 6.0, 9.0, and 11.7 
liters from the 1st to 5th stimulation cycles, respectively. The fracture stimulation tests were successfully 
conducted with continuous CASSM data and four sets of ERT data while the fracture was kept open.  

 

Figure 5.11. Pressure-flow rate-time plot obtained during the stimulation experiment in kISMET-003. 

5.4.3 Fracture Delineation and Orientation 

After completion of the first seven hydraulic fracturing tests in the deep part of borehole kISMET-003, 
we attempted to obtain oriented fracture impressions using the wireline impression packer with 
compass/magnetometer. The impression packer was lowered to the shallowest test depth (Test #7 at 61.6 
m borehole depth (1540 m below surface)). The impression sleeve produced only short traces of a 
fracture. The traces were about 2 inches long and they were not mirrored on the other side of the packer. 
The incomplete trace was thought to be an effect of inflating the packer to only 15 MPa (2175 psi) while 
the shut in pressure of that test appeared to be around 20 MPa (2900 psi). For the second impression test 
(Test #5 at 73.5 m (241 ft) borehole depth (1551.6 m (5090 ft) (below surface)), the packer inflation 
pressure was raised to 20 MPa (2900 psi) in an attempt to get a clear impression of the fracture. The 
pressure was declining slightly, and an attempt to bring the pressure back to the 20 MPa level resulted in 
an apparent failure of the packer element as indicated by complete loss of pressure in the packer. On 
attempting to retrieve the packer back to the surface, it became stuck in the hole after coming up only 
about 30 cm (12 in). We believe the impression packer element ruptured which resulted from inflating the 
impression sleeve excessively. Many attempts to retrieve the impression packer failed. Finally, we 
decided to retrieve the compass/magnetometer probe and hydraulic lines by shearing the safety pin 
located between the packer element and the downhole orienting probe, leaving the impression packer in 
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SURF under all of its various names over the years, the present measurements are the first to be 
performed using hydraulic fracturing. 

Hydraulic fracturing occurs when the fluid pressure in the isolated portion of the borehole reaches a 
critical level, called the breakdown pressure, Pb. At breakdown, the rock fractures in tension causing 
borehole fluid loss and a drop in pressure. Fig. 5.13 shows an idealized pressure-time record for a 
hydraulic fracturing stress measurement with the important pressures labeled. The inset shows the 
creation of the hydraulic fracture normal to the minimum horizontal stress, HMin. 

With continued injection, the pressure in the test zone stabilizes to a value that reflects the balance of 
keeping the fracture open, extending the fracture, and pressure and flow losses along the fracture length. 
The resistance to fracture extension decreases as the fracture grows, but the pumping pressure was only 
slightly greater than the stress normal to the fracture because of the low pumping rates used in these 
experiments. 

The cessation of pumping is called “shut in,” and the pressure after shut in, Psi, is taken as a measure of 
the stress normal to the fractures. For a vertical fracture in a vertical borehole, this is the minimum 
horizontal stress, HMin. There are several measures of the shut-in pressure including the instantaneous 
shut-in pressure, Pisip, a small, sharp drop immediately on cessation of pumping, and the derivative shut-in 
pressure, Pdpdt (Hayashi and Haimson, 1991). Pdpdt has a basis in defining multiple flow periods from the 
end of fracture extension through fracture closure and is based on the widely used hydraulic fracturing 
analysis methods used in the oil industry (Nolte, 1986). 

An additional widely used method of obtaining the stress normal to the fracture is the step test, or 
hydraulic jacking test (Doe and Korbin, 1987) shown in Fig. 5.13 and in the last injection cycle in Fig. 
5.9. This method injects at variable pressures and rates to produce a pressure versus rate plot that 
indicates fracture opening. Step tests may use relatively large amounts of fluid especially in the higher 
pressure and flow steps. In the interests of limiting fracture size and the extension of stress-measurement 
hydraulic fractures into the main kISMET experiment volume at approximately 50 m (164 ft) depth in 
borehole kISMET-003, step tests were limited to only two stress measurements and those used relatively 
short step durations. 

Shut-in pressure determination may have considerable uncertainty when the rock is permeable due to 
conductive fractures or appreciable rock matrix permeability, which create a rapid pressure fall off after 
shut in. Fortunately for these tests, the pressure decay after shut in is slow, and the range of shut-in 
pressures from different methods is not highly variable. Furthermore, because of the quality of the tests 
due partly to the low permeability of the rock, step tests were not essential to define the shut in pressure. 
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a standard deviation of 7%. While there is uncertainty in this estimate of HMax, it appears that at this 
depth, the vertical stress and maximum horizontal stresses are similar in magnitude which may be 
indicative of the cross-over from a tendency for strike-slip faulting at shallow crustal depths to a tendency 
for normal faulting in the deep crust (Zoback et al., 2003).  

Although the methods we have used are widely applied, they are based on several assumptions, such as 
linear, isotropic elasticity, or the interpretation of the variables, Pb and Pr. For example, some authors 
have pointed out that the reopening pressure includes effects of system compliance and that the fracture 
has not propagated far away from the stress concentration at the borehole (Rutqvist et al., 2000; Bunger et 
al., 2010).  We have not analyzed these possible effects quantitatively, but we point out that our 
pressurization system was close to the hydraulic fracturing interval to minimize problems of system 
compliance and we used low flow rates to control fracture propagation. The uncertainty associated with 
the assumption of the Kirsch solution for stress distribution around a circular hole is more problematic 
given the anisotropy of the phyllite. An alternative approach using linear elastic fracture mechanics for 
the breakdown pressure will be pursued in future kISMET research.    

5.5.4 Results of Tests 1 and 2 

The results from Tests 1 and 2 were anomalous. They are reported in Tables 5.1 and 5.2, but are excluded 
from the stress averages for reasons discussed below. These tests, the deepest and farthest from the 
kISMET experimental volume at 50 m (164 ft) depth in borehole kISMET-003, yielded somewhat 
different pressure-time behaviors from the later tests. This was partly because these tests employed 
somewhat different protocols because they were being used to determine the optimal injection rates and 
durations for the rock. These two tests yielded peak/breakdown and shut in pressures that were notably 
higher compared with later tests. Specifically, Tests 1 and 2 have average shut in pressures of 28.3 MPa 
(4103 psi) for cycles 3 to 4, compared with 21.7 MPa (3146 psi) for Tests 3-11. The breakdown or peak 
pressures for Tests 1 and 2 average 33.2 MPa (4814 psi) compared with 26.8 MPa (3886) for Tests 3-11. 

One speculation for the different behavior of Tests 1 and 2 is that these tests opened one or more pre-
existing fractures that were not oriented normal to the minimum horizontal stress, thus producing shut in 
pressures that were higher compared with the later, shallower tests. Another speculation is that the 
stresses may be higher in the deeper portion of the borehole possibly due to greater rock stiffness. 
Resolving these and other possibilities will require access to the deeper portion of the borehole to obtain 
image logs of the fractures and full wave sonic logs to obtain elastic properties. Given the uncertainty for 
Tests 1 and 2, the associated shut-in pressures and minimum stress values are shown in italics in Table 
5.1 and as shaded values in Fig. 5.14. As the main purpose of these stress measurements is to provide a 
stress state for interpreting the kISMET monitoring results, it is appropriate to exclude these anomalously 
higher results for that purpose because they are well outside the kISMET volume relevant to the 
stimulation experiment. Nevertheless, we are including these results because non-uniformity of stress 
could be a consideration in planning future kISMET-type experiments at this site. 
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6. GEOPHYSICAL MONITORING AND ANALYSIS 

Lead Authors: Yuxin Wu, Tim Johnson, Craig Ulrich, Bill Roggenthen, and Jonathan Ajo-Franklin 

6.1 Introduction 

Borehole logging and geophysical monitoring were conducted pre-, during, and post- stress tests and 
hydraulic stimulation at kISMET to assess fracture geometry and the potential use of geophysical 
methods for near-real time monitoring of fracture generation and propagation. Mt. Sopris borehole 
acoustic televiewer, optical televiewer and full waveform sonic logging were conducted focusing on the 
NQ (center, stimulation) borehole in the zone where we created the largest fracture (stimulation depth at 
40 m (131 ft)) at the kISMET site. Electrical resistivity tomography (ERT) and Continuous Active Source 
Seismic Monitoring (CASSM) (Ajo-Franklin et al., 2011) were conducted in the monitoring wells 
(kISMET-001, 002, 004, and 005) during the extended stimulation tests at 40 m (131 ft) depth below the 
drift invert (floor). Passive seismic micro-earthquake (MEQ) monitoring was conducted during all of the 
stress test and stimulation events. We present here a summary of the results and interpretations as of the 
time of writing this report. Interpretation and analysis are in fact ongoing, future results from which will 
be presented at conferences and possibly in journal articles.  

6.2 ERT 

6.2.1 Overview  

Cross-well ERT surveys were conducted in the monitoring wells using waterproof electrode array cables. 
ERT monitoring was carried out to provide information concerning the geologic structure, fabric, and 
heterogeneity of the host rock, and to assess the capability of ERT to image fractures during fracture 
stimulation. Two electrode cables with electrode spacing of 1.6 meters were used to collect crosswell 
imaging data separately between the kISMET-002 and kISMET-004 boreholes (referred to here as K2-K4 
well pair), and between the kISMET-001 and kISMET-005 boreholes (referred to as the K1-K5 well 
pair). With electrodes deployed in the K2-K4 well pair, crosswell ERT data sets were collected before and 
after stimulation operations using a survey configuration design to optimize both spatial and temporal 
imaging resolution. With electrodes deployed in the K1-K5 well pair, crosswell ERT data sets were 
collected before, during and after stimulation operations.  

ERT surveys have the potential to provide near-real time images of rock structure. We endeavored to test 
this possibility by sending collected data directly from the kISMET site via SURF’s fast underground 
internet drop to PNNL where the data were inverted. With a 10-minute collection time and similar time 
for inversion at PNNL, the roundtrip collection-to-image time was around 20 minutes. We did not have 
time in the field to refine this workflow to demonstrate near-real time ERT, but this will be a priority in 
future ERT deployments.  

Baseline, pre-stimulation data from both the K1-K5 and K2-K4 wellbore pairs were inverted 
simultaneously in 3D (e.g., Robinson et al., 2013), including explicit modeling of boreholes in true 
dimension with deviations, and explicit modeling of borehole fluid conductivity. The baseline images 
revealed steeply dipping electrical conductivity variations consistent with the host rock structure at the 
site, and the possible existence of high conductivity magnetite and/or sulfide minerals heterogeneously 
distributed in the host rock. These results have provided valuable information on the geologic structure 
between the cored and logged boreholes. Time-lapse images from both the K1-K5 and K2-K4 planes 
were not able to distinguish the induced fracture, likely due to the combined effects of a relatively small 
fracture zone, changes in borehole fluid conductivity during the imaging campaign, and the geometry of 
the imaging planes with respect to the fracture zone. Below we elaborate on the ERT methods and results 
for the kISMET project.  
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6.2.3 Baseline ERT Imaging Constraints 

Incorporation of the boreholes into the imaging mesh enables a number of constraints to be placed on the 
ERT images. These constraints remove the normal assumptions imposed on regularized inversions, such 
as a smoothly varying electrical conductivity. In particular, regularization constraints were removed 
across the borehole boundary, enabling the inversion to accommodate the actual sharp conductivity 
contrast that occurs across that boundary between the boreholes and the host rock. Within the boreholes, 
the starting model for the inversion was set to the assumed borehole fluid conductivity, but this starting 
model fluid conductivity was allowed to be modified by the inversion subject to being smoothly varying 
within the borehole. Fluid conductivities were allowed to vary because water samples collected from each 
well and analyzed after the stimulation revealed significantly different fluid conductivity between wells 
(from ~500 to >1000 S/cm). Outside of the boreholes, the inversion used standard smoothing constraints 
for the baseline inversion.  

6.2.4 Time-Lapse ERT Imaging Constraints  

The objective of the time-lapse imaging was to identify the timing and location of changes in electrical 
conductivity caused by the fracturing and subsequent pressure-based stimulation events, thereby locating 
the fracture and determining fracture orientation, assuming there is sufficient resolution. Within the 
fracture zone, electrical conductivity is expected to increase, because the fluid-filled fracture provides a 
preferred pathway for electrical current when the fracture-fluid conductivity is larger than the host-rock 
conductivity. At all other locations, the conductivity should be equal to the baseline conductivity. This 
information was used to constrain the inversion to find a solution that (1) varied smoothly in space and 
time from baseline conditions, with preference for no change over time, and (2) was everywhere equal to 
or greater than baseline conditions. Given these constraints, the inversion changes the conductivity 
distribution from baseline conditions only if required to fit the data to the same degree as the baseline 
inversion data misfit. 

6.2.5 Datasets and Results  

Crosswell ERT data sets were collected in the K2-K4 plane before and after stimulation. To test for 
effects of interference between the ML-CASSM (See Section 6.5.1) and ERT data collection systems, 
ERT electrodes were co-deployed with the ML-CASSM system, and each system was run concurrently. 
Comparison of the ERT data sets collected with and without ML-CASSM displayed significant 
differences, and inversion of the ERT collected with ML-CASSM did not converge. This suggests the 
ERT data were contaminated when co-deployed with ML-CASSM system. For this reason, the ML-
CASSM system was deployed in the K2-K4 plane, and the ERT system was deployed in the K1-K5 plane 
for time-lapse data acquisition during stimulation when simultaneous collection of both types of data was 
required. 

The optimized survey collected during fracture simulation required approximately 10 minutes to execute, 
which provided the opportunity for a 10-minute time-resolution. Two baseline crosswell ERT data sets 
were collected in the K1-K5 well pair just prior to stimulation operations. One survey was collected 
before the initial fracturing event, and four surveys were collected during the five subsequent stimulation 
events. During each stimulation event, pressure within the packed-off zone was raised to approximately 
2800 psi (19.3 MPa), which presumably sustained an open fracture aperture and cross-section for current 
flow, thereby increasing electrical conductivity of the fracture.  

Each electrode deployment provided the opportunity to collect induced polarization data, and to analyze 
the utility of induced polarization inversion given the kISMET configuration of boreholes and electrodes. 
Several induced polarization surveys were collected in both the K2-K4 and K1-K5 planes. Visual 
inspection of the raw data revealed high levels of contamination in the phase measurements, likely due to 
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inductive coupling within the electrode cables. For this reason, no induced polarization inversions were 
attempted.  

The baseline inversion image of electrical conductivity is shown in Fig. 6.2. The left-hand-side image 
shows the K2-K4 plane. The center and right-hand-side images show different views of the K1-K5 
“plane,” which twists around borehole K3. The conductivity shows steeply dipping structures spanning 
two orders of magnitude from 0.0001 S/m (10,000 ohm-m) to 0.01 S/m (100 ohm-m), with a periodicity 
in the vertical direction of approximately 4 m (13 ft). Inspection of repeat data sets and inversion results 
suggested noise levels (i.e., standard deviations) of approximately 10% of the observed transfer resistance 
in the K1-K5 plane and 5% of the observed transfer resistance in the K2-K4 plane. Based on these 
standard deviations, the histogram of weighted observed vs. simulated residuals is shown in Fig. 6.3.  

The residual error for each measurement is defined as the difference between the simulated measurement 
and the observed measurement, divided by the standard deviation assigned to that measurement. Here the 
simulated measurement is the measurement computed given the conductivity distribution when the 
inversion has converged. If the data are appropriately weighted, then the normalized chi-squared value of 
the residual errors will be equal to unity. A histogram of the residual errors is shown in Fig. 6.3, which 
corresponds to a chi-squared value of 6.9. This indicates that the actual data noise is larger than the 10% 
and 5% specified for the K1-K5 and K2-K4 planes respectively. In this context, data noise is the 
combined contribution of random noise, deterministic noise, and any inaccuracies in the forward model. 
Given the specified noise levels, a chi-squared value of 6.9 at convergence is marginal, and suggests 
significant room for improvement and enhanced sensitivity of the ERT data to fracture if the source of 
noise can be addressed. Measures were taken to eliminate modeling inaccuracies as well as possible given 
competing objectives, but there are reasonable measures that can be taken in the future to significantly 
improve fidelity of the ERT data. For example, electrodes can be installed on the outside of a PVC casing 
that is grouted into the monitoring boreholes. This would isolate the two systems and enable each 
borehole to be used simultaneously for ML-CASSM and ERT monitoring. 
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six data sets collected in the K1-K5 plane during simulation were highly repeatable from baseline through 
to final stimulation, indicating that the ERT data were insensitive to the fracturing and stimulation events. 
Corresponding inversions revealed that each data set collected during fracturing and stimulation was 
adequately fit by the baseline inversion conductivity distribution, again indicating the absence of fracture 
signatures in the ERT data that were outside of the noise envelope. 

6.2.6 ERT Conclusions and Future Directions  

While baseline geological structures were revealed by the ERT survey with consistency across K2-K4 and 
K1-K5 planes, the fracture stimulation events did not create detectable changes in the electrical resistivity 
signatures. A few possible reasons should be explored in future efforts. For example, the post- stimulation 
ERT monitoring across the K2-K4 plane was collected after the release of the pressure in the packed-off 
zone, which would result in the closure of the fracture aperture and back flow of fracking fluid out of the 
fracture due to the high in situ stress. Such a process can effectively remove electrical conductivity 
changes associated with the fracture due to the lack of residual fluid within the fracture, resulting in 
minimal changes in the post-fracture electrical conductivity when compared to the baseline data. 
Meanwhile, while the data across the K1-K5 plane were collected during the stimulation events when the 
injection pressure was sustained and, presumably, the fracture aperture kept open, it is later revealed from 
the borehole logging data (discussed below) that K1-K5 plane is roughly 45-90 degrees out of plane with 
the fracture plane, resulting in less impact on electrical conductivity signatures from the fracture in this 
direction.  

The ERT results suggest a few recommendations in order to enhance the possibility of fracture detection 
through mapping of electrical conductivity anomalies created by the fractures. First, the electrical 
conductivity between the fracture and the host rock needs to be enhanced. This can be achieved via the 
injection of a contrast agent/proppant/fluid with enhanced electrical conductivity that can leave a residue 
in the fracture even after fracture closes to ensure a sustained and maximized conductivity contrast. In 
addition, increase in the size of the fractures can help greatly to make fractures more detectable. We also 
note that more effective and targeted placement of the electrodes with respect to the fracture geometry 
could further enhance the chance of detection. This would include (1) for wells with casing, the placement 
of electrodes behind PVC casing to eliminate the large impact from borehole fluids, (2) use of higher 
electrode density in the targeted fracture zone, and (3) aligning the electrode arrays better with presumed 
fracture planes. When open hole deployment is the only option, a better control of borehole fluid 
conductivity and isolation of electrical noise from co-deployed equipment (e.g., CASSM) are needed to 
reduce noise level and possible electrical cross-talk. If casing is an option, PVC casing with ERT 
electrodes grouted into the annulus could be used with CASSM in the borehole for electrical isolation of 
the CASSM system from the ERT system. 

6.3 Passive Seismic Monitoring 

6.3.1 Induced Seismicity from Fracturing  

A total of four locations were chosen to locate seismic detection instruments as part of the on-site data 
collected during the hydraulic fracturing experiment. The layout of the instrumentation is shown in Fig. 
6.4. The recorders consisted of two 8-channel, 24-bit Kinemetrics Basalt seismic dataloggers, and the 
sensors were Episensor three-component accelerometers. Installation of each of the accelerometers 
located in the drift consisted of excavating through the drift ballast to bedrock, drilling 1.5 cm holes in 
which rebar was grouted, and pouring a concrete pier 20 cm in diameter. After the concrete cured, the 
accelerometers were bolted tightly to the pier. In addition to the accelerometers, a downhole geophone 
was installed in K2 at a depth of 20 m. All of the sensors were sampled at a rate of 1000 samples/sec.  
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textural variations, and other features of relevance prior to the fracture test. Post-stimulation optical 
logging was conducted only in the stimulation hole (kISMET-003) to help identify newly created 
fractures. Measurements were made every 2.9 cm from top-of-casing (TOC) to the bottom of each 
borehole (either 50 m (164 ft) or 100 m (328 ft) below the drift invert (floor)). 

Acoustic Televiewer Measurements: Acoustic televiewer logs were focused on the stimulation 
borehole (kISMET-003) pre- and post-stimulation to help identify fractures. Measurements were 
made every 2.9 cm from top-of-casing (TOC) to the bottom of each borehole (either 50 m (164 ft) 
or 100 m (328 ft) below the drift invert (floor)). As discussed above, the acoustic televiewer was 
used as a backup tool for fracture identification and was proven to be very useful. 

Full Waveform Sonic Measurements: Borehole full waveform sonic (FWS) measurements were made 
before stimulation events to help understand the stress heterogeneity of the host rock. It was 
conducted only in the stimulation well. Measurements were made every 0.2 m along the length of 
the boreholes at 15 kHz.  

The borehole logging at kISMET was conducted using Mt. Sopris borehole logging tools in the kISMET-
003 borehole before and after fracturing events to map induced fractures. Borehole logging was also 
carried out in the four monitoring boreholes for borehole and rock characterization. 

6.4.2 Results 

Prior to borehole logging, efforts to flush the boreholes of all suspended cuttings were made by inserting 
a hose attached to a pump to flood the well space. These efforts were successful as evidenced by optical 
televiewer imaging of fine scale foliations. Fig. 6.6 shows an example of the existing fracture and 
foliation features based on pre-hydraulic fracturing optical logs. The tadpole log on the right-hand side 
shows the direction of dip (degree coordinate of the location of the tadpole body) of the planar features 
that were selected to have greater than 80% confidence in the auto-picking module. Significant variability 
in rock foliation is apparent from the optical images, suggesting their potential impact on fracturing 
processes. No open fractures were identified from the optical logs of in kISMET-003. Optical images 
from the other boreholes were not processed at the time of the compilation of this report. The optical logs 
are useful for orienting the cores collected during drilling which are critical for the preparation and design 
of the laboratory experiments being performed at LBNL and Univ. of Wisconsin-Madison. Comparison 
of post-fracturing optical logs at the highest resolution did not result in the identification of the created 
fractures, possibly due to the small size of the fracture aperture and the overall dark color of the host rock. 
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extension is a balance between the stress intensity, which is the concentration of stress at the fracture tip, 
and fracture toughness, K1C, which is the resistance of the material to fracture growth. The radius of 
growth for a circular fracture is a balance between the volume of fluid injected and the inflated volume of 
the fracture, minus the fluid volume that is lost into the permeable host rock or into pre-existing 
conductive fractures. The extent of the fracture will depend on this fluid balance as well as the modulus of 
elasticity, E, and the fracture toughness. Rocks with low modulus or large fracture toughness will produce 
shorter fractures with larger fracture apertures, e. On the other hand, stiffer rocks with large modulus 
values or smaller fracture toughness values will produce fractures with larger radius values but smaller 
apertures.  

Takahashi and Abé (1987) provide the essential relationships of fracture radius and aperture to injected 
fluid volume: 

  (7.1) 

   (7.2) 

 
 2 1/2

max 1

4 1

π C

R
e K
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 (7.3) 

where emax is the aperture at the borehole wall, R is fracture radius,  is Poisson’s ratio, and  is the fluid 
density. D is a lumped parameter and Qe is the effective fluid mass injected (total injected mass minus 
leak off).  

 

7.3 Fracture Radius Estimations for the kISMET Stimulation Test 

7.3.1 Description of the Stimulation Test 

The stimulation test was run at a depth of 40.28 m in borehole kISMET-003. The test included six 
pressurization cycles (Fig. 7.2). The first cycle was a standard stress measurement cycle of about three 
minutes to initiate the fracture. This cycle was followed by five fracture extension cycles with flow rates 
of approximately 0.5 liters per minute (lpm) and injection durations of 10 to 15 minutes followed by a 
brief shut in. Between each cycle the test zone pressure was bled to atmospheric pressure while measuring 
the flow rate. Each cycle achieved stable injection pressure of about 20 MPa. Fig. 7.2 shows the pressures 
and flow rates along with the cumulative flow of the entire test.  

Table 7.1 gives the rates and volumes for the stimulation test by cycle. The total injection fluid volume 
was 41.8 liters. The volume from bleed-back periods from the five cycles totaled -13.8 liters leaving a net 
fluid injection volume of 28.1 liters. The measured fluid recovery was 34% of the total injection volume; 
however, the actual amount may be slightly greater due to flows that occurred below the resolution of the 
flowmeter. 
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Table 7.1. Rates and volumes for kISMET stimulation test (Test 11).  

 
 

7.3.2 Fracture Radius Calculations for Impermeable Rock 

Low porosity igneous and metamorphic rocks are often assumed to be impermeable for the purposes of 
fracture design. In the following sections, we will use the Takahashi and Abé (1987) equations to estimate 
the fracture sizes that were produced in the kISMET stimulation for both the impermeable rock case (no 
leak-off) and the case of low-permeability rock (non-zero leak-off). 

The fluid that is injected in a hydraulic fracture stimulation test goes into fracture propagation and into the 
rock itself as leak-off. Distinguishing between these components is very important for fracture radius 
estimation as the leaked-off fluid does not contribute fracture propagation. On the other hand, estimating 
the leak-off has practical significance for hydraulic fractures as it affects prediction of oil and gas flow 
from unconventional wells or the potential for injecting fluids or gases into rock for disposal.  

For the impermeable rock case described in this subsection, we will assume that all of the injected water 
goes into fracture creation, i.e., the volume that is creating the fractures is the net volume of injected 
water minus the bleed back. For the penny crack calculations, we take the rock properties from the data 
compiled by Vigilante (2016) as shown in Table 7.2. The Young’s modulus and Poisson’s ratio are taken 
as averages for tests parallel and perpendicular to foliation or 71.4 GPa and 0.22 respectively. For fracture 
toughness, we are using a generic value from Atkinson and Meredith (1987) for hard rock of 1.0 MPa-
m1/2. Water density is taken as 1000 kg/m3.  These values contrast with those used in Section 4m which 
were E = 41 GPa and = 0.23.  The higher values of E used in this calculation result in larger fracture 
radius and smaller aperture at the borehole. 

 

Injection 
Duration

Rate

l/m

Start End Start End Bleed Injected
Bleed 
Back

Cycle 1 
Fracture

2.34 3.15 0.81 0.0 1.0 0.6 1.24 1.0 -0.4

Cycle 2 
Stimulation

8.43 23.33 14.90 0.6 7.8 5.6 0.48 7.2 -2.2

Cycle 3 
Stimulation

26.67 44.15 17.48 5.6 13.2 11.4 0.44 7.6 -1.8

Cycle 4 
Stimulation

51.67 59.78 8.11 11.4 17.4 14.6 0.74 6.0 -2.8

Cycle 5 
Stimulation

66.24 80.66 14.42 14.6 23.5 20.1 0.61 8.9 -3.4

Cycle 6 
Stimulation

86.68 104.40 17.72 20.1 31.2 28.1 0.63 11.2 -3.2

Totals 73.44 41.8 -13.8

Net Injected 28.1

liters

VolumesCumulative Time

minutes liters

Cumulative Volume
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Table 7.2. Rock elastic properties for fracture size estimates 

 
   *  Mellegard et al. (2010) 
 

In Table 7.3 we show the results of the analytical radius calculations by stimulation cycle. The growth in 
fracture radius and area with injected volume appears in Fig. 7.3. The fracture initiation cycle was 
intentionally small in volume, and developed a fracture with a calculated radius of 2 m for the 1 liter of 
water injected. The analytical solutions suggest that the fracture expanded through stimulation Cycles 2 to 
6 up to a radius of 7.9 m (26 ft), with relatively small radial growth in the last cycle. Fracture aperture 
values grow from 4.3 × 10-5 m to 8.5 × 10-5 m (0.043 mm to 0.085 mm) from Cycle 1 to Cycle 6. 

 

Table 7.3. Fracture radius, area, and aperture calculations using equations of Takahashi and Abé (1987) 
for impermeable rock (Eqs. 7.1-7.3). 

 

Rate Duration

Net Injected 
Volume

Radius Area
Aperture at 

Borehole

Fracture 
Propagation 
Resistance

lpm min liters m m
2

m MPa

Cycle 1 1.2 0.81 1.01 2.0 12.7 4.27E-05 0.62

Cycle 2 0.5 14.90 7.80 4.6 65.4 6.42E-05 0.41
Cycle 3 0.4 17.48 13.20 5.6 99.6 7.14E-05 0.37
Cycle 4 0.7 8.11 17.40 6.3 124.3 7.54E-05 0.35
Cycle 5 0.6 14.42 23.50 7.1 158.1 8.01E-05 0.33
Cycle 6 0.6 17.72 31.20 7.9 198.3 8.48E-05 0.31

Cycle

 

E1 87.5 93.1 E High 103

E2 41.3 49.7 E Mean 89

E3 62.1 94.5 E Low 69

E1 – E2  

Average
64.4 71.4

12 0.18 0.15  High 0.25

23 0.18 0.29  Mean 0.23

31 0.19 0.22  Low 0.14

 
Average

0.18 0.22 0.21

Property Units
Homestake 
Formation

Poorman 
Formation

GPa

-

DUSEL Amphibolite

Hladysz and Erickson, 1984 RESPEC * 
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8. SITE-WIDE STRESS ANALYSIS 

Lead Author: Thomas Doe 

8.1 Stress Indicators Near the kISMET Site 

The kISMET site benefits from the extensive site characterization program that was carried out as part of 
the Deep Underground Science and Engineering Laboratory (DUSEL) program (Golder Assoc., 2010), 
which was exploring the use of the Homestake Mine for expanded physics experimentation, as well as 
potentially broadening the base of support to geoscience areas (e.g., Oldenburg et al., 2012).  

All of the numerous methods for determining in situ stress, e.g., overcoring, hydraulic fracturing, and 
others, have potential shortcomings. For overcoring, the major challenges include the small scale of strain 
or deformation measurement as well as challenges in determining elastic properties, particularly when the 
rock is heterogeneous and anisotropic. The main challenge of hydraulic fracturing is the determination of 
the maximum horizontal stress because the stress concentration around the borehole and its interaction 
with micro-fractures and other flaws are difficult to assess. 

Despite the challenges associated with any individual stress measurement method, the assessment of 
stress in a given site benefits from the integration of multiple measurement methods and stress indicators 
(Lucier et al., 2009). Among the most promising developments in this area is the integration of borehole 
breakouts and hydraulic fractures, which has become the standard for assessing in situ stress in oil and gas 
reservoirs (Zoback, 2007). 

8.2 Borehole Breakouts  

Borehole breakouts are stress-induced failures of borehole walls. They occur when the stresses acting on a 
borehole wall are great enough to produce shear or compressional failure. As shown in Fig. 5.12, borehole 
breakouts appear 90° from hydraulic fractures if both are present, as the hydraulic fractures occur in the 
direction where the borehole compression is the least, and breakouts occur where the compression is the 
greatest.  

Borehole breakouts were noted in many of the sub-horizontal site characterization boreholes that were 
drilled for the DUSEL program. The exploration program ran image logs in all of the continuously-cored, 
sub-horizontal boreholes--optical in dry, updip holes and acoustic in water-filled, downdip holes— 
amounting to a total of 1640 m of borehole logging. The locations of the DUSEL boreholes are shown in 
Fig. 8.1.  

Geologically, the DUSEL program focused on large cavern locations in the Yates Formation, which is an 
amphibolite. A swarm of Tertiary rhyolite dikes complicates the geomechanics of the DUSEL area. In 
contrast, the kISMET site was intentionally located in the Poorman Formation, which is dominantly 
phyllite and schist, weaker rocks than both the rhyolite and the amphibolite. 

The image logs from the DUSEL boreholes showed widespread breakouts having variable intensities and 
orientations in different boreholes and different portions of boreholes (Fig. 8.1). Fig. 8.2 shows an 
example of an optical televiewer log of breakouts in DUSEL Borehole J. Some general observations and 
preliminary interpretations are: 

 Breakouts are all in amphibolite or schist/phyllite, usually near rhyolite dikes, which do not 
contain breakouts. 

 Overall orientation suggests the maximum principal stress is close to, but somewhat off, vertical. 

 In the vicinity of the DUSEL large caverns, there may be a rotation of the breakouts indicating 
variable in situ stress regimes may be present. 
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Two DUSEL boreholes, Borehole J and Borehole D are particularly relevant to determining stresses at the 
kISMET site. Borehole J is the closest DUSEL borehole to the kISMET site at a distance of 
approximately 90 m. The borehole has a trend of 128° with an upward plunge of 2.4°. Unlike the other 
DUSEL boreholes, Borehole J is entirely in Poorman Formation phyllite and schist with cross-cutting 
rhyolite dikes. Other DUSEL boreholes are dominantly in Yates amphibolite. Borehole D is an 
approximately 400 m long borehole trending 204° with an upward inclination of 8.5°. While it is 
dominantly in the Yates Formation, it terminates in Poorman Formation near Borehole J. Despite being in 
similar rock, the intensity of breakout development is quite different between the two holes. Most of 
Borehole J, with the exception of the rhyolite sections, contains breakouts, while breakouts are infrequent 
in Borehole D, which differs in orientation by approximately 76°. Fig. 8.3 is a visualization of the 
kISMET area showing the hydraulic fractures and breakouts in Boreholes J and the end of Borehole D. 

The Borehole J breakouts are sub-horizontal with a pole trending 210° and plunging 70° (Fig. 8.4). In 
contrast to the sub-horizontal Borehole J, there are no breakouts in the vertical kISMET boreholes. 
Assuming similar rock properties and stresses, this observation would suggest that the difference between 
the vertical and horizontal stresses in Borehole J is greater than the difference between the maximum and 
minimum horizontal stresses in kISMET-003. This implies that the vertical stress is the maximum 
principal stress. See also the discussion in Section 5.6.2.  

The integrated interpretation of previous stress measurements (e.g., Vigilante, 2016), the hydraulic 
fracturing stress measurements for kISMET (this report), and stress indicators like borehole breakouts 
(the DUSEL reports) is a current kISMET activity carried out under a subcontract with Prof. Mark 
Zoback at Stanford University. 
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9. CONCLUSIONS AND RESEARCH NEEDS 

Lead Authors: Curt Oldenburg and Pat Dobson 

9.1 Conclusions 

The kISMET team carried out a successful program of drilling and coring, and subsequent hydraulic 
fracturing for determining the stress field, understanding the effects of rock fabric on fracturing, and 
gaining experience in monitoring the fracturing process. The kISMET site was established in the West 
Access Drift of SURF on the 4850L. We drilled and cored five near-vertical boreholes in a line on 3 m 
(10 ft) spacing, deviating the two outermost boreholes to create a five-spot pattern around the test 
borehole centered in the test volume at a depth of  ~1518 m (4980 ft). Laboratory measurements of core 
from the center test borehole showed P-wave velocity heterogeneity along each core indicate strong, fine-
scale (~1 cm or smaller) changes in the mechanical properties of the rock, possibly due to the well-
developed foliation. The load-displacement record suggests that the elastic stiffness is anisotropic, 
especially in samples from core where the rock appears stiffest when loaded parallel to the foliation. 
Tensile strength ranges between 3‒7.5 MPa (435-1087 psi) and 5‒12 MPa (725-1740 psi) depending on 
direction in the sample. Permeability measurements are planned, as are two types of laboratory hydraulic 
fracturing experiments to investigate the importance of rock fabric (anisotropy and heterogeneity) on 
near-borehole hydraulic fracture generation. Pre-fracturing numerical simulations with INL’s FALCON 
code predicted fracture radius of 1.2 m (3.9 ft) for the planned fractures with a corresponding injection 
volume of 1.2 L, and negligible microseismicity. Field measurements of the stress field by hydraulic 
fracturing showed that the minimum horizontal stress at the kISMET site averages 21.7 MPa (3146 psi) 
pointing approximately N-S (356 degrees azimuth) and plunging slightly NNW at 12°. The vertical and 
horizontal maximum stress are similar in magnitude at 42-44 MPa for the depths of testing which 
averaged approximately 1530 m (5030 ft). Hydraulic fractures were remarkably uniform suggesting core-
scale and larger rock fabric did not play a role in controlling fracture orientation. Monitoring using ERT 
and CASSM in the four monitoring boreholes, and passive seismic accelerometer-based measurements in 
the West Access Drift, were carried out during the long fracturing (stimulation) test. ERT was not able to 
detect the fracture created, while the accelerometers in the drift picked up the fracturing signal from the 
first (deepest) hydraulic-fracturing stress measurement. The CASSM data have not been analyzed yet. 
Analytical solutions suggest fracture radius of the generated fractures was more than 6 m (19.7 ft), 
depending on the unknown amount of leak-off. The kISMET results are consistent with large-scale mid-
continent estimates of stress. Currently we are using the orientation of the stress field we determined to 
interpret large numbers of borehole breakouts recorded in nearby boreholes at SURF to generate a more 
complete picture of the stress field and its variations at SURF.     

9.2 Research Needs 

9.2.1 Characterization 

The kISMET SubTER Sapling project was carried out on a small budget ($1.35M) over a very short 
period of time (~2 yrs). Over the course of the project, opportunities presented themselves for more 
boreholes, more monitoring points, more time to monitor, repeat experiments, etc. To keep to budget and 
schedule, we had to maintain a narrow focus on the project objectives. In this section, we discuss several 
additional experiments and expanded studies that could be carried out at the kISMET site as it has been 
developed to date.  

First, although a 3D laser scan was carried out for the West Access Drift, acquisition of the data is not 
straightforward. Clearly, our future work at kISMET will budget for acquiring and using 3D laser scan 
data of the drift. Similarly, time and budget did not allow a detailed characterization of the structure (e.g., 
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surface fractures) and lithology (including rock fabric and mineralogy) of the kISMET site in the vicinity 
of the drift. This information can be supplemented by petrographic descriptions and laboratory 
measurements of the core we have collected. Currently underway is a novel hyperspectral scanning 
procedure provided to us at no cost that will map minerals in a 15 ft (4.6 m) section of core. These studies 
will provide a definitive description of the phyllite that we have fractured and may help elucidate the 
variability in rock conductivity observed in the ERT scans.  

9.2.2 Hydraulic Fracturing and Field Testing 

Most of the hydraulic fracturing we carried out was for the purpose of determining the stress field. As 
such, the fractures did not have to be large, and in fact we wanted to avoid having fractures intersect the 
monitoring boreholes, which at some depths were within ~3 m (10 ft) or so of the test borehole. During 
the extended fracturing experiment (so-called stimulation test), we made a larger fracture possibly 6-8 m 
(10-26 ft) in radius. One obvious extension of kISMET testing that we would like to carry out is to keep 
propagating a fracture and observe the pressure and flow rate evolution, while monitoring it using 
CASSM and ERT (enhanced by use of saline fracturing fluid or conductive proppant).  

We believe that kISMET fractures close following shut in. Future work at kISMET could inject proppant 
to prevent complete closure, and test permeability enhancement and sustainability by pressure-transient 
testing (e.g., push-pull hydrologic tests) following fracturing and propping.  

Regarding CASSM sensitivity to detecting and characterizing induced fractures, which is an outstanding 
question because we have not yet processed the CASSM data, we note that we are working in another 
project on demonstrating theoretically that injections of CO2 (or another gas) can be used to enhance 
active seismic and well-logging approaches to fault and fracture characterization (Oldenburg et al., 2016). 
This approach can be field-tested at kISMET (using air for reduced environmental concern) to validate 
our modeling predictions.   

Our team responded to a FOA (No. 1445) with a research proposal that was not funded. We still view the 
proposed research as valuable for SubTER objectives. In this work we proposed to cross-validate the use 
of rock physics models combined with deformation observations, and geophysical monitoring for 
predicting, quantifying, and monitoring EGS heat exchanger development. This research would enhance 
the linkages between geophysically predicted heat exchanger development and actual hydraulic/thermal 
performance. The kISMET project has characterized the in situ stress of a small volume, a cube roughly 3 
meters on a side and 40-meters deep below the 4850L. Small-scale fluid- injection stimulations can be 
used to evaluate stress changes within the formation by monitoring the acoustic and electrical resistivity 
response from boreholes 3 meters away. The proposed work included the addition of four new monitoring 
boreholes and a new set of field experiments designed to measure and test fracture permeability and 
interfacial area available for heat transfer before and after a stimulation event. A sketch of the experiment 
is shown in Fig. 9.1. The new boreholes extend the horizontal dimension of the cube to 9 meters and the 
depth to 75 meters. In the proposed project, we would add tiltmeter and seismometer monitoring to 
CASSM and ERT in order to characterize the hydraulic and thermal transfer properties of this reservoir 
volume both before and after simulation. The stimulations will include fluid injection at different flow 
rates and pressures and will also include fluids that are both hotter and colder than the formation. 
Separately, the brine content of the fluid will be varied with time to provide a tracer to track fracture 
growth using ERT tomography. Both before and after the stimulation, hydraulic characterization will use 
a variety of methods, including borehole flow logging, step drawdown tests, and Oscillatory Hydraulic 
Tomography (OHT) (Cardiff et al., 2013). Thermal heat transfer will likewise be assessed through a series 
of dipole flow tests across produced fractured intervals, because a prime goal of this project is to create a 
relation between the fluid-rock heat transfer coefficient and fracture morphology (or equivalently surface 
area). This extension to kISMET would advance the knowledge and technology of EGS heat exchanger 
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For better signal-to-noise in the passive seismic monitoring, we will test an alternative deployment in 
which accelerometers are placed in boreholes a few meters below the invert (floor). This will prevent 
much of the current noise in the drift from obscuring the fracturing signals.  

9.2.4 Modeling Studies 

The analytical and mechanistic modeling studies of hydraulic fracture initiation and growth for the 
kISMET project provided important guidance for designing stimulation experiments and monitoring 
plans, and to a large degree, also revealed the complexities of hydraulically propagating fractures in low-
permeability crystalline rocks with heterogeneities spanning a wide range of scales. The predicted size 
(~1.2 m radius) of the initial opened crack from the pre-test simulations is very close to the size (~1.4 m 
radius) obtained from the post-test analytical calculations. We recommend follow-on modeling studies, in 
close integration with both laboratory and field experiments, with the ultimate goals of developing better 
understandings of underlying coupled physics governing fracturing processes in heterogeneous rocks, and 
developing ‘robust’ and ‘high-fidelity’ predictive models at various scales: 

 Rigorous model calibrations using compression and tension tests of actual core samples from the 
site. We expect the models not only to reproduce the typical mechanical properties and pre/post-
peak stress-strain behaviors, but also to reproduce realistic failure/fracturing patterns of rock 
samples that can be obtained directly or indirectly during experiments (e.g., high-resolution x-ray 
CT, acoustic emission, etc.). It is also worthy to use the fracture toughness (or fracture energy 
release rate) as the model calibration target too. The close integration between mechanistic 
modeling and laboratory core sample tests would enable us to better understand the effects of 
rock fabrics and anisotropy on fracture initiation and propagation under mechanics load. 

 Close integration and comparison between laboratory-block hydraulic fracturing experiments and 
modeling approaches with various degrees of physics rigor. The samples of variable sizes would 
range from intact rocks and rocks with natural fractures from the site, to synthetically fabricated 
(e.g., 3D printing) brittle solids with various sizes of linear/planar defects (mimicking natural 
fractures with mineral fillings). Such tests with well-characterized block samples of different 
sizes of defects, in close integration with modeling, would significantly improve our fundamental 
understandings on how propagating fractures interact with natural fractures in low-permeability 
crystalline rocks and the dominant failure modes (tensile vs. shear) under given stress states, 
injection conditions (rate and viscosity), and characteristics of natural fractures (spacing, lengths, 
cohesive strength, residual permeability etc.).  

 Perform post-test simulations for the actual kISMET stimulation test, using the re-calibrated 
model based on laboratory-test data, the new in situ stress measurements and exact injection 
history, and compare the simulated wellbore pressure with measured values. Another important 
task for post-test simulations is to compare the simulated fracturing process and spatial-temporal 
distributions of the seismic events and their statistics with the actual measurements during the 
stimulation. The close integration among the post-test simulations, field test and monitoring 
would allow us to better understand the limits and constraints of current predictive stimulation 
models, and more importantly, to what levels of details of rock heterogeneities and physics rigor 
of models would be needed in order to develop meaningful and robust stimulation models. 
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