UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
No Logic? No Problem! Using A Covariation Analysis On A Deductive Task

Permalink
https://escholarship.org/uc/item/01m210m2)

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Author
Best, John B.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/01m210m2
https://escholarship.org
http://www.cdlib.org/

No Logic? No Problem! Using A Covariation Analysis On A
Deductive Task

John B. Best

Department of Psychology
Eastern lllinois University Charleston, IL 61920
cfipb@ux1.cts.eiu.edu

Abstract

Subjects were presented with
previously played Mastermind games in
the form of “Mastermind problems”.
Although each problem was formally
deducible, and in some cases,
overdetermined, subjects nevertheless
usually failed to make more than a third
of the potential deductions. A Bayesian
model that treated the task as one of
“probabilistic reasoning” rather than
“logical deduction” accounted well for
the performance of the lower performing
subjects. It is argued that at least some
of the reasoning failures seen on
hypothesis evaluation tasks such as this
one are produced in part by the solver's
replacement of a “deduction”
representation with a “probabilistic
reasoning” representation.

Introduction

Studies using hypothesis
evaluation paradigms suggest that
the “confirmation bias” seen in the 2-
4-6 task (Wason, 1960) results in
part from subjects’ inability to
generate the hypotheses. That is,
when the appropriate disconfirmatory
hypotheses are already generated
for them, then subjects who are
instructed to do so can recognize
disconfirmatory hypotheses,
suggesting that the necessary logical
operators are intact (Farris & Revlin,
1989). But there is at least one
important proviso to this finding. In
hypothesis evaluation paradigms
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(Farris & Revlin, 1989), or in rule
discovery tasks in which the subjects
are “debiased” by instructions
(Gorman & Gorman, 1984), the
context in which the materials are
presented to the subjects almost
always involves “logical deductions
or scientific thinking”. a contextual
effect that seems very likely to be
reflected in the subjects’
representation of the task. This
implies that the ability to generate or
recognize disconfirmatory response
may be a product of both the
presence of the disconfirmatory
hypotheses, and the “right” elements
in the solver’s representation.
Whether people can routinely
engage in disconfirmatory analyses
when the context, and therefore
perhaps the person’s representation,
are not so explicitly presented as
“logical deduction” is the issue
motivating this paper. | argue that, in
such contexts, some failures on
formally deductive tasks are
produced in part by the subject’s
replacement of the concept of
“logical necessity” with a concept of
“probabilistic reasoning”. What
follows is some evidence to support
this claim, as well as a model that
duplicates some of the effects of
“probabilistic reasoning” on a purely
formal deductive task.

Method

Materials and Procedure


http://cts.eiu.edu

Four previously played
Mastermind games of moderate
complexity were presented as
“Mastermind problems” in this study.
Thus, in this form of Mastermind,
subjects did not generate their own
hypotheses. Rather, their task was to
evaluate the hypotheses and
feedback that had been produced in
an effort to deduce the code. In each
of the four problems, the set of
hypotheses and feedback that were
displayed contained information that
was necessary and sufficient to
permit the deduction of that
problem’s code.

Each of the 48 subjects was
run individually. The experimenter
explained the rules of Mastermind.
also stating that in this form of the
task, the subjects would not be
generating their own hypotheses.
The problems were presented in a
way that simulated actual
Mastermind play. That is, subjects
saw each hypothesis and its
associated feedback individually.
Following the presentation of each
hypothesis, the subject was asked to
indicate the extent of his or her
deductions on a response form.
Subjects indicated two principal
types of deductions: The subject
marked an “assignment” when he or
she was convinced that a particular
letter was definitely a code member.
The subject also indicated the
purported location of the assigned
letter. “Exclusions” were marked by
the subject when he or she was
positive that a particular letter was
definitely not a code member. All
previously presented hypotheses
from that problem remained on view
until after the problem’s penultimate
hypothesis was presented. The
presentation order of the four
problems was completely
counterbalanced.
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Results

The data were scored by
counting the number of accurate
assignments and exclusions marked
by the subjects following the nth row
of each of the four problems.
Following the nth row of each
problem, enough information was
present to permit four assignments
and two exclusions. One point was
awarded for each such deduction.
Mean performance across the four
problems was 8.6 (maximum score =
24). Even though the specific
assignments and exclusions were all
logically deducible following the
presentation of the nth hypothesis
and feedback of each problem, the
likelihood of the subject’s correctly
deducing assignments varied
significantly both within and across
problems. Of the 16 assignments in
the four problems only 4
assignments were made accurately
by a majority of the subjects. Five
assignments were made correctly by
40-49% of the subjects. Three
assignments were made correctly by
30-39% of the subjects, and four of
the assignments were made
correctly by only 10-29% of the
subjects.

Moreover, it appears that the
likelihood of a particular letter’s being
correctly assigned to a specific
position was influenced by the
number of times that the letter
appeared in the problem at the same
position. Specifically, in cases in
which a letter appeared several
times at the same location, and in
which black feedback was given,
subjects were likely to conclude that
the letter must be correctly placed at
the position where it appeared most
of the time.



For example in Problem 2,
69% of the subjects correctly
deduced that B must be placed at
position 4. B appeared three times in
the problem, each time at the same
location (ratio of total
appearances/different positions =
3/1), and was accompanied by a
total of seven black feedback pins.
But substantially fewer subjects
(23%) correctly deduced that E must
be placed at position 3 (ratio of total

appearances/different positions =
3/3, or 1/1). This analysis suggests
that the subjects were basing their
deductions on the degree of
covariation between a letter’s
placement and the occurrence of
black feedback. Table 1 shows the
results of similar computations
carried for this and the other three
problems used in the study, and it
confirms the findings suggested by
the initial problem. When a

Table 1

Likelihood of Correct Assignment as a function of Appearance/Position Ratio

Correct Assignments
Percentage Deducing

51% (or more), N=4 425
40-49%, N=5 3.40
30-39%, N=3 3.33
10-29%, N=4 2.00

particular letter appeared in the array
frequently and remained more or less
stationary, the subjects were likely to
conclude that this covariation enabled a
necessary logical connection. But when
a letter appeared infrequently, or
appeared frequently in different
locations, then subjects were less likely
to deduce its assignment .

Modeling the Deductions of Low-
Performance Subjects

Subjects who accept the
experimenter's depiction of the task
may indeed represent the four
problems as involving logical
deduction. Such a representation
would likely include logical operators
whose function is to take various
inputs from the problem array and
produce deductions. While such
operators may not always succeed in
producing valid deductions, the
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Total Appearances

Positions Ratio
1.75 243
2.40 1.42
2.67 1.25
2.00 1.00

situations in which they fail are
presumably describable in terms of
memory, or other exogenous
demands on the cognitive system.
However. there are certainly
other plausible ways of representing
the problems, and these other forms
of representation may predict
outcomes that are more consistent
with the observed findings than are
the predictions of the “logical” model.
For example, subjects who treat the
logical problems as analogous to
everyday problems in the real world
may view covariation as a useful
heuristic in making assignments.
One way of conceptualizing the
reasoner’s task is to consider the
reasoner as using the evidence that
has accrued (the black feedback) in
an effort to assess its effects on the
likelihood of a particular hypothesis
(namely, that a specific letter is
assignable at a specific location)
being true. Using a standard form of



the Bayesian equation to represent
this state of affairs we have:

p [L(P)/F = p [F/IL(P) p [L(P)]
P P

+ p[F/~L(P) p[-L(P)]

where p [L(P)/F] represents the
probability of a particular letter (L) to
position (P) assignment being true
given that a certain feedback pattern
(F) has been observed; P [F/L(P)]
represents the likelihood of
observing a certain pattern of
feedback given that a letter to
position assignment is true, and p
[L(P)] represents the prior probability
of any specific letter to position
assignment being true. p [F/~L(P))
represents the probability of the
feedback pattern being observed
given that the letter to position
assignment is not true, and p [~L(P)]
represents the prior probability that
the letter to position assignment is
not true. Computing some of the
equation’s terms is straightforward:
Given that any of the six available
letters can be assigned to, any
specific position, p[ L(P)] can be
estimated at 17, andp [~L(P) ] = 1 -
p [L(P)]. The estimation of p [F/L(P)]
involves computing for any specific
letter to position assignment (as in
letter A in position 1) the proportion
of all codes (of which there are 360)
that would generate this particular
feedback pattern through this
hypothesis, if A were indeed
correctly located at position 1. That
is, of the 60 codes in which A is
correctly located at position 1, what
proportion would be followed by the
specific feedback “1 Black, 1 White”
if this hypothesis had been played?
The same logic is used to estimate p
[F/~L(P)]. That is, of the 300 codes
that do not have A correctly located
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at position 1, what proportion would
be followed by the specific feedback
“1 Black, 1 White” if the hypothesis A
B C D had been played?

To run the Bayesian model,
each of the six letters was initialized
as a four place vector with prior
probabilities of .17 in each of the four
slots, thus creating a 6 X 4 matrix.
The probabilities for each letter to
position assignment were updated
after each hypothesis, treating the
previous hypothesis’s posterior
likelihood as the current hypothesis’s
prior likelihood. A normalization
procedure was applied after each
updating cycle for any row vector
whose probabilities exceeded unity.

Testing the model’s
predictions involved splitting the
sample of subjects into two
subgroups based on their overall
performance. The logic here is that
subjects who have access to logical
operators, and who are motivated
enough to use them, will be unlikely
to rely on the covariation analysis to
assign letters, and thus will be likely
to correctly assign letters whose
logical status is clear regardless of
how such letters look to the
covariation analysis. On the other
hand, subjects who do not have
access to such operators, or who are
not motivated enough to engage in
the fairly effortful analysis required
to use them should be likely to rely
on covariation analysis which the
Bayesian model should pick up. The
subjects were divided into two
groups. High performance subjects
(N =25, M = 12.6) were those who
scored 9 or better on the four
problems, while low performance
subjects (N =23, M = 3.7) were those
whose score ranged from 0 to 8.
Expected frequencies of letter to
position assignments were computed
for each letter in each problem by



multiplying the elements of the
letter's row vector by the number of
subjects in each subgroup who
actually made assignments of that
letter. Eight chi-squares (4 problems
X 2 subgroups) were used to
evaluate goodness of fit between
expected and observed frequencies
of letter to position assignments. For
all four

problems in the high performance
group, the chi-squares were
significant at p < .001, indicating poor
goodness of fit. But for all four
problems in the low performance
group, the chi-squares failed to reach
statistical significance (p > .05),
suggesting a reasonable conformity
between the model’s predicted
assignments and those that the low
performance subjects actually made.
Moreover, the deviations from the
model’s predictions made by the high
performance subjects were always in
the direction indicated by a logical
analysis rather than by a covariation
analysis.

Discussion

These findings suggest that
the deductive performance of
subjects who do particularly poorly
on this task is the result of an over-
reliance on a covariation analysis,
and this covariation analysis can be
modeled effectively using principles
of Bayes' theory. This is not to say
that the lower-performing subjects
are engaged in a sophisticated
Bayesian analysis. Rather, such
subjects seem to be engaged in a
type of probability estimation, and
these estimations seem to be
capturable in a Bayesian model.

In addition, the findings are
suggestive that the use of the
covariation analysis is driven by the
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subject's representation of the
problem as an example of “real life”
reasoning, rather than as a problem
in formal logic. That is, although few
of the subjects in the study had
studied logic formally, as college
students they were well aware that
logic is a formal discipline, and the
topic of university coursework. And
from what they know of all academic
disciplines, such subject matter is
approached with considerably more
rigor and intensity than is the
“corresponding” subject matter in
day-to-day life. Thus for example, |
may mix the ingredients in a cake
recipe with considerably less
precision than | would use to mix the
ingredients in the chemistry lab,
knowing that the cake will probably
turn out regardless. When applied to
the current situation, the typical
subject may be well aware that to be
“logical” might mean exercising
greater precision in the reasoning
process, including being more
demanding of evidential standards,
being more skeptical, being more
alert to discrepancies of appearance
and reality, and so on. Presented as
it is in this context, that is, as a
game, Mastermind might be not
necessarily invite the more rigorous
approach characteristic of subjects in
studies of “logical deduction”.

One of the issues in the
literature on hypothesis evaluation
concerns the ability of humans to
recognize disconfirmatory
hypotheses when such hypotheses
have been generated for them.
Researchers typically find that
people are good at discerning
disconfirmatory hypotheses in this
situation. To the extent that the
Mastermind problems used in this
study can be seen as analogs to the
reasoning vignettes used by Farris
and Revlin (1989), these findings



suggest that there are situations in
which simply having the relevant
hypotheses available does not mean
that the subjects can engage in the
modus tollens like reasoning of
necessary logical operations. As we
saw in this study, in an absolute
sense the subjects did not make all
the necessary logical operations that
were available. Finally, these
findings may be seen as an
instantiation of the rational analysis
approach (Anderson, 1990) that has
proved useful in the areas of memory
and categorization. As applied to
reasoning, such an analysis
suggests that, given that some
individuals understand formal
reasoning as equivalent to model of
causation that might be derived from
daily experiences, their deductions
within that context are orderly and
plausible.
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