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Abstract

Removing Unwanted Variation from Microarray Data with Negative Controls

by

Johann Andreas Gagnon-Bartsch

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Terence P. Speed, Co-chair

Professor Philip B. Stark, Co-chair

Microarray expression studies suffer from the problem of batch effects and other unwanted
variation. Unwanted variation complicates the analysis of microarray data, leading to high
rates of false discoveries, high rates of missed discoveries, or both. Many methods have been
proposed to adjust microarray data to mitigate the problems of unwanted variation. Because
the factors causing the unwanted variation are frequently unknown, several of these methods
rely on factor analysis to infer the unwanted factors from the data. A central problem
with this approach is the difficulty in discerning the unwanted variation from the biological
variation that is of interest to the researcher. To overcome this problem, we present novel
methods that use negative controls to help identify the unwanted factors and separate the
unwanted variation from the variation that is of interest. Negative control genes are genes
known a priori not to be differentially expressed with respect to the biological factor of
interest.

The first method we present is a simple two-step procedure that we name RUV-2. In
the first step RUV-2 estimates the unwanted factors by performing factor analysis on the
negative control genes. Here, RUV-2 exploits the fact that any variation in the expression
levels of negative control genes can be assumed to be unwanted variation. In the second
step, RUV-2 regresses the expression data on the factor of interest, including the estimated
unwanted factors as covariates in the regression model. The principal difficulty with RUV-2
is choosing the number of unwanted factors to include in the model.

The second method we present is a more complicated four-step procedure that we name
RUV-4. Compared to RUV-2, RUV-4 is relatively insensitive to the number of unwanted
factors included in the model; this makes estimating the number of factors less critical. We
also present a novel method for estimating the genes’ variances that may be used even when
a large number of unwanted factors are included in the model and the design matrix is full
rank. We name this method the “inverse method for estimating variances.” By combining
RUV-4 with the inverse method, it is no longer necessary to estimate the number of unwanted
factors at all.
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We discuss various techniques for assessing the performance of an adjustment method,
and compare the performance of RUV-2, RUV-4, and their variants with the performance
of other commonly used adjustment methods such as Combat, SVA, LEAPP, and ICE. We
present several example studies, each concerning genes differentially expressed with respect
to gender in the brain. We find that our methods performs as well or better than other
methods.



i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1

2 RUV-2 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Criteria for a Good Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Control Genes / Gene Rankings . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 The p-value Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 RLE Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Gender Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Alzheimer’s Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 TCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 NCI-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Extended NCI-60 Discussion . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 RUV-4 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Background and Model . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 The Two-Step Method (RUV-2) . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 The Four-Step Method (RUV-4) . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Comparison of RUV-2 and RUV-4 . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Statistical Properties of RUV-4 . . . . . . . . . . . . . . . . . . . . . 53



ii

3.3.6 Practical considerations for RUV-4 . . . . . . . . . . . . . . . . . . . 58
3.3.7 The Inverse Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.8 The Functional Approach . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.9 Variations and Extensions . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 The Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.2 RUV-2 vs. RUV-4 vs. RUV-inv . . . . . . . . . . . . . . . . . . . . . 94
3.4.3 A Comparison of Methods . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5 Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5.1 Analysis Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5.2 Summary Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.3 Projection Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Conclusion 115

Bibliography 120

A RUV-2 Supplementary Material 124
A.1 MAQC Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.2 Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.3 Additional Gender Study Figures . . . . . . . . . . . . . . . . . . . . . . . . 127
A.4 Additional Alzheimer’s Study Figures . . . . . . . . . . . . . . . . . . . . . . 137
A.5 Additional TCGA Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.6 Additional NCI-60 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B RUV-4 Supplementary Material 177
B.1 Miscellaneous Derivations and Discussions . . . . . . . . . . . . . . . . . . . 177
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Chapter 1

Introduction

Microarray expression studies are plagued by the problem of unwanted variation. In addition
to the biological factor(s) that are of interest to the researcher, other factors, both technical
and biological, influence observed gene expression levels. A typical example is a batch effect,
which can occur when some samples are processed differently than others. For example,
significant batch effects may arise when some samples are processed in a different labora-
tory, by a different technician, or even just on a different day (Leek et al., 2010; Scherer,
2009). Though infamous, batch effects are not the only source of unwanted variation. Other
sources of unwanted technical variation can occur within batches and be just as problematic.
Moreover, unwanted biological variation can be a problem as well.

Unwanted variation complicates the analysis of microarray data. Unwanted variation may
lead to high rates of false discoveries, high rates of missed discoveries, or both. Consider a
typical differential expression (DE) analysis in which a researcher wishes to learn which genes
are associated with a particular factor of interest. For example, a researcher may wish to
learn which genes are associated with a particular tumor type. If there are unwanted factors
(e.g. batch) that are correlated with the factor of interest (tumor type), the confounding
of batch and tumor type may lead to false discoveries. Conversely, if there are unwanted
factors that are uncorrelated with tumor type, the unwanted variation may simply obscure
any true association between tumor type and gene expression levels, and thus lead to missed
discoveries.

The causes of unwanted variation are often partially or entirely unknown. In some cases,
factors that cause unwanted variation are known, but cannot be easily or precisely measured.
For example, the level of atmospheric ozone has been shown to affect microarray quality (Fare
et al., 2003). In other cases, only proxies of the true unwanted factors may be known, and
these proxies may give only a partial hint of the underlying unwanted variation. Consider
batch effects. It is not “batch” itself that causes “batch effects,” but rather some other
physical variable that is correlated with batch. As a simple example, suppose changes in the
operating temperature of the scanner lead to unwanted variation, and consider a study in
which some samples are processed at lab A and the rest at lab B. If the scanner at lab A
generally runs cooler than the scanner at lab B, this will lead to a “batch effect.” However, if
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the operating temperature at lab A is itself quite variable, this will lead to additional within-
batch unwanted variation. In this example batch is only a proxy for temperature, and it may
be a poor one. Section A.1 in the appendix provides a brief example from the MAQC study
of substantial within-batch unwanted variation. Of course, in many other cases, even proxy
variables are unavailable, and the causes of unwanted variation are a complete mystery.

This complicates the removal of unwanted variation. If the factors causing the unwanted
variation are unknown, or even just poorly measured, it becomes difficult to discern what
variation may be attributed to the unwanted factors. It becomes correspondingly difficult
to discern what variation may actually be attributed to the factor of interest. A researcher
trying to remove unwanted variation may fail to remove all of the unwanted variation, may
accidentally remove the variation of interest, or both.

Adjusting for unwanted variation when the causes of the unwanted variation are unknown
is the central topic of this thesis. Our strategy is to use control genes. Negative control
genes are genes whose expression levels are known a priori to be truly unassociated with the
biological factor of interest. Conversely, positive control genes are genes whose expression
levels are known a priori to be truly associated with the factor of interest. For example, if
the factor of interest is the presence or absence of ovarian cancer, CyclinE would be a positive
control. Negative control genes are in general harder to identify with certainty. So-called
housekeeping genes are often good candidates, but not always. Another example of negative
controls are the spike-in controls found on many microarray platforms.1

Negative control genes are used routinely to detect the presence of unwanted variation.
However, as we will see, they can also be used to adjust for unwanted variation. We are
not the first to make this observation. In particular, Lucas et al. (2006) have used negative
control genes to adjust for unwanted variation. However, we do not believe the importance
of control genes in adjusting for unwanted variation is widely recognized. Indeed, we believe
the role of control genes is of central importance.

The structure of this thesis is as follows. In what remains of the introduction we present a
brief summary of existing methods to adjust for unwanted variation. In Chapter 2 we present
a simple, two-step procedure that uses control genes to adjust for unwanted variation. We
also discuss techniques to evaluate the performance of methods that adjust for unwanted
variation. In Chapter 3 we present more complex methods that build on the simple method
introduced in Chapter 2. Chapter 4 concludes.

Methods to adjust for unwanted variation can be divided into two broad categories.
In the first category are methods that can be used quite generally, and provide a global
adjustment. A global adjustment produces a modified (adjusted) dataset that is essentially
identical to the original dataset but — hopefully — with the unwanted variation removed.
An example of a global adjustment would be quantile normalization, which is commonly

1Two notes on terminology: 1) When we refer generally to “negative control genes” or simply “control
genes” we often use the term to include the spike-in control probesets as well, despite the fact they are not
genes. 2) In other contexts (e.g. Illumina) the term “negative controls” is used to denote probes that should
never be expressed in any sample. This usage of the term “negative controls” is different than ours, and
should not be confused.
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used in the preprocessing of microarray data. Quantile normalization is generally regarded
as a self-contained step, and plays no role in the downstream analysis of the data. In the
second category of adjustment methods are application specific methods. Application specific
methods integrate the adjustment for unwanted variation directly into the main analysis of
interest. For example, in a differential expression study, batch effects may be handled by
explicitly adding batch terms to a linear model. A modified (adjusted) dataset is not created
in the process. Thus, this method is application specific in the sense that it is only useful in
the context of a differential expression analysis. It is not necessarily clear how — or whether
— the method may be altered in order to adjust for unwanted variation in other types of
analyses, such as classification or clustering analyses.

Much of the progress that has been made in removing unwanted variation from microarray
data has been with application specific methods intended for use in differential expression
analyses. Most of these methods make use of linear models. In some of these methods it is
assumed that the factors causing the unwanted variation are known; in this case the effects of
the known batches can be directly modeled. Combat is one such successful and well-known
method; in particular Combat has been shown to work well with small datasets (Johnson
et al., 2007). While Combat and other similar methods can be quite successful, their use is
limited by the assumption that the unwanted factors are known. As discussed above, the
unwanted factors are often only partially known, or entirely unknown.

Other linear-model based methods presume the sources of the unwanted variation to be
unknown. These methods attempt to infer the unwanted variation from the data, and then
adjust for it. Often this is accomplished via some form of factor analysis; several factors
believed to capture the unwanted variation are computed and then incorporated into the
model in just the same way known confounders are incorporated. In the simplest approach,
factors are computed directly from the observed expression matrix by means of a singular
value decomposition or some other factor analysis technique. This is often successful in
practice, but can be dangerous — if the biological effect of interest is large, it too will
be picked up by the factor analysis, and removed along with the unwanted variation. In
other words, if one adjusts for unwanted variation by removing the first several principal
components (PCs) from the data, one may very well throw out the baby with the bathwater.
This problem has been acknowledged, and several attempts have been made to avoid it.
One of the most well-known methods that directly address this problem is SVA (Leek and
Storey, 2007, 2008). Other methods of potential interest include Kang et al. (2010), Kang
et al. (2008a), Kang et al. (2008b), Listgarten et al. (2010), Mecham et al. (2010), Price
et al. (2006), Stegle et al. (2008), Yu et al. (2005). Some of the first uses of factor analysis to
adjust for unwanted variation can be found in Alter et al. (2000) and Nielsen et al. (2002),
although in these examples there is no explicit linear model.
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Chapter 2

RUV-2

2.1 Introduction

In this chapter we present RUV-2. RUV-2 is a simple, two-step procedure that uses control
genes to detect and adjust for unwanted variation. The two steps of RUV-2 are: 1) per-
form factor analysis on the negative control genes to estimate the unwanted factors, and 2)
incorporate the estimated unwanted factors into a linear regression model (along with any
known covariates, and, of course, the factor of interest). RUV-2 exploits the fact that the
negative controls are not truly associated with the factor of interest; any observed variation
in the negative controls can be assumed to be unwanted variation. By constraining the factor
analysis to the control genes, there is no danger in picking up any of the relevant biology in
the factor analysis step, and thus no danger of throwing out the baby with the bathwater.

RUV-2 is application specific and meant for use in differential expression studies. How-
ever, there is an obvious interest in adapting RUV-2 for use in other applications, such as
classification or clustering. Thus, a secondary goal of this chapter is to explore the possibility
that RUV-2 might be adapted for use in other applications. We find that there may be some
hope of success, but substantial challenges remain.

A third goal of this chapter is to present some techniques we have found to be useful
for comparing the performance of different adjustment methods. Many methods have been
proposed to adjust microarray data for unwanted variation, and several of these methods
have been quite successful. However, there is no “silver bullet” and probably never will be.
As such, there is a crucial need for techniques to evaluate the relative strengths and weakness
of the various adjustment methods that are available.

The structure of this chapter is as follows. In Section 2.2 we discuss techniques to
evaluate the performance of adjustment methods. In Section 2.3 we apply RUV-2 to some
real datasets. We compare the performance of RUV-2 to that of other adjustment methods.
In Section 2.4 we present the methodology of RUV-2 in more detail. Section 2.5 concludes.
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2.2 Criteria for a Good Adjustment

Techniques to evaluate the quality of an adjustment are in many ways as important as the
adjustment method itself. The statistical models on which adjustment methods are based are
artificial. The models are most useful as sources of inspiration for improved methods; they
are substantially less useful in proving the worth of a method. In the end, an adjustment
method must prove its value by working in practice.

The question thus arises of how to know whether an adjustment is helping or hurting.
This is not trivial. In many cases, evidence that seems to suggest an adjustment method is
helping (or hurting) is actually ambiguous. As an example, consider a differential expression
study, and consider assessing the quality of the study by counting the number of genes
“discovered” at a certain FDR threshold. If the unwanted variation is roughly orthogonal
to the factor of interest, the unwanted variation will manifest itself as additional “noise”
that obscures any true association between the factor of interest and gene expression levels.
An effective adjustment method would therefore increase the number of discovered genes.
On the other hand, if the unwanted variation is correlated with the factor of interest, this
will introduce spurious associations between the factor of interest and gene expression levels.
An effective adjustment method would therefore decrease the number of discovered genes.
As a second example, consider a classification study in which a researcher wants to classify
tumor samples into one of several tumor sub-types. Suppose the researcher wants to test her
classification algorithm on a set of tumor samples in which the sub-type is known, and she
does her test once in combination with a method that adjusts for unwanted variation, and
once without. Suppose the rate of misclassification is higher when the adjustment method is
used. This would seem to suggest the adjustment method is hurting. However, it is equally
possible that the adjustment method is working — if the tumor sub-types were processed in
batches, the resulting batch effects could artificially help the classifier.

In the following few sections we present some techniques that we have found to be useful
in evaluating the quality of an adjustment.1 Only the first technique provides a (nearly)
unambiguous assessment of the quality of an adjustment. However, its applicability is lim-
ited. The other two techniques are also very informative, if not entirely definitive, and can
be used in a wider variety of situations.

1One fairly common technique that we do not discuss is clustering. In some circumstances, performing a
cluster analysis both before and after adjustment and observing whether the adjustment causes samples to
cluster more strongly by biology (or less strongly by batch) can be a highly effective way to assess the quality
of the adjustment. Indeed, we use this technique ourselves in Section 2.3.4. However, there are also many
circumstances in which clustering can be deceptive (the classification example we provide above applies just
as well to clustering). We feel a full discussion is beyond the scope of this thesis. In general, we feel that
clustering is more helpful as an exploratory tool, and less helpful as a test of the quality of an adjustment.
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2.2.1 Control Genes / Gene Rankings

Positive control genes can be used for quality assessment in differential expression studies.
After computing p-values for each gene, we can rank the genes in order of increasing p-value.
Positive controls should be towards the top of this list. We can therefore use the number
of positive controls ranked in (for example) the top 50 genes as a quality metric. If an
adjustment method substantially increases the number of top-ranked positive controls, we
have reason to believe the method is effective.2

Note that we use the ranks of the p-values and not the p-values themselves. This is for
reasons discussed above; a good adjustment may increase or decrease the positive controls’
p-values depending on the nature of the unwanted variation. Ranking helps to resolve the
ambiguity.

While ranking p-values is generally preferred, there remain some situations in which it
may be better to look at the p-values themselves. An example might be when only a very
small number of positive controls are available, and their rankings do not change substantially
after the adjustment. In this case, one might wish to examine the p-values of both positive
and negative controls. If the p-values of the positive controls substantially decrease — and
the p-values of the negative controls do not — this would suggest the adjustment helps. On
the other hand, if the p-values of the negative controls decrease as well, this may simply
suggest an artifact of the adjustment method. Likewise, if the p-values of the positive and
negative controls both increase, the result is ambiguous, but the technique decribed in 2.2.2
might help clarify matters.

Some caution is required when using negative controls to assess the quality of an adjust-
ment. After all, if the method of adjustment is to fit and remove variation characteristic
of a set of negative controls, then observing that the adjustment diminishes the association
between the factor of interest and the negative controls is simply to be expected. A better
strategy would be to use two different sets of negative controls — one to make the adjust-
ment, and one to use in assessing the quality of the adjustment. Preferably, the two sets
of negative controls will be different from each other in some important way. For example,
we might use spike-in controls to make an adjustment, and housekeeping genes to assess the
quality of the adjustment, or vice versa.

2.2.2 The p-value Distribution

Consider a differential expression study in which the factor of interest is assumed to be
associated with the expression level of only a fraction of genes. The distribution of the
p-values for the genes that are unassociated with the factor of interest would ideally be

2Even here, however, the evidence, strictly speaking, is not entirely conclusive. For example, consider
a simple hypothetical adjustment method that simply shinks gene-specific variances to a common average
variance. This would have the effect of systematically increasing the magnitude of the t statistics for highly
variable genes. If the positive controls all happened to be highly variable, the end result would be that the
rankings of the positive controls improve, despite the fact that the “adjustment” is not really correcting for
unwanted variation at all.
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uniformly distributed over the unit interval, whereas the p-values for the genes that are
associated with the factor of the interest will ideally be nearly 0. Thus, a histogram of
the p-values will ideally be nearly uniform, with a spike near 0. In practice however, this
is uncommon, as unwanted variation tends to introduce dependence across measured gene
expression levels. Since adjusting for unwanted variation should remove this dependence, we
might expect a good adjustment to result in p-value histograms closer to the “ideal.”

2.2.3 RLE Plots

RLE (relative log expression) plots are boxplots that can be used to determine the overall
quality of a dataset, and, in particular, identify bad chips. Consider a set of m chips, each
with n genes, and denote the log expression level of the jth gene on the ith chip by yij.
Denote the jth column of the matrix (yij) by y?j. For each of the n genes we can calculate
median(y?j), the median (over the m chips) log expression level. For each gene on each chip,
we can then calculate yij−median(y?j), the deviation from the median gene expression level.
For each chip, we can then produce a box plot of its n deviations. In most cases, if the chip
is of good quality, this boxplot will be centered around zero and its width (IQR) will be
around 0.2 or less. Examples of RLE plots can be found in Figure 2.1 (to be discussed more
fully later), and more information about RLE plots can be found in Bolstad et al. (2005),
Brettschneider et al. (2008).

2.3 Examples

We present four examples. In the first three we discover genes that are differentially expressed
in the brain with respect to gender. The fourth example involves clustering tumors of known
types. We chose these examples because “truth” is in some sense known.

We chose differential expression with respect to gender because it provides us with a
clear set of potential positive controls — in this case, genes that are located on the X and
Y chromosomes. Treating X and Y genes as positive controls and using our technique of
counting the number of top-ranked positive controls (Section 2.2.1) allows us to compare the
performance of various adjustment methods. We chose the brain because of its comparatively
complex biology — a very large fraction of genes are expressed in the brain — and the
availability of several interesting datasets. Indeed, our lead example is ideal, as the study
was originally intended to discover differentially expressed genes in the brain,3 and the data
exhibit profound batch effects.

In all of our examples, a few practical issues must be considered. The first is what prepro-
cessing should be done. Microarray data routinely go through three stages of preprocessing
— background correction, normalization, and summarization. Several algorithms have been

3In this thesis we are primarily concerned with methodology, not biology, and we do not discuss the
specific genes we find to be differentially expressed. Readers interested in the particular genes that are
differentially expressed can find tables in Sections A.3, A.4, and A.5 of the appendix.
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proposed for each of these steps. For simplicity, we limit ourselves to the “standard” se-
quence of algorithms used in RMA (Bolstad et al., 2003), (Irizarry et al., 2003a), (Irizarry
et al., 2003b). The preprocessing steps — particularly the quantile normalization — are
nonlinear, and it is not clear how they might interact with the adjustment methods. Thus,
we repeat many of our analyses omitting one or more stages of preprocessing in order to see
what happens.

The second issue to consider is which negative controls to use. To effectively adjust
for batch effects, our negative controls must both 1) be uninfluenced by the factor(s) of
interest and 2) be influenced by the unwanted factors. In other words, they must actually be
negative controls, and their expression levels must accurately reflect the unwanted variation.
We focus on two classes of possible negative controls — housekeeping genes and spike-in
controls. The housekeeping genes we use are those discovered in Eisenberg and Levanon
(2003).4 Information regarding the spike-in controls can be found in the appendix of the
Affymetrix GeneChip Expression Analysis Technical Manual (Affymetrix, 2005-2009). A
good discussion of both can be found in Lippa et al. (2010).

2.3.1 Gender Study

Vawter et al. (2004) conducted a study to find genes differentially expressed in the brain with
respect to gender. Samples were taken post-mortem from the brains of 10 individuals, 5 men
and 5 women. Three samples were taken from each individual — one from the anterior
cingulate cortex, one from the dorsolateral prefrontal cortex, and one from cortex of the
cerebellar hemisphere. One aliquot of each sample was sent to each of three laboratories
for analysis. The analyses were done using either Affymetrix HG-U95A or Affymetrix HG-
U95Av2. We are unaware of how the decision was made to use which platform for which
analysis. One of the laboratories used only HG-U95Av2. Note that there should have been
10× 3× 3 = 90 chips total. However, six of the combinations were missing, leaving us with
84 chips.5 Data are available on GEO (GSE2164).

The HG-U95A platform has 12626 probesets, and the HGu95Av2 platform has 12625
probesets. We identified 12600 probesets that were shared between the two platforms. We did
not, however, attempt to map individual probes from one platform to the other. Since pre-
processing (background correction, quantile normalization, summarization) requires probe
level data, we did these preprocessing steps for each platform separately. As a result, large
differences remained between the different platform types even after the standard prepro-
cessing.6 The raw HG-U95Av2 expression values are generally larger than their HG-U95A

4Housekeeping genes are genes that are essential to basic cellular activities, such as metabolism. These
genes are therefore expressed in all cells. The strategy used in Eisenberg and Levanon (2003) to discover
housekeeping genes was to examine gene expression levels in many different tissues, and see which genes
were expressed in all of the tissues.

5Additionally, 3 of the combinations were replicated, so in fact there are 87 chips available on GEO. We
omitted the replicates in our analysis.

6In this respect, the situation is similar to the one found in Nielsen et al. (2002), one of the first uses
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analogs by about a factor of 4, so the log2 expression values for the HG-U95Av2 expres-
sion values are generally greater than those of the HG-U95A by about 2. We therefore
added an additional preprocessing step after summarization; we performed a location / scale
adjustment in which we linearly re-scaled the data so that each chip had the same mean
and standard deviation. See Figure 2.1 for RLE plots at different stages of preprocessing
— no preprocessing; background correction and quantile normalization only (BG + QN);
background correction, quantile normalization, and location / scale adjustment (BG + QN
+ LS). It is important to note that the vertical scale of the RLE plots in Figure 2.1 is
substantially different than that of all other RLE plots in this thesis.

None BG + QN BG + QN + LS
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−
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Figure 2.1: Gender study RLE plots at different stages of preprocessing. From left to
right: No preprocessing; background correction / quantile normalization done separately
for each platform type; background correction / quantile normalization followed by a final
location/scale adjustment across all chips. Coloring: red – site A, HG-U95A; yellow – site
A, HG-U95Av2; black – site B, HG-U95A; gray – site B, HG-U95Av2; cyan – site C, HG-
U95Av2. NOTE: The scale on the y-axis is different for these RLE plots than for all other
RLE plots in this thesis.

The unwanted variation apparent in Figure 2.1 is striking. Even ignoring the differences
between chip types, observed expression levels differ by up to an order of magnitude between
laboratories. There is substantial within-laboratory unwanted variation as well. The average
observed expression level varies from chip to chip by roughly a factor of two within labora-
tories. As a result, discovering genes that are differentially expressed with respect to gender
is nearly impossible without adjusting for the unwanted variation. On un-preprocessed, un-
adjusted data, every gene has an FDR-adjusted p-value of approximately 1, and only 7 of
the top 60 genes come from the X or Y chromosome. The preprocessing helps; after prepro-
cessing (but no other adjustments), 15 of the top 60 genes are from the X or Y chromosome,

of factor analysis to remove unwanted variation, where the primary source of unwanted variation was chip
type.
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and 8 of these have FDR-adjusted p-values that are significant at the 0.05 level. Even af-
ter preprocessing, however, substantial unwanted variation persists, as can be seen in RLE,
p-value, and scree plots.

A critical step in RUV-2 is determining the number k of factors to remove. In general,
this is difficult, and there is no clear way to determine k. We recommend pursuing several
approaches and exercising judgment. We have found RLE plots and p-value histograms to
be helpful.7 In addition, if any positive controls are known, these should be used as well. To
make use of RLE plots and p-value plots it is necessary to complete the analysis for several
values of k and then examine the plots to evaluate the quality of the results. Several such
plots can be found in the appendix (Figures A.3 and A.4); based on these plots, we choose
a k of 10 — see Figure 2.2.

Several questions remain: Which factor analysis method is best? To what extent does
performance depend on k? Does RUV-2 work well in combination with Limma? Do we
achieve a better adjustment using housekeeping genes or spike-in controls? How does RUV-
2 compare to other adjustment methods such as standard linear regression, Combat, or SVA?
How does preprocessing affect performance? We address each of these questions in turn.

Given the central role of factor analysis in RUV-2, one might expect that the choice of
factor analysis method is quite important. In our examples this turns out not to be the case.
We repeated our analysis with three different factor analysis methods. The first is the singular
value decomposition (SVD). The second is an EM algorithm based on a relatively simple
probabilistic model that allows for gene-specific variances in the error term. The model and
the algorithm are described in Section 12.2.4 of Bishop (2006). The implementation of the
algorithm is our own. The third method is a “robust” method described in Hubert et al.
(2005) and implemented in the PcaHubert fuction of the R package rrcov. RLE plots after
adjustment looked nearly identical for all three factor analysis methods. P-value histograms
were also remarkably similar. More convincingly, the number of top-ranked X/Y genes is
roughly the same for all three methods, as we discuss below.

The choice of k turns out to be critical to the performance of RUV-2. This can be seen
in RLE plots and p-value histograms (figures are in the appendix), but can be seen most
dramatically by counting the number of top-ranked X/Y genes at different values of k. We
repeated the analysis for all possible values of k. At first, the number of top-ranked X/Y
genes increases with increasing k, as additional unwanted variation is removed. After a
certain point, however, increasing k only degrades performance, as adding additional factors
to the model simply increases variance.8 See Figure 2.3. Note from Figure 2.3 that although
the performance of RUV-2 depends critically on the choice of k, the region over which RUV-2
performs well is fairly large. This is important because it implies, in this example at least,
that while RLE plots and p-value histograms may not lead us to the single best choice of k,

7Many people find scree plots to be helpful as well (Venables and Ripley, 2002). In our examples, we
found scree plots to be of questionable value. However, we provide them in the appendix.

8Note that as k → m, we keep adjusting away additional dimensions, until we finally remove everything.
At this point the OLS estimator becomes undefined. Thus, performance will certainly degrade for large k.
The only question is when.
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Unadjusted RUV-2, k = 10
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Figure 2.2: Gender study p-value histograms and RLE plots before and after adjustment.
Histogram breakpoints are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data were fully
preprocessed (BG+QN+LS). The factors were computed by SVD on the housekeeping genes.
P-values were computed using Limma.

they can at least lead us to a good one. Finally, note also from Figure 2.3 that the choice of
factor analysis method does not greatly impact the results.
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Figure 2.3: Comparison of performance of different factor analysis methods in the gender
study. The number of X / Y genes discovered is plotted as a function of k. Genes were
ranked by p-value; results are shown for the number of X / Y genes ranked in the top 20
(plus), top 40 (triangle), and top 60 (circle). k = 0 corresponds to no adjustment. Data
were preprocessed (BG + NM + LS). PCs were computed using the housekeeping genes.
P-values were computed using Limma.

It is common to analyze microarray data using the Limma package in Bioconductor
(Smyth, 2004). Limma uses empirical Bayes methods to improve the estimates of the vari-
ances of individual genes. Since adjusting with RUV-2 or any other method can substantially
affect the general structure of the residuals, we checked to ensure that RUV-2 and Limma
work well together. To accomplish this we completed our analysis once using Limma and
once using “ordinary” regression. We did not notice any substantial difference in perfor-
mance (as assessed using RLE plots, p-value histograms, and counts of top-ranked X/Y
genes) between the two methods. Details can be found in the appendix.

The performance of RUV-2 depends greatly on the choice of negative controls. Adjust-
ments based on both the housekeeping genes and the Affymetrix spike-in controls improved
performance relative to unadjusted data, however the performance increase using house-
keeping genes was substantially better. See Figure 2.4. We believe housekeeping genes
may outperform the spike-ins in this example for three reasons. Firstly, housekeeping genes
may be able to capture unwanted biological variation, whereas spike-in controls can only
capture unwanted technical variation. Secondly, even with regards to technical variation,
housekeeping genes may be more “representative” than spike-ins. For example, housekeep-
ing genes may capture unwanted variation introduced during sample collection, whereas
spike-ins would not. Conversely, spike-ins may exhibit some unique variation related to their
own administration. Lastly, there are far more housekeeping genes than there are spike-in
controls. There are 799 probesets that correspond to one of the housekeeping genes in Eisen-
berg and Levanon (2003). However, there are only 33 probesets corresponding to spike-in
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Figure 2.4: Comparison of results for housekeeping genes and Affymentrix spike-in controls in
the gender study. For the RLE plots and p-value histograms, k = 10. Factors were computed
by SVD. P-values were computed using Limma. Note that there are only 33 spike-in controls,
so adjustments with k > 33 are undefined for the spike-in case. We truncate results in the
housekeeping case as well for easy comparison.

Finally, we wish to compare the performance of RUV-2 to that of other adjustment
methods. Additionally we would like to investigate the effects of preprocessing. We use the
number of top-ranked X/Y genes as our basis for comparison,9 and present the results in
Table 2.1. Several observations merit mention. RUV-2 outperforms Combat and ordinary
regression in all cases, and SVA outperforms them in several cases as well. This is despite the
fact that Combat and ordinary regression explicitly model known batches (lab / chip type),
whereas RUV-2 and SVA infer the unwanted variation from the data. Moreover, it seems
that even when we do explicitly model known batches with RUV-2 by including a “Z” term
in the model (see Section 2.4) there is no substantial increase in performance.10 Another
observation is that the level of preprocessing does not seem to matter for the SVD and EM

9Additionally, RLE plots and p-value histograms for Combat and SVA are given in the appendix.
10It is true that more X / Y genes are found when we include a Z term in the “Top 40” and “Top 60”

cases, but this should be interpreted with caution; including a Z term results in adjusting for three additional
factors; similar increases in performance can be seen by dropping the Z term and increasing k to 13 — see
Figure 2.3.
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(but not robust) variants of RUV-2, matters slightly for Combat, and matters greatly for the
other methods. This seems to suggest that, at least in some cases, RUV-2 can obviate the
preprocessing. While this is of little immediate value in the current example, it may be useful
in situations where there is concern that the nonlinearities introduced by preprocessing are
problematic. For example, if a very large number of genes are differentially expressed with
respect to the factor of interest, the nonlinearities in the quantile normalization may induce
an artificial correlation between the negative control genes and the factor of interest. This
would violate the assumptions of RUV-2, and create problems. In such a situation it may be
best to skip the quantile normalization. In any case, we regard the fact that RUV-2 performs
well even without preprocessing as quite encouraging; after all, the un-preprocessed data are
extremely noisy. Finally, we observe that in general, the best performing methods are the
SVD and EM variants of RUV-2.
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T
op

20

No Preproc. BG + QN BG, QN, LS
Std Lim Std Lim Std Lim

No Adjustment 7 6 9 9 11 11
Regression (Z) 5 5 14 13 12 12
SVA (IRW) 5 6 12 11 14 14
SVA (Two-Step) NA NA NA NA 16 16
Combat 11 11 13 13 12 13
RUV-2 — SVD (k = 10) 15 15 15 15 15 15
RUV-2 — SVD (k = 10), w/Z 14 14 15 15 16 15
RUV-2 — EM (k = 10) 17 17 17 17 17 17
RUV-2 — EM (k = 10), w/Z 16 16 16 16 17 16
RUV-2 — Robust (k = 10) 8 7 17 16 17 16

T
op

40

No Preproc. BG + QN BG, QN, LS
Std Lim Std Lim Std Lim

No Adjustment 7 7 12 12 13 13
Regression (Z) 6 6 15 15 16 15
SVA (IRW) 6 7 13 14 17 16
SVA (Two-Step) NA NA NA NA 21 20
Combat 14 12 17 17 17 17
RUV-2 — SVD (k = 10) 22 22 21 19 20 19
RUV-2 — SVD (k = 10), w/Z 23 23 22 22 22 22
RUV-2 — EM (k = 10) 22 22 23 22 22 20
RUV-2 — EM (k = 10), w/Z 22 22 22 22 22 22
RUV-2 — Robust (k = 10) 11 10 21 21 22 21

T
op

60

No Preproc. BG + QN BG, QN, LS
Std Lim Std Lim Std Lim

No Adjustment 7 7 14 13 15 15
Regression (Z) 7 7 16 16 16 17
SVA (IRW) 7 8 15 14 19 19
SVA (Two-Step) NA NA NA NA 23 22
Combat 16 15 18 18 19 19
RUV-2 — SVD (k = 10) 24 23 22 21 22 22
RUV-2 — SVD (k = 10), w/Z 25 25 24 24 24 25
RUV-2 — EM (k = 10) 24 24 25 25 25 24
RUV-2 — EM (k = 10), w/Z 24 23 25 24 26 25
RUV-2 — Robust (k = 10) 12 11 25 25 24 24

Table 2.1: Summary of performance of different methods in the gender study. The number
of X / Y genes found in the top 20 / 40 / 60 is shown for different levels of preprocessing
(None; BG + QN; BG + QN + LS), different methods of computing p-values (standard and
Limma), and different methods of adjustment (none, standard regression, SVA, Combat,
and RUV-2). In the case of RUV-2, results are given for different methods of factor analysis
(SVD, EM, robust). Additionally, we present results for models that include an explicit Z
term, where Z is a matrix of dummy variables corresponding to site (A, B, or C) and chip
type (HGU-95A or HGU-95Av2). For all RUV-2 methods, k = 10 and housekeeping genes
were used as negative controls. Results for the two-step variant of SVA are not available in
some cases, because the function exited with an error. The highest number in each column
is shown in bold.
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2.3.2 Alzheimer’s Study

Blalock et al. (2004) conducted a microarray study to investigate patterns of gene expression
in Alzheimer’s patients. We learned of this dataset from a colleague soon after we completed
our initial analysis of the gender study, and decided to see if we could use it to replicate
our findings. We continued to use gender as the factor of interest (instead of Alzheimer’s
disease state) so that we had clear positive controls. Note that our choice of this dataset
was thus rather arbitrary — many other brain studies would have been just as suitable —
but this one had our attention, was publicly available, and seemed to exhibit a fair degree
of unwanted variation. Data are available on GEO (GSE1297).

Samples were taken post-mortem from the hippocampus of 35 individuals suffering from
various stages of Alzheimer’s disease. Four samples were discarded by the authors of the
study because the severity of the patients’ disease was not clear, leaving 31 samples available
for analysis. These samples were assayed using Affymetrix HG-U133A microarrays. We were
unable to obtain clinical gender data for the samples, but found we could infer the gender
using the expression levels of XIST and DDX3Y.11

Our analysis — and conclusions — closely parallel those of the gender study. Most of the
details are provided in the appendix; here we simply highlight key results. One important
difference between this study and the gender study is that in this study there are no known
batch effects. Therefore standard regression and Combat are inapplicable. Moreover, a final
location / scale pre-processing step is unnecessary, since there is only one chip type. A
summary of the performance of SVA and RUV-2 is provided in Table 2.2.

In contrast with the gender study, we find that preprocessing improves performance in all
cases. In addition, Limma provides a clear performance enhancement as well, particularly
when preprocessing is omitted. This is as we might expect, since Limma is most helpful
when the sample size is small, and here we have only 31 samples compared to the gender
study’s 84. Again, the best performance is attained with RUV-2. Note that in some cases,
SVA actually decreases performance.

Finally, we note that, unlike in the gender study example, RUV-2 does not perform well
with spike-in controls. A comparison between housekeeping genes and spike-in controls of
RLE plots, p-value histograms, and the number of top-ranked X / Y genes can be found
in Figure 2.5. Note that on the HG-U133A platform there are 45 probesets for the spike-in
controls, and 1112 corresponding to the housekeeping genes in Eisenberg and Levanon (2003).
We cannot say with confidence why the spike-in controls fail in this case, but we note that
two possible explanations would be that most of the unwanted variation is biological in
nature, or due to sample quality.

11Details are provided in the appendix. Note in particular that we found 19 women and 12 men, and this
contradicts the statement in Blalock et al. (2004) that, of the original 35 subjects, 16 were female and 19
were male.
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Top 20 Top 40 Top 60
No Preproc. BG + QN No Preproc. BG + QN No Preproc. BG + QN
Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim

No Adjustment 8 9 15 16 9 9 19 21 9 9 23 24
SVA (IRW) 8 9 16 16 10 13 17 19 12 13 18 19
SVA (Two-Step) NA NA 16 16 NA NA 18 18 NA NA 19 19
RUV-2 — SVD (k = 10) 16 19 19 20 22 23 25 26 23 26 26 26
RUV-2 — EM (k = 10) 15 17 19 20 18 22 24 25 23 25 25 27
RUV-2 — Robust (k = 10) 11 13 19 20 15 17 25 26 19 20 27 27

Table 2.2: Summary of performance of different methods in the Alzheimer’s study. The num-
ber of X / Y genes found in the top 20 / 40 / 60 is shown for different levels of preprocessing
(None, BG + QN), different methods of computing p-values (standard and Limma), and
different methods of adjustment (none, SVA, and RUV-2). In the case of RUV-2, results are
given for different methods of factor analysis (SVD, EM, robust). For all RUV-2 methods,
k = 10 and housekeeping genes were used as negative controls. Results for the two-step
variant of SVA are not available in some cases, because the function exited with an error.
The highest number in each column is shown in bold.

HK
Genes

Affy
Controls

Figure 2.5: Comparison of results for housekeeping genes and Affymentrix spike-in controls
in the Alzheimer’s study. HK genes clearly perform better. For the RLE plots and p-value
histograms, k = 10. Factors were computed by SVD. P-values were computed using Limma.
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2.3.3 TCGA

The Cancer Genome Atlas (TCGA) is a large collaborative project established by the Na-
tional Institutes of Health and managed by the National Cancer Institute and the National
Human Genome Research Institute with the aim of collecting many types of data (e.g. ex-
pression, sequence, methylation) on a large number of samples from many different types of
cancers. In particular, TCGA has already collected a few hundred glioblastoma multiforme
(brain tumor) samples, and measured gene expression levels in these samples using (among
others) the Affymetrix GeneChip Human Exon 1.0 ST array and the Affymetrix HT HG-
U133A array. Because of the importance and size of this dataset, we decided it would be a
good choice with which we could further replicate our findings from the gender study.

As with the Alzheimer’s study, our analysis and conclusions closely parallel those of the
gender study, and we limit our remarks here to highlight key results. Details can be found
in the appendix. We discuss the exon array data first, followed by the HT HG-U133A data.

We downloaded exon array data for 386 samples from TCGA. Clinical gender data were
available for 316 of the samples. We processed the data using aroma.affymetrix (Bengtsson
et al., 2008) using a custom CDF12 provided by colleagues at Lawrence Livermore National
Laboratory. The custom CDF has 18632 probesets, corresponding to genes (not exons). The
custom CDF does not include any probesets for spike-in controls, so we were only able to
study adjustments using housekeeping genes. We identified 518 probesets as housekeeping
genes.

Substantial unwanted variation is evident. The RLE plot of the un-preprocessed data
(Figure A.21 in the appendix) suggests the presence of batch effects as well as additional
within-batch variation. RLE plots and p-value histograms using various values of k (Figures
A.22 and A.23 in the appendix) do not suggest a clear choice for k. The RLE plots suggest
that k should be at least 30. The p-value histograms suggest that the unwanted variation
skews p-values downwards, but a k of 100 is sufficient to solve this problem. Since a wide
variety of values of k may be appropriate, we include results for both k = 50 and k = 100 in
Table 2.3. Indeed, it turns out that results do not vary much over this wide range in k (see
Figure A.26 in the appendix).

One of the more striking features of Table 2.3 is the relatively small gain achieved by
adjustment. Only an additional 5 or so genes are discovered, despite the substantial unwanted
variation. This may be because the large sample size compensates for the unwanted variation,
allowing most of the differentially expressed genes to be found even without adjustment.
Nonetheless, adjustment does help. RUV-2 and the two-step variant of SVA perform the
best. A final interesting observation is that in this example, unlike in the gender study
and Alzheimer’s study examples, the robust variant of RUV-2 performs well even on un-
preprocessed data.

We now turn to the HT HG-U133A data. We downloaded data for 414 samples from

12A CDF is a file that maps probes to probesets. A custom CDF is necessary because Affymetrix does
not provide a CDF with their exon arrays. They provide a different file format, which is incompatible with
aroma.affymetrix.
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Top 20 Top 40 Top 60
No Preproc. BG + QN No Preproc. BG + QN No Preproc. BG + QN
Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim

No Adjustment 20 20 20 20 25 25 30 30 28 28 33 33
SVA (IRW) 20 20 20 20 28 29 30 30 30 30 32 32
SVA (Two-Step) NA NA 20 20 NA NA 34 34 NA NA 36 36
RUV2 — SVD (k = 50) 20 20 20 20 34 34 35 35 36 36 36 36
RUV2 — EM (k = 50) 20 20 20 20 35 35 36 36 37 37 37 37
RUV2 — Robust (k = 50) 20 20 20 20 33 33 35 35 37 36 36 36
RUV2 — SVD (k = 100) 20 20 20 20 36 36 35 35 39 39 37 37
RUV2 — EM (k = 100) 20 20 20 20 36 36 36 36 39 39 37 37
RUV2 — Robust (k = 100) 20 20 20 20 36 36 36 36 37 37 37 37

Table 2.3: Summary of performance of different methods for TCGA exon array data. The
number of X / Y genes found in the top 20 / 40 / 60 is shown for different levels of prepro-
cessing (None, BG + QN), different methods of computing p-values (standard and Limma),
and different methods of adjustment (none, SVA, and RUV-2). In the case of RUV-2, results
are given for different methods of factor analysis (SVD, EM, robust), and different values of
k (50 and 100). Housekeeping genes were used as negative controls. Results for the two-step
variant of SVA are not available in some cases, because the function exited with an error.
The highest number in each column is shown in bold.

TCGA. Clinical gender data were available for 319 of these. Unlike with the exon array data,
spike-in control data are available, but the HT HG-U133A only has 9 spike-in probesets. We
identified 1045 probesets as housekeeping genes.

As with the exon array data, substantial unwanted variation is evident. Indeed, the RLE
plot of the un-preprocessed data (Figure A.30 in the appendix) suggests the presence of very
substantial batch effects. RLE plots and p-value histograms (Figures A.31 and A.32 in the
appendix) suggest using a k of 30 is appropriate. Table 2.4 summarizes the results. Once
again, RUV-2 and the two-step variant of SVA perform the best. Unlike with the exon array
data, the robust variant of RUV-2 does not perform well on un-preprocessed data.

A comparison of the performance of spike-in controls and housekeeping genes is provided
in Figure 2.6. As one might expect, considering there are only 9 spike-in controls, the
housekeeping genes perform better.
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Top 20 Top 40 Top 60
No Preproc. BG + QN No Preproc. BG + QN No Preproc. BG + QN
Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim

No Adjustment 14 14 20 20 21 22 35 35 27 27 39 39
SVA (IRW) 20 20 20 20 36 36 37 37 38 38 44 44
SVA (Two-Step) NA NA 20 20 NA NA 39 39 NA NA 53 53
RUV-2 — SVD (k = 30) 20 20 20 20 38 38 38 38 47 47 50 50
RUV-2 — EM (k = 30) 20 20 20 20 38 38 39 39 46 46 51 50
RUV-2 — Robust (k = 30) 20 20 20 20 31 30 39 39 37 35 51 51

Table 2.4: Summary of performance of different methods for the TCGA HT HG-U133A
data. The number of X / Y genes found in the top 20 / 40 / 60 is shown for different levels
of preprocessing (None, BG + QN), different methods of computing p-values (standard and
Limma), and different methods of adjustment (none, SVA, and RUV-2). In the case of
RUV-2, results are given for different methods of factor analysis (SVD, EM, robust). For
all RUV-2 methods, k = 30 and housekeeping genes were used as negative controls. Results
for the two-step variant of SVA are not available in some cases, because the function exited
with an error. The highest number in each column is shown in bold.

HK Genes Spike In Controls

Figure 2.6: Comparison of results for housekeeping genes and Affymentrix spike-in controls
in the TCGA HT HG-U133A data. Housekeeping genes clearly perform better. For the
RLE plots and p-value histograms, k = 30. Factors were computed by SVD. P-values were
computed using Limma. Note that there are only 9 spike-in controls, so adjustments with
k > 9 are undefined for the spike-in case. We truncate results in the housekeeping case as
well for easy comparison.
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2.3.4 NCI-60

As discussed in Section 2.1, RUV-2 is an application specific adjustment method intended
for use in differential expression studies. A natural question is whether the method can be
adapted to provide a global adjustment, in which the entire dataset is adjusted to provide
a modified dataset that can then be used just like the original dataset in any subsequent
analysis. The advantages of such a method are obvious — not only would it allow one to
use the method for applications other than differential expression (e.g. for classification or
clustering), but the self-contained nature of the method would allow one to easily insert
the algorithm into pre-existing code, and thus easily re-visit past analyses. Unfortunately,
adapting RUV-2 to provide a global adjustment is not trivial. In this section we consider a
naive adaptation of RUV-2 that provides a global adjustment and demonstrate that there
may be some promise in the approach, but that there are many potential pitfalls.

Our naive method is simple — perform factor analysis on the control genes as before,
regress the original dataset onto the factors, and use the residuals of the regression as the new
dataset. In other words, subtract off (from the entire dataset) the components of variation
that are seen to exist in the control genes. This method is “naive” because it implicitly
assumes that all of the factors corresponding to the biology of interest are orthogonal to the
unwanted factors. For applications such as clustering, in which the goal is to discover the
biology of interest from the data, the assumption that the biology of interest is orthogonal
to the unwanted variation is at best unverifiable. If the assumption is false, the problem of
throwing out the baby with the bathwater returns, and the “adjustment” may very well hurt
more than it helps.

Our example is the NCI-60 dataset. The National Cancer Institute maintains 60 cell
lines derived from the tissues of 9 different types of human cancers (brain, blood, breast,
colon, kidney, lung, ovary, prostate, skin). These cell lines have been well studied, and a
great deal of public data are available. More information (including data) can be found at
http://discover.nci.nih.gov/. We obtained expression data from a study that analyzed
the NCI-60 cell lines using using both the Affymetrix HG-U95A and HG-U133A platforms
Shankavaram et al. (2007). We wanted to see whether the naive adjustment described above
would result in a better clustering of the data into the 9 tissue types. To perform the
clustering, we used the R functions dist and hclust with their default settings (“euclidian”
and “complete linkage”).

Figure 2.7 provides the clustering results for the HG-U95A data before and after an
adjustment using the spike-in controls and k = 1. The adjustment helps. Before adjustment,
the colorectal cancers were grouped into one clade of size 4 and another clade of size 3. After
adjustment, they were all grouped into a single clade. This clade also included one lung
cancer, however. Other clusterings improved as well. Before adjustment, 5 of the Leukemias
grouped into a single clade, and 1 grouped by itself. After adjustment, all 6 Leukemias
grouped into a single clade. Ovarian went from four clades of sizes 3, 2, 1 and 1 to three
clades of size 4, 2, and 1. Renal went from 3 clades of size 5, 2 and 1 to two clades of size 7
and 1. Lung went from nine clades of size 1 to 6 clades — one of size 4 and five of size 1. The
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Figure 2.7: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The
data were preprocessed (BG + QN). The factors were computed by SVD. Key: 1 – Blood;
2 – Breast; 3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 –
Prostate.

prostate cancers moved closer together, but still did not form their own clade. There was no
substantial change in the quality of the clusterings of the other cancers (brain, breast, skin).

Despite the success in Figure 2.7, the naive global adjustment cannot be relied upon in
general. Increasing k from 1 to 2 does not further improve the performance (some cancers
cluster slightly better while others cluster slightly worse), and increasing k past 2 quickly
leads to a decrease in the quality of the clustering. See Figures A.38, A.39, and A.40 in the
appendix for dendrograms at various values of k. In this particular example, we only knew
to set k = 1 because we knew the “correct answer.” RLE plots provide poor guidance in
choosing k, and p-value plots / positive controls are not even applicable since this is not a
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differential expression study. In a more realistic example, choosing an appropriate k would
be very difficult.

Moreover, the method does not work with the HG-U133A data for any value of k. This
may be because the unwanted variation is correlated with the biology of interest. We discuss
this possibility in more detail in Section 2.3.5. It is also possible that the spike-in controls are
simply too noisy, or that the variation characteristic of the spike-in controls is not sufficiently
representative of the unwanted variation affecting the majority of the probesets.13 Indeed,
recall from previous examples that spike-in controls generally did not perform as well as
housekeeping genes.

Lastly, the method does not work if we use housekeeping genes instead of the spike-
in controls. The housekeeping genes are highly correlated with cancer type. (Again, see
Section 2.3.5 for a more complete discussion of this topic.) This is presumably due to
the fact that the tissue types are sufficiently different that even the expression levels of the
housekeeping genes actually do vary from one tissue type to the next, violating of the control
gene assumption. See Figure 2.8 for a dendrogram of the HG-U95A data after an adjustment
using housekeeping genes.

k = 1, Housekeeping Genes
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Figure 2.8: Dendrograms of NCI-60 HG-U95A dataset after adjustment using housekeeping
genes. The data were preprocessed (BG + QN). The factors were computed by SVD. Key:
1 – Blood; 2 – Breast; 3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 –
Lung; 9 – Prostate.

13A final logical possibility is that there is simply no unwanted variation to remove. In that case, we would
see no improvement after adjustment. However, we do not believe this is the case, as we have evidence there
is unwanted variation (although not necessarily batch effects). Indeed, as we discuss in Section 2.3.5, it
seems there is unwanted variation that is correlated with biology.
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2.3.5 Extended NCI-60 Discussion

This section provides further discussion of the NCI-60 example. The discussion is something
of a digression, and may be safely skipped.

In our discussion of the NCI-60 data in Section 2.3.4 we raise the possibility that, in the
case of the HG-U133A data, unwanted variation is correlated with biology. As discussed in
Section 2.4, the “naive” global adjustment method can fail when the unwanted variation is
correlated with biology. Thus, this correlation may explain why the adjustment fails in the
case of the HG-U133A data. We also asserted that the (true, wanted) biological variation
in the housekeeping genes is highly correlated with biology, and therefore the housekeeping
genes cannot be regarded as negative controls in this example. In this section, we present
the methods and results by which we arrived at these (tentative) conclusions.

In Section 2.4 we observe that the “naive” global adjustment method will fail if X and
Ŵ are substantially correlated. Recall that this is because the method will only work when
RŴX = X, and RŴX = X only when X and Ŵ are orthogonal. Now, since Ŵ is calculated

from data, X and Ŵ will never be perfectly orthogonal in practice. We would therefore like
some measure of just how correlated X and Ŵ actually are. We choose to use canonical
correlations as a measure. Since canonical correlations may be unfamiliar to some readers,
we present here a brief review, beginning with some motivation. More information can be
found in Venables and Ripley (2002).

Consider two full-rank matrices Un×p and Vn×q. Assume that each column of U and
each column of V has a mean of 0. Note that U and V have the same number of rows. If
we choose one column of U and one column of V it is possible to compute the correlation
coefficient between these two columns. We could do this for all pq pairs of columns, and
this would, in some sense, tell us about the correlation between U and V . This is called the
“cross correlation” of U and V . For our purposes, however, the cross correlation presents
some difficulties. Firstly, it consists of pq individual numbers, and it is not clear how to
interpret all of these numbers simultaneously to get a clear sense of the extent to which U
and V are correlated. Perhaps more importantly, if we reparameterize either U or V , so that
its individual columns are changed but its column space is not, the cross correlation of U
and V will, in general, change. This makes the cross correlation undesirable as a metric for
the “correlation” of X and Ŵ , since the quantity RŴX is unaffected by reparameterizations

of Ŵ ; we would like our metric of “correlation” between X and Ŵ to be likewise unaffected
by reparameterizations of Ŵ . Canonical correlations achieve this.

Let u be an element of the column space of U , and let v be an element of the column
space of V . Let r(u, v) be the correlation of u and v. We can define the first canonical
correlation as

r1 ≡ max
u,v

r(u, v).

Note that this number is unaffected by reparameterizations of U and V . It also has the
advantage of being a single number. We consider it to be a good metric by which to measure
the extent to which X and Ŵ are correlated, and the extent to which RŴX 6= X.
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(Note that we could also define the second canonical correlation — and the third, fourth,
etc., up to min(p, q) — but these are not needed for our purposes. For sake of completeness,
however, we remark that the second canonical correlation can be defined similarly to how
we defined the first canonical correlation, but constraining the maximization over u and v
to include only u and v that are orthogonal to u1 and v1, where r1 = r(u1, v1).)

It can be shown that the first canonical correlation is equal to the square root of the
largest eigenvalue of

(V ′V )−
1
2V ′U(U ′U)−1U ′V (V ′V )−

1
2 . (2.1)

Note that in the case that q = 1 (i.e. the case that V is a single column),

(V ′V )−
1
2V ′U(U ′U)−1U ′V (V ′V )−

1
2 =

V ′U(U ′U)−1U ′V

V ′V
(2.2)

=
V ′U(U ′U)−1U ′U(U ′U)−1U ′V

V ′V
(2.3)

=
[U(U ′U)−1U ′V ]

′
[U(U ′U)−1U ′V ]

V ′V
(2.4)

=
V̂ ′V̂

V ′V
(2.5)

= R2 (2.6)

where V̂ ≡ U(U ′U)−1U ′V and R2 is the coefficient of determination in a regression of V on
U . Thus, in the case that q = 1, the first canonical correlation between U and V is equal to
the familiar quantity

√
R2 in a regression of V on U . This completes our review of canonical

correlations.
We now return to the NCI-60 example. The biology of interest in our example is the

cancer tissue type (blood, brain, etc.). Since tissue type is known (despite the fact we treat it
as unknown in the example), we can construct X as a 9-column matrix of dummy variables.
We can then calculate the first canonical correlation between X and Ŵ .

If we are interested in whether or not the variation characteristic of the control genes
is “systematically” correlated with biology, we might want to know whether the observed
canonical correlation is “statistically significant.” Strictly speaking, this question does not
make sense unless the samples were processed at random. Nonetheless, we can generate
an interesting “null distribution” by randomly permuting tissue type labels (i.e. randomly
permuting the rows of X) and recalculating the canonical correlation each time. We can then
calculate the fraction of these re-calculated canonical correlations that are greater than the
observed canonical correlation to get an approximate “p-value.” If this p-value is small, we
might conclude that the unwanted variation is systematically correlated with biology (tissue
type). Alternatively, we might conclude that the “control genes” are not control genes after
all, and their expression levels are in fact influenced by the tissue type.

We calculated the canonical correlation between X and Ŵ and an associated p-value for
both the HG-U95A and HG-U133A datasets, both with preprocessing and without prepro-
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cessing, for both the spike-in controls and the housekeeping genes, with a k of 1 and a k of
5. We present the results in Table 2.5.

Spike-in Controls Housekeeping Genes
No Preprocessing BG + QN No Preprocessing BG + QN
k = 1 k = 5 k = 1 k = 5 k = 1 k = 5 k = 1 k = 5

HG- r1 = 0.33 r1 = 0.55 r1 = 0.29 r1 = 0.56 r1 = 0.37 r1 = 0.93 r1 = 0.82 r1 = 0.92
U95A p ≈ 0.61 p ≈ 0.42 p ≈ 0.78 p ≈ 0.38 p ≈ 0.46 p ≈ 0 p ≈ 0 p ≈ 0
HG- r1 = 0.55 r1 = 0.65 r1 = 0.44 r1 = 0.56 r1 = 0.56 r1 = 0.93 r1 = 0.83 r1 = 0.93

U133A p ≈ 0.015 p ≈ 0.06 p ≈ 0.18 p ≈ 0.40 p ≈ 0.009 p ≈ 0 p ≈ 0 p ≈ 0

Table 2.5: First canonical correlation between X and Ŵ (and an associated p-value) in
various cases of the NCI-60 data. Statistically significant entries are shown in bold.

Table 2.5 is a bit complicated, and difficult to interpret. We begin with the HG-U95A
dataset; it is a bit simpler. The spike-in controls are not significantly correlated with the
biology in any of the cases shown. This is as we might expect. The housekeeping genes,
however, are significantly correlated with biology in some cases. This seems to suggest
either that unwanted variation is correlated with biology, or that the housekeeping genes are
not actually negative controls. Given that the source of the biological signal is quite strong
(completely different tissue types) and that the spike-in data suggest that unwanted variation
is not correlated with biology, we conclude that the housekeeping genes are not actually
negative controls. This mostly explains the HG-U95A results, but one puzzle remains —
why are the housekeeping genes not significantly correlated with biology in the case of no
preprocessing and k = 1? Our interpretation of this result is that without preprocessing,
the unwanted variation dominates the biological signal, and thus the first PC is unwanted
variation, not biology. This is supported by the fact that the correlation of the first PC
of the housekeeping genes (without preprocessing) and the first PC of the spike-in controls
(again, without preprocessing) is 0.77. (By contrast, after preprocessing, this correlation is
-0.01.)

We now turn to the HG-U133A results. Here we see some confirmation that the house-
keeping genes are not negative controls. Indeed, it is interesting to note that the canonical
correlations in the last three columns of Table 2.5 are nearly identical between the HG-U95A
case and the HG-U133A case. However, the spike-in controls, without preprocessing, are also
significantly correlated with biology. This seems to suggest that the unwanted variation in
this example is in fact significantly correlated with biology. The puzzle is now why the
spike-in controls are not significantly correlated with biology after preprocessing. Our inter-
pretation is that the preprocessing — in particular, the quantile normalization — removes
much of the component of the unwanted variation that is correlated with biology. As an
aside, we note that once again the correlation between the first PC of the housekeeping genes
(without preprocessing) and the first PC of the spike-in controls (without preprocessing) is
quite strong — 0.88. Thus it seems that the significant correlation between the housekeeping
genes and biology in the case of no preprocessing and k = 1 is actually driven by unwanted
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variation, not the biological signal. In other words, it seems that in this particular case, we
get the “right answer for the wrong reason.”

To summarize, Table 2.5 suggests that housekeeping genes are not negative controls, that
the HG-U133A samples were processed in such a manner as to partially confound tissue type
with technical artifacts, and that preprocessing at least partially removes these artifacts.

An Unsolved Mystery

We were interested to learn the source of the unwanted variation that is partially con-
founded with tissue type in the HG-U133A data. The CEL files indicated that all samples
were scanned on a single day. We arranged the samples in order of scan time and made
box plots of the log perfect-match probe intensities. No temporal patterns were evident.
There were no obvious batch effects / clusters. We therefore contacted Gene Logic, where
the samples were assayed. Gene Logic was able to provide us with data on the scanner,
hybridization station / position, chip lot, and fluidics station used for each of the samples.14

There were 12 scanners, 8 hybridization stations, 4 fluidics stations, and 2 chip lots employed
in the processing of the arrays. Each of the 8 hybridization stations had 4 positions, for a
total of 32 station / position combinations. Only 27 of these combinations were actually
used. For each of the four main factors (scanner, hybridization station, fluidics station, chip
lot), we created a matrix of dummy variables for the factor. In other words, we created a 12-
column matrix of dummy variables for the scanners, a 2-column matrix of dummy variables
for the chip lots, etc. We also created a 27-column matrix of dummy variables for each of
the hybridization station / position combinations. We then took each of these five matrices
and calculated the first canonical correlation between it and a matrix of dummy variables
representing tissue types. We also computed a p-value for this canonical correlation using a
permutation test. Results are presented in Table 2.6.

Chip lot stands out; its correlation with tumor type is highly significant. Forty-six chips
came from the first chip lot and 11 came from the second. Of the 11 chips from the second
chip lot, 8 were used to assay melanoma samples, 2 were used to assay prostate samples, and
one was used to assay an ovarian sample. Conversely, only 2 of the melanoma samples were
assayed on chips from the first lot, none of the prostate samples, five of the ovarian samples,
and all of the other remaining samples.

Despite the very strong confounding of chip lot and tissue type, it does not seem that
this confounding explains the correlation between the first PC of the spike-in controls and

14There was missing / mislabeled / mismatched data for two of the samples. All of the CEL files
we downloaded from http://discover.nci.nih.gov/ were timestamped on April 30, 2002. In the data
provided by Gene Logic, all samples were reported as having been processed on April 30, 2002, with the
exception of two that were reported to have been processed on May 16. These two samples did not stand out
in any obvious way. For example, their log perfect-match box plots seemed normal when compared to the
rest of the samples. We re-calculated the canonical correlation between the first PC of the spike-in controls
and a dummy matrix representing tumor tissue type, this time omitting the two suspicious samples. The
results were essentially unchanged. We therefore determined that it was not these two samples that were
driving the correlation between tissue type and the first PC of the spike-in controls. In the discussion /
analysis that follows, we omit these two samples.
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Scanner Hyb. Station Hyb. Stat. / Pos. Fluidics Stat. Chip Lot
Correlation w/ Tissue Type 0.69 0.66 0.86 0.48 0.85

p-value 0.5 0.19 0.68 0.52 0

Table 2.6: First canonical correlation between known potential confounders (scanner, hy-
bridization station, hybridization station / position combination, fluidics station, chip lot)
and tumor tissue type. P-values are approximated using a permuation test (10,000 itera-
tions).

tissue type. We calculated the canonical correlation between chip lot and the first PC of the
spike in controls (un-preprocessed data). It is only 0.03 (p ≈ 0.8). Chip lot is not a major
source of unwanted variation.

Interestingly, it seems that in fact none of these factors are major sources of unwanted
variation. In Table 2.7 we present canonical correlations (and p-values) between each of the
factors and the first PC of the spike-in controls.

Scanner Hyb. Station Hyb. Stat. / Pos. Fluidics Stat. Chip Lot
Correlation w/ first PC 0.47 0.40 0.69 0.33 0.03

p-value 0.35 0.25 0.44 0.11 0.80

Table 2.7: First canonical correlation between known potential confounders (scanner, hy-
bridization station, hybridization station / position combination, fluidics station, chip lot)
and the first PC of the spike-in controls (unpreprocessed data). P-values are approximated
using a permutation test (10,000 iterations).

We also regressed the first PC of the spike-in controls onto scanner, hybridization station,
fluidics station and chip lot simultaneously. The design matrix included a column of 1s for the
intercept, 11 columns for the scanners, 7 columns for the hybridization stations, 3 columns
for the fluidics stations, and one for chip lot. The value of R2 is only 0.44, with a permutation
test p-value of 0.31. (Equivalently, the canonical correlation between the design matrix and
the first PC is 0.66.) Again, the conclusion seems to be that these four factors are not major
sources of unwanted variation.

Finally, we computed the residuals of this regression. The canonical correlation between
the residuals and tissue type is 0.5, with a p-value of 0.06. This seems to support the
assertion that there is some source of unwanted variation partially confounded with tissue
type, but the source of this unwanted variation is associated neither with scanner, hybrid
station, fluidics station, nor chip lot. Since this unwanted variation is evident in the spike-in
controls, it seems it must be technical variation that enters somewhere in the final stages of
the assay. What it is, however, remains a mystery.



CHAPTER 2. RUV-2 29

2.4 Methods

Assume we have m arrays each with n genes (or probes or probesets). Let yij denote the
observed log expression level of the jth gene on the ith array, and let Y denote the m × n
matrix (yij). We model Y as:

Ym×n = Xm×pβp×n + Zm×qγq×n +Wm×kαk×n + εm×n (2.7)

Here, X is a matrix whose columns are the factors of interest (e.g. disease state, treatment
/ control), Z is a matrix whose columns are observed covariates (e.g. batch, ethnicity), and
W is a matrix whose columns are unobserved covariates (e.g. sample quality). Note that k
is unobserved. The matrices β, γ, and α are all unobserved coefficients that determine the
influence of a particular factor on a particular gene. The Zγ term is optional; a researcher
may not be aware of any observed covariates, or may wish to treat observed covariates as if
they were unobserved. To complete our specification of the model, we make the following
assumptions:

Rank [(X | Z | W )] = p+ q + k < m (2.8)

E [ε | X,Z,W ] = 0 (2.9)

Var [εij | X,Z,W ] = σ2
j (2.10)

εij ⊥⊥ εi′j′ if (i, j) 6= (i′, j′) (2.11)

Note that this model is essentially identical to the model used in SVA (Leek and Storey,
2007, 2008); where RUV-2 and SVA differ are in the methods used to estimate the unknowns.

In a differential expression study the goal is to estimate β. This is almost a standard
linear regression problem. The important difference is that W is unobserved. To address
this difficulty, we propose to estimate W from the data using negative control genes.15 As
stated previously, negative control genes are those genes whose expression levels are known a
priori not to be “truly associated” with X. More formally, the jth gene is a negative control
if we can assume that β?j = 0, where β?j denotes the jth column of β.

Let Yc, αc, βc, γc and εc be reduced versions of Y , α, β, γ and ε that only contain the
columns of control genes. Then by (2.7)

Yc = Xβc + Zγc +Wαc + εc. (2.12)

The “control gene assumption” however is that βc = 0, so (2.12) becomes

Yc = Zγc +Wαc + εc. (2.13)

For simplicity, first consider the case that there is no Zγ term in the model. Then (2.13)
becomes

Yc = Wαc + εc. (2.14)

15Recall that we use the term “negative control genes” loosely, and allow it to refer to spike-in controls
as well.
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This is a typical model in factor analysis, and many methods exist to estimate W (e.g.
SVD). Note that, no matter what factor analysis method is used, W can only be estimated
if rank(αc) ≥ k. In practice, this means that the control genes must not only be unassociated
with the factor of interest, but must indeed be associated with the unwanted factors — the
negative controls must exhibit the unwanted variation so that the factor analysis can detect
it!

If there is a Zγ term in the model, we can multiply both sides of (2.13) by the residual
operator

RZ ≡ I − Z (Z ′Z)
−1
Z ′

to obtain
RZYc = RZWαc + εc. (2.15)

We can then use factor analysis to estimate RZW . Now, in general we cannot assume that
RZW = W , but in practice we can safely treat our estimate of RZW as if it were in fact
an estimate of W . This is because the standard OLS estimator for β depends only on the
column space of (Z|W ) — not on Z and W themselves — and the column space of (Z|W )
is equal to the column space of (Z|RZW ). Thus we see that whether or not a Zγ term
is included in the model, a de-facto estimate Ŵ of W can be easily produced using factor
analysis. We can then calculate β̂ by OLS, substituting Ŵ for W . Note that in a trivial
sense we include a Z term in all of our analyses, since we include a constant (intercept) term
in our models.

We now consider the adaptation of this method introduced in Section 2.3.4. Now the
goal is not an estimate β̂ of β, but rather an adjusted expression matrix Y ?. Additionally,
we now regard X as unknown. Regarding X as unknown makes any effort to adapt RUV-2
highly non-trivial. For simplicity, consider the case in which there is no Zγ term; extending
to the case in which there is a Zγ term is trivial. An ideal globally adjusted expression
matrix would simply equal the original expression matrix Y minus the unwanted variation
Wα; i.e. Y ? would equal Xβ + ε. In the method of Section 2.3.4, we fall short of this ideal.
We define:

Y ? ≡
[
I − Ŵ

(
Ŵ ′Ŵ

)−1

Ŵ ′
]
Y (2.16)

where Ŵ is found by factor analysis as in RUV-2. In words, we project onto the orthog-
onal complement of the column space of Ŵ . This should effectively remove the unwanted
variation. The problem is that it may remove some of the signal as well. Note that

Y ? = RŴ (Xβ +Wα + ε) (2.17)

where RŴ is the projector onto the orthogonal complement of the column space of Ŵ . Thus

if Ŵ ≈ W ,
Y ? ≈ RŴXβ +RŴ ε. (2.18)

If Ŵ is orthogonal to X, then RŴX = X and Y ? is nearly our ideal globally adjusted
expression matrix. If the unwanted factors are primarily technical factors (not biological),
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and samples are processed randomly, X and Ŵ may very well be nearly orthogonal. On
the other hand, if Ŵ and X are not orthogonal, Y ? may be far from the ideal, and if X is
regarded as unknown, it is not even possible to check whether Ŵ and X are orthogonal —
let alone correct for the bias non-orthogonality would introduce. Thus, this naive adaptation
of RUV-2 should be used with extreme caution, if at all.

2.5 Discussion

Methodologically, RUV-2 is extremely simple. Its two steps — factor analysis and regression
— are well studied and well understood. Despite this simplicity, RUV-2 is highly effective.
RUV-2 derives its strength not from any deep new statistical theory but from some powerful
biological assumptions. RUV-2 is only as good as these assumptions on which it is based,
and it is therefore worthwhile to reiterate these assumptions. The control genes must satisfy
two key conditions — they must be 1) uninfluenced by the factor of interest, and they must
be 2) influenced by the unwanted factors. Different situations will call for different sets of
control genes. The choice of an appropriate set of control genes is central to RUV-2.

We have discussed two possible sets of control genes — housekeeping genes and spike-
in controls. In the differential expression examples (gender, Alzheimer’s, and TCGA) the
housekeeping genes are the better choice, presumably because they are more “representa-
tive,” and because there are more of them. In the NCI-60 example the spike-in controls
are the better choice because the housekeeping genes are not negative controls with respect
to tissue type. The NCI-60 example highlights the important fact that housekeeping genes
are influenced by biology and cannot be casually assumed to be negative controls in every
situation. Housekeeping genes are effective negative controls in the first several examples
because they are unaffected by gender, not because they are unaffected by biology in general.
In short, housekeeping genes are a good place to begin a search for negative controls, but
cannot be relied upon in all cases — the factor of interest matters.

We need not restrict our search for control genes to housekeeping genes and spike-in
controls. In other studies, still other sets of genes might be the best choice. For example,
a researcher might wish to use genes known to be stably expressed within a particular
tissue type (Stamova et al., 2009), or under certain experimental conditions; choosing genes
specially suited to the study at hand may improve performance. In other situations, a
researcher might wish to include additional control genes with the intent of adjusting for
specific types of unwanted variation. For example, if a researcher suspects that the cause of
death is an important source of unwanted variation, it might be wise to include control genes
that could possibly capture this information — e.g. genes associated with cellular stress,
apoptosis, etc.

There may be a temptation to “discover” negative control genes. For example, a re-
searcher may wish to find genes whose expression levels are not highly correlated with the
factor of interest, label these genes as negative controls, and then adjust via RUV-2. The
allure of this approach is clear — finding a set of negative controls would be much easier,
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and could in fact be automated. However, we feel this approach is misguided. If there are
unwanted factors that are correlated with the factor of interest, then the expression levels of
the true negative controls should in fact be correlated with the factor of interest. Excluding
genes correlated with the factor of interest would bias our estimate of the unwanted factors.

Just as the researcher must exercise judgment when choosing a set of control genes, the
researcher must also exercise judgment when choosing k. This can be difficult. We have seen
that RLE plots and p-value histograms can be quite helpful. Positive controls, when avail-
able,16 can be even more helpful. Some readers may question why we encourage choosing
k based on these quality assessments when more “objective” and automated methods exist.
For example, it is possible to choose k via a series of hypothesis tests, in which one keeps in-
creasing k until no more “statistically significant” factors can be found. This is the approach
taken in SVA. However, we feel there are problems with this approach. One reason is that
including an additional term in a linear regression model may lead to a decrease in bias, but
it can also lead to an increase in variance. Thus, it is possible that we might get a better
estimate of β by leaving some of the unwanted factors out of the model. Using hypothesis
testing to find k does not account for this bias-variance trade-off; instead the goal is simply
to include all factors. A second reason is a bit more philosophical. Whenever a researcher
calculates a small p-value, three logical possibilities are on the table — the null hypothesis
is true and we have observed an unlikely event; the null hypothesis is false; the model is
wrong. We know already the model is wrong. We don’t know “how wrong,” or in precisely
which way. Nor do we know exactly how the model misspecification affects the results of any
particular hypothesis test. Thus, we feel it is unwise to rely too heavily on a hypothesis test
to give us a “good” answer, especially when the choice of k is so important.17 We feel there
is a role here for human judgment, and that quality assessments based on positive controls,
p-value histograms, etc., are useful tools in guiding this judgment.

The simplicity of RUV-2 makes it relatively flexible, and an excellent starting point for

16Some readers may question the availability of positive controls. Positive controls are genes known to be
associated with the factor of interest. The goal of differential expression studies is to find genes associated
with the factor of interest. Thus it may seem that if we have positive controls, we already have “the answer.”
To be sure, positive controls will not always be available, but the situation is not hopeless. In some cases,
we might have a set of genes known to be highly enriched with differentially expressed genes, although
we don’t know exactly which of the genes are the differentially expressed ones. In this case, it might be
possible to treat the entire set of genes as if they were all positive controls. For example, the method of
ranking genes and counting the number of top-ranked positive controls can still be used. This is exactly the
approach taken in our gender examples. Not all X and Y-linked genes are differentially expressed, but many
of them are. Alternatively, we may begin with only a handful of known positive controls, when in fact many
genes are differentially expressed. An example would have been if we had found any differentially expressed
autosomal genes in our gender examples. (In actuality, we did not find any autosomal genes that appeared
to be consistently differentially expressed with respect to gender across multiple datasets.)

17Our objections here are not “purely philosophical.” We experimented with various “objective” methods
for determining k, and found that many worked very well on simulated data, but very poorly on real data.
Presumably, this was due to model misspecification. Some methods worked well on real data as well — but
of course, we could only verify this on the relatively small number of datasets that we had available. Other
datasets may suffer other forms of model misspecification, and the methods may no longer work.
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new, more advanced methods. In addition, some of the basic ideas of RUV-2 can be useful
in exploratory data analysis — the extended NCI-60 discussion in the SI is a good example.
In these final paragraphs, we discuss some ways in which RUV-2 might be improved, and
suggest possibilities for future development.

One possible direction for improvement is in the regression step. While we considered
three different methods of factor analysis (and found that a simple SVD seems to work as
well as anything else), with the exception of Limma, we did not consider any elaborations to
the regression step of RUV-2. There may be room for improvement. Combat, for example,
is essentially an advanced form of regression, and, as we saw in the gender example, it does
in fact perform better than standard regression. Incorporating some of the techniques from
Combat into RUV-2 may lead to a still better method.

A second avenue for future development concerns combining multiple datasets. It is an
open question whether RUV-2 is effective enough to allow a researcher to combine multiple
datasets from completely separate studies without introducing excessive unwanted variation.
It is also an open question as to whether RUV-2 can be used when combining data from
different platforms. We saw in the gender study example that we were able to effectively
combine data from the HG-U95A and HG-U95Av2 platforms, but these platforms are rela-
tively similar. It is not clear that such a procedure would also work when combining data
from, for example, the HG-U95A and HG-U133A platforms, or when combining Affymetrix
and Agilent chips.

Yet another open question is whether RUV-2 can be adapted to entirely different technolo-
gies. While microarrays are still used, high throughput sequencing technologies are becoming
increasingly popular for use in gene expression studies. Adapting RUV-2 for use with these
sequencing technologies could be very helpful. Other technologies, such as qrt-PCR, may
benefit from an adaptation of RUV-2 as well.

Finally, we feel it may be possible to apply some of the ideas of RUV-2 to applications
other than differential expression. As we have stated, we feel that unwanted variation is most
effectively dealt with when it is considered in the context of the goal of the analysis at hand.
RUV-2 deals effectively with unwanted variation in the context of differential expression
studies. However, microarrays are also commonly used for classification and for clustering.
We do not yet know how best to handle unwanted variation in these types of studies, but
we believe control genes will play an important role.
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Chapter 3

RUV-4

3.1 Introduction

In this chapter we build upon the work of the previous chapter. The contributions of this
chapter are several. To begin, we present a new method, RUV-4. RUV-4 superficially resem-
bles RUV-2. RUV-4 is intended for use in differential expression studies, uses control genes
to identify unwanted factors, and includes the estimated unwanted factors as covariates in a
regression model. However, the exact method by which the unwanted factors are estimated
is different, and this difference has important statistical implications. Compared to RUV-2,
the performance of RUV-4 is much less sensitive to the number K of unwanted factors that
we include in the regression model. Compared to RUV-2, RUV-4 is also much less sensi-
tive to violations of the control genes assumption, i.e. situations in which the designated
“negative controls” are in fact truly associated with the factor of interest.

RUV-4 is also of theoretical interest. It is possible to view RUV-4 as a method in which
unwanted factors are inferred from the data and then included in the design matrix of a
regression model. In this way, RUV-4 is similar to RUV-2, SVA (Leek and Storey, 2007,
2008), LEAPP (Sun et al., 2011), and other related methods. However, we show that it
is also possible to view RUV-4 as form of generalized least squares (GLS). In this way,
RUV-4 is similar to ICE (Kang et al., 2008a), LMM-EH (Listgarten et al., 2010), and other
related methods. RUV-4 provides an interesting theoretical link between these two classes of
methods. Perhaps more importantly, however, RUV-4 may also be viewed as an exercise in
prediction, or function estimation. This view of RUV-4 is important for two reasons. Firstly,
it allows for a deeper understanding of the assumptions of RUV-4, giving researchers more
insight into when RUV-4 is likely to succeed, when it may fail, and why. Secondly, viewing
RUV-4 as a prediction problem leads quickly and naturally to ideas for more advanced
methods.

Another important contribution of this chapter is a novel method for estimating variances,
which we name the “inverse method.” This method, which uses random “factors of interest,”
allows us to estimate gene-wise variances even when all available degrees of freedom have
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been used up adjusting for unwanted variation, i.e. when K is so large that the design matrix
is full rank. By using the inverse method, we may simply set K to be very large by default,
and in most cases suffer no performance penalty. Thus, the inverse method eliminates any
need to estimate the number of unwanted factors. Nonetheless, methods somewhat related
to the inverse method may also be used to estimate the number of unwanted factors when
such an estimate is needed. We present one such method that we have found to perform
reasonably well in practice.

Additional contributions of this chapter include 1) a “ridged” variant of RUV-4, useful
in situations where only a small number of negative controls are available; 2) methods to
empirically adjust estimates of variances, in order to achieve better control of the type
1 error rate; 3) a discussion on how negative controls might be discovered “empirically;”
and 4) “projection plots,” a novel diagnostic plot that allows a researcher to visualize the
adjustment being made by RUV-2 or RUV-4, and assess whether this adjustment seems
appropriate.

The structure of this chapter is as follows. In Section 3.2 we present the datasets we will
use to evaluate the performance of our methods. In Section 3.3 we present our methods. In
Section 3.4 we evaluate the performance of our methods using simulated data, and in Section
3.5 we evaluate the performance of our methods on the real datasets of Section 3.2.

3.2 Data

In order to compare the relative performance of the methods discussed in this chapter, we
will want to apply the methods to a few real datasets. As in Chapter 2, we will investigate
differential expression with respect to gender in the brain. The primary reason we investigate
differential expression with respect to gender is because the answer is in some sense “known.”
It is sensible to assume a priori that most, if not all, of the genes differentially expressed
with respect to gender in the brain will come from either the X or Y chromosomes. This
observation provides us with some very straight-forward metrics with which we can compare
the performance of various methods intended to find differentially expressed genes. We can,
for example, simply take the 100 top-ranked genes (in terms of p-values) and count the
number of these top-ranked genes that come from the X or Y chromosomes. With only a
few minor caveats, we may regard the better method to be the one that finds more X/Y
genes. See Chapter 2 for further discussion on the use of gene rankings as a quality metric,
and discussion on quality metrics more generally.

We focus on the brain partly because the relatively complex biology of the brain makes
finding differentially expressed genes more challenging, and partly because of the availability
of several suitable datasets. As in Chapter 2, we will use data from three different studies: a
“gender study” in which the original scientific goal was to find genes in the brain differentially
expressed with respect to gender; an “Alzheimer’s study” in which the original scientific goal
was to find genes differentially expressed with respect to the severity of Alzheimer’s disease,
and the The Cancer Genome Atlas’s (TCGA) glioblastoma multiforme study. To be clear,
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despite the fact that these studies were originally conducted with different scientific goals in
mind, we will use each of these datasets in exactly the same way — to find genes differentially
expressed with respect to gender. Further information on the gender and Alzheimer’s studies
can be found in Vawter et al. (2004) and Blalock et al. (2004), respectively.

In total we will examine 11 distinct datasets. We will examine two variants of the gender
dataset. One has been fully preprocessed and the other has not. These two datasets are
exactly those described in Chapter 2. The point of using data that has not been preprocessed
is that it is much “noiser” than preprocessed data, and therefore more challenging. It is of
interest to see how the various methods discussed in this chapter handle this added challenge.
Likewise, we examine both preprocessed and non-preprocessed versions of the Alzheimer’s
data. Again, these two datasets are exactly those described in Chapter 2.

The remaining seven datasets come from TCGA data. TCGA glioblastoma multi-
forme expression data is available from three different microarray platforms: the Affymetrix
GeneChip Human Exon 1.0 ST array, the Affymetrix HT HG-U133A array, and the Agilent
custom 244K array. In Chapter 2 we examined data from the two Affymetrix arrays. Here
we examine datasets from all three arrays. Note however that the Affymetrix datasets that
we examine in this chapter are not identical to those in Chapter 2. TCGA has continued to
assay additional samples, and the datasets we examine here have been “updated” to include
many of the newer samples. Moreover, note that TCGA provides both raw (“Level 1”) and
preprocessed (“Level 3”) data. In Chapter 2 we began with the raw data and performed
the preprocessing themselves. Here however we simply downloaded TCGA’s preprocessed
datasets.

Three of the TCGA datasets that we examine are simply the three “full” datasets, i.e.
one “full” dataset for each of the three platforms (Exon, U133A, and Agilent). We created a
fourth TCGA dataset by combining data from all three platforms. Because the full datasets
are all individually quite large, we included only a subset of the data from each of the three
platforms. We included the first 100 arrays from the Exon dataset, the second 100 arrays
from the U133A dataset, and the third 100 arrays from the Agilent dataset. The “combined”
dataset therefore includes 300 samples, none of which are technical replicates. Only genes
that are common to all three platforms are included in the “combined” dataset. The final
three TCGA datasets are simply the three subsets of the “combined” dataset corresponding
to each of the three platforms, i.e. the 100 Exon samples, the 100 U133A samples, and the
100 Agilent samples. Note that these “subset” datasets are subsets of the “full” datasets
not only in the sense that they include only a subset of samples, but also in the sense that
they include only a subset of the genes (specifically, those common to all the platforms).
The point of examining these three “subset” datasets individually is so that we have a valid
basis for comparison when we discuss the advantages and disadvantages of combining data
from different platforms.

In Table 3.1 we report the number of samples m, the number of genes n, and the number
of available control genes nc in each of the 11 datasets. The control genes we use are the
housekeeping genes discovered by Eisenberg and Levanon (2003). This is the same set of
housekeeping genes used in Chapter 2. Unlike in Chapter 2 however, we do not discuss the
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use of spike-in controls in this chapter.

m (# of arrays) n (# of genes) nc (# of control genes)
Gender (preprocessed) 84 12600 799
Gender (non-preprocessed) 84 12600 799
Alzheimer’s (preprocessed) 31 22283 1112
Alzheimer’s (non-preprocessed) 31 22283 1112
TCGA – Exon (Full) 420 18632 518
TCGA – U133A (Full) 490 12042 520
TCGA – Agilent (Full) 466 17472 521
TCGA – Combined 300 11750 509
TCGA – Exon (Subset) 100 11750 509
TCGA – U133A (Subset) 100 11750 509
TCGA – Agilent (Subset) 100 11750 509

Table 3.1: The number of arrays, genes, and control genes in each dataset.

3.3 Methods

In this section we formally present the methods of this chapter. In Section 3.3.1 we present
a model and some notation. In Section 3.3.2 we review RUV-2 and discuss its relationship
to IVLS. In Section 3.3.3 we present RUV-4, one of the main contributions of this chapter.
We then compare RUV-4 to RUV-2 in Section 3.3.4. In Section 3.3.5 we investigate the
basic statistical properties of RUV-4, and in Section 3.3.6 we consider additional statistical
properties of RUV-4 that are particularly relevant to the use of RUV-4 with real data. In
Section 3.3.7 we present the inverse method for estimating variances, a second important
contribution of this chapter. In Section 3.3.8 we introduce the functional approach. This
section provides an alternative framework by which to understand the methods of this chap-
ter, and, just as importantly, suggests directions for future research. In Section 3.3.9 we
present a few variations and extensions of the main methods of this chapter.

3.3.1 Background and Model

First we present the model. Then we define some additional notation. Finally, we provide a
brief general discussion of the statistical challenges we face when fitting the model.

3.3.1.1 The Model

Assume we have m arrays each with n genes (or probes or probesets). Let yij denote the
observed log expression level of the jth gene on the ith array, and let Y denote the m × n



CHAPTER 3. RUV-4 38

matrix (yij). We model Y as:

Ym×n = Xm×pβp×n + Zm×qγq×n +Wm×kαk×n + εm×n (3.1)

where

Rank [(X | Z | W )] = p+ q + k < m (3.2)

εij ∼ N(0, σ2
j ) (3.3)

εij ⊥⊥ εi′j′ if (i, j) 6= (i′, j′) (3.4)

Here, X is an observed matrix whose columns are the factors of interest (e.g. disease state,
treatment / control), Z is a matrix whose columns are observed covariates (e.g. batch,
ethnicity), and W is a matrix whose columns are unobserved covariates (e.g. sample quality).
Note that k is unobserved. The matrices β, γ, and α are all unobserved coefficients that
determine the influence of a particular factor on a particular gene. We regard X, Z, W , β,
γ, and σj to be fixed. As for α, in some sections we will regard it as fixed; in other sections
we will regard it to be random. We begin by assuming it is fixed. When we do regard α as
random we assume:

α ⊥⊥ ε (3.5)

αij ⊥⊥ αi′j′ if (i, j) 6= (i′, j′) (3.6)

The Zγ term is optional; a researcher may not be aware of any observed covariates, or may
wish to treat observed covariates as if they were unobserved. Unless we specifically state
otherwise, we will assume for simplicity that there are no observed covariates, and only one
factor of interest. The model simplifies to

Ym×n = Xm×1β1×n +Wm×kαk×n + εm×n (3.7)

3.3.1.2 Additional Notation

• Let σ2 denote the n-dimensional vector of gene variances (σ2
j ).

• Let nc denote the number of control genes.

• Let Yc, αc, βc, and εc be reduced versions of Y , α, β, and ε that only contain the
columns of the negative control genes. Thus Yc is an m × nc matrix, αc is k × nc,
etc. Recall that negative control genes are genes that we assume are uninfluenced by
the factor of interest. Thus we assume βc = 0. We refer to this as the “control gene
assumption.”

• Let jc index control genes and jc̄ index non-control genes.

• If A is a matrix, denote the ith row of of A by Ai? and the jth column of A by A?j.
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• If A is a matrix with a single column, let Ai ≡ Ai1. If A is a matrix with a single row,
let Aj ≡ A1j.

• Denote the range (column space) of a matrix A by R(A).

• Denote the projection operator of a matrix A by PA; i.e. PA ≡ A(A′A)−1A′ projects
onto R(A).

• Denote the residual operator of a matrix A by RA; i.e. RA ≡ I −A(A′A)−1A′ projects
onto the orthogonal complement of R(A).

• Denote the particularly important quantity RXW by W0.

• If A is some matrix with N rows and rank M < N , let A⊥ denote some (possibly
arbitrary) rank N −M matrix whose columns are unit length, mutually orthogonal,
and such that A′A⊥ = 0.

• Denote the partial regression coefficient of A on B as bAB and the partial regression
coefficient of A on B adjusted for C as bAB.C . Let βAB and βAB.C denote the associ-
ated parameters. Alternatively, readers may simply choose to regard the following as
definitions:

bY X ≡ (X ′X)−1X ′Y (3.8)

bYcX ≡ (X ′X)−1X ′Yc (3.9)

bWX ≡ (X ′X)−1X ′W (3.10)

bYcX.W ≡ (X ′RWX)−1X ′RWYc (3.11)

bYcW.X ≡ (W ′RXW )−1W ′RXYc (3.12)

βYcX.W ≡ βc (3.13)

βYcW.X ≡ αc (3.14)

Note: We will assume throughout this thesis without loss of generality that the columns of
W0 are mutually orthogonal and have unit length, and that ||X|| = 1 as well.

3.3.1.3 Statistical Challenges

Our model (3.7) closely resembles a standard linear regression model. The difference is that
in our model W is unobserved. A natural strategy to fit our model would therefore be to
find some way to estimate W and then proceed with standard regression. The difficulty with
this approach is that W is not identifiable without additional assumptions.

Let A be any invertible k × k matrix. Then

(WA)(A−1α) = Wα, (3.15)
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so neither W nor α are identifiable. However, this particular form of unidentifiability is not a
problem. Our ultimate goal is to estimate β. For this, knowledge of the column-space of W
will suffice. To see this, note that knowledge of R(W ) would allow us to compute RW , the
residual operator of W . We could therefore calculate (X ′RWX)−1X ′RW , the OLS estimate
of β.

The real problem is that even R(W ) is unidentifiable. To illustrate the unidentifiability,
let a be an arbitrary 1× k row-matrix. Then

X(β + aα) + (W −Xa)α = Xβ +Wα. (3.16)

In words, since we don’t know the correlation of X and W , we are unable to separate β from
α. This is the fundamental problem that needs solving. Our solution is to use control genes.
As we will see, the assumption that βc = 0, along with a few other technical assumptions, is
enough to make R(W ), and thus β, identifiable.

3.3.2 The Two-Step Method (RUV-2)

First we present the method. Then we provide a brief discussion.

3.3.2.1 The Method

Consider only the expression values for the negative control genes. By (3.7),

Yc = Xβc +Wαc + εc. (3.17)

The “control gene assumption” however is that βc = 0, so (3.17) becomes

Yc = Wαc + εc. (3.18)

This is a typical model in factor analysis, and many methods exist to estimate W (e.g. SVD).
The two-step method therefore is to

• Step 1: Estimate W by factor analysis on Yc.

• Step 2: Estimate β by regressing Y on X and the estimate of W .

More explicitly, we may denote the estimate of W as Ŵ (RUV−2) and define

β̂(RUV−2) ≡ (X ′RŴ (RUV−2)X)
−1
X ′RŴ (RUV−2)Y. (3.19)

In the future, we will drop the RUV-2 superscript when it is clear from context.
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3.3.2.2 Relationship to IVLS and Further Discussion

RUV-2 is discussed in depth in Chapter 2. In this paragraph we merely summarize some
important points of Chapter 2. The first is that no matter what factor analysis method is
used, W can only be estimated if rank(αc) = k. This means that in addition to requiring
that the control genes be unassociated with the factor of interest, we must also require that
they be associated with the unwanted factors. Choosing an appropriate set of control genes
is essential to the success of RUV-2. A second point is that we must estimate k. This can
be very difficult. Again, see Chapter 2 for more on this matter.

One point not discussed in Chapter 2 is the relationship of RUV-2 to instrumental vari-
ables least squares (IVLS). Some readers may find RUV-2 reminiscent of IVLS. Indeed,
there are some similarities. Let V be a full rank m × r matrix of instruments such that
m > r ≥ p, such that V ′W ≈ 0, and such that V ′X is full rank. An IVLS estimator of
β would be [X ′V (V ′V )−1V ′X]−1X ′V (V ′V )−1V ′Y . Alternatively, we may write this IVLS
estimator as (X ′PVX)−1X ′PV Y . Compare the IVLS estimator to the RUV-2 estimator
(X ′RŴX)−1X ′RŴY . With both the IVLS estimator and the RUV-2 estimator, we “avoid”
the unwanted variation by projecting the data into a “safe” subspace that is (approximately)
orthogonal to R(W ). In the case of IVLS the “safe” subspace is R(V ). This subspace is
orthogonal to R(W ) by assumption. In practice, the assumption that R(V ) is orthogonal
to R(W ) usually derives from the assumption that W and V are stochastically indepen-
dent. In the case of RUV-2 the “safe” subspace is R(Ŵ⊥). This subspace is orthogonal to
R(W ) if R(W ) ⊆ R(Ŵ ). In practice, the assumption that R(W ) ⊆ R(Ŵ ) derives from the
assumptions that rank(αc) = k, that k̂ ≥ k, and that the factor analysis “works.”

We might choose to view IVLS and RUV-2 as complementary. With IVLS we identify
a “safe” subspace using instruments. Instruments are variables that we assume lie within
the “safe” subspace. With RUV-2 we identify a “safe” subspace using negative controls.
Negative controls are variables that we assume lie within the “dangerous” subspace that is
the orthogonal complement of the “safe” subspace. With both IVLS and RUV-2 there is a
caveat. The caveat is that X must not be orthogonal to the “safe” subspace. In the case
of IVLS, this means that V must be reasonably correlated with X; we want to avoid weak
instruments. In the case of RUV-2, this means that X must lie outside R(Ŵ ); the control
genes must not be influenced by X.

3.3.3 The Four-Step Method (RUV-4)

We now present a new method to estimate β. As we did with RUV-2, we first present the
method and then provide a brief discussion.

3.3.3.1 The Method

We estimate β in four steps.

• Step 1: Fit and Remove X
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Multiply both sides of (3.7) by RX to obtain

RXY = RXXβ +RXWα +RXε (3.20)

= W0α +RXε (3.21)

• Step 2: Factor Analysis

Use some variant of factor analysis to produce an estimate Ŵ0α of W0α. In addition,
define individual estimates Ŵ0 and α̂ such that Ŵ0α̂ = Ŵ0α. Although we need not
commit to a specific method of factor analysis, we impose two requirements:

PXŴ0 = 0 (3.22)

and

α̂ =
(
Ŵ ′

0Ŵ0

)−1

Ŵ ′
0Y. (3.23)

Note that W0 and α are not identifiable, so the factorization of Ŵ0α into Ŵ0 and α̂
will be somewhat arbitrary; this turns out not to matter.

• Step 3: Estimate W

We begin with the observation that

W = W −X(X ′X)−1X ′W +X(X ′X)−1X ′W

= (I −X(X ′X)−1X ′)W +X
[
(X ′X)−1X ′W

]
= W0 +XbWX (3.24)

We know X and we have an estimate of W0. We therefore would like to estimate bWX .
To do so we make use of the identity

bYcX = bYcX.W + bWXbYcW.X . (3.25)

Assuming
(
bYcW.Xb

′
YcW.X

)−1
exists, solving for bWX yields

bWX = (bYcX − bYcX.W ) b′YcW.X
(
bYcW.Xb

′
YcW.X

)−1
. (3.26)

Note that
bYcX.W ≈ βYcX.W = βc = 0 (3.27)

and
bYcW.X ≈ βYcW.X = αc ≈ α̂c (3.28)

so
bWX ≈ bYcX α̂

′
c (α̂cα̂

′
c)
−1
. (3.29)

We therefore define our estimate of W as

Ŵ ≡ Ŵ0 +XbYcX α̂
′
c(α̂cα̂

′
c)
−1. (3.30)
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• Step 4: Regress Y onto X and Ŵ to estimate β

Just as in the two-step method, we plug in our estimate of W as a covariate in a
regression model. More explicitly, we may denote Ŵ as Ŵ (RUV−4) and define

β̂(RUV−4) ≡ (X ′RŴ (RUV−4)X)
−1
X ′RŴ (RUV−4)Y. (3.31)

Again, we will drop the superscript when it is clear from context.

3.3.3.2 Discussion

RUV-4 may be roughly regarded as a hybrid between RUV-2 and SVA (Leek and Storey,
2007, 2008). Recall that a central problem when using factor analysis to discover unwanted
factors is that the factor analysis might also pick up signal from the biological factor of
interest. RUV-2 addressed this problem by limiting the factor analysis to negative control
genes. Leek and Storey proposed a different solution: first remove the signal of interest by
projecting the data onto the orthogonal complement of R(X), and only then do the factor
analysis. This effectively solves the problem of picking up the factor of interest in the factor
analysis, and we borrow the technique in steps 1 and 2 of RUV-4.

However, this technique introduces a problem of its own. A factor analysis on RXY will
not accurately estimate the unwanted factors W . Instead, it will estimate W0. Therefore, we
need to recover the bit of W that was projected away in step 1. This is complicated by the
unidentifiability of R(W ) highlighted in (3.16). We address this problem by borrowing the
main idea of RUV-2 — that negative control genes can be used to make R(W ) identifiable.

Step 3 of RUV-4 is where we attempt to recover the component of W lost in step 1.
Step 3 is the most important and complicated step, so we clarify a few points. The control
gene assumption enters in (3.27), when we assume bYcX.W ≈ 0. The exact interpretation of
this assumption is a bit subtle. Recall that bYcX.W is the partial regression coefficient of Yc
on X adjusted for W . In other words, it is the OLS estimate of βc that we would get in a
regression of Yc on X and W , if in fact we had the true W available to us. Since we assume
βc = 0, and since bYcX.W is the hypothetical OLS estimate of βc, we conclude bYcX.W ≈ 0.
To be even more precise, note that

bYcX.W = (X ′RWX)−1X ′RWYc (3.32)

= (X ′RWX)−1X ′RW (Xβc +Wαc + εc) (3.33)

= βc + (X ′RWX)−1X ′RW εc (3.34)

= (X ′RWX)−1X ′RW εc (3.35)

and that E [(X ′RWX)−1X ′RW εc] = 0.
The exact interpretation of (3.28) is subtle as well. We assume that bYcW.X ≈ αc, that

α̂c ≈ αc, and thus that bYcW.X ≈ α̂c. The first of these assumptions is analogous to our
assumption that bYcX.W ≈ βc. The second assumption is simply that our estimate of αc from
step 2 (factor analysis) is in fact a good estimate of αc. The composite assumption that
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bYcW.X ≈ α̂c is therefore an assumption that two different estimates of αc — one hypothetical,
and one obtainable — are approximately equal to one another. A different way to view this
assumption is as follows: bYcX.W = (W ′

0W
′
0)−1W ′

0Yc and α̂c = (Ŵ ′
0Ŵ0)−1Ŵ ′

0Yc. Therefore, if
Ŵ0 ≈ W0, bYcX.W ≈ α̂c. Indeed, if Ŵ0 is a particularly good estimate of W0, it may turn
out that bYcX.W and α̂c are closer to one another than either is to αc. In fact, since Ŵ0 is in
general a better estimate of W0 than α̂ is of α (a consequence of the fact that n� m), it may
often be the case in practice that bYcX.W and α̂c are closer to one another than either is to
αc. Finally, a minor technical point: A careful reader might object that the unidentifiability
of W and α expressed in (3.15) implies that Ŵ0 and W0 are not necessarily approximately
equal to one another, and likewise for α̂ and α. This is true — recall that the factorization
of Ŵ0α into Ŵ0 and α̂ is arbitrary. However, it can be shown that β̂(RUV−4) is independent
of the choice of factorization. See Section (B.1.1) in the appendix.

A reformulation of β̂(RUV−4) that will prove useful later is:

β̂(RUV−4) = (X ′X)
−1
X ′(Y − Ŵ α̂). (3.36)

To see that this is true, note that we have defined β̂(RUV−4) in (3.31) as the OLS coefficient
of X in a regression of Y on X and Ŵ . Note further that as a consequence of (3.22) and
(3.23), α̂ is the OLS coefficient of Ŵ in a regression of Y on X and Ŵ , and that therefore
(X ′X)−1X ′(Y − Ŵ α̂) is also the OLS coefficient of X in a regression of Y on X and Ŵ .
Finally, note that (3.36) can itself be reformulated as

β̂(RUV−4) = bY X − b̂WX α̂ (3.37)

where b̂WX ≡ bYcX α̂
′
c (α̂cα̂

′
c)
−1.

Finally, some additional notation. Let k̂ denote an estimator of k. In Section 3.3.6.6
we will explicitly define k̂; until then we may think of k̂ as representing some arbitrary
estimator. Let Ŵ

(K)
0 denote the estimate of W0 that we would get in Step 2 if we instructed

our factor analysis routine to produce an estimate of W that was of dimension m × K.
Similarly denote α̂(K), b̂

(K)
WX , Ŵ (K), etc. as the estimates of α, bWX , W , etc. that we would

subsequently produce if we were to use Ŵ
(K)
0 as our estimate of W0. Note that there are

three “k”s: k is the true parameter in the model; k̂ is an estimate of k; and K may be viewed
either as a parameter in an algorithm, or simply as an index variable.

3.3.4 Comparison of RUV-2 and RUV-4

In both RUV-2 and RUV-4, we estimate β̂ by first estimating W , and then regressing Y
on X and Ŵ . The difference between the methods is only in how we estimate W . In both
methods, however, we use factor analysis to estimate W , making special use of control genes
to make R(W ) identifiable. It is therefore natural to ask whether there are any substantive
differences between the methods. Indeed there are, and in this section we attempt to develop
some intuition for these differences using a few simple examples and illustrations.
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Consider a very simple example in which m = 2 and k = 1. Note that in this specific
example, W0 = X⊥. Note in particular that we do not need any factor analysis to “discover”
W0. Step 2 of RUV-4 is therefore irrelevant in this example, but this does not seriously
detract from the intuition we develop in the discussion that follows.

Now, note that because m = 2, for any gene j the vector of expression levels across
samples (i.e. Y?j) is a two-dimensional vector and can be plotted as a point on a standard
coordinate plane. X and W0 form a natural set of basis vectors against which we can plot Y?j.
Such plots of Y against X and W0 are very helpful for developing an intuitive understanding
of RUV-4; as we will see later, they are also a very useful diagnostic tool.

Figure 3.1 decomposes such a plot for a single Y?j. A few simplifications are made for
visual clarity. We suppress the subscripts on Y?j, βj, etc. Far more importantly, we do

not distinguish between W and Ŵ (or between bWX and b̂WX). Although the distinction
between W and Ŵ is an important one, including both W and Ŵ (and bWX and b̂WX) in
the figure introduces too much clutter. We leave the distinction to the reader’s imagination.

In Figure 3.1 we see that Y?j is the vector sum of Xβj, Wαj, and ε?j. We decompose
Y?j into a horizontal component and a vertical component. The magnitude of the horizontal
(W0) component gives us an estimate of how much of the unwanted factor is present; i.e.
it is our α̂j. This estimate is unbiased, and accurate up to the error introduced by the
horizontal component of ε?j. The vertical component of Y?j (i.e. bY?jX) may be regarded
as the “observed X-signal.” The magnitude of the “observed X-signal” is the sum of three
terms — the “true X-signal” βj, the magnitude of the vertical component of Wαj, and the
magnitude of the vertical component of ε?j. There is not much we can do about the vertical
component of ε?j, but we can try to adjust for the vertical component of Wαj. We can

estimate the magnitude of the vertical component of Wαj by b̂WX α̂j. We can thus subtract

b̂WX α̂j from the “observed X-signal” bY?jX to produce our estimate β̂j of βj. Note that in
this way, we have just graphically re-derived formula (3.37) — however, we have left out the
important detail of where b̂WX comes from!

Figure 3.2 shows where b̂WX comes from. Instead of plotting Y?j for a single gene j, we
plot all n = 1000 genes. Control genes are plotted as green. Genes for which βj 6= 0 are
plotted as purple. All other genes (i.e. genes for which βj = 0 but which are not specifically

designated as control genes) are plotted as gray. W is plotted as black. Ŵ is plotted as
orange. For one arbitrary example gene (plotted as solid purple) we show that β̂j is the

vertical distance from Y?j to the dotted orange line spanned by Ŵ .

Now, b̂WX is simply the slope of the dotted orange line. Estimating bWX (and thus W )
therefore amounts to choosing the slope of this “baseline” from which we measure β̂j. The
RUV-4 strategy for choosing this slope is to draw the regression line (without an intercept)
through the control genes (green). That is why b̂WX = bYcX α̂

′
c (α̂cα̂

′
c)
−1.

We are now in a position to compare RUV-4 with RUV-2. Figure 3.3A compares the
RUV-4 and RUV-2 estimators using the same example data as in Figure 3.2. To reduce
clutter, we have removed the vector representation of Ŵ (RUV−4), leaving only the orange
dotted line to show its span. The brown dotted line is the span of Ŵ (RUV−2). Just as
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Figure 3.1: A graphical depiction of RUV-4. See main text for commentary.

β̂
(RUV−4)
j is the vertical distance from Y?j to the orange dotted line, β̂

(RUV−2)
j is the vertical

distance from Y?j to the brown dotted line. The difference between RUV-4 and RUV-2 is
essentially the difference between these two lines. We have seen that the orange dotted line is
the regression line through the control genes. To see where the brown dotted line comes from,
recall that in RUV-2 we estimate W by taking the first k eigenvectors of YcY

′
c . Since k = 1 in

this example, Ŵ (RUV−2) is simply the principal eigenvector of YcY
′
c . To assist in visualizing

this, we have included in Figure 3.3A a green ellipse that “summarizes” the structure of YcY
′
c .

The major and minor axes of this ellipse are aligned with the first and second eigenvectors
of YcY

′
c , and the lengths of the axes are proportional to the square roots of the associated

eigenvalues. As we see in the plot, the brown dotted line goes directly along the major axis
of this ellipse. Roughly speaking then, we may summarize the difference between RUV-2
and RUV-4 in the terminology of Freedman et al. (2007) as this: where RUV-2 uses the SD
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Figure 3.2: A graphical depiction of the estimation of bWX . See main text for commentary.
The simulated data were generated as follows: X = (0, 1)′; W = (1, 0.5)′; αj ∼ N(0, 1);
εij ∼ N(0, 1

16
); βj ∼ N(0, 9

4
) for 1 ≤ j ≤ 50; βj = 0 for 51 ≤ j ≤ 1000.

line, RUV-4 uses the regression line.1

In Figure 3.3A, there is little difference between β̂
(RUV−2)
j and β̂

(RUV−4)
j . Figure 3.3B,

however, provides an example in which the difference between β̂
(RUV−2)
j and β̂

(RUV−4)
j is

quite substantial. The reason for the difference between the two estimators in Figure 3.3B
is that the unwanted variation is less pronounced. While some unwanted variation from
Wα is clearly present, most of the scatter in the plot is purely random, i.e. comes from ε.
Graphically, this can also be seen in the fact that the green ellipse is much more circular.

RUV-2 and RUV-4 are clearly different, but which is better? As we can see in Figure

1Strictly speaking this is not true, since the regression line and the SD line as defined in Freedman et al.
(2007) both pass through the point of averages. We, however, force our lines to pass through the origin.
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A B

Figure 3.3: A comparison of RUV-4 and RUV-2. See main text for commentary. The
simulated data in B were generated as follows: X = (0, 1)′; W = (1, 1)′; αj ∼ N(0, 9

64
);

εij ∼ N(0, 1
4
); βj ∼ N(0, 9

4
) for 1 ≤ j ≤ 50; βj = 0 for 51 ≤ j ≤ 1000.

3.3B, RUV-2 seems to do a better job at accurately estimating W . On the other hand, it also
appears that RUV-4 provides what our intuition might suggest to be the better estimate of
βj. This leads to a curious conclusion — that to get a better estimate of βj, it may actually
be a good idea to mis-estimate W . This peculiar observation is our first hint that the RUV-4
estimator may be more naturally formulated in the context of a different (or at least more
fully specified) model. Indeed, we will see later that the RUV-4 estimator does arise more
naturally in the context of a mixed effects model, in which α is explicitly modeled as random.

The differences between RUV-2 and RUV-4 are especially interesting when certain as-
sumptions break down. In particular, we will now provide some intuition to suggest that
RUV-4 may outperform RUV-2 when the control genes are not properly specified, or when
k is overestimated. We begin with an example in which k is overestimated. The example is
essentially the same as those in Figure 3.3, except that now in truth k = 0. Nonetheless, we
still proceed to estimate W as if we had estimated k̂ = 1. In other words, Ŵ = Ŵ (1). Since
in truth there is no unwanted variation (Wα) term to adjust for, we would ideally like that
no adjustment is made; we would like b̂WX to equal 0 and our dotted line to be horizontal.
Figure 3.4 shows three different simulations of this example. As we can see, RUV-4 does a
much better job of providing no adjustment when none is needed; the orange dotted lines
are relatively horizontal, while the brown dotted lines flap around wildly.

This example is particularly interesting in that it suggests that when performing RUV-4,
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Figure 3.4: A comparison of RUV-4 and RUV-2 when k has been overestimated. See main
text for commentary. The simulated data were generated as follows: X = (0, 1)′; εij ∼
N(0, 1

4
); βj ∼ N(0, 9

4
) for 1 ≤ j ≤ 50; βj = 0 for 51 ≤ j ≤ 1000.

we may in fact pay only a small price in performance if we overestimate k. Indeed, in this

particularly simple example it is easy to see that E
[
b̂

(RUV−4)
WX

]
= 0, and that Var

[
b̂

(RUV−4)
WX

]
approaches 0 as the number of control genes grows large. With a large enough set of control
genes, there is effectively no harm at all in overestimating k. Figure 3.5 makes this point
using real data. In both the Alzheimer’s and Gender datasets, the performance of RUV-2
drops substantially if K is too high. The performance of RUV-4 however remains good even
for very high K. Indeed RUV-4 performs at least as well as the unadjusted case (K = 0) for
nearly every possible K.

Finally, note that although the performance of RUV-4 does decrease somewhat if K is set
too large, this is not necessarily an indication that the performance of β̂(RUV−4) is decreasing
with large K. Estimates of the variances (i.e. the σ̂2

j ) may instead be to blame. Indeed, if
we use standard methods instead of Limma (Smyth, 2004) to estimate σ̂2, the performance
of RUV-4 is nearly as bad as the performance of RUV-2 for large K (data not shown). The
performance of RUV-4 as a whole depends on getting good estimates of both β and σ2. We
have demonstrated there is reason to believe that β̂(RUV−4) performs well even for very high
K. Getting good estimates of σ2 is a separate challenge. We will return to this point in
Section 3.3.7.

We now consider an example in which the control genes are misspecified. Figure 3.6A
shows an example similar to those in Figure 3.3. 100 genes are (correctly) designated as
control genes, and colored green. Figure 3.6B shows the same example dataset, but now 110
genes are designated as control genes — the same 100 as in Figure 3.6A, plus an additional
10 that have been incorrectly designated as control genes. These 10 misspecified control
genes are plotted as purple circles filled in with a green dot.

As we can see, the inclusion of these 10 misspecified control genes does not substantially
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Figure 3.5: Comparison of the performance of RUV-2 (brown cross) and RUV-4 (orange
circle) as a function of K in the Alzheimer’s and Gender studies. The horizontal axis is
K. K = 0 corresponds to no adjustment. For each K, genes were ranked by p-value; the
vertical axis is the number of X / Y genes ranked in the top 60. Data were preprocessed.
Housekeeping genes were used as control genes. p-values were computed using Limma.

affect the RUV-4 estimate of Ŵ , but does affect the RUV-2 estimate. It is easy to see why
the RUV-2 estimate is affected. The additional scatter in the vertical direction introduced
by the 10 misspecified control genes “pulls” the principal eigenvector into a more vertical
position. Why is the RUV-4 estimate not also affected? The reason is that there is not a
strong correlation between α and β. The misspecified control genes in this example introduce
additional vertical scatter, but they are not, for example, systematically too high on the right
(where α is positive) and too low on the left (where α is negative). The slope of the regression
line is therefore largely unaffected.

We see then that RUV-4 is relatively robust to misspecification of the control genes. As
we show in Section 3.3.5, RUV-4 does not require that βc = 0 but only that βcα

′
c = 0. This

is clearly a much weaker requirement of the control genes. It is also a fairly mysterious
requirement that is hard to interpret and nearly impossible to verify. Thus, the extent to
which we can exploit this weaker requirement is limited. For example, we may be tempted
to reason loosely that W contains mainly technical factors (e.g. temperature of the scanner,
etc.), and that the effects of the technical factors (i.e. α) should not relate in any systematic
way to the effects of biological factors (i.e. β), and thus that βcα

′
c ≈ 0. Why, we might reason,
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should the genes that are up-regulated by cancer also be the genes whose observations are
biased upwards by an overly warm scanner? And yet, this could very well be. For example,
if the genes that are up-regulated by cancer tend to be genes that are highly expressed,
and genes whose observations are biased upwards by an overly warm scanner also tend to
be genes that are highly expressed, we would get just that scenario. Instead, we view the
relatively weak requirements placed on the control genes by RUV-4 not as something to
exploit per se, but rather as a comforting reassurance that even if we accidentally misspecify
some control genes, we may still get lucky and end up OK — or at least not as badly off as
if we had used RUV-2.

Figures 3.6C and 3.6D provide an even starker example of the difference between RUV-2
and RUV-4 when control genes are misspecified. As in Figure 3.6A, in Figure 3.6C there are
100 genes correctly designated as control genes. Figure 3.6D shows the same example dataset
as Figure 3.6C, but with an additional 10 misspecified control genes. The difference between
Figures 3.6C and 3.6D and Figures 3.6A and 3.6B is that in Figures 3.6C and 3.6D, k has
been overestimated. As in Figure 3.5, k = 0 but K = 1. The combination of misspecified
control genes and an overestimated k is particularly damaging to RUV-2. Since there is no
more unwanted variation, the only remaining systematic variation in the control genes comes
from the misspecified control genes — and is in the X direction. As we can see, the slope of
the brown dotted line in Figure 3.6D is much steeper than in Figure 3.6C. In this example,
RUV-2 clearly detects — and adjusts away — the biological factor of interest. On the other
hand, the slope of the orange dotted line is largely unaffected. RUV-4 is relatively robust to
misspecification of control genes and overestimation of k, even in combination.
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A B

C D

Figure 3.6: A comparison of RUV-4 and RUV-2 when control genes have been misspecified.
See main text for commentary. The simulated data in A and B were generated as follows:
X = (0, 1)′; W = (1, 0.5)′; αj ∼ N(0, 1

4
); εij ∼ N(0, 1

4
); βj ∼ N(0, 9

4
) for 1 ≤ j ≤ 50; βj = 0

for 51 ≤ j ≤ 1000. The simulated data in C and D were generated as follows: X = (0, 1)′;
εij ∼ N(0, 1

4
); βj ∼ N(0, 9

4
) for 1 ≤ j ≤ 50; βj = 0 for 51 ≤ j ≤ 1000.
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3.3.5 Statistical Properties of RUV-4

We now explore the bias and variance of β̂. Calculating the bias and variance requires that
we specify whether α is to be regarded as fixed or random. Ideally we would like to analyze
the bias and variance of β̂ under the assumption that α is fixed. However, this is difficult.
Therefore we will occasionally regard α as random. To make the discussion consistent, we
will always formally treat α as if it is random, but condition on α when appropriate.

Unfortunately, exact calculations of the bias and variance are difficult if not impossible for
a variety of reasons, so instead we focus on simplifications and approximations that are both
illuminating and reasonably accurate. One complication is that the statistical properties of
β̂j depend on whether the jth gene is a control gene or not. In what follows we limit our
discussion to a gene jc̄ that is not a control gene.

Another complication when calculating the bias and variance of β̂ is that we must know
the statistical properties of Ŵ0 and α̂. These properties depend on the choice of factor
analysis method — and are difficult to calculate in any case. We therefore simplify the
situation by making use of a hypothetical idealized factor analysis method. Specifically, we
suppose that Ŵ0 = W0 and thus that α̂ = (W ′

0W0)−1W ′
0Y . In other words, we imagine we

have access to an idealized factor analysis method that perfectly estimates W0; with this we
then additionally estimate α by OLS as specified in (3.23). This simplification is not entirely
unrealistic; with tens of thousands of genes, estimates of W0 can be quite good.

3.3.5.1 Results for fixed α

We begin by defining

ζ ≡ (X ′X)−1X ′ε

ξ ≡ (W ′
0W0)

−1
W ′

0ε

and noting that

ζjc̄ ∼ N(0, σ2
jc̄)

ξ?jc̄ ∼ N(0, σ2
jc̄I)

b̂WX ⊥⊥ ζjc̄

b̂WX ⊥⊥ ξ?jc̄
ζjc̄ ⊥⊥ ξ?jc̄ .
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It follows that

β̂ = (X ′X)
−1
X ′
(
Y − Ŵ α̂

)
= (X ′X)

−1
X ′
[
Xβ + (W0 +XbWX)α + ε−

(
W0 +Xb̂WX

)
α̂
]

= β + bWXα− b̂WX α̂ + ζ

= β + bWXα− b̂WX

[
α + (W ′

0W0)
−1
W ′

0ε
]

+ ζ

= β +
(
bWX − b̂WX

)
α + ζ − b̂WXξ

and that

E
[
β̂jc̄

]
= βjc̄ + E

[
bWX − b̂WX

]
E [α?jc̄ ]

Var
[
β̂jc̄

]
= Var [ζjc̄ ] + Var

[
b̂WX (α?jc̄ + ξ?jc̄)

]
= σ2

jc̄ + E
[
α′?jc̄

]
Var

[
b̂WX

]
E [α?jc̄ ] + E

[
b̂WX

]
Var [α?jc̄ + ξ?jc̄ ]E

[
b̂′WX

]
+

tr

(
Var

[
b̂WX

] 1
2

Var [α?jc̄ + ξ?jc̄ ] Var
[
b̂WX

] 1
2

)
.

If we now condition on αjc̄ we find that

E
[
β̂jc̄

∣∣∣α?jc̄] = βjc̄ + E
[
bWX − b̂WX

]
α?jc̄

Var
[
β̂jc̄

∣∣∣α?jc̄] = σ2
jc̄ + α′?jc̄Var

[
b̂WX

]
α?jc̄ + σ2

jc̄E
[
b̂WX

]
E
[
b̂′WX

]
+ σ2

jc̄tr
(

Var
[
b̂WX

])
and conclude

Bias
[
β̂jc̄

∣∣∣α?jc̄] = E
[
bWX − b̂WX

]
α?jc̄ (3.38)

Var
[
β̂jc̄

∣∣∣α?jc̄] = σ2
jc̄

{
1 + E

[
b̂WX

]
E
[
b̂′WX

]}
+σ2

jc̄tr
(

Var
[
b̂WX

])
+ α′?jc̄Var

[
b̂WX

]
α?jc̄ . (3.39)

Recall that these expressions do not take into account any bias or variance introduced by
the estimation of W0, but are otherwise exact.
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3.3.5.2 Discussion: E
[
b̂WX

]
We now consider E

[
b̂WX

]
. As we will soon see, this leads us to an error-in-variables regres-

sion problem. Begin by noting

b̂WX = bYcX α̂
′
c (α̂cα̂

′
c)
−1

(3.40)

= (X ′X)−1X ′Yc (αc + ξc)
′ [(αc + ξc) (αc + ξc)

′]−1
(3.41)

= (βc + bWXαc + ζc) (αc + ξc)
′ [(αc + ξc) (αc + ξc)

′]−1
(3.42)

= (bWXαc + ζc) (αc + ξc)
′ [(αc + ξc) (αc + ξc)

′]−1

+βc (αc + ξc)
′ [(αc + ξc) (αc + ξc)

′]−1
. (3.43)

If the control gene assumption βc = 0 holds, the second term vanishes, and we are left with

b̂WX = (bWXαc + ζc) (αc + ξc)
′ [(αc + ξc) (αc + ξc)

′]−1
.

This would be the OLS estimator for the parameter bWX in a regression of the “response
variable” bWXαc + ζc on the “explanatory variable” αc, were it not for the fact that the
“explanatory variable” αc has been corrupted by the error term ξc.

3.3.5.3 Results for random α

Error-in-variables regression problems are difficult to analyze, and general expressions for the

bias and variance are not known. We are therefore unable to analyze E
[
b̂WX

]
in general.

Instead, we attempt to gain some insight into E
[
b̂WX

]
by considering a simple, specific

example. Assume that for all control genes

α?jc ∼ N(0,Ψ2) (3.44)

σ2
jc = σ2

0 (3.45)

where σ2
0 is some fixed constant. Assume without a loss in generality that Ψ2 is diagonal.

Assume also that nc is large. Then

b̂WX = (bWXαc + ζc) (αc + ξc)
′ [(αc + ξc) (αc + ξc)

′]−1

=

(
bWXαcα

′
c

nc
+
ζcα
′
c

nc
+
bWXαcξ

′
c

nc
+
ζcξ
′
c

nc

)(
αcα

′
c

nc
+
ξcα
′
c

nc
+
αcξ

′
c

nc
+
ξcξ
′
c

nc

)−1

≈ bWXΨ2
(
Ψ2 + σ2

0I
)−1

.

We therefore see that the entries of b̂WX are asymptotically biased towards 0. In particular,
the (1, l)th entry of b̂WX (which we denote (b̂WX)l) is asymptotically biased by a factor of
ψ2
l

ψ2
l +σ2

0
, where ψ2

l is the lth diagonal entry of Ψ2. This observation agrees with the intuition
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we developed in Section (3.3.4) — b̂WX is biased towards 0, and the bias grows stronger as
the unwanted variation becomes weaker.

Under assumptions (3.44) and (3.45) and the assumption that nc is large, we may simplify
(3.38) as

Bias
[
β̂jc̄

∣∣∣α?jc̄] ≈ bWX

(
Ψ2/σ2

0 + I
)−1

α?jc̄ . (3.46)

Moreover, under the same assumptions Var
[
b̂WX

]
≈ 0, so we may we may simplify (3.39)

as

Var
[
β̂jc̄

∣∣∣α?jc̄] ≈ σ2
jc̄

{
1 + E

[
b̂WX

]
E
[
b̂′WX

]}
(3.47)

≈ σ2
jc̄

(
1 + bWXΨ4

(
Ψ2 + σ2

0I
)−2

b′WX

)
. (3.48)

From this we conclude

MSE
[
β̂jc̄

∣∣∣α?jc̄] ≈ σ2
jc̄ + bWX

[(
Ψ2/σ2

0 + I
)−1

α?jc̄α
′
?jc̄

(
Ψ2/σ2

0 + I
)−1
]
b′WX

+σ2
jc̄bWX

[
Ψ4
(
Ψ2 + σ2

0I
)−2
]
b′WX . (3.49)

This is a complicated expression and somewhat difficult to interpret. It is clear that, unless
bWX = 0, the MSE can be arbitrarily large depending on the value of α?jc̄ . However, it is
not clear how large the MSE might be in a “typical” case. To investigate this question, we
will now assume

α?jc̄ ∼ N(0,Ψ2) (3.50)

σ2
jc̄ = σ2

0 (3.51)

just as we did for the control genes. Under these assumptions

MSE
[
β̂j

]
≈ σ2

0 + bWX

[(
Ψ2/σ2

0 + I
)−1

Ψ2
(
Ψ2/σ2

0 + I
)−1
]
b′WX

+σ2
0bWX

[
Ψ4
(
Ψ2 + σ2

0I
)−2
]
b′WX (3.52)

= σ2
0 + bWX

(
Ψ2/σ2

0 + I
)−2 (

Ψ2 + Ψ4/σ2
0

)
b′WX (3.53)

= σ2
0 + bWXΨ2

(
Ψ2/σ2

0 + I
)−1

b′WX (3.54)

= σ2
0

[
1 + bWXΨ2

(
Ψ2 + σ2

0I
)−1

b′WX

]
. (3.55)

It may not be immediately obvious whether (3.55) is “good” or “bad.” For sake of
comparison, suppose we knew W , and could simply estimate β by OLS. Designate this
hypothetical estimator by β̂(OLS). Now, β̂(OLS) is unbiased, so the MSE is simply the variance:

MSE
[
β̂

(OLS)
j

]
= σ2

0 (1 + bWXb
′
WX) . (3.56)
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(See Section B.1.2 for a proof.) Thus, under assumptions (3.44), (3.45), (3.50), (3.51) and

the assumption that nc is large, we see that MSE
[
β̂

(RUV−4)
j

]
< MSE

[
β̂

(OLS)
j

]
, at least up to

approximation:

MSE
[
β̂

(OLS)
j

]
−MSE

[
β̂

(RUV−4)
j

]
≈ σ2

0bWX

[
I −Ψ2

(
Ψ2 + σ2

0I
)−1
]
b′WX (3.57)

= σ2
0

k∑
l=1

σ2
0

ψ2
l + σ2

0

(bWX)2
1l. (3.58)

3.3.5.4 Discussion: Random or Fixed?

In the previous section we analyzed the RUV-4 estimator under the assumption that α
is random. This was motivated by the fact that it is very difficult to analyze the RUV-4
estimator under the assumption that α is fixed. Regarding α as random allowed us to develop
some intuition about the behavior of the RUV-4 estimator that we might not have been able
to develop otherwise. We found that under our assumptions the RUV-4 estimator actually
has a smaller MSE than the (hypothetical) OLS estimator. This result may be surprising
at first, but can be easily understood as RUV-4 exploiting the assumption that the α?jc̄ and
the α?jc are drawn from the same normal distribution. The conclusion is that RUV-4 has
the potential to outperform OLS. For it to do so, however, the control genes must satisfy an
additional criterion. The control genes must not only be uninfluenced by X yet influenced
by W , but they must also be influenced by W in much the same way as all of the other genes
are. The α?jc must be “representative” of the α?jc̄ .

In Section 3.3.7 we will reformulate the RUV-4 estimator. Under this reformulation, we
will see that the RUV-4 estimator arises very naturally from a model in which α is random.
In Section 3.5 we will observe that RUV-4 works very well when applied to real datasets.

A natural question to ask, then, is whether we should regard α as random. This question
does not have an easy answer. The RUV model is highly artificial. We regard the model
primarily as a source of inspiration for new methods; the value of these methods must then
be established independently, by testing how well they perform on real data. In this context,
it may be wise to regard α as random. RUV-4 is an effective method that arises naturally
from a model in which α is random. Regarding α as random may ultimately inspire ideas
for even more effective methods.

On the other hand, neither the effectiveness nor the “naturalness” of an estimator can
ultimately justify the model from which the estimator arose. Moreover, despite the fact
the RUV model is artificial, there is an obvious interest in keeping the model as realistic as
feasible. In this context, it seems wise to regard α as fixed. Random effects seem implausible;
we are unaware of any physical argument that would justify regarding α as random, let alone
the distributional assumptions we have imposed on α. For example, if α4,25 is the effect of
temperature on the observed expression level of the 25th probe, should we not expect α4,25

to be dictated by the physical and chemical properties of the 25th probe, and thus to be
constant from one experiment to the next?
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Instead of regarding α as random, it may be better to regard α as fixed with some (non-
random) distribution that can often be reasonably approximated in practice by a normal
distribution. The distinction may seem pedantic, but we believe regarding α in this manner
is useful. For example, it serves as a reminder that some αij may be serious outliers, and
that these outliers may reveal interesting information upon further investigation. It also
serves as a reminder that different genes may have different biases. It may be that β̂ is
consistently biased one way or another for genes with high GC content, or for genes that are
highly expressed. If these biases are consistent from one experiment to the next, they may
lead to inaccurate conclusions, despite the replication. We believe it is helpful to keep such
considerations in mind.

To summarize, there is no clear answer as to whether α should be regarded as fixed or
random. Both points of view are useful in their own way. Moreover, a decisive answer may
not be necessary. In Section 3.3.8 we will provide still another framework for understanding
RUV-4 that partly sidesteps the issue. Finally, and most importantly, we reiterate that we
have seen that the superior performance of RUV-4 relies on the α?jc being “representative”
of the α?jc̄ . This clearly has important practical implications for choosing a set of control
genes.

3.3.6 Practical considerations for RUV-4

We now consider several topics including the estimation of σ2, Var
[
β̂jc̄

∣∣∣α?jc̄] and k; the

handling of covariates; the consequences of misspecified control genes; and the consequences
of under- or over-estimating k. We continue to formally treat α as if it is random, conditioning
when appropriate.

3.3.6.1 Estimating σ2 and Var
[
β̂jc̄

∣∣∣α?jc̄]
Suppose we want to estimate σ2

j . If we disregard the fact that Ŵ is an estimate and simply
treat it as W , the “standard” estimate for σ2

j is:

σ̂2
j ≡

1

m− k̂ − 1

m∑
i=1

(
Yij −Xβ̂j − Ŵ α̂?j

)2

(3.59)

=
1

m− k̂ − 1

(
R(X|Ŵ )Y?j

)′ (
R(X|Ŵ )Y?j

)
. (3.60)

R(X|Ŵ ) depends only on the column space of (X|Ŵ ), and the columns of X and Ŵ0 together

form a basis of R
[
(X|Ŵ )

]
, so R(X|Ŵ ) = R(X|Ŵ0). Thus σ̂2

j is independent of our estimate

of bWX . Indeed, if Ŵ0 = W0 then R(X|Ŵ ) = R(X|W ) and σ̂2
j is identical to the “standard”

estimate of σ2
j that we would get if W were known.
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Now suppose we want to estimate Var
[
β̂jc̄

∣∣∣α?jc̄]. Recall that when nc is large,

Var
[
β̂jc̄

∣∣∣α?jc̄] ≈ σ2
jc̄

{
1 + E

[
b̂WX

]
E
[
b̂′WX

]}
(3.61)

≈ σ2
jc̄

(
1 + b̂WX b̂

′
WX

)
. (3.62)

Given our estimate σ̂2
jc̄ of σ2

jc̄ , we may therefore estimate Var
[
β̂jc̄

∣∣∣α?jc̄] as

V̂ar
[
β̂jc̄

∣∣∣α?jc̄] ≡ σ̂2
jc̄

(
1 + b̂WX b̂

′
WX

)
. (3.63)

This is a particularly appealing result since (3.63) is equivalent to the standard estimate

of Var
[
β̂jc̄

∣∣∣α?jc̄] that we would calculate if we simply treated Ŵ as W and ran a standard

regression (see Section B.1.2 of the appendix for proof).
To summarize, if nc is large and Ŵ0 ≈ W0 then plugging in Ŵ for W and and estimating

σ2 and Var
[
β̂jc̄

∣∣∣α?jc̄] in the standard way will provide satisfactory results. Thus, once we

have computed Ŵ using RUV-4, standard methods and software can be used to estimate
variances, calculate t statistics and p-values, etc. However, we should note that even under
these “ideal” conditions, p-values computed in the standard way are not necessarily reliable,
since β̂jc̄ is biased (conditional on α?jc̄). Even more importantly, we note that a major
implicit assumption in our analysis is that we have properly estimated k. Serious problems
may occur if we mis-estimate k. See Section 3.3.6.5. Finally, note that strictly speaking
(3.63) is only appropriate for non-control genes. In practice however, we apply it to the
control genes as well.

3.3.6.2 Handling Covariates, and the Case p > 1

In (3.7) we made the simplifying assumptions that there is no Z term and that p = 1. We
now consider what to do when this is not true. We will first consider the case that p = 1
but that observed covariates Z are available. We will then consider the case that p > 1. We
find that both cases can be reduced to the case that there is no Z term and p = 1. However,
there is more than one way to reduce to the case that there is no Z term and p = 1, and it
is not always clear which way is best.

Suppose observed covariates Z are available. There are two options. The first is to simply
ignore them. RUV-4 can then estimate these unwanted factors and incorporate them into
Ŵ just as it would any other unwanted factors. This is often the best option. In Chapter 2
we argue that the observed covariates that one has available are often only proxies for the
“true” unwanted factors. For example, “batch” itself does not cause “batch effects.” Batch
effects are the result of other factors (e.g. temperature) that are correlated with batch.
Compared to the proxy variables in Z, factor analysis may provide a better estimate of the
“true” unwanted factors.
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The second option is to explicitly adjust for Z. Multiplying both sides of (3.1) by Z ′⊥
yields

Z ′⊥Y = (Z ′⊥X)β + (Z ′⊥W )α + Z ′⊥ε. (3.64)

Note that
Z ′⊥ε?j ∼ N(0, σ2

j I(m−q)×(m−q)).

We may therefore simply use Z ′⊥Y and Z ′⊥X instead of Y and X, and proceed as we would in
the case that there is no Z term. Note that we have effectively “projected” Z away. However,
strictly speaking this is not a “projection” in the technical sense, since we premultiply by
Z⊥ instead of by RZ ; instead of mapping the data from Rm to a m− q dimensional subspace
of Rm, we map the data from Rm to Rm−q.

When should we explicitly adjust for Z and when should we just ignore it? A few
observations are relevant. One such observation is that a poor proxy variable can create
more problems than it solves. Assume that in truth

Y = Xβ + Zγ + ε (3.65)

but that we regress Y on X and Z̃, where Z̃ is correlated with but not equal to Z. It is
possible that the bias of β̂ in this case is even larger than if we had simply regressed Y on
X and ignored Z̃. This is of particular concern if Z̃ is highly correlated with X. Another
observation is that by explicitly including a Z term, we are effectively treating γ as fixed. By
letting RUV-4 incorporate Z into W and γ into α, we are effectively treating γ as random.
By explicitly including a Z term, we may therefore lose some of the performance advantage
offered by RUV-4. A final observation is that explicitly adjusting for Z may hinder our
ability to estimate W and α. If W and Z are correlated, projecting away Z will also project
away some of W . This will make the estimation of W and α more difficult. If the factors
contained in Z are less important than those contained in W (i.e Zγ is “smaller” than Wα),
it may be better to ignore Z for sake of a better estimate of Wα. A rather extreme example
may help make this point more clear. Suppose there are m − 1 known covariates. Suppose
that none of these covariates has a strong influence on Y , i.e. γ is “small.” Adjusting for
these m− 1 covariates may remove the relatively minor bias of the Zγ term, but it will also
leave us with only one dimension for Ŵ ! Taken together, these observations tend to suggest
that Z should generally be ignored.

However, there is an important exception. Consider the case that γ is sparse. Suppose
that we leave Z out of the model. Since only a few genes exhibit the effects of Z, the factor
analysis routine may not properly estimate Z and incorporate it into W . This may cause
problems. The problems are somewhat different depending on whether or not X is correlated
with Z. We discuss both cases in turn.

Suppose first that Z is strongly correlated with X. Suppose that gene j is one of the few
genes such that γj 6= 0. If we do not explicitly adjust for Z, β̂j may be strongly biased. If in
truth βj = 0, we may falsely conclude that βj 6= 0. In other words, we may be led to false
discoveries. On the other hand, suppose that in truth βj 6= 0. We would likely correctly
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conclude that βj 6= 0 (barring a very unfortunate cancellation of the Xβj and Zγj terms).

However, β̂j would still be biased, and perhaps even the sign would be wrong. This would
be quite unfortunate. Since gene j is in fact differentially expressed with respect to X, gene
j — and the actual value of βj — is presumably of substantial scientific interest.

Suppose now that Z is not strongly correlated with X. We do not need to worry that
omitting Z from the model will seriously bias βj. However, the estimate σ̂2

j of σ2
j may be

inflated, as the Zγ will still be present in the residuals. If in truth βj = 0, an inflated σ̂2
j

is not of much concern. However, if in truth βj 6= 0, an inflated σ̂2
j will lead to a drop in

power. We might fail to discover that gene j is differentially expressed with respect to X.
Nonetheless, our conclusion is not simply “if γ is sparse, include Z.” A better motto

might be “if γ is sparse, proceed with caution.” If Z suffers from measurement error, or is
simply a proxy for some other variable, it may still be best to leave Z out. Moreover, our
discussion so far has been far from complete. Additional complications arise, for example,
if Z is correlated with W . A complete discussion is beyond the scope of this thesis. On
balance, if Z is important, if Z is well-measured, if q (the number of columns of Z) is small,
and if γ is sparse, it is probably best to include Z. This is especially true if we believe that
both β and γ are sparse, and that the few genes for which β is non-zero are also the few
genes for which γ is non-zero. Still, this is only a rule of thumb. Repeating the analysis both
with and without Z and inspecting the results seems reasonable.

We now consider the case that p > 1. There are three ways to handle this case. However,
two of the three ways turn out to be equivalent, so effectively there are only two ways to
handle the case p > 1. We now describe the three possibilities. The first strategy to handle
the case p > 1 is to proceed with the RUV-4 algorithm exactly as described in Section 3.3.3.1;
nothing in the procedure requires that p = 1. Of course, we do require that p < m. The
second strategy to handle the case p > 1 is to run RUV-4 p times. Each time we redefine
X to be just a single column of the original X, and ignore the other columns. The third
strategy to handle the case p > 1 is to run RUV-4 p times. Each time we redefine X to be
just a single column of the original X, and move the remaining columns of X to Z; we then
explicitly adjust for this “Z.”

It turns out that the first and the third strategies are equivalent; β̂, σ̂2, p-values, etc. all
are identical. We may therefore limit our attention to the second and third strategies. In
both strategies, we run RUV-4 p times. Each time, we select a single column of X to be the
factor of interest. Denote this column of X by X̃. The remaining columns of X play the role
of observed covariates. Denote these columns by Z̃ (no relation to the Z̃ mentioned above).
The difference between strategies two and three is whether or not we explicitly adjust for Z̃.

Which strategy is better? Once again, there is no clear answer. All of the considerations
regarding whether or not to include Z continue to apply. However, there are additional
complications as well. For example, we have assumed that βc = 0. It follows that γ̃ = 0.
Thus, even if γ̃ is not sparse in general, it is “sparse” for the control genes. If we leave Z̃ out
of the model, RUV-4 may not properly incorporate Z̃ into W . This is a strong argument
for including Z̃. A second complication is that, in cases in which p > 1, it is common in
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practice that the columns of X are in some way “related.” For example, several columns
of X may simply be dummy variables representing different levels of a single factor. As a
result, if βlj is non-zero for one value of l, we might expect that βl′j is non-zero for several
other values of l′ as well — even when β as a whole is sparse. Thus, the genes for which
β̃ is non-zero will also tend to be the genes for which γ̃ is non-zero. This too may be an
argument for including Z̃. On balance, if p is small, it is probably best to include Z̃. Once
again, however, the most prudent strategy may simply be to run the analysis both with and
without Z̃, and carefully inspect the results.

3.3.6.3 Violation of the control gene assumption

We now consider what happens when certain assumptions are violated. In particular, we
will first consider what happens when βc 6= 0. Later we will consider what happens when
K 6= k. Suppose βc 6= 0. By (3.43) we see that this will result in additional conditional bias

to b̂WX . The amount of this bias is E
[
βc (αc + ξc)

′ [(αc + ξc) (αc + ξc)
′]−1

∣∣∣αc]. In general,

depending on βc and αc, this bias may be arbitrarily bad. However, we observe that if β′c
is approximately orthogonal to (αc + ξc)

′ then the bias will be approximately 0. With high
probability ξc is approximately orthogonal to βc. Therefore, we should not expect violations
of the control gene assumption to be problematic unless βcα

′
c is appreciably non-zero.

More formally, suppose βcα
′
c = 0. Then

βc (αc + ξc)
′ [(αc + ξc) (αc + ξc)

′]−1

= βcPβ′cξ
′
c

[(
αc + ξcPβ′c + ξcRβ′c

) (
α′c + Pβ′cξ

′
c +Rβ′cξ

′
c

)]−1
(3.66)

= βcPβ′cξ
′
c

[
ξcPβ′cPβ′cξ

′
c +
(
αc + ξcRβ′c

) (
α′c +Rβ′cξ

′
c

)]−1
. (3.67)

Now, the joint distribution of
(
ξcPβ′c , ξcRβ′c

)
is equal to the joint distribution of

(
−ξcPβ′c , ξcRβ′c

)
,

so

E
{
βcPβ′cξ

′
c

[
ξcPβ′cPβ′cξ

′
c +
(
αc + ξcRβ′c

) (
α′c +Rβ′cξ

′
c

)]−1
∣∣∣αc}

= E
{
βc
(
−Pβ′cξ

′
c

) [(
−ξcPβ′c

) (
−Pβ′cξ

′
c

)
+
(
αc + ξcRβ′c

) (
α′c +Rβ′cξ

′
c

)]−1
∣∣∣αc} (3.68)

= −E
{
βcPβ′cξ

′
c

[
ξcPβ′cPβ′cξ

′
c +
(
αc + ξcRβ′c

) (
α′c +Rβ′cξ

′
c

)]−1
∣∣∣αc} (3.69)

and therefore E
{
βc (αc + ξc)

′ [(αc + ξc) (αc + ξc)
′]−1

∣∣∣αc} = 0. No bias is introduced by a

breakdown of the control gene assumption in which βc 6= 0 but βcα
′
c = 0.

3.3.6.4 Misspecification of k: Consequences for β̂

We now consider what happens when K 6= k. There are two possible cases: K < k and
K > k. First consider the case that K < k. We may be tempted to regard Ŵ (K) as simply
a “reduced” version of Ŵ (k) from which we have dropped k −K columns. In other words,
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we might guess that R
(
Ŵ (K)

)
⊂ R

(
Ŵ (k)

)
. Since omitting terms from a regression model

generally leads to biased estimates, we might therefore reason that setting K < k will lead
to (additional) bias in our estimate of β. This is only partially correct. Setting K < k does

bias β̂. However, it is not generally true that R
(
Ŵ (K)

)
⊂ R

(
Ŵ (k)

)
. One trivial reason

for this is that, depending on our choice of factor analysis routine, it may not even be the

case that R
(
Ŵ0

(K)
)
⊂ R

(
Ŵ0

(k)
)

. However, suppose that indeed R
(
Ŵ0

(K)
)
⊂ R

(
Ŵ0

(k)
)

.

It does not follow that R
(
Ŵ (K)

)
⊂ R

(
Ŵ (k)

)
. Recall that we estimate bWX by regressing

bYcX on α̂c. However, the rows of α̂c are not in general orthogonal. Dropping some rows from
α̂c therefore leads to a different estimate bWX , even for the rows that remain. The conclusion
then is that setting K < k biases β̂, but quantifying the bias is difficult. Nonetheless, by
considering the limiting case that K = 0 (i.e. no adjustment), we may reason that the bias
is potentially substantial. The simulations of Section 3.4 support this conclusion.

We now consider the case that K > k. We focus on the “worst case” in which K = m−1,
but our results are clearly relevant whenever k < K < m−1. Note that whenK = m−1 there
is no role for the factor analysis in Step 2; Ŵ

(m−1)
0 is simply equal to X⊥. Let W1 ≡ (X|W0)⊥.

Assume without loss of generality that Ŵ
(m−1)
0 = (W0|W1). Now define

W̃ ≡ (W |W1) (3.70)

α̃ ≡
(

α
0m−k−1×n

)
. (3.71)

Observe that bW̃X = (bWX |0) and W̃ α̃ = Wα. We may therefore regard W̃ α̃ as a repa-

rameterization of Wα. Under this reparameterization, Ŵ
(m−1)
0 is a perfect estimator of W̃0.

Therefore, expressions (3.38) and (3.39) apply exactly. To analyze the bias and variance
under assumptions (3.44), (3.45), and the assumption that nc is large, first define

Ψ̃2 ≡
(

Ψ2 0k×m−k−1

0m−k−1×k 0m−k−1×m−k−1

)
. (3.72)

By (3.46)

Bias
[
β̂

(m−1)
jc̄

∣∣∣α̃?jc̄] ≈ bW̃X

(
Ψ̃2/σ2

0 + I
)−1

α̃?jc̄ (3.73)

= bWX

(
Ψ2/σ2

0 + I
)−1

α?jc̄ (3.74)

≈ Bias
[
β̂

(k)
jc̄

∣∣∣α?jc̄] (3.75)

and by (3.48)

Var
[
β̂

(m−1)
jc̄

∣∣∣α̃?jc̄] ≈ σ2
jc̄

(
1 + bW̃XΨ̃4

(
Ψ̃2 + σ2

0I
)−2

b′
W̃X

)
(3.76)

= σ2
jc̄

(
1 + bWXΨ4

(
Ψ2 + σ2

0I
)−2

b′WX

)
(3.77)

≈ Var
[
β̂

(k)
jc̄

∣∣∣α?jc̄] . (3.78)
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Thus, up to approximation, the bias and variance of β̂
(m−1)
jc̄

and β̂
(k)
jc̄

are the same; nothing is
lost by over-estimating k. It is useful to recall at this point what approximations are being
made that justify this conclusion. The approximations are based on the assumption that nc is
large. The approximations may be made arbitrarily good by a sufficiently large nc. If nc is not
sufficiently large, we may in fact pay a substantial price by overestimating k. In particular,

Var
[
b̂WX

]
may no longer be negligible, and the σ2

jc̄tr
(

Var
[
b̂WX

])
and α′?jc̄Var

[
b̂WX

]
α?jc̄

terms of (3.39) may become important. We return to this point in Section 3.3.9.1.

3.3.6.5 Misspecification of k: Consequences for σ̂2

In practice, estimating σ2 is much more complicated than Section 3.3.6.1 suggests. The
difficulty arises in the estimation of k. The performance of σ̂2

j depends critically on a proper

estimation of k. Unlike β̂j, σ̂
2
j performs poorly both when k has been underestimated and

when k has been overestimated. Therefore we cannot simply dodge the issue by systemati-
cally over- or underestimating k as we can with β̂.

We will not analyze the statistical properties of σ̂2
j in any detail. Roughly speaking,

however, we may summarize the main issues as follows: Firstly, overestimating k increases
the variance of σ̂2. This is simply because σ2 must be estimated using fewer degrees of
freedom. Moreover, overestimating k biases σ̂2 downwards on average. This is because the
factor analysis routine in Step 2 will presumably allocate the extra K − k dimensions of
Ŵ0 to the (random) dimensions in which ε shows the greatest variation. The residuals will
therefore be too small. Finally, underestimating k biases σ̂2 upwards on average, possibly
substantially. This is because some terms of Wα are not effectively adjusted away. Some
unwanted variation remains in the residuals, and this inflates σ̂2.

To see that underestimating k biases σ̂2 upwards on average and overestimating k biases
σ̂2 downwards on average it is helpful to consider the specific case in which we use the singular
value decomposition (SVD) as our factor analysis method. Let UDV ′ be the singular value
decomposition of RXY , i.e. RXY = UDV ′ where U and V are orthonormal matrices and
D is a diagonal matrix with decreasing diagonal entries denoted by di. Ŵ

(K)
0 is defined to

be the first K columns of U . Let σ̄2 ≡
∑n

j=1 σ
2
j denote the average gene variance. Let

σ̇2 ≡
∑n

j=1 σ̂
2
j denote the estimated average variance. The estimated average variance as a
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function of K is therefore

(
σ̇2
)(K)

=
1

n

n∑
j=1

(
σ̂2
j

)(K)
(3.79)

=
1

n

n∑
j=1

1

m−K − 1

(
R(

X|Ŵ (K)
0

)Y?j
)′(

R(
X|Ŵ (K)

0

)Y?j
)

(3.80)

=
1

n(m−K − 1)

n∑
j=1

(
R
Ŵ

(K)
0
RXY?j

)′ (
R
Ŵ

(K)
0
RXY?j

)
(3.81)

=
1

n(m−K − 1)

n∑
j=1

Vj?DU
′R

Ŵ
(K)
0
UDV ′j? (3.82)

=
1

n(m−K − 1)

n∑
j=1

m∑
i=K+1

V 2
jid

2
i (3.83)

=
1

n(m−K − 1)

m∑
i=K+1

d2
i . (3.84)

Thus (σ̇2)
(K)

is decreasing in K, since the di are decreasing in i. Since σ̇2 is an unbiased

estimator of σ̄2 when Ŵ0 = W0, it follows that if Ŵ
(k)
0 = W0, (σ̇2)

(K)
will be biased upwards

when K < k and biased downwards when K > k. Of course, in practice, it is not true
that Ŵ

(k)
0 = W0 but rather that Ŵ

(k)
0 ≈ W0, so these results hold only approximately. A

full discussion is beyond the scope of this thesis. Nonetheless, we do feel that the above
argument is useful for the intuition it provides. Moreover, in both simulation experiments
and the analysis of real data, we have found that the conclusions tend to hold — when K is
too large, σ̂2 is too small; when K is too small, σ̂2 is too large.

3.3.6.6 Estimating k

As Sections 3.3.6.4 and 3.3.6.4 suggest, a good choice of K is critical to the performance
of RUV-4. Unfortunately, selecting an appropriate K is difficult. It is not even clear that
the optimal K for β̂ is the same as the optimal K for σ̂2. (Indeed, we have had success
estimating β̂ and σ̂2 using different values of K, but we do not discuss this approach in this
thesis.)

As for RUV-2, we feel the best way to select K for RUV-4 is to run the analysis for
several values of K and choose the “best” one based on p-value histograms, RLE plots, the
rankings of positive controls, and other quality assessments. We are unaware of any good
algorithmic way to estimate k, and we feel there is an important role for human judgment.

Nonetheless, this hands-on approach is not always feasible or desirable. For example,
in Section 3.4 we present the results of simulation experiments in which RUV-4 was run
thousands of times. Estimating k “by hand” thousands of times is not feasible. Therefore
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we will now present a method to estimate k that we have found to perform moderately well
in many situations.

Our method for estimating k relies on control genes. The key insight is that if RUV-4
works as intended

E
[
β̂c

∣∣∣α] ≈ 0 (3.85)

and thus

β̂2
jc ∼̇ Var

[
β̂jc

∣∣∣α]χ2
1. (3.86)

The symbol ∼̇means “is approximately distributed as.” Unfortunately, the quantity Var
[
β̂jc

∣∣∣α]
is difficult to analyze. We therefore begin by considering a gene j0 that is not a designated
control gene but nonetheless such that βj0 = 0.

Assume (3.44), (3.45), and that nc is large. Assume that RUV-4 works as intended so

that E
[
β̂j0

∣∣∣α] ≈ 0. By (3.62)

Var
[
β̂j0

∣∣∣α] ≈ σ2
j0

(
1 + b̂WX b̂

′
WX

)
(3.87)

and therefore

s2
j0
≡

β̂2
j0

1 + b̂WX b̂′WX

∼̇ σ2
j0
χ2

1. (3.88)

As in Section (3.3.6.4), suppose that Ŵ
(m−1)
0 = (W0|W1). Assume that W1, while otherwise

arbitrary, is fixed. Then for all i such that k < i < m and all j such that 1 ≤ j ≤ n,

s2
ij ≡

(
α̂

(m−1)
ij

)2

∼ σ2
jχ

2
1. (3.89)

Now, for 1 ≤ i < m consider the quantity

r
(0)
i ≡ medianj0

√
s2
ij0
/s2

j0
. (3.90)

This quantity gives some measure of the scale of the ith row of α̂(m−1) relative to the scale of
ε. In light of (3.88) and (3.89), we would expect that r

(0)
i ≈ 1 for k < i < m. We can exploit

this fact to estimate k. For example, we could estimate k by #
{
r

(0)
i > C

}
, where C > 1 is

some cutoff value.
In practice, we will want to designate every gene known to be uninfluenced by X as a

control gene. Thus we should not expect to have available any genes j0 as described above.
Instead, we will just use the control genes. However, the statistical properties of the control
genes are different than the statistical properties of the other genes. In particular, since we
estimate bWX by regressing bYcX on α̂c, it is not true that b̂WX is independent of ζjc and
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ξ?jc . The practical consequence of this is that b̂WX is overfitted to the control genes, and as

a result the variance of β̂jc tends to be somewhat less than σ2
jc

(
1 + b̂WX b̂

′
WX

)
. Note that β̂c

may be regarded as the residuals of a regression of bYcX on α̂c. In a “standard” regression, the
residuals are “too small” by a factor of

√
(N − P )/N , where N is the number of observations

and P is the number of regressors. This inspires us to define:

ri ≡ medianjc

√(
nc

nc −Ki

)
s2
ijc

s2
jc

(3.91)

where Ki denotes the value of K we use in the calculation of s2
jc (in the analyses of Sections

3.4 and 3.5 we set Ki = i, but other strategies are possible). This is somewhat ad hoc. The
regression of bYcX on α̂c is not a “standard” regression. In particular, we have ignored the
fact that different genes have different variances. Nonetheless, we now define our estimate
of k as

k̂(C) ≡ # {ri > C} . (3.92)

We must choose a value for C. In choosing a value for C we consider the fact that it is
not actually true that Ŵ

(m−1)
0 = (W0|W1) where W1 is some arbitrary but fixed matrix. In

particular, we may not take W1 to be fixed. Its parameterization is random, and determined
by the factor analysis routine in Step 2 of RUV-4. This did not matter in Section 3.3.6.4
because the parameterization of Ŵ0 was irrelevant. Here, however, the parameterization of
Ŵ0 does matter; ri is defined in terms of the individual columns of Ŵ0. Assume that we use
the SVD as the method of factor analysis in Step 2 of RUV-4. In this case, we might expect
that Ŵ

(k)
0 ≈ W0. Again, this is only approximately correct, and a full discussion is beyond

the scope of this thesis. For sake of argument, however, simply assume that Ŵ
(k)
0 = W0.

We may then write Ŵ
(m−1)
0 = (W0|W̃1), implicitly defining W̃1. The problem is that W̃1 is

not fixed; it has been rotated so that the most variation is captured by first column. As a
result, we should not expect that rk+1 ≈ 1 but rather that rk+1 > 1. To fix this problem, we
set C > 1. We choose to set C = E(η) where η is the principal singular value of an m × n
matrix of independent N(0, 1

n
) random variables. In our analyses we simply approximate C

by simulation. A far more computationally efficient approach would be to approximate C
using the fact that the distribution of η2 is approximately Tracy-Widom. This approximation
can be very good. See, for example, Ma (2012).

3.3.7 The Inverse Method

In Section 3.3.6.4 we saw that overestimating k does not seriously degrade the performance of
β̂ as long as a sufficient number of control genes are available. In Section 3.3.6.5 we saw that
overestimating (or underestimating) k does seriously degrade the performance of σ̂2. We are
left with a dilemma. A good estimate of β is readily available — just set K as high as it can
go, to m− 1 — but we are unable to estimate σ2. To solve this dilemma we will introduce
a novel method for estimating σ2, which we name the “inverse method.” We introduce the
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abstract method in Section 3.3.7.1. In Section 3.3.7.2 we apply the inverse method to RUV-
4. In Sections 3.3.7.3 and 3.3.7.5 we reformulate our estimators. These reformulations are
of both theoretical and practical interest. We provide discussions in Sections 3.3.7.4 and
3.3.7.6.

3.3.7.1 The Inverse Method

We now present the inverse method in the abstract, followed by a simple example. The
method is so simple as to seem trivial. However, as we will eventually see, properly applied
it can be quite powerful. Note that all of the notation used in this section is specific to this
section only.

Let θ̂U be a family of estimators indexed by U . What θ̂U estimates need not be relevant.
Assume that there exist some (possibly random) values of U , denoted U1, U2, ..., Ui, ..., such
that

E
[
θ̂Ui

∣∣∣Ui] = 0.

Assume also that
Var

[
θ̂Ui

∣∣∣Ui] = fUi
(σ2)

where σ2 is some unknown parameter. If the fUi
are linear functions of σ2, then

E
[
θ̂2
Ui

∣∣∣Ui] = fUi
(σ2) (3.93)

f−1
Ui

(
E
[
θ̂2
Ui

∣∣∣Ui]) = σ2 (3.94)

E
[
f−1
Ui

(
θ̂2
Ui

)∣∣∣Ui] = σ2 (3.95)

where f−1
Ui

is the functional inverse of fUi
.

If such Ui are available, if the functions fUi
are known, and if we have the data necessary

to compute θ̂Ui
, we are able to compute f−1

Ui

(
θ̂2
Ui

)
. We may regard each of these f−1

Ui

(
θ̂2
Ui

)
as estimates of σ2. We may then combine the f−1

Ui

(
θ̂2
Ui

)
in some way, e.g. take their average,

to produce a final “inverse” estimate of σ2.
For concreteness, we will now present a very simple (but contrived) example. Suppose

we have a standard linear regression model

Yn×1 = Xn×pβp×1 + εn×1 (3.96)

where Y is observed, X is fixed and observed, β is fixed and unknown, p < n, and the
elements of ε are IID with expectation 0 and variance σ2. To estimate σ2 using the inverse
method, first note that we may model Y as

Y = Xβ + Uθ + ε (3.97)
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where U may be any n × 1 matrix and θ = 0. If U is not a linear combination of X, then
we may estimate θ by OLS and let

θ̂U ≡ (U ′RXU)
−1
U ′RXY.

Let U1, U2, ..., Ui, ... be random matrices whose entries are IID standard normal and inde-
pendent of ε. Then with probability 1, Ui is not a linear combination of the columns of X
and θ̂Ui

exists. Moreover,

E
[
θ̂Ui

∣∣∣Ui] = 0 (3.98)

Var
[
θ̂Ui

∣∣∣Ui] = σ2 (U ′iRXUi)
−1

(3.99)

and therefore

E

[
θ̂2
Ui

(U ′iRXUi)
−1

∣∣∣∣∣Ui
]

= σ2. (3.100)

Thus, we might imagine generating many Ui, and for each Ui calculating θ̂2
Ui
/ (U ′iRXUi)

−1,
and then averaging these values to produce an estimate of σ2. Or, by taking the limit of this
process, we may define the inverse estimator of σ2 to be

σ̂2
inv ≡ EU1

[
θ̂2
U1

(U ′1RXU1)−1

]
. (3.101)

Note that, defined this way, it is actually the case that

σ̂2
inv =

1

n− p
(Y −Xβ̂)′(Y −Xβ̂) (3.102)

and σ̂2
inv is thus equivalent to the standard OLS estimate of σ2 (proof omitted).

3.3.7.2 The Inverse Method for RUV-4

We now apply the inverse method to RUV-4. Let X? be a random “factor of interest” chosen
uniformly at random from the unit (m − 1)-sphere. Since X? is random, it should not be
“truly associated” with the expression levels of any of the genes. We may model Y as

Y = Xβ +Wα +X?β? + ε (3.103)

where β? = 0. We will estimate β? by RUV-4. In this context, X is now an unwanted
factor and plays the role of Z. In Section 3.3.6.2 we discussed two ways to handle a known
covariate: ignore it and let RUV-4 incorporate it into W , or explicitly adjust for it. In this
case, it is almost certainly better to explicitly adjust for X. By assumption, the control



CHAPTER 3. RUV-4 70

genes are uninfluenced by X, and therefore RUV-4 will not properly incorporate X into W .
β̂? may be biased, violating the key assumption of the inverse method (see (3.110), below).

Therefore, we explicitly adjust for X. Define U to be the matrix whose columns are the
first m − 1 eigenvectors of RXYcY

′
cRX . Note that U is a specific parameterization of X⊥.

This parameterization will prove convenient in Section 3.3.7.5. Now define:

Y ≡ U′Y (3.104)

X ≡ U′X? (3.105)

W ≡ U′W (3.106)

ε ≡ U′ε (3.107)

m ≡ m− 1. (3.108)

Note that:
Ym×n = Xm×1β

?
n×1 + Wm×kαk×n + εm×n. (3.109)

Let β̂? denote the RUV-4 estimator of β? for some fixed K. Typically we set K = m− 1.
We now state the key assumption of the inverse method applied to RUV-4. We assume

that with high probability

E
[
β̂?
∣∣∣X] ≈ 0. (3.110)

The real assumption here is that RUV-4 “works” — that the unwanted variation is effec-
tively adjusted for, and that the regression coefficients corresponding to a random “factor of
interest” that is not truly associated with the expression levels of any genes will in fact be
estimated to be about 0.

If nc is large, we have by (3.62) that

Var
[
β̂?jc̄

∣∣∣X] ≈ σ2
jc̄

(
1 + b̂WXb̂

′
WX

)
. (3.111)

Following the example of the previous section, we define

(
σ̂2
jc̄

)(K,inv) ≡ EX


(
β̂?jc̄

)2

1 + b̂WXb̂′WX

 . (3.112)

In Section 3.3.7.5 we will develop an exact analytic expression for
(
σ̂2
jc̄

)(K,inv)
in the special

case that K = m − 1. However, it is also very straight-forward to approximate
(
σ̂2
jc̄

)(K,inv)

more generally by repeatedly generating random X = U′X?, fitting with RUV-4, calculating(
β̂?jc̄

)2

/
(

1 + b̂WXb̂
′
WX

)
, and averaging the results.

We conclude this section by reiterating the importance of explicitly adjusting for X when
calculating β̂?. Suppose we do not explicitly adjust for X and RUV-4 does not properly
incorporate X into W ; X is thus simply unadjusted for. As a result, β̂?jc̄ will be biased.
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(
β̂?jc̄

)2

will be too large and
(
σ̂2
jc̄

)(K,inv)
will be inflated. To see this more clearly, we present

an analogy. In the simple example of Section 3.3.7.1 we estimate θ by (U ′RXU)−1 U ′RXY ;
we “explicitly adjust for X.” The resulting inverse-method estimate σ̂2 is [1/(n − p)](Y −
Xβ̂)′(Y −Xβ̂), and E[σ̂2] = σ2. Now suppose that we had not explicitly adjusted for X, but
instead had estimated θ by (U ′U)−1 U ′Y . The resulting inverse-method estimate σ̂2 would
be (1/n)Y ′Y . The expected value of σ̂2 would be

β′
(
X ′X

n

)
β + σ2.

Thus, by not explicitly adjusting for X, we would inflate our estimate of σ2 by a factor of
roughly

1 +
β′X ′Xβ

nσ2
.

3.3.7.3 A Closed-Form Solution for β̂(RUV−inv)

Define β̂(RUV−inv) to be the RUV-4 estimator when K = m − 1. Note that the notation is
slightly misleading, since strictly speaking the inverse method is a method for estimating
variances, and can be applied to a wide class of estimators, including RUV-4 for any K.
However, the RUV-4 estimator with K = m−1 is the preferred estimator to which we apply
the inverse method — and indeed the estimator which most requires and initially inspired
the method — and hence we denote it by β̂(RUV−inv). The goal of this section is to produce
a closed-form expression for β̂(RUV−inv). We begin by reformulating the four-step estimator:

β̂(RUV−4) = X ′
(
Y − Ŵ α̂

)
= X ′

[
Y −

(
Ŵ0 +XbYcX α̂

′
c (α̂cα̂

′
c)
−1
)
α̂
]

= X ′Y − bYcX α̂′c (α̂cα̂
′
c)
−1
α̂

= X ′Y −X ′YcY ′c Ŵ0

(
Ŵ ′

0YcY
′
c Ŵ0

)−1

Ŵ ′
0Y

= X ′
[
I − YcY ′c Ŵ0

(
Ŵ ′

0YcY
′
c Ŵ0

)−1

Ŵ ′
0

]
Y

= X ′ (YcY
′
c )

1
2

[
I − (YcY

′
c )

1
2 Ŵ0

(
Ŵ ′

0YcY
′
c Ŵ0

)−1

Ŵ ′
0 (YcY

′
c )

1
2

]
(YcY

′
c )
− 1

2 Y

= X ′ (YcY
′
c )

1
2 R

(YcY ′c )
1
2 Ŵ0

(YcY
′
c )
− 1

2 Y

= X ′ (YcY
′
c )

1
2 P

(YcY ′c )−
1
2 Ŵ0⊥

(YcY
′
c )
− 1

2 Y

= X ′Ŵ0⊥

(
Ŵ ′

0⊥ (YcY
′
c )
−1
Ŵ0⊥

)−1

Ŵ ′
0⊥ (YcY

′
c )
−1
Y. (3.113)
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If we now set K = m− 1 so that Ŵ0 = X⊥ and thus Ŵ0⊥ = X, then (3.113) becomes

β̂(RUV−inv) =
(
X ′ (YcY

′
c )
−1
X
)−1

X ′ (YcY
′
c )
−1
Y. (3.114)

Again note that although we give the inverse estimator a special name and are able to define
it using a relatively simple, closed form expression, it is still exactly equivalent to the RUV-4
estimator with K = m− 1.

3.3.7.4 Discussion: β̂(RUV−inv)

β̂(RUV−inv) is of considerable theoretical interest. It has the form of a GLS estimator. Consider
the case in which α is random. Let Σ ≡ Cov [Wα?j] and let δ ≡ Wα + ε. We then have

Y?j = Xβ1j + δ?j (3.115)

with
Σj ≡ Cov [δ?j] = Σ + σ2

j I. (3.116)

We may therefore wish to regard β̂(RUV−inv) as a GLS estimator of β in which Σj has been
(implicitly) approximated by 1

nc
(YcY

′
c ). Now,

E
[

1

nc
(YcY

′
c )

]
=

1

nc

∑
jc

E
[
Y?jcY

′
?jc

]
(3.117)

=
1

nc

∑
jc

E
[
δ?jcδ

′
?jc

]
(3.118)

=
1

nc

∑
jc

Σ + σ2
jcI (3.119)

= Σ + σ̄2
cI (3.120)

where

σ̄2
c ≡

1

nc

∑
jc

σ2
jc . (3.121)

Therefore

Σj = E
[

1

nc
(YcY

′
c )

]
+
(
σ2
j − σ̄2

c

)
I (3.122)

and 1
nc

(YcY
′
c ) is a biased estimate of Σj, with bias

(
σ̄2
c − σ2

j

)
I. To some extent, this com-

plicates the interpretation of β̂(RUV−inv) as a GLS estimator. β̂(RUV−inv) is not the “best”
estimator for any specific gene. However, if the values of σ2

j do not vary wildly from gene

to gene and σ̄2
c ≈ σ̄2 then we may wish to regard β̂(RUV−inv) as a GLS-like estimator that is

“reasonably good on average.”
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In light of (3.122) we may be tempted to refine our estimator of β on a gene-by-gene basis.
For example, if initial estimates σ̂2

j of σ2
j and σ̇2

c of σ̄2
c are available, we may be tempted to

estimate βj by{
X ′
[
YcY

′
c + nc

(
σ̂2
j − σ̇2

c

)
I
]−1

X
}−1

X ′
[
YcY

′
c + nc

(
σ̂2
j − σ̇2

c

)
I
]−1

Y?j.

This is not necessarily a good idea, and may very well prove disastrous. In Section B.1.3
of the appendix we discuss this issue a bit further. To summarize Section B.1.3, it may
be possible to make use of initial estimates of σ2

j and σ̄2
c to refine our estimator of β on a

gene-by-gene basis, but to do so requires considerable care, and is beyond the scope of this
thesis. In any case, any gain in performance is likely to be minor, and the performance of
the “unrefined” estimator β̂(RUV−inv) is generally adequate.

Finally, we note that the GLS interpretation is not unique to β̂(RUV−inv). From (3.113)
we see that, after an appropriate transformation of the data and some additional algebra
(omitted), the RUV-4 estimator may be viewed as a GLS-like estimator for any K, not just
K = m− 1. More specifically, if we let Ỹ ≡ P(X|Ŵ0)Y it can be shown that

β̂(RUV−4) =

(
X ′
(
ỸcỸ

′
c

)+

X

)−1

X ′
(
ỸcỸ

′
c

)+

Ỹ . (3.123)

Note that we must use the generalized inverse
(
ỸcỸ

′
c

)+

because ỸcỸ
′
c is only rank K + 1.

Alternatively, we may redefine Ỹ as
(
X
∣∣∣Ŵ0

)′
Y and let X̃ ≡

(
X
∣∣∣Ŵ0

)′
X. The RUV-4

estimator can then be expressed as

β̂(RUV−4) =

(
X̃ ′
(
ỸcỸ

′
c

)−1

X̃

)−1

X̃ ′
(
ỸcỸ

′
c

)−1

Ỹ . (3.124)

In either case, we may informally describe the approach as throwing away the dimensions

spanned by
(
X
∣∣∣Ŵ0

)
⊥

and fitting by GLS in the remaining K + 1 dimensions. If the dimen-

sions spanned by
(
X
∣∣∣Ŵ0

)
⊥

only contain noise, removing them should reduce the variance

of β̂. Thus we may view RUV-4 as fitting by GLS with an additional noise-reducing dimen-
sionality reduction step. It is interesting to note just how different this view of RUV-4 is
from the one initially presented in Section (3.3.3).

3.3.7.5 An Analytic Solution for
(
σ̂2
j

)(RUV−inv)

Define (
σ̂2
jc̄

)(RUV−inv) ≡
(
σ̂2
jc̄

)(m−1,inv)
.

When it is clear from context, we will drop the superscript and the c̄ subscript on the j
and refer to this quantity simply as σ̂2

j . The goal of this section is to produce an analytic
expression for σ̂2

j .
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Combining (3.112) and (3.114) we have

σ̂2
j ≡ EX


[(
X′ (YcY

′
c)
−1 X

)−1
X′ (YcY

′
c)
−1 Y?j

]2

1 + b̂WXb̂′WX

 (3.125)

Let D denote the diagonal matrix whose diagonal entries are the first m − 1 eigenvalues of
RXYcY

′
cRX and note that YcY

′
c = D. Further note that

Var
[
β̂?jc̄

∣∣∣X,Yc] =
(

1 + b̂WXb̂
′
WX

)
σ2
jc̄ (3.126)

and

Var
[
β̂?jc̄

∣∣∣X,Yc] =

∣∣∣∣∣∣∣∣(X′ (YcY′c)−1
X
)−1

X′ (YcY
′
c)
−1

∣∣∣∣∣∣∣∣2 σ2
jc̄ (3.127)

and thus

1 + b̂WXb̂
′
WX =

∣∣∣∣∣∣∣∣(X′ (YcY′c)−1
X
)−1

X′ (YcY
′
c)
−1

∣∣∣∣∣∣∣∣2 . (3.128)

We may now simplify (3.125) as

σ̂2
j = EX


[
(X′D−1X)

−1
X′D−1Y

]2

∣∣∣∣(X′D−1X)−1 X′D−1
∣∣∣∣2
 (3.129)

= EX

[
Y′?jD

−1X (X′D−1X)
−2

X′D−1Y?j

(X′D−1X)−1 X′D−2X (X′D−1X)−1

]
(3.130)

= Y′?jEX

[
D−1XX′D−1

X′D−2X

]
Y?j. (3.131)

To calculate the expectation, first note that the distribution of X is uniform on the unit
(m− 1)-sphere. Let

X̃ ∼ N (0, Im×m) (3.132)

ρ ∼
√
χ2
m (3.133)

and note that if ρ and X are independent then X̃ is equal in distribution ρX. Then

E ≡ EX

[
D−1XX′D−1

X′D−2X

]
(3.134)

= EX̃

[
D−1X̃X̃′D−1

X̃′D−2X̃

]
. (3.135)
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For the off-diagonal entries of E we have

Eij = EX̃

[
d−1
i d−1

j X̃iX̃j∑m
l=1 d

−2
l X̃2

l

]
(3.136)

= 0 (3.137)

where di ≡ Dii. For the diagonal entries ei ≡ Eii of E we have

Eii = EX̃

[
d−2
i X̃2

i∑m
l=1 d

−2
l X̃2

l

]
(3.138)

which can be shown to be equal to∫ ∞
0

dt

d2
i (1 + 2t/d2

i )
∏m

l=1

√
1 + 2t/d2

l

(3.139)

using the results of Magnus (1986). To summarize,

σ̂2
j = Y′?jEY?j (3.140)

=
m∑
i=1

Y2
ij

d2
i

∫ ∞
0

dt

(1 + 2t/d2
i )
∏m

l=1

√
1 + 2t/d2

l

. (3.141)

3.3.7.6 Discussion:
(
σ̂2
jc̄

)(RUV−inv)

We wish to develop some intuition for σ̂2
j . Write σ̂2

j as

σ̂2
j =

m∑
i=1

eiY
2
?j. (3.142)

It can be shown (see below) that
∑m

i=1 ei = 1. σ̂2
j is therefore a weighted average of Y2

?j. To
interpret this result, recall that U is the first m− 1 left singular vectors of RXYc. If we use
the SVD as the method of factor analysis in Step 2 of RUV-4, U = Ŵ

(m−1)
0 . We therefore

assume that
U ≈ (W0|W1)

for an appropriate parameterization of W0 and W1. Then

Y ≈ (W0|W1)′ Y (3.143)

=

(
W ′

0Y
W ′

1Y

)
(3.144)

=

(
α
0

)
+ ε. (3.145)
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A weighted average of Y2
?j is therefore an appropriate estimator of σ2

j . The weights ei should
be small (ideally 0) for i ≤ k and large (ideally 1

m−k ) for i > k.
With the inverse method, this is indeed what happens. The weights ei are functions of

the di. Now,

di =
∑
jc

Yijc
2. (3.146)

For i > k the di will all be approximately equal to one another and relatively small. For
i ≤ k the di will be relatively large. We therefore want ei to be small when di is large and vice
versa. Indeed, if we consider a single di and hold all other di′ constant, then ei approaches 1
as di approaches 0. Conversely, ei is asymptotically proportional to 1/d2

i as d2
i grows large.

See Figure 3.7.

di = 1 (i > 1) di = i/10 (i > 1) di = 10/i (i > 1)
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Figure 3.7: Plots of ei as a function of di. In each plot m = 100, d1 is varied from 10−2 to
102, and di is kept fixed for i > 1. The solid green line is a plot of e1. The solid red line is
a plot of e10 (note that in each of the three plots, d10 = 1). For purpose of comparison, the
green and red dotted lines are plots of (1/d21)/(

∑m
l=1 1/d2

l ) and (1/d210)/(
∑m

l=1 1/d2
l ).

We now verify the claim
∑m

i=1 ei = 1. Begin by noting

E = EX [VV′] (3.147)

where

V ≡ D−1X√
X′D−2X

. (3.148)
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Note that ||V|| = 1. Now,

m∑
i=1

ei = tr (E) (3.149)

= tr (EX [VV′]) (3.150)

= EX [tr (VV′)] (3.151)

= EX [tr (V′V)] (3.152)

= 1 (3.153)

Next we investigate the distribution of σ̂2
j . It is easy to show that

V′Y?j =
X′D−1X√
X′D−2X

E
[
β̂?j

∣∣∣X]+ V′ε?j. (3.154)

If we assume
E
[
β̂?j

∣∣∣X] ≈ 0

it follows that

V′Y?j ≈ V′ε?j (3.155)

and therefore that

σ̂2
j = EX

[
Y′?jVV

′Y?j
]

(3.156)

≈ EX

[
ε′?jVV

′ε?j
]

(3.157)

= ε′?jEε?j. (3.158)

Since ε?j ∼ N(0, σ2
j I) we conclude that

σ̂2
j ∼̇ σ2

j

m∑
i=1

eiχ
2
1,i (3.159)

where the χ2
1,i are IID χ2

1.
We pause to interpret our analysis. One way to think of the inverse method is as follows:

(1) Generate a random X. (2) Transform X into V. (3) Calculate s2
j ≡ (V′Y?j)

2. (4) Repeat
(1-3) many times and average the resulting s2

j . The key step is (2). Ideally, V will be a
random unit vector in R(W⊥). Then (V′Y?j)

2 ∼ σ2
jχ

2
1. However, we cannot sample from

R(W⊥) because W is unknown. We therefore sample from Rm and attempt to orthogonalize
to W. In step (2) we “effectively orthogonalize” X to W by multiplying X by D−1. V is
just D−1X rescaled to have unit length. V, therefore, is a random unit vector more or less
confined to R(W⊥).

Note that we can imagine generating an infinite number of s2
j , each of which is approxi-

mately distributed as σ2
jχ

2
1. However, in (3.159) we see that the (approximate) distribution
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of σ̂2
j can be expressed as the sum of a finite number of rescaled χ2

1 random variables. The
reason is that the s2

j are dependent. They are all calculated using the same observation of
ε?j. The only difference between the s2

j is the V that is used. The dependence between the
s2
j is therefore a consequence of the fact that the V are sampled from a finite dimensional

space.

Now suppose we want to calculate the t statistic tj ≡ β̂j/
√
σ̂2
j . If we want to use this

t statistic to calculate p-values, etc., we must know its distribution. tj does not follow the
t distribution because σ̂2

j does not follow a rescaled χ2 distribution. Therefore, we cannot
calculate exact p-values using standard methodology and software. However, we might wish
to approximate the distribution of tj by some t distribution. In this case it is necessary to
approximate the distribution of σ̂2

j/σ
2
j by some rescaled χ2 distribution. In particular, we

must come up with an “effective degrees of freedom.” To do so we note that

E

[
m∑
i=1

eiχ
2
1,i

]
= 1 (3.160)

Var

[
m∑
i=1

eiχ
2
1,i

]
= 2

m∑
i=1

e2
i . (3.161)

Let

r̂ ≡ 1/
m∑
i=1

e2
i .

Then

E
[
χ2
r̂

r̂

]
= 1 (3.162)

Var

[
χ2
r̂

r̂

]
= 2

m∑
i=1

e2
i . (3.163)

We therefore approximate the distribution of tj by the t distribution with r̂ degrees of
freedom.

An interesting observation is that r̂ may be useful for more than just specifying which
t distribution to use when calculating p-values. As previously noted, V is a random unit
vector more or less confined to R(W⊥). If it were in fact the case that V was a unit vector
distributed uniformly on the unit m−k− 1 sphere in R(W⊥), then σ̂2

j would have a rescaled
χ2
m−k distribution. Therefore, if in reality σ̂2

j approximately follows a rescaled χ2
r̂ distribution,

it may be reasonable to regard r̂ as a measure of the “effective dimension” of W⊥. We may
therefore choose to estimate k as

k̂(inv) ≡ m− r̂. (3.164)

Although we find this idea quite interesting, we have not found k̂(inv) to perform any better
in practice than the k̂ described in Section 3.3.6.6. In some cases it performs notably worse.
For example, k̂(inv) may perform poorly when nc is only marginally larger than m and the
smaller eigenvalues of YcY

′
c are noisy.
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3.3.7.7 A Brief Note on Preprocessing

In Section 3.3.7.6 we noted that ei approaches 1 as di approaches 0. This fact has important
implications for data preprocessing. Several common preprocessing steps wholly or partially
remove one or more degrees of freedom from the data. Consider a simple example. It is
common practice to subtract away gene averages. This is equivalent to setting Z = 1m×1

and multiplying Y by RZ . This reduces the rank of Y to m − 1. The smallest singular
value of Y will be 0 and the inverse method will fail. One should not multiply Y by RZ as
a preprocessing step. Instead, one should multiply X and Y by Z ′⊥ as suggested in Section
3.3.6.2.

Subtracting off gene means is just one example of a preprocessing step that wholly or
partially removes a degree of freedom from the data. We are in no position to discuss all such
examples. Moreover, it is common for a researcher to be given preprocessed data without
knowing the exact preprocessing methods that were used. Therefore, we need a general
strategy for dealing with preprocessed data. One possible strategy is as follows: First, a
researcher makes a scree plot of the (preprocessed) data. The researcher then notes whether
there are any abnormally small singular values, and if so, how many. Suppose the researcher
observes ns abnormally small singular values. The researcher then takes the final ns left
singular vectors of Y and includes these vectors as columns of Z. This effectively removes
the ns troublesome dimensions of Y by transforming Y into a lower dimensional space.

3.3.8 The Functional Approach

In this section we introduce a new framework for understanding RUV-4 and for developing
new, more general methods. In this framework, we transform the problem of estimating β
into a standard prediction or function estimation problem. Control genes play the role of a
training set.

The justification of the approach is rather informal. We find that the “technical assump-
tions” are less important than the “practical assumptions.” In particular, the question of
whether α is random or fixed is of secondary importance. By contrast, the assumption that
the α?jc are “representative” of the α?jc̄ takes center stage.

3.3.8.1 Motivating Example

We begin with a motivating example. The example will demonstrate a weakness of RUV-4
and the need for a new approach. Recall that if we model α?j as random with expectation

0 and variance Σ, then β̂(RUV−inv) is (approximately) the minimum variance unbiased linear
estimator of β. This is a reasonable estimator to use if α?j follows a (multivariate) normal
distribution. However, if α is not normally distributed, other estimators may be preferable.
Our example will illustrate this fact.

Recall the examples of Section 3.3.4 in which m = 2 and k = 1. Recall that β̂ = bY X −
b̂WX α̂, and that we may interpret β̂j as the vertical distance from the point (W ′

0Y?j, X
′Y?j)
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to the line that passes through the origin and has slope b̂WX (see Figures 3.1 and 3.2). In the
examples of Section 3.3.4, α was normally distributed. Here we consider an example in which
αj equals either -1 or 1, each with probability 0.5. This example is shown in Figure 3.8. As

before, β̂(RUV−4) is given by the vertical distance to the orange line. However, simple visual
inspection suffices to convince us that other estimators may be preferable. For example, we
have drawn horizontal red lines through the vertical mean of the control genes of each of
the two clouds. Instead of using the vertical distance to the orange line, we may prefer to
estimate β by the vertical distance to the horizontal red lines.

Figure 3.8: An example in which α is not normally distributed. See main text for commen-
tary. The simulated data were generated as follows: X = (0, 1)′; W = (1, 0.5)′; αj equals
either -1 or 1, each with probability 0.5; εij ∼ N(0, 1

16
); βj ∼ N(0, 1) for 1 ≤ j ≤ 50; βj = 0

for 51 ≤ j ≤ 1000.

We will now try to formalize the intuition provided by Figure 3.8. We begin by writing

bY X = β + bWXα + ζ. (3.165)

We may rewrite this as

bY X = β +B(α) + ζ (3.166)
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where B denotes the conditional bias of bY X as a function of α, i.e.

B(α) ≡ E [bY X − β|α] (3.167)

= bWXα. (3.168)

In this context, we may think of β̂(RUV−4) as an “approximately de-biased” version of bY X ,
i.e.

β̂ = bY X − b̂WX α̂ (3.169)

= bY X − B̂(α̂) (3.170)

where B̂(α̂) ≡ b̂WX α̂.
In light of (3.170), we see that the quality of β̂ as an estimator of β is directly determined

by the quality of B̂(α̂) as an estimator of B(α). We see intuitively that B̂(α̂) is a good
estimator of B(α) in Figure 3.2 but not in Figure 3.8. What is the difference? Consider
the quantity E [B(α)|α̂]. We may think of E [B(α)|α̂] as the “best guess” of the unobserved
quantity B(α) given the observed quantity α̂. Note that E [B(α)|α̂] is a function of α̂.
Indeed,

E [B(α)|α̂] = E {E [bY X − β|α]|α̂} (3.171)

= E {E [bY X − β|α, α̂]|α̂} (3.172)

= E [bY X − β|α̂] (3.173)

= B(α̂) (3.174)

where

B(α̂) ≡ E [bY X − β|α̂] . (3.175)

We may think of B(α̂) as the “ideal” estimator of B(α). We cannot calculate B(α̂) itself be-
cause we do not know the function B, the distribution of α, or σ2. However, it is nonetheless
the case that a good estimator of B(α) will be some function of α̂ that closely approximates
B(α̂).

It turns out that B̂j(α̂) closely approximates Bj(α̂) if αj is normally distributed with
expectation 0. To see this, assume

αj ∼ N(0, ψ2). (3.176)
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It follows that

Bj(α̂) = E [Bj(α)|α̂] (3.177)

= E [bWXαj|α̂j] (3.178)

= bWXE [αj|α̂j] (3.179)

= bWX

(
ψ2

ψ2 + σ2
j

)
α̂j (3.180)

= E
[
b̂WX

]
α̂j (3.181)

≈ b̂WX α̂j (3.182)

= B̂j(α̂). (3.183)

Thus, B̂j(α̂) ≈ Bj(α̂) and we consider B̂j(α̂) to be a good estimator of Bj(α).
In the example of Figure 3.8, however, α is not normally distributed and Bj(α̂) is no

longer a linear function of α̂j. Indeed, it can be shown that in this particular example

Bj(α̂) =
1

2

(
e8(α̂j+1)2 − e8(α̂j−1)2

e8(α̂j+1)2 + e8(α̂j−1)2

)
. (3.184)

This function is plotted in Figure 3.8 in blue. It is no longer true that B̂j(α̂) ≈ Bj(α̂); the

orange line does not approximate the blue curve. B̂(α̂) is no longer a good estimator of
B(α).

3.3.8.2 The Functional Approach, Part I

To summarize our discussion so far: bY X = β + bWXα + ζ. In RUV-4, we estimate B(α) =
bWXα by B̂(α̂) = b̂WX α̂ and set β̂ = bY X−B̂(α̂). This works well if α is normally distributed,
but does not necessarily work well otherwise. The important point to notice is that when we
estimate B(α) in RUV-4 we effectively do so in two parts: we estimate the linear function
B by the linear function B̂, and we estimate α by α̂. We then combine these and use B̂(α̂)
as our estimate of B(α). This seams reasonable at first, but as we have seen, the “best”
estimate of B(α) is not necessarily linear in α̂.

These considerations inspire a new approach. We do not attempt to estimate W and
then estimate β by linear regression. We do not focus our attention on the estimation of
bWX . We do not estimate B(α) by B̂(α̂). Rather, our goal is to directly estimate the function
B. Equipped with an estimate B̂ of B we then estimate β by bY X − B̂(α̂). We call this the
functional approach, or RUV-fun. Note that unlike RUV-2 or RUV-4, RUV-fun does not
refer to a specific algorithm but rather to a general strategy; we may estimate B by any
method we see fit. Indeed, we may view RUV-4 as a special case of RUV-fun.

How might we estimate B? As always, the key is the control genes. Recall that

bY X = β +B(α) + ζ (3.185)

≈ β + B(α̂) + ζ (3.186)
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and thus for the control genes we have

(bY X)c ≈ Bc(α̂) + ζc. (3.187)

We can use (bY X)c and α̂c to help us estimate B. However, we also need an additional
assumption. We need an additional assumption because B is a vector of n functions:

B(α̂) = (B1(α̂?1),B2(α̂?2), ...,Bn(α̂?n)) (3.188)

In principle, each of these Bj may be different functions. However, we only have one obser-
vation of each α̂?j and each (bY X)j. It is not feasible to estimate the entire function Bj from
a single observation. Moreover, the fundamental idea of the functional approach is to use
the biases of the control genes to help us estimate the biases of the non-control genes. This
is not possible if we treat each Bj as its own distinct entity. We need an assumption that
will relate the Bj to one another in some way, and allow us to estimate the Bj jointly. We
are in no position to estimate all n Bj separately.

Faced with this dilemma, we make a very strong technical assumption. We assume
that the (α̂?j, Bj(α)) pairs are IID. This is the key technical assumption of the functional
approach. From this assumption it follows that

B1 = B2 = ... = Bn.

We can now define
B0 ≡ Bj.

B0 is the function that we will estimate.
Each (α̂?jc , (bY X)jc) pair provides an estimate of B0 evaluated at a specific point. In

other words, control genes play the role of a training set in a prediction problem. The α̂?jc
are the predictors, and the (bY X)jc are the response variables. We may choose to estimate
B0 by any of a number of methods. We need not restrict ourselves to linear functions, or
even parametric functions. We have at our disposal the numerous methods available in the
prediction, function estimation, and machine learning literature.

3.3.8.3 The Assumptions of RUV-fun

In this section we discuss the assumptions of the functional approach. We distinguish between
“technical assumptions” and “practical assumptions.” The technical assumptions include the
modeling assumptions of Section 3.3.1 and the assumption that the (α̂?j, Bj(α)) pairs are
IID. We find the technical assumptions implausible. We also argue that violations of the
technical assumptions do not necessarily lead the functional approach to perform poorly.
The practical assumptions are less rigorous than the technical assumptions. We find these
assumptions plausible. We also believe these assumptions must be satisfied to ensure the
functional approach performs well. We argue that that the practical assumptions may also
be used as an informal justification of the functional approach.
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We begin with a more careful look at the main technical assumption of RUV-fun. The
main technical assumption of RUV-fun is that the pairs (α̂?j, Bj(α)) are IID. This assumption
does not follow as a necessary consequence of the modeling assumptions presented in Section
3.3.1. For example, suppose we model α as fixed. Then the α̂?j will not be IID. Suppose
instead we model the α?j as random and IID. Even then, the α̂?j need not be IID. Recall
that α̂?j = α?j + ξ?j. The ξ?j are not IID unless σ2

j = σ2
0 for all j. However, if we do assume

that the α?j are IID and that σ2
j = σ2

0 for all j, it does follow that the pairs (α̂?j, Bj(α)) are
IID.

To satisfy the main technical assumption of the functional approach we assume that the
α?j are IID and σ2

j = σ2
0 for all j. We find the assumption that σ2

j = σ2
0 for all j to be

implausible. However, we also believe this assumption to be relatively unimportant. Recall
the discussion of Section 3.3.7.4. We noted that 1

nc
(YcY

′
c ) is a biased estimate of Σj unless

σ2
j = σ̄2

c . Under the assumption that σ2
j = σ2

0 for all j, σ2
j = σ̄2

c = σ2
0 and 1

nc
(YcY

′
c ) is an

unbiased estimate of Σj. We may view the consequences of a violation of the assumption that
σ2
j = σ2

0 as analagous to the consequences of using a biased estimate of Σj in Section 3.3.7.4.
We argue in Section B.1.3 of the appendix that the consequences of using a biased estimate
of Σj are not severe. Likewise, we do not believe that the consequences of a violation of the
assumption that σ2

j = σ2
0 are very severe.

We have just argued that the main technical assumption of the functional approach is
false but that in practice this doesn’t matter. This is somewhat comforting. However, the
falsity of the technical assumptions does raise an unsettling conceptual problem. It is no
longer clear what we are estimating! If the (α̂?j, Bj(α)) pairs are not IID, it is false that
B1 = B2 = ... = Bn. If it is false that B1 = B2 = ... = Bn, it follows that B0, as we have
defined it, does not exist. This is disturbing, since the goal of the functional approach is to
estimate B0.

Is there a better way to define B0? Ideally, B0 would satisfy three criteria. Firstly,
we would like that B0(α?j) approximately equal Bj(α?j) with high probability. Secondly,
we want B0 to exist even when Bj 6= Bj′ . Finally, we would like B0 to have some relatively
simple, real-world interpretation. Unfortunately, we are unable to provide any such definition
of B0. For example, suppose we try defining B0 as the average of the Bj. This definition of
B0 would satisfy the second criterion, but not the first. To see this, suppose that α is fixed.
In this case, each Bj is simply a constant function. Specifically, Bj(α̂) = Wα?j. Thus, the
average of the Bj is also just a constant function. Alternatively, suppose we try defining B0

as E [BJ(α?J)|α̂?J ] where J is a random variable distributed uniformly on {1, 2, ..., n}. This
may satisfy the first two criteria, but it is not clear to us what the real-world interpretation
of this function might be.

Fortunately, from a purely practical point of view, it does not necessarily matter if
σ2
j = σ2

0, or if the α?j are IID, or even if B0 exists. What matters is whether the (α̂?j, Bj(α))

are well described by the function B̂0 that we have fit to the (α̂?jc , (bY X)jc). This is still
possible even if the technical assumptions are violated.

When can we expect the (α̂?j, Bj(α)) to be well described by B̂0? There is no simple
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answer. However, for guidance, we now present two important “practical assumptions” of
the functional approach. The practical assumptions are relatively informal, and we do not
attempt to treat them rigorously. Nonetheless, these assumptions warrant serious consider-
ation, and are critical to the success of the functional approach. The first assumption is that
genes with similar α̂?j experience similar biases. In other words,

α̂?j ≈ α̂?j′ → Bj(α) ≈ Bj′(α). (3.189)

The second is that the control genes are representative of the other genes. In particular, the
(realized) distribution of the α̂?jc must be roughly the same as the distribution of the α̂?jc̄ .
Moreover, the biases of the control genes must not differ systematically from those of the
non-control genes.

These are strong assumptions, and have important implications for selecting an appropri-
ate set of control genes. As a concrete example, consider spike-in controls (see Chapter 2 for
a discussion of spike-in controls). These controls likely exhibit unwanted variation related to
their own preparation. Other genes do not. The biases of the spike-in controls are therefore
likely to differ systematically from the biases of non-control genes. Spike-in controls may be
a poor choice for the functional approach.

The importance of the “practical assumptions” is not limited to the selection of control
genes. These two assumptions may also be used as an informal — but relatively realistic
— justification of the functional approach. If we assume (3.189) and that the control genes
are representative, it follows that we may very roughly approximate the bias of gene j by
the (bY X)jc of the nearest control gene. In other words, we may very roughly approximate
Bj(α) by (bY X)c(j) where

c(j) = argmin
jc

d(α̂?j, α̂?jc)

and where d is some appropriate distance measure. Of course, we may get a better estimate
of Bj(α) by taking the average of the (bY X)jc of several nearby control genes instead of just
the single closest, and may get a still better estimate by fitting some curve to the (bY X)jc
of all the control genes. In this way, we are led back to the functional approach. Although
informal, we might consider this to be the most appropriate justification for the functional
approach. For better or worse, the approach is intrinsically ad hoc.

To conclude this section, we consider the utility of the technical assumptions. We have
argued at several points that the technical assumptions are neither plausible nor necessary
for the success of the functional approach. However, we do not wish to imply that the
technical assumptions are useless. Consideration of the technical assumptions can be very
helpful in alerting us to potential problems. If the technical assumptions were true, they
would justify the use of the functional approach. Thus, by considering the ways in which the
assumptions are false, we are led to consider ways in which the functional approach might
fail. An example is our discussion regarding the violation of the assumption that σ2

j = σ2
0.

We ultimately concluded that the consequences of a violation of this assumption were not
severe. However, we arrived at this conclusion only after investigating the matter in B.1.3 of
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the appendix. Finally, note that most off-the-shelf prediction algorithms effectively assume
the (α̂?j, Bj(α)) to be IID. Some algorithms may be more sensitive to violations of this
assumption than others.

3.3.8.4 RUV-4 as RUV-fun

We noted in Section 3.3.8.2 that RUV-4 may be interpreted as a special case of RUV-fun.
More specifically, we may interpret RUV-4 as a parametric version of RUV-fun in which we
constrain B̂0 to be a linear function that passes through the origin, and in which we fit B̂0 by
least squares. In this section we explore more fully the interpretation of RUV-4 as a special
case of RUV-fun.

We consider first the rationale for constraining B̂0 to be a linear function that passes
through the origin. In the derivation of RUV-4 in Section 3.3.3 we do not address this issue
explicitly. Implicitly, however, we rationalize constraining B̂0 to be a linear function that
passes through the origin on the grounds that B is a linear function that passes through
the origin. As the example of Section 3.3.8.1 shows, however, linearity of B does not imply
linearity of B̂0. If we assume that α?j ∼ N(0,Σ) for all j, it follows that B0 is a linear

function that passes through the origin. This would justify the constraint on B̂0. However,
as noted in Section 3.3.5.4, we find this assumption implausible.

In the RUV-fun framework, the rationale for constraining B̂0 to be a linear function
that passes through the origin is primarily empirical. It is of secondary importance whether
the α?j are actually distributed as N(0,Σ), or whether α is even random. Of primary

importance is whether the (α̂?j, Bj(α)) pairs are well described by B̂0. The best justification

for constraining B̂0 to be a linear function that passes through the origin is that, in practice,
it does seem that the (α̂?j, Bj(α)) pairs are well described by such a function. See Section
3.5 for evidence.

We now revisit the discussion of Section 3.3.4. In Section 3.3.4 we observed that RUV-2
seems to provide a better estimate of W than RUV-4, but RUV-4 nonetheless provides a
better estimate of β. By viewing RUV-4 as a special case of RUV-fun we may gain perspective
on this curious fact. In the RUV-fun framework, what matters is that the (α̂?j, Bj(α)) are

well described by a linear function B̂0 that passes through the origin. Unlike with RUV-4,
with RUV-fun we do not care whether the coefficients of the linear function B̂0 provide a
good approximation of bWX . If we view RUV-4 simply as RUV-fun in disguise, we really
don’t care about Ŵ at all. Ŵ is at best a means to an ends, at worst a distraction. Said
another way, Ŵ does not determine β̂; β̂ determines Ŵ .

An example of this “abuse of Ŵ” can be seen in (3.179) – (3.181). In (3.180) we write
Bj(α̂) as the product of three terms: bWX , a shrinkage factor ψ2/

(
ψ2 + σ2

j

)
, and α̂j. Con-

ceptually, the shrinkage factor is best understood as something having to do with αj and α̂j.
In particular,

E [αj|α̂j] =

(
ψ2

ψ2 + σ2
j

)
α̂j. (3.190)
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However, in RUV-4, we effectively incorporate the shrinkage factor into our estimate of bWX .
Recall that

E
[
b̂WX

]
= bWX

(
ψ2

ψ2 + σ2
j

)
. (3.191)

If we wanted to more faithfully follow the general strategy of RUV-4 as it was presented in
Section 3.3.3, we would first want to find an unbiased, or nearly unbiased, estimate of bWX .
We could then construct a more proper estimate of W . Finally, instead of estimating αj

by α̂j, we would instead estimate α by some estimate of E [αj|α̂j], e.g.
[
ψ̂2/

(
ψ̂2 + σ̂2

j

)]
α̂j,

where ψ̂2 is some estimate of ψ2.

3.3.8.5 The Functional Approach, Part II

Until now we have retained the modeling assumptions of Section 3.3.1. In Section 3.3.8.1 we
considered an “unusual” distribution of α, but we did not depart from the model of Section
3.3.1. In Section 3.3.8.2 we introduced the assumption that the (α̂?j, Bj(α)) pairs are IID.
This assumption added to, but did not modify or replace, the assumptions of Section 3.3.1.

We have retained the modeling assumptions of Section 3.3.1 until now so that we could
discuss the functional approach in a familiar setting. In Section 3.3.8.1 we demonstrated that
the functional approach could be used to develop better methods to estimate β. In Section
3.3.8.3 we discussed the nature of the assumptions of the functional approach. In Section
3.3.8.4 we demonstrated that the functional approach could be used to better understand
RUV-4. All of this was possible in the familiar setting of the model of Section 3.3.1.

However, the functional approach is most powerful when we abandon the model of Section
3.3.1. We now present a new model. Define m, n, X, and Y as we have previously. Let P be
a K × n matrix of observed predictors. Let S ≡ X ′Y = bY X denote the observed “signal of
interest.” Let β be an unobserved 1× n parameter of interest. Let f denote some unknown
function. We model Sj as

Sj = βj + f(P?j) + δj. (3.192)

We assume that P ⊥⊥ δ and that the (P?j, δj) are IID. We do not assume here any constraints
on the function f , nor do we assume here anything about the distribution of δ. However, in
any given application of the functional approach, we will need to make assumptions regarding
the form of f and the distribution of δ. Note that the interpretation of β here is similar,
though not identical, to its interpretation in Section 3.3.1. By abuse of notation, we use
the same symbol. Likewise, the interpretation of K here is similar, but not identical, to its
former interpretation. Note that δ here is not related in any way to the δ of Section 3.3.7.4.
We assume that βc = 0. To estimate f we note that Sjc = f(P?jc) + δjc and fit f̂ using any
method of our choosing. We estimate β as the difference between the observed signal and
the predicted signal:

β̂
(RUV−fun)
j ≡ Sj − f̂(P?j). (3.193)
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The most important feature of our new model is that we place no restrictions on what
we may include in P . To be sure, we will often wish to fill m−1 rows of P with X ′⊥Y . (Note

that by setting P = X ′⊥Y , constraining f̂ to be a linear function that passes through the

origin, and fitting f̂ by least squares, we recover β̂(RUV−inv)). However, we may also include
any other variables of our choosing. We may include non-linear features of the data. For
example, we may include an initial estimate of σ2. We may also include “outside” sources of
information. For example, we may wish to include the GC content of the genes. Including
information on GC content may be particularly useful when applying RUV-fun to RNA-seq
data.

3.3.9 Variations and Extensions

In this section we consider three unrelated enhancements to the basic RUV methods. None
of these enhancements are technically sophisticated, but all are quite useful. The first, the
ridged inverse method, is useful when nc is small. The second, empirical controls, is useful
when no control genes are available but β is known to be sparse. The third, rescaled and
empirical variances, improves control of the type 1 error rate.

3.3.9.1 The Ridged Inverse Method (RUV-rinv)

In Section 3.3.6.4 we noted that setting K too large may substantially increase the variance
of β̂ if nc is not large. This is a problem, since β̂(RUV−inv) = β̂(RUV−4) with K = m − 1.
If nc is only slightly larger than m, β̂(RUV−inv) will not be a good estimator β. This is
particularly easy to see in the context of the functional approach. Let P = X ′⊥Y , constrain

f̂ to be a linear function that passes through the origin, and fit f̂ by least squares; i.e. let
f̂(u) = ScP ′c(PcP ′c)−1u. The resulting estimate of β will be identical to β̂(RUV−inv). Now, the
quality of β̂(RUV−inv) as an estimator of β depends on the quality of f̂ as an estimator of f .
If nc is only slightly larger than m, f̂ will be noisy, and β̂(RUV−inv) will be too.

One possible solution is to use ridge regression. (Readers unfamiliar with ridge regression
may wish to consult, e.g. Friedman et al. (2009).) We can estimate f(u) as

f̂(u) = ScP ′c(PcP ′c + λI)−1u (3.194)

where λ ≥ 0 is a tuning parameter. We therefore define

β̂(RUV−rinv)(λ) = S − ScP ′c(PcP ′c + λI)−1P . (3.195)

We drop the superscript when it is clear from context. We also drop the explicit dependence
on λ. Note that in the notation of Section 3.3.7,

β̂ =
[
X ′ −X ′YcY ′cX⊥(X ′⊥YcY

′
cX⊥ + λI)−1X ′⊥

]
Y. (3.196)

We are unable to substantially simplify this expression.
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To estimate σ2 we use the inverse method. Define

V(rinv) ≡ X− X⊥(X′⊥DX⊥ + λI)−1X′⊥DX

||X− X⊥(X′⊥DX⊥ + λI)−1X′⊥DX||
, (3.197)

drop the superscript, and define(
σ̂2
j

)(RUV−rinv) ≡ Y′?jEX [VV′]Y?j. (3.198)

Again, drop the superscript when it is clear from context. We are unable to provide an
analytic expression for σ̂2

j . Instead, we estimate EX [VV′] via simulation.
We need to find a good value for λ. Note that

E [(PcP ′c)] = E [X ′⊥YcY
′
cX⊥] (3.199)

= nc
(
X ′⊥ΣX⊥ + σ̄2

cI
)
. (3.200)

The smallest eigenvalue of E [(PcP ′c)] is ncσ̄
2
c , but the smallest eigenvalue of PcP ′c may be

considerably smaller. We might therefore wish to set λ equal to

λ0 = ncσ̄
2
c (3.201)

=
∑
jc

σ2
jc . (3.202)

Of course, σ2 is unknown and so is λ0. However, we can estimate λ0 if we have an estimate
of σ2. This raises a tricky problem: we can estimate σ2 once we have a value for λ, but our
desired value of λ requires an estimate of σ2. Our solution to this problem is to estimate σ2

using some other version of RUV. Which version of RUV is best for this purpose? RUV-inv
is a poor choice. As mentioned in Section 3.3.6.6, when nc is only slightly larger than m,

b̂WX is overfitted to the control genes, and the variance of β̂jc is less than σ2
jc

(
1 + b̂WX b̂

′
WX

)
.

As a result, the RUV-inv estimate of σ2
c tends to be too small. Instead, we use the RUV-4

estimate, with K = k̂. This estimate tends to be of the right size. We define

λ̂0 =
∑
jc

(
σ̂2
jc

)(k̂)
. (3.203)

This is the value of λ we use in all of the applications of RUV-rinv in this thesis.
Note that λ̂0 is not necessarily the “best” value of λ. Other values of λ may provide

better results. For example, it may be better to use cross validation to find an optimal value
for λ. We do not pursue alternative strategies for selecting λ in this thesis. We find that λ̂0

generally provides satisfactory results (see Sections 3.4 and 3.5). Moreover, computing λ̂0

is relatively computationally efficient, particularly when compared to methods such as cross
validation.

Note also that ridge regression is not the only potential solution when nc is only slightly
larger than m. Other dimensionality reduction strategies are possible as well. Note in partic-
ular that principal components regression (PCR), a common alternative to ridge regression,
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is simply equivalent to RUV-4. We may prefer ridge regression to PCR for two reasons. The
first is that the dimensionality reduction of ridge regression is “softer” than that of PCR.
See, e.g. Friedman et al. (2009) for further discussion. The second reason is that the inverse
method is somewhat more computationally efficient when used with ridge regression than
when used with PCR. Applying the inverse method to PCR would require computing a new
SVD for each X.

3.3.9.2 Empirical Controls

In many cases, a researcher will know a priori that βj = 0 for many j, but not know the
specific j for which βj = 0. The researcher would like to discover the j for which βj = 0.
She may then use these genes as “empirical” control genes. Discovering empirical controls is
often feasible, but may require some care. In this section we comment briefly on the strategy
of empirical controls.

There is no single method for discovering empirical controls. This is why we refer simply
to the “strategy” of empirical controls. Nonetheless, we might describe a typical application
of the strategy of empirical controls as follows: First, a researcher designates an initial set
of control genes. She then applies an initial analysis, such as RUV-4. Finally, she notes
which genes are found to be significantly associated with X at some false discovery rate
(FDR) and designates all other (insignificant) genes as empirical negative controls. The
initial set of negative controls and the initial method of analysis are left to the discretion of
the researcher. However, even this “typical application” is not set in stone. For example, a
researcher may fear that her p-values are biased (either systematically inflated or deflated)
and not trust the FDR. However, if she believes, for example, that no more than 100 entries
of β are non-zero, she may simply rank the genes by p-value and designate all but the top
100 as empirical negative controls.

The strategy of empirical controls can be iterated. For example, a researcher may begin
with an initial set of control genes, generate a set of empirical controls, and then use this set
of empirical controls to produce a refined set of empirical controls. A related point is that
the initial (non-empirical) set of control genes need not be a “perfect” set of control genes.
RUV-4 is relatively insensitive to violations of the control gene assumption, and it is often
OK to include a few genes j such that βj 6= 0 in the initial set of control genes. For example,
if β is known to be sparse, it is often satisfactory to use all genes as an initial set of control
genes. This fact is particularly useful when it is known that β is sparse, but nothing at all
is known about which entries of β are non-zero.

Note that the strategy of empirical controls is much “safer” with RUV-4 than it is with
RUV-2. The reason is that RUV-4 is less sensitive to violations of the control gene assump-
tion. Consider a typical application of the strategy of empirical controls as described above.
It is very unlikely that the initial analysis will properly identify all differentially expressed
genes. The resulting set of empirical controls will very likely contain genes j such that βj 6= 0.
With RUV-2, this may be a serious problem. With RUV-4 it often is not.

Nonetheless, we recommend that a researcher who chooses to pursue the strategy of
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empirical controls do so with particular care. We are unaware of any argument that would
guarantee that the strategy of empirical controls will always lead to better results. We
therefore recommend that a researcher pause to inspect her set of empirical controls, and
ensure that they seem reasonable. If a researcher chooses to iterate the strategy of empirical
controls, we recommend that she pause and inspect her empirical controls after each iteration.
Presumably only a very small number if iterations will be required; if the set of empirical
controls keeps changing substantially with each iteration, this may be a sign that something
is wrong. Similarly, we recommend that the researcher evaluate the quality of the initial
analysis itself. Gene rankings, p-value histograms, and projection plots (see Section 3.5) are
all helpful.

The initial analysis does not need to be perfect. The goal of the initial analysis is only
to produce a set of empirical controls that is better than the set of initial controls. This
has implications for the choice of method (and tuning parameters) in the initial analysis.
Consider a simple example. Suppose that β is known to be sparse, but nothing is known
about which elements of β are non-zero. A researcher may choose to include all genes in the
set of initial controls. Suppose that some of the non-zero elements of β are quite large. Even
though RUV-4 is relatively insensitive to violations of the control gene assumption, including
genes with large βj in the set of control genes may cause serious problems, particularly
when K is large. The researcher may therefore choose to avoid RUV-inv, stick to RUV-4,
and choose an appropriate, relatively small K “by hand,” i.e. choose K based on p-value
histograms, projection plots, etc. Using this approach, the very large entries of β can be
reliably identified and discarded from the set of control genes. It may then be safe to pursue
a second iteration of the strategy of empirical controls. In the second iteration, a larger value
of K, or even RUV-inv may be appropriate.

Finally, note that the “typical” application of the strategy of empirical controls described
above relies on an accurate estimation of the FDR. For this reason, it is important that the
method used for the initial analysis exhibit good control of the type 1 error rate. If the
method is too conservative, some genes that are actually differentially expressed will not
appear to be differentially expressed. These genes will be improperly included in the set
of empirical controls. If the method is anti-conservative, many genes that are not actually
differentially expressed will appear to be differentially expressed. These genes will be improp-
erly excluded from the set of empirical controls. The ability of a method to properly control
the type 1 error rate is therefore an important consideration to keep in mind when selecting
the method to be used in the initial analysis. In Sections 3.4 and 3.5 we see that RUV-rinv is
often a suitable choice. Another possibility is to use either the method of rescaled variances
or the method of empirical variances. These methods are the subject of the next section.

3.3.9.3 Rescaled and Empirical Variances

In Section 3.3.6.1 we define

V̂ar
[
β̂jc̄

∣∣∣α?jc̄] ≡ (
1 + b̂WX b̂

′
WX

)
σ̂2
jc̄ . (3.204)



CHAPTER 3. RUV-4 92

In other words, conditional on b̂WX , we estimate the conditional variance of β̂jc̄ by multiplying
σ̂2
jc̄ by a fixed constant. In Section 3.3.6.5 we note that, given a poor choice of K, the σ̂2

j

may be either systematically too large or too small. As a result, the type 1 error rate may

be wrong. We now propose a different estimate of Var
[
β̂jc̄

∣∣∣α?jc̄]. Let

V̂ar
(rs)
[
β̂jc̄

∣∣∣α?jc̄] ≡
(

1

nc

∑
jc

β̂2
jc

σ̂2
jc

)
σ̂2
jc̄ . (3.205)

We name this the “rescaled” estimate of the variance. Just as in (3.204), we estimate the
conditional variance of β̂jc̄ by multiplying σ̂2

jc̄ by a fixed constant. However, in (3.205) we
ignore the theory and simply use the control genes to figure out what the constant “should”
be.

Note that V̂ar
[
β̂jc̄

]
and V̂ar

(rs)
[
β̂jc̄

∣∣∣α?jc̄] differ only by a fixed constant factor. Thus,

t-statistics calculated using rescaled variances will also differ from standard t-statistics only
by a fixed constant factor. In particular, the ordering of the t-statistics will be unaffected,
as will the ordering of the p-values.

More generally, we might consider estimates of the form

V̂ar
(emp)

[
β̂jc̄

∣∣∣α?jc̄] ≡ ĝ
(
σ̂2
jc̄

)
(3.206)

for some function ĝ. If we set ĝ(u) =
(

1 + b̂WX b̂
′
WX

)
u we recover (3.204); if we set ĝ(u) =(

1
nc

∑
jc
β̂2
jc/σ̂

2
jc

)
u we recover (3.205). In general, however, we need not restrict ĝ to be a

linear, or even parametric, function. If a large proportion of genes are control genes (e.g.

empirical controls) it may be possible to fit a nonparametric function ĝ to the
(
σ̂2
jc , β̂

2
jc

)
pairs. Alternatively, if we do not have many control genes but believe that β is sparse, it

may be possible to fit a nonparametric function ĝ to the pairs
(
σ̂2
j , β̂

2
j

)
using some form of

robust regression that ignores outliers. We refer to such methods generically as “the method
of empirical variances.” We will now discuss one such method in particular.

We begin by re-indexing the genes. We re-order the genes in order of increasing σ̂2 and
then bin the genes into B bins of size S (the final bin may be smaller than S; we ignore this
minor complication and assume n = B×S). We then index genes by bin and number within
bin, so that σ̂2

b,s is the sth gene in bin b. Note that σ̂2
b,s ≤ σ̂2

b′,s′ if b < b′ and that σ̂2
b,s ≤ σ̂2

b,s′

if s < s′.
Let

s?(b) ≡ argmax
s

β̂2
b,s (3.207)

For each b, remove the (b, s?(b))th gene from the dataset. We may view the removal of these
genes as the removal of potential outliers. Alternatively, we may think of the remaining



CHAPTER 3. RUV-4 93

B(S−1) genes as a set of empirical controls. Now use some form of non-parametric regression
to fit a function ĝ0 to the (σ̂2

b,s, β̂
2
b,s) pairs of the remaining B(S − 1) genes.

We do not want to set ĝ = ĝ0. ĝ0 is too small, because we have systematically removed
from the dataset the genes with the largest values of β̂2

b,s. To fix this problem we set

ĝ = νĝ0 (3.208)

for some value of ν. We choose to set

ν−1 = E

[
1

S − 1

∑
t6=t?

χ2
t

]
(3.209)

where t ranges from 1 to S, the χ2
t are IID and follow a χ2 distribution with 1 degree of

freedom, and t? = argmaxχ2
t .

In all of the examples of this thesis we set S = 10. This is arbitrary. Other values
of S may perform better. In particular, one may wish to choose S based on the degree
of sparsity of β. For the non-parametric regression, we choose to use the minimum lower
sets algorithm (Wright, 1978; Barlow et al., 1972). This method restricts ĝ0 to be a non-
decreasing function, but otherwise imposes few constraints on ĝ0. We choose this method for
its relative simplicity; one nice feature of the minimum lower sets algorithm is that it does
not require us to set a bandwidth parameter. Other non-parametric regression methods may
perform better.

3.4 Simulation Results

In this section we use simulated data to explore the performance of the various RUV methods.
In Section 3.4.1 we outline the process we use to simulate the data. In Section 3.4.2 we
compare the performance of RUV-2, RUV-4, and “vanilla” RUV-inv. We find that RUV-4
generally outperforms RUV-2, and that RUV-inv generally performs as well as RUV-4 at
the optimal value of K. In Section 3.4.3 we compare the several variants of RUV-inv, both
to one another and to SVA, LEAPP, and ICE.2

3.4.1 The Simulated Data

In all simulations we set m = 50 and n = 10000. We designate nc genes as control genes. The
value of nc is specified separately for each simulation. In some simulations, the control genes
are true negative controls, i.e. βc = 0. In others, the “control genes” have been misspecified
and βc 6= 0. Note that when we refer to “control genes,” we refer to these genes that have

2Note that we do not include comparisons with LMM-EH (Listgarten et al., 2010), since no R package
is currently available. However, we suspect that the performance of LMM-EH would be similar to that of
ICE, although LMM-EH may exhibit somewhat better control of the type 1 error rate. Note Figure 2 of
Listgarten et al. (2010); the ROC curve of LMM-EH and ICE are nearly identical.
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been designated as negative controls, whether or not βc = 0. Conversely, we refer to a gene
j as a “true negative control” if βj = 0, whether or not we have designated gene j to be used
as control gene.

We generate the simulation data as follows:

• X is chosen uniformly at random from the unit m− 1 sphere.

• Each column of W0 is chosen uniformly at random from the unit m − 2 sphere lying
in the orthogonal complement of R(X). Each column of W0 is chosen independently
of the others, and thus the columns of W0 are not exactly orthogonal. W is then set
equal to W0 +XbWX . bWX is specified separately for each simulation.

• Some entries of β are set equal to 0. Which entries of β are set equal to 0 is specified
separately for each simulation. Non-zero entries of β are IID standard normal.

• The entries of α are independent and normally distributed with mean 0. The variance
of αij depends only on the row i. Denote the variance of row i by σ2

α,i and denote
σα ≡ (σα,1, ..., σα,k). Note that σα specifies the square roots of the variances, not the
variances themselves.

• The individual gene variances σ2
j (not to be confused with the σ2

α,i) are IID and dis-
tributed as (0.025S + .025)2, where S ∼ Exp(1). This distribution roughly approxi-
mates empirical distributions of σ2

j that we have observed in real data.

• The εij are independent and normally distributed with mean 0 and variance σ2
j .

• Finally, we set Y = Xβ +Wα + ε.

Note that the key parameters that vary from one simulation to the next are: k, bWX , σα,
which entries of β equal 0, and which genes are designated as controls.

3.4.2 RUV-2 vs. RUV-4 vs. RUV-inv

In this section we run 12 simulations and compare the relative performance of RUV-2, RUV-
4, and RUV-inv. First we discuss the details of the simulations. Then we discuss the results
of one of the 12 simulations in detail. Finally we discuss briefly the results of the remaining
11 simulations.

3.4.2.1 Simulation Details

In each simulation we set nc = 1000. In six of the simulations (“good controls”), β1j = 0 for
every control gene. In the other six simulations (“bad controls”), β1j = 0 for only 900 of the
1000 control genes.
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In the first four simulations k = 20 and

σα = (1.1, 1.0, 0.8, 0.5, 0.4, 0.4, 0.3, 0.3, 0.2, 0.2, .16, .16, .15, .15, .14, .13, .13, .12, .12, .11).
(3.210)

This value of σα is similar to what we observe empirically in the gender dataset. In the first
two simulations (“lightly correlated”) bWX = (.1, ..., .1) and in the second two simulations
(“moderately correlated”) bWX = (.4, .4, .4, .2, ..., .2). Note that in the “moderately corre-
lated” case the columns of W that are most highly correlated with X correspond to the rows
of α with the largest σα,i. In other words, the biggest unwanted factors are also the most
correlated with X.

The next four simulations are “harder.” In these simulations (“moderate decay”) k = 70
and σα = (1, 1/2, ..., 1/70) . Note in particular that k = 70 > m = 50. In two of the
simulations (“lightly correlated”) bWX = (.1, ..., .1) as before. In the other two simulations
(“highly correlated”) the elements of bWX are chosen uniformly at random from (-1, 1). The
final four simulations (“slow decay”) are “harder” still. These simulations are identical to
the previous four, but now σα = (1, 1/

√
2, ..., 1/

√
70).

For all 12 simulations we generate 1000 datasets. We fit each dataset by RUV-2, RUV-4,
and RUV-inv. In the case of RUV-2 and RUV-4, we fit with each value of K from 1 to 47.
We also fit each dataset using a standard linear model that contained only an X term (the
“unadjusted” case). All of our models include an intercept, i.e. a Z = 1m×1 term. We fit all
models both with and without Limma (Smyth, 2004).

For every model fit we record the following six quality metrics: (1) the fraction of the 100
genes with the largest values of β2

1j/σ
2
j that end up being ranked as one of the top 100 most

significantly DE genes (“top ranked fraction”), (2) the fraction of genes with β1j = 0 to have
a p-value less than 0.05 (“type 1 error rate”), (3) the fraction of genes with β1j 6= 0 to have a

p-value less than 0.05 (“average power”), (4) the RMSE of β̂ (“beta hat RMSE”), (5) the log
of the mean value of σ̂2

j/σ
2
j (“sigma hat scale”), (6) the IQR of log

(
σ̂2
j/σ

2
j

)
(“rescaled sigma

hat IQR”). Of these six quality metrics, the first is arguably the most important. In practice,
the goal of a DE study is usually to produce a list of genes that are “most interesting” and
warrant further study. We will refer to the ability of a method to properly rank top genes
as “discriminative power.”

3.4.2.2 Results of “k = 20, moderately correlated, good controls”

We plotted the average value (over the 1000 datasets) of each of the six quality metrics. See
Figure 3.9 and Figures B.2-B.13 in the appendix. The results for RUV-2 (brown) and RUV-4
(orange) are shown as a function of K. The results for RUV-inv (blue) and the unadjusted
case (black) are shown by horizontal lines. Solid lines are for “standard” estimates of σ2

and dashed lines are for estimates using Limma. The light dotted lines show 95% nominal
confidence intervals; these are not always visible as the confidence intervals are quite small.

In this section we focus on Figure 3.9 (“k = 20, moderately correlated, good controls”).
The first thing to notice is that RUV-inv performs very well. In terms of discriminative
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Figure 3.9: Moderately correlated, good controls.

power, RUV-inv performs about as well as RUV-2 and RUV-4 at the optimal value of K.
The type 1 error rate for RUV-inv is very close to 0.05 (see also Tables B.1, B.2, B.3 in
the appendix). By comparison, RUV-2 is anti-conservative when K < 20 and RUV-4 is
anti-conservative for all K.

RUV-inv also performs well in terms of its estimation of β and σ2. As expected, the
RMSE of β̂ is effectively nonincreasing in K for RUV-4 but not RUV-2. RUV-inv essentially
achieves the minimum RMSE. Also as expected, both RUV-2 and RUV-4 have seriously
inflated estimates of σ2 whenK < 20. WhenK > 20 RUV-4 has slightly deflated estimates of
σ2, but RUV-2 is nearly spot-on. RUV-inv has slightly inflated estimates of σ2. The average
value of σ̂2

j/σ
2
j is about 1.16 (see also Tables B.1, B.2, B.3 in the appendix). Nonetheless,

these slightly inflated estimates of σ2 do not cause an unreasonable loss in power.
Indeed, the slightly inflated RUV-inv estimates of σ2 are both expected and desirable.

Recall that β̂ is slightly biased. Recall also that σ2 is estimated under the assumption that
β̂? is unbiased. Therefore it is reasonable to expect that σ̂2 will be slightly inflated due to the
biases of β̂?. The end result is that we essentially fold the small biases of β̂? into the estimate
σ̂2, and thereby keep the type 1 error rate in check. Of course, there is no guarantee that the
type 1 error rate will equal 0.05 in all situations. Nonetheless, the inflated estimates of σ2
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are often a useful feature in practice. Finally, note that RUV-inv achieves a nearly optimal
value of IQR

[
log
(
σ̂2
j/σ

2
j

)]
, suggesting that RUV-inv makes good use of all the degrees of

freedom that are available to estimate σ2.
An interesting conclusion of Figure 3.9 seems to be that the primary determinant of the

discriminative power is the quality of the estimate of σ2, and not the quality of the estimate
of β. We arrive at this conclusion by noting several facts. First, note that although the
RMSE(β̂) curves for RUV-2 and RUV-4 diverge substantially for K > 20, the curves for the
discriminative power of RUV-2 and RUV-4 without Limma (solid lines) follow each other very
closely. This suggests that the quality of β̂ is not the main determinant of the discriminative
power. Secondly, note that the discriminative power is substantially higher when we use
Limma (dashed lines). This suggests that the quality of σ̂2 is important. Moreover, the
improvement in discriminative power offered by Limma is largest when K is large, where
the quality of σ̂2 is poorest. Even more tellingly, the curves for the discriminative power
of RUV-2 and RUV-4 with Limma do diverge for large K; once the problem of the poor
estimates of σ2 at large K has been “solved” by Limma, it becomes possible to see the
difference between the performance of β̂(RUV−2) and β̂(RUV−4). Finally, we observe that the
the “kinks” in the discriminative power curves at K = 20 are very similar to the kinks in the
curves of the IQR of log

(
σ̂2
j/σ

2
j

)
. Indeed, the entire discriminative power curve is visually

similar to the IQR
[
log
(
σ̂2
j/σ

2
j

)]
curve, just upside down.

3.4.2.3 Results of the Remaining Simulations

Turning now to the other 11 simulations (see Figures B.2-B.13 in the appendix), we see
that many, but not all, of the conclusions of Figure 3.9 are true more generally. In terms
of discriminative power, RUV-4 performs almost uniformly better than RUV-2, and RUV-
inv performs about as well as RUV-4 at the optimal value for K. The RMSE of β̂ falls
then rises again for RUV-2, but is essentially nonincreasing for RUV-4. RUV-4 is often
anti-conservative, sometimes substantially. With RUV-2, the type 1 error rate is good for
large K, but this is a moot point because the discriminative power of RUV-2 is poor at
large K. For small K, the type 1 error rate can exhibit strange behavior in both RUV-2
and RUV-4. RUV-inv generally exhibits better control of the type 1 error rate than RUV-4,
but is not perfect. RUV-inv tends to be anti-conservative when the unwanted factors are
strongly correlated with factor of interest, and, to a lesser extent, when the control genes are
misspecified. RUV-inv does a fairly good job of estimating σ2 when k = 20. Not surprisingly,
no method does a particularly good job of estimating σ2 when k = 70 > m.

We also see in the other simulations the effects of misspecified control genes. To a
large extent, the “bad controls” do not affect RUV-4 or RUV-inv. RUV-2, by contrast, is
very sensitive to the control gene assumption. The performance of β̂(RUV−2) deteriorates
considerably when the control genes are misspecified. This has serious consequences for
both the discriminative power and type 1 error rate. Moreover, the consequences are not
entirely predictable. Both the discriminative power and type 1 error rate may be complicated
functions of K. See, for example, Figures B.3 and B.5.
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3.4.3 A Comparison of Methods

In this Section we run 24 simulations to compare the relative performance of SVA, LEAPP,
ICE, RUV-4, and RUV-(r)inv and their variants (empirical controls, rescaled variances,
empirical variances). First we discuss the details of the simulations. Then we discuss the
results of one of the 24 simulations in detail. Finally we discuss briefly the results of the
remaining 23 simulations.

3.4.3.1 Simulation Details

The simulations of this section are similar to those of Section 3.4.2. In 12 of the simulations,
k = 20 and σα is set as in (3.210). In the other 12 simulations k = 70 and σα is set as in
“moderate decay.” In 12 of the simulations bWX is set as in “lightly correlated” and in the
other 12 as in “highly correlated.” In all of the simulations all of the control genes are good
controls, but in 12 of the simulations nc = 1000 and in the other 12 simulations nc = 60.

Unlike Section 3.4.2, here we also vary the sparsity of β. In eight of the simulations (“very
sparse”), only 100 elements of β are non-zero. In another eight simulations (“sparse”) only
500 elements of β are non-zero. In the remaining eight simulations (“not sparse”) 5000
elements of β are non-zero. There are a few other minor differences as well. We generated
only 100 datasets per simulation instead of 1000. We did not fit with Limma. We report the
mean value of σ̂2

j/σ
2
j directly (instead of the log). We report only the results of RUV-4 for

k̂ and not all values of K. In some of the methods we make use of empirical controls. We
define empirical controls to be all genes whose RUV-rinv FDR-adjusted p-values is greater
that 0.5.

Note that we do not report the results of RMSE(β̂), AVG(σ̂2
j/σ

2
j ), or IQR[log(σ̂2

j/σ
2
j )]

for the rescaled variances or empirical variances methods, since these results are identical to
those of the standard method. We also do not report AVG(σ̂2

j/σ
2
j ) or IQR[log(σ̂2

j/σ
2
j )] for

ICE, since ICE, which is based on a random effects model, does not return an estimate of
the equivalent of the σ2 that exists in our model.

3.4.3.2 k = 20, moderately correlated, nc = 60, sparse

As in the Section 3.4.2, we discuss the results of just one of the simulations in detail. We
present the results of the other simulations in the Supplementary Material. The simulation
we discuss in detail is “k = 20, moderately correlated, nc = 60, sparse”. The results of this
simulation are given in Table 3.2.

First we discuss RMSE(β̂). All of the methods show a substantial improvement over
“unadjusted,” but the best performance comes from ICE and RUV-(r)inv with empirical
controls. Without empirical controls, RUV-inv performs considerably worse. This is as ex-
pected, since nc = 60 is only a little larger than m = 50, and b̂WX suffers from over-fitting.
Compared to RUV-inv without empirical controls, RUV-rinv without empirical controls per-
forms much better — nearly as well as RUV-(r)inv with empirical controls. The ridging
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.52 (4× 10−3) 0.47 (5× 10−4) 0.66 (2× 10−3) 0.707 (5× 10−4) 53.02 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.72 (4× 10−3) 0.10 (5× 10−3) 0.78 (2× 10−3) 0.170 (3× 10−3) 6.08 (7× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.72 (4× 10−3) 0.11 (5× 10−3) 0.80 (2× 10−3) 0.163 (3× 10−3) 6.03 (7× 10−2) 1.05 (4× 10−3)
LEAPP 0.72 (4× 10−3) 0.26 (8× 10−3) 0.86 (2× 10−3) 0.133 (2× 10−3) 5.22 (7× 10−2) 1.06 (3× 10−3)
ICE 0.80 (2× 10−3) 0.00 (4× 10−5) 0.72 (2× 10−3) 0.091 (6× 10−4)
RUV-4 0.78 (1× 10−2) 0.12 (3× 10−3) 0.80 (7× 10−3) 0.151 (3× 10−3) 0.96 (1× 10−3) 0.73 (3× 10−2)
RUV-inv 0.72 (4× 10−3) 0.02 (1× 10−3) 0.62 (1× 10−2) 0.209 (5× 10−3) 1.57 (1× 10−2) 1.01 (1× 10−2)
RUV-rinv 0.82 (3× 10−3) 0.06 (2× 10−3) 0.84 (2× 10−3) 0.110 (1× 10−3) 1.98 (1× 10−2) 0.62 (3× 10−3)
RUV-inv (Ectl) 0.90 (2× 10−3) 0.05 (8× 10−4) 0.87 (2× 10−3) 0.090 (6× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.89 (2× 10−3) 0.06 (1× 10−3) 0.87 (2× 10−3) 0.092 (7× 10−4) 1.35 (1× 10−3) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.90 (2× 10−3) 0.05 (2× 10−3) 0.87 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.89 (2× 10−3) 0.05 (2× 10−3) 0.86 (3× 10−3)
RUV-inv-evar (Ectl) 0.83 (4× 10−3) 0.01 (2× 10−4) 0.82 (2× 10−3)
RUV-rinv-evar (Ectl) 0.83 (3× 10−3) 0.01 (3× 10−4) 0.82 (2× 10−3)

Table 3.2: k = 20, moderately correlated, nc = 60, sparse.

clearly helps. The remaining methods, all of which rely on an estimate of k, perform mod-
erately well.

Next we discuss σ̂2. All of the methods show improvement over “unadjusted.” The
best overall performance comes from RUV-inv with empirical controls. RUV-rinv with em-
pirical controls also performs quite well. RUV-4 performs exceptionally well in terms of
AVG(σ̂2

j/σ
2
j ), but less so in terms of IQR[log(σ̂2

j/σ
2
j )]; RUV-4 gets the overall “scale” of σ2

right, but does not do as good of a job at estimating the individual σ2
j . Both RUV-inv and

RUV-rinv without empirical controls suffer from the fact that nc is only 60, but in different
ways. RUV-rinv performs worse than RUV-inv in terms of AVG(σ̂2

j/σ
2
j ) but better in terms

of IQR[log(σ̂2
j/σ

2
j )]. The remaining methods, which rely on an estimate of k, do not perform

as well as the inverse method and its variants.
Now we discuss the discriminative power. Given our discussions of RMSE(β̂) and σ̂2,

our findings regarding discriminative power are no surprise. All of the methods offer an
improvement over “unadjusted.” RUV-4 performs moderately well. RUV-inv suffers from
the fact that nc is small and performs worse than RUV-4. RUV-rinv overcomes the problem of
a small nc and outperforms both RUV-4 and RUV-inv. However, RUV-(r)inv with empirical
controls performs the best. Empirical controls are the best way to handle the small nc.
Finally, note that out of SVA, LEAPP, and ICE, ICE performs the best.

There is considerable variation between the methods in terms of their control of the type
1 error rate. SVA, LEAPP, and RUV-4 are all notably anti-conservative. ICE is excessively
conservative. RUV-inv is also too conservative. RUV-rinv, and both RUV-inv and RUV-
rinv with empirical controls, demonstrate quite good control of the type 1 error rate. Using
rescaled variances in this case works, but is not needed. On the other hand, using empirical
variances actually makes things worse. The problem is that even though only 500 of the
10,000 elements of β are non-zero, this is still not sparse enough for the method of empirical
variances. As a result, both the type 1 error rate and the discriminative power are adversely
affected.
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3.4.3.3 Results of the Remaining Simulations

We turn now to the other simulations. We begin with a comparison of RUV-4, RUV-inv,
and RUV-rinv. The relative performance of these methods depends on whether nc = 1000
or nc = 60. When nc = 1000, RUV-inv performs best. When nc = 60, RUV-rinv performs
best.

When nc = 1000, all three methods generally perform well in terms of discriminative
power. RUV-inv performs the best. RUV-rinv is a close second. RUV-4 performs a little
worse, particularly whenX is highly correlated withW . The differences between the methods
are more pronounced in terms of the type 1 error rate. In terms of the type 1 error rate,
RUV-inv clearly performs the best. RUV-inv exhibits good control of the type 1 error rate
in most cases, but is notably anti-conservative when k = 70 and X is highly correlated with
W . RUV-rinv is more anti-conservative than RUV-inv in all cases, and RUV-4 is even more
anti-conservative than RUV-rinv. The differences between RUV-inv, RUV-rinv, and RUV-4
are most pronounced when k = 70 or when X is highly correlated with W .

When nc = 60, the story is much different. RUV-rinv performs the best by far, and RUV-
inv performs the worst. RUV-inv is overly conservative and exhibits poor discriminative
power. RUV-rinv is anti-conservative, but exhibits far more discriminative power. RUV-4
is more anti-conservative than RUV-rinv. The discriminative power of RUV-4 is generally
somewhere between that of RUV-inv and RUV-rinv.

We now consider the use of empirical controls. The empirical controls work as expected.
Performance of RUV-(r)inv with empirical controls is roughly the same as the performance
of RUV-(r)inv without empirical controls but with nc = 1000. RUV-inv does slightly better
than RUV-rinv. Importantly, note that the performance of the empirical controls is essen-
tially the same whether the initial nc is equal to 1000 or 60. In other words, if we begin
with just 60 control genes, use RUV-rinv to generate empirical controls, and then apply
RUV-(r)inv, we get results just as good as if we had 1000 control genes to begin with.

Next we consider the use of rescaled and empirical variances. The rescaled variances
work as expected. The use of rescaled variances does not affect discriminative power in any
way. The type 1 error rate is much better with rescaled variances than without. Across all
24 simulations, the average type 1 error rate with rescaled variances is never less than 0.04
nor greater than 0.08. Without rescaled variances, the range is 0.05 to 0.24. The empirical
variances also work as expected. In all 8 “very sparse” simulations, the average type 1 error
rate with empirical variances is 0.05. The discriminative power with empirical variances
is equal to or slightly better than the discriminative power without empirical variances.
However, the usefulness of the empirical variances is limited to the case that β is very
sparse. In the 16 other simulations (“sparse” and “not sparse”) the use of empirical controls
leads to a serious decrease in performance.

Finally, we consider the performance of SVA, LEAPP, and ICE. Of these methods, ICE
performs the best in all cases except those in which k = 70 and β is not sparse. Note
that ICE tends to be extremely conservative, while SVA and LEAPP tend to be extremely
anti-conservative. Finally, note that RUV-inv with empirical controls and rescaled variances
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performs at least well as any other method. When β is very sparse, ICE performs as well as
RUV-inv with empirical controls and rescaled variances, but only in terms of discriminative
power (not type 1 error rate). SVA and LEAPP also perform reasonably well when β is very
sparse.

3.5 Data Results

In this section we apply the RUV methods to the datasets of Section 3.2. We analyze all 11
datasets the same way. In Section 3.5.1 we describe the details of the analyses. In Sections
3.5.2 and 3.5.3 we describe two types of plots we use to visualize the results of our analyses.
In Section 3.5.4 we discuss the results of our analyses.

3.5.1 Analysis Details

Let κ, κ1, and κ2 be index variables that range over the symbols {0, 1, 2, ...,m − 2, k, i, r}.
Note that m, in italics, is a variable that stands for the number of arrays; k, i, and r are
not variables, but just letters. Define estimates β̂(κ) as follows: when κ = 0, β̂(κ) is the OLS
estimate of β in a regression of Y on X; when κ ∈ {1, ...,m− 2}, β̂(κ) is the RUV-4 estimate
of β with K = κ; when κ = k, β̂(κ) is the RUV-4 estimate of β with K = k̂; when κ = i,
β̂(κ) is the RUV-inv estimate of β; when κ = r, β̂(κ) is the RUV-rinv estimate of β. Define
(σ̂2)(κ), Ŵ (κ), b̂

(κ)
WX , etc. similarly; note that Ŵ (κ) and b̂

(κ)
WX are undefined when κ = 0.

Let v
(s,κ1,κ2)
j denote the “standard” estimate of the variance of β̂

(κ1)
j , given an estimate

(σ̂2
j )

(κ2) of σ2
j . For example,

v
(s,2,r)
j =

(
σ̂2
j

)(r)
[
1 +

(
b̂

(2)
WX

)′
b̂

(2)
WX

]
(3.211)

and

v
(s,i,4)
j =

(
σ̂2
j

)(4)
[
1 +

(
b̂

(i)
WX

)′
b̂

(i)
WX

]
. (3.212)

Let v
(e,κ1,κ2)
j denote the empirical estimate of the variance of β̂

(κ1)
j , given estimates (σ̂2

j )
(κ2)

of σ2
j .
Define the t statistic

t
(s,κ1,κ2)
j ≡

β̂
(κ1)
j√

v
(s,κ1,κ2)
j

(3.213)

and define t
(e,κ1,κ2)
j similarly. Define the p-value

p
(s,κ1,κ2)
j ≡ P

[
|t| >

∣∣∣t(s,κ1,κ2)
j

∣∣∣∣∣∣t(s,κ1,κ2)
j

]
(3.214)
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where t follows a t distribution with an appropriate number of degrees of freedom (e.g. m−1
degrees of freedom if κ2 = 0, m− 6 degrees of freedom if κ2 = 5, or r̂ degrees of freedom if
κ2 = i). Define p

(e,κ1,κ2)
j similarly.

For fixed values of κ1 and κ2, consider the N ≤ n genes with the N smallest p-values
p

(s,κ1,κ2)
j . Let C(s,κ1,κ2,N) denote the number of these top-ranked genes that are located on

the X or Y chromosomes (we choose “C” for “top rank Count”). C(s,κ1,κ2,N) is one of the
most important statistics we use to compare the effectiveness of the various methods. Next
define the statistic

T (s,κ1,κ2) ≡ log

medianj

∣∣∣t(s,κ1,κ2)
j

∣∣∣
T0

 . (3.215)

Here T0 is the 50th percentile of |t|, where t follows a t distribution with an appropriate
number of degrees of freedom. Assuming β is sparse, T (s,κ1,κ2) is a good measure of whether
the t-statistics t

(s,κ1,κ2)
j are too big or too small. Now, consider all genes that do not come

from the X or Y chromosomes. Let E(s,κ1,κ2) denote the fraction of these genes whose p-value
p

(s,κ1,κ2)
j is less than 0.05. We use E(s,κ1,κ2) as an effective type 1 error rate.3 Finally, define

C(e,κ1,κ2,N), T (e,κ1,κ2), and E(e,κ1,κ2) similarly to C(s,κ1,κ2,N), T (s,κ1,κ2), and E(s,κ1,κ2).
Our analyses proceed as follows. First we define three sets of control genes. The first set

is the set of housekeeping genes. The second set includes all genes. The third set is a set of
empirical controls. Then, for each set of control genes, for each possible pair (κ1, κ2), and
for each value of N in {20, 40, 60, 80, 100}, we calculate C(s,κ1,κ2,N), T (s,κ1,κ2), C(e,κ1,κ2,N), and
T (e,κ1,κ2). We also calculate E(s,κ,κ) and E(e,κ,κ) for κ ∈ {k, i, r}.

Some notes: All of our models include a Z = 1m×1 term. This is not reflected in the
notation above. All of our estimates of σ2 are unadjusted; we do not use Limma. To
generate the empirical controls, we simply regress Y on X, compute FDR-adjusted p-values,
and designate all genes with FDR-adjusted p-values greater than 0.5 as empirical controls.
This is a very crude application of the strategy of empirical controls. The rationale for this
choice of empirical controls is to demonstrate that even a crude application of the strategy
will often be effective. Still, we encourage researchers to be cautious in their own applications
of the strategy.

In addition to the analysis just described, we also analyze each dataset by SVA, LEAPP,
and ICE. For each of these methods, we rank genes by p-value, and count the number of
genes in the top 20 / 40 / 60 / 80 / 100 that are on the X or Y chromosomes. We also
calculate an “effective type 1 error rate” analogous to the one described above.

3It is worth noting that in the course of our analyses we have been unable to produce any convincing
evidence that there are any autosomal genes that are differentially expressed between the brains of men
and women. To be sure, in each of the datasets we examine, there are a few autosomal genes with small
FDR-adjusted p-values. However, none of these genes are consistently “significant” across multiple datasets.
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3.5.2 Summary Plots

We need a way to visualize our results. We accomplish this with “summary plots.” An
example summary plot is given in Figure 3.10. Summary plots are rather complex. The
purpose of this section is to describe them.

Figure 3.10: Example Summary Plots. Alzheimer’s (Preprocessed) dataset, HK controls.
X/Y gene counts are out of the top 40 genes.

Ignoring the color scales on the far left, each summary plot can be divided into 4 iden-
tically “shaped” divisions. On the top are two divisions with colors ranging from black to
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red to green to blue. On the bottom are two divisions with colors ranging from red to white
to blue. Each division can be further divided into nine subdivisions. These subdivisions do
not all have the same shape. The top left subdivision is a single colored square; the middle
subdivision is a giant multi-colored square with many rows and columns; etc.

We now describe the top left division. The top left division is a plot of C(s,κ1,κ2,N) for
all values of (κ1, κ2). Each row of the plot represents a different value of κ1; each column of
the plot represents a different value of κ2. The value of C(s,κ1,κ2,N) is given by the color. An
example: The top left corner of the bottom right subdivision is a light greenish yellow color.
Referring to the color scale on the far left, we see that this color corresponds to a value of
24. Thus C(s,k,k,40) = 24. In other words, if we run RUV-4 with K = k̂ and rank genes by
p-value, we will find that 24 of the top 40 genes are on the X or Y chromosomes. A second
example: In the middle column of the middle-right subdivision, the 11th square from the
top is a light green color. Referring to the color scale on the far left, we see that this color
corresponds to a value of 25. Thus C(s,11,i,40) = 25. In other words, if we run RUV-4 with
K = 11 to get our estimate of β, but estimate σ2 using RUV-inv, we will find that 25 of the
resulting top 40 genes are on the X or Y chromosomes. Note the black lines in the 16th row
and 16th column of the middle subdivision. These black lines represent k̂; k̂ in this example
is equal to 16. Note that the color at the intersection of these lines is the same as the color
in the top left square of the bottom right subdivision.

The other divisions are analogous to the top left division. The top right division is a
plot of C(e,κ1,κ2,N) instead of C(s,κ1,κ2,N). The bottom left division is a plot of T (s,κ1,κ2). The
bottom right division is a plot of T (e,κ1,κ2). Note that in the case of the bottom divisions,
shades of red correspond to t-values that are generally “too small.” p-vales are therefore “too
big” and the method is conservative. Conversely, shades of blue correspond to t-values that
are generally “too big,” p-vales that are “too small,” and the method is anti-conservative.
White is just right.

We have described the mechanics of reading the summary plots. We now give a few brief
examples of how the summary plots can be used to learn something. First note that the
upper right division is “greener” than the upper left division. From this we learn that using
empirical variances increases the discriminative power (on this dataset). Next observe that
the lower right division is “whiter” than the lower left division. From this we learn that
using empirical variances leads to better control of the type 1 error rate. Now consider just
the middle subdivision of the upper left division. Note that as we move downwards through
the rows, the rows are roughly non-decreasing in green-ness. This tells us that the quality
of β̂ as an estimator of β is roughly non-decreasing in K. Conversely, moving from left to
right, the columns first get greener, and then fall to black. This tells us that σ̂2 is only a
good estimator of σ2 when K is somewhere between 6 and 17.

3.5.3 Projection Plots

In Sections 3.3.4 and 3.3.8 we considered examples in which m = 2. We were able to plot
each gene as a point in 2-dimensional space. These plots were very helpful for visualizing
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and understanding RUV-4. We would like to produce similar plots for m > 2. Such plots
would be a very useful diagnostic tool when applying RUV-4 to real data.

When m = 2 and K = 1 the column space of Ŵ can be represented as a line passing
through origin. The slope of the line is b̂WX . When m > 2 and k > 1 this is no longer
possible. The column space of Ŵ is a hyperplane and cannot be graphed in two dimensions.
To solve this problem, we project the data into a 2-dimensional space.

Assume throughout this section that we use the SVD as our method of factor analysis.
In particular, assume that the columns of Ŵ0 are orthonormal. Now let

P̃ ≡

 Ŵ0b̂
′
WX∣∣∣∣∣∣Ŵ0b̂′WX

∣∣∣∣∣∣
∣∣∣∣∣∣X
′ (3.216)

=

Ŵ0b̂
′
WX∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣
∣∣∣∣∣∣X
′ (3.217)

and let

Ỹ ≡ P̃ Y. (3.218)

Note that

β̂j = X ′Y?j − b̂WXŴ
′
0Y?j (3.219)

= Ỹ2,j −
∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣ Ỹ1,j. (3.220)

If we plot the points (Ỹ1,j, Ỹ2,j) on standard coordinate axes, β̂j is the vertical distance

between the point (Ỹ1,j, Ỹ2,j) and the line passing through the origin with slope
∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣. We

name such plots projection plots. Examples are given in Figure 3.11.
What is the interpretation of a projection plot? Consider RUV-4 in the context of the

functional approach.

β̂j = yj − f̂(x?j) (3.221)

where

x = Ŵ ′
0Y (3.222)

and

f̂(u) = b̂WXu. (3.223)

The gradient of the function f̂ is b̂′WX . Any component of u orthogonal to b̂′WX plays no role

in the determination of f̂(u). We name

Ŵ0b̂
′
WX∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣
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RUV-2 RUV-4

Figure 3.11: Projection Plots for RUV-2 and RUV4. Alzheimer’s dataset. HK controls.
Coloring scheme: negative controls, green; X-genes, pink; Y-genes, blue; X/Y-genes, purple;
all other genes, gray. Note that we plot the gray dots first, followed by the green, the pink,
the blue, and the purple. Thus many of the green and gray points are hidden behind the
pink.

the “gradient factor” of Ŵ0. The components of Y?j orthogonal to both X and the gradient

factor play no role in the determination of β̂j. The 2-dimensional subspace spanned by X
and the gradient factor is all that matters. This is the subspace that we plot.

3.5.4 Results

We now discuss the results of our analyses. A complete set of summary plots is provided in
Section B.3 of the appendix. Section B.3 also provides projection plots for RUV-2, RUV-4,
RUV-inv, and RUV-rinv. Section B.4 provides a complete set of tables listing the values
of top-ranked gender gene counts and effective type 1 error rates for SVA, LEAPP, ICE,
RUV-4, RUV-inv, RUV-rinv.

3.5.4.1 The Practical Assumptions

We begin our discussion by inspecting the projection plots. In Section 3.3.8 we noted that
the success of RUV-4 depends critically on two “practical assumptions.” The first is that
the (α̂?j, Bj(α)) pairs are well described by a linear function passing through the origin. The
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second is that the control genes are “representative” of the other genes. We would like to
check that these assumptions are plausible.

Now, Bj(α) is unobservable. However, in our model, yj = βj+B(α?j)+ξ. Thus, if βj = 0
it follows that yj ≈ B(α?j). Moreover, we do not expect gender to affect the expression levels
of more than a handful of genes, and we therefore expect that βj = 0 for the vast majority
of the genes; we believe that β is very sparse. Thus, if it is true that the (α̂?j, Bj(α)) pairs
are well described by a linear function passing through the origin, it should also be the case
that the vast majority of the (α̂?j, yj) pairs are well described by a linear function passing
through the origin. An examination of the projection plots suggests that this is indeed the
case. See, for example, Figures 3.11 and 3.12.

An examination of the projection plots also suggests that the control genes are “repre-
sentative” of the rest of the genes. See, for example, Figure 3.11. The green dots are more or
less representative of the gray dots. The housekeeping genes in the TCGA datasets appear
to be an exception. See, for example, the top left plot of Figure 3.12. However, the problem
evident in Figure 3.12 is less an issue of the housekeeping genes being “unrepresentative”
than it is an issue of RUV-inv overfitting to the housekeeping genes. The problem goes away
when we use RUV-rinv instead.

3.5.4.2 RUV-2 vs RUV-4

We very briefly compare the performance of RUV-2 to that of RUV-4. Our analysis of
RUV-2 is limited to projection plots. In many cases RUV-2 appears to perform fairly well.
See, for example the RUV-2 projection plots of the TCGA datasets with housekeeping or
empirical controls (Section B.3 of the appendix). In many other cases, however, RUV-2
suffers from the problems outlined in Section 3.3.4. See, for example, Figure 3.11; RUV-4 is
clearly preferable.

Many of the examples in Section B.3 of the appendix are far more dramatic than Figure
3.11. This is particularly true when the control genes are misspecified. In the case of the
Alzheimer’s and Gender datasets, RUV-4 performs just fine even when all genes are used
as control genes. RUV-2, however, performs horribly. In the case of the TCGA data, both
RUV-2 and RUV-4 are adversely affected by misspecification of the control genes. However,
RUV-2 performs far worse.

Finally, note that the comparison here between RUV-2 and RUV-4 is not entirely fair.
RUV-2 is more sensitive to the choice of K than RUV-4. In Chapter 2 we emphasize the
importance of exercising judgment when selecting K, and using quality measures such as
RLE plots, p-value histograms, and gene rankings to guide the choice of K. We did not do
that here. Had we been more careful in our selection of K, the performance of RUV-2 may
have been considerably better.
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RUV-inv (Housekeeping) RUV-inv (Full)

RUV-rinv (Housekeeping) RUV-inv (Empirical)

Figure 3.12: Projection Plots of TCGA HG-U133A.

3.5.4.3 Choice of K

We now examine the choice of K on the performance of RUV-4. Our first observation is
that, in many cases, setting K to be very large does not notably hurt the performance of
β̂. See, for example, Figure 3.10. However, there are exceptions. One exception is when
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K is large relative to nc. This occurs in the TCGA examples when we use housekeeping
genes as controls. See Figures B.18, B.19, and B.20 in the appendix. The summary plots
show that the quality of β̂ decreases for large K; the projection plots (RUV-inv) show that
the reason is overfitting to the control genes. A second exception is when the control genes
are misspecified. Misspecification of the control genes is not necessarily a problem in and of
itself, but becomes a problem when K is very large. This can be seen in the TCGA examples.
When we use all genes as control genes, the quality of β̂ is poor when K is greater than 100
or so. See Figures B.18, B.19, and B.20 in the appendix. The summary plots show that
the quality of β̂ decreases for large K; the projection plots (RUV-4 and especially RUV-inv)
show that the reason is misspecification of the control genes.

Our second observation is that σ̂2 performs poorly both when K is too small and when
K is too large. See, for example, Figure 3.10. The discriminative power is poor both when
K is small and when K is large. Moreover, the plot of T (s,κ1,κ2) suggests that σ̂2 is generally
too large when K is small and σ̂2 is too small when K is large. However, there is good news
as well. In many cases, the discriminative power is only hurt by a poor estimate of σ̂2 when
the value of K is relatively extreme. See, for example, Figures B.18, B.19, and B.20 in the
appendix. As long as K is not so small that σ̂2 is severely biased by unwanted variation
that has not been properly adjusted for, and as long as K is not so large that σ̂2 must be
estimated using only a few degrees of freedom, σ̂2 is “good enough” from the point of view
of discriminative power. Of course, the overall scale of σ̂2 (i.e. σ̇2) remains an issue. The
plots of T (s,κ1,κ2) suggest that σ̇2 — and thus the type 1 error rate — is fairly sensitive to
the choice of K. Fortunately, we can solve this problem by using empirical variances.

Our final observation is that k̂ is a decent, but not great, choice of K. Although k̂ may
be informative, we do not advise relying solely on k̂ when selecting K in practice. Gene
rankings, p-value histograms, etc. should be considered as well. Perhaps more importantly,
we observe that in most of the examples, there is no single “best” choice for K. A value
of K that is good for β̂ is not necessarily good for σ̂2, and vice versa. It may be better to
select two values of K; one value, K1, could be used when estimating β, and another, K2,
could be used when estimating σ̂2. Note, however, that even if we allow ourselves to use two
separate Ks, it is still not necessarily the case that a choice of (K1, K2) that provides good
discriminative power will also provide a good type 1 error rate. The problem of selecting K
is indeed very difficult.

3.5.4.4 Choice of Control Genes

We now consider the choice of control genes. As we noted in the previous section, all three
sets of control genes work fairly well when m (and therefore K) is relatively small. When
K is fairly small, there is no problem of overfitting to the control genes, nor are there any
problems due to misspecification of the control genes. Indeed, all three sets of control genes
work fairly well for the Alzheimer’s and Gender datasets.

The story is very different with the TCGA datasets. With housekeeping genes, nc is too
small. This is not necessarily a problem for all methods. RUV-rinv continues to perform



CHAPTER 3. RUV-4 110

well. RUV-4 with K = k̂ performs moderately well. RUV-inv, however, overfits to the
control genes and performs horribly. Both β̂ and σ̂2 are adversely affected. With all genes as
control genes the situation is even worse. RUV-inv continues to perform horribly. RUV-4 and
RUV-rinv now perform poorly as well. Unlike with the housekeeping genes, however, only
β̂ is adversely affected. See the summary plots for evidence. With the empirical controls,
the situation is much better. With empirical controls, RUV-4, RUV-inv, and RUV-rinv all
perform very well. Moreover, RUV-4 performs well for a very wide range of K. In the
examples of this thesis, empirical controls are an unequivocal success.

3.5.4.5 Use of Empirical Variances

We now consider the use of empirical variances. In the simulations of Section 3.4.3 we found
that empirical variances are only effective when β is very sparse. Fortunately, we believe that
β is in fact very sparse in the examples of this section. Indeed, we find empirical variances
to be very helpful. Comparing plots of T (s,κ1,κ2) to plots of T (e,κ1,κ2) suggests that the use
of empirical variances helps control the type 1 error rate. The tables in Section B.4 in the
appendix confirm this directly.

The benefits of using empirical variances are not limited to better control of the type
1 error rate. In the case of the Alzheimer’s dataset, the use of empirical variances also in-
creases discriminative power. Presumably, the reason the use of empirical variances improves
discriminative power in the Alzheimer’s dataset is that m is fairly small, and estimates of σ2

are therefore somewhat noisy. The method of empirical variances shrinks estimates of the
variances to the mean. In this sense, the method of empirical variances plays a role similar
to the role more commonly played by Limma. Note that in the other datasets, the use of
empirical variances neither notably increases nor notably decreases discriminative power.
The use of empirical variances seems suitable for general use whenever β is known to be very
sparse.

3.5.4.6 A Comparison of Methods

We now compare the performance of SVA, LEAPP, ICE, and the variants of RUV. We
begin with the variants of RUV. A quick glance at the summary plots of Section B.3 in the
appendix confirms that RUV-inv works largely as intended. By setting K = m − 1 and
estimating σ2 with the inverse method we avoid the problem of estimating k but get results
nearly as good as if we had chosen an optimal value of K. The usual caveats apply —
RUV-inv will fail if m is large and nc is small or the control genes are misspecified. However,
these issues can be overcome by using either RUV-rinv, empirical controls, or both. Indeed,
somewhat closer inspection reveals that RUV-rinv is generally preferable to RUV-inv. There
are several examples in which RUV-rinv clearly outperforms RUV-inv. However, there are
no examples in which RUV-inv substantially outperforms RUV-rinv. Thus, when in doubt,
we find it is generally advisable to use RUV-rinv. We also advise using empirical controls
whenever feasible, and empirical variances whenever β is known to be very sparse.
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We now consider the results of SVA, LEAPP, and ICE as well. In the simulations of
Section 3.4.3 we found that all of these methods perform reasonably well when β is sparse
and X is not strongly correlated with W . See Tables B.1 and B.13 in the appendix. In our
example datasets, β is sparse and X does not appear to be strongly correlated with W (see,
for example, the projection plots; the slopes are not steep). We therefore expect all of the
methods to do reasonably well. Indeed they do. Tables 3.3–3.5 provide a brief summary of
results for SVA, LEAPP, ICE, RUV-4, RUV-inv, RUV-rinv. Section B.4 in the appendix
provides a more complete set of results. As we see in Tables 3.3–3.5, the performance of the
RUV methods compares well with that of SVA, LEAPP, and ICE.

Particularly encouraging is the ability of these methods to effectively combine the TCGA
datasets. Consider the TCGA Combined dataset. Without any adjustment, results are poor.
Only 16 of the top 60 genes are on the X or Y chromosome. Now consider any of the three
datasets that make up the TCGA Combined dataset (i.e. the three “subset” datasets). In
each case, without any adjustment, 18 of the top 60 genes are on the X or Y chromosome.
Thus, despite the fact we triple our sample size, combining these three datasets into one
without performing any adjustment actually hurts performance. Now suppose we adjust. If
we stick to a single “subset” dataset, we might find up to 23 genes out of the top 60 are
on the X or Y chromosome. However, if we combine the three subset datasets to make the
Combined dataset, we might find up to 27 genes out of the top 60 that are on the X or Y
chromosome. Thus, when we adjust, it is no longer the case that combining datasets hurts
us; it now helps us.

Finally, we draw attention to the special cases of the Alzheimer’s and Gender datasets
without preprocessing. Without preprocessing, these datasets are extremely noisy. Nonethe-
less, the RUV methods perform exceedingly well. Indeed, the results without preprocessing
are about as good as the results with preprocessing. This may not be enormously helpful
to the world of microarrays — microarray data is routinely preprocessed. Nonetheless, we
find these results very encouraging. We feel these results suggest that the RUV methods
are relatively robust. We are therefore hopeful that the basic RUV methodology will prove
useful to many different types of high dimensional data.
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Alzheimer’s (Preprocessed)
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 15 19 23 25 26 0.02
SVA-IRW 18 19 21 24 24 0.04
SVA-TS 16 18 19 19 21 0.09
LEAPP 16 24 24 26 27 0.13
ICE 20 27 29 31 31 0.04
RUV-4 (HK) 18 24 27 29 31 0.1
RUV-rinv (HK) 20 26 30 32 33 0.05
RUV-rinv-ev (E) 20 26 29 32 34 0.06

Alzheimer’s (Not Preprocessed)
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 8 9 9 13 15 0.3
SVA-IRW 8 9 12 13 14 0.26
SVA-TS NA NA NA NA NA NA
LEAPP 17 23 24 26 26 0.13
ICE 13 16 17 17 21 0.23
RUV-4 (HK) 14 19 23 24 26 0.1
RUV-rinv (HK) 18 21 26 28 31 0.05
RUV-rinv-ev (E) 18 25 28 28 30 0.06

Gender (Preprocessed)
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 11 13 15 17 19 0.01
SVA-IRW 14 17 19 19 19 0.08
SVA-TS 16 21 23 25 27 0.09
LEAPP 18 20 22 25 26 0.12
ICE 16 23 26 27 28 0.04
RUV-4 (HK) 14 19 21 24 28 0.1
RUV-rinv (HK) 16 20 22 25 28 0.08
RUV-rinv-ev (E) 15 22 26 27 28 0.06

Gender (Not Preprocessed)
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 7 7 7 8 10 0
SVA-IRW 4 6 8 9 12 0
SVA-TS NA NA NA NA NA NA
LEAPP 11 16 18 19 19 0.01
ICE 8 11 13 14 17 0
RUV-4 (HK) 13 20 22 26 29 0.12
RUV-rinv (HK) 14 22 24 25 28 0.08
RUV-rinv-ev (E) 17 24 26 30 30 0.06

Table 3.3: Comparison of the number of top-ranked X/Y genes and the effective type 1 error
rates for SVA, LEAPP, ICE, and RUV. Note that for two datasets (Alzheimer’s and Gender
without preprocessing) the two-step variant of SVA exits with an error.
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TCGA (Exon)
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 17 30 33 35 35 0.08
SVA-IRW 17 31 32 33 34 0.12
SVA-TS 17 33 34 37 40 0.08
LEAPP 17 33 34 35 36 0.12
ICE 17 33 35 35 36 0.01
RUV-4 (HK) 17 33 34 38 39 0.13
RUV-rinv (HK) 17 34 37 39 40 0.07
RUV-rinv-ev (E) 17 33 36 39 41 0.05

TCGA (U133A)
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 16 22 22 24 25 0.12
SVA-IRW 17 24 25 26 26 0.04
SVA-TS 17 27 31 31 32 0.08
LEAPP 17 29 32 32 34 0.11
ICE 17 28 31 32 32 0.02
RUV-4 (HK) 17 24 26 29 32 0.14
RUV-rinv (HK) 17 29 32 32 32 0.08
RUV-rinv-ev (E) 17 29 33 36 36 0.06

TCGA (Agilent)
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 17 30 36 38 40 0.07
SVA-IRW 17 33 37 41 42 0.08
SVA-TS 17 33 37 38 42 0.08
LEAPP 17 33 37 38 43 0.12
ICE 17 33 34 37 41 0.01
RUV-4 (HK) 17 33 34 37 40 0.13
RUV-rinv (HK) 17 33 38 39 41 0.08
RUV-rinv-ev (E) 17 33 39 43 45 0.05

TCGA (Combined)
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 12 14 16 17 17 0.02
SVA-IRW 17 21 25 25 26 0.07
SVA-TS 17 22 24 26 26 0.09
LEAPP 17 22 23 23 25 0.1
ICE 17 24 25 27 27 0.01
RUV-4 (HK) 17 22 24 25 25 0.16
RUV-rinv (HK) 17 24 27 28 28 0.06
RUV-rinv-ev (E) 17 25 27 29 31 0.05

Table 3.4: Comparison of the number of top-ranked X/Y genes and the effective type 1 error
rates for SVA, LEAPP, ICE, and RUV. This continues Table 3.3.
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TCGA (Exon) — Subset
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 13 17 18 18 18 0.08
SVA-IRW 15 18 19 24 25 0.05
SVA-TS 16 18 19 19 21 0.06
LEAPP 16 20 24 25 26 0.12
ICE 17 22 22 24 24 0.03
RUV-4 (HK) 15 18 21 24 25 0.13
RUV-rinv (HK) 17 21 22 23 24 0.07
RUV-rinv-ev (E) 16 22 22 23 23 0.05

TCGA (U133A) — Subset
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 15 17 18 19 19 0.05
SVA-IRW 14 16 16 19 20 0.07
SVA-TS 14 19 20 21 22 0.06
LEAPP 15 18 19 22 22 0.12
ICE 17 21 21 22 22 0.03
RUV-4 (HK) 16 19 20 22 26 0.11
RUV-rinv (HK) 16 19 21 23 23 0.05
RUV-rinv-ev (E) 16 21 23 23 23 0.06

TCGA (Agilent) — Subset
Top 20 Top 40 Top 60 Top 80 Top 100 Type 1

unadjusted 11 14 18 18 19 0.05
SVA-IRW 13 16 16 17 18 0.06
SVA-TS 14 17 20 21 22 0.05
LEAPP 13 16 18 19 21 0.1
ICE 17 22 22 23 23 0.03
RUV-4 (HK) 15 17 19 19 19 0.11
RUV-rinv (HK) 16 19 22 22 23 0.04
RUV-rinv-ev (E) 16 21 23 23 23 0.05

Table 3.5: Comparison of the number of top-ranked X/Y genes and the effective type 1 error
rates for SVA, LEAPP, ICE, and RUV. This continues Table 3.3.
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Chapter 4

Conclusion

We now provide some final commentary. We begin by reconsidering the differences between
RUV-2 and RUV-4. In Section 3.3.4 we discussed the differences between RUV-2 and RUV-
4 extensively. For one, we found that RUV-4 is less sensitive than RUV-2 to the choice
of K. For another, we found that RUV-4 is less sensitive to violations of the control gene
assumption. This second observation, however, is only part of a larger point, which is that
RUV-2 and RUV-4 use control genes differently. In some sense, both RUV-2 and RUV-4 use
control genes as a reference point for a comparison. The variation present in the control genes
is assumed to be unwanted variation. The negative control genes tell us what the unwanted
variation “looks like.” When we look at variation in non-control genes, the question we must
answer is, “is this variation of interest?” To answer this question, we compare the variation
we observe in the non-control genes to the variation we observe in the control genes. If the
variation we observe in a non-control gene looks like the variation we observe in the negative
controls, we conclude that there is no interesting variation present in that gene. However, if
the variation in the non-control gene does not look like the variation present in the negative
controls, we conclude that that there is indeed some interesting variation in that gene, i.e.
that the gene is differentially expressed with respect to the factor of interest.

The difference between RUV-2 and RUV-4 is that the comparison between the non-
control genes and the control genes is more “direct” with RUV-4 than it is with RUV-
2. In Section 3.3.5.3, we found that the RUV-4 estimate of β might outperform even the
(hypothetical) OLS estimate of β (if W were somehow known). In the discussion of Section
3.3.5.4, we noted that this enhanced performance of RUV-4 relies on the assumption that the
α?jc are representative of the α?jc̄ . In our discussion of the functional approach, we took this
a step further. The assumption that the control genes are representative takes on a central
role. From the functional point of view, the role of control genes in RUV-4 is to provide an
estimate of the background signal, against which the signal of the non-control genes may be
compared. To determine whether a non-control gene jc̄ is differentially expressed, we first
compute its observed signal (bY X)jc̄ . We then calculate α̂?jc̄ to see how this gene has been
affected by the unwanted factors. Next we check to see how much signal we observe from
control genes that have been similarly affected by the unwanted factors, i.e. have similar
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values of α̂. Finally, we compare the observed signal of gene jc̄ to the observed signal of the
comparable control genes (those that have similar values of α̂). If the observed signal of gene
jc̄ is about the same as that of the comparable control genes, we conclude that the observed
signal of gene jc̄ is just due to unwanted variation and that gene jc̄ is not differentially
expressed. If, however, the observed signal of gene jc̄ is substantially different from the
observed signal of the comparable control genes, we conclude that gene jc̄ is differentially
expressed.

With RUV-2, the comparison between the non-control genes and control genes is less
direct. The comparison is more strongly intermediated by the linear model. With RUV-2
it is not necessary that the values of α for the control genes are in any way representative
of the values of α for the non-control genes. All that matters is that the control genes are
affected by the same unwanted factors as the non-control genes, and that the linear model
holds. With RUV-2 we use the control genes simply to identify the linear subspace in which
the unwanted variation resides (Recall the RUV-2 estimate of W is better than the RUV-4
estimate of W , even if the RUV-4 estimate of β is better than the RUV-2 estimate of β.
Indeed, unlike the RUV-4 estimate of W , it can be shown that under suitable conditions
the RUV-2 estimate of W is consistent.). We then completely remove any and all variation
within this subspace. Whether the patterns of variation within this subspace are similar
between the control genes and the non-control genes is a moot point; all of the variation in
this subspace is removed.

This difference between RUV-2 and RUV-4 has important practical implications. We have
made a strong case in this thesis for the use of RUV-4. However, RUV-4 is not necessarily
preferable to RUV-2 in all circumstances. Consider a case in which only a small number
of genes are differentially expressed with respect to the factor of interest X. Suppose that
these genes are also strongly affected by an unknown, unwanted factor W . Suppose also,
however, that the unwanted factor W affects only a small number of the control genes. Then
the values of α for the control genes will not be representative of the values of α for the
genes that are differentially expressed. The values of α for the genes that are differentially
expressed will be large (these genes are strongly affected by W ) but the values of the α for
the control genes will be mostly 0 (most control genes are unaffected by W ).

As a concrete example, suppose there is a genetic disease and it is known that the disease
is somehow caused by a gene or genes on the X chromosome. A researcher wants to perform
a differential expression analysis to find the gene(s) associated with the disease. Suppose
that both men and women are in the study. Gender will be an important source of unwanted
biological variation. Suppose, however, that information on the gender of the people in the
study is missing. The researcher therefore decides to use genes from the Y chromosome
as negative controls. Since the researcher would also like to get a good estimate of any
unwanted technical factors, and since there are not many genes on the Y chromosome, the
researcher includes housekeeping genes in the set of negative controls as well. Now, most
of the control genes will be housekeeping genes and unaffected by gender. Thus, the α?jc
will not be representative of the α?jc̄ of the genes on the X chromosome. RUV-4 may fail to
properly adjust for gender. On the other hand, as long as K is chosen large enough, gender
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should find its way into RUV-2’s estimate of W , and RUV-2 may succeed in adjusting for
gender.

Of course, with RUV-2, a relatively large K may lead to problems of its own. In prac-
tice, the best option may sometimes be a hybrid of RUV-2 and RUV-4. For example, the
researcher might choose to perform factor analysis on just the genes of the Y chromosome
and keep only the first few factors. Assuming that gender is captured in these first few
factors, the researcher might then choose to include these factors as covariates in RUV-
4. Although these factors are estimated from negative controls (specifically, Y-chromosome
genes), they could be incorporated into RUV-4 in exactly the same way known covariates are
incorporated into RUV-4. In other words, the W from RUV-2 (with Y-chromosome genes
as controls) would now play the role of Z in RUV-4 (with housekeeping genes as controls).

Of course, RUV-2 is not the only other method with which RUV-4 shares an interesting
connection. As noted in the introduction, RUV-4 is of theoretical interest precisely because
it shares similarities both with methods such as SVA and LEAPP, in which unwanted factors
are estimated from the data and then included in the design matrix of a regression model,
and with methods such as ICE and LMM-EH, in which unwanted variation is modeled as
part of a complicated error term.

Consider first a comparison of RUV-4, SVA, and LEAPP. All model unwanted variation
as arising from unobserved latent variables (our W ), and assume that the number of latent
variables (our k) is less than the number of samples (our m). Each of these methods requires
an estimate of k. We estimate k using the method of Section 3.3.6.6, while both SVA and
LEAPP estimate k using the method of Buja and Eyuboglu (1992). Each of the methods
allows every gene to have its own variance (our σ2

j ), and estimates these variances in the
“standard” way (from the residuals). Where these methods differ is in the exact method by
which they estimate the latent factors. Even here, however, there are similarities — each of
the methods begins by projecting away the factor of interest (with LEAPP, this is formulated
as a rotation) in order to make sure that the factor of interest is not accidentally picked up
with the unwanted factors. After this first step, though, the methods differ. RUV-4 relies
on control genes to estimate bWX . LEAPP proceeds somewhat similarly, and also estimates
bWX as an intermediate step. Instead of relying on control genes, however, LEAPP assumes
that β is sparse, and then applies the outlier-detection algorithm Θ-IPOD (She and Owen,
2011). SVA attempts to isolate genes that are primarily influenced by the unwanted factors
but not influenced by the factor of interest, and then proceeds to estimate the unwanted
factors by focusing the factor analysis on just those genes.

Consider now a comparison of RUV-inv (which is simply RUV-4 with K = m − p − q)
and the mixed model methods ICE and LMM-EH. All model the unwanted variation as part
of a random error term with a complicated covariance structure. In each of these methods,
the covariance matrix is assumed to be of the form τ 2

j Σ + σ2
j I, where Σ is the same for all

genes. For the purposes of estimating β, RUV-inv effectively assumes that τ 2
j and σ2

j are
constant across genes (see Section 3.3.7.4 and the discussion in Section B.1.3), but ICE and
LMM-EH allow τ 2

j and σ2
j to vary by gene. For the purposes of estimating Var(β̂), however,

all three methods allow σ2
j to vary by gene. The real difference between the methods is in
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the way the model is fit. Both ICE and LMM-EH fit all of the parameters of the model
simultaneously using maximum likelihood methods. With RUV-inv, however, the covariance
matrix is estimated using the control genes, β is estimated using GLS, and σ2

j is estimated
using the inverse method. It is the inverse method that is arguably the most important
difference between RUV-inv and other mixed model methods.

The inverse method for estimating variances is quite different from the methods that
ICE and LMM-EH use to estimate variances. Indeed, the inverse method is unlike any other
method of which we are aware.

Some readers may find the inverse method reminiscent of randomization tests. Both
randomization tests and the inverse method make use of “random factors of interest.” We
too see similarities, and we have found the analogy with randomization tests to be helpful in
developing intuition for what the inverse method is doing. Of course, there are also serious
differences, perhaps the most obvious of which is that randomization tests are generally
used with non-parametric models, whereas the inverse method is used in the context of a
parametric model.

On an intuitive level, the inverse method may perhaps be best understood as a hybrid
between traditional randomization tests and traditional parametric methods. This hybrid
loses some of the nicer conceptual properties of randomization tests, but retains some of the
practical benefits. The p-values produced by randomization tests (properly applied) have
a very clear, believable interpretation. The p-values produced by the inverse method do
not; inverse method p-values are computed using artificial modeling assumptions. On the
other hand, like randomization tests, the inverse method does appear to maintain fairly good
control of the type-1 error rate.

We conclude this thesis with some suggestions for future research. One direction for
improvement would be to allow σ2 to vary not just by gene, but by sample. This would
have immediate applications when combining data from different microarray platforms (e.g.
Affymetrix arrays and Agilent arrays); the variance of the measured expression level of a
gene can be quite different from one platform to another. By allowing σ2 to vary from one
batch to another, it may be possible to achieve an increase in power.

The method of empirical variances presents a second possibility for future improvements.
Our development of the method of empirical variances in this thesis has been mainly proof of
principle. It seems very likely that improvements could be made. For example, other methods
of non-linear regression may out-perform the minimum lower sets algorithm. Moreover, our
implementation of the method of empirical variances relies on the assumption that β is
sparse, and ignoring outliers. Instead of assuming sparsity and ignoring outliers, however, it
may be better to simply limit the non-linear regression to control genes. We did not pursue
this approach because the function fit by the minimum lower sets algorithm is very flexible,
and some of our datasets contained only a few hundred negative controls. The estimated
regression function would be far too noisy. This problem could be solved, however, by either
increasing the number of controls (e.g. empirical controls), or replacing the minimum lower
sets algorithm with a less flexible alternative.

Additional possibilities for future research lay in the estimation of k. Our method for
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estimating k relies on comparing the scale of the variation seen in β̂c to the scale of the
variation seen in α̂c. Thus, since β̂ is a function of X, our estimate of k is also a function of
X. However, factor analysis has many applications outside the removal of unwanted variation
in differential expression analyses, and in many applications of factor analysis there is no
factor of interest to play the role of our X. However, there may still be a need to know
the number of factors. In such situations, a researcher could simply choose many X? at
random and produce many different estimates of k. A final estimate of k could then be
produced, for example, by taking the median. Note, moreover, that with a random X?, we
might wish to regard every gene (or more generally, “feature”) as a control gene, on the
grounds that no gene should be “truly” differentially expressed with respect to a random
X?. Thus, if we estimate k via random X?, it is not even necessary to have any negative
controls. Such a method may therefore present a novel and widely applicable solution to the
number-of-factors problem.

Finally, we would like to reiterate our belief that significant advances may be made
by fully exploiting the functional approach. In particular, the possibility of incorporating
“outside” information, such as a gene’s GC content, seems to hold great promise.
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Appendix A

RUV-2 Supplementary Material

A.1 MAQC Example

The Microarray Quality Control (MAQC) project (Shi et al., 2006) sought to investigate the
replicability of microarray results by processing multiple technical replicates of a few biolog-
ical samples at multiple laboratories on multiple microarray platforms. In particular, they
processed 5 technical replicates of Stratagene Universal Human Reference RNA (“Sample
A”) and 5 technical replicates of Ambion Human Brain Reference RNA (“Sample B”) at
each of 6 laboratories (for a total of 60 chips) using Affymetrix HG-U133 Plus 2 arrays. To
investigate unwanted variation in this dataset, we first subtracted off sample means gene by
gene (to remove the biological signal), and then computed the SVD of the resulting matrix.
Substantial variation between laboratories is evident, but so is substantial within-laboratory
variation.

We contacted MAQC to enquire if there was any known explanation for the relatively
large (though still minor in absolute terms) unwanted variation at the fourth laboratory (the
E.P.A., shown in red). We were informed that at this laboratory, the person who ran the
experiment did not get enough training and hands-on experience.
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Figure A.1: The first PC of the MAQC HG-U133 Plus 2 data after removal of the biological
signal. Different colors represent different laboratories. Circles represent Sample A; pluses
represent Sample B. Unwanted variation occurs both between and within batches. The data
was not preprocessed.
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A.2 Example Code

RUV-2 is very simple to implement and does not warrant an R package. Instead, we include
here some sample code implementing RUV-2 using SVD and Limma. Note that the expres-
sion matrix in this example is n ×m instead of m × n, since this is how expression data is
often stored in practice. The variable ctl must index the genes to be used as control genes.

RUV2 = function(Y, X, ctl, k, Z=matrix(rep(1, ncol(Y))))

{

library(limma)

# Project onto the orthogonal complement of Z

RZY = Y - Y%*%Z%*%solve(t(Z)%*%Z)%*%t(Z)

# Perform SVD

W = svd(RZY[ctl,])$v

# Keep the first k factors

W = W[,1:k]

# Fit using Limma and return

fit = lmFit(Y,cbind(X,Z,W))

fit = eBayes(fit)

return(fit)

}
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A.3 Additional Gender Study Figures
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Figure A.2: Gender study scree plots on a log scale at different stages of preprocessing.
From left to right: No preprocessing; background correction / quantile normalization done
separately for each platform type; background correction / quantile normalization followed by
a final location/scale adjustment across all chips. All genes were included in the eigenanalysis.



APPENDIX A. RUV-2 SUPPLEMENTARY MATERIAL 128

k = 1 k = 2 k = 3

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

k = 5 k = 10 k = 15

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

k = 25 k = 40 k = 60

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Figure A.3: Gender study RLE plots after adjustment, using various values of k. Quality
improves with increasing k at first, then decreases as too many factors are removed. Data was
fully preprocessed (BG+QN+LS). The factors were computed by SVD on the housekeeping
genes.
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Figure A.4: Gender study p-value histograms after adjustment, using various values of k.
Histogram breakpoints are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data was fully pre-
processed (BG+QN+LS). The factors were computed by SVD on the housekeeping genes.
P-values were computed using Limma.
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Figure A.5: Gender study RLE plots after adjustment (k = 10), using different methods of
factor analysis. The results are remarkably similar. The data was preprocessed (BG + QN
+ LS). The factors were computed using the housekeeping genes.
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Figure A.6: Gender study p-value histograms after adjustment (k = 10), using different
methods of factor analysis, and different methods of computing p-values. The data was
preprocessed (BG + QN + LS). The factors were computed using the housekeeping genes.
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Figure A.7: Comparison of the performance of variants of RUV-2 in the gender study. The
number of X / Y genes discovered is plotted as a function of k. Genes were ranked by
p-value; results are shown for the number of X / Y genes ranked in the top 20 (plus), top 40
(triangle), and top 60 (circle). k = 0 corresponds to no adjustment. Data was preprocessed
(BG + NM + LS). PCs were computed using the housekeeping genes.
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Figure A.8: Comparison of the performance of different factor analysis methods with and
without preprocessing in the gender study. The number of X / Y genes discovered is plotted
as a function of k. Genes were ranked by p-value; results are shown for the number of X / Y
genes ranked in the top 20 (plus), top 40 (triangle), and top 60 (circle). k = 0 corresponds to
no adjustment. PCs were computed using the housekeeping genes. P-values were computed
using Limma.
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Figure A.9: Gender study RLE plots and p-value histograms after adjustments by SVA /
Combat. The “two-step” variant of SVA appears to do fairly well. P-values were computed
using Limma.
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Unadjusted
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 6× 10−39 11 IL2RA 10 0.4 21 PTPN20B 10 1
2 KDM5D Y 2× 10−19 12 ASMTL X Y 0.5 22 SLC25A6 X Y 1
3 DDX3Y Y 3× 10−19 13 IFITM1 11 0.7 23 CDC42 1 1
4 XIST X 2× 10−13 14 USP9X X 0.9 24 COASY 17 1
5 USP9Y Y 4× 10−11 15 CD24 6 1 25 VWF 12 1
6 TTTY15 Y 2× 10−08 16 PECAM1 17 1 26 DBC1 9 1
7 UTY Y 2× 10−07 17 HBA1 16 1 27 CD59 11 1
8 EIF1AY Y 3× 10−05 18 PCDH11X X 1 28 IL10RB 21 1
9 HBB 11 5× 10−02 19 HBG1 11 1 29 DNAJB1 19 1
10 CIRBP 19 0.3 20 HBB 11 1 30 ANKRD26 10 1

RUV-2 (SVD), k = 10, housekeeping genes
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 1× 10−43 11 DDX3X X 5× 10−06 21 NOMO1 16 3× 10−03

2 KDM5D Y 2× 10−26 12 LITAF 16 4× 10−05 22 TF 3 3× 10−03

3 DDX3Y Y 6× 10−24 13 PCDH11X X 6× 10−05 23 HBA1 16 4× 10−03

4 XIST X 1× 10−19 14 HBG1 11 3× 10−04 24 GTPBP6 X Y 4× 10−03

5 USP9Y Y 2× 10−16 15 USP9X X 6× 10−04 25 ENPP2 8 4× 10−03

6 UTY Y 7× 10−14 16 SLC25A6 X Y 6× 10−04 26 TUBA1B 12 5× 10−03

7 CD99 X Y 7× 10−12 17 FAM153A 5 1× 10−03 27 KLK6 19 5× 10−03

8 CYorf15B Y 5× 10−10 18 RPS4X X 1× 10−03 28 IFITM1 11 5× 10−03

9 TTTY15 Y 2× 10−08 19 PPP2CB 8 2× 10−03 29 HBB 11 5× 10−03

10 EIF1AY Y 4× 10−07 20 H2AFY 5 2× 10−03 30 PRKY Y 7× 10−03

Table A.1: Comparison of gender study gene rankings before and after adjustment. The data
has been fully preprocessed (BG + NM + LS). The p-values were calculated using Limma.
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Unadjusted
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 1 11 CRYM 16 1 21 GAP43 3 1
2 DDX3Y Y 1 12 XIST X 1 22 GNAS 20 1
3 HBB 11 1 13 CALM1 14 1 23 SPP1 4 1
4 HBA1 16 1 14 ACTB 7 1 24 SNAP25 20 1
5 HBB 11 1 15 PFN2 3 1 25 UTY Y 1
6 CIRBP 19 1 16 PRKAR1A 17 1 26 SLC17A7 19 1
7 KDM5D Y 1 17 ACTB 7 1 27 RPS23 5 1
8 GAPDH 12 1 18 SLC25A6 X Y 1 28 RPS21 20 1
9 GAD1 2 1 19 GAPDH 12 1 29 HSP90AB1 6 1
10 USP9Y Y 1 20 GNAS 20 1 30 ATP5A1 18 1

RUV-2 (SVD), k = 10, housekeeping genes
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 8× 10−30 11 HBB 11 2× 10−05 21 PDE4DIP 1 1× 10−03

2 KDM5D Y 4× 10−21 12 HBA1 16 4× 10−05 22 DDX3X X 1× 10−03

3 DDX3Y Y 4× 10−14 13 SLC25A6 X Y 1× 10−04 23 EIF1AY Y 3× 10−03

4 XIST X 1× 10−11 14 PCDH11X X 1× 10−04 24 NCL 2 3× 10−03

5 CD99 X Y 4× 10−11 15 HBB 11 2× 10−04 25 HDHD1A X 3× 10−03

6 UTY Y 5× 10−10 16 SLC25A6 X Y 5× 10−04 26 GTPBP6 X Y 3× 10−03

7 USP9Y Y 3× 10−09 17 USP9X X 6× 10−04 27 ASMTL X Y 3× 10−03

8 RPS4X X 5× 10−07 18 FDPS 1 6× 10−04 28 IFITM1 11 4× 10−03

9 TTTY15 Y 7× 10−07 19 HBG1 11 6× 10−04 29 PIN1 19 5× 10−03

10 CYorf15B Y 1× 10−05 20 NLGN4Y Y 6× 10−04 30 POLD2 7 6× 10−03

Table A.2: Comparison of gender gene rankings before and after adjustment. The data has
not been preprocessed. The p-values were calculated using Limma.
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A.4 Additional Alzheimer’s Study Figures

XIST DDX3Y

Figure A.10: Plots of XIST and DDX3Y expression levels in the Alzheimer’s study. The
horizontal axis is just sample index. It is clear which samples are male and which are female.
Data was preprocessed.

None BG + QN

Figure A.11: Alzheimer’s study scree plots with and without preprocessing. Left: No pre-
processing; Right: Background correction / quantile normalization. All genes were included
in the eigenanalysis.
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None BG + QN

Figure A.12: Alzheimer’s study RLE plots with and without preprocessing. Left: No pre-
processing; Right: Background correction / quantile normalization.
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k = 1 k = 2 k = 3

k = 5 k = 10 k = 15

Figure A.13: Alzheimer’s study RLE plots after adjustment, using various values of k. Data
was preprocessed (BG+QN). The factors were computed by SVD on the housekeeping genes.
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k = 1 k = 2 k = 3

k = 5 k = 10 k = 15

Figure A.14: Alzheimer’s study P-value histograms after adjustment, using various values
of k. Histogram breakpoints are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data was
preprocessed (BG+QN). The factors were computed by SVD on the housekeeping genes.
P-values were computed using Limma.
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SVD EM Robust

Figure A.15: Alzheimer’s study RLE plots after adjustment (k = 10), using different methods
of factor analysis. The data was preprocessed (BG + QN). Factors were computed using the
housekeeping genes.
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SVD EM Robust

Standard

Limma

Figure A.16: Alzheimer’s study p-value histograms after adjustment (k = 10), using different
methods of factor analysis, and different methods of computing p-values. The data was
preprocessed (BG + QN). Factors were computed using the housekeeping genes.
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SVD EM Robust

Standard

Limma

Figure A.17: Comparison of the performance of variants of RUV-2 in the Alzheimer’s study.
The number of X / Y genes discovered is plotted as a function of k. Genes were ranked by
p-value; results are shown for the number of X / Y genes ranked in the top 20 (plus), top 40
(triangle), and top 60 (circle). k = 0 corresponds to no adjustment. Data was preprocessed
(BG + QN). PCs were computed using the housekeeping genes.
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Figure A.18: Comparison of the performance of different factor analysis methods with and
without preprocessing in the Alzheimer’s study. The number of X / Y genes discovered is
plotted as a function of k. Genes were ranked by p-value; results are shown for the number
of X / Y genes ranked in the top 20 (plus), top 40 (triangle), and top 60 (circle). k = 0
corresponds to no adjustment. PCs were computed using the housekeeping genes. P-values
were computed using Limma.
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SVA IRW

SVA Two Step

Figure A.19: Alzheimer’s study RLE plots and p-value histograms after adjustments by
SVA. P-values were computed using Limma. Data was preprocessed (BG + QN).
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Unadjusted
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 XIST X 3× 10−28 11 TTTY15 Y 1× 10−03 21 KLHL22 22 1
2 XIST X 8× 10−27 12 UTY Y 1× 10−03 22 TAPBPL 12 1
3 DDX3Y Y 2× 10−20 13 CYorf15B Y 2× 10−03 23 LPAR6 13 1
4 RPS4Y1 Y 3× 10−15 14 DDX3Y Y 8× 10−02 24 PRKAB1 12 1
5 KDM5D Y 2× 10−11 15 ZBED1 X Y 1 25 GPX3 5 1
6 EIF1AY Y 1× 10−07 16 PLCXD1 X Y 1 26 HDHD1A X 1
7 USP9Y Y 8× 10−07 17 CDK10 16 1 27 KDM6A X 1
8 EIF1AY Y 1× 10−06 18 GPX3 5 1 28 CD99 X Y 1
9 NLGN4Y Y 5× 10−06 19 NCKAP1 2 1 29 PRKAR1B 7 1
10 NCRNA00185 Y 1× 10−05 20 UBAP2L 1 1 30 MARCH1 4 1

RUV-2 (SVD), k = 10, housekeeping genes
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 XIST X 1× 10−21 11 TTTY15 Y 1× 10−05 21 COL4A5 X 7× 10−02

2 XIST X 1× 10−21 12 CYorf15B Y 1× 10−05 22 FBXO9 6 7× 10−02

3 DDX3Y Y 4× 10−16 13 CD99 X Y 5× 10−04 23 PLCL1 2 7× 10−02

4 RPS4Y1 Y 1× 10−15 14 NA X 3× 10−03 24 DDX3X X 0.1
5 KDM5D Y 1× 10−11 15 CD99 X Y 3× 10−03 25 KDM6A X 0.1
6 USP9Y Y 8× 10−09 16 UTY Y 1× 10−02 26 DOPEY1 6 0.1
7 EIF1AY Y 4× 10−08 17 DDX3Y Y 3× 10−02 27 DDX3X X 0.1
8 EIF1AY Y 2× 10−07 18 RPS4X X 3× 10−02 28 ZBED1 X Y 0.1
9 NLGN4Y Y 4× 10−07 19 KDM6A X 4× 10−02 29 RARS 5 0.2
10 NCRNA00185 Y 1× 10−06 20 PLCXD1 X Y 6× 10−02 30 WNT8B 10 0.2

Table A.3: Comparison of gene rankings before and after adjustment (SVD, k = 10) in
the Alzheimer’s study. The data has been preprocessed (BG + NM). The p-values were
computed using Limma.
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A.5 Additional TCGA Figures

A.5.0.7 Exon Array Data
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Figure A.20: TCGA exon array scree plots with and without preprocessing. Left: No pre-
processing; Right: Background correction / quantile normalization. All genes were included
in the eigenanalysis.

Figure A.21: TCGA exon array RLE plots with and without preprocessing. Left: No pre-
processing; Right: Background correction / quantile normalization.



APPENDIX A. RUV-2 SUPPLEMENTARY MATERIAL 148

Unadjusted k = 1

k = 5 k = 15

k = 30 k = 50

k = 100 k = 200

Figure A.22: TCGA exon array RLE plots after adjustment, using various values of k. Data
was preprocessed (BG+QN). The factors were computed by SVD on the housekeeping genes.
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Figure A.23: TCGA exon array p-value histograms after adjustment, using various values
of k. Histogram breakpoints are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data was
preprocessed (BG+QN). The factors were computed by SVD on the housekeeping genes.
P-values were computed using Limma.
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Figure A.24: TCGA exon array RLE plots after adjustment (k = 100), using different meth-
ods of factor analysis. The data was preprocessed (BG + QN). The factors were computed
using housekeeping genes.
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Figure A.25: TCGA exon array p-value histograms after adjustment (k = 100), using differ-
ent methods of factor analysis, and different methods of computing p-values. The data was
preprocessed (BG + QN). The factors were computed using housekeeping genes.
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Figure A.26: Comparison of the performance of variants of RUV-2 in the TCGA exon array
data. The number of X / Y genes discovered is plotted as a function of k. Genes were
ranked by p-value; results are shown for the number of X / Y genes ranked in the top 20
(plus), top 40 (triangle), and top 60 (circle). k = 0 corresponds to no adjustment. Data was
preprocessed (BG + NM). PCs were computed using the housekeeping genes.
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Figure A.27: Comparison of the performance of different factor analysis methods with and
without preprocessing in the TCGA exon array data. The number of X / Y genes discovered
is plotted as a function of k. Genes were ranked by p-value; results are shown for the number
of X / Y genes ranked in the top 20 (plus), top 40 (triangle), and top 60 (circle). k = 0
corresponds to no adjustment. PCs were computed using the housekeeping genes. P-values
were computed using Limma.
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Figure A.28: TCGA exon array RLE plots and p-value histograms after adjustments by
SVA. The data was preprocessed. The p-values were computed using Limma.



APPENDIX A. RUV-2 SUPPLEMENTARY MATERIAL 155

Unadjusted
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 1× 10−159 16 JARID1C X 7× 10−21 31 LRRC47 1 3× 10−2

2 DDX3Y Y 6× 10−137 17 ZFX X 3× 10−18 32 SYAP1 X 3× 10−2

3 EIF1AY Y 2× 10−131 18 UTX X 1× 10−13 33 MYLK 3 3× 10−2

4 UTY Y 3× 10−125 19 LOC554203 X 1× 10−12 34 IHPK1 3 5× 10−2

5 USP9Y Y 3× 10−120 20 HDHD1A X 1× 10−12 35 HTATIP2 11 5× 10−2

6 CYorf15A Y 3× 10−117 21 CXorf15 X 5× 10−8 36 NLGN4X X 6× 10−2

7 ZFY Y 4× 10−113 22 DDX3X X 9× 10−7 37 ZRSR2 X 6× 10−2

8 JARID1D Y 2× 10−112 23 EIF1AX X 2× 10−6 38 PRKCH 14 6× 10−2

9 RPS4Y2 Y 3× 10−94 24 RPS4X X 1× 10−5 39 EDG3 na 7× 10−2

10 NLGN4Y Y 1× 10−92 25 SRY Y 2× 10−4 40 NUPL2 7 7× 10−2

11 CYorf15B Y 4× 10−81 26 STIM2 4 4× 10−3 41 SH3PXD2A 10 7× 10−2

12 TMSB4Y Y 7× 10−48 27 EIF2S3 X 5× 10−3 42 STS X 7× 10−2

13 TTTY10 Y 1× 10−47 28 ZFP2 5 5× 10−3 43 PAPSS2 10 7× 10−2

14 PRKY Y 5× 10−31 29 GEMIN8 X 7× 10−3 44 ABCA11 4 7× 10−2

15 TTTY14 Y 3× 10−26 30 MICAL2 11 1× 10−2 45 GGTLA1 22 7× 10−2

RUV-2 (SVD), k = 100, housekeeping genes
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 1× 10−104 16 TTTY14 Y 3× 10−30 31 CA5B X 4× 10−5

2 DDX3Y Y 2× 10−88 17 ZFX X 3× 10−28 32 GEMIN8 X 4× 10−5

3 UTY Y 2× 10−83 18 PRKY Y 9× 10−21 33 ORC4L 2 2× 10−3

4 EIF1AY Y 5× 10−81 19 HDHD1A X 1× 10−19 34 CHM X 3× 10−3

5 USP9Y Y 5× 10−81 20 DDX3X X 4× 10−19 35 GPR88 1 4× 10−3

6 CYorf15A Y 2× 10−73 21 RPS4X X 4× 10−17 36 FUNDC1 X 5× 10−3

7 ZFY Y 3× 10−73 22 EIF2S3 X 9× 10−17 37 SRY Y 1× 10−2

8 JARID1D Y 5× 10−71 23 EIF1AX X 1× 10−16 38 CENPA 2 2× 10−2

9 RPS4Y2 Y 8× 10−71 24 SYAP1 X 6× 10−16 39 INSR 19 3× 10−2

10 NLGN4Y Y 3× 10−60 25 LOC554203 X 1× 10−15 40 MYL3 3 8× 10−2

11 CYorf15B Y 2× 10−57 26 CXorf15 X 3× 10−15 41 FMNL2 2 8× 10−2

12 JARID1C X 2× 10−38 27 SMC1A X 4× 10−15 42 RNF213 17 8× 10−2

13 TMSB4Y Y 1× 10−34 28 STS X 6× 10−13 43 GIP 17 9× 10−2

14 UTX X 1× 10−31 29 USP9X X 1× 10−5 44 UBE1 X 9× 10−2

15 TTTY10 Y 3× 10−30 30 ZRSR2 X 2× 10−5 45 TRIM23 5 0.1

Table A.4: Comparison of gene rankings before and after adjustment (SVD, k = 100) using
the TCGA exon array data. The data has been preprocessed (BG + NM). The p-values
were computed using Limma.
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A.5.0.8 HG-U133a Data

Figure A.29: TCGA HT HG-133A scree plots with and without preprocessing. Left: No pre-
processing; Right: Background correction / quantile normalization. All genes were included
in the eigenanalysis.

None BG + QN

Figure A.30: TCGA HT HG-133A RLE plots with and without preprocessing. Left: No
preprocessing; Right: Background correction / quantile normalization.
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Unadjusted k = 1

k = 5 k = 15

k = 30 k = 50

k = 100 k = 200

Figure A.31: TCGA HT HG-133A RLE plots after adjustment, using various values of k.
Data was preprocessed (BG+QN). The factors were computed by SVD on the housekeeping
genes.
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Figure A.32: TCGA HT HG-133A p-value histograms after adjustment, using various values
of k. Histogram breakpoints are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data was
preprocessed (BG+QN). The factors were computed by SVD on the housekeeping genes.
P-values were computed using Limma.
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SVD

EM

Robust

Figure A.33: TCGA HT HG-133A RLE plots after adjustment (k = 30), using different
methods of factor analysis. The data was preprocessed (BG + QN). The factors were com-
puted using housekeeping genes.
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SVD EM Robust

Standard

Limma

Figure A.34: TCGA HT HG-133A p-value histograms after adjustment (k = 30), using
different methods of factor analysis, and different methods of computing p-values. The data
was preprocessed (BG + QN). The factors were computed using housekeeping genes.
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SVD EM Robust

Standard

Limma

Figure A.35: Comparison of the performance of variants of RUV-2 in the TCGA HT HG-
U133A data. The number of X / Y genes discovered is plotted as a function of k. Genes
were ranked by p-value; results are shown for the number of X / Y genes ranked in the top
20 (plus), top 40 (triangle), and top 60 (circle). k = 0 corresponds to no adjustment. Data
was preprocessed (BG + NM). PCs were computed using the housekeeping genes.
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Figure A.36: Comparison of the performance of different factor analysis methods with and
without preprocessing in the TCGA HT HG-U133A data. The number of X / Y genes
discovered is plotted as a function of k. Genes were ranked by p-value; results are shown
for the number of X / Y genes ranked in the top 20 (plus), top 40 (triangle), and top 60
(circle). k = 0 corresponds to no adjustment. PCs were computed using the housekeeping
genes. P-values were computed using Limma.
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SVA IRW

SVA Two Step

Figure A.37: TCGA HT HG-U133A RLE plots and p-value histograms after adjustments
by SVA. The data was preprocessed (BG + QN). P-values were computed using Limma.
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Unadjusted
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 2× 10−157 21 KDM6A X 4× 10−12 41 MICAL2 11 3× 10−03

2 DDX3Y Y 5× 10−139 22 TMSB4Y Y 2× 10−11 42 GPR88 1 4× 10−03

3 XIST X 3× 10−113 23 KDM6A X 2× 10−09 43 ZRSR2 X 4× 10−03

4 EIF1AY Y 5× 10−111 24 KDM5C X 9× 10−09 44 CCDC71 3 5× 10−03

5 XIST X 1× 10−109 25 RPS4X X 1× 10−08 45 FILIP1L 3 6× 10−03

6 KDM5D Y 5× 10−94 26 CD99 X Y 5× 10−08 46 GEMIN8 X 7× 10−03

7 EIF1AY Y 7× 10−93 27 KDM6A X 1× 10−07 47 CADM4 19 1× 10−02

8 DDX3Y Y 6× 10−89 28 CD99 X Y 2× 10−07 48 LASS4 19 2× 10−02

9 UTY Y 1× 10−77 29 SRY Y 2× 10−07 49 CA5BP X 2× 10−02

10 TTTY15 Y 4× 10−77 30 RPS4X X 1× 10−06 50 NA NA 2× 10−02

11 NLGN4Y Y 1× 10−64 31 PRKY Y 3× 10−06 51 TMEM147 19 3× 10−02

12 NCRNA00185 Y 4× 10−64 32 NA NA 4× 10−06 52 DDX3X X 3× 10−02

13 CYorf15B Y 3× 10−41 33 EIF1AX X 4× 10−06 53 ZFYVE9 1 4× 10−02

14 USP9Y Y 2× 10−39 34 TRIM31 6 1× 10−04 54 HTATIP2 11 4× 10−02

15 HDHD1A X 2× 10−23 35 RPS4X X 2× 10−04 55 NA NA 4× 10−02

16 UTY Y 1× 10−22 36 ZRSR2 X 4× 10−04 56 RTCD1 1 5× 10−02

17 ZFY Y 5× 10−21 37 USP19 3 1× 10−03 57 THY1 11 5× 10−02

18 UTY Y 9× 10−18 38 USF2 19 1× 10−03 58 HTATIP2 11 5× 10−02

19 DDX3X X 1× 10−14 39 USF2 19 2× 10−03 59 DYRK1B 19 5× 10−02

20 ZFX X 2× 10−13 40 EIF1AX X 2× 10−03 60 TUSC2 3 5× 10−02

RUV-2 (SVD), k = 30, housekeeping genes
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 2× 10−141 21 TMSB4Y Y 5× 10−19 41 ZRSR2 X 5× 10−06

2 DDX3Y Y 8× 10−126 22 ZFX X 3× 10−17 42 EIF1AX X 7× 10−06

3 XIST X 8× 10−105 23 KDM6A X 3× 10−16 43 USP9X X 3× 10−05

4 XIST X 1× 10−101 24 DDX3X X 2× 10−15 44 EIF1AX X 5× 10−05

5 EIF1AY Y 7× 10−99 25 KDM6A X 2× 10−14 45 TMEM147 19 3× 10−04

6 EIF1AY Y 4× 10−93 26 RPS4X X 2× 10−13 46 EIF2S3 X 3× 10−04

7 KDM5D Y 5× 10−91 27 KDM5C X 5× 10−12 47 DDX3X X 3× 10−04

8 DDX3Y Y 1× 10−84 28 NA NA 1× 10−11 48 ATP10A 15 3× 10−04

9 TTTY15 Y 9× 10−81 29 RPS4X X 5× 10−11 49 STIM1 11 5× 10−04

10 UTY Y 6× 10−79 30 STS X 7× 10−11 50 USP9X X 7× 10−04

11 NLGN4Y Y 4× 10−71 31 CD99 X Y 1× 10−10 51 TMEM204 16 8× 10−04

12 NCRNA00185 Y 6× 10−67 32 CD99 X Y 4× 10−10 52 NA NA 1× 10−03

13 USP9Y Y 6× 10−49 33 PRKY Y 1× 10−09 53 ZFX X 2× 10−03

14 CYorf15B Y 3× 10−46 34 RPS4X X 1× 10−09 54 GPR88 1 2× 10−03

15 UTY Y 2× 10−33 35 EIF1AX X 5× 10−09 55 DOCK9 13 3× 10−03

16 KDM6A X 2× 10−28 36 ZRSR2 X 3× 10−07 56 UBA1 X 3× 10−03

17 HDHD1A X 6× 10−26 37 DDX3X X 4× 10−07 57 CA5BP X 5× 10−03

18 DDX3X X 2× 10−25 38 TRIM31 6 7× 10−07 58 STS X 6× 10−03

19 UTY Y 4× 10−23 39 SRY Y 8× 10−07 59 GEMIN8 X 6× 10−03

20 ZFY Y 6× 10−23 40 STS X 2× 10−06 60 PDE4DIP 1 7× 10−03

Table A.5: Comparison of gene rankings before and after adjustment (SVD, k = 30) using
the TCGA HT HG-U133A data. The data has been preprocessed (BG + NM). P-values
were calculated using Limma.
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A.6 Additional NCI-60 Figures

The following figures are dendrograms of the NCI-60 datasets (HG-U95A and HG-U133A)
before and after preprocessing, before and after adjustment using various values of k, and
using different sets of negative controls (housekeeping genes and spike-in controls). There
are a lot of dendrograms, and it would take a long time to examine all of them. We therefore
verbally summarize the dendrograms below. For most readers, the summary should suffice;
the dendrograms themselves are included only for the especially curious.

Figures A.38, A.39 and A.40: HG-U95A dataset, preprocessed, adjusted by spike-in controls,
k = 0 to 8.

The quality improves going from unadjusted to k = 1. Increasing k does not lead to
further improvement, and the quality soon decreases.

Figure A.41: HG-U95A dataset, preprocessed, adjusted by housekeeping genes, k = 0 to 2.
Quality decreases going from unadjusted to k = 1, and decreases further when k is

increased to 2.

Figure A.42: HG-U95A dataset, not preprocessed, adjusted by spike-in controls, k = 0 to 2.
Quality increases somewhat going from unadjusted to k = 1, then decreases somewhat

going from k = 1 to k = 2.

Figure A.43: HG-U95A dataset, not preprocessed, adjusted by housekeeping genes, k = 0
to 2.

Quality increases going from unadjusted to k = 1, and does not change much going from
k = 1 to k = 2.

Figure A.44: HG-U133A dataset, preprocessed, adjusted by spike-in controls, k = 0 to 2.
Quality stays about the same going from unadjusted to k = 1, and decreases somewhat

going from k = 1 to k = 2.

Figure A.45: HG-U133A dataset, preprocessed, adjusted by housekeeping genes, k = 0 to 2.
Quality decreases going from unadjusted to k = 1, and decreases further going from

k = 1 to k = 2.

Figure A.46: HG-U133A dataset, not preprocessed, adjusted by spike-in controls, k = 0 to
2.

Quality increases going from unadjusted to k = 1, and increases slightly more going from
k = 1 to k = 2.

Figure A.47: HG-U133A dataset, not preprocessed, adjusted by housekeeping genes, k = 0
to 2.
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Quality increases going from unadjusted to k = 1, and stays about the same going from
k = 1 to k = 2.
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Figure A.38: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The
data was preprocessed (BG + QN). The factors were computed by SVD. Key: 1 – Blood; 2
– Breast; 3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 –
Prostate.
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k = 3, Affy Spike-in Controls
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Figure A.39: This is a continuation of Figure A.38
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k = 6, Affy Spike-in Controls
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Figure A.40: This is a continuation of Figure A.38
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Figure A.41: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The
data was preprocessed (BG + QN). The factors were computed by SVD. Key: 1 – Blood; 2
– Breast; 3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 –
Prostate.
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Figure A.42: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The
data was not preprocessed. The factors were computed by SVD. Key: 1 – Blood; 2 – Breast;
3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 – Prostate.
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Figure A.43: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The
data was not preprocessed. The factors were computed by SVD. Key: 1 – Blood; 2 – Breast;
3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 – Prostate.
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Figure A.44: Dendrograms of NCI-60 HG-U133A dataset before and after adjustment. The
data was preprocessed (BG + QN). The factors were computed by SVD. Key: 1 – Blood; 2
– Breast; 3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 –
Prostate.



APPENDIX A. RUV-2 SUPPLEMENTARY MATERIAL 174

Unadjusted
2

5 5
5

5
5 5

2 8 8 4
4

4 4
4

4 4
4

4 4
8

7 7
7 7

7 7 7 3
8 3 9
2

3 3
7 9

2
6 6

2
8

6 6 6
6 6

8
8 8

3
3 3

1
1

1
1

1 140
60

80
10

0
12

0
14

0
16

0

H
ei

gh
t

k = 1, Housekeeping Genes

2
2

8
6 6

6 6 4
4 4

4
4 4

4
4 4

1
2 5 2

1 5 5
5 5

5
1 1

4
6 3

9
6 6

8
7

3 3
2 8

8
3

3 3
8

8 8
7 7

7 7
7 7 7

8 3 9
1 1

40
60

80
10

0
12

0
14

0

H
ei

gh
t

k = 2, Housekeeping Genes

2
2

8
8 8

7 7
7 7

7 7 7 4 4 3 4
8 9

4 4 3
6 6

9
4 4

3
4 4

6
6 6

6 6
8

3 3
1

1
2

1 5
2 5 2 8

7
3 3

8 4
5

5 5
5

1 1
1 8

40
60

80
10

0
12

0
14

0

H
ei

gh
t

Figure A.45: Dendrograms of NCI-60 HG-U133A dataset before and after adjustment. The
data was preprocessed (BG + QN). The factors were computed by SVD. Key: 1 – Blood; 2
– Breast; 3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 –
Prostate.
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Figure A.46: Dendrograms of NCI-60 HG-U133A dataset before and after adjustment. The
data was not preprocessed. The factors were computed by SVD. Key: 1 – Blood; 2 – Breast;
3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 – Prostate.
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Figure A.47: Dendrograms of NCI-60 HG-U133A dataset before and after adjustment. The
data was not preprocessed. The factors were computed by SVD. Key: 1 – Blood; 2 – Breast;
3 – Ovarian; 4 – Melanoma; 5 – Brain; 6 – Colorectal; 7 – Renal; 8 – Lung; 9 – Prostate.
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Appendix B

RUV-4 Supplementary Material

B.1 Miscellaneous Derivations and Discussions

B.1.1 The Parameterization of Ŵ0 Does Not Matter

Recall that the parameterization of Ŵ does not matter. If W̃ is a reparameterization of Ŵ
in the sense that R(W̃ ) = R(Ŵ ), then the resulting β̂ will be the same whether we use W̃
or Ŵ . The point of this section is to show that the parameterization of Ŵ0 does not matter
either. More formally, we wish to show that if R(W̃0) = R(Ŵ0) and if W̃ and Ŵ are the
corresponding estimates of W computed using Step 3 of RUV-4, then R(W̃ ) = R(Ŵ ).

Let W̃0 = Ŵ0Q where Q is any k × k invertible matrix. Then

α̃c ≡
[
(Ŵ0Q)′Ŵ0Q

]−1

Q′Ŵ ′
0Yc (B.1)

= Q−1
(
Ŵ ′

0Ŵ0

)−1

Ŵ ′
0Yc (B.2)

= Q−1α̂c (B.3)

and

b̃WX ≡ bYcX α̃
′
c (α̃cα̃

′
c)
−1

(B.4)

= bYcX α̂
′
c(Q

−1)′
[
Q−1α̂cα̂

′
c(Q

−1)′
]−1

(B.5)

= bYcX α̂
′
c (α̂cα̂

′
c)
−1
Q (B.6)

= b̂WXQ (B.7)

so

W̃ ≡ W̃0 +Xb̃WX (B.8)

= Ŵ0Q+Xb̂WXQ (B.9)

= ŴQ. (B.10)
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B.1.2 Reformulation of the OLS Variance

Assume that X has unit length and that the columns of W0 are orthogonal and have unit
length. Let β̂(OLS) be the OLS estimate of β (ignore for the moment that W is unknown).

The variance of β̂
(OLS)
j is the (1, 1) entry of the matrix σ2

j

[
(X|W )′ (X|W )

]−1
. The goal of

this section is to show that this is equal to σ2
j (1 + bWXb

′
WX).

Begin with the observation that

[
(X|W )′ (X|W )

]−1
=

(
X ′X X ′W
W ′X W ′W

)−1

. (B.11)

We can invert this matrix block-wise. The (1, 1) entry is equal to[
X ′X −X ′W (W ′W )

−1
W ′X

]−1

.

Now, X ′X = 1, X ′W = bWX , W ′X = b′WX , and W ′W = I + b′WXbWX , so

Var
[
β̂

(OLS)
j

]
= σ2

j

[
1− bWX (I + b′WXbWX)

−1
b′WX

]−1

(B.12)

= σ2
j

{
1− bWX

[
I − b′WX (I + bWXb

′
WX)

−1
bWX

]
b′WX

}−1

(B.13)

= σ2
j

[
1− bWXb

′
WX + bWXb

′
WX (1 + bWXb

′
WX)

−1
bWXb

′
WX

]−1

(B.14)

= σ2
j

[
1− x+ x (1 + x)−1 x

]−1
(B.15)

= σ2
j

(
1− x2

1 + x
+

x2

1 + x

)−1

(B.16)

= σ2
j (1 + x) (B.17)

= σ2
j (1 + bWXb

′
WX) (B.18)

where x ≡ bWXb
′
WX .
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B.1.3 Estimating Σj as 1
nc

(YcY
′
c ) +

(
σ̂2
j − σ̇2

c

)
I

In Section 3.3.7.4 we made the observation that

E
[

1

nc
(YcY

′
c )

]
= Σ + σ̄2

cI (B.19)

6= Σ + σ̄2
j I (B.20)

= Σj. (B.21)

1
nc

(YcY
′
c ) is a biased estimator of Σj. In this section we will consider alternative estimators

of Σj. Specifically, we will consider estimators of the form

Σ̂j =
1

nc
YcY

′
c + λI. (B.22)

For a given estimator Σ̂j it can be shown that

Var
[
β̂j

∣∣∣Σ̂j

]
=
(
X ′Σ̂−1

j X
)−1

X ′Σ̂−1
j ΣjΣ̂

−1
j X

(
X ′Σ̂−1

j X
)−1

. (B.23)

For our purposes, a good estimator of Σ̂j is one such that

E
{

Var
[
β̂j

∣∣∣Σ̂j

]}
(B.24)

is small.
Let

Σ̂j(λ) ≡ 1

nc
YcY

′
c + λI (B.25)

β̂j(Σ̂j) ≡
(
X ′Σ̂−1

j X
)−1

X ′Σ̂−1
j Y?j (B.26)

λ∗ ≡ argmin
λ

Var
[
β̂j

(
Σ̂j(λ)

)∣∣∣Σ̂j(λ)
]
. (B.27)

We will consider 5 “estimators.”

Σ̂
(1)
j = Σ + σ2

j I (B.28)

Σ̂
(2)
j =

1

nc
YcY

′
c + λ∗I (B.29)

Σ̂
(3)
j =

1

nc
YcY

′
c +

(
σ2
j − σ̄2

c

)
I (B.30)

Σ̂
(4)
j =

1

nc
YcY

′
c + 0.2

(
σ2
j − σ̄2

c

)
I (B.31)

Σ̂
(5)
j =

1

nc
YcY

′
c (B.32)

(B.33)
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Note that only Σ̂
(5)
j is a real estimator that can be computed from data. Σ̂

(1)
j = Σj is the true

parameter. Σ̂
(2)
j is the optimal estimator of the form 1

nc
YcY

′
c + λI. To compute it requires

knowledge of Σj. Σ̂
(3)
j is an idealization of the estimator briefly mentioned in Section 3.3.7.4.

Here we have substituted the parameter
(
σ2
j − σ̄2

c

)
for the estimate

(
σ̂2
j − σ̇2

c

)
. Σ̂

(4)
j is a

modified version of Σ̂
(3)
j . The choice of 0.2 is arbitrary.

We want to compare the performance of the Σ̂
(i)
j . This is difficult to accomplish analyti-

cally. Instead we will use simulations. Define

β̂
(i)
j ≡ β̂j

(
Σ̂

(i)
j

)
. (B.34)

Let

vi(σ
2
j ) ≡ E

{
Var

[
β̂j

(
Σ̂

(i)
j

)∣∣∣Σ̂(i)
j

]}
(B.35)

denote the expected variance when σ2
j is the true parameter. Note that vi should be indexed

by j and should also be a function of Σ, σ2
c and X but we suppress this in the notation. We

consider three quantities of interest:
√
vi(σ2

j ),
√
vi(σ2

j )/v1(σ2
j ), and

√
vi(σ2

j )/v2(σ2
j ). The

first is the RMSE of β̂j

(
Σ̂

(i)
j

)
. The second is the RMSE of β̂j

(
Σ̂

(i)
j

)
as a fraction of the

RMSE of the ideal estimator β̂j (Σ). The third is the RMSE of β̂j

(
Σ̂

(i)
j

)
as a fraction of the

RMSE of the “best possible” estimator Σ̂
(2)
j . Of course, in practice, Σ̂

(2)
j is not actually a

possible estimator. Simulation results are given in Figure B.1.
A quick glance at Figure B.1 reveals that the performance does vary from one estimator

to the next, but not always by very much. The one exception is β̂
(3)
j , which performs horribly

when σ2
j/σ̄

2
c < 1. Therefore, even if unbiased estimates σ̂2

j of σ2
j and σ̇2

c of σ̄2
c are available,

and 1
nc

(YcY
′
c ) +

(
σ̂2
j − σ̇2

c

)
I is therefore an unbiased estimator of Σj, this estimator should

not be used! This result is perhaps to be anticipated. The smallest eigenvalue of 1
nc

(YcY
′
c )

will often be considerably smaller than σ2
j . As a result 1

nc
(YcY

′
c )+

(
σ2
j − σ̄2

c

)
I may have tiny

— or even negative — eigenvalues.
β̂

(4)
j improves on β̂

(3)
j by “shrinking” the ridge-adjustment term

(
σ2
j − σ̄2

c

)
I. Indeed, β̂

(4)
j

performs quite well. However, the shrinkage factor of 0.2 is arbitrary; we chose 0.2 simply
because it gave good results. Implementing this “shrunken ridge adjustment” strategy in
practice would require a method for choosing a good shrinkage factor. This would presumably
depend on Σ, nc, the distribution of σ2, etc. In practice we would also need to account for
the fact that σ2

j and σ̄2
c are not known, but estimated.

Figure B.1 suggests an alternative strategy. Set

β̂
(6)
j ≡

{
β̂

(5)
j if σ2

j < σ̄2
c

β̂
(3)
j if σ2

j ≥ σ̄2
c

. (B.36)



APPENDIX B. RUV-4 SUPPLEMENTARY MATERIAL 181

In the simulations of Figure B.1, β̂
(6)
j performs quite well. We have not investigated whether

this strategy works well more generally. In practice, of course, we would need to replace σ2
j

with σ̂2
j and σ̄2

c with σ̇2
c . If these estimates are very noisy, β̂

(6)
j may no longer perform well.

Finally, we note that in the big picture, the performance of β̂
(5)
j is adequate. In the

lightly and moderately correlated examples, the RMSE of β̂
(5)
j is only larger than the “best

possible” RMSE by about 5%. In the figures and tables of Section B.2 we see that a 5-10%
increase in the RMSE of β̂ is relatively minor compared to the choice of K, the choice of
method, the choice of controls, etc. Perhaps more importantly, in Section 3.4.2 of the main
text we argue that the primary determinant of the discriminative power is the performance
of σ̂2, not the performance of β̂. It is for these reasons that we feel that β̂

(5)
j is generally

adequate.
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Figure B.1: Plots of
√
vi(σ2

j ),
√
vi(σ2

j )/v1(σ2
j ), and

√
vi(σ2

j )/v2(σ2
j ) as σ2

j is varied from 0.1σ̄2
c

to 10σ̄2
c . The vertical axis is the quantity of interest, e.g.

√
vi(σ2

j ), and the horizontal axis is

log10(σ2
j/σ̄

2
c ). The coloring scheme is as follows: i = 1, thick black line; i = 2, thin black line;

i = 3, red; i = 4, violet; i = 5, blue. The simulation parameters are the same as those of
the simulations presented in Section 3.4. nc = 1000. We show the results for three separate
simulations (“Lightly Correlated,” “Moderately Correlated,” “Highly Correlated.”). i = 3
is omitted from the left column because it behaves too erratically.
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B.2 Additional Simulation Results
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Figure B.2: k = 20, lightly correlated, good controls.
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Figure B.3: k = 20, lightly correlated, bad controls.
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Figure B.4: k = 20, moderately correlated, good controls.
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Figure B.5: k = 20, moderately correlated, bad controls.
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Figure B.6: Moderate decay, lightly correlated, good controls.
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Figure B.7: Moderate decay, lightly correlated, bad controls.
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Figure B.8: Moderate decay, highly correlated, good controls.
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Figure B.9: Moderate decay, highly correlated, bad controls.
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Figure B.10: Slow decay, lightly correlated, good controls.



APPENDIX B. RUV-4 SUPPLEMENTARY MATERIAL 192

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

K

to
p 

ra
nk

ed
 fr

ac
tio

n

0 10 20 30 400.
00

0.
05

0.
10

0.
15

K

ty
pe

 I 
er

ro
r 

ra
te

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

K

av
er

ag
e 

po
w

er

0 10 20 30 40

0
2

4
6

8

K

be
ta

 h
at

 R
M

S
E

0 10 20 30 40

1.
0

2.
0

3.
0

4.
0

K

si
gm

a 
ha

t s
ca

le

0 10 20 30 40

1.
0

1.
5

2.
0

2.
5

K

re
sc

al
ed

 s
ig

m
a 

ha
t I

Q
R

Figure B.11: Slow decay, lightly correlated, bad controls.
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Figure B.12: Slow decay, highly correlated, good controls.
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Figure B.13: Slow decay, highly correlated, bad controls.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.27 (5× 10−3) 0.47 (5× 10−4) 0.66 (5× 10−3) 0.707 (5× 10−4) 53.08 (6× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.66 (6× 10−3) 0.09 (5× 10−3) 0.79 (4× 10−3) 0.164 (2× 10−3) 6.15 (7× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.66 (6× 10−3) 0.11 (5× 10−3) 0.80 (4× 10−3) 0.168 (3× 10−3) 6.12 (7× 10−2) 1.06 (3× 10−3)
LEAPP 0.66 (6× 10−3) 0.28 (7× 10−3) 0.86 (4× 10−3) 0.102 (2× 10−3) 5.28 (6× 10−2) 1.06 (3× 10−3)
ICE 0.79 (4× 10−3) 0.01 (2× 10−4) 0.82 (4× 10−3) 0.090 (7× 10−4)
RUV-4 0.78 (4× 10−3) 0.07 (1× 10−3) 0.88 (3× 10−3) 0.092 (8× 10−4) 1.00 (3× 10−4) 0.37 (7× 10−4)
RUV-inv 0.78 (5× 10−3) 0.05 (8× 10−4) 0.86 (4× 10−3) 0.094 (8× 10−4) 1.15 (1× 10−3) 0.39 (5× 10−4)
RUV-rinv 0.78 (5× 10−3) 0.06 (2× 10−3) 0.86 (4× 10−3) 0.094 (8× 10−4) 1.40 (2× 10−3) 0.42 (8× 10−4)
RUV-inv (Ectl) 0.79 (4× 10−3) 0.05 (8× 10−4) 0.87 (4× 10−3) 0.090 (7× 10−4) 1.13 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.78 (5× 10−3) 0.06 (2× 10−3) 0.87 (4× 10−3) 0.092 (8× 10−4) 1.37 (8× 10−4) 0.40 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.79 (4× 10−3) 0.04 (5× 10−4) 0.87 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.78 (5× 10−3) 0.04 (5× 10−4) 0.86 (4× 10−3)
RUV-inv-evar (Ectl) 0.79 (4× 10−3) 0.05 (3× 10−4) 0.87 (4× 10−3)
RUV-rinv-evar (Ectl) 0.79 (5× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)

Table B.1: k = 20, moderately correlated, nc = 1000, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.52 (5× 10−3) 0.47 (6× 10−4) 0.66 (2× 10−3) 0.707 (5× 10−4) 53.13 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.71 (3× 10−3) 0.11 (5× 10−3) 0.79 (2× 10−3) 0.172 (3× 10−3) 5.99 (6× 10−2) 1.05 (3× 10−3)
SVA (2-step) 0.71 (3× 10−3) 0.11 (6× 10−3) 0.79 (2× 10−3) 0.165 (3× 10−3) 5.97 (6× 10−2) 1.05 (3× 10−3)
LEAPP 0.71 (3× 10−3) 0.27 (8× 10−3) 0.86 (2× 10−3) 0.134 (2× 10−3) 5.13 (6× 10−2) 1.05 (3× 10−3)
ICE 0.80 (3× 10−3) 0.00 (4× 10−5) 0.72 (2× 10−3) 0.091 (6× 10−4)
RUV-4 0.89 (2× 10−3) 0.08 (1× 10−3) 0.88 (2× 10−3) 0.092 (6× 10−4) 1.00 (3× 10−4) 0.37 (7× 10−4)
RUV-inv 0.88 (2× 10−3) 0.05 (8× 10−4) 0.86 (2× 10−3) 0.094 (6× 10−4) 1.16 (1× 10−3) 0.39 (6× 10−4)
RUV-rinv 0.87 (2× 10−3) 0.06 (1× 10−3) 0.87 (2× 10−3) 0.094 (7× 10−4) 1.40 (2× 10−3) 0.42 (9× 10−4)
RUV-inv (Ectl) 0.89 (2× 10−3) 0.05 (7× 10−4) 0.87 (2× 10−3) 0.091 (6× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.88 (2× 10−3) 0.06 (1× 10−3) 0.87 (2× 10−3) 0.093 (7× 10−4) 1.37 (9× 10−4) 0.40 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.89 (2× 10−3) 0.04 (5× 10−4) 0.86 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.88 (2× 10−3) 0.04 (4× 10−4) 0.86 (2× 10−3)
RUV-inv-evar (Ectl) 0.83 (4× 10−3) 0.01 (2× 10−4) 0.82 (2× 10−3)
RUV-rinv-evar (Ectl) 0.81 (3× 10−3) 0.01 (3× 10−4) 0.81 (2× 10−3)

Table B.2: k = 20, moderately correlated, nc = 1000, sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.27 (4× 10−3) 0.47 (6× 10−4) 0.66 (8× 10−4) 0.708 (4× 10−4) 53.07 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.22 (1× 10−2) 0.70 (1× 10−2) 0.82 (5× 10−3) 1.082 (6× 10−2) 6.06 (6× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.42 (6× 10−3) 0.32 (7× 10−3) 0.78 (2× 10−3) 0.359 (6× 10−2) 5.99 (6× 10−2) 1.05 (3× 10−3)
LEAPP 0.46 (4× 10−3) 0.27 (7× 10−3) 0.86 (8× 10−4) 0.169 (2× 10−3) 5.12 (6× 10−2) 1.05 (3× 10−3)
ICE 0.59 (4× 10−3) 0.00 (9× 10−6) 0.32 (5× 10−4) 0.130 (6× 10−4)
RUV-4 0.73 (4× 10−3) 0.07 (1× 10−3) 0.88 (8× 10−4) 0.092 (5× 10−4) 1.00 (3× 10−4) 0.37 (1× 10−3)
RUV-inv 0.73 (3× 10−3) 0.05 (7× 10−4) 0.86 (8× 10−4) 0.094 (5× 10−4) 1.16 (1× 10−3) 0.39 (5× 10−4)
RUV-rinv 0.73 (4× 10−3) 0.06 (1× 10−3) 0.86 (8× 10−4) 0.093 (5× 10−4) 1.40 (2× 10−3) 0.42 (8× 10−4)
RUV-inv (Ectl) 0.75 (3× 10−3) 0.06 (1× 10−3) 0.87 (8× 10−4) 0.095 (5× 10−4) 1.14 (4× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.74 (3× 10−3) 0.07 (2× 10−3) 0.87 (7× 10−4) 0.095 (6× 10−4) 1.38 (8× 10−4) 0.40 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.75 (3× 10−3) 0.04 (4× 10−4) 0.85 (1× 10−3)
RUV-rinv-rsvar (Ectl) 0.74 (3× 10−3) 0.04 (5× 10−4) 0.85 (1× 10−3)
RUV-inv-evar (Ectl) 0.49 (4× 10−3) 0.00 (0) 0.24 (3× 10−4)
RUV-rinv-evar (Ectl) 0.49 (4× 10−3) 0.00 (0) 0.24 (3× 10−4)

Table B.3: k = 20, moderately correlated, nc = 1000, not sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.28 (5× 10−3) 0.47 (5× 10−4) 0.67 (4× 10−3) 0.707 (5× 10−4) 53.10 (6× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.66 (6× 10−3) 0.09 (5× 10−3) 0.79 (4× 10−3) 0.159 (2× 10−3) 6.12 (6× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.66 (6× 10−3) 0.11 (6× 10−3) 0.80 (4× 10−3) 0.164 (2× 10−3) 6.16 (6× 10−2) 1.06 (3× 10−3)
LEAPP 0.66 (6× 10−3) 0.26 (7× 10−3) 0.86 (4× 10−3) 0.099 (2× 10−3) 5.26 (6× 10−2) 1.06 (3× 10−3)
ICE 0.78 (4× 10−3) 0.01 (2× 10−4) 0.82 (4× 10−3) 0.090 (6× 10−4)
RUV-4 0.56 (1× 10−2) 0.12 (3× 10−3) 0.80 (8× 10−3) 0.154 (3× 10−3) 0.96 (2× 10−3) 0.76 (3× 10−2)
RUV-inv 0.57 (6× 10−3) 0.02 (1× 10−3) 0.64 (9× 10−3) 0.200 (4× 10−3) 1.57 (1× 10−2) 1.00 (1× 10−2)
RUV-rinv 0.74 (4× 10−3) 0.06 (2× 10−3) 0.84 (4× 10−3) 0.111 (1× 10−3) 2.00 (1× 10−2) 0.62 (3× 10−3)
RUV-inv (Ectl) 0.79 (4× 10−3) 0.05 (7× 10−4) 0.87 (4× 10−3) 0.090 (7× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.79 (4× 10−3) 0.06 (1× 10−3) 0.87 (4× 10−3) 0.092 (7× 10−4) 1.35 (9× 10−4) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.79 (4× 10−3) 0.05 (2× 10−3) 0.87 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.79 (4× 10−3) 0.05 (2× 10−3) 0.87 (4× 10−3)
RUV-inv-evar (Ectl) 0.79 (4× 10−3) 0.05 (4× 10−4) 0.87 (4× 10−3)
RUV-rinv-evar (Ectl) 0.79 (4× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)

Table B.4: k = 20, moderately correlated, nc = 60, very sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.52 (4× 10−3) 0.47 (5× 10−4) 0.66 (2× 10−3) 0.707 (5× 10−4) 53.02 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.72 (4× 10−3) 0.10 (5× 10−3) 0.78 (2× 10−3) 0.170 (3× 10−3) 6.08 (7× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.72 (4× 10−3) 0.11 (5× 10−3) 0.80 (2× 10−3) 0.163 (3× 10−3) 6.03 (7× 10−2) 1.05 (4× 10−3)
LEAPP 0.72 (4× 10−3) 0.26 (8× 10−3) 0.86 (2× 10−3) 0.133 (2× 10−3) 5.22 (7× 10−2) 1.06 (3× 10−3)
ICE 0.80 (2× 10−3) 0.00 (4× 10−5) 0.72 (2× 10−3) 0.091 (6× 10−4)
RUV-4 0.78 (1× 10−2) 0.12 (3× 10−3) 0.80 (7× 10−3) 0.151 (3× 10−3) 0.96 (1× 10−3) 0.73 (3× 10−2)
RUV-inv 0.72 (4× 10−3) 0.02 (1× 10−3) 0.62 (1× 10−2) 0.209 (5× 10−3) 1.57 (1× 10−2) 1.01 (1× 10−2)
RUV-rinv 0.82 (3× 10−3) 0.06 (2× 10−3) 0.84 (2× 10−3) 0.110 (1× 10−3) 1.98 (1× 10−2) 0.62 (3× 10−3)
RUV-inv (Ectl) 0.90 (2× 10−3) 0.05 (8× 10−4) 0.87 (2× 10−3) 0.090 (6× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.89 (2× 10−3) 0.06 (1× 10−3) 0.87 (2× 10−3) 0.092 (7× 10−4) 1.35 (1× 10−3) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.90 (2× 10−3) 0.05 (2× 10−3) 0.87 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.89 (2× 10−3) 0.05 (2× 10−3) 0.86 (3× 10−3)
RUV-inv-evar (Ectl) 0.83 (4× 10−3) 0.01 (2× 10−4) 0.82 (2× 10−3)
RUV-rinv-evar (Ectl) 0.83 (3× 10−3) 0.01 (3× 10−4) 0.82 (2× 10−3)

Table B.5: k = 20, moderately correlated, nc = 60, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.28 (4× 10−3) 0.47 (7× 10−4) 0.66 (6× 10−4) 0.708 (5× 10−4) 53.13 (6× 10−2) 1.40 (2× 10−3)
SVA (IRW) 0.21 (1× 10−2) 0.72 (1× 10−2) 0.83 (5× 10−3) 1.173 (6× 10−2) 6.12 (7× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.42 (4× 10−3) 0.32 (6× 10−3) 0.78 (1× 10−3) 0.295 (7× 10−3) 6.02 (6× 10−2) 1.06 (3× 10−3)
LEAPP 0.45 (4× 10−3) 0.28 (8× 10−3) 0.86 (9× 10−4) 0.173 (2× 10−3) 5.17 (6× 10−2) 1.05 (3× 10−3)
ICE 0.59 (4× 10−3) 0.00 (6× 10−6) 0.32 (5× 10−4) 0.129 (7× 10−4)
RUV-4 0.52 (2× 10−2) 0.12 (3× 10−3) 0.80 (6× 10−3) 0.151 (2× 10−3) 0.96 (1× 10−3) 0.74 (3× 10−2)
RUV-inv 0.43 (5× 10−3) 0.02 (9× 10−4) 0.64 (7× 10−3) 0.197 (4× 10−3) 1.60 (1× 10−2) 1.00 (1× 10−2)
RUV-rinv 0.61 (4× 10−3) 0.06 (2× 10−3) 0.84 (1× 10−3) 0.111 (1× 10−3) 2.00 (1× 10−2) 0.63 (3× 10−3)
RUV-inv (Ectl) 0.75 (4× 10−3) 0.07 (1× 10−3) 0.86 (9× 10−4) 0.097 (7× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.74 (4× 10−3) 0.07 (2× 10−3) 0.87 (8× 10−4) 0.097 (8× 10−4) 1.35 (1× 10−3) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.75 (4× 10−3) 0.08 (3× 10−3) 0.87 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.74 (4× 10−3) 0.07 (3× 10−3) 0.86 (2× 10−3)
RUV-inv-evar (Ectl) 0.49 (5× 10−3) 0.00 (2× 10−6) 0.24 (4× 10−4)
RUV-rinv-evar (Ectl) 0.48 (5× 10−3) 0.00 (0) 0.24 (4× 10−4)

Table B.6: k = 20, moderately correlated, nc = 60, not sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.12 (4× 10−3) 0.62 (9× 10−3) 0.73 (6× 10−3) 1.091 (2× 10−2) 52.98 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.29 (1× 10−2) 0.60 (3× 10−2) 0.79 (9× 10−3) 0.892 (5× 10−2) 8.81 (0.3) 1.18 (1× 10−2)
SVA (2-step) 0.36 (8× 10−3) 0.36 (1× 10−2) 0.73 (6× 10−3) 0.400 (8× 10−3) 6.09 (7× 10−2) 1.06 (3× 10−3)
LEAPP 0.36 (7× 10−3) 0.64 (6× 10−3) 0.86 (4× 10−3) 0.304 (7× 10−3) 5.16 (6× 10−2) 1.06 (3× 10−3)
ICE 0.63 (6× 10−3) 0.02 (4× 10−4) 0.72 (5× 10−3) 0.173 (2× 10−3)
RUV-4 0.57 (1× 10−2) 0.17 (1× 10−2) 0.78 (5× 10−3) 0.211 (7× 10−3) 1.36 (6× 10−2) 0.45 (1× 10−2)
RUV-inv 0.62 (6× 10−3) 0.06 (1× 10−3) 0.75 (5× 10−3) 0.182 (2× 10−3) 1.16 (1× 10−3) 0.39 (5× 10−4)
RUV-rinv 0.61 (6× 10−3) 0.11 (4× 10−3) 0.77 (5× 10−3) 0.187 (3× 10−3) 1.45 (8× 10−3) 0.43 (2× 10−3)
RUV-inv (Ectl) 0.63 (6× 10−3) 0.07 (1× 10−3) 0.76 (5× 10−3) 0.175 (2× 10−3) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.61 (6× 10−3) 0.11 (4× 10−3) 0.77 (5× 10−3) 0.184 (3× 10−3) 1.42 (7× 10−3) 0.41 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.63 (6× 10−3) 0.04 (5× 10−4) 0.74 (6× 10−3)
RUV-rinv-rsvar (Ectl) 0.61 (6× 10−3) 0.04 (5× 10−4) 0.71 (6× 10−3)
RUV-inv-evar (Ectl) 0.64 (6× 10−3) 0.05 (2× 10−4) 0.75 (5× 10−3)
RUV-rinv-evar (Ectl) 0.62 (6× 10−3) 0.05 (2× 10−4) 0.73 (6× 10−3)

Table B.7: k = 20, highly correlated, nc = 1000, very sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.27 (7× 10−3) 0.64 (7× 10−3) 0.73 (4× 10−3) 1.136 (2× 10−2) 53.04 (6× 10−2) 1.40 (2× 10−3)
SVA (IRW) 0.53 (1× 10−2) 0.67 (2× 10−2) 0.81 (9× 10−3) 1.070 (5× 10−2) 9.32 (0.3) 1.20 (1× 10−2)
SVA (2-step) 0.64 (7× 10−3) 0.36 (1× 10−2) 0.73 (5× 10−3) 0.433 (2× 10−2) 6.20 (0.1) 1.06 (5× 10−3)
LEAPP 0.65 (5× 10−3) 0.64 (7× 10−3) 0.87 (2× 10−3) 0.321 (7× 10−3) 5.15 (6× 10−2) 1.05 (3× 10−3)
ICE 0.80 (3× 10−3) 0.01 (3× 10−4) 0.64 (3× 10−3) 0.177 (2× 10−3)
RUV-4 0.83 (5× 10−3) 0.17 (1× 10−2) 0.78 (3× 10−3) 0.210 (6× 10−3) 1.32 (4× 10−2) 0.45 (1× 10−2)
RUV-inv 0.86 (2× 10−3) 0.06 (1× 10−3) 0.75 (3× 10−3) 0.184 (2× 10−3) 1.16 (1× 10−3) 0.39 (5× 10−4)
RUV-rinv 0.85 (3× 10−3) 0.11 (3× 10−3) 0.77 (3× 10−3) 0.188 (3× 10−3) 1.44 (5× 10−3) 0.43 (2× 10−3)
RUV-inv (Ectl) 0.87 (2× 10−3) 0.07 (1× 10−3) 0.76 (3× 10−3) 0.177 (2× 10−3) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.85 (3× 10−3) 0.11 (4× 10−3) 0.77 (3× 10−3) 0.186 (3× 10−3) 1.41 (5× 10−3) 0.41 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.87 (2× 10−3) 0.04 (5× 10−4) 0.74 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.85 (3× 10−3) 0.04 (5× 10−4) 0.71 (5× 10−3)
RUV-inv-evar (Ectl) 0.84 (3× 10−3) 0.02 (4× 10−4) 0.71 (4× 10−3)
RUV-rinv-evar (Ectl) 0.80 (3× 10−3) 0.03 (4× 10−4) 0.70 (4× 10−3)

Table B.8: k = 20, highly correlated, nc = 1000, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.22 (4× 10−3) 0.63 (1× 10−2) 0.72 (4× 10−3) 1.124 (3× 10−2) 53.06 (5× 10−2) 1.40 (2× 10−3)
SVA (IRW) 0.18 (6× 10−3) 0.86 (7× 10−3) 0.88 (4× 10−3) 1.708 (4× 10−2) 6.89 (0.1) 1.10 (5× 10−3)
SVA (2-step) 0.27 (1× 10−2) 0.59 (2× 10−2) 0.75 (1× 10−2) 1.254 (0.1) 7.08 (0.2) 1.10 (9× 10−3)
LEAPP 0.42 (5× 10−3) 0.65 (7× 10−3) 0.87 (9× 10−4) 0.366 (7× 10−3) 5.20 (6× 10−2) 1.05 (3× 10−3)
ICE 0.57 (4× 10−3) 0.00 (2× 10−5) 0.30 (9× 10−4) 0.232 (3× 10−3)
RUV-4 0.67 (8× 10−3) 0.17 (1× 10−2) 0.78 (3× 10−3) 0.207 (6× 10−3) 1.34 (6× 10−2) 0.45 (1× 10−2)
RUV-inv 0.72 (4× 10−3) 0.06 (1× 10−3) 0.75 (3× 10−3) 0.181 (2× 10−3) 1.16 (1× 10−3) 0.39 (6× 10−4)
RUV-rinv 0.70 (4× 10−3) 0.11 (4× 10−3) 0.77 (2× 10−3) 0.185 (3× 10−3) 1.45 (8× 10−3) 0.43 (2× 10−3)
RUV-inv (Ectl) 0.74 (4× 10−3) 0.08 (2× 10−3) 0.77 (2× 10−3) 0.178 (2× 10−3) 1.14 (6× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.71 (4× 10−3) 0.13 (4× 10−3) 0.78 (2× 10−3) 0.188 (3× 10−3) 1.42 (7× 10−3) 0.41 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.74 (4× 10−3) 0.04 (5× 10−4) 0.73 (3× 10−3)
RUV-rinv-rsvar (Ectl) 0.71 (4× 10−3) 0.04 (5× 10−4) 0.71 (4× 10−3)
RUV-inv-evar (Ectl) 0.51 (5× 10−3) 0.00 (5× 10−6) 0.23 (5× 10−4)
RUV-rinv-evar (Ectl) 0.50 (5× 10−3) 0.00 (4× 10−6) 0.22 (5× 10−4)

Table B.9: k = 20, highly correlated, nc = 1000, not sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.11 (4× 10−3) 0.62 (9× 10−3) 0.72 (6× 10−3) 1.084 (2× 10−2) 53.01 (6× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.30 (1× 10−2) 0.56 (3× 10−2) 0.78 (9× 10−3) 0.834 (5× 10−2) 8.44 (0.3) 1.16 (1× 10−2)
SVA (2-step) 0.35 (9× 10−3) 0.39 (1× 10−2) 0.74 (6× 10−3) 0.438 (2× 10−2) 6.26 (8× 10−2) 1.07 (4× 10−3)
LEAPP 0.36 (8× 10−3) 0.65 (7× 10−3) 0.86 (4× 10−3) 0.314 (8× 10−3) 5.22 (6× 10−2) 1.06 (3× 10−3)
ICE 0.62 (6× 10−3) 0.02 (5× 10−4) 0.71 (6× 10−3) 0.172 (2× 10−3)
RUV-4 0.42 (1× 10−2) 0.14 (4× 10−3) 0.68 (9× 10−3) 0.275 (5× 10−3) 0.97 (3× 10−3) 0.58 (2× 10−2)
RUV-inv 0.34 (8× 10−3) 0.02 (1× 10−3) 0.40 (1× 10−2) 0.397 (9× 10−3) 1.58 (1× 10−2) 1.02 (1× 10−2)
RUV-rinv 0.55 (7× 10−3) 0.09 (4× 10−3) 0.72 (6× 10−3) 0.219 (3× 10−3) 2.02 (2× 10−2) 0.63 (4× 10−3)
RUV-inv (Ectl) 0.63 (7× 10−3) 0.07 (1× 10−3) 0.76 (6× 10−3) 0.174 (2× 10−3) 1.14 (5× 10−4) 0.35 (5× 10−4)
RUV-rinv (Ectl) 0.61 (7× 10−3) 0.10 (2× 10−3) 0.77 (6× 10−3) 0.180 (3× 10−3) 1.36 (1× 10−3) 0.39 (6× 10−4)
RUV-inv-rsvar (Ectl) 0.63 (7× 10−3) 0.05 (2× 10−3) 0.74 (6× 10−3)
RUV-rinv-rsvar (Ectl) 0.61 (7× 10−3) 0.05 (2× 10−3) 0.73 (7× 10−3)
RUV-inv-evar (Ectl) 0.63 (7× 10−3) 0.05 (2× 10−4) 0.75 (6× 10−3)
RUV-rinv-evar (Ectl) 0.62 (7× 10−3) 0.05 (2× 10−4) 0.74 (7× 10−3)

Table B.10: k = 20, highly correlated, nc = 60, very sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.28 (8× 10−3) 0.64 (1× 10−2) 0.73 (4× 10−3) 1.135 (3× 10−2) 53.09 (6× 10−2) 1.40 (2× 10−3)
SVA (IRW) 0.55 (1× 10−2) 0.61 (3× 10−2) 0.79 (9× 10−3) 0.965 (6× 10−2) 8.86 (0.3) 1.18 (1× 10−2)
SVA (2-step) 0.63 (6× 10−3) 0.39 (1× 10−2) 0.74 (4× 10−3) 0.430 (1× 10−2) 6.13 (9× 10−2) 1.06 (4× 10−3)
LEAPP 0.64 (5× 10−3) 0.66 (6× 10−3) 0.87 (1× 10−3) 0.334 (7× 10−3) 5.20 (6× 10−2) 1.05 (3× 10−3)
ICE 0.80 (3× 10−3) 0.01 (3× 10−4) 0.64 (3× 10−3) 0.176 (2× 10−3)
RUV-4 0.77 (7× 10−3) 0.13 (4× 10−3) 0.68 (6× 10−3) 0.280 (5× 10−3) 0.97 (1× 10−3) 0.59 (2× 10−2)
RUV-inv 0.66 (6× 10−3) 0.02 (1× 10−3) 0.42 (9× 10−3) 0.390 (8× 10−3) 1.59 (1× 10−2) 0.99 (1× 10−2)
RUV-rinv 0.79 (3× 10−3) 0.10 (4× 10−3) 0.72 (4× 10−3) 0.223 (3× 10−3) 2.02 (2× 10−2) 0.63 (4× 10−3)
RUV-inv (Ectl) 0.87 (2× 10−3) 0.07 (1× 10−3) 0.77 (4× 10−3) 0.176 (2× 10−3) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.86 (2× 10−3) 0.10 (3× 10−3) 0.77 (3× 10−3) 0.182 (2× 10−3) 1.35 (1× 10−3) 0.39 (6× 10−4)
RUV-inv-rsvar (Ectl) 0.87 (2× 10−3) 0.05 (2× 10−3) 0.75 (5× 10−3)
RUV-rinv-rsvar (Ectl) 0.86 (2× 10−3) 0.05 (2× 10−3) 0.73 (5× 10−3)
RUV-inv-evar (Ectl) 0.84 (3× 10−3) 0.02 (4× 10−4) 0.72 (4× 10−3)
RUV-rinv-evar (Ectl) 0.81 (3× 10−3) 0.03 (4× 10−4) 0.70 (4× 10−3)

Table B.11: k = 20, highly correlated, nc = 60, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.23 (4× 10−3) 0.63 (1× 10−2) 0.72 (4× 10−3) 1.110 (2× 10−2) 53.14 (6× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.19 (6× 10−3) 0.86 (7× 10−3) 0.88 (4× 10−3) 1.638 (3× 10−2) 7.06 (9× 10−2) 1.11 (4× 10−3)
SVA (2-step) 0.28 (1× 10−2) 0.59 (2× 10−2) 0.76 (1× 10−2) 1.159 (8× 10−2) 7.09 (0.2) 1.10 (7× 10−3)
LEAPP 0.42 (5× 10−3) 0.65 (6× 10−3) 0.86 (8× 10−4) 0.368 (7× 10−3) 5.32 (6× 10−2) 1.06 (3× 10−3)
ICE 0.58 (4× 10−3) 0.00 (3× 10−5) 0.30 (9× 10−4) 0.230 (3× 10−3)
RUV-4 0.56 (1× 10−2) 0.14 (5× 10−3) 0.68 (8× 10−3) 0.282 (6× 10−3) 0.97 (2× 10−3) 0.60 (2× 10−2)
RUV-inv 0.40 (5× 10−3) 0.02 (1× 10−3) 0.41 (9× 10−3) 0.395 (9× 10−3) 1.56 (1× 10−2) 0.99 (1× 10−2)
RUV-rinv 0.60 (5× 10−3) 0.10 (4× 10−3) 0.72 (3× 10−3) 0.221 (4× 10−3) 1.99 (1× 10−2) 0.62 (3× 10−3)
RUV-inv (Ectl) 0.74 (4× 10−3) 0.09 (2× 10−3) 0.77 (3× 10−3) 0.181 (3× 10−3) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.72 (4× 10−3) 0.12 (3× 10−3) 0.78 (3× 10−3) 0.187 (3× 10−3) 1.36 (1× 10−3) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.74 (4× 10−3) 0.07 (2× 10−3) 0.75 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.72 (4× 10−3) 0.06 (2× 10−3) 0.73 (5× 10−3)
RUV-inv-evar (Ectl) 0.50 (4× 10−3) 0.00 (8× 10−6) 0.23 (5× 10−4)
RUV-rinv-evar (Ectl) 0.50 (5× 10−3) 0.00 (6× 10−6) 0.22 (6× 10−4)

Table B.12: k = 20, highly correlated, nc = 60, not sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.44 (5× 10−3) 0.50 (6× 10−4) 0.76 (4× 10−3) 0.482 (3× 10−4) 22.97 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.73 (4× 10−3) 0.09 (3× 10−3) 0.84 (4× 10−3) 0.120 (1× 10−3) 3.36 (2× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.74 (4× 10−3) 0.09 (3× 10−3) 0.85 (4× 10−3) 0.118 (1× 10−3) 3.36 (2× 10−2) 0.84 (3× 10−3)
LEAPP 0.74 (4× 10−3) 0.22 (5× 10−3) 0.89 (3× 10−3) 0.079 (6× 10−4) 3.01 (2× 10−2) 0.83 (3× 10−3)
ICE 0.78 (4× 10−3) 0.02 (3× 10−4) 0.84 (4× 10−3) 0.092 (5× 10−4)
RUV-4 0.77 (4× 10−3) 0.10 (2× 10−3) 0.88 (3× 10−3) 0.096 (6× 10−4) 1.43 (9× 10−3) 0.46 (2× 10−3)
RUV-inv 0.78 (4× 10−3) 0.06 (1× 10−3) 0.87 (3× 10−3) 0.096 (5× 10−4) 1.59 (2× 10−3) 0.50 (7× 10−4)
RUV-rinv 0.78 (4× 10−3) 0.07 (1× 10−3) 0.87 (3× 10−3) 0.095 (5× 10−4) 1.89 (2× 10−3) 0.56 (8× 10−4)
RUV-inv (Ectl) 0.78 (4× 10−3) 0.07 (1× 10−3) 0.87 (3× 10−3) 0.093 (5× 10−4) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.78 (4× 10−3) 0.07 (1× 10−3) 0.88 (3× 10−3) 0.095 (5× 10−4) 1.87 (2× 10−3) 0.55 (7× 10−4)
RUV-inv-rsvar (Ectl) 0.78 (4× 10−3) 0.04 (5× 10−4) 0.86 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.78 (4× 10−3) 0.04 (5× 10−4) 0.86 (4× 10−3)
RUV-inv-evar (Ectl) 0.79 (4× 10−3) 0.05 (3× 10−4) 0.87 (4× 10−3)
RUV-rinv-evar (Ectl) 0.78 (4× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)

Table B.13: k = 70, moderately correlated, nc = 1000, very sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.60 (4× 10−3) 0.50 (5× 10−4) 0.76 (2× 10−3) 0.482 (3× 10−4) 22.91 (3× 10−2) 1.46 (2× 10−3)
SVA (IRW) 0.76 (3× 10−3) 0.19 (7× 10−3) 0.82 (2× 10−3) 0.185 (5× 10−3) 3.41 (3× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.78 (4× 10−3) 0.10 (3× 10−3) 0.84 (2× 10−3) 0.123 (1× 10−3) 3.39 (3× 10−2) 0.84 (3× 10−3)
LEAPP 0.78 (3× 10−3) 0.22 (5× 10−3) 0.88 (2× 10−3) 0.107 (7× 10−4) 3.07 (3× 10−2) 0.84 (3× 10−3)
ICE 0.79 (3× 10−3) 0.00 (8× 10−5) 0.76 (2× 10−3) 0.093 (4× 10−4)
RUV-4 0.86 (2× 10−3) 0.10 (2× 10−3) 0.88 (2× 10−3) 0.096 (5× 10−4) 1.42 (9× 10−3) 0.46 (2× 10−3)
RUV-inv 0.86 (3× 10−3) 0.06 (9× 10−4) 0.86 (2× 10−3) 0.096 (4× 10−4) 1.59 (2× 10−3) 0.50 (8× 10−4)
RUV-rinv 0.85 (3× 10−3) 0.07 (1× 10−3) 0.87 (2× 10−3) 0.096 (5× 10−4) 1.89 (3× 10−3) 0.56 (9× 10−4)
RUV-inv (Ectl) 0.87 (2× 10−3) 0.06 (9× 10−4) 0.87 (2× 10−3) 0.093 (4× 10−4) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.85 (3× 10−3) 0.07 (1× 10−3) 0.87 (2× 10−3) 0.094 (4× 10−4) 1.87 (2× 10−3) 0.55 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.87 (2× 10−3) 0.04 (5× 10−4) 0.86 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.85 (3× 10−3) 0.04 (5× 10−4) 0.85 (2× 10−3)
RUV-inv-evar (Ectl) 0.81 (3× 10−3) 0.01 (2× 10−4) 0.81 (2× 10−3)
RUV-rinv-evar (Ectl) 0.80 (3× 10−3) 0.01 (3× 10−4) 0.81 (2× 10−3)

Table B.14: k = 70, moderately correlated, nc = 1000, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.32 (4× 10−3) 0.50 (8× 10−4) 0.75 (7× 10−4) 0.482 (3× 10−4) 22.97 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.38 (5× 10−3) 0.72 (3× 10−3) 0.85 (7× 10−4) 0.585 (5× 10−3) 3.38 (2× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.45 (6× 10−3) 0.51 (7× 10−3) 0.80 (1× 10−3) 0.422 (1× 10−2) 3.38 (2× 10−2) 0.84 (3× 10−3)
LEAPP 0.55 (4× 10−3) 0.22 (5× 10−3) 0.88 (6× 10−4) 0.129 (1× 10−3) 3.04 (3× 10−2) 0.84 (3× 10−3)
ICE 0.50 (4× 10−3) 0.00 (2× 10−5) 0.40 (6× 10−4) 0.127 (5× 10−4)
RUV-4 0.68 (4× 10−3) 0.10 (1× 10−3) 0.88 (6× 10−4) 0.096 (5× 10−4) 1.42 (8× 10−3) 0.46 (2× 10−3)
RUV-inv 0.70 (4× 10−3) 0.06 (1× 10−3) 0.86 (7× 10−4) 0.096 (5× 10−4) 1.59 (2× 10−3) 0.50 (8× 10−4)
RUV-rinv 0.69 (4× 10−3) 0.07 (1× 10−3) 0.87 (6× 10−4) 0.096 (5× 10−4) 1.89 (3× 10−3) 0.56 (9× 10−4)
RUV-inv (Ectl) 0.71 (4× 10−3) 0.07 (1× 10−3) 0.86 (6× 10−4) 0.098 (4× 10−4) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.69 (4× 10−3) 0.08 (1× 10−3) 0.87 (6× 10−4) 0.097 (5× 10−4) 1.87 (2× 10−3) 0.55 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.71 (4× 10−3) 0.04 (4× 10−4) 0.85 (1× 10−3)
RUV-rinv-rsvar (Ectl) 0.69 (4× 10−3) 0.04 (4× 10−4) 0.85 (1× 10−3)
RUV-inv-evar (Ectl) 0.49 (5× 10−3) 0.00 (0) 0.24 (4× 10−4)
RUV-rinv-evar (Ectl) 0.48 (5× 10−3) 0.00 (0) 0.24 (4× 10−4)

Table B.15: k = 70, moderately correlated, nc = 1000, not sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.44 (5× 10−3) 0.50 (6× 10−4) 0.75 (4× 10−3) 0.481 (3× 10−4) 22.94 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.72 (5× 10−3) 0.09 (3× 10−3) 0.84 (4× 10−3) 0.122 (1× 10−3) 3.42 (3× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.73 (4× 10−3) 0.10 (3× 10−3) 0.84 (4× 10−3) 0.121 (1× 10−3) 3.40 (3× 10−2) 0.84 (3× 10−3)
LEAPP 0.73 (4× 10−3) 0.22 (5× 10−3) 0.88 (3× 10−3) 0.080 (8× 10−4) 3.08 (3× 10−2) 0.84 (3× 10−3)
ICE 0.78 (4× 10−3) 0.02 (3× 10−4) 0.84 (4× 10−3) 0.093 (5× 10−4)
RUV-4 0.54 (1× 10−2) 0.13 (3× 10−3) 0.79 (9× 10−3) 0.159 (3× 10−3) 1.13 (6× 10−3) 0.77 (4× 10−2)
RUV-inv 0.55 (7× 10−3) 0.02 (1× 10−3) 0.62 (9× 10−3) 0.207 (4× 10−3) 1.90 (1× 10−2) 1.02 (8× 10−3)
RUV-rinv 0.74 (4× 10−3) 0.07 (2× 10−3) 0.84 (4× 10−3) 0.110 (8× 10−4) 2.24 (9× 10−3) 0.67 (2× 10−3)
RUV-inv (Ectl) 0.78 (4× 10−3) 0.07 (1× 10−3) 0.87 (4× 10−3) 0.093 (5× 10−4) 1.57 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.77 (4× 10−3) 0.07 (1× 10−3) 0.87 (3× 10−3) 0.095 (5× 10−4) 1.83 (2× 10−3) 0.54 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.78 (4× 10−3) 0.05 (2× 10−3) 0.86 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.77 (4× 10−3) 0.05 (2× 10−3) 0.86 (4× 10−3)
RUV-inv-evar (Ectl) 0.78 (4× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)
RUV-rinv-evar (Ectl) 0.78 (4× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)

Table B.16: k = 70, moderately correlated, nc = 60, very sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.59 (4× 10−3) 0.50 (6× 10−4) 0.75 (2× 10−3) 0.481 (4× 10−4) 22.95 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.76 (4× 10−3) 0.20 (7× 10−3) 0.81 (3× 10−3) 0.190 (5× 10−3) 3.38 (3× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.78 (3× 10−3) 0.10 (3× 10−3) 0.84 (2× 10−3) 0.123 (1× 10−3) 3.36 (3× 10−2) 0.84 (3× 10−3)
LEAPP 0.78 (3× 10−3) 0.22 (4× 10−3) 0.88 (1× 10−3) 0.106 (7× 10−4) 3.04 (3× 10−2) 0.84 (3× 10−3)
ICE 0.79 (3× 10−3) 0.00 (7× 10−5) 0.76 (2× 10−3) 0.093 (4× 10−4)
RUV-4 0.75 (1× 10−2) 0.13 (3× 10−3) 0.78 (8× 10−3) 0.159 (3× 10−3) 1.13 (8× 10−3) 0.77 (4× 10−2)
RUV-inv 0.71 (4× 10−3) 0.02 (1× 10−3) 0.62 (7× 10−3) 0.209 (4× 10−3) 1.90 (1× 10−2) 1.03 (9× 10−3)
RUV-rinv 0.81 (3× 10−3) 0.07 (1× 10−3) 0.84 (2× 10−3) 0.109 (7× 10−4) 2.25 (1× 10−2) 0.67 (2× 10−3)
RUV-inv (Ectl) 0.87 (2× 10−3) 0.06 (9× 10−4) 0.87 (2× 10−3) 0.092 (4× 10−4) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.85 (2× 10−3) 0.07 (1× 10−3) 0.87 (2× 10−3) 0.094 (5× 10−4) 1.83 (2× 10−3) 0.54 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.87 (2× 10−3) 0.05 (2× 10−3) 0.86 (3× 10−3)
RUV-rinv-rsvar (Ectl) 0.85 (2× 10−3) 0.05 (2× 10−3) 0.85 (3× 10−3)
RUV-inv-evar (Ectl) 0.81 (4× 10−3) 0.01 (3× 10−4) 0.81 (2× 10−3)
RUV-rinv-evar (Ectl) 0.80 (4× 10−3) 0.01 (3× 10−4) 0.81 (2× 10−3)

Table B.17: k = 70, moderately correlated, nc = 60, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.31 (4× 10−3) 0.50 (7× 10−4) 0.75 (6× 10−4) 0.481 (4× 10−4) 22.91 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.37 (5× 10−3) 0.72 (3× 10−3) 0.86 (6× 10−4) 0.586 (6× 10−3) 3.36 (2× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.44 (8× 10−3) 0.51 (7× 10−3) 0.80 (1× 10−3) 0.421 (1× 10−2) 3.36 (2× 10−2) 0.84 (3× 10−3)
LEAPP 0.55 (4× 10−3) 0.24 (4× 10−3) 0.88 (6× 10−4) 0.131 (9× 10−4) 3.02 (3× 10−2) 0.84 (3× 10−3)
ICE 0.50 (4× 10−3) 0.00 (3× 10−5) 0.40 (5× 10−4) 0.127 (5× 10−4)
RUV-4 0.51 (2× 10−2) 0.14 (3× 10−3) 0.79 (9× 10−3) 0.158 (3× 10−3) 1.13 (6× 10−3) 0.76 (4× 10−2)
RUV-inv 0.40 (4× 10−3) 0.02 (1× 10−3) 0.61 (7× 10−3) 0.216 (5× 10−3) 1.93 (1× 10−2) 1.04 (9× 10−3)
RUV-rinv 0.60 (4× 10−3) 0.07 (2× 10−3) 0.84 (9× 10−4) 0.111 (7× 10−4) 2.27 (1× 10−2) 0.68 (2× 10−3)
RUV-inv (Ectl) 0.71 (3× 10−3) 0.08 (1× 10−3) 0.86 (7× 10−4) 0.100 (5× 10−4) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.69 (3× 10−3) 0.09 (2× 10−3) 0.87 (6× 10−4) 0.099 (5× 10−4) 1.83 (2× 10−3) 0.54 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.71 (3× 10−3) 0.08 (3× 10−3) 0.86 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.69 (3× 10−3) 0.07 (3× 10−3) 0.86 (2× 10−3)
RUV-inv-evar (Ectl) 0.48 (5× 10−3) 0.00 (2× 10−6) 0.24 (3× 10−4)
RUV-rinv-evar (Ectl) 0.48 (5× 10−3) 0.00 (0) 0.24 (4× 10−4)

Table B.18: k = 70, moderately correlated, nc = 60, not sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.26 (6× 10−3) 0.62 (1× 10−2) 0.78 (4× 10−3) 0.686 (2× 10−2) 22.91 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.42 (8× 10−3) 0.40 (2× 10−2) 0.79 (6× 10−3) 0.352 (1× 10−2) 3.59 (4× 10−2) 0.87 (4× 10−3)
SVA (2-step) 0.46 (7× 10−3) 0.36 (8× 10−3) 0.80 (5× 10−3) 0.276 (6× 10−3) 3.41 (3× 10−2) 0.84 (4× 10−3)
LEAPP 0.47 (6× 10−3) 0.59 (5× 10−3) 0.89 (3× 10−3) 0.204 (4× 10−3) 3.05 (3× 10−2) 0.84 (3× 10−3)
ICE 0.59 (6× 10−3) 0.05 (5× 10−4) 0.72 (5× 10−3) 0.183 (2× 10−3)
RUV-4 0.51 (6× 10−3) 0.31 (1× 10−2) 0.82 (5× 10−3) 0.230 (4× 10−3) 2.50 (6× 10−2) 0.69 (1× 10−2)
RUV-inv 0.58 (5× 10−3) 0.14 (2× 10−3) 0.77 (5× 10−3) 0.189 (2× 10−3) 1.59 (2× 10−3) 0.50 (7× 10−4)
RUV-rinv 0.56 (5× 10−3) 0.22 (4× 10−3) 0.81 (5× 10−3) 0.195 (2× 10−3) 2.00 (6× 10−3) 0.58 (2× 10−3)
RUV-inv (Ectl) 0.59 (5× 10−3) 0.15 (3× 10−3) 0.79 (5× 10−3) 0.183 (2× 10−3) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.56 (5× 10−3) 0.23 (4× 10−3) 0.81 (5× 10−3) 0.193 (2× 10−3) 1.97 (5× 10−3) 0.58 (1× 10−3)
RUV-inv-rsvar (Ectl) 0.59 (5× 10−3) 0.04 (5× 10−4) 0.70 (5× 10−3)
RUV-rinv-rsvar (Ectl) 0.56 (5× 10−3) 0.05 (4× 10−4) 0.69 (6× 10−3)
RUV-inv-evar (Ectl) 0.61 (5× 10−3) 0.05 (2× 10−4) 0.72 (5× 10−3)
RUV-rinv-evar (Ectl) 0.59 (5× 10−3) 0.05 (2× 10−4) 0.71 (6× 10−3)

Table B.19: k = 70, highly correlated, nc = 1000, very sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.49 (5× 10−3) 0.64 (1× 10−2) 0.78 (3× 10−3) 0.723 (2× 10−2) 22.96 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.64 (7× 10−3) 0.55 (2× 10−2) 0.79 (6× 10−3) 0.506 (2× 10−2) 3.67 (4× 10−2) 0.87 (5× 10−3)
SVA (2-step) 0.73 (4× 10−3) 0.36 (9× 10−3) 0.80 (3× 10−3) 0.282 (4× 10−3) 3.33 (2× 10−2) 0.83 (3× 10−3)
LEAPP 0.74 (4× 10−3) 0.60 (5× 10−3) 0.89 (1× 10−3) 0.223 (3× 10−3) 2.98 (2× 10−2) 0.83 (3× 10−3)
ICE 0.77 (3× 10−3) 0.02 (5× 10−4) 0.67 (3× 10−3) 0.188 (2× 10−3)
RUV-4 0.78 (5× 10−3) 0.30 (1× 10−2) 0.81 (3× 10−3) 0.235 (4× 10−3) 2.47 (6× 10−2) 0.68 (1× 10−2)
RUV-inv 0.83 (3× 10−3) 0.13 (2× 10−3) 0.77 (3× 10−3) 0.192 (2× 10−3) 1.59 (2× 10−3) 0.50 (7× 10−4)
RUV-rinv 0.81 (3× 10−3) 0.22 (4× 10−3) 0.80 (2× 10−3) 0.197 (2× 10−3) 1.99 (6× 10−3) 0.58 (2× 10−3)
RUV-inv (Ectl) 0.84 (3× 10−3) 0.15 (3× 10−3) 0.78 (3× 10−3) 0.186 (2× 10−3) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.81 (3× 10−3) 0.23 (4× 10−3) 0.81 (3× 10−3) 0.197 (2× 10−3) 1.97 (6× 10−3) 0.57 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.84 (3× 10−3) 0.04 (5× 10−4) 0.70 (3× 10−3)
RUV-rinv-rsvar (Ectl) 0.81 (3× 10−3) 0.05 (5× 10−4) 0.68 (4× 10−3)
RUV-inv-evar (Ectl) 0.77 (3× 10−3) 0.03 (3× 10−4) 0.69 (3× 10−3)
RUV-rinv-evar (Ectl) 0.74 (4× 10−3) 0.03 (3× 10−4) 0.67 (3× 10−3)

Table B.20: k = 70, highly correlated, nc = 1000, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.29 (5× 10−3) 0.63 (1× 10−2) 0.78 (3× 10−3) 0.716 (2× 10−2) 22.93 (2× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.26 (1× 10−2) 0.82 (8× 10−3) 0.89 (3× 10−3) 1.104 (5× 10−2) 3.44 (3× 10−2) 0.85 (4× 10−3)
SVA (2-step) 0.26 (1× 10−2) 0.74 (1× 10−2) 0.84 (4× 10−3) 1.308 (9× 10−2) 3.49 (3× 10−2) 0.85 (4× 10−3)
LEAPP 0.51 (5× 10−3) 0.59 (6× 10−3) 0.89 (6× 10−4) 0.256 (4× 10−3) 3.05 (3× 10−2) 0.84 (3× 10−3)
ICE 0.48 (4× 10−3) 0.00 (1× 10−4) 0.37 (1× 10−3) 0.236 (4× 10−3)
RUV-4 0.58 (7× 10−3) 0.30 (1× 10−2) 0.81 (3× 10−3) 0.234 (4× 10−3) 2.49 (7× 10−2) 0.69 (1× 10−2)
RUV-inv 0.67 (4× 10−3) 0.13 (2× 10−3) 0.77 (3× 10−3) 0.192 (2× 10−3) 1.59 (2× 10−3) 0.50 (7× 10−4)
RUV-rinv 0.65 (4× 10−3) 0.22 (5× 10−3) 0.81 (2× 10−3) 0.198 (2× 10−3) 1.99 (6× 10−3) 0.58 (2× 10−3)
RUV-inv (Ectl) 0.68 (4× 10−3) 0.17 (3× 10−3) 0.79 (2× 10−3) 0.190 (2× 10−3) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.65 (4× 10−3) 0.24 (5× 10−3) 0.81 (2× 10−3) 0.200 (2× 10−3) 1.98 (6× 10−3) 0.58 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.68 (4× 10−3) 0.05 (4× 10−4) 0.70 (3× 10−3)
RUV-rinv-rsvar (Ectl) 0.65 (4× 10−3) 0.05 (5× 10−4) 0.68 (4× 10−3)
RUV-inv-evar (Ectl) 0.48 (4× 10−3) 0.00 (3× 10−6) 0.22 (5× 10−4)
RUV-rinv-evar (Ectl) 0.46 (5× 10−3) 0.00 (0) 0.22 (5× 10−4)

Table B.21: k = 70, highly correlated, nc = 1000, not sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.23 (6× 10−3) 0.62 (1× 10−2) 0.78 (5× 10−3) 0.699 (2× 10−2) 22.95 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.40 (8× 10−3) 0.43 (2× 10−2) 0.80 (5× 10−3) 0.379 (2× 10−2) 3.65 (5× 10−2) 0.87 (6× 10−3)
SVA (2-step) 0.46 (7× 10−3) 0.36 (9× 10−3) 0.81 (5× 10−3) 0.274 (4× 10−3) 3.37 (2× 10−2) 0.84 (3× 10−3)
LEAPP 0.46 (7× 10−3) 0.59 (5× 10−3) 0.89 (3× 10−3) 0.205 (4× 10−3) 3.04 (3× 10−2) 0.84 (3× 10−3)
ICE 0.58 (5× 10−3) 0.05 (5× 10−4) 0.72 (5× 10−3) 0.185 (2× 10−3)
RUV-4 0.43 (6× 10−3) 0.22 (6× 10−3) 0.75 (6× 10−3) 0.257 (3× 10−3) 1.31 (2× 10−2) 0.50 (7× 10−3)
RUV-inv 0.31 (6× 10−3) 0.03 (1× 10−3) 0.39 (1× 10−2) 0.430 (9× 10−3) 1.93 (1× 10−2) 1.03 (9× 10−3)
RUV-rinv 0.51 (6× 10−3) 0.18 (5× 10−3) 0.77 (5× 10−3) 0.222 (2× 10−3) 2.27 (9× 10−3) 0.67 (2× 10−3)
RUV-inv (Ectl) 0.58 (6× 10−3) 0.14 (3× 10−3) 0.79 (5× 10−3) 0.185 (2× 10−3) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.56 (6× 10−3) 0.20 (4× 10−3) 0.81 (5× 10−3) 0.191 (2× 10−3) 1.86 (2× 10−3) 0.54 (9× 10−4)
RUV-inv-rsvar (Ectl) 0.58 (6× 10−3) 0.05 (2× 10−3) 0.71 (6× 10−3)
RUV-rinv-rsvar (Ectl) 0.56 (6× 10−3) 0.05 (2× 10−3) 0.70 (6× 10−3)
RUV-inv-evar (Ectl) 0.60 (6× 10−3) 0.05 (2× 10−4) 0.73 (5× 10−3)
RUV-rinv-evar (Ectl) 0.59 (5× 10−3) 0.05 (2× 10−4) 0.72 (5× 10−3)

Table B.22: k = 70, highly correlated, nc = 60, very sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.50 (6× 10−3) 0.65 (1× 10−2) 0.79 (3× 10−3) 0.749 (2× 10−2) 22.97 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.65 (8× 10−3) 0.50 (2× 10−2) 0.78 (5× 10−3) 0.478 (2× 10−2) 3.66 (5× 10−2) 0.87 (5× 10−3)
SVA (2-step) 0.73 (4× 10−3) 0.34 (9× 10−3) 0.80 (3× 10−3) 0.274 (6× 10−3) 3.39 (3× 10−2) 0.84 (3× 10−3)
LEAPP 0.74 (4× 10−3) 0.58 (5× 10−3) 0.89 (1× 10−3) 0.216 (3× 10−3) 3.05 (3× 10−2) 0.84 (3× 10−3)
ICE 0.77 (3× 10−3) 0.02 (5× 10−4) 0.67 (3× 10−3) 0.186 (2× 10−3)
RUV-4 0.79 (5× 10−3) 0.22 (6× 10−3) 0.74 (6× 10−3) 0.262 (5× 10−3) 1.30 (2× 10−2) 0.50 (8× 10−3)
RUV-inv 0.63 (7× 10−3) 0.02 (1× 10−3) 0.39 (1× 10−2) 0.429 (1× 10−2) 1.94 (1× 10−2) 1.04 (1× 10−2)
RUV-rinv 0.79 (3× 10−3) 0.18 (4× 10−3) 0.77 (3× 10−3) 0.221 (2× 10−3) 2.28 (1× 10−2) 0.68 (2× 10−3)
RUV-inv (Ectl) 0.84 (3× 10−3) 0.15 (3× 10−3) 0.79 (3× 10−3) 0.184 (2× 10−3) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.82 (3× 10−3) 0.20 (3× 10−3) 0.81 (3× 10−3) 0.190 (2× 10−3) 1.85 (3× 10−3) 0.55 (1× 10−3)
RUV-inv-rsvar (Ectl) 0.84 (3× 10−3) 0.06 (2× 10−3) 0.72 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.82 (3× 10−3) 0.06 (2× 10−3) 0.71 (5× 10−3)
RUV-inv-evar (Ectl) 0.77 (3× 10−3) 0.03 (3× 10−4) 0.70 (3× 10−3)
RUV-rinv-evar (Ectl) 0.75 (3× 10−3) 0.03 (3× 10−4) 0.69 (3× 10−3)

Table B.23: k = 70, highly correlated, nc = 60, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j/σ

2
j ) IQR[log(σ̂2

j/σ
2
j )]

Unadjusted 0.29 (5× 10−3) 0.64 (1× 10−2) 0.78 (3× 10−3) 0.731 (2× 10−2) 22.90 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.25 (1× 10−2) 0.83 (8× 10−3) 0.89 (3× 10−3) 1.163 (5× 10−2) 3.45 (3× 10−2) 0.85 (3× 10−3)
SVA (2-step) 0.23 (1× 10−2) 0.76 (1× 10−2) 0.84 (5× 10−3) 1.423 (8× 10−2) 3.54 (3× 10−2) 0.86 (4× 10−3)
LEAPP 0.51 (5× 10−3) 0.59 (6× 10−3) 0.89 (5× 10−4) 0.257 (4× 10−3) 3.05 (3× 10−2) 0.84 (3× 10−3)
ICE 0.49 (4× 10−3) 0.00 (9× 10−5) 0.37 (1× 10−3) 0.240 (4× 10−3)
RUV-4 0.61 (5× 10−3) 0.22 (5× 10−3) 0.75 (6× 10−3) 0.260 (4× 10−3) 1.33 (2× 10−2) 0.49 (6× 10−3)
RUV-inv 0.38 (5× 10−3) 0.02 (1× 10−3) 0.38 (9× 10−3) 0.434 (8× 10−3) 1.92 (1× 10−2) 1.03 (9× 10−3)
RUV-rinv 0.58 (4× 10−3) 0.17 (4× 10−3) 0.76 (3× 10−3) 0.224 (2× 10−3) 2.29 (1× 10−2) 0.68 (2× 10−3)
RUV-inv (Ectl) 0.67 (4× 10−3) 0.17 (3× 10−3) 0.79 (3× 10−3) 0.193 (2× 10−3) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.65 (4× 10−3) 0.22 (3× 10−3) 0.81 (2× 10−3) 0.199 (2× 10−3) 1.86 (3× 10−3) 0.55 (9× 10−4)
RUV-inv-rsvar (Ectl) 0.67 (4× 10−3) 0.07 (3× 10−3) 0.72 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.65 (4× 10−3) 0.06 (3× 10−3) 0.70 (4× 10−3)
RUV-inv-evar (Ectl) 0.49 (4× 10−3) 0.00 (3× 10−6) 0.22 (5× 10−4)
RUV-rinv-evar (Ectl) 0.48 (4× 10−3) 0.00 (2× 10−6) 0.22 (5× 10−4)

Table B.24: k = 70, highly correlated, nc = 60, not sparse.



APPENDIX B. RUV-4 SUPPLEMENTARY MATERIAL 204

B.3 Data Results (Figures)
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Figure B.14: Alzheimer’s (Preprocessed). X/Y gene counts are out of the top 40 genes.
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Figure B.15: Alzheimer’s (Not Preprocessed). X/Y gene counts are out of the top 40 genes.
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Figure B.16: Gender (Preprocessed). X/Y gene counts are out of the top 40 genes.
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Figure B.17: Gender (Not Preprocessed). X/Y gene counts are out of the top 40 genes.
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Figure B.18: TCGA Exon. X/Y gene counts are out of the top 80 genes.
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Figure B.19: TCGA HG-U133A. X/Y gene counts are out of the top 80 genes.
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Figure B.20: TCGA Agilent. X/Y gene counts are out of the top 80 genes.
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Figure B.21: TCGA Combined Subsets. X/Y gene counts are out of the top 40 genes.
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Figure B.22: TCGA Exon (subset). X/Y gene counts are out of the top 40 genes.
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Figure B.23: TCGA HG-133a (subset). X/Y gene counts are out of the top 40 genes.
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Figure B.24: TCGA Agilent (subset). X/Y gene counts are out of the top 40 genes.
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B.4 Data Results (Tables)

Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 15 19 23 25 26 0.02
SVA-IRW 18 19 21 24 24 0.04
SVA-TS 16 18 19 19 21 0.09
LEAPP 16 24 24 26 27 0.13
ICE 20 27 29 31 31 0.04
RUV-4 (HK) 18 24 27 29 31 0.1
RUV-inv (HK) 19 26 29 31 33 0.05
RUV-rinv (HK) 20 26 30 32 33 0.05
RUV-4-evar (HK) 19 24 29 30 31 0.06
RUV-inv-evar (HK) 19 26 29 30 35 0.06
RUV-rinv-evar (HK) 19 27 30 30 33 0.06
RUV-4 (Full) 19 23 28 30 30 0.1
RUV-inv (Full) 20 25 29 31 34 0.05
RUV-rinv (Full) 20 26 29 32 35 0.05
RUV-4-evar (Full) 19 25 28 29 31 0.06
RUV-inv-evar (Full) 20 26 29 30 34 0.06
RUV-rinv-evar (Full) 20 26 29 31 32 0.05
RUV-4 (Empi) 19 24 29 30 32 0.1
RUV-inv (Empi) 20 25 29 31 33 0.05
RUV-rinv (Empi) 20 26 29 33 35 0.05
RUV-4-evar (Empi) 20 26 28 29 31 0.06
RUV-inv-evar (Empi) 20 26 29 31 33 0.06
RUV-rinv-evar (Empi) 20 26 29 32 34 0.06

Table B.25: Alzheimer’s (Preprocessed)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 8 9 9 13 15 0.3
SVA-IRW 8 9 12 13 14 0.26
SVA-TS 0 0 0 0 0 NA
LEAPP 17 23 24 26 26 0.13
ICE 13 16 17 17 21 0.23
RUV-4 (HK) 14 19 23 24 26 0.1
RUV-inv (HK) 17 21 22 24 28 0.05
RUV-rinv (HK) 18 21 26 28 31 0.05
RUV-4-evar (HK) 17 22 25 27 29 0.06
RUV-inv-evar (HK) 20 23 26 28 30 0.06
RUV-rinv-evar (HK) 19 26 30 32 32 0.06
RUV-4 (Full) 16 21 23 26 26 0.1
RUV-inv (Full) 17 23 25 25 27 0.05
RUV-rinv (Full) 18 23 26 28 30 0.05
RUV-4-evar (Full) 19 23 26 28 29 0.06
RUV-inv-evar (Full) 19 23 25 29 29 0.06
RUV-rinv-evar (Full) 19 24 28 28 30 0.06
RUV-4 (Empi) 16 21 23 26 26 0.1
RUV-inv (Empi) 17 23 25 25 27 0.05
RUV-rinv (Empi) 18 23 27 28 30 0.05
RUV-4-evar (Empi) 19 23 25 28 29 0.06
RUV-inv-evar (Empi) 19 23 26 28 30 0.06
RUV-rinv-evar (Empi) 18 25 28 28 30 0.06

Table B.26: Alzheimer’s (No Preprocessing)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 11 13 15 17 19 0.01
SVA-IRW 14 17 19 19 19 0.08
SVA-TS 16 21 23 25 27 0.09
LEAPP 18 20 22 25 26 0.12
ICE 16 23 26 27 28 0.04
RUV-4 (HK) 14 19 21 24 28 0.1
RUV-inv (HK) 13 18 20 21 22 0.08
RUV-rinv (HK) 16 20 22 25 28 0.08
RUV-4-evar (HK) 14 17 22 25 27 0.06
RUV-inv-evar (HK) 12 17 20 22 23 0.06
RUV-rinv-evar (HK) 15 21 23 27 28 0.06
RUV-4 (Full) 13 20 23 24 27 0.11
RUV-inv (Full) 14 20 21 23 27 0.07
RUV-rinv (Full) 15 21 25 27 28 0.08
RUV-4-evar (Full) 13 18 23 26 27 0.06
RUV-inv-evar (Full) 14 19 23 24 25 0.06
RUV-rinv-evar (Full) 16 22 26 27 27 0.06
RUV-4 (Empi) 13 20 23 24 26 0.11
RUV-inv (Empi) 15 19 24 25 27 0.08
RUV-rinv (Empi) 16 22 25 28 28 0.09
RUV-4-evar (Empi) 14 17 22 23 25 0.06
RUV-inv-evar (Empi) 14 20 22 25 27 0.06
RUV-rinv-evar (Empi) 15 22 26 27 28 0.06

Table B.27: Gender (Preprocessed)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 7 7 7 8 10 0
SVA-IRW 4 6 8 9 12 0
SVA-TS 0 0 0 0 0 NA
LEAPP 11 16 18 19 19 0.01
ICE 8 11 13 14 17 0
RUV-4 (HK) 13 20 22 26 29 0.12
RUV-inv (HK) 14 18 23 23 26 0.07
RUV-rinv (HK) 14 22 24 25 28 0.08
RUV-4-evar (HK) 12 20 25 26 27 0.06
RUV-inv-evar (HK) 12 19 22 24 26 0.06
RUV-rinv-evar (HK) 16 23 25 28 28 0.06
RUV-4 (Full) 12 20 23 24 29 0.12
RUV-inv (Full) 12 17 23 25 25 0.06
RUV-rinv (Full) 14 21 24 27 30 0.07
RUV-4-evar (Full) 14 18 24 28 28 0.06
RUV-inv-evar (Full) 13 18 19 22 24 0.06
RUV-rinv-evar (Full) 16 23 27 31 32 0.06
RUV-4 (Empi) 12 21 24 25 29 0.12
RUV-inv (Empi) 14 21 23 25 26 0.08
RUV-rinv (Empi) 14 23 24 27 30 0.09
RUV-4-evar (Empi) 14 20 24 28 30 0.06
RUV-inv-evar (Empi) 16 20 23 25 28 0.06
RUV-rinv-evar (Empi) 17 24 26 30 30 0.06

Table B.28: Gender (No Preprocessing)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 17 30 33 35 35 0.08
SVA-IRW 17 31 32 33 34 0.12
SVA-TS 17 33 34 37 40 0.08
LEAPP 17 33 34 35 36 0.12
ICE 17 33 35 35 36 0.01
RUV-4 (HK) 17 33 34 38 39 0.13
RUV-inv (HK) 17 28 29 30 30 0.05
RUV-rinv (HK) 17 34 37 39 40 0.07
RUV-4-evar (HK) 17 33 35 38 38 0.06
RUV-inv-evar (HK) 17 27 30 30 32 0.05
RUV-rinv-evar (HK) 17 33 37 39 40 0.05
RUV-4 (Full) 17 31 32 33 34 0.13
RUV-inv (Full) 17 26 29 29 30 0.04
RUV-rinv (Full) 17 30 31 31 32 0.06
RUV-4-evar (Full) 17 30 31 33 34 0.05
RUV-inv-evar (Full) 17 25 29 29 30 0.05
RUV-rinv-evar (Full) 17 30 31 31 32 0.05
RUV-4 (Empi) 17 33 35 38 40 0.1
RUV-inv (Empi) 17 33 38 38 38 0.07
RUV-rinv (Empi) 17 33 36 37 40 0.08
RUV-4-evar (Empi) 17 33 35 38 40 0.05
RUV-inv-evar (Empi) 17 33 36 37 38 0.05
RUV-rinv-evar (Empi) 17 33 36 39 41 0.05

Table B.29: TCGA (Exon)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 16 22 22 24 25 0.12
SVA-IRW 17 24 25 26 26 0.04
SVA-TS 17 27 31 31 32 0.08
LEAPP 17 29 32 32 34 0.11
ICE 17 28 31 32 32 0.02
RUV-4 (HK) 17 24 26 29 32 0.14
RUV-inv (HK) 10 13 16 16 18 0.03
RUV-rinv (HK) 17 29 32 32 32 0.08
RUV-4-evar (HK) 17 23 25 27 31 0.06
RUV-inv-evar (HK) 9 12 15 18 19 0.06
RUV-rinv-evar (HK) 16 29 31 32 33 0.05
RUV-4 (Full) 15 17 20 23 24 0.15
RUV-inv (Full) 9 10 12 14 15 0.04
RUV-rinv (Full) 13 16 19 22 23 0.08
RUV-4-evar (Full) 15 17 20 23 24 0.06
RUV-inv-evar (Full) 8 10 11 14 14 0.05
RUV-rinv-evar (Full) 13 16 20 23 25 0.06
RUV-4 (Empi) 17 29 35 38 38 0.1
RUV-inv (Empi) 17 27 31 35 36 0.06
RUV-rinv (Empi) 17 28 34 36 36 0.08
RUV-4-evar (Empi) 17 29 33 38 39 0.05
RUV-inv-evar (Empi) 17 24 29 32 32 0.05
RUV-rinv-evar (Empi) 17 29 33 36 36 0.06

Table B.30: TCGA (HG U133A)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 17 30 36 38 40 0.07
SVA-IRW 17 33 37 41 42 0.08
SVA-TS 17 33 37 38 42 0.08
LEAPP 17 33 37 38 43 0.12
ICE 17 33 34 37 41 0.01
RUV-4 (HK) 17 33 34 37 40 0.13
RUV-inv (HK) 16 19 22 22 23 0.04
RUV-rinv (HK) 17 33 38 39 41 0.08
RUV-4-evar (HK) 16 33 35 37 40 0.05
RUV-inv-evar (HK) 16 18 20 22 24 0.05
RUV-rinv-evar (HK) 17 33 37 40 42 0.05
RUV-4 (Full) 17 32 36 38 39 0.15
RUV-inv (Full) 17 22 23 25 26 0.05
RUV-rinv (Full) 17 29 31 33 34 0.05
RUV-4-evar (Full) 17 32 35 38 38 0.05
RUV-inv-evar (Full) 16 22 23 24 24 0.05
RUV-rinv-evar (Full) 17 29 29 32 34 0.05
RUV-4 (Empi) 17 33 40 44 46 0.11
RUV-inv (Empi) 17 33 38 43 43 0.07
RUV-rinv (Empi) 17 33 39 42 46 0.07
RUV-4-evar (Empi) 17 33 41 42 46 0.05
RUV-inv-evar (Empi) 18 32 37 43 45 0.05
RUV-rinv-evar (Empi) 17 33 39 43 45 0.05

Table B.31: TCGA (Agilent)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 12 14 16 17 17 0.02
SVA-IRW 17 21 25 25 26 0.07
SVA-TS 17 22 24 26 26 0.09
LEAPP 17 22 23 23 25 0.1
ICE 17 24 25 27 27 0.01
RUV-4 (HK) 17 22 24 25 25 0.16
RUV-inv (HK) 17 20 20 21 21 0.05
RUV-rinv (HK) 17 24 27 28 28 0.06
RUV-4-evar (HK) 17 23 25 25 26 0.06
RUV-inv-evar (HK) 17 20 20 20 21 0.05
RUV-rinv-evar (HK) 17 24 26 29 30 0.05
RUV-4 (Full) 13 16 18 22 23 0.11
RUV-inv (Full) 10 14 18 20 20 0.05
RUV-rinv (Full) 16 19 20 24 25 0.05
RUV-4-evar (Full) 13 16 18 20 21 0.05
RUV-inv-evar (Full) 10 13 16 20 20 0.05
RUV-rinv-evar (Full) 16 19 22 23 25 0.05
RUV-4 (Empi) 17 26 28 29 29 0.09
RUV-inv (Empi) 17 25 25 29 29 0.05
RUV-rinv (Empi) 17 25 27 28 31 0.06
RUV-4-evar (Empi) 17 26 27 29 29 0.05
RUV-inv-evar (Empi) 17 23 25 27 29 0.05
RUV-rinv-evar (Empi) 17 25 27 29 31 0.05

Table B.32: TCGA (Combined)



APPENDIX B. RUV-4 SUPPLEMENTARY MATERIAL 224

Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 13 17 18 18 18 0.08
SVA-IRW 15 18 19 24 25 0.05
SVA-TS 16 18 19 19 21 0.06
LEAPP 16 20 24 25 26 0.12
ICE 17 22 22 24 24 0.03
RUV-4 (HK) 15 18 21 24 25 0.13
RUV-inv (HK) 15 22 22 23 25 0.06
RUV-rinv (HK) 17 21 22 23 24 0.07
RUV-4-evar (HK) 15 18 20 23 24 0.05
RUV-inv-evar (HK) 15 21 22 24 25 0.05
RUV-rinv-evar (HK) 16 21 23 24 24 0.05
RUV-4 (Full) 15 18 20 22 23 0.09
RUV-inv (Full) 14 16 18 20 23 0.05
RUV-rinv (Full) 15 17 20 23 23 0.06
RUV-4-evar (Full) 14 18 20 21 22 0.05
RUV-inv-evar (Full) 13 16 18 22 23 0.05
RUV-rinv-evar (Full) 15 18 20 22 23 0.05
RUV-4 (Empi) 16 20 23 24 25 0.09
RUV-inv (Empi) 17 22 23 24 24 0.06
RUV-rinv (Empi) 16 22 22 23 25 0.06
RUV-4-evar (Empi) 16 22 23 24 25 0.05
RUV-inv-evar (Empi) 16 21 24 24 24 0.05
RUV-rinv-evar (Empi) 16 22 22 23 23 0.05

Table B.33: TCGA (Exon Subset)



APPENDIX B. RUV-4 SUPPLEMENTARY MATERIAL 225

Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 15 17 18 19 19 0.05
SVA-IRW 14 16 16 19 20 0.07
SVA-TS 14 19 20 21 22 0.06
LEAPP 15 18 19 22 22 0.12
ICE 17 21 21 22 22 0.03
RUV-4 (HK) 16 19 20 22 26 0.11
RUV-inv (HK) 16 19 19 21 22 0.04
RUV-rinv (HK) 16 19 21 23 23 0.05
RUV-4-evar (HK) 16 19 21 26 27 0.06
RUV-inv-evar (HK) 16 19 20 21 24 0.06
RUV-rinv-evar (HK) 16 19 21 22 23 0.06
RUV-4 (Full) 16 20 22 22 22 0.09
RUV-inv (Full) 15 20 22 22 23 0.05
RUV-rinv (Full) 15 20 20 21 23 0.06
RUV-4-evar (Full) 16 21 22 22 22 0.06
RUV-inv-evar (Full) 15 20 22 22 24 0.06
RUV-rinv-evar (Full) 16 20 21 22 23 0.06
RUV-4 (Empi) 16 20 21 22 23 0.09
RUV-inv (Empi) 16 20 22 22 25 0.05
RUV-rinv (Empi) 16 20 21 24 24 0.06
RUV-4-evar (Empi) 16 21 22 23 24 0.06
RUV-inv-evar (Empi) 16 21 23 24 27 0.06
RUV-rinv-evar (Empi) 16 21 23 23 23 0.06

Table B.34: TCGA (HG U133A Subset)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 11 14 18 18 19 0.05
SVA-IRW 13 16 16 17 18 0.06
SVA-TS 14 17 20 21 22 0.05
LEAPP 13 16 18 19 21 0.1
ICE 17 22 22 23 23 0.03
RUV-4 (HK) 15 17 19 19 19 0.11
RUV-inv (HK) 16 18 20 20 20 0.04
RUV-rinv (HK) 16 19 22 22 23 0.04
RUV-4-evar (HK) 15 18 19 21 22 0.06
RUV-inv-evar (HK) 16 18 20 20 20 0.05
RUV-rinv-evar (HK) 16 19 21 21 22 0.05
RUV-4 (Full) 14 17 21 22 22 0.09
RUV-inv (Full) 15 19 19 20 20 0.04
RUV-rinv (Full) 15 20 20 20 22 0.05
RUV-4-evar (Full) 13 19 21 22 22 0.06
RUV-inv-evar (Full) 14 19 19 20 20 0.06
RUV-rinv-evar (Full) 15 19 20 20 22 0.06
RUV-4 (Empi) 16 19 21 21 24 0.09
RUV-inv (Empi) 16 22 22 23 23 0.04
RUV-rinv (Empi) 16 21 23 23 23 0.04
RUV-4-evar (Empi) 15 20 21 22 23 0.06
RUV-inv-evar (Empi) 16 22 22 23 23 0.05
RUV-rinv-evar (Empi) 16 21 23 23 23 0.05

Table B.35: TCGA (Agilent Subset)




