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SYSTEMS OF DIFFERENTIAL EQUATIONS WHICH ARE COMPETITIVE
OR COOPERATIVE. I: LIMIT SETS*

MORRIS W. HIRSCH’

Abstract. A vector field in n-space determines a competitive (or cooperative) system of differential
equations provided all the off-diagonal terms of its Jacobian matrix are nonpositive (or nonnegative). The
principal result is that limit sets of such systems cannot be more complicated than invariant sets of systems
of one lower dimension. In fact orthogonal projection along any positive direction maps a limit set

homeomorphically and equivariantly onto an invariant set of a Lipschitz vector field in a hyperplane. Limit
sets are nowhere dense, unknotted and unlinked. In dimension 2 every trajectory is eventually monotone.
In dimension 3 a compact limit set which does not contain an equilibrium is a closed orbit or a cylinder
of closed orbits.

Introduction. One of the most interesting questions to ask about a dynamical
system is: what is the long-run behavior of its trajectories? In many systems it is
natural to expect, or at least hope, that almost all trajectories either converge to an
equilibrium or asymptotically approach a closed orbit (= periodic trajectory). Unfortu-
nately there are many systems that not only lack this convenient property, but cannot
even be approximated by systems that have it. Such systems are often said to be
"chaotic" or to possess "strange attractors".

To make matters worse, it is very hard to discover the long-run behavior of any
but the simplest systems. Research on this problem has bifurcated into two quite
different methodologies. A great deal of recent work has gone toward exploring the
consequences of various assumptions about the large scale structure of the system,
e.g., hyperbolicity of the nonwandering set, structural stability, ergodicity, and so
forth. The basic examples come from geometry and physics; the mathematical tech-
niques tend to be topological. For a recent overview of this work see Smale [15,
Chapt. I].

This structural approach is very useful for the conceptual understanding of
dynamical systems, but usually it is of little direct help to the researcher who wants
to understand a particular system. Not only is it extremely difficult to decide whether
a particular system has a given structural feature, but many systems do not satisfy
any of the axiom systems commonly used in the structural approach. In consequence
much research has gone into determining the long-run behavior of special systems
(or classes of systems) that arise as models in biology, chemistry, economics and so
forth. Algebraic techniques play a prominent role, but owing to the diversity of systems
studied very few general principles have been developed.

In this and subsequent articles I hope to make a start at bridging the gap between
these two approaches by using structural ideas to analyze a fairly broad class of
systems, namely those which are competitive or cooperative (defined below). Such
systems are sometimes associated with the concept of negative or positive feedback.
They have been used to model a variety of biological, chemical and economic systems;
see, e.g., [1], [5], [8], [9], [11], [12], [13], [14].

A general principle emerging from this analysis is that in such systems, especially
cooperative ones, there is a strong tendency for bounded trajectories to converge to

* Received by the editors November 12, 1980, and in revised form May 12, 1981. This research was
supported in part by the National Science Foundation under grant MCS 77-04242.

5" Department of Mathematics, University of California, Berkeley, California 94720.
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168 MORRIS W. HIRSCH

equilibria or to periodic trajectories. This will be made more precise in later articles,
but Theorem C below can be viewed as an instance of this phenomenon.

An efficient way of investigating the long-term behavior of a trajectory x(t)
defined for all >_-0 is to study its to-limit set to(x); the set of points which are limits
of sequences X(tk) where tk +00. Thus, to say that to(x) consists of a single point p
means that x(t) converges to p; such a p is necessarily an equilibrium. On the other
hand, if to(x) is a closed orbit of period T then x(t) will eventually oscillate with
period approaching T.

In addition to to-limit sets there are a-limit sets, defined similarly by letting
tk ----00. These are less important in applications but are useful for technical reasons.

The basic theme of this paper is that there are strong geometrical and topological
restrictions on the way limit sets are placed in Euclidean n-space. Section 1 contains
the basic definition and states the main theorems. Basic technical results about limit
sets are proved in 2. The remaining sections contain the proofs of the main theorems.

1. The main results. Consider a C system of differential equations in ",

(1.1) :dxi Fi(Xl, "’’, x,) Fi(x), 1,... n.
dt

The system is called
competitive if OFi/Oxi <-0 for j # i,
cooperative if OFi/Oxi >-0 for j # i.
A well-known type of competitive system is the model of competing species,

(1.2)

where

dxi
d--- Fi(x) ximi(x)’

(1.3) OM
<0 for j

and x is restricted to the nonnegative orthant

R-’--{X eRn" xiO, 1,’’’ ,n}.

It is known that, for n 2, every bounded solution defined on [0, oo) or on (-oo, 0]
converges. (Compare [5], [6], [11], [13]. A stronger result is proved in Theorem 2.3
below.) In contrast to this, Leonard and May [9] give examples of 3 competing species
having oscillatory solutions.

Smale [14] has proved the general result that any dynamical system in Nn-1 can
be embedded in a system of n competing species. Let An-1 c N" be the simplex spanned
by the unit vectors ei, 1,..., n, where the kth component of eg is 6gk.

THEOREM (Smale). Let X be any C vector field in An-1. Then there exists a C
vector field F (Fa, , F,) in satisfying (1.2) and (1.3), such that FIA- Xand
A"- is an attractor.

This result means that for n > 2 there is no hope of proving an analogous
convergence theorem. It seems to imply that the limiting behavior of competitive
systems can be arbitrarily complicated. For example one can start with a strange
attractor in A3 and extend it to a structurally stable competitive system in 4. On the
other hand the results below show that there are in fact important restrictions on the
limit set structure of competitive systems.
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COMPETITIVE OR COOPERATIVE SYSTEMS. 169

Briefly put, our main result is that compact limit sets in a competitive or cooperative
system are unknotted and unlinked. In a kind of converse to Smale’s theorem, Theorem
A shows that a limit set of such a system can be deformed isotopically and equivariantly
into an invariant set of some Lipschitz system in one dimension lower; moreover, the
deformation is very simple geometrically. (Theorem A also implies that Smale’s choice
of the simplex An-1 is not entirely arbitrary; for example the conclusion is not true
for any simplex containing 0 and a positive vector.)

Theorem B says that a finite family of disjoint compact limit sets can be isotoped
into disjoint convex sets.

Theorem C concerns 3-dimensional systems; it says that a compact limit set which
contains no equilibrium is either a closed orbit or a ribbon of closed orbits. Thus
generically it is a closed orbit.

We now explain the main results in more detail.
By a limit set we mean either an a-limit set or an to-limit set (full definitions are

given in 2).
In the rest of this section we assume that (1.1) is cooperative or competitive and

is defined in n or . More general domains are described in 2.
Let L c be a set. Let E-lc n be a hyperplane orthogonal to a vector v.

n n-1Define 7r" -- E to be an orthogonal projection. We say L is compressible along
v if rlL is a homeomorphism with Lipschitz inverse, and 7r maps L equivariantly
respecting the flow of some locally Lipschitz vector field Y in E-. (Equivariant
means - takes trajectories of (1.1) in L to trajectories of Y, respecting parameteriz-
ation.)

A vector v is positive if v>O, 1,..., n.
THEOREM A. Let L be a limit set (of a system (1.1) as above). Then L is

compressible along any positive vector.
This has the corollary that every trajectory is nowhere dense. Moreover, the

Lipschitzian nature of (-[L)- implies that the dimension, and even the Hausdorff
dimension, of L is -<n- 1.

The proof of Theorem A is given in 3.
A collection L, , L, of disjoint subsets of " is unlinked if there is a ditteotopy

of [ carrying them into disjoint convex sets. In 6 we prove"
THEOREM B. Uvery finite collection of disfoint compact limit sets is unlinked.
In dimension 3 Theorems A and B imply that closed orbits are unknotted and

unlinked. Theorem A allows us to bring into play the Poincar6-Bendixson theorem
in studying 3-dimensional competitive or cooperative systems. In 4 we prove"

THEOREM C. Suppose n 3. Let L be a compact limit set which contains no
equilibrium. Then:

(a) L is either a closed orbit or a cylinder of closed orbits.
(b) L is a closed orbit if the system is cooperative and L is an to-limit set.
(c) L is a closed orbit if all closed orbits are hyperbolic.
Theorem C has interesting implications about the observed long-term behavior

of a bounded solution x(t) of a 3-dimensional competitive or cooperative system.
First consider the case when the to-limit set L contains an equilibrium p. Then

x(t) gets arbitrarily near p; moreover, it stays within any given neighborhood of p for
arbitrarily long periods of time. An observer would be hard put not to conclude that
x (t) has stabilized at p.

Consider next the case when L does not contain any equilibrium. Then according
to Theorem C x(t) will either converge to a limit cycle, or it will oscillate with slowly
varying period, the rate of variation tending to zero.
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170 MORRIS W. HIRSCH

Section 5 also contains a proof that if a cooperative system has a certain generic
behavior then the only compact to-limit sets are closed orbits.

The proofs of Theorems A, B and C are based on a famous comparison principle
of Kamke which implies that the flow of a cooperative system preserves the vector
ordering (Kamke [7]; see also Coppel [2]). Recall that this ordering is defined by

We also write

x < y if Xi < Yi for all i.

x <= y if Xi Yi for all i.

This result can also be used to study competitive systems since these correspond
to cooperative ones through time-reversal" changing the independent variable from
to -t.

Define vectors x, y to be related if x < y or y > x, and to be unrelated otherwise,
i.e., when there exist i, ] with xi -<- yi and

The form of Kamke’s result we shall use is:
THEOREM O. Let x(t), y(t) be solutions defined for a <- <-_ b.
(a) Suppose the system is cooperative, fix(a)< y(a) then x(b)< y(b).
(b) Suppose the system is competitive. If x(a) and y(a) are unrelated then so are

x(b) and y(b).
This result is valid for systems defined in R or R, and also for systems defined

in sets F described in 2.

2. Limit sets. In this section we consider a cooperative or competitive system

dxi_(2.1) d---F(xl"" ", xn), 1,"., n

defined by a C vector field F: F . The precise assumptions on the domain F
are given below following the statement of the main results of this section. They are
satisfied if F

_
or .

The first result is a useful criterion for a solution to converge. It can also be
viewed as an existence criterion for certain kinds of equilibrium points.

A point p F is an equilibrium if F(p) 0.
THEOREM 2.1. Assume (2.1) is cooperative. Let x’[0, oo) F be a solution whose

image has compact closure in F. If x(T) is related to x(O) ]’or some T>0, then x(t)
converges to an equilibrium as t-->

This implies that no two points of a closed orbit of a cooperative system can be
related, and the same holds for competitive systems by time reversal. It follows easily
that in dimension 3 a closed orbit cannot be knotted.

The following result expresses important limitations on the geometry of limit sets.
THEOREM 2.2. Suppose (2.1) is cooperative or competitive. Then no two points of

a limit set can be related. Moreover, if y is a limit point then the vector F(y) is unrelated
to the zero vector.

The following result shows that 2-dimensional cooperative or competitive systems
have trivial dynamics.

THEOREM 2.3. Assume (2.1) is cooperative or competitive and n 2. Let y" [0, -)
F be the solution through y(0), " t/(y). Then either [y(t)l--,oo as t-->-, or else y(t)
converges to some point of F as --> -. In fact [0, ’) is the union of two intervals, in each
of which both yl(t) and y2(t) are monotone.
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COMPETITIVE OR COOPERATIVE SYSTEMS. 171

Before proving these results we describe the assumption on the domain F. We
wish to cover the cases where F R or R. But there are interesting systems which
are cooperative in some regions and competitive in others. Consider for example the
following system in :

dxi(2.2) ai(xi)[bi(xi)+ g(s)],
dt

where ai>-O and s =Xl+" .+x,. Evidently-(2.2) is competitive where g’(s)<=O and
cooperative where g’(s)>=O. (Such systems are suggested by Grossberg’s models of
adaptive networks [5]. They also arise in models of economic competition.)

From now on F is a locally closed subset of " whose interior Int F is dense in
F. This means that F is the intersection of an open set with the closure of an open
set. The vector field F" F--> " is assumed to extend to a C map on an open set in ".

The final assumption is that F is p-convex" if a, b F and a => b then F contains
the line segment between a and b. Kamke’s comparison principle (Theorem D above)
is then valid. (But Theorem 2.3 is valid without p-convexity.)

The following statements on domains of solutions and limit sets are easily proved
using standard theorems in differential equations and the assumptions about F.

Let W c R be an open set containing F and G" W n a C vector field extending
F. For any y e F there is a unique nonextendible solution :(t), a < </3 to the initial
value problem

d= G(), (0) y.
dt

Let I(y)c R be the connected component of 0 in the set

{t: a < </3 and :(t) e F}.

The restriction of : to I(y) is the solution (in F) to (2.1) passing through y at time
0. It is denoted by y(t) or b,(y). Since the interior of F is dense this solution is

independent of the choice of W and G.
Set

t/(y) sup {t" e I(y)}, t_(y) inf {t" e I(y)},

so that -oo <_ t_(y) <= 0 -< t+(y) -< oo. We say the solution through y terminates if t+(y) e
I(y); otherwise it is nonterminating. In the nonterminating case if t/(y)<oo, then
either ly(t)leo or y(t) approaches the boundary OF of F as t t/(y). If y(t) is
nonterminating and the forward orbit

O+(y) {y(t): 0 <_- < t+(y)}

has compact closure in F, then t+(y)= o.
Suppose y(t) is nonterminating. Its w-limit set w(y) w(y(0)) is defined to be the

set of points p e F such that

p lira y(tk)

for some sequence tk in I(y) converging to t/(y). It is easy to prove that if p is an
w-limit point of y (i.e., p e w(y)) then the solution through p is nonterminating. It is
also noninitiating, i.e., t_(p)I(p). Moreover, w(y) is invariant: if pew(y) then
bt(p) e w(y) for all el(p). It is well known that O/(y) has compact closure in F if
and only if w(y) is a nonempty compact connected set. In this case t/(y)= oo.
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172 MORRIS W. HIRSCH

If y(t) terminates then to(y) is defined as the empty set.
The a-limit set a(y) is defined similarly, replacing t+(y) with t_(y); it has analogous

properties.
A closed orbit y of period T 0 is the image of a solution u: F such that

u(t + T)- u(t) for all t. Notice the set of periods of y, together with 0, is a closed
subgroup of .

PROPOSt:ION 2.4. Assume (2.1) is cooperative and x:[0,)F is a solution. Let
T > 0 be such thatx (T) >= x (0) orx (T) <- x (0). Letp F be a limitpoint of {x (kT): k ’+}
with T I(p). Then p lies on a closed orbit 3" of period T and to(x)= y.

Proof. We suppose x(T)>_-x(0), the other case being similar. Then

In particular,

x(t+T)>-x(t) for all t>0.

x((k+l)T)>-x(kT) for all k 7//.

It follows easily that

(2.3) p lim x(kT)= lim x((k + 1)T), k 7//.

Therefore p(T)=p, so p lies on a closed orbit 3" of period T. From (2.3) and the
continuity of solutions it follows that 3’ to(x). Q.E.D.

Proof of Theorem 2.1. Let x:[0, oo)- F be as in Theorem 2.1. There is an open
set $ c containing T such that x(s)> x(0) [or <x(0)] for all s $. By Proposition
2.4, to(x) is a closed orbit 3" and 3" has period s for all s S. It follows that 3" consists
of a single equilibrium p. Q.E.D.

The proof of Theorem 2.2 requires the following result, Proposition 2.5, which
has some independent interest: it shows that solutions to (2.1) cannot oscillate with
respect to the partial ordering <.

Let y(t) be a curve in n defined on some interval/c R. A subinterval J [a, b] I
is called an up-interval if y(a) < y(b), and a down-interval if y(a) > y(b).

The following result is due to L. Ito.
PROPOSI:ION 2.5. Assume (2.1) is cooperative or competitive. Then a solution

y" I F cannot have an up-interval and a down-interval which are disfoint.
Proof. We prove the cooperative case; the competitive case follows by time-

reversal.
Suppose there are an up-interval K and a down-interval J with J t.J K /,

J fqK 3. We assume J <K (i.e., u < v for all u J, v K), the other case being
similar. Put

J=[a,r], K=[s,b], a<r<s<b.

Let s’ K be the smallest number such that y(s’)-<_ y(t) for all K; we denote
this by y (s’) inf y (K). Then Is’, b is an up-interval disjoint from J, so we may replace
K by [s’, b]. Thus we may assume that y(s)= inf y(K).

We prove the proposition by showing that neither r- a -< b s nor r- a > b s
can hold.

Assume r- a <- b s. Then s < s + r- a -< b. Since Is, s + r- a ] is a translate to the
right of [a, r] it follows that [s, s + r- a is a down-interval. But then

y(s+r-a)<y(s) and s+r-aK,

contradicting y (s) inf y (K).
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COMPETITIVE OR COOPERATIVE SYSTEMS. 173

Assume r- a > b s. Then a < a + b r < s < b. Since [a + b r, b is a translate
of [a, r] to the right it follows that [a + b r, b is a down-interval. Thus

y(a + b r) > y(b) > y(s).

Define c [a + b r, s] to be the largest number such that y(c) >= y(b), so that c < s < b.
Then y(c) > y(s), i.e., [c, s] is a down-interval.

Suppose s c -<_ b s. Then translating [c, s] by s c provides a down-interval
Is, 2s -c] Is, b], contradicting y(s) inf y(K).

Finally, suppose s-c > b-s. Then c <c + b-s; since [c + b-s, b] is a right-
translate of the down-interval [c, s] we have

y(c+b-s)>y(b).

But this contradicts the definition of c. The proof of Proposition 2.5 is com-
plete. O.E.D.

In the cooperative case the following result also holds: if z(t) is a solution defined
for all >-0 then it cannot have both an up-interval and a down-interval. For one of
the intervals could be translated to the right until it is disjoint from the other interval,
in contradiction to Proposition 2.5. A similar (but less interesting) conclusion holds
for a solution to a competitive system defined for all t-<_ 0.

Proof of Theorem 2.2. Suppose p < q. From the definition of limit set there must
exist tx < t2 < t3 < t4 with z(tl), z(t4) so close to p, and z(t2), z(t3) so close to q, that
z(tl) < z(t2) and z(t4)< z (t3). Therefore Its, t2] is an up-interval which is disjoint from
the down-interval It3, t4), contradicting Proposition 2.5.

Suppose F(p)>0 and p to(Z). Then p(e)> p for sufficiently small e >0. Since
p(e)to(z) this contradicts what has already been proved. The other cases are
similar. Q.E.D.

Proof of Theorem 2.3. By time-reversal we may assume (2.1) is cooperative. We
also assume y(t) is not constant. The interval I- {t _->0: y(t) is defined} is the union
of the following sets:

AI--{t el: F(y (t)) >_- 0, i= 1, 2},

A2 {t I: F2(y (t)) >0 > FI(y (t))},

A3={tsI:Fi(y(t))<-O,i 1,2},

A4 {t I: F2(y (t))< 0 <F(y (t))}.

Notice that these sets are pairwise disjoint. And if A and s > and s I then
s A. For

Dcks_t(y(t))F(y(t)) F(y (s))

and, from Proposition 2.6 below, D4r(x) is a nonnegative matrix for all x F, r I(x),
r > 0. Similarly if, A3 and s > t, s I then s A3. This proves that either A Or A3
is empty.

Let k {1, 2, 3, 4} be such that OAk. If k 1 or 3 then ICAk, so yi(t) is
monotone, 1, 2. If k 2 or 4 and I- Ak there must be a smallest to I with to Ai,
] 1 or 3. Then I Ak Ai. This proves the last sentence of Theorem 2.3. O.E.D.

Theorem 2.3 is true even without p-convexity of F: the proof uses only the
following result.

PROPOSITION 2.6. Let {bt} denote the flow of a cooperative system defined in a
set F Rn which satisfies the assumptions above except that F is not assumed to be
p-convex. Then D4t(x) is a nonnegative matrix for all >-_ O, x F.
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174 MORRIS W. HIRSCH

Proof. We apply Kamke’s theorem (which holds for nonautonomous systems) to
the variational equation along a fixed solution x(t)= Or(x):

dA
(2.4) d-- DF(&,(x))A.

Here A(t) is an n x n matrix. It is easily seen that the right-hand side of (2.4), that
is, the matrix function

satisfies

O(t, A)= (DF(&,(x))A,

OG >-_ 0 for (i, ]) # (r, s),
OArs

so that Kamke’s comparison theorem applies to solutions to (2.4). Now the solution
B(t) to (2.4) with initial condition B(0) 0 is the constant solution B(t) 0, while the
solution with initial condition A(0)-I is D&,(x). Since 0_<-I we have B(t)<-_A(t), for
all _-> 0, i.e., D&,(s) is a nonnegative matrix. Q.E.D.

Proposition 2.6 has an interesting consequence for competitive systems, due to
S. Grossberg [5]. We say a solution x(t) is switched on at time to if Fi(x(to))>0 for
some {1 n }. Grossberg calls the following result the ignition principle.

PROPOSITION 2.7. Let F be as in Proposition 2.6 and let x(t) be a solution to a
competitive system in F. If x(t) is switched on at to then x(t) is switched on all tl > to.

Proof. Let the competitive system be

dx
d--i=

Consider the corresponding cooperative system obtained by time-reversal,

dy= F(y)=--G(y).
dt

Fix tl > to, and observe that the curve y(t)- X(tl-t) is a solution to the cooperative
system.

If x(t) is not switched on at time tl then G(x(tx)) <- 0, so F(y (0)) >= 0. Therefore
F(y(s)) => 0 for all s > 0 by Proposition 2.6, since

F(y (s))= Dqbs(y(O))F(y(O)),

and DOs(y(0)) _-> 0. Putting s tl to shows that F(y(q to)) >- 0, so G(x(to)) <-_ O,
contradicting x(t) being switched on at to. Q.E.D.

3. Extension and proof of Theorem A. In this section we consider a cooperative
or competitive system

dx
(3.1) d-7=F(x).

THEOREM 3.1. Let L be a limit set. Then L is compressible along any positive
vector v.

Proof. It suffices to consider only unit vectors v. Let ,to: RnEn-= v +/- be an
orthogonal projection onto the hyperplane orthogonal to v. We first show that ,rolL
is injective.
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COMPETITIVE OR COOPERATIVE SYSTEMS. 175

Suppose p,qL and 7ro(p)=zro(q). Then p-q=Av, A. If p#q then p,q are
related since A 0 and v > 0. But this contradicts Theorem 2.2; therefore rolL is
injective.

For distinct nonzero vectors a, b n let A (a, b) denote the positive acute angle
between the lines {ha:h } and {hb: h }. It is easy to see that if rlL is not
Lipschitz then there exist sequences pi, q in L such that pi # qi and

A(v, pj qi) - O.

Suppose this holds, and let wi denote the unit vector (pi qi)/[pi qi[. ThenA(v, wi) 0.
Passing to a subsequence we may assume that wi +v. Interchanging pi and qi where
necessary we may assume wi v. Choose k so large that Wk > 0 and set w Wk. Then
Zrw (Pk) rw (qk), contradicting the injectivity of rw proved above. This shows that Zrv IL
is Lipschitz.

Set 7ro r and define

H: r(L)En-, H r F (r[L)-.
Now F is C so F" L R" is locally Lipschitz. Therefore H is locally Lipschitz. By a
result of McShane [14] H can be extended to a locally Lipschitz vector field on E"-.
Notice that H(Trx)= 0 if and only if F(x)= 0, by the last statement of Theorem 2.2.

To say that zr:L E"- is equivariant means that if x(t) is an integral curve of
F in L then zr(x(t)) is an integral curve of H. This follows from the definition of
H. O.E.D.

We conclude this section with another compressibility theorem for cooperative
systems.

THEOREM 3.2. Suppose (3.1) is cooperative and K c F is a compact set which is
the closure of the image of a solution x:[0, oo)oK. If x(t) does not converge to an
equilibrium then K is compressible along any positive vector.

Proof. Observe that K O/(x) t_J o(x). Let zrv: " v +/- be an orthogonal projec-
tion where v > 0. Using arguments similar to those above, one can show that if olK
is not injective, or (TrvlK)-1 is not Lipschitz, then X(to) and x(tl) are related for some
to, tl->_0. But then by Theorem 2.1 x(t) converges to an equilibrium. The rest of the
proof is like that of Theorem 3.1. Q.E.D.

4. Proof of Theorem C. In this section we assume given a competitive or coopera-
tive system

(4.1) dx--A= F(x, x., x3), 1, 2, 3
dt

defined in a set F c R3 satisfying the conditions in 2.
THEOREM 4.1. Let L be a compact limit set which contains no equilibrium. Then:
(a) L is either a closed orbit or a cylinder of closed orbits.
(b) L is a closed orbit if the system is cooperative and L is an o-limit set.
(c) L is a closed orbit ifL contains a hyperbolic closed orbit.
Proof. Let zr" R3

_
E2 be an orthogonal projection onto a plane perpendicular to

a positive vector. By Theorem 3.1, r maps L homeomorphically and equivariantly
onto an invariant set of some locally Lipschitz vector field Y in E2. Clearly r(L) is
compact and connected, and it contains no equilibrium.

Let denote the flow of Y.
The Poincar6-Bendixson theorem (see, e.g., Hartman [4]) implies that r(L) is a

union of closed orbits and trajectories that spiral down to closed orbits in both positive
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176 MORRIS W. HIRSCH

and negative time. We shall prove that such spiralling cannot in fact occur, so that
rr(L) is a union of closed orbits. From this part (a) of the theorem follows easily.

Let z rr(L). Suppose z is not on a closed orbit. Then, as , Or(z) spirals
down to a closed orbit 7 c rr(L).

Let A denote the component of E-y which contains z; let B denote the other
component. Let T > 0 be the period of y.

It is well known that y is an attractor for the flow restricted to A. Thus there is
a compact neighborhood N or y in A such that

OT(N 3/) c Int N.

Define W rr(L) V) (B U N). Then W is a compact subset of rr(L) and

T(W) c Int W.

Put V (rrlL)-l(w). Then V is a compact subset of L and

T(V) C IntL V.

This, however, is impossible for a compact limit set L by a result of Franke and
Selgrade [3]. This contradiction shows that z, which is an arbitrary point of r(L),
must lie on a closed orbit. This completes the proof of (a).

Now assume the system is cooperative.
Suppose that L is not a single closed orbit, but is a cylinder of closed orbits. Then

7r(L) contains a 2-disk D. Let p L be such that rr(p) is the center of D.
Let x(t), >0 be a solution of (1) whose to-limit set is L. There exists t0>0 such

that X(to) Int D. Let q L be such that 7r(x(to)) zr(q). It follows that X(to) is related
to q.

There exists tl > to such that x(h) is so near q that X(to) is related to x(tl). It now
follows from Proposition 2.1 that x(t) converges to an equilibrium as o. Thus L
is an equilibrium; this contradiction completes the proof of (b).

Part (c) follows from (a) since a cylinder of closed orbits cannot contain a
hyperbolic closed orbit. Q.E.D.

By exploiting Theorem 3.2 we can establish other criteria for L to be a closed
orbit in the cooperative case. Suppose L is a compact to-limit set of a cooperative
system (4.1), say L to(x). Suppose L contains a nonequilibrium closed orbit 3’. Then
x(t) does not converge, and so Theorem 3.2 implies that the closure of {x(t): =>0}
is compressible. Set z 7rx(0). Thus (in the notation above) 0t(z) has the to-limit set
r(L). Since 7r(L) contains the closed orbit r(3"), the Poincar6-Bendixson theorem
implies 7r(L)= 7r(3’). Since r is injective it follows that L 3’.

Now suppose L does not contain a closed orbit, L contains only a finite number
of equilibria, and x(t) does not converge. Then by using Theorem 3.2 and Poincar6-
Bendixson one can show that L must contain a cycle o equilibria p,. ., Pk (k >-_ 1):
this means that for each 1,. ., k there is a solution yi(t) in L whose a-limit in pi

and whose to-limit is pi/, with Pk/l P. Thus we obtain:
THEOREM 4.2. Assume that (4.1) is cooperative and contains no cycle o[equilibria.

Then every compact to-limit set is a closed orbit (possibly an equilibrium).
It is well known that existence of a cycle of equilibria is a highly unstable

phenomenon. It cannot occur if all the equilibria are hyperbolic and their stable and
unstable manifolds meet only transversely--a generic property of C vector fields (see
Smale 16], Abraham and Robbin [17]).

In applying approximation theorems to cooperative systems there arises the
difficulty that the cooperative condition is not stable. However, the property of being
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COMPETITIVE OR COOPERATIVE SYSTEMS. 177

strongly cooperativemOFi/Oxj > 0 for # j--is stable. Given a cooperative field F every
neighborhood of F in the compact-open C topology contains a strongly cooperative
field G of the form

G(x) F(x) + 6 . x, 6>0.
j=l

The field G can then be approximated by fields having generic properties. In this
way, using standard approximation methods of differentiable dynamical systems, one
can prove the following result:

THEOREM 4.3. LetFbe a cooperative vectorfield in F c Rn. LetK F be a compact
set and e a positive number. There exists a strongly cooperative vector field G on F with
the following properties:

(a) For all x K,

IF(x G(x )l + IIDF(x DG(x )ll < e.

(b) All equilibria and closed orbits ofG are hyperbolic, and their stable and unstable
manifolds meet only transversely.

(c) If n 3 then every compact w-limit set is a closed orbit (perhaps degenerate).

5. A criterion for unlinking. In this section we prove a topological result, Proposi-
tion 5.2, needed for the proof of Theorem B.

An isotopy of Rn is a family of C diffeomorphisms ht" " --> , 0 <_- <-_ 1, such that
h0 is the identity and h,(x) is Coo in (t, x).

Let M {Ai}, {Bi} be two collections of subsets of " indexed by the same
set S. We say M and are isotopic if there is an isotopy ht of " such that h (Ai) Bi
for all S. This is an equivalence relation.

The family M is unlinked if it is isotopic to a family such that there exist
disjoint convex sets C R with B C for all S.

Let f,..., fr be continuous real-valued functions on n-. Let L be the graph
of fi; we consider L as a subset of "-ax -".

LEMMA 5.1. Iff <" < fr then {Lx, , Lr} is unlinked.
Proof. Given real numbers u <"" < Ur there is a single isotopy of R carrying

each ui into the open interval (i, + 1). Moreover, the isotopy can be chosen to be
C in the parameters (u 1,’’’, ur). We assume such a family of isotopies has been
chosen once and for all; for fixed ua <" < Ur we denote the isotopy by

yg(t, ul,’"" ur, y),

where g is Coo.
An isotopy of n--1 X is defined by

ht(x, y)= (x, g(t, fa(x), fi(x), y)).

Evidently ha takes the graph of fi into the convex set C {(x, z) ,-a R: < z < +
1}. Since these sets are disjoint the L are unlinked. Q.E.D.

PROPOSITION 5.2. For 1, , r let K c- be a compact set and g:Ki a
continuous map. Let Li ,-a ff denote the graph of g. Suppose that g(x) < gi(x)
whenever < ] and x Ki f’) Ki. Then {Lx, , Lr} is unlinked.

Proof. This follows from Lemma 5.1 provided the g extend to continuous maps
fi: Rn-1 such that fi < f/for < ]. Such extensions can be found as follows.
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178 MORRIS W. HIRSCH

By Tietze’s theorem the gi extend to continuous maps i" R"-I R. Let

mi <min {fi(x): 2 <=] <=r, x Ki}.

Let U be a neighborhood of K so small that < m on U. Let p" R"-I [0, 1] be a
continuous function which is 1 on K1 and 0 on "-= U.

Define

f:-,
f(x) p(x)(x) + (1 -p(x))m.

Then f(x) < gi(x) for / > 1, x K. A similar procedure extends g to f ,-1 with
f >f and f(x) < g(x) for > 2, x K, etc. In this way the required . are successively
defined. Q.E.D.

6. Extension and proot ot Theorem B. Theorem B is a special case of a more
general result, Theorem 6.1, proved below.

We suppose given a cooperative or competitive system

(6.1)
dx

F(x)

defined in a set F as in 2.
Let L be an invariant set. We call L a pseudo-limit set if it satisfies the following

condition. Given two points of L and e > 0, there is a trajectory (not necessarily in
L) that comes within e of each of the points. Evidently limit sets and orbit closures
are examples of pseudo-limit sets.

A set L is balanced if p, q are unrelated for all p, q in L.
THEOREM 6.1. Let L, , L be disjoint compact pseudo-limit sets. Suppose that

each Li is balanced. Then {L, L} is unlinked.
The proof depends on the following lemma. Define a relation < on

{L,.. , L}: L <L if p < q for some p Li, q L.
LEMMA 6.2. The relation < is a partial oMering.
Pro& Since each L is balanced it is impossible that L <Li.
Suppose L <L <L. We want to prove L <L. There exist points

p L, q, q’ e L, r L
such that p < q, q’ < r. Let U, U’ be neighborhoods in F of q, q’ respectively such that
p < U, U’<r. Let y(t) be a solution entering both U and U’. Suppose y(t0) U,
y(tl) U’.

By time-reversal we assume t to.
Suppose the system is cooperative. Let x(t) be the solution such that X(to)= p.

We have X(to)< y(t0). Since t0 t, the order-preserving property (Theorem D of 1)
implies x(t) < y(t). Now y(t) U’ so y(tl) < r. Since x(t) L it follows that L <L.

Suppose the system is competitive. Let z(t) be the solution such that Z(tl) r.
By a similar argument one sees that

p X(to) < y(t0) < Z(to)

and Z(to)L. Thus in all cases L <L. This completes the proof of Lemma
6.2. Q.E.D.

Proofof Theorem 6.1. It follows from Lemma 6.1 that the Lk are partially ordered
by <. We relabel the Lk so that if Li < L then <.D

ow
nl

oa
de

d 
11

/1
0/

14
 to

 1
28

.1
04

.4
6.

20
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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Let E"-1 c R" be a hyperplane orthogonal to a positive unit vector v. Let ,r" Rn
En-1 be the orthogonal projection. Define continuous maps

gk" ’n’(Lk) "> , X --> (X, V ),

where (.,.) is the standard inner product.
Identify " isometrically with E"-1 x in such a way that E- is identified with

E"-x 0 in the natural way, and Av is identified with (0, Av) for all A . Then Lk is
identified with the graph of gk.

The partial ordering of the Lk by < implies that whenever </’ then gj < gj on
,r(Li) f’)r(L). It follows from Proposition 6.2 (with Ki zr(L)) that {L,..., Ls} is
unlinked. Q.E.D.
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