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High Resolution Haplotype
Analyses of Classical HLA Genes
in Families With Multiple Sclerosis
Highlights the Role of HLA-DP
Alleles in Disease Susceptibility
Kazutoyo Osoegawa1*, Lisa E. Creary1,2, Gonzalo Montero-Martı́n1,2,
Kalyan C. Mallempati 1, Sridevi Gangavarapu1, Stacy J. Caillier3, Adam Santaniello3,
Noriko Isobe4, Jill A. Hollenbach3, Stephen L. Hauser3, Jorge R. Oksenberg3

and Marcelo A. Fernández-Viňa1,2

1 Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States, 2 Department of
Pathology, Stanford University School of Medicine, Palo Alto, CA, United States, 3 Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San Francisco, CA, United States, 4 Department of
Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Multiple sclerosis (MS) susceptibility shows strong genetic associations with HLA alleles
and haplotypes. We genotyped 11 HLA genes in 477 non-Hispanic European MS patients
and their 954 unaffected parents using a validated next-generation sequencing (NGS)
methodology. HLA haplotypes were assigned unequivocally by tracing HLA allele
transmissions. We explored HLA haplotype/allele associations with MS using the
genotypic transmission disequilibrium test (gTDT) and multiallelic TDT (mTDT). We also
conducted a case-control (CC) study with all patients and 2029 healthy unrelated
ethnically matched controls. We performed separate analyses of 54 extended multi-
case families by reviewing transmission of haplotype blocks. The haplotype fragment
including DRB5*01:01:01~DRB1*15:01:01:01 was significantly associated with
predisposition (gTDT: p < 2.20e-16; mTDT: p =1.61e-07; CC: p < 2.22e-16) as
reported previously. A second risk allele, DPB1*104:01 (gTDT: p = 3.69e-03; mTDT:
p = 2.99e-03; CC: p = 1.00e-02), independent from the haplotype bearing DRB1*15:01
was newly identified. The allele DRB1*01:01:01 showed significant protection (gTDT: p =
8.68e-06; mTDT: p = 4.50e-03; CC: p = 1.96e-06). Two DQB1 alleles, DQB1*03:01
(gTDT: p = 2.86e-03; mTDT: p = 5.56e-02; CC: p = 4.08e-05) and DQB1*03:03 (gTDT:
p = 1.17e-02; mTDT: p = 1.16e-02; CC: p = 1.21e-02), defined at two-field level also
showed protective effects. The HLA class I block, A*02:01:01:01~C*03:04:01:01~B*40:01:02
(gTDT: p = 5.86e-03; mTDT: p = 3.65e-02; CC: p = 9.69e-03) and the alleles B*27:05 (gTDT:
p = 6.28e-04; mTDT: p = 2.15e-03; CC: p = 1.47e-02) and B*38:01 (gTDT: p = 3.20e-03;
mTDT: p = 6.14e-03; CC: p = 1.70e-02) showed moderately protective effects independently
from each other and from the class II associated factors. By comparing statistical significance of
11 HLA loci and 19 haplotype segments with both untruncated and two-field allele names, we
org May 2021 | Volume 12 | Article 6448381
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precisely mapped MS candidate alleles/haplotypes while eliminating false signals resulting from
‘hitchhiking’ alleles. We assessed genetic burden for the HLA allele/haplotype identified in this study.
This family-based study including the highest-resolution of HLA alleles proved to be powerful and
efficient for precise identification of HLA genotypes associated with both, susceptibility and
protection to development of MS.
Keywords: multiple sclerosis (MS), family, HLA, haplotype, transmission disequilibrium test (TDT), case-control analysis
INTRODUCTION

Multiple sclerosis (MS) is a chronic debilitating neurological
disorder associated with central nervous system inflammation,
demyelination, and axonal degeneration (1). MS is considered a
multifactorial disease with abundant evidence linking multiple
common alleles across the genome to disease risk and
progression (2, 3). The most notable susceptibility genomic
region for MS maps to the Major Histocompatibility Complex
(MHC) in chromosome 6p21.3 (4–10), where distinct HLA
alleles have been consistently found associated with both,
susceptibility and protection.

In addition to bidirectional influences on risk, HLA allelic and
haplotypic heterogeneity has been reported (11), together with
population effects (12), epistasis (13), and sex dimorphism (14,
15), reflecting the biological complexity of the mechanisms
underlying the statistical associations. Different study designs
and the evolution of genotyping methods also contributed to the
identification of primary and secondary associations, enriching
the working models that describe the role of HLA gene products
in disease predisposition.

The recent advent of cost-effective next generation
sequencing (NGS) methods and customized algorithms allow
to sequence nearly complete HLA genes including UTRs and
introns, to uncover the nucleotide variation on study groups
including novel variants, and to assign the least ambiguous HLA
genotypes and untruncated haplotypes (16).

As part of the disease association and family haplotype
projects for the 17th International HLA and Immunogenetics
Workshop (IHIW), we generated high-resolution data for 11
HLA genes in 477 MS trio families. We took advantage of
recently developed algorithms to track the segregation of NGS
HLA genotypes and performed a classical transmission
disequilibrium test (TDT) analysis (17) to further improve or
understanding of the HLA allelic and haplotypic disease-
associated landscape.
MATERIALS AND METHODS

Study Subjects
In total 477 trio MS families, totaling 1431 subjects with non-
Hispanic European ancestry are included. A trio includes one
proband diagnosed with MS and two unaffected parents. All
children met established diagnostic criteria of MS (18).
iersin.org 2
Transmission and non-transmission of parental alleles and
haplotypes was evaluated to assess associations with MS. In
addition, associations were examined in a case-control analysis
by comparing the distribution of HLA alleles in these 477
children with those in a control group including 2029
previously characterized unrelated healthy subjects with non-
Hispanic European ancestry as control group (19).

There were 54 additional families with multiple MS cases
(n = 147) found in multiple generations that included samples
with European ancestry. Table 1 shows clinical demographic
information for the MS cases for trio and extended families. We
did not perform disease association statistical analyses for the
extended families but reviewed the HLA allele/haplotype
inheritance patterns within the families. Supplemental Table 1
includes summary of the extended families.

This study was approved by the University of California, San
Francisco Institutional Review Board. The analyses of HLA
genotype data with the double-blinded sample IDs were
conducted at the Stanford Blood Center and Stanford
University under the Stanford University Institutional Review
Board (IRB) eProtocol titled, “17th International HLA and
Immunogenetics Workshop” (#: 38899).
TABLE 1 | Clinical and demographic information in MS patient from trios and
extended families.

Disease course Trios Extended families

Cases (N=477) Cases (N=147)

Clinically Isolated Syndrome (CIS) 0 4
Relapse-Remitting (RR) 382 82
Secondary Progressive (SP) 90 29
Primary Progressive (PP) 1 5
Progressive-Relapsing (PR) 1 3
Unknown sub-type 3 244

Gender
Female 373 104
Male 104 43

Age of disease onset
Range 11- 50 12- 54
Mean 28.9 30.5
Median 28 29.5
May 2021 | Volume
Table contains “Disease course”, “Gender” and “Age of disease onset” information. “Trio”
column shows demographic information about MS cases (children) from 477 trio families.
“Extended families” column shows demographic information about MS cases from 54
extended families in which the numbers of MS patients ranged from 2 to 7.
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Genotyping
We initially processed DNA from the above subjects for typing
all alleles at the 11 classical HLA loci (HLA-A, -C, -B, -DRB3 ,]
-DRB4, -DRB5, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1)
using MIA FORA NGS FLEX HLA Typing Kits (Immucor
Inc.) (20), and sequenced using NextSeq and MiniSeq DNA
sequencers (Ilumina Inc.). We used MIA FORA 3.1 software
with IPD-IMGT/HLA Database release version 3.25.0 for DNA
sequence assembly and HLA genotype assignments. HLA
genotypes were extracted in Histoimmunogenetics Markup
Language (HML) format (21) and imported into 17th

International HLA and Immunogenetics Workshop (17th

IHIW) database (22). Some individuals in the extended
families had no DNA, and missing HLA genotypes were
manually imputed previously described (23). The allelic and
genotypic (or “phase”) ambiguities were present in HLA
genotypes due to the technical and methodological limitations,
and reported previously (24). We included the ambiguities for
the haplotype analyses (24, 25), but reported only the lowest-
digit allele name in this manuscript, e.g. HLA-DRB1*15:01:01:01.
For genotypic ambiguities (e.g. HLA-DPB1*04:01:01:01+HLA-
DPB1*04:02:01:02|HLA-DPB1*105:01+HLA-DPB1*126:01), it is
possible to identify a single phased allele combination in most of
the instances by reviewing all the genotypes in the family and
assessing segregation (24). When the genotypic ambiguity is not
resolved due to the lack of informative family members, the
lowest-digit allele name combination is used as the priority HLA
genotype (24). HLA genotyping data for the 477 trio families was
submitted to the Immport data warehouse (https://www.niaid.
nih.gov/research/immport).

Building HLA Haplotypes
The family ID, subject ID, familial relationship and HLA
genotypes organized in Genotype List String (GL string)
format (26) were downloaded from the 17th IHIW database
(22) and used as input format to build HLA haplotypes from
trios using HaplObserve software (24). HaplObserve generates
an output file containing “transmitted” and “non-transmitted”
haplotypes/alleles counts in comma separated value (CSV) file
that allows keeping track of which haplotypes were transmitted
or not transmitted to the offspring. The haplotypes were
separated into the small haplotypes/alleles as described
previously (24). Supplemental Table 2 contains “transmitted”
and “non-transmitted” haplotype counts for 11-loci, Class I,
HLA-DRB3/4/5~HLA-DRB1~HLA-DQA1~HLA-DQB1, HLA-
DPA1~HLA-DPB1 haplotypes with both untruncated and two-
field allele determinations.

Genotypic Transmission Disequilibrium
Test (gTDT) and Multiallelic TDT (mTDT)
The HLA genotypes represent a combination of HLA alleles or
HLA haplotypes for target HLA loci.

First, we performed TDT with HLA genotypes from trio
families using “Genotypic TDT “ function in trio version 3.18.0 R
package (27–29). We use gTDT as an abbreviation for Genotypic
TDT in this manuscript. We tested both untruncated (e.g. HLA-
Frontiers in Immunology | www.frontiersin.org 3
A*02:01:01:01) and two-field (e.g. HLA-A*02:01) allele names for
11 HLA genes (see section Genotyping), and 19 HLA haplotype
blocks (HLA-A~HLA-C~HLA-B, HLA-A~HLA-C~HLA-B~
HLA-DRB1~HLA-DQB1, HLA-A~HLA-C~HLA-B~HLA-DRB3/
4/5 ~HLA-DRB1~HLA-DQA1~HLA-DQB1, HLA-B~HLA-
DQB1, HLA-B~HLA-DRB1, HLA-C~HLA-B, HLA-C~HLA-
B~HLA-DRB1~HLA-DQB1, HLA-C~HLA-B~HLA-DRB3/4/5~
HLA-DRB1~HLA-DQA1~HLA-DQB1, HLA-C~HLA-B~HLA-
DRB3/4/5 ~HLA-DRB1~HLA-DQA1~HLA-DQB1~HLA-DP
A1~HLA-DPB1, HLA-C~HLA-DQB1, HLA-C~HLA-DRB1, HL
A-DPA1~HLA-DPB1, HLA-DQA1~HLA-DQB1, HLA-DRB3/4/
5~HLA-DRB1, HLA-DRB1~HLA-DQB1, HLA-DRB1~HLA-DQ
B1~HLA-DPB1 , HLA-DRB3/4 /5~HLA-DRB1~HLA-
DQA1~HLA-DQB1, HLA-DRB3/4/5~HLA-DRB1~HLA-DQ
A1~HLA-DQB1~HLA-DPA1~HLA-DPB1, HLA-A~HLA-C~
HLA-B~HLA-DRB1~HLA-DQB1, HLA-A~HLA-C~HLA-B~HL
A-DRB3/4/5~HLA-DRB1~HLA-DQA1~HLA-DQB1~HLA-
DPA1~HLA-DPB1). We chose these blocks to eliminate false
signals resulting from ‘hitchhiking’ alleles.

In addition, we performed a second TDT analysis with HLA
genotypes from the trio families using the Transmission/
disequilibrium test of a multiallelic marker by Bradley-Terry
model (mtdt2) function in gap version 1.2.2 R package (30–32).
We use mTDT as an abbreviation for multiallelic marker TDT.
Similar to TDT, we tested both untruncated and two-field allele
names for 11 HLA genes, and 19 HLA haplotype blocks as
described above.

We performed various stratification gTDT and mTDT
analyses, which excluded families and individuals that carried
target allele/haplotype. For example, to eliminate the risk effect of
haplotype bearing HLA-DRB1*15:01, we removed all the families
that contained at least one family member with the risk
haplotype bearing HLA-DRB1*15:01 in the data set. Finally, we
performed conditional logistic regression TDT analyses using
colGxE function in trio R package in the presence or absence of
the haplotype bearing HLA-DRB1*15:01 to determine the effect
and its interaction with the other HLA alleles/haplotypes (29,
33). To identify the genetic model underlying the association
between HLA haplotypes/alleles and MS, we also performed the
MAX gTDT to compute the maximum over the TDT statistics
for an additive, dominant, and recessive model, and to compute
permutation-based p-values (28).

Case-Control (CC)
For case-control analyses, we used Bridging ImmunoGenomic
Data-Analysis Workflow Gaps (BIGDAWG) (34). We tested the
same 11 HLA genes, and 19 haplotypes for CC analyses using
BIGDAWG. Similar to gTDT and mTDT, we also performed
various stratification CC analyses.

Summarizing gTDT, mTDT, and CC
Results
Sixty [(11 loci + 19 haplotypes) x 2 (untruncated and two-field)]
different tests were performed for gTDT, mTDT and CC. Each
software package for gTDT, mTDT and CC generates different
format of output files. To circumvent manual manipulation of
May 2021 | Volume 12 | Article 644838
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the output files, and capture essential information from the
output files, we developed a script to summarize the results in
a single file using Practical Extraction and Report Language
(Perl) programming. We compared gTDT, mTDT and CC
results for all observed alleles and haplotypes (Supplemental
Tables 3–12). We used a threshold of significance of 0.05 for
gTDT, mTDT and CC.

Deviations From Expected Hardy-
Weinberg Equilibrium (HWE)
Python for Population Genomics (PyPop) version 0.7.0 (35)
was used to investigate Hardy-Weinberg Equilibrium (HWE)
via the Guo and Thompson test (36), assessing genotyping
proportions for both individual loci. We identified individual
genotypes deviating significantly from HWE expectations
using Chen’s method (37), using a threshold of significance
of 0.05.

Measuring MS Risk-Protective Effects
We assessed the risk-protective effects of the identified risk and
protective HLA alleles/haplotypes in two approaches. First, we
recorded the presence of a risk allele/haplotype to be +1 and a
protective allele/haplotype to be -1, and calculated the sum of the
scores for each case-control study subject. We classified each
subject into five categories for both cases and controls based on
the final net scores: 1) Risk (positive score); 2) Neutral Zero (no
risk and protective factor present); 3) Neutral Risk Protective
(equivalent numbers of risk and protective factors); 4) Protective
Risk (negative score, but at least one copy of risk allele present);
5) Protective (protective allele only). Supplemental Table 13A
shows the summary for each category. We calculated 2 x 2 odds
ratio for Risk vs. Neutral Zero, Protective vs. Neutral Zero and
Neutral Risk Protective vs. Neutral Zero to measure the risk and
protective effects (Supplemental Tables 13B–D) (38).

Second, we calculated HLA genetic burden (HLAGB) for each
study subject as the sum of the burden of each MS associated
HLA allele as described (39, 40). Each allele burden was
calculated as the allele dose multiplied by the allele effect size
obtained in this study. We generated box plots for HLAGB scores
using “ggplot2” package in R programming language.

DNA Sequence Alignment
We downloaded genomic DNA sequences of HLA-
DPA1*01:03:01:02 (HLA06604) and HLA-DPB1*104:01:01:01
(HLA02046) from IPD-IMGT/HLA Database release version
3.35.0 (41), and compared them with HLA-DPA1*01:03:01:03~
HLA-DPB1*03:01:01 haplotype (Accession Number: AL662824)
(42), because we did not sequence 5’-UTR, exon 1 and intron 1 of
HLA-DPB1 (20). We used the BLAT DNA sequence alignment
tool in the UCSC Genome Browser (43).

Expression Quantitative Trait Loci (eQTL)
We investigated expression quantitative trait loci (eQTL) for
HLA-DPA1 andHLA-DPB1 using GTEx Portal database (https://
www.gtexportal.org/home/) (44).
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Principal Susceptibility HLA Class II Alleles
and Haplotype Blocks
In agreement with previous observations, the HLA-
DRB5*01:01:01~HLA-DRB1*15:01:01:01 haplotype block was
significantly associated with susceptibility to MS in this dataset
(gTDT: RR = 3.42, CI = 2.65-4.42, p = < 2.20e-16; mTDT: p =
1.61e-07; CC: OR = 3.02, CI = 2.55-3.58, p = < 2.22e-
16) (Table 2).

Of 477 trio families, 301 families carried at least one HLA-
DRB5*01:01:01~HLA-DRB1*15:01:01:01 haplotype, and 252
families had one MS-affected child with the HLA-
DRB5*01:01:01~HLA-DRB1*15:01:01:01 haplotype. The HLA-
DRB5*01:01:01~HLA-DRB1*15:01:01:01 extended haplotype
block in this dataset includes several common class I HLA-C~
HLA-B embedded haplotypes: e.g. HLA-C*07:02:01:03~HLA-B*
07:02:01, HLA-C*07:01:01:01~HLA-B*08:01:01:01, HLA-
C*12:03:01:01~HLA-B*18:01:01:02 and the minor HLA-DQ
A1~HLA-DQB1 haplotype: HLA-DQA1*01:02:01:01~HLA-
DQB1*06:03:01. We observed reduced significance of these
extended haplotypes across the telomeric and centromeric
segments of the locus (Supplemental Table 3) and concluded
that the HLA-DRB5*01:01:01~HLA-DRB1*15:01:01:01 short
block constitutes the core element of the risk haplotype. HWE
testing for 477 affected children showed HLA-DRB1*03:01:01:01
homozygosity excess (11 observed; 6.4 expected; p = 0.0442).
Upon application of conditional logistic regression TDT
analyses, and consistent with previous reports (4, 5), HLA-
DRB1*03:01 behaved as a recessive MS risk allele in this
dataset (RR = 4.48, CI = 1.73-11.62, p = 2.03e-3).

In addition, we observed distorted segregation of the HLA-
DPB1*104:01 allele (gTDT: RR = 2.9, CI = 1.41-5.95, p = 3.69e-
03; mTDT: p = 2.99e-03; CC: OR = 1.76, CI = 1.10-2.74, p =
1.00e-02) (Table 2 and Supplemental Table 4A). Of 477 trio
families, 37 families (one parent for 33 families and both parents
for 4 families) carried the HLA-DPB1*104:01 allele, and 29
families had one MS-affected child with the allele HLA-
DPB1*104:01. To exclude the possibility that the HLA-DPB1
susceptibility signal may derive from the primary HLA-
DRB1*15:01 association, we performed a stratification analysis,
which excluded families and individuals that carried the
haplotype bearing HLA-DRB1*15:01, confirming that HLA-
DPB1*104:01 is independently associated with MS risk
(Supplemental Table 4B). We confirmed the independent
association of the allele HLA-DPB1*104:01 with conditional
logistic regression TDT analysis (RR = 4.2, CI = 1.58-11.14,
p = 3.93e-03). We did not observe an interaction between the
allele HLA-DRB1*15:01 and the allele HLA-DPB1*104:01. Out of
41 parents carrying the HLA-DPB1*104:01 allele, 7 parents were
HLA-DRB1*15:01 carriers, but all of them were present on the
other copy of chromosome 6, further confirming that HLA-
DPB1*104:01 risk haplotypes are independently segregated to
their affected offspring. Interestingly, the closely related allele
HLA-DPB1*03:01:01 did not show any significant association
(Figure 1 and Supplemental Table 4A).
May 2021 | Volume 12 | Article 644838
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Protective HLA Class II Alleles and
Haplotype Blocks
The allele HLA-DRB1*01:01:01 showed the strongest class II
protective effect in this dataset (Table 2 and Supplemental
Table 5A). As shown previously, HLA-DRB1*01:01 is
protective for MS in even the presence of HLA-DRB1*15:01 (4,
45). Of 252 children who carry at least one haplotype bearing
HLA-DRB1*15:01, we identified 9 (3.5%) children who also carry
the HLA-DRB1*01:01:01 allele. Of 370 parents who carry at least
Frontiers in Immunology | www.frontiersin.org 5
one haplotype bearing HLA-DRB1*15:01, we found 42 (11.3%)
parents who also carry the HLA-DRB1*01:01:01 allele. The odds
ratio confirms the statistically significant protective effect of
HLA-DRB1*01:01:01 allele in the presence of haplotype bearing
HLA-DRB1*15:01 (OR = 0.29; CI = 0.14-0.61; Yates p =
0.000892). Conditional logistic regression TDT analysis
suggested a statistically significant interaction between HLA-
DRB1*15:01 and HLA-DRB1*01:01 (RR = 0.17, CI = 0.08-0.38,
2 degree of freedom Wald test p = 1.34e-05). When eliminating
TABLE 2 | Main HLA alleles and haplotype fragments associated with susceptibility and protection to MS.

Allele or Haplotype fragment TDT mTDT CC Effect

RR CI p-value p-value OR CI p-value

DRB5*01:01:01~DRB1*15:01:01:01 3.42 2.65-4.42 < 2.20e-16 1.61e-07 3.02 2.55-3.58 < 2.22e-16 Predisposing
DPB1*104:01 2.90 1.41-5.95 3.69e-03 2.99e-03 1.76 1.10-2.74 1.00e-02 Predisposing
DRB1*01:01:01 0.38 0.25-0.59 8.68e-06 4.50e-03 0.44 0.30-0.62 1.96e-06 Protective
DQB1*03:01 0.68 0.53-0.88 2.86e-03 5.56e-02 0.67 0.55-0.81 4.08e-05 Protective
DQB1*03:03 0.52 0.32-0.87 1.17e-02 1.16e-02 0.57 0.35-0.89 1.21e-02 Protective
DPB1*09:01:01 0.10 0.01-0.78 2.81e-02 3.22e-02 0.15 0.00-0.92 3.20e-02 Protective
A*02:01:01:01~C*03:04:01:01~B*40:01:02 0.30 0.13-0.71 5.86e-03 3.65e-02 0.40 0.16-0.82 9.69e-03 Protective
B*38:01 0.38 0.20-0.72 3.20e-03 6.14e-03 0.50 0.26-0.90 1.70e-02 Protective
B*27:05 0.38 0.22-0.66 6.28e-04 2.15e-03 0.55 0.32-0.90 1.47e-02 Protective
B*44:02 0.62 0.43-0.89 9.60e-03 8.94e-02 0.62 0.45-0.86 3.14e-02 Protective
May 2021 | Volume 12 | A
Table shows susceptible and protective associations with MS of HLA alleles and haplotype fragments examined by TDT, mTDT and CC. RR, CI and OR represent relative risk, confidence
interval, and odds ratio, respectively. The TDT and mTDT results are obtained from 477 trio families. The CC results are generated from 477 cases and 2029 controls. Allele names for
DQB1*03:01, DQB1*03:03, B*38:01, B*27:05 and B*44:02 are shown as truncated two-field allele names.
FIGURE 1 | Distinct two DP haplotypes. Figure shows a 25-kb genomic region containing HLA-DPA1 and HLA-DPB1. HLA-DPA1 and HLA-DPB1 are shown at the
bottom. Exons are depicted with rectangles, and introns are shown with thin lines with arrow that indicates the direction of transcription. The light gray bars in the
middle represent DNA sequences containing HLA-DPA1*01:03:01:03 and HLA-DPB1*03:01:01:01 alleles, and the black bars represent DNA sequences containing
HLA-DPA1*01:03:01:02 and HLA-DPB1*104:01:01:01 alleles. The DNA sequences of HLA-DPA1*01:03:01:02 and HLA-DPB1*104:01:01:01 alleles obtained from
IPD-IMGT/HLA Database release 3.35.0 were aligned to the HLA-DPA1*01:03:01:03 and HLA-DPB1*03:01:01:01 allele sequences using the BLAT DNA sequence
alignment tool. We identified 26 nucleotide variations (SNPs) indicated with vertical bars between these haplotypes; only 10 SNPs are shown with rs numbers, SNP
IDs were omitted for the remaining 16 SNPs (indicated as 16 variations: rs2213307, rs2213308, rs2213309, rs2856816, rs28449420, rs7750458, rs115244420,
rs116358647, rs115735976, rs2073520, rs2073521, rs2073522, rs2073523, rs7754299, rs114364259, rs114227078). Of 26 SNPs, 22 are located in intron 1 of
HLA-DPB1. HLA-DPA1 promoter depicted with gray bar at the bottom is located in the complementary strand of genomic DNA sequence that overlaps with intron 1
and exon2 of HLA-DPB1. We observed statistically significant 4 eQTL SNPs highlighted in red. Nucleotides corresponding to HLA-DPB1 alleles for these 4 SNPs
were shown in parentheses. For instance, HLA-DPB1*104:01:01:01 and HLA-DPB1*03:01:01:01 have “G” and “A”, respectively, for rs3128959.
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famil ies with haplotypes bearing HLA-DRB1*15:01
(Supplemental Table 5B), the HLA-DRB1*01:01:01 allele
showed weak protective effects for gTDT, mTDT and CC
(gTDT: RR = 0.54, CI = 0.29-1.00, p = 0.0511; mTDT: p =
0.0197; CC: OR = 0.61, CI = 0.39-0.92, p = 0.0162), suggesting
that HLA-DRB1*01:01:01 may have protective effects also in the
context of non HLA-DRB1*15:01 haplotypes. We did not find
statistically significant protective effects mediated by the HLA-
DRB1*01:01:01 allele in the context of theHLA-DPB1*104:01 risk
effect described above.

The HLA-DRB3*02:02:01:02~HLA-DRB1*11:01:01:01~HLA-
DQA1*05:05:01:01~HLA-DQB1*03:01:01:03 haplotype fragment
showed moderate protective effects for gTDT, mTDT and CC
(gTDT: RR = 0.51, CI = 0.32-0.81, p = 0.0043; mTDT: p = 0.0085;
CC: OR = 0.66, CI = 0.44-0.97, p = 0.0325). Individual alleles and
smaller haplotype segments showed similar protective effects
(Supplemental Table 6).

Interestingly, we also observed statistically significant
protective effects in the case-control analysis for the HLA-
DRB4 * 0 1 : 0 3 : 0 1 : 0 1~HLA-DRB1 * 0 4 : 0 1 : 0 1 : 0 1~HLA-
DQA1*03:03:01:01~HLA-DQB1*03:01:01:01 haplotype, which
has been described before (16), but not in the gTDT and
mTDT analyses (Supplemental Table 6). When these
haplotypes were compared, we noticed the presence of a
shared two-field HLA-DQB1*03:01 allele that showed
protective effects for TDT and CC (Table 2 and Supplemental
Table 6). The results from the mTDT analysis were modestly
statistically significant, suggesting altogether that the protective
effects of HLA-DRB1*11:01:01:01 and HLA-DRB1*04:01:01:01
haplotypes are likely originated in the shared HLA-
DQB1*03:01 allele.

A second HLA-DQB1*03 allele, HLA-DQB1*03:03 showed
moderate protective effects in gTDT, mTDT and CC analyses
(Table 2 and Supplemental Table 7).

Finally, this dataset included 11 HLA-DPB1*09:01:01
parents from 11 trio families. Of these, only one parent
transmitted HLA-DPB1*09:01:01 allele to an affected child.
The allele HLA-DPB1*09:01:01 showed moderate protection
assessed by gTDT, mTDT and CC tests (gTDT: RR = 0.1, CI =
0.01-0.78, p = 2.81e-02; mTDT: p = 3.22e-02; CC: OR = 0.15,
CI = 0.00-0.92, p = 3.20e-02) (Table 2 and Supplemental
Table 8). Although the RR value for the allele HLA-
DPB1*09:01:01 is low compared to the other protective alleles,
the statistical significance is moderate due to the low frequency of
the allele.

Protective HLA Class I Alleles and
Haplotype Blocks
Th e b l o c k i n c l u d i n g HLA -A * 0 2 : 0 1 : 0 1 : 0 1 ~HLA -
C*03:04:01:01~HLA-B*40:01:02 appears to be protective for MS
(Table 2 and Supplemental Table 9), this observation has been
reported previously (5). We detected only 2 patients of the 252
that carried HLA-DRB5*01:01:01~HLA-DRB1*15:01:01:01
carrying also the protective HLA-A*02:01:01:01~HLA-
C*03:04:01:01~HLA-B*40:01:02 block. When the allele names
are truncated to two-field allele name, the statistical significance
Frontiers in Immunology | www.frontiersin.org 6
of the two-field HLA-A*02:01~HLA-C*03:04~HLA-B*40:01
haplotype was reduced (Supplemental Table 9) due to the
presence of the less common haplotype (HLA-A*02:01:01:01~
HLA-C*03:04:01:02~HLA-B*40:01:02). The difference between
HLA-C*03:04:01:01 and HLA-C*03:04:01:02 is located in 3’-
UTR (rs1049650).

The allele HLA-B*38:01 showed statistically significant
protective effects (Table 2 and Supplemental Table 10). This
result is consistent with previous reports (4). The allele HLA-
A*26:01 also showed similar statist ical significance
(Supplemental Table 10). In this study there were 60 trio
families with at least one parent carrying the HLA-A*26:01
allele, and 44 families that had at least one parent carrying the
HLA-B*38:01 allele. Of these families, 17 carried the HLA-
A*26:01:01:01~HLA-C*12:03:01:01~HLA-B*38:01:01 haplotype.
We performed HLA-A*26:01:01:01 and HLA-B*38:01:01
haplotype stratification analysis and the exclusion of families
and individuals with these haplotypes/alleles, resulted in loss of
the statistical significance associated with protection.

Another class I protective effect included the allele HLA-
B*27:05:02 (Table 2 and Supplemental Table 11A). Of 67
parental haplotypes with HLA-B*27:05:02, 21 haplotypes
included the HLA-DRB1*01:01:01 allele, and 14 haplotypes
included HLA-DQB1*03:01. We performed HLA-DRB1*01:
01:01 haplotype stratification analysis which excluded trio
families and individuals that contained the allele HLA-
DRB1*01:01:01; the protective effect conferred by HLA-B*27:
05:02 remained statistically significant. We performed a second
haplotype stratification analysis by excluding trio families and
individuals that carried the allele HLA-DQB1*03:01. The
protective effects associated to HLA-B*27:05:02 remained
statistically significant. Among 252 children who carried at
least one haplotype bearing HLA-DRB1*15:01, we identified
only 8 (3.2%) patients who had HLA-B*27:05:02 allele. Of 370
parents who had at least one haplotype bearing HLA-
DRB1*15:01, we found 28 (7.6%) parents who had the allele
HLA-B*27:05:02. These observations indicate the protective
effects of HLA-B*27:05:02 in the presence of haplotypes
bearing HLA-DRB1*15:01 (OR = 0.40; CI = 0.18-0.89; Yates
p = 0.033306). When stratification analyses were performed by
eliminating trio families with haplotypes bearing HLA-
DRB1*15:01, no statistically significant under-transmission for
HLA-B*27:05:02 was observed (Supplemental Table 11B).
Conditional logistic regression TDT analysis confirmed a
statistically significant interaction between the HLA-
DRB5*01:01:01~HLA-DRB1*15:01:01:01 haplotype and the
allele HLA-B*27:05:02 (RR = 0.23, CI = 0.1-0.51, 2 degree of
freedom Wald test p = 1.29e-03).

A detailed transmission analysis was conducted for
haplotype blocks in the extended family cases. Family 2965
exemplifies how protective and susceptibility alleles may
interact (Supplemental Figure 1). This family had multiple
generations of family members. All siblings in the first
generation of the family carry haplotypes bearing the
susceptibility associated block HLA-DRB5*01:01:01~HLA-
DRB1*15:01:01:01; all the siblings not affected with MS carry a
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haplotype that includes HLA-B*27:02:01 while the affected
subject inherited the alternative haplotype including HLA-
B*08:01:01:01. This transmission pattern is consistent with
HLA-B*27:02:01 disease-mediated protection in this particular
family. The second-generation individual H0278DC4 diagnosed
with MS inherited both, the protectiveHLA-B*27:02:01 allele and
the high-risk HLA-DRB5*01:01:01~HLA-DRB1*15:01:01:01
haplotype block, further exemplifying the limited penetrance of
protective and risk alleles and complex interaction underlying
the association signals.

HLA-C*07:04 and HLA-B*44:02 showed statistically
significant protective effects (Table 2 and Supplemental
Table 12). At four-field resolution, HLA-B*44:02 in European
Americans presents two distinct common haplotypes: HLA-
C*05:01:01:02~HLA-B*44:02:01:01 and HLA-C*07:04:01:
01~HLA-B*44:02:01:03. The haplotype block of broadly defined
alleles, HLA-C*05 and HLA-B*44, was reported as having a
protective effect in MS in the absence of HLA-DRB1 risk alleles
(46–49). In the present study, no protective effect was observed
for HLA-C*05:01. Although we observed higher significance of
the protection by the allele HLA-C*07:04:01:01 (Supplemental
Table 12), we could not rule out if this protection was associated
with HLA-C*07:04 and/or HLA-B*44:02 due to the limited
sample size and the tight LD between HLA-C and HLA-B.

Assessing Risk and Protective
Cumulative Effects
Supplemental Table 13A shows the risk and protective HLA
allele/haplotype count summary in the case-control study data
set. As expected, statistically significant more risk effects were
observed in cases compared to no risk/protective factors present
(Supplemental Table 13B: OR = 3.22, CI = 2.37-4.39, Yates p <
0.0001). The result confirms that subjects who carry the positive
scores of the risk HLA alleles/haplotypes are more susceptible to
MS than the subjects who do not carry risk and/or protective
HLA alleles/haplotypes. Conversely, we observed statistically
significant more protective effects in controls compared to no
risk/protective factors present (Supplemental Table 13C: OR =
0.58, CI = 0.43-0.79, Yates p = 0.00060). In addition, aligned with
the trio family results described above, the presence of risk
factors predisposes to disease even in the presence of equal
number of protective factors (Supplemental Table 13D: OR =
1.91, CI = 1.34-2.72, Yates p = 0.00042).

HLAGB scores (39, 40) were higher in cases (median
[interquartile range (IQR)], 0.23 [-0.40 - 1.10]) compared to
controls (median [IQR], -0.40 [−0.82 - 0.00]), fathers (median
[IQR], -0.00 [−0.69 - 0.70]) and mothers (median [IQR], -0.00
[−0.80 - 0.56]) (Supplemental Figure 2A). We also observed
statistically significant differences in HLAGB scores between the
control group and parents (Supplemental Figure 2A). The
control group shows lower HLAGB driven by higher burden of
protective alleles compared to parents who carry the neutralized
risk and protective factors. The over-transmission of risk alleles
resulted in elevated HLA genetic burden predisposing to MS
in their children. We did not find a statistically significant
difference of HLAGB between parents (Supplemental Figure 2A),
Frontiers in Immunology | www.frontiersin.org 7
in gender of cases or controls (Supplemental Figure 2BC). Using
the classification shown in Supplemental Table 13A, we observed
statistically significant difference in both “Risk” and “Protective”
groups of MS compared to controls (Supplemental Figure 2D).
DISCUSSION

In the present study, multiple HLAMS-risk and protective alleles
were precisely mapped through the analysis of both, coding and
non-coding variants. The HLA-DRB5*01:01:01~HLA-
DRB1*15:01:01:01 block was observed in 52.8% of the affected
children in the trio dataset, confirming the role of this block
conferring susceptibility to MS at the four-field resolution (16).
We were unable, however, to resolve the effect of individual
alleles at HLA-DRB1 and HLA-DRB5 because of the
exceptionally tight LD. The haplotype carrying HLA-
DRB1*15:01 is the strongest genetic susceptibility factor for MS
in Europeans (50), and has been reported as risk in Japanese (9)
and African Americans (51). The etiologic role of HLA-
DRB5*01:01 in MS was also demonstrated as a risk and disease
modifier factor (52–54).

A novel independent association with susceptibility was
identified for HLA-DPB1*104:01, observed in 6.1% of affected
chi ldren. Interest ingly, HLA-DPB1*03:01:01:01 and
DPB1*104:01 share structural features, including identical
exons 1 – 3 DNA sequences, but differ by a non-synonymous
single nucleotide variation in exon 4 [rs11551421: GTG (Val) for
HLA-DPB1*03:01 and ATG (Met) for HLA-DPB1*104:01],
resulting in an amino acid difference located in the
transmembrane domain GXXXG motif (GFVLG -> GFMLG)
sequence (Figure 1). The allele frequencies of HLA-DPB1*03:01
and HLA-DPB1*104:01 were 0.08132 and 0.01824, respectively,
in the control group. Noteworthy, these alleles cannot be
distinguished using the conventional PCR-SSOP HLA typing
method, and are currently reported in reference registries as
HLA-DPB1*03:CUWXP, providing an explanation for this allele
going undiscovered in that previous HLA-based analysis or
studies with limited genotyping resolution.

Although this variation was reported to have a limited
functional role in allorecognition of HLA-DPB1*03:01/HLA-
DPB1*104:01 in unrelated stem cell donor selection (55), little
is known about changes in the downstream immunological
response (56, 57). HLA-DPB1*104:01 and HLA-DPB1*03:01:01
present additional differences in the non-coding regions and
form two distinct haplotypes with specificHLA-DPA1 alleles that
differ in the fourth-field of otherwise, identical amino acid
sequences (HLA-DPA1*01:03:01:02~HLA-DPB1*104:01 and
HLA-DPA1*01:03:01:03~HLA-DPB1*03:01:01). We compared
the HLA-DPA1*01:03:01:02 and HLA-DPB1*104:01 reference
sequences from IPD-IMGT/HLA database with publicly
ava i l ab l e r e f e r ence HLA-DPA1*01 :03 :01 : 03~HLA-
DPB1*03:01:01 genomic sequences (42) and identified 26 single
nucleotide polymorphisms (SNPs) between these haplotypes
within the imputed DNA sequence region. Of these, 22 SNPs
are located in intron 1 ofHLA-DPB1 (Figure 1). TheHLA-DPA1
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promoter is located in the complementary strand of genomic
DNA sequence that overlaps with intron 1 and exon 2 of HLA-
DPB1 (Figure 1) (58). Polymorphisms in promoters in HLA-
DPB1 have been associated with autoimmune disease such as
systemic sclerosis (59). We identified four SNPs (rs3135020,
rs3097670, rs3130169 and rs3128959) that are associated with
expression of brain cerebellum for HLA-DPA1, and brain
nucleus accumbens (basal ganglia) for HLA-DPB1. The later
three SNPs are located within the HLA-DPA1 promoter region
or HLA-DPB1 intron 1 (Figure 1) (58). Seven different HLA-
DPB1*104:01 alleles that includes intron 1 sequences are
recognized as of March 2021, and all alleles share the same
nucleotide at three eQTL associated SNPs (rs3097670, rs3130169
and rs3128959) (Supplemental Figure 3). If these eQTLs
combined with the structural features for antigen presentation
by HLA-DPB1*104:01 were to confer susceptibility, it can be
speculated that any of these variants could be involved in
MS pathogenesis.

In the class II region, we found one HLA-DRB1 and two
HLA-DQB1 protein variants conferring protection to developing
MS. The allele HLA-DRB1*01:01:01 appeared to be the principal
protective determinant in haplotypes bearing this allele. The
examination of interactions between protective and susceptibility
alleles, indicate that HLA-DRB1*01:01:01 confers dominant
protection. Our analysis is also consistent with protective
effects by HLA-DQB1*03:01 and HLA-DQB1*03:03 .
Furthermore, the HLA-DRB1*09:01 allele reported to be
protective in Asian populations (8, 9) may have derived from
the primary association with HLA-DQB1*03:03 (60, 61). We
performed pairwise comparisons of the amino acid sequences of
the alleles HLA-DQB1*03:01, HLA-DQB1*03:02 and HLA-
DQB1*03:03. The allele HLA-DQB1*03:01 differs from HLA-
DQB1*03:02 and HLA-DQB1*03:03 by replacements in 7 and 6
amino acids with 4 and 3 substitutions at residues located at the
peptide binding domain (PDB), respectively. In contrast, HLA-
DQB1*03:02 and HLA-DQB1*03:03 differ only by the
replacement of one amino acid at residue 57 located at the
PDB. The alleles associated with protection present the same
charged amino acid (Aspartic acid) at this residue while the non-
protective allele carries the hydrophobic Alanine. The amino
acid substitutions at residue 57 of DQB1 have been postulated to
play important roles in susceptibility and resistance in insulin-
dependent diabetes mellitus (IDDM) (62).

The allele HLA-B*44:02 is frequently associated with the
protective allele HLA-DQB1*03:01, thus protection associated
with these alleles was difficult to resolve. The neutral
transmission of haplotypes bearing both HLA-B*44:02 and the
highly susceptibility allele HLA-DRB1*15:01:01:01 is suggestive
that the observed susceptibility conferred by HLA-
DRB1*15:01:01:01 over-transmitted in haplotypes bearing
multiple alleles of HLA-B is specifically neutralized by the
presence of HLA-B*44:02. We conclude that the HLA-B*44:02
protein effect in protection is likely to be an independent factor.
Conditional logistic regression TDT analysis suggested a
statistically significant interaction between the haplotype
carrying HLA-DRB1*15:01 and HLA-B*44:02 (RR = 0.55, CI =
0.32-0.94, 2 degree of freedom Wald test p = 3.05e-02).
Frontiers in Immunology | www.frontiersin.org 8
The HLA allele transmission analysis in family 2965 provides
an interesting insight of a protective factor offsetting the effect of
a susceptibility allele (Supplemental Figure 1). The observation
of protection conferred by HLA-B*27:05:02 and HLA-B*27:02:01
suggests that antigen presenting features of this allele and closely
related alleles may confer protection. The HLA-B*27:05 and
HLA-B*27:02 are both serologically recognized as B27, and carry
the Bw4 ligand for a killer immunoglobulin-like receptor
KIR3DL1. The KIR3DL1 in combination with Bw4 epitope was
shown to be protective against MS in African Americans (63).
We performed gTDT with the first-field allele name (serological
equivalent) for the 477 trios and observed the statistical
significance of HLA-B*27 (gTDT: RR = 0.37, CI = 0.21-0.63,
p = 0.00028) (17).

In the case of protection conferred by the class I haplotype
HLA-A*02:01:01:01~HLA-B*40:01:02~HLA-C*03:04:01:01, we
hypothesize that these three HLA alleles are not the protective
factors per se, and other elements exert protection within the 1.45
Mb genomic region that is specific to this class I haplotype block.

In summary, HLA-DRB5*01:01:01~ HLA-DRB1*15:01:01:01
was significantly associated with predisposition as expected. A
second independent risk allele, HLA-DPB1*104:01 was newly
identified. HLA-DRB1*01:01:01, HLA-DQB1*03:01 and HLA-
DQB1*03:03, showed protective effects. The HLA class I block,
HLA-A*02:01:01:01~ HLA-C*03:04:01:01~ HLA-B*40:01:02 and
the alleles HLA-B*44:02, HLA-B*27:05 andHLA-B*38:01 showed
moderately protective effects independently from each other and
from the class II associated factors. Altogether, the present study
demonstrates the effectiveness of high resolution extended
coverage typing for dissecting HLA alleles/haplotypes
associated with disease susceptibility using family-based
segregation analyses. This is the first MS-HLA family study
using NGS. In this study both, susceptible and protective
candidate HLA alleles/haplotypes were mapped with more
precision by eliminating at the same time false signals resulting
from ‘hitchhiking’ alleles (64). The mapping to specific HLA
allele structures may allow to design research focused in their
functional features facilitating the understanding of the
mechanisms involved in disease susceptibility and protection.
In addition, the HLA genetic burden (HLAGB) defined by HLA
genotype evaluated in this study appears to generate a highly
informative risk score (RS) that could be further evaluated in the
outcomes of the disease in future studies.
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