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ABSTRACT OF THE DISSERTATION 
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by 
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University of California, Riverside, June 2013 

Dr. Evangelos Christidis, Chairperson 

 

 

 

While the number, sizes and complexity of databases have increased, the query interfaces that 

facilitate exploration of these databases have largely remained inadequate. 

This dissertation takes a principled approach to user data exploration and proposes techniques 

that simplify access to large and complex structured and semi-structured databases. Various 

factors that affect usability such as user preference, intuitiveness of interfaces, and effort 

expended by users are taken into account, in addition to database structure. The interplay of these 

factors is studied and the proposed methods effectively utilize them to deliver maximum benefit 

to users. The most common tasks in a data exploration scenario are query formulation, results 

navigation and presentation. We propose and evaluate methods to improve usability for all these 

tasks. The techniques proposed are often complementary to each other, and exploit domain 

properties of the data. The effectiveness of the approaches is demonstrated with experiments on 

real-life datasets and comprehensive user-studies, wherever applicable. 

The first part of the dissertation presents an auto-completion style query formulation interface, 

which enables users to augment keyword queries by adding structured conditions. The resulting 
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queries are focused and more likely to return results that the user finds relevant. The next two 

parts of the dissertation focus on challenges in two commonly used scenarios of results 

navigation: Categorization and Faceted Navigation. To model and quantify the effort incurred by 

a user, navigation and cost models are proposed for both navigation scenarios. Techniques to 

estimate this effort, taking into account preferences, are proposed and algorithms developed to 

compute the minimal set of suggested options that, if followed by the user, minimize the expected 

effort required to navigate the results. The final part focuses on the results presentation. They 

present a method to construct result snippets, which complements existing methods that consider 

solely the importance of the selected attributes. This method considers the user effort required to 

read and comprehend the snippets.  
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Chapter 1 

Introduction 

1.1 Background and Motivation 

The number and sizes of databases published online have increased significantly over the 

recent years. These databases are typically structured or semi-structured, and have some form of 

meta-data (such attributes, concept hierarchy, annotations, relations, etc.) associated with data 

values, which are organized by a database schema. Examples of such databases include product 

catalogs (such as Amazon.com[1], eBay.com[2] etc.), local businesses (e.g. Yellow Pages[3], 

Yelp[4] etc.), biomedical databases (e.g. Entrez Gene[5], OMIM[6] etc.), bibliographies (e.g. 

DBLP[7], PubMed[8]) among many others.     

Access to these databases by everyday common (as opposed to expert) users is facilitated 

by means of a query interface. These query interfaces shield users from the complexities of the 

underlying database schema (the structure of the data and their relationships) and the intricacies of 

a language (e.g. SQL, XQuery) used to query the data.  

Example 1.1: As an example, consider the query interface of the popular e-commerce 

website Amazon.com as shown in Figure 1.1.  The product catalog of Amazon.com has a complex 

structure where each item has a type (e.g. Laptop, Desktop etc.) and a set of type-specific attributes 

and associated values (e.g. Brand:  Dell, Memory: 3Gb etc. for a Laptop item). In order to 
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formulate a query “laptops with Brand = Dell” the user must be aware of the underlying database 

structure (XML, Relational etc.) and schema (e.g. a universal relation or tables for each type etc.).  

Query Formulation

Results Ranking

Result Snippet

Result Categories

Results Facets

Keyword query interface

Result Navigation Results Presentation

 

Figure 1.1. Components of a Query Interface. 

Although query interfaces are widely utilized by users to query and explore databases, the 

usability of query interfaces has received relatively less attention [9] and the techniques used in the 

realization interface components are mostly ad-hoc in nature and often leads to additional and 

redundant effort on part of the users. In this dissertation, we focus on methods and techniques to 

reduce the effort incurred by users in data exploration tasks. We focus on components of a query 

interface which facilitate data-exploration on structured (or semi-structured) databases by 

providing users with tools to formulating queries and then navigate the query results.  
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In this section, we begin by introducing the components of a query interface and identify 

the limitations and challenges that we address in the rest of the dissertation. The underlying theme 

in all scenarios introduced is the effort on part of the users that can be reduced or entirely 

eliminated. Figure 1.1 shows an example of a typical query interface that is commonly available to 

users, who typically explore the dataset by issuing queries and then navigating the returned results. 

It shows the three main components: (a) Query Formulation, (b) Results Navigation and (c) Results 

Presentation.  

(a) Query Formulation: The query interface in Figure 1.1 provides a simple keyword-

based search to query the underlying product catalog. This simple yet intuitive query paradigm has 

become very popular method, over other methods such as Query Forms [10, 11], to query complex 

databases. These unstructured keyword queries are then processed by the underlying search engine 

either by utilizing index structures such as Lucene[12] or translating them into structured queries 

[13-16] based on the ways the query keywords are connected to each other.   

Limitations:  Keyword queries are typically ambiguous and typically return a large number 

of results from multiple interpretations of the query. The primary sources of ambiguity are 

ambiguity in keywords (e.g. keyword “fox” can refer to Fox News channel or the Fox Software 

company etc.) or due to ambiguity in inferring the relevant structural relationships in the 

underlying database - for example, the keyword query “dell laptop” shown in Figure 1.1 could 

refer to Laptops manufactured by Dell, or some accessories or components compatible with Dell 

laptops, among many others. The users then have to navigate the results using other components of 

the query interface to find the results that are relevant to her. The metadata and structure in 

structured databases can be exploited to build a more focused query. For example, the query “dell 

laptop” can be augmented with structured conditions such as ����� = ���	
�, �
��� = ����� 
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and the resulting query would return only Laptops manufactured by Dell.  However, the primary 

difficulty is the selection of structured conditions to add to the query, which are dependent on users 

query intent[17], which is difficult to determine.  

 (b) Results Navigation:  To navigate large result-sets returned by queries, query 

interfaces help manage the exploration of these returned query results. Common methods of 

exploring a large result-set are by using Categorization or Faceted Navigation. With categorization 

the results are organized into a fixed navigation hierarchy or taxonomy and the user navigates the 

results by filtering the results by terms or concepts in the taxonomy. Analogously, faceted 

navigation allows the user to filter a result-set based on multiple classifications or facets, as 

opposed to a single classification as in the case of categorization. The user explores the results of 

the query iteratively by refining the results by filtering it by more specific categories (in case of a 

taxonomy) or by filtering it by one or more facet conditions.  

Example 1.2:  The results of the query “dell laptop” in Figure 1.1 are categorized into a 

pre-defined taxonomy of product types. A user who is interested solely in Laptops can filter the 

results by selecting this category. This taxonomy is also usually very large and the query interface 

displays only a portion of it to the user. If the user wishes to explore a different section of the 

taxonomy, for e.g. Memory (not shown in the figure) then she has to navigate the category 

hierarchy to reach the appropriate category. The figure also shows two (Brands and Screen Size) of 

the many attribute facets that can be used to refine the query.  

Limitations: While Facets and Categorization provide an efficient way to navigate and find 

the results of interest, the existing methods follow ad-hoc methods to select and display options, 

such as preselecting facets to be displayed regardless of the query or the user’s current context and 

ignoring user preferences. For example, the query interface in Figure 1.1, like most query 
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interfaces, expands the classification hierarchy level by level and selects a fixed set of facets to be 

displayed at each step. This often leads to additional effort on the part of the user who, now has to 

process (read and select) a multitude of options before deciding on the ones suitable to her. The set 

of suggestions revealed at each step do not take into account user-preferences and are not 

dependent on the state of user’s navigation. Furthermore, many options are mutually redundant, 

e.g. Screen Size and RAM (not displayed in Figure 1.1) which are correlated, and displaying them 

together adds to the effort in perusing them but lead to the same results upon filtering by any one of 

these conditions.  

(c) Results Presentation: A query interface provides a way to present and visualize the 

query results. For large result-sets, the interface typically paginates the results and presents a small 

subset to the user. To enable the user to quickly find the results, the interface orders or ranks the 

results in some pre-defined way so as to display more relevant results before irrelevant ones. In 

addition, the query interface presents only a small portion or a snippet of a given result to the user. 

This is because a result might contain a large amount of information which can easily overwhelm 

the user.  

Example 1.3: The example in Figure 1.1 shows only the first 24 of the 260,000+ results of 

the query “dell laptop” ordered by relevance (as decided by the search engine). To access desired 

results which are not in the first page, the user has to either navigate additional pages or filter the 

query using categories or facet conditions. For each result, only a small subset of information 

(attribute and values) is displayed in Figure 1.1. The Model, Make, Screen size, Color and Price are 

displayed for the Laptops and a large number of attributes such as CPU type, Memory Type etc. are 

hidden. 
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Limitations: There has been a large body of work, including but not limited to [18-20], on 

ranking of results for structured data, but the important problem of presentation has been largely 

ignored. While snippets are an important component of a query interface, there has been very little 

work on their construction and presentation, and most works [21, 22]  have focused on selecting 

the most important elements (attributes, values etc.) to be displayed in a snippet. A snippet helps 

the user to decide on the relevance of a result and also to compare a result with others, by 

comparing the attribute values in the snippet. Therefore, in addition to selecting important 

elements, it is also necessary to arrange and present them in a way that makes it easy for users to 

read and digest the information in snippets.  

1.2 Contributions 

In this dissertation, we propose techniques to address some of the aforementioned 

drawbacks in various components of the query interfaces. We take a principled approach to user 

data exploration and develop techniques that simplify access to large and complex databases. In 

addition structural-complexity, these techniques also take into account various factors that affect 

usability such as user preference, intuitiveness of interfaces, and effort expended by users which 

have been largely ignored in current works. We study the interplay of these factors and devise 

methods to effectively utilize them to deliver maximum benefit to users.  

Modeling User Effort: The effort required by users in using a query interface is a subjective 

measure and depends on a number of factors such as the complexity of user-interface elements, 

complexity of data-elements and their number, among many others. For example, reading Terms 

and Conditions field requires much more effort than say, the Price field in the example interface of 

Figure 1.1. As we noted in Section 1.1, the number of options displayed to the user and their 

organization (sorting, visualization etc.) are factors that affect the user-effort in using these 
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interfaces. We focus our approaches around the user-effort and propose models to capture this 

effort. Our models are partly inspired by the work of Chakrabarti et. al.[23]  which proposes an 

effort model based on aggregating the actions taken by a user in navigating results on a structured 

query interface.  

On a typical query interface, such as the one shown in Figure 1.1, the user takes several 

actions to satisfy his/her information need. After executing the query, the user is presented with a 

(ranked) list of results and options viz. facets, categories etc. to navigate these results. The user 

then takes a number of actions to navigate the results to narrow down to results of interest, such as 

reading the results or its snippets to decide its relevance, reading the available options to decide if a 

particular option can be used to filter the query result. Each such action is an effort on the part of 

the user navigating the result set and counting all the actions taken by the user on a query interface 

gives an estimate of the overall effort.  

In Chapter 2, we propose a query formulation interface which suggests structured 

conditions that can be added to a query allowing the user to quickly formulate a highly focused 

query. In Chapters 3 and 4, we construct navigation models that closely follow the actions of the 

user on a query interface with categorized or faceted results. In Chapter 5, we propose a model of a 

user reading a list of result snippets.  

Quantifying and Estimating Effort: Based on the model of user, we construct a cost model 

that quantifies and estimates the effort incurred by users in data-exploration tasks. Using the cost 

model, we cast the problem of selecting options that minimize user-effort into an optimization 

problem thereby allowing us to use algorithmic techniques to solve them. The estimates are based 

on preferences for certain navigation and exploration patterns over others this allowing us to 

introduce user preferences into cost estimates.  
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Evaluation based on User Study: We evaluate our approaches with comprehensive 

experiments with real-life datasets based on simulations. Additionally, since most of the 

approaches are based on a model user behavior, it is requisite that the approaches be evaluated with 

real-life users. Most of the approaches we proposed are evaluated on real anonymous users (invited 

via Amazon Mechanical Turk [24]) and we show significant improvement in using our approaches 

as compared to state-of-the-art.  

Next, we provide a summary of the contributions of this dissertation, which all aim at 

reducing the user-effort in data exploration tasks.  

1. Query Formulation over Complex Catalogs 

In Chapter 2, we present a novel holistic framework to formulate rich and more focused 

queries, starting from keywords that minimize the user time and effort. As the user is entering 

keywords, the system termed KWalker, almost instantly suggests the most promising hierarchy 

categories and attributes conditions to refine the initial keyword query. These suggestions are based 

on the novel principled concept of Highest Common Descendants (HCDs), which are the 

categories with the right amount of specificity, given the query. We propose efficient algorithms 

that use summarization, indexing and early termination to generate the best HCDs in order of 

milliseconds. Further, we propose techniques to select the best attribute conditions to display given 

the computed HCDs.  

2. Navigation of Query Results Based on Concept Hierarchies 

As discussed above in Section 1.1, the use of ad-hoc and unprincipled methods in 

navigating the results of a query using concept hierarchies leads to sub-optimal navigation in terms 

of user-effort. In Chapter 3, we propose techniques to decrease the user effort in navigating the 



 

9 

 

results using category hierarchies. Instead of using level-wise expansion, we propose a novel 

exploration model which at each expansion step, reveals a small subset of nodes from the 

descendants (not necessarily children) of the node being expanded. This subset of nodes is chosen 

such that the estimated effort required to reach all the query results is minimized.  

We propose a model of navigation that closely mimics the actions of a user exploring a set 

of results using a category hierarchy, thereby allowing us to estimate the effort required to navigate 

the result-sets. Based on this navigation model, we propose a cost model to quantify the effort 

incurred by users during the navigation process. We analyze the complexity of the problem of 

constructing a subset of nodes that minimize the expected user effort for a given set of query results 

and show that it is NP-Hard and present efficient heuristic algorithms to compute an approximate 

subset that minimizes estimated expected effort. We evaluate our approaches on a bibliographic 

dataset from MEDLINE in which each result is annotated with terms from the MESH concept 

hierarchy and show that it significantly outperforms state-of-the-art approaches. Our approach was 

presented as a paper at ICDE-2009[25] and as an idea demonstration at SIGMOD-2010[26]. An 

extended version was published in the journal IEEE-TKDE[27].  

3. Cost-Driven Exploration of Faceted Query Results 

In Chapter 4 we propose navigation and cost model of a user exploring a faceted result-set. 

This method works by computing a small set of facet-conditions, across all facets of a query result, 

which minimize the user effort in navigating a set of query results. The analogous models proposed 

in Chapter 3 work for results that are categorized by a concept hierarchy or taxonomy and are not 

suitable for a faceted result-set in which there are multiple ways of categorizing and filtering a set 

of query results and therefore require a more sophisticated model to capture and estimate user 

effort.  
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We prove that the problem of computing a facet subset that minimizes the effort is NP-

Hard and present efficient approximate algorithms to compute an approximate effort minimizing 

subset. We present the results of an extensive experimental evaluation of the system using real-life 

datasets and a comprehensive user study that demonstrates the efficiency and effectiveness of our 

approach. This approach was published as paper at CIKM-2010[28].  

4. Comprehension-Based Snippets 

In Chapter 5, we look into the problem of result snippets which are used by most search 

interfaces to preview query results. We propose novel techniques to construct snippets of structured 

heterogeneous results, which not only select the most informative attributes for each result, but also 

minimize the expected user effort (time) to comprehend these snippets. We create a comprehension 

model to quantify the effort incurred by users in comprehending a list of result snippets which is 

supported by an extensive user-study. We present efficient approximate algorithms, and 

experimentally demonstrate their effectiveness and efficiency. This work was published at CIKM-

2012[29].  
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Chapter 2 

Effective Query Formulation on 

Complex Catalogs 

2.1 Introduction 

Keyword queries have limited expressivity and are inherently ambiguous and therefore 

return a large number of results of different types (categories), many of which are irrelevant to the 

user. As an example, consider a user searching for a laptop who submits the query ‘asus laptop 

3gb’ on Amazon.com.  As a first step, the system returns a hierarchy of all categories relevant to 

the query. Figure 2.1(a) shows the state of the hierarchy navigation after the user selects the 

Electronics category. As seen in the figure, due to ambiguity of keywords, the query returns results 

from several unrelated top-level categories such as Computer&Accessories, Television&Video and 

Camera&Photo. The category of interest, namely Laptops, is buried under the category 

Computer&Accessories (Figure 2.1(b)). Also, the laptops returned (not seen in the figure) do not all 

have 3Gb of main memory nor are exclusively manufactured by Asus.  

To reach the results of interest (Asus Laptops with 3GB RAM), the user navigates this 

hierarchy in a step-by-step manner. The first series of steps involves navigating down the hierarchy 

to locate the category of interest. At each step, the system displays attribute facet conditions for the 

items in this category (Figure 2.1(b)). After locating the category of interest, the user selects some 
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conditions to further narrow down the results. Figure 2.1(b) shows the facets after the user selects 

category Laptops and then attribute condition Brand=Asus. Note how Laptops-specific attributes 

such as Ram Size and Display Size are revealed. 

(a)  Hierarchy for query ‘asus laptop 3gb’ (b) Hierarchy for query  {‘asus laptop 3gb’, 

Laptops, {Brand: Asus,Memory: 3GB}}  

Figure 2.1. Navigation states, before and after refinements. 

The user proceeds in this manner, until she has narrowed down the results sufficiently to 

reach the results of interest. The resultset in Figure 2.1(b) is much smaller (14 results) and the user 

can read them one by one to select the ones that satisfy her information need. Figure 2.2(a) shows 

the initial navigation hierarchy for query ‘asus laptop 3gb’, and Figure 2.2(b) shows the navigation 

hierarchy corresponding to the query state in Figure 2.1(b). 

Instead of the two stage navigation described above (navigate hierarchy, then select 

category-specific attribute conditions), the system could directly suggest the most suitable 

categories namely, Laptops or Netbooks, and key attribute conditions for these categories like 

Brand=Asus and Ram Size=3GB to add to the original keyword query. Augmenting keyword 

queries with structured conditions helps disambiguate the query intent and create focused queries 

that return only the relevant results for the user. 
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Electronics

Computers 

& Accessories

Laptops (6,087 Results)

Desktop

(…5 more)

Price  

Brand

RAM Size
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Accessories & Supplies

Ram Size
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Electronics

Computers 

& Accessories
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Price

Brand : ����

RAM Size ∶ 3��
Display Size

(a) Navigation Hierarchy for query in Figure 1a. (b) Navigation Hierarchy for query in Figure 1b.

Compute Components
Memory

Hard Disk Drives
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"�(
, $��&�	�, …

2��, 4��, 6��
19in,20(�, 21(�

1��, 3��, 4��, . .
10.1in,12.1(�, …
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$400 � $500, $500 � $800, …

(… 9 more)

 

Figure 2.2. Navigation hierarchies of states (queries) in Figure 2.1. 

(b)(a)   

Figure 2.3. KWalker Query Interface. 

KWalker: In this chapter, we propose KWalker which adaptively suggests the most 

promising categories along with the most promising attributes and conditions to add to the original 

keyword query. Figure 2.3 shows an example of our KWalker interface that enables this process. 

As the user is entering keywords, KWalker responds almost instantaneously, with contextual 

category and attribute conditions that can be added to the query. Figure 2.3(a) shows the 

suggestions generated by KWalker for the query ‘asus laptop 3gb’. As seen in the figure, KWalker 

generates a set of Category suggestions (Laptops, etc.) and a set of Attribute suggestions based on 
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category suggestions (Processor etc.).  Once the user selects a suggestion, KWalker dynamically 

updates the list of suggestions to iteratively refine the query, as shown in Figure 2.3(b). For 

example, if the user selects condition Processor=Intel i3 (Figure 2.3(b)). The user can either 

choose one of the suggestions or enter additional keywords to receive more suggestions. The user 

proceeds in this manner until she is satisfied with the constructed structured query and finally 

submits it.  

The number of candidate suggestions to add to a keyword query on categorized 

hierarchical databases is quite large, due to the multiplicity of category and attribute conditions. To 

help users formulate a focused query using KWalker, we need to answer the following question: 

What constitutes a good suggestion? Specifically, we want to determine the good category 

suggestions, since attribute conditions can be generated based on them.  

Commonly Used Approaches: A first solution would be to suggest all leaf categories that 

contain matching items, that is, items that contain all query keywords. However, this set can be too 

large, even for specific queries. For instance, for query ‘asus laptop 3gb’, there are more than 100 

leaf categories in Amazon.com including Servers, External Data Storage and Carrying Cases. The 

reason is that query keywords can match any field of the product, including its reviews. Another 

commonly used approach is constructing suggestions based on the Lowest Common Ancestor 

(LCA) [30].  LCAs would be very effective in selecting individual matching results but not to 

suggest categories for navigation. For example, in Figure 2.2(a) the LCA of ‘asus laptop 3gb’ is the 

root node Electronics, which is too general to be an effective suggestion that reduces navigation 

effort. 

Highest Common Descendant (HCD): We introduce the novel concept of Highest 

Common Descendants (HCDs), which are the categories with “just the right” amount of specificity, 
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given the query. That is, HCDs are not too specific or too general. For example, one of the HCDs 

for the query ‘asus laptop 3gb’ in Figure 2.2(a) is Laptops since it contains ‘laptop’ on its name, 

‘3gb’ on its attributes and ‘asus’ on the attributes of its parent, Computers&Accessories. On the 

other hand, Computers&Accessories is not an HCD since it does not contain ‘laptop’ or ‘3gb’ on 

itself or its ancestors (according to the HCD definition (Section 2.3.1), at least one keyword must 

be contained on itself). Intuitively, Computers&Accessories is a bad suggestion for the user, since 

we can identify more specific categories that match the query. Children of Laptops are not HCDs 

either, since they are subsumed by Laptops; this avoids having huge number of possibly irrelevant 

HCDs. That is, HCD represents the “right granularity” of categories to display to the user. In some 

cases, the number of HCDs can still be too large to be displayed to the user. KWalker ranks the 

HCDs by estimated number of results and displays a small number of high ranked HCDs. 

2.2 Framework and Definitions 

Definition 2.1 (Category Hierarchy): The category hierarchy consists of a collection of 

categories ' = �12, … , 13�. Each category 1 ∈ ' is associated with a (possibly empty) set of 

attributes !5 ⊆ !, where ! is the set of all attributes used in '. An attribute !7 ∈ ! is associated 

with a domain �
%(!7) of un-interpreted constants. A database schema arranges the categories in 

' in a hierarchy :[']. 
In our framework, we consider tree hierarchies	�['], where any category 1 can be a direct 

sub-category of at-most one category �. A DAG can be converted to a tree in a straight-forward 

manner by recursively replicating sub-trees with multiple parents, as is done in practice (e.g., 

gopubmed.com[31] , Amazon.com[1]). This is done because graph visualization does not scale 

well to large datasets and navigation over trees is more intuitive than general DAGs [32].  
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Figure 2.4. An Example Navigation Hierarchy. 

Example 2.1: Figure 2.4 shows an example of a portion of tree hierarchy T[C] of 7 

categories rooted at Electronics. Here, Laptops and Desktops are direct sub-categories of 

Computers and are sub-categories of the root Electronics category.  

Definition 2.2 (Database): The database � is a collection of heterogeneous data items 

� = (	2, … , 	@). Each data item 	((�, 1) ∈ � consists of an identifier id and a leaf category 

1 ∈ �[']. Further, 	((�, 1) has attributes !5. 
Definition 2.3 (Data-Tree Model): To simplify the discussion below, we combine the 

category hierarchy �['] and the database D into a single abstract representation, called data-tree 

�A. (Note that our work can be applied to any physical storage of the data.) According to the 

semantics of the sub-category relationship, we say that data item 	 belongs to every super-category 

of 1, including c itself. A data-node 	[1] is the tuple of a data item 	 in category 1, that is, the 

attribute values of t for the attributes !5 	of c. Further, 	[1][�] is the value of attribute � ∈ !5 of the 

tuple 	[1].  
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Figure 2.5. Data-Tree representation of a hierarchically organized dataset 

Example 2.2: Figure 2.5 shows a data-tree, where three tuples (with ids 1, 2 and 3) belong 

to the leaf category Laptops, and the fourth (with id 4) belongs to the leaf category Desktops. For 

items with ids 1, 2 and 3, there is a data-node for the Laptops, Computers and Electronics. The 

Computer data-nodes store attribute values for Brand, Memory and OS, while Laptop data-nodes 

store ScreenSize (SS) and Dimension information. 

Definition 2.4 (Query Model): The aim of KWalker interface is to help users add 

structured conditions to keyword queries. A keyword query B = (C2, … , CD) is a set of keywords 

that the user enters, such as ‘asus laptop 3gb’. The result E(B) of B consists of all items in D that 

contain all the keywords in one of their categories (i.e., the categories they belong to), their 

attribute names and attribute values. Starting from the keyword query, the KWalker interface 

constructs, by interacting with the user, a structured query which consists of a keyword query 

augmented with structured conditions. A structured condition, which is a KWalker suggestion, is 

either a category 1 ∈ �['] or a predicate over an attribute !7 ∈ !	of the form (!7 	
�	F7), where 
� 

is an operator (we use equality in our implementation) and F7 is a value. Structured conditions are 

combined conjunctively with the keyword query. 
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A structured query BG is a keyword query B augmented with a set of structured 

conditions	and has the following form:  

BG = (B, 1 ∈ (�['] ∪ ∅), !' = �… , (!7 =	F7), … �) 
where 1 is a category and !' is a set of attribute conditions.  Note that BG only has one 

category condition; because typically, a user is interested in results of a particular category.  

The result E(BG) of BG ≔ (B, 1, !')	is the set of all data items that satisfy the keyword 

query B and belong to 1 and satisfy all the attribute conditions in !'. If 1 is undefined (∅), then all 

items under the root are considered.  

Example 2.3: The query result of the structured query (asus	laptops, ���	
�", ��
��� =
'Asus'�) on the sample dataset in Figure 2.5, will be data items with ids 1 and 2 since they both 

belong to Laptops and satisfy the attribute conditions of the query (��
��� = 'Asus'�).  
2.3 Structured Suggestions 

In this section, we describe the suggestions generated by KWalker. We present category 

suggestions in Section 2.3.1 and attribute suggestions in Section 2.3.2. 

2.3.1 Category Suggestions : HCD 

Any category that has query results that belong to it is in principle a candidate category 

suggestion. For example, any of the 230+ categories in Figure 2.2(a) can be used to focus the query 

‘asus laptop 3gb’. However, the number of such categories can be very large. To prune the list of 

relevant suggestions to include only meaningful categories at the right granularity, we follow a 

strategy based on the following observations:  
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1. Intuitively, the keywords entered by the user are a partial indication of a user’s search goal. 

For example, the user searching with keywords ‘asus 3gb’ could be potentially interested in, 

among other things, Laptops or Desktops with 3GB of RAM or in 3GB MemorySticks 

compatible with Asus Laptops. The set of such leaf categories that match such a query can be 

very large in practice as discussed in Section 2.1. To avoid this, we eliminate from 

consideration all categories that do not have matching keywords (on their label or attributes), 

thereby precluding too specific categories, with low confidence of matching the user’s search 

intent.  

2. On the other hand, we do not want to suggest categories that are too general. For example, for 

query ‘asus laptop 3gb’, Computers&Accessories in Figure 2.2(a) is too general, because it 

does not match any keywords (‘asus’ matches its parent, Electronics, ‘laptop’ and ‘3gb’ match 

its child Laptops). Instead, Laptops, is a better suggestion for this query. 

We formalize these aforementioned criteria with the notion of Highest Common 

Descendent (HCD). Formally, an HCD of a keyword query Q is defined as follows: 

:'�(B) = R1S∃	 ∈ E5(B), C7 ∈ B U
11#
"V�(C7, t[c]) ∧ ∀CZ ∈ �B � C7�[∃c ≺∗ �^
11#
"V�(CZ, t[�])_` ab 
where E5(Q) are the results of Q that belong to c, and 
11#
"V�(C, 	[1]) is true if term C 

appears in the attribute names or values of t[c], or on the label of c. That is, a category c is an HCD 

if there is a result item t that belongs to c (else t[c] is undefined) and one of the keywords matches 

on c (on its label or attribute names or values for t on c). 

Intuitively, HCDs are the roots of the sub-trees that are relevant to the query B. Every data 

item returned by B belongs to at least one HCD. To keep the number of suggestions manageable, 
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we rank category suggestions in decreasing order of (estimated) cardinality of results and only 

show at most d (e.g. 5) suggestions.  

2.3.2 Attribute Suggestions 

HCDs help in focusing the query B	to a specific sub-type of results, while attribute-

conditions help in focusing the query to a specific aspect of the chosen category. Therefore, we 

suggest attributes, and corresponding attribute conditions, from the HCD categories. However, we 

also include attributes on ancestors (super-categories) of HCDs because the ancestor categories 

contain attributes relevant to the data items of the HCD categories. For instance, for the keyword 

query		‘asus 3gb’ in Figure 2.5, the candidates are all the attributes in HCD Laptops (ScreenSize 

etc.) and its ancestors Computers (Brand, Memory and OS) and Electronics (Price and Condition). 

As in the case of HCD suggestions, the list of attribute suggestions can also be quite large, and we 

suggest a small list of attributes. However, we use the following approach to compute the benefit of 

attributes:  

Let |�f(� = F)| denote the number of data items in the result of query B with the value F 

for attribute �. The indiscrimination score[33] of values of �, denoted by V�g(�), is: 

V�g(�) = 1|�
%(�, B)| h i�f(� = F)i^	i�f(� = F)i � 1_2j∈Ak3(l,f) 	

where Dom(a,Q) is the subset of Dom(a) for the results of Q. 

The V�g(�) score differs from the one in [33], in that we divide by the total number of 

conditions for each attribute to normalize the scores to prevent attributes with a large number of 

conditions from having a high score. We order attributes by increasing values of indiscrimination 

score. 
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Example 2.4: The query result of the structured query (asus	laptops, ���	
�", ��
��� =
'Asus'�) on the sample dataset in Figure 2.5, will be data items with ids 1 and 2 since they both 

belong to Laptops and satisfy the attribute conditions of the query (��
��� = 'Asus'�).  
2.4 Computing Highest Common Descendants 

The suggestions generated by KWalker are HCDs or attributes on HCD categories. These 

suggestions, as described in Section 2.3, can be directly computed using the results of the query. 

However, the large processing times precludes this straightforward approach for our system, which 

generates suggestions on-the-fly, before the query is executed. In this section, we describe 

techniques and algorithms to efficiently identify and compute Highest Common Descendants 

(HCDs). These approaches are based on indexing the data-tree (Section 2.4.2) and employing 

efficient algorithms to compute HCDs. Section 2.4.1 describes the Keyword Inverted List (KIL) 

index structure that is used to identify nodes in the interval encoded data-tree that contain the query 

keywords. In Section 2.4.2, we present an efficient Top-k pipelined algorithm to compute HCDs. 

2.4.1 Keyword Inverted List (KIL) Index 

The Highest Common Descendant (HCD) suggestions offered by KWalker are the most 

prominent categories (in terms of cardinality) in the results of the query that contain all the 

keywords on self or its ancestors. Computing HCDs on the data-tree database model (Section 2.2) 

involves checking the ancestor-descendant relationships amongst nodes in the data-tree that contain 

keywords. To efficiently support this operation, the data-nodes in the data-tree are encoded using 

interval encoding[34]. Using this encoding, a number of queries related to ancestor-descendent 

relationships can be efficiently answered. Such queries include finding all contained (descendants) 

or containing (ancestors) intervals of a given interval representing a data-node. The data-tree in 



 

22 

 

Figure 2.5 is encoded using interval encoding. The index structures proposed in this section help 

quickly locate nodes in the data-tree that contain a given keyword C7 ∈ B. The inverted list for a 

keyword C7 consists of a list of entries (�2, … , �m), one for each category that has the keyword and 

each entry is organized as follows: 

[< (� >; 	q;< �
���("	 >	] 
• (�:	The identifier (name) of the category.  

• 	q:	The term frequency or the total number of items classified into the category with identifier 

(� that contain the keyword C7.  
• �
���("	:	A list of intervals identifying the data-nodes that contain the keyword C7.  

Example 2.5: The KIL entries for some keywords in the data-tree of Figure 2.5 are as 

follows:  

sV�(�"#") → (['
%�#	�
"; 2; (3,5), (9,11)])	
sV�(���	
�) → ([���	
�; 3; (4,4), (10,10), (16,16)])	

sV�(����) → 	 (['
%�#	�
"; 2; (15,17), (21,23)], [��"d	
�, 1, (22,22)])	
The elements of the inverted list are sorted in decreasing order of 	q. The number of 

entries in the inverted list of each keyword is not large, since it is bounded by the number of 

categories. However, the total number of interval entries in the nodeList can be quite large resulting 

in increased access and processing time. In Section 2.5, we describe techniques to reduce the size 

of these nodeLists.  

Indexing KILs using Interval Tree Index: As we will see in Section 2.4.2, computing HCDs 

efficiently involves a join (in the relational sense) over the inverted lists (�2, … , �@) of keywords in 
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the query B. This join operation involves matching entries in the nodeList of a KIL entry for a 

keyword	C7 with nodeList entries in other lists by ancestor-descendant relationships. To support 

such operations, we use an Interval Tree index over union of intervals in the nodeList of each 

keyword. For structured queries the process is identical except that an extra filtering step is 

required when reading from the KIL lists to check if the structured conditions are satisfied. 

2.4.2 TopkHCD: Efficient Computation of HCDs  

The HCDs and their corresponding cardinality for a given set of keywords can be 

computed by joining the inverted lists of query keywords.  This join operation is essentially a 

merge-join over the inverted lists using ancestor relationship, where intervals in �
���("	 of an 

entry in the inverted list ("��	�7) are matched with ancestors in other lists ^�Zv7_. The cardinality 

of intervals that match gives the cardinality of the HCD. As an example, consider the following 

KIL entries for the data-tree in Figure 2.5:   

KIL(laptop) → [���	
�; 3; (4,4), (10,10), (16,16)] 
KIL(asus) → ['
%�#	�
"; 2; (3,5), (9,11)] 

To determine if the category ���	
� is an HCD for a keyword query ‘asus laptop’, the 

entries in laptop are joined with entries of asus. Here two entries (4,4) and (10,10) have 

ancestors	(3,5) and (9,11) respectively in the entry for '
%�#	�
", therefore ���	
� is an HCD 

with cardinality 2. This procedure is very inefficient since it evaluates all entries in inverted lists of 

all keywords before returning the results, which can be large. However, we only need a small 

number (d � 5) of category suggestions ordered by cardinality and it is sufficient to retrieve and 

compute cardinalities only these categories. 
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To efficiently compute HCDs we build upon the Threshold Algorithm (TA) [35] for 

evaluating Top-k queries in scenarios where partial scores of items are available in % lists 

(�2, … �3)	and the total score for an item V, "1

�(V) is computed using a monotonic aggregate 

function "1

�(V) = q(w2, … , w3) that combines the partial scores of V from % lists of partial 

scores. The primary advantage of TA is that it computes Top-k items without (necessarily) fully 

processing the lists of partial scores and thus saves on computation and access costs. TA works by 

computing a threshold, at every step, which is an upper bound on the total score of items unseen by 

the TA. This threshold allows for early-stopping, and the algorithm terminates after seeing d	items 

that have total scores, at-least as high as the threshold. 

Algorithm: TopkHCD(�2, … , �@, d) 

Input: Inverted lists �2, … , �@, one for each keyword and d,	 the max number of HCDs  

Output: A list of (at-most) d of HCDs and their cardinality. 

1. Do sorted access on the lists in parallel to retrieve top entries (�2, … , �@).  
2. foreach new category ' retrieved in (�2, … , �@):  
3.    1�
�x ← 0     

4.    foreach interval ( ∈ �5 . �
���("	  
5.        Probe interval indices of all �7v5 for ancestors  and increment 1�
�x if an ancestor 

is found in all lists �7v5 
6. Set the threshold 	 ≔ max2|}|~[�7 . 	q]       
7. Stop and return if the Top-k set has d items with cardinality at-least equal to the 

threshold 	.  
8. Goto Step 1.  

Figure 2.6. TopkHCD Algorithm. 

The Top-k algorithm for computing HCDs using KIL lists of �	keywords is shown in 

Figure 2.6. In the first step (line 1) the algorithm retrieves the top entries (�2, … , �@) from each of 
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the � lists. For each category 1	retrieved, the algorithm computes its cardinality by probing for 

ancestors of data-node intervals in the �
���("	 of the entry �5 of 1 (lines 2-5). To utilize the 

Threshold Algorithm effectively, it is necessary to define a threshold. It is important to note that 

TA assumes a monotonic function, whereas cardinality computation, in our scenario is not 

necessarily monotonic, since a category with a high 	q might have data-nodes that do not have any 

ancestors in inverted lists of other keywords.  However, since we order entries in KILs by 	q, any 

HCD category retrieved in subsequent steps can have cardinality of at most  max2|}|~[�7. 	q] and 

we use this value as the threshold. This value of the threshold could be an overestimate and the 

algorithm may process more nodes than necessary. However, this overestimation does not affect 

correctness and the algorithm always returns d HCDs with highest cardinality. For structured 

queries, the process is identical except that an extra filtering step is required when reading from the 

KIL lists to check if the structured conditions are satisfied. 

2.5 Synopsis and Query Estimation 

The techniques described in Section 2.4, even though efficient, operate on the entire 

database (data-tree) which makes them unsuitable for near instant-time user interaction promised 

by our system. In Section 2.5.1, we present summarization (synopsis) techniques that allow us to 

compute suggestions on a small but highly accurate summary of the data, based on the 

summarization model presented in [36]. In Sections 2.5.2 and 2.5.3, we show how we modify the 

KIL Index and the Top-k HCD Algorithm to work with the synopsis model. Note that this version 

of the Top-k HCD algorithm returns an approximate list of HCDs with estimated cardinalities. We 

evaluate the accuracy of the synopsis-based suggestions in Section 2.6. Since we use the synopsis 

model in [36], we refer the reader to the aforementioned paper for a detailed description about the 

synopsis. 
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2.5.1 Background and Our Synopsis Model 

To speed-up computation of HCDs, their cardinalities and other quantities for suggestions 

described in Section 2.3, we evaluate suggestions on a compact synopsis or a summary of the 

database. Since our data-model is a heterogeneous tree of data items, we adopt the XCluster 

synopsis [36], which summarizes heterogeneous and hierarchical XML data, as the basis of our 

synopsis model.  
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Figure 2.7. Database Synopsis of Data-Tree in Figure 2.5. 

Data Tree Synopsis: The idea is to summarize data-nodes in the data-tree  �A (e.g., �A in 

Figure 2.5) that are very similar to each other, both in hierarchy and attribute values, into the same 

partition node[36]. Each partition node stores aggregate information of all data-nodes grouped 

under it, thereby creating a synopsis �G  that approximates	�A.  For each partition node 1� of �G, the 

synopsis (akin to the XCluster Synopsis [36]) stores the count 1
#�	(1�) of data-tree nodes that 

are grouped into 1� and a collection of histograms, one per attribute based on the category 

hierarchy type, that approximates the distribution of values of an attribute in a given partition node. 

Example 2.5: Figure 2.7 shows the synopsis of the data-tree in Figure 2.5. Here, the 13 

data-nodes have been compacted into a summary consisting of 7 nodes. Each partition node now 

summarizes one or more nodes of the data-tree, of the same category type. For example, nodes �2 
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and �� summarize the 3 Laptop Nodes of Figure 2.5. The figure also shows the single attribute 

histograms which store the attribute values and their corresponding selectivity.  

Evaluation of HCDs and their cardinalities on synopsis can be done by considering the 

aggregate information stored in the partitions and by using appropriate independence assumptions 

to estimate these values where information stored in synopsis is in-sufficient [36]. As an example, 

consider the computation of cardinality of Laptops for the query ‘asus laptop’ on the synopsis in 

Figure 2.7. There are two partitions of category Laptops, �2 and ��, therefore the total cardinality 

is: �(lD�D,�l��k�)(�2)	 ∙ 1
#�	(�2) + �(lD�D,�l��k�)	(��)	 ∙ 1
#�	(��), where �(lD�D,�l��k�(1�)	is the 

selectivity of the keywords in partition 1�. The joint selectivity of keywords (asus, laptop) can be 

estimated as �(lD�D,�l��k�)(1�)	 = 	�lD�D(1�) × ��l��k�(1�) by assuming independence of 

distribution of keywords amongst the partitions. Now, since ‘asus’ appears in the parent category 

of Laptops and to estimate its selectivity in a Laptop partition we can use the path-value 

independence assumption[36], which assumes independence between the value distribution in 

partitions of a parent (e. g.		'2) and those of its children (�2). In our running example, the 

selectivity of the keyword query ‘asus laptop’ can instead be estimated on parent partitions of type 

Laptops as follows: �lD�D('2)	 ∙ ��l��k�(�2)	 ∙ 1
#�	(�2) + �lD�D('�)	 ∙ ��l��k�(�2) ∙
1
#�	(��) = 1 ∙ 1 ∙ 2 + 0 ∙ 1 ∙ 2 = 2. 

Typically, these independence assumptions are unreasonable and may cause huge errors 

during cardinality estimation of HCDs and for estimating distribution of attributes for a given 

query. However, these assumptions result in lower approximation errors if the partition-node 1� 

groups together similar (in data-values and hierarchy structure) nodes[37].  
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For performance purposes, we use a tree-synopsis, which is a simpler adaptation of the 

graph-synopsis generated by XCluster[36] for XML data. Graph-synopsis is more compact in terms 

of space but more expensive in terms of execution time, since multiple overlapping paths have to 

be considered. We adapt the algorithm to build the synopsis as described in [36] with the sole 

difference being that the data-tree is traversed bottom-up during synopsis construction.  

2.5.2 KIL on Synopsis 

The KIL Index of Section 2.4.1 is modified to store references to the synopsis partition 

nodes, instead of individual data-nodes. As described in Section 2.5.1, computing cardinalities 

using synopsis requires the selectivity ("��) of a given keyword in a partition in addition to its 

count (	q). Therefore, we now store two lists for each keyword. Each list consists of a list of entries 

(�2. , … , ��)	with one entry for each category that contains the given keyword. The two lists are as 

follows:  

• term-frequency list	(	q�("	): each entry has category id, tf of keyword in the category, and list 

of partitions (�
���("	) identifying partition nodes that contain the keyword. The list is 

ordered by descending category 	q. 

• selectivity list ("���("	): each entry has category id, the selectivity sel of keyword, and list of 

partitions (�
���("	) identifying partition nodes that contain the keyword. The list is ordered 

by descending sel. 

The organization of the nodeList is identical to that of KIL in Section 2.4.1, with one 

exception:  we also store the tf or selectivity (sel) of the keyword in the partition, depending on 

whether the nodeList is for a 	q�("	 or a "���("	.  
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Example 2.6: The KIL entries for some keywords in the synopsis of Figure 2.7 are shown 

below:  

sV�(�"#") → � 	q�("	: (['
%�#	�
", 2, (3,5; 2)])"���("	: (['
%�#	�
", 1.0, (3,5; 1)])� 
sV�(���	
�) → � 	q�("	: ([���	
�", 2, (4,4; 2), (10,10; 1)])"���("	: ([���	
�", 1.0, (4,4,1), (10,10; 1)])� 

Also, to support random access, we create an interval tree index on both lists for each 

keyword, as described KIL of Section 2.4.1. 

2.5.3 HCD Computation on Synopsis 

Overview: Figure 2.8 presents S-TopkHCD, which is a modified version of TopkHCD 

(Section 2.4.2) to use synopsis. The algorithm does sorted and random accesses on the tfLists and 

selLists of the query keywords, in a manner similar to the way TopkHCD accesses the KIL list. The 

cardinalities of HCD categories are computed using the independence assumptions outlined in 

Section 2.5.1. A key intuition, from Equation 2.4, is that to estimate the cardinality of a category, 

we multiply its tf for one of the query keywords with the maximum selectivity for the other 

keywords of ancestor category. For each category c retrieved from a tfList we check if it is an HCD 

by doing random access (using the interval tree index) on the selLists of the other keywords to find 

ancestors of 1 that contain the other keywords. Similarly, for each category retrieved from a selList, 

we do random access on the tfLists of other keywords to find descendants that may be HCDs. 

Cardinality estimation: The TopkHCD algorithm in Section 2.4.2 computes the 

cardinality of a category 1		in the data-tree �A by counting the number of paths from the 


	(�A) 
to data-nodes of a category 1 that have all the keywords in B = �C2, . . , C@�. Since each item is 

along a different path in �A	, this technique accurately computes the cardinality of items for a 
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category 1. In a synopsis �G of �A, multiple data-nodes of �A of a given category 1 are merged into 

a single representative node, thereby collapsing the paths to the items the partition summarizes.  

Algorithm: S-TopkHCD (�2, … , �@, d) 
Input: inverted lists �2, … , �@, one for each query keyword ki where each Li consists of two 

lists, selList and tfList, and the number k of requested results. 

Output: d HCDs with highest cardinality  

// Let eis, eit be the last retrieved entries from the selList, tflist of ki 

1. Do a sorted access on the lists in parallel to retrieve entries �2D, �2�, … , �@D, �@� for each  

           keyword.  

2. For each new category 1	retrieved do one or both the following 

3.     case 1:  if 1 is from the 	q�("	 of �7 then  

4.       foreach entry �	in the partitions of 1 in the 	q�("	 of �7: 
5.         Do a random access on the "���("	s of all �Zv7; looking for   

                                     ancestors with maximum (for each  keyword) selectivity.  

6.                        Compute score using equation (2.1) and add to Top-k List  

7.      case 2: if 1 is from the selectivity list of �7 then  

8.         foreach � in 1 � 		� � 	�; � ≠ (  
9.   Do a random access on tfList of �l looking for 

                            descendants of 1. Let this list be 15l@�. 

10.                   foreach 	1’ in 15l@� do  

11.       Compute the scores of 1’ by joining with selectivity  

                                          list of all ¡(≠ d,≠ �) as in lines (5-6) above and  

                                          add 1′ to Top-k list. 

12.     Set the threshold 	 ≔ max2|}|~£�7�. 	q × ∏�ZDv7. "��¥  
13.    Return if d�¦	item in Top-k list (ordered by score) has "1

� ≥ 			. 

Figure 2.8. S-TopkHCD Algorithm. 
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The cardinality 1�
�(1, B) of a category 1 for a keyword query	B, is now computed by 

aggregating the cardinalities, across all the partitions of type 1: 
1�
�(1, B) = h 1�
�(1� , B)5¨∈�lm�7�7k@D(5) 																																																									(2.1)	

where  1�
�(1� , B) = 1
#�	(1�) ∙ "��(B|1�) and "��(B|1�) is the selectivity of B in 1�. 
To compute "��(B|1�), in addition to the path-value independence assumption [36], we 

observe that C7 can appear in multiple ancestors of the partition node 1� and hence we pick one 

ancestor node 1l of 1� per keyword that has the highest selectivity for the given keyword. The 

rationale for the assumption is that the tuples at other partition nodes with the same keyword will 

join with partition nodes with the highest selectivity for a given keyword and therefore will not 

affect the cardinality of the partition. Therefore,  

"��(B|1�) = 	 © %�w	5ª∈l@5«D�kmD(5¨),k55�mD¬7@(­®,5ª) "��(C7|1l)­®∈	¯ 																																								(2.2)	
where 
11#
" � (�(C7, 1) means that qi appears in partition c, and ancestors(c) is the set of 

ancestors of c including c itself. The cardinality	of a partition 1� is therefore given by (from 

Equations 2.1 and 2.2):  

1�
�(1� , B) = 1
#�	(1�) ∙ 	 © %�w	5ª∈l@5«D�kmD^5°_,k55�mD¬7@(­®,5ª) "��(C7|1l)­®∈	¯ 														(2.3) 
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To use (2.3) for the sorted access on tfLists in S-TopkHCD, and particularly when we 

access cP on the tfList of keyword C7, we rewrite it as follows: 

1�
�(1� , B) = 1
#�	(1�) ∙ "��(C7|1�) ∙ © %�w	5ª∈l@5«D�kmD^5°_,k55�mD¬7@^­±,5ª_ "��^CZi1l_­±∈	f¬�­®� 	
																									= 		q(C7, 1�) ∙ © %�w	5ª∈l@5«D�kmD^5°_,k55�mD¬7@^­±,5ª_ "��^CZi1l_­±∈	f¬�­®� 									(2.4)		 

where 	q(C7, 1�) = 	1
#�	(1�) ∙ "��(C7|1�) is the term-frequency of keyword C7 in the partition 1�. 

When S-TopkHCD accesses cP on the tfList of qi it looks up the selLists of the other keywords to 

find the maximum selectivities of ancestor partitions of cP. 

Details: At the beginning of each iteration, the algorithm retrieves the top entries 

(categories) from each of the 2n lists (line 1).  For each new category retrieved, the algorithm 

computes the estimated cardinality (Equations 2.1 & 2.4) in a method analogous to TopkHCD in 

Section 2.4.2, by joining with the other lists. Using Equation 2.4, we set the threshold to			 ≔
max2|}|~£�7� . 	q × ∏�ZDv7. "��¥, i.e. the maximum possible cardinality of an (imaginary) HCD 

category which has all the keywords in the entries retrieved. It is easy to verify that any category 

retrieved in a subsequent iteration will have cardinality at-most 	.  
The score of the attributes is computed based on the value-distribution, which is computed 

by merging the histograms for the attribute across all partition nodes for the given query. 

Table 2.1. Dataset Characteristics 

 # paths # attributes # items Dataset Size (XML) 

Electronics 342 136 14,875 26.1 Mb. 

Books 219 62 9,543 13.3 Mb. 
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2.6 Experimental Evaluation 

In Section 2.6.1, we describe the experimental setup including the datasets used, the query 

workload and characteristics of the synopses structures. In Section 2.6.2, we describe the 

quantitative experiments to measure the accuracy and response times of the suggestions generated. 

Finally, in Section 2.6.3, we present a methodology for qualitative evaluation of KWalker and 

compare to existing faceted search approaches.  

Table 2.2. Sample Query Workload 

Query Electronics Dataset Books Dataset 

Q1 toshiba laptop  harry potter children 

Q2 intel laptop 3gb biography Disraeli  

Q3 dell optiplex history time  

Q4 dell laptop computers autobiography 

Q5 1TB hard drive autobiography Franklin  

Q6 dell intel processor apple computer 

Q7 asus cooking baking bread 

Q8 digital slr canon recipe rice 

Q9 sony recorder business  

Q10 seagate drive business best practices 

2.6.1 Experimental Setup 

Datasets: We extracted a hierarchically categorized heterogeneous dataset of Electronics 

and Books products from a popular e-commerce website. The characteristics of the datasets are 

shown in Table 2.1. The Electronics hierarchy consists of 342 unique root-to-leaf paths (leaf 

categories) and 136 attributes distributed across these categories. Each category with attributes has 
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between 3 and 7 of them. The Book hierarchy is relatively sparse and contains 62 attributes across 

219 categories. This is because the Books dataset has a large number of Genre categories. 

Query Workload: A sample of the queries used in the experiments is shown in Table 2.2. 

The keywords appear in category names, attributes and attribute values. For example, query Q2 

consists of keywords laptop which is a category name and intel and 3GB which are attribute values 

for attributes CPUType and RAM Size respectively, which are in different categories in the 

hierarchy – CPUType is an attribute of Computers whereas RAM Size is an attribute of Laptop. 

Synopsis Structure: The accuracy and performance of the synopsis depends on the space 

allotted. We built two synopses for the Electronics dataset in which the data-tree is compressed to 

40% (Summary-1) and 70% (Summary-2) of its original size. For the Books dataset, we created a 

summary by compressing it to 50% of its original size.  

2.6.2 Quantitative Experiments 

In this section, we evaluate the impact of using a synopsis on the execution time and the 

accuracy of the category and attribute suggestions. We compare against suggestions generated with 

no summarization, which is termed the reference synopsis[36]. We report the results for 

Electronics dataset. The results for Books dataset are analogous and therefore omitted.  

 

Figure 2.9. Top-k Spearman's Footrule score for Category Suggestions (Electronics Dataset) 
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Evaluation Metrics: To compare ordered lists of category or attribute suggestions, we use 

the extended normalized Spearman’s footrule metric for Top-k lists [38]. Given two Top-k lists �2 

and ��, the � �footrule distance, ²�(�2, ��) is given by: 

²�(�2, ��) = 1³ h |�2(�) �	��(�)|l∈ µ́∪ ¶́
	

where �7(�) is the position of an element � in list �7 if � is present in �7, and � = (d + 1) otherwise 

and ³ is the normalization factor. 

 

Figure 2.10. Top-k Spearman's Footrule score for Attribute Suggestions (Electronics Dataset) 

In addition to the order, we evaluate the accuracy of the constructed synopses with the 

average relative error of estimates over the k HCD suggestions retrieved by the query. Given a 

query C	 and two lists of HCD suggestions �D·@5  and �m«¸5  obtained by evaluating C over a synopsis 

and reference data-graph respectively, the average relative error is given by:  

¹ljº^�D·@5 , �m«¸5 _ = 1i�m«¸5 ∩ �D·@5 i h �^i�"	m«¸(�) � 	�"	D·@(�)i_�"	m«¸(�) �l∈ ¼́½¾¿ ∩ À́ÁÂ¿
 

where �"	m«¸ and �"	D·@	denote the cardinality estimates of a category � under the summarized 

synopsis and reference, respectively. 
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Figure 2.11. Average Relative Error for Category Suggestions (Electronics Dataset) 

 
Figure 2.12. Average Execution Times (in ms) for Category and Attribute Suggestions 

(Electronics Dataset) (Summary-1). 

KWalker Accuracy: Figures 2.9 and 2.10 show the Footrule scores of the Top-k category 
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summaries. The scores for attribute suggestions (Figure 2.10) is much higher (about 0.28 on 

average for Summary-1 and 0.23 for Summary-2) and is as high as 0.51 for Q9 (Summary-1). 

Recall that the attribute suggestions are ranked based on the distribution of values in the query 

result and approximating the result on summaries causes higher errors for attribute suggestions than 

for HCD suggestions.  
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Figure 2.11 shows the average relative error for category suggestions for queries on the 

Electronics dataset. The errors on average range from 11% for Summary-1 to about 5% for 

Summary-2, which is low given rate of compression achieved in summaries. Also, as more space is 

allotted for summaries, the estimation error decreases as query approximations become more 

accurate. Furthermore, the accuracy in cardinalities is not as important as the relative order (Top-k) 

of suggestions.  

Figure 2.13. Experiments with Navigation Cost (Electronics Dataset). 

 
Figure 2.14. Average number of refinements for queries (Electronics Dataset). 
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over the reference synopsis which is large (avg. over 700ms). The drop in response times with 

summary synopses, as compared to reference synopsis, is due to the fact that computation of HCDs 

involves counting the number of paths in the data-tree and with summarization (Section 2.5.3) a 

number of these path are merged and therefore the HCD algorithms on synopsis evaluate far 

(nearly quadratically) fewer paths than those on the reference synopsis. 

2.6.3 Qualitative Experiments 

These experiments are designed to showcase the effectiveness and the ease of formulating 

structured queries using KWalker. Here we compare the navigation cost of KWalker against the 

only faceted interface we encountered (called FacetedNav henceforth) that combines both 

categories and attributes, and can be found most at commercial sites like Amazon.com[1]. Note 

that there is no previous research work on such faceted search. 

 

Figure 2.15. Experiments with Navigation Cost (Books Dataset). 
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the query. The user refines the query until the results list is short enough to inspect manually or if 

further refinements fail to refine the results. The cost of navigation consists of: (a) number of 

category labels, attribute names (b) the total number of times the query was refined by adding an 

attribute condition or drilling down the category hierarchy and (c) the total number attribute 

conditions displayed. Since we are comparing cost of query formulation, the number of returned 

results (which is constant for the two interfaces) is not included in the cost.  

Simulation Setup: We assume that the target of a user exploration is a single result. For 

each query in Table 2.2, we designate randomly a result as the target of navigation and compare the 

cost of narrowing down to the given result using both the interfaces. Notice that a result can be 

reached my multiple paths. For example, the result with id=3 in Figure 2.5 can be reached by 

navigating the hierarchy to the Laptop category from the root and inspecting the three results or by 

stopping at Computers and selecting ‘Brand=Asus’, among others. The total number of paths can 

be quite large and each path has a different associated cost. To keep the number of paths 

manageable, we consider only 50 randomly chosen paths and only paths that lead to the target 

object are considered.  

Results: The navigation cost incurred by FacetedNav and KWalker for the queries in Table 

2.2 are shown in Figure 2.13 for Electronics and Figure 2.15 for the Books Dataset. The figure 

shows averages (across simulations) for each cost component viz. the number of categories, 

attribute and attribute conditions seen and the number of times the query was refined (by selecting 

a suggestion in FactedNav or  HCD suggestions in KWalker). The overall navigation cost incurred 

by FacetedNav navigations is higher as compared to KWalker – by approximately 43% for the 

Electronics dataset. Note that KWalker reveals fewer categories during navigations as compared to 

FacetedNav. This is because KWalker suggests HCDs as refinement candidates instead of top-
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down approach followed by FacetedNav and by selecting HCDs, the user is able to navigate to 

specific categories without encountering more generic (at higher levels) ones. For the same reason, 

navigations with KWalker require far fewer refinements as compared to FacetedNav (Figure 2.14) 

and therefore the simulation agent is able to construct a highly focused query in fewer iterations – 

on average KWalker required about 1.9 iterations as compared to 3.8 for FacetedNav. The query 

Q3 returns only one result and since a query with a small number (single page) of results is already 

quite focused and will not benefit from adding additional conditions. The number of query 

refinements for some queries (e.g Q1 in Figure 2.14) in FacetedNav is very close to those in 

KWalker. This is because the resultset for these queries is small and concentrated on a small 

section of the category hierarchy and therefore FacetedNav is able narrow down without too many 

refinements (Figure 2.13). The results for the Books dataset (Figure 2.15) are analogous to that of 

the Electronics Dataset and the discussion is therefore omitted. 

2.7 Related Work 

Keyword Search on (Semi-)Structured Data:  Several works have studied keyword 

search on structured relational data [13, 14, 39-41] and semi-structured (heterogeneous) XML data 

[30, 42]. The goal of these works is to find how query keywords are connected to each other in the 

database, for example finding paths or subtrees (LCAs) that contain all the keywords. In Section 

2.1, we discussed the problems associated with using LCAs as suggestions and proposed Highest 

Common Descendants (HCDs) as a superior alternative. Further, the problem of finding the HCDs 

is algorithmically fundamentally different from that of finding LCAs, as we show in Section 2.4. 

Advanced query forms [10, 11] are effective for searching in heterogeneous datasets. However, 

they would be tedious in our setting where the categories hierarchy is huge and the items are 

heterogeneous, that is, they have different attributes.   
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Keyword Query Enhancement and Query Refinement The GrowBag project [43] and 

Sarkas et. al [44] suggest additional search terms based on the co-occurrence patterns of these 

terms in the query result. These works neither consider structured attributes nor category 

hierarchies. Recently, some works[45, 46] proposed adding structure to keyword queries by 

annotating individual keywords with attribute names[46] or with terms from taxonomy[45]. The 

utility of these works is limited since they assume a single relation from which annotations are 

derived whereas we consider highly heterogeneous databases. Furthermore, these approaches 

generate full query suggestions, which can be large in number due to the ambiguity of keywords.  

Query Autocompletion: Autocompletion has been adopted by a variety of applications 

such as Web search and e-commerce search. In most cases, autocompletion works by indexing a 

pre-defined set of strings and then suggesting keywords to be added to the query. Recently, there 

are a number of works on predictive autocompletion [47-49] which leverage information retrieval 

and machine learning techniques to suggest potential completions. These suggestions are based on 

aggregated user behavior on the results of the current query. Instead, KWalker suggests refining the 

query using categories and attribute conditions. The data model is also different. The demo system 

of Nandi and Jagadish [50] suggests structured conditions as completions of a given keyword in a 

way that the result will be non-empty. However, they do not consider a category hierarchy or the 

results’ cardinality for each suggested attribute condition. 

XML Summarization: The complexity and structure of synopsis used to summarize a 

dataset depends on its structure. For example, histograms[51] are sufficient to summarize flat 

relational data whereas summarizing XML is substantially difficult due to high structural 

variability. XML summarization has a number of variants such as path synopsis [52], structure-

only [53] and structure-value synopsis [36, 54]. Our work models heterogeneous organized datasets 
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as XML and builds on the XCluster synopsis[36] to build compact summaries that can efficiently 

compute the quantities used to score suggestions. 

2.8 Summary 

We present a novel query formulation interface, KWalker to facilitate query formulation 

over hierarchically organized structured databases, which present unique challenges due to the 

heterogeneity of the stored objects. Starting with a keyword query, the user quickly formulates a 

structured query adding category and attributes conditions suggested by the interface. Efficient 

approximate algorithms are presented that use synopsis principles to estimate the benefit of each 

suggested condition, which is based on the number of result that this condition would return. The 

effectiveness of the solution is demonstrated with evaluation on real-life datasets. 
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Chapter 3  

Results Navigation Using Concept 

Hierarchies 

3.1 Introduction 

As claimed in previous work [55], the ability to rapidly survey Biomedical literature 

constitutes a necessary step toward both the design and the interpretation of any large scale 

experiment. Biologists, chemists, medical and health scientists are used to searching their domain 

literature –such as PubMed– using a keyword search interface. Currently, in an exploratory 

scenario where the user tries to find citations relevant to her line of research and hence not known a 

priori, she submits an initially broad keyword-based query that typically returns a large number of 

results. Subsequently, the user iteratively refines the query, if she has an idea of how to, by adding 

more keywords, and re-submits it, until a relatively small number of results are returned. This 

refinement process is problematic because after a number of iterations the user is not aware if she 

has over-specified the query, in which case relevant citations might be excluded from the final 

query result. A substantial part of the chapter has been reprinted from and reformatted from our 

IEEE-TKDE paper [27] © IEEE 2011.  

As an example, a query on PubMed for “cancer” returns more than 2 million citations. A 

more specific query, “breast cancer treatment”, returns 111,000+ citations. Our running example 
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query for “prothymosin”, a nucleoprotein gaining attention for its putative role in cancer 

development, returns 313 citations. The size of the query result makes it difficult for the user to 

find the citations that she is most interested in, and a large amount of effort is expended searching 

for these results. Many solutions have been proposed to address this problem –commonly referred 

to as information overload [14, 18, 23, 56, 57]. These approaches can be broadly classified into two 

classes: ranking and categorization - which can also be combined. Ranking presents the user with a 

list of results ordered by some metric of relevance[14] or by content similarity to a result or a set of 

results [57]. In categorization [18, 23, 56], query results are grouped based on hierarchies, 

keywords, tags or attribute values. User studies have demonstrated the usefulness of categorization 

in finding relevant results of exploratory queries [19]. While ranked results are useful when the 

ranking function is aligned with user preferences or the result list is small in size, categorization is 

generally employed by users when ranking fails or the query is too “broad”[19]. 

BioNav belongs primarily to the categorization class, which is especially suitable for this 

domain given the rich concept hierarchies (e.g., MeSH [58]) available for biomedical data. We 

augment our categorization techniques with simple ranking techniques. BioNav organizes the 

query results into a dynamic hierarchy, the navigation tree. Each concept (node) of the hierarchy 

has a descriptive label. The user then navigates this tree structure, in a top- down fashion, exploring 

the concepts of interest while ignoring the rest. An intuitive way to categorize the results of a query 

on PubMed is by using the MeSH static concept hierarchy [58], thus utilizing the initiative of the 

US National Library of Medicine (NLM) to build and maintain such a comprehensive structure. 

Each citation in MEDLINE is associated with several MeSH concepts in two ways: (i) by being 

explicitly annotated with them, and (ii) by mentioning those in their text (see Section 3.7 for 

details). Since these associations are provided by PubMed, a relatively straightforward interface to 

navigate the query result would first attach the citations to the corresponding MeSH concept nodes 
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and then let the user navigate the navigation tree. Figure 3.1 displays a snapshot of such an 

interface where shown next to each node label is the count of distinct citations in the subtree rooted 

at that node. A typical navigation starts by revealing the children of the root ranked by their citation 

count, and is continued by the user expanding on or more of them, revealing their ranked children 

and so on, until she clicks on a concept and inspects the citations attached to it. A similar interface 

and navigation method is used by e-commerce sites, such as Amazon and eBay.  

For this example interaction, we assume that some of the citations the user is interested in 

are available on the three indicated concepts corresponding to three independent lines of research 

related to prothymosin, and therefore the user is interested in navigating to these concepts. These 

include, “Histones”, which play a role in gene regulation and are essential for virus replication and 

tumor growth, “Cell Growth Processes” and “Transcription, Genetic”, a key process for synthesis 

and replication of RNA and thus plays an important role in the duplication of cancer cells. 

The above static –same for every query result– navigation method is problematic when the 

MeSH hierarchy (or one with similar properties) is used for categorization for the following 

reasons: 

First, the massive size of the MeSH hierarchy (over 48,000 concept nodes) makes it 

challenging for the users to effectively navigate to the desired concepts and browse the associated 

records. Even if we remove from the MeSH concept nodes with no citations attached to them, the 

313 distinct query results for “prothymosin” are attached to 3,940 nodes, which is the actual size of 

the navigation tree in Figure 3.1. Combined with the fact that the MeSH hierarchy is quite bushy on 

the upper levels, this means that the user has to inspect, for example, a total of 152 concept nodes 

before she reaches the indicated concept “Histones”; a number comparable to the distinct citation 

count in the query result. A common practice [59] for hierarchy navigation is to show only a subset 
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of a node’s children, which would be appropriate if only few nodes contain many results. 

Unfortunately, this is not the case for the MeSH navigation tree; most of the 98 children of the root 

in Figure 3.1 have many results (the first three shown have 310, 217 and 193). 

 

 

Figure 3.1. Static Navigation on the MeSH Concept Hierarchy. 

Second, a substantial number of duplicate citations are introduced in the navigation tree of 

Figure 3.1, since each one of the 313 distinct citations is associated with several concepts. 

Specifically, the total count of citations in Figure 3.1 is 30,895. Naturally, the user would like to 

know which concepts fragment the query result into subsets of citations with as few duplicate 

citations as possible across them. Currently, the only way to figure this out using the interface in 
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Figure 3.1 is to click on different concept nodes and inspect the attached citations. As an example, 

the query results for “prothymosin” are related to three independent lines of research, represented 

by the three indicated concepts in Figure 3.1, which are hard to locate. Among the total 139 

citations attached to the three indicated concept nodes, only 20 of them are duplicates. 

 
Figure 3.2. Dynamic navigation steps to reach the concept "Histones" for the query 

"prothymosin". 
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Figure 3.3. The BioNav Interface 

Note that the user is not aware that the relevant results are available specifically on these 

nodes – she is only interested in narrowing down the results, using a familiar concept hierarchy, 

instead of examining all the results. 

BioNav introduces a dynamic navigation method that depends on the particular query 

result at hand and is demonstrated in Figure 3.2. The query results are attached to the 

corresponding MeSH concept nodes as in Figure 3.1, but then the navigation proceeds differently. 

The key action on the interface is the expansion of a node that selectively reveals a ranked list of 

descendant (not necessarily children) concepts, instead of simply showing all its children. 

Figure 3.2(a), for example, shows the initial expansion of the root node where only 8 

(highlighted) descendants are revealed compared to 98 children shown in Figure 3.1. The concepts 

are ranked by their relevance to the user query and the number of them revealed depends on the 

characteristics of the query results. Next, assuming the user is interested in the “Amino Acids...” 

node and judging that the 310 attached citations is still a big number, she expands it by clicking on 

the ”>>>” hyperlink next to it in Figure 3.2(b). The user inspects the 6 concepts revealed and 
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decides that she is not interested in any of them. Hence, she expands the “Amino Acids...” node 

one more time in Figure 3.2(c), revealing 4 additional concepts.  

Note that “Nucleoproteins” is an example of a descendant node being revealed, since its 

parent node “Proteins” is not revealed in Figure 3.2(c). In Figure 3.2(d), the user expands the 

“Nucleoproteins” node and reveals “Histones”, one of the three key concepts for the query. In the 

last step of the interaction, the user clicks on the “Histones” hyperlink and the 15 corresponding 

citations are displayed in a separate frame as shown in Figure 3.3. To reach “Histones” using the 

BioNav navigation method only 23 concepts are revealed, after 4 node expansions, compared to 

152 concepts, also after 4 expansions, with the static navigation method of Figure 3.1. 

For each expansion, the displayed descendant concepts are chosen in a way that the 

expected navigation cost is minimized, based on an intuitive navigation cost model we present in 

Section 3.3. The cost model estimates the exploration probability for a node based on its 

selectivity, that is, the ratio of attached citations before and after the query. The navigation cost for 

a concept node is also proportional to the density of the navigation subtree rooted at this node in 

terms of citation count. Intuitively, the selection is done such that every expansion reduces 

maximally the expected remaining navigation cost. For example, the reason that “Proteins” is not 

displayed in Figure 3.2 is that it is too general given the query results and the original distribution 

of citations in the PubMed database (details in Sections 3.3 and 3.4), and hence displaying it would 

lead to an expected increase in the user navigation cost, based on the user navigation cost model. 

In addition to the static hierarchy navigation works mentioned above, there are works on 

dynamic categorization of query results (e.g., the Clusty search engine [60], or [23, 56]), which 

create unsupervised query-dependent results clusters, but do not study how the clusters should be 

navigated. BioNav is distinct since it offers dynamic navigation on a predefined hierarchy, as is the 
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MeSH concept hierarchy. Another difference is that BioNav uses a navigation cost model to 

minimize the navigation cost. 

Although we specifically target the biomedical domain in this work, the approach can be 

directly applied to datasets where tuples are classified using terms from a concept hierarchy. The 

BioNav system architecture and implementation is presented in Section 3.7.1. Related work is 

discussed in Section 3.8 and we summarize out findings in Section 3.9. 

3.2 Framework and Overview 

Definition 3.1 (Concept Hierarchy): A Concept Hierarchy :(Ã, ¹, 
) is a labeled tree 

consisting of a set Ã of concept nodes, a set ¹ of edges and is rooted at node 
. Each node � ∈ Ã 

has a label � and a unique identifier id. 

According to the semantics of the MeSH concept hierarchy [58], the label of a child 

concept node is more specific than the one of its parent. This also holds for most concept 

hierarchies. 

Once the user issues a keyword query, PubMed −BioNav uses the Entrez Programming 

Utilities (eUtils) [61]− returns a list of citations, each associated with several MeSH concepts. 

BioNav constructs an Initial Navigation Tree by attaching to each concept node of the MeSH 

concept hierarchy a list of its associated citations. Formally, an Initial Navigation Tree �Å(ÃÅ , ¹Å , 
) 
is a concept hierarchy, where every node (concept) � ∈ Ã2 is additionally labelled with a results 

(citations) list �(�). 
In a given initial navigation tree, several concept nodes might have an empty results list. 

Since MeSH is a rather large concept hierarchy, BioNav reduces the size of the initial navigation 



 

51 

 

tree by removing the nodes with empty results lists, while preserving the ancestor/descendant 

relationships. Formally, the resulting structure is defined as follows. 

Definition 3.2 (Navigation Tree): A Navigation Tree �(Ã, ¹, 
) is the maximum 

embedding of an initial navigation tree �Å(ÃÅ , ¹Å , 
) such that no node � ∈ Ã is labeled with an 

empty results list �(�), excluding the root (in order to maintain the tree structure and avoid a 

forest). 

An embedding �(Ã, ¹, 
) of a tree �Å(ÃÅ, ¹Å , 
) is an injection from Ã to ÃÅ such that every 

edge in ¹ corresponds to a path (disjoint from all other such paths) in �Å. An embedding � of a tree 

�Å, where both trees are rooted at node 
, is maximum if no other node � with a nonempty results 

list �(�) can be added to Ã and � still be an embedding. The maximum embedding of the initial 

navigation tree is recursively computed in a single depth-first left-to-right traversal. If a non-leaf 

node � has an empty results list �(�), then add all children of � to the parent of � and remove it. If 

� is a leaf, then remove it. Figure 3.4(a) shows part of the navigation tree for the “prothymosin” 

query, where the results lists are omitted for clarity. 

The above procedure reduces the size of the initial navigation tree, but the structure is still 

too big (3,940 nodes for “prothymosin”) to simply display it to the user and let her navigate it. 

BioNav minimizes her effort to reach the desired citations in the navigation tree by expanding in a 

way that minimizes the expected overall user navigation cost. Moreover, BioNav avoids 

information clutter by hiding unimportant concept nodes leading to interesting ones. This is 

achieved through a series of expand actions that reveal only a few descendants (not necessarily 

children) of the user selected node for further navigation.  
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We model a node expansion at a given navigation step as an EdgeCut in the navigation 

tree. In graph theory, an EdgeCut in a graph �(Ã, ¹) is a set of edges ¹x ⊆ ¹ such that the graph 

�′(Ã, ¹\¹x) has more components than	�. For trees, any subset of the edges constitutes an 

EdgeCut, since the removal of any edge creates a new component. 

In Figure 3.4(a), the dashed line illustrates the EdgeCut corresponding to the expansion of 

the node “Amino Acids...” and reveals the highlighted concepts of Figure 3.4(a). These revealed 

nodes are visualized on the interface as a tree shown in Figure 3.4(b). The EdgeCut consists of the 

edges (“Proteins”, “Transcription Factors”) and (“Proteins”, “Nucleoproteins”). Intuitively, an 

EdgeCut allows us to “skip” child nodes (“Proteins”), navigate directly to descendant nodes located 

deeper in the tree and show them as children of the node being expanded. Moreover, an EdgeCut 

can selectively reveal only a subset of a potentially large set of descendant nodes, as is the case in 

Figure 3.2(b) where only 6 out of the 52 descendants of “Amino Acids…” are revealed. 

 

Figure 3.4. (a) Navigation Tree, EdgeCut and Component Subtrees, (b) Visualization of the 

EdgeCut on the user interface. 

Definition 3.3 (Valid EdgeCut): A valid EdgeCut of a tree �(Ã, ¹, 
) is an EdgeCut 

' ⊆ ¹ such that no two edges in ' appear in the same path from the root to some leaf node. We 

only consider valid EdgeCuts in the rest of the chapter, because invalid ones lead to unintuitive 

navigations. 
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Component Subtrees. An EdgeCut causes the creation of two types of component 

subtrees, upper and lower. Given an EdgeCut ' of a tree �(Ã, ¹, 
), a lower component subtree 

V(�7)	rooted at �7 is created by each node �7 ∈ Ã, such that (w, �7) ∈ ' for some node w. In Figure 

3.2(c), the expansion of “Amino Acids...” creates four lower component subtrees, two of which are 

shown in Figure 3.4(a), rooted at “Transcription Factors” and “Nucleoproteins”. Moreover, for a 

given EdgeCut ', a single upper component subtree is created consisting of the nodes not in any 

lower component subtree, and is always rooted at the root of the tree being expanded. In Figure 

3.4(a), the upper component subtree comprises of the nodes “Amino Acids...” and “Proteins”. 

The state of the navigation tree after an EdgeCut, and the component subtrees created, is 

captured by the Active Tree. 

 

Figure 3.5. The Active Tree Before and After the EdgeCut in Figure 3.4. 

Definition 3.4 (Active Tree): An Active Tree �Ç(Ã, ¹, 
) is a Navigation Tree where each 

node � ∈ Ã is annotated with a node set V(�) consisting of the nodes in the component subtree 

rooted at �. If a node n is not a root of a component subtree, then V(�) ={�}. The non-singleton I 
sets are disjoint. 



 

54 

 

Before any EdgeCut, a navigation tree is trivially converted to an active tree by annotating 

the root node with an V set that includes all tree nodes. The rest of the nodes �7 are annotated with 

the node set V(�7) = ��7�. Figure 3.5(a) shows (part of) the active tree capturing the state of the 

navigation tree before the EdgeCut in Figure 3.4(a) (singleton V sets, such as “Histones”, are not 

shown). 

An EdgeCut (expansion) is an operation on the active tree, performed on the V set of a 

given node, and updates the sets V(�7) of the roots �7 of the upper and lower subtrees created by the 

EdgeCut based on the nodes included in these subtrees. It is denoted by EdgeCut: V(�) → $ ⊆ V(�) 
and returns the set $ of roots of the upper and lower subtrees that it creates. Figure 3.5(b) shows the 

effect of the EdgeCut operation in Figure 3.4(a) on the active tree in Figure 3.5(a). The active tree 

is closed under the EdgeCut operation. 

Note that the set V(�) of a node � is overloaded to also denote the “invisible” component 

subtree of the active tree that is rooted at � and only consists of the nodes in V(�). For instance, the 

invisible subtree V(“Amino Acids...”) in Figure 3.5(b) is the one indicated as the upper component 

subtree in Figure 3.4a. 

BioNav visualizes the active tree to the user by showing only the nodes that do not appear 

in any non-singleton V set organized as follows. 

Definition 3.5 (Active Tree Visualization): The visualization of an active tree TÉ(V, E, r) 
is the embedded tree TÉ′(V′, E′, r). V′ are the nodes not in any non-singleton I(n), for all n ∈ V. 

Shown next to every node n ∈ V′ is the number of distinct citations attached to nodes in I(n), given 

by |L(I(n))| = i⋃ L(n})~Ï∈Ð(~) i. If n has a non-singleton I(n), then an expand hyperlink is shown 

next to it. 
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The visualization of the active tree after the EdgeCut in Figure 3.4(a) is shown in Figure 

3.4(b) and is a subset of the nodes revealed in Figure 3.2(c). The citation count |�(V(�))| for 

“Nucleoproteins” in Figure 3.2(c) is 40 denoting the unique citations attached to it and its 

(invisible) component subtree. It is reduced to 19 in Figure 3.2(d), since its component subtree is 

getting smaller as descendant concept nodes are revealed. 

EXPLORE(V(�))				if	�	is	the	root							$ ←EXPAND	V(�)	 //	that	is	$ ←EdgeCut(V(�))							For	each	�7 	in	$										EXPLORE(V(�7))				else,	if	�	is	not	a	leaf-node,	choose	one	of	the	following:							1.	SHOWRESULTS	V(�)							2.	IGNORE	V(�)							3.		$ ←EXPAND	V(�)												For	each	�7 	in	$															EXPLORE(V(�7))				else,	choose	one	of	the	following:				//	�	is	a	leaf	node							1.	SHOWRESULTS	V(�)							2.	IGNORE	V(�)	
Figure 3.6. TOPDOWN Navigation Model 

An EdgeCut and the visualization of the resulting active tree are capable of reducing the 

navigation tree both height- and width-wise. The embedded tree in Figure 3.2(c), compared to the 

navigation tree in Figure 3.1, is narrower and shorter. Note that we do not make any assumptions 

about the user’s preference over the tuples in the result and every citation in the result can be 

reached by a sequence of navigation actions, that is, there is no information loss in navigating the 

query results using our framework. 
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Using the ”>>>” hyperlinks, the user can trigger subsequent EdgeCut operations on 

component subtrees in a recursive fashion. Although we expect the user to trigger EdgeCut 

operations predominantly on the lower component subtrees, an EdgeCut is possible on the upper 

subtree as well. For example, an EdgeCut operation on the upper component subtree of Figure 

3.4(a) would reveals the “Proteins” concept as parent of the previously revealed concept 

“Nucleoproteins”. 

3.3 Navigation and Cost Model 

The navigation model of BioNav is formally defined in this section. Then the navigation 

cost model is presented, which is used to devise and evaluate our algorithms. 

Navigation Model. After the user issues a keyword query, BioNav initiates a navigation 

by constructing the initial active tree (which has a single component tree rooted at the MeSH root) 

and displaying its root to the user. Subsequently, the user navigates the tree by performing one of 

the following actions on a given component subtree V(�) rooted at concept node �: 

1. EXPAND ã(�): The user clicks on the ”>>>” hyperlink next to node � and causes an 

EdgeCut(V(�)) operation to be performed on it, thus revealing a new set of concept nodes 

from the set V(�). 
2. SHOWRESULTS ã(�): By performing this action, the user sees the results list �(V(�)) of 

citations attached to the component subtree V(�). 
3. IGNORE ã(�): The user examines the label of concept node �, ignores it as unimportant 

and moves on to the next revealed concept. 

4. BACKTRACK: The user decides to undo the last EdgeCut operation. 
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This navigation process continues until the user finds all the citations she is interested in. 

In order to define a cost model, we focus on a simplification of the general navigation model, 

which we call TOPDOWN, where only EXPAND, SHOWRESULTS and IGNORE are the 

available operations, that is, the user follows a top-down only navigation starting from the root. 

TOPDOWN is common in practice. When the user encounters a leaf node in TOPDOWN, the only 

option is SHOWRESULTS. The TOPDOWN navigation model is formally presented in Figure 3.6 

and is a recursive procedure that is initially called on the root of the active tree. 

TOPDOWN Cost Model. The cost model, which is inspired by a previous work [23], 

takes into consideration the number of concept nodes revealed by an EXPAND action, the number 

of EXPAND actions that the user performs and the number of citations displayed for a 

SHOWRESULTS action. In particular, the cost model assigns (i) cost of 1 to each newly revealed 

concept node that the user examines after an EXPAND action, (ii) cost of 1 to each EXPAND 

action the user executes, and (iii) cost of 1 to each citation displayed after a SHOWRESULTS 

action. For example, in the navigation of Figure 3.2 above, the cost for reaching the “Histones” 

concept and inspecting its attached citations is 42. That is, 4 EXPAND actions that reveal a total of 

23 concept nodes, and a SHOWRESULTS action on the “Histones” concept that lists 15 citations. 

The user examines all concept nodes and all citations in order to select the ones of interest. 

Since the exact sequence of actions of a user cannot be known a priori, we estimate the 

cost based on the following two probabilities: 

• EXPLORE probability äå(V(�)) is the probability that the user is interested in the 

component subtree V(�) and will hence explore it. The IGNORE probability is 1 �
äå(V(�)). 
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• EXPAND probability äx(V(�)) is the probability that the user executes an EXPAND 

action on component subtree V(�) given that she has chosen to explore V(�). The 

SHOWRESULTS probability for V(�) is 1 � äx(V(�)). 
In Section 3.4, we show how we estimate probabilities äå(V(�)) and äx(V(�)). The cost of 

exploring component subtree V(�), rooted at node �, is: 

1
"	^V(�)_ = 	äåæ^V(�)_ ∙
çè
é [1 � äx^V(�)_` ∙ i�^V(�)_i
+äx^V(�)_ ∙ U� + |$| +h1
"	^Vx(")_D∈G aêë

ì	
where äåæ(V(�)) is the normalized äå(V(�)), such that the sum of äåæ’s of the component 

subtrees after an EdgeCut equals 1. äåæ of the original tree is 1. The intuition for this normalization 

is that the probability that the user wants to explore a node � should not depend on the specific 

expansions sequence that revealed �. 

The first operand of the addition inside the big parenthesis is the cost of executing 

SHOWRESULTS on �. The second operand is the cost of executing an EXPAND action on �. The 

constant B is the cost of executing the EXPAND action, and $ is the set of concept nodes revealed 

by the action, or otherwise the roots of component subtrees returned by the EdgeCut operation. 

Vx(") is the updated V set of a node " ∈ $ after the EXPAND action on V(�) has been performed. 

Recall that i�^V(�)_i in the cost formula is the number of distinct citations attached to 

V(�). Intuitively, creating a component subtree with large number of duplicates reduces the 

navigation cost if the SHOWRESULTS probability for that subtree is high. Moreover, the number 

of duplicates across component subtrees should be minimal; otherwise the user will pay the cost of 

inspecting a citation multiple times. 
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Finally, note that by changing B, the cost assigned to executing an EXPAND action we 

affect the number of revealed concepts after each EXPAND. In particular, increasing this cost leads 

to more concepts revealed for each EXPAND action. This cost can be thought of as a cognitive 

measure of a user’s expectation of the system behavior as she navigates the query navigation tree. 

A small expand cost would decrease the number of concept nodes revealed during each EXPAND 

action, whereas the user can process more. It would also increase the number of EXPAND actions 

thus frustrating the user. In Section 3.7, we experiment with various values of B. 

3.4 Estimation of Navigation Probabilities 

We assume that each citation is equally likely to be of interest to the user. If more 

information about the “goodness” of the citations were available, our approach could be 

straightforwardly adapted using appropriate weighting for �(V(�)). 
Estimating EXPLORE Probability íî. Since all citations in the query result are assumed 

to be of equal importance, concept � is of higher interest if �(�) is large. On the other hand, a 

concept that is associated with a very large number of citations �´(�) of MEDLINE, independently 

of the query, is probably not discriminatory or important. The latter is inspired by the inverse 

document frequency measure in Information Retrieval. Hence, äå(�) for a node � is proportional 

to |�(�)|/|�´(�)|. We normalize äå(�) by dividing by the sum of all äå’s in the navigation tree �, 

that is: 

äå(�) = ï |�(�)||�´(�)|ð∑ |�(�7)||�´(�7)|@®ò´ óô	
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For a component tree V(�) rooted at node �: 

äå^V(�)_ =h äå(�7)@®∈Å(@) 	
Given the above formula, äå(V(�)) = 1 for the initial active tree. The above äå formulas, 

together with the cost model in Section 3.3, largely determine the characteristics of the component 

subtrees BioNav creates during an EXPAND action. In particular, the upper component subtree 

typically groups together (i) concepts with low äå and a large number of attached citations, and (ii) 

concepts with high äå and a small number of attached citations. The first group is dismissed as 

uninteresting and the second could lead to a large number of concepts being revealed. Intuitively, 

the two groups of concepts average each other out according to the äå(V(�)) formula. The lower 

component subtrees typically group concepts with äå and number of attached citations in-between 

the two extremes in a way that minimizes the average navigation cost. 

Estimating EXPAND Probability íõ. äx(V(�)) is 0, if � is a leaf concept node or has a 

singleton V(�) set, since there is no other choice for the user. For internal nodes in the active tree 

with a non-singleton V(�) set that have a large �(V(�)), a typical user will want to further narrow 

down when faced with the prospect of seeing too many citations, that is, äx(V(�)) is 1, if �(V(�)) 
is greater than an upper threshold. äx(V(�)) is 0, if �(V(�)) is smaller than an lower threshold. 

Currently, BioNav operates with 50 and 10 being the upper and lower threshold respectively. 

In the remaining cases, a user might want to narrow down the search of V(�) by executing 

an EXPAND action, if the citations under � are widely distributed among the subconcepts in V(�). 
An objective measure for such a wide distribution (disorder) is information entropy. If the entropy 

of the subtree V(�) is high, then the user would benefit from an EXPAND action. Hence, äx(V(�)) 
is defined as: 
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ä5^V(�)_ = ¹^V(�)_ = �∑
|�(�7)|i�^V(�)_i@®∈Å(@) �
& |�(�7)|i�^V(�)_i��
& 1|V(�)| 	

The sum can become greater than 1 because of the existence of duplicates. Hence, we 

normalize the entropy of V(�) by dividing with the maximum entropy, where citations are 

uniformly distributed to all nodes in V(�) and there are no duplicates. 

äx determines the impact of duplicates in a component subtree after a node expansion. If 

äx(V(�)) is low, that is, the SHOWRESULTS probability is high, then the number of duplicates in 

V(�) plays a bigger role in the way a component subtree is expanded. 

3.5 Complexity Results 

To prove that the problem of selecting the optimal valid EdgeCut for a given tree is NP-

hard, where “optimal” means minimize the user navigation cost according to the navigation model 

of Section 3.3, we prove that the problem is NP-complete for a simplified navigation model, which 

we refer to as TOPDOWN-EXHAUSTIVE and is a special case of the TOPDOWN model shown 

in Figure 3.6. 

In TOPDOWN-EXHAUSTIVE, BioNav performs an EXPAND action on the root of the 

initial active tree, and then the user selects randomly the root of one of the component subtrees 

created and performs a SHOWRESULTS action. The cost of TOPDOWN-EXHAUSTIVE 

navigation is the cost to read the root label of all component subtrees revealed by the EdgeCut plus 

the cost of SHOWRESULTS for the selected component subtree. 

Intuition on the complexity of computing optimal valid EdgeCut: The “optimal” valid 

EdgeCut is the EdgeCut that will lead to the minimum expected navigation cost, that is, the 
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minimum average cost. In order to minimize the expected cost of TOPDOWN-EXHAUSTIVE 

navigation, we need to minimize the cost of EXPAND and of SHOWRESULTS. The cost of 

EXPAND is simply the number d of component subtrees produced by the EdgeCut. The average 

cost of SHOWRESULTS over all component subtrees equals the sum of unique elements 

(citations) in every subtree over d. This sum would be |�(�)| where � is the navigation tree if there 

were no duplicates among the subtrees. However, due to the existence of duplicates (the same 

citation can be annotated with multiple MeSH concepts) this sum depends on the EdgeCut. Hence, 

the duplicates are the reason that the problem is NP-complete for TOPDOWN-EXHAUSTIVE, 

because we need to maximize the number of duplicates within the created subtrees, and at the same 

time create a relatively small number of component subtrees. Note that even for a given d, the 

problem of selecting the best EdgeCut is NP-hard as we show in Theorem 3.1. 

Theorem 3.1. Finding the optimal valid EdgeCut in TOPDOWN-EXHAUSTIVE is NP-

complete. 

Proof. The decision problem corresponding to the problem of computing the optimal 

EdgeCut is as follows: 

TOPDOWN-EXHAUSTIVE Decision (TED) Problem: Given a navigation tree �, where 

each node � contains a list �(�) of elements from universe ö (ö are all the citations in the query 

result), that is, �(�) ⊆ ö, there exists an EdgeCut ' of � that creates d subtrees (including the 

upper subtree) with � duplicate elements within the created subtrees. That is, if $2, … , $� are the 

subtrees and each $7 contains �($7) duplicates, i.e., elements that appear somewhere in $2, … , $7¬2 

(if an element appears 3 times, then it counts as 2 duplicates), then ∑ �($7)7÷2…� = �. 
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Note that the cost of a TOPDOWN-EXHAUSTIVE navigation is computed as follows, if 

we solve the TED problem for every combination of d and �. If � has ø unique results, then a 

subtree of the EdgeCut will have on average (ø + �)/d results. Hence the whole navigation cost 

is d + (ø + �)/d, where d is the cost of reading the labels of the d subtrees. 

TED is in NP since a solution can be verified in polynomial time. To prove that it is NP-

complete, we will reduce the MAXIMUM EDGE SUBGRAPH (MES) problem, which is NP-

complete [62], to TED. 

MAXIMUM EDGE SUBGRAPH (MES) Problem: Given graph �(Ã, ¹), a weight function 

ù: ¹ → ú (ú are the natural numbers) and positive integers � and d′, there is a subset Ã′ ⊆ Ã with 

|Ã′| = d′ such that the sum of the edge weights of the edges between the nodes in Ã′ is �, that is, 

∑ ù(#, F) = �(�,j)∈å⋂(gü×gü) . 

Mapping of MES to TED: For each node # ∈ Ã, we create a node #′ in � that is a child of 

the root of �. That is, the root 
 of � is empty (�(
) = ∅) and it has |Ã| children. 

The universe ö is defined as follows: for each pair of edges (#, F) ∈ ¹ with weight 

ù(#, F), we add elements ��j2 , … , ��jý(�,j) in ö. 

Each of the nodes of � is populated with elements from ö as follows: For each edge 

(#, F) ∈ ¹, we add to nodes #′ and F′ of � the elements ��j2 , … , ��jý(�,j). The intuition is that we 

map an edge weight in MES to the number of duplicates between two nodes in TED.We set 

d = |Ã| � dü + 1.  

Note that the above reduction is linear on the maximum edge weight in �, which generally 

is less than |Ã|, hence the reduction is polynomial on |Ã| and |¹|. Now, a solution to MES is 
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mapped to a solution to TED, since selecting d′ nodes in MES corresponds to expanding the tree 

into d subtrees in TED. The nodes of Ã corresponding to the nodes in the upper subtree of the 

EdgeCut (the one including the root) are the solution to MES. This set of nodes has maximum sum 

of edge weights in MES and maximum number of duplicates in TED.  

3.6 Algorithms 

Given the cost equation in Section 3.3, we can compute the optimal cost by recursively 

enumerating all possible sequences of valid EdgeCuts, starting from the root and reaching every 

concept in the navigation tree, computing the cost for each step and taking the minimum. However, 

this algorithm is also prohibitively expensive. Instead we propose an alternative algorithm Opt-

EdgeCut that makes use of the dynamic programming technique to reduce the computation cost. As 

shown in Section 3.6.1 below, Opt-EdgeCut is still exponential and is just used to evaluate the 

quality of the heuristic we present in Section 3.6.2 (Heuristic-ReducedOpt). In Section 3.6.3, we 

consider an alternate navigation strategy (TopKLevelWise), which in several variations is used in 

existing systems, such as eBay and Amazon, and allows users to navigate query results using 

extensive concept hierarchies. In TopKLevelWise, a fixed-size subset of children is revealed during 

each EXPAND action on a concept node, where the subset is selected based on a fixed cost metric. 

We compare two variations of TopKLevelWise with Heuristic-ReducedOpt in Section 3.6.2 and 

show that the navigation cost incurred using our approach can be an order of magnitude lower than 

either of these approaches. 

3.6.1 Optimal Algorithm for Best EdgeCut 

The Opt-EdgeCut algorithm to compute the minimum expected navigation cost (and the 

EdgeCut that achieves it) traverses the navigation tree in post-order and computes the navigation 

cost bottom-up starting from the leaves. For each node �, the algorithm enumerates and stores the 
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list ℂ(�) of all possible EdgeCuts for the subtree rooted at �, and the list �(�) of all possible V(�) 
sets that node � can be annotated with. The algorithm then computes the minimum cost for each 

subtree in �(�) given the EdgeCuts in ℂ(�) and the already computed minimum costs for the 

descendants of �. The complexity of Opt-EdgeCut is �(|Ã| ∙ 2|å|). 
Algorithm Opt-EdgeCut 

Input: The navigation tree � 

Output: The best EdgeCut 

1 Traversing � in post-order, let � be the current node 

2 while � ≠ 


	 do 

3    if � is a leaf node then 

4       %(�1
"	(�, ∅) ← äå(�) ∗ �(�) 
5       
�	1#	(�, ∅) ← (∅) 
6    else 

7       ℂ(�) ←	enumerate all possible EdgeCuts for the tree rooted at � 

8       �(�) ← enumerate all possible subtrees for the tree rooted at � 

9       foreach V(�) ∈ �(�) do 

10          compute äå(V(�)) and ä5(V(�)) 
11          foreach ' ∈ ℂ(�) do 

12             if ' is a valid EdgeCut for V(�) then 

               1
"	(V(�), ') ← äå^V(�)_ ∙ � ^1 � äx(V(�))_ ∙ �^V(�)_+äx^V(�)_ ∙ ^� + |$| + ∑ %(�1
"	^Vx(")_D∈G _�  

13             else 

14                1
"	(V(�), ') = ∞ 

15          %(�1
"	(�, V(�)) ← minx®∈ℂ(@) 1
"	(V(�), '7) 
16          
�	1#	^�, V(�)_ ← '7 
17 return 
�	1#	(


	, ¹)      // ¹ is the set of all tree edges 
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3.6.2 Heuristic-ReducedOpt Algorithm 

The algorithm to compute the optimal navigation, Opt-EdgeCut, is exponential and hence 

infeasible for the navigation trees of most queries. We propose a heuristic to select a good EdgeCut 

for a node expansion. Note that the input argument to the heuristic is a component tree V(�) and not 

the whole active tree � as in Opt-EdgeCut. The reason is that once Opt-EdgeCut is executed for �, 

the costs (and optimal EdgeCuts) for all possible V(�)’s are also computed and hence there is no 

need to call the algorithm again for subsequent expansions. 

Algorithm	Algorithm	Algorithm	Algorithm	Heuristic-ReducedOpt				InputInputInputInput:				Component	subtree	V(�),	number	�	of	partitions	OutputOutputOutputOutput:	The	best	EdgeCut	1 �′ ← �	2 repeat	repeat	repeat	repeat		3 			d ← ∑ �(�) ∙ äå(�)/�′@∈´ 	4 			Partitions	← d-partition(V(�), d)				//	call	d-partition	algorithm	[63]		5 			�′ ← �′ � 1	6 untiluntiluntiluntil	|Partitions|	� �	7 construct	reduced	subtree	V′(�)	from	Partitions	8 EdgeCut′	←	Opt-EdgeCut^Vü(�)_	9 EdgeCut	←	corresponding	of	EdgeCut′	for	V(�)	10 returnreturnreturnreturn	EdgeCut	
For a given component subtree V(�), Opt-EdgeCut enumerates a large number of EdgeCuts 

on V(�) and repeats this recursively on its subtrees. We propose to run Opt-EdgeCut on a reduced 

version V′(�) of V(�). The reduced tree V′(�) has to be small enough so that Opt-EdgeCut can run 

on it in “real-time”. We select the size � of V′(�) according to the processing power of our system. 

We set � = 15 in our experiments. Also, V′(�) should approximate V(�) as closely as possible. 
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V′(�) is the tree of “supernodes” created by partitioning V(�). Each supernode in V′(�) corresponds 

to a partition of tree V(�). Then, Opt-EdgeCut is executed on V′(�). 
The algorithm we use to partition the tree is based on the d-partition algorithm [63] that 

processes the tree in a bottom-up fashion. For each tree node �, the algorithm removes the 

“heaviest” children of � one-by-one until the weight of � falls below d. For each of the removed 

children, it creates a partition. The result is a tree-partitioning with the minimum cardinality. The 

complexity of the d-partition algorithm is �(|Ã| ∙ log|Ã|). 
We adopt the d-partition algorithm to our needs as follows. For each node in V(�), we 

assign weight equal to |�(�)| ∙ äå(�), which is an estimation of its navigation cost. We run the d-

partition algorithm by setting d, the weight threshold, to ∑ �(�7) ∙ äå(�7)/�@®	∈Å(@) , where � is the 

number of desired partitions. However, this might result in more than � partitions, due to some 

non-full partitions. Therefore we repeatedly run d-partition algorithm on V(�), gradually increasing 

d (by decreasing �) until up to � partitions are obtained. Note that � is the maximum tree size on 

which Opt-EdgeCut can operate in “real-time”. 

3.6.3 The TopKLevelWise Method 

In TopKLevelWise, the navigation model has the following key difference to our expansion 

model: the component subtree generated by an EXPAND on a node � are all rooted at one of the 

children of �. The size of the EdgeCut is limited by a parameter s, and the component subtree are 

chosen using a simple cost metric – the number of distinct results in a given component subtree. 

We consider two variations of TopKLevelWise. The first, which we call static, is employed by 

GoPubMed [59] and Amazon and uses s = ∞, that is, it selects the entire set of children to be 

included in the EdgeCut. The second, Top10LevelWise, is used by e-commerce websites such as 
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eBay. Here, a set of s = 10 children, with the highest number of results, are displayed. We 

compare these two strategies to Heuristic-ReducedOpt in Section 3.7 and show that our approach 

outperforms both of them. 

 

Figure 3.7. BioNav System Architecture. 

3.7 Implementation and Experimental Evaluation 

We evaluated the BioNav system in terms of both average navigation cost and expansion 

time performance. Other traditional measures of quality, such as precision and recall, are not 

applicable to our scenario as the objective is to minimize the tree navigation cost and not to 

classify. 

In Section 3.7.1 we describe the system architecture and some implementation details. In 

Section 3.7.2, we show that the BioNav navigation method, which is evaluated using the Heuristic-

ReducedOpt algorithm, leads to considerably smaller navigation cost for a set of real queries on the 

MEDLINE database and navigations on the MeSH hierarchy. In Section 3.7.3, we compare the 
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optimal algorithm (Opt-EdgeCut) with Heuristic-ReducedOpt and show that the heuristic is a good 

approximation of the optimal. These experiments were executed on a reduced navigation tree (~20 

nodes), constructed from the original query navigation tree for each query, since Opt-EdgeCut is 

prohibitively expensive for most navigation trees. Finally, Section 3.7.4 shows that the execution 

time of Heuristic-ReducedOpt is small enough to facilitate interactive-time user navigation. The 

experiments were executed on a Dell Optiplex machine with 3Ghz CPU and 2 GB of main 

memory, running Windows XP Professional. All algorithms were implemented in Java and Oracle 

10g was used as the database. 

3.7.1 System Architecture and Implementation 

The BioNav system architecture is shown in Figure 3.7 and consists of two parts. The off-

line components populate the BioNav database with the MeSH concept hierarchy and the 

associations of the MEDLINE citations with MeSH concepts, while the on-line components 

support BioNav’s web interface and the EXPAND-SHOWRESULTS actions of the user. 

Off-Line Pre-Processing. The BioNav database is first populated with the MeSH 

hierarchy, which is available online [58] and has more than 48,000 concept nodes. 

Then, the BioNav database is populated with the associations of the MEDLINE citations to 

MeSH concepts. These associations are not directly provided by the Entrez Programming PubMed 

so we had to implement the following method to infer these associations. For each concept in the 

MeSH hierarchy, we issued a query on PubMed using the concept as the keyword. For each 

citation ID in the query result, we added to a table in the BioNav database the tuple <
concept, citationID >.  Given the number of concepts in the MeSH hierarchy, the number of 

citations in MEDLINE (~18 million), and the PubMed eUtils restrictions on the number of queries 

that can be executed within a certain period of time, it took almost 20 days to collect all the 
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< concept, citationID > tuples. In the end, there were almost 747 million such tuples. To improve 

the selection queries on this table, we de-normalized it by concatenating all concepts associated 

with each citation into a comma-separated list, that is: 

< citationID, (concept1, concept2,… ) >	
In this work, we assume the dataset �	to be fixed. However, in practice, � changes 

frequently as new citations are added and existing citations are updated to include new terms from 

the MeSH hierarchy. In this case, we assume that � is refreshed periodically by an offline process 

that issues queries to PubMed using the concept keyword and updates the concept counts and rows 

of retrieved citations. A newly added citation may not appear immediately in the query result, but 

we assume that such delays are acceptable to users. When executing queries using concepts as 

keywords, we also store the number of citations �´(�) in the query result needed for the 

computation of äå in Section 3.4.  

On-Line Operation. Upon receiving a keyword query from the user, BioNav executes the 

same query against the MEDLINE database and retrieves only the IDs (PubMed Identifiers) of the 

citations in the query result. This is done using the ESearch utility of the Entrez Programming 

Utilities (eUtils) [61]. eUtils are a collection of web interfaces to PubMed for issuing a query and 

downloading the results with various levels of detail and in a variety of formats. Next, the 

navigation tree is constructed by retrieving the MeSH concepts associated with each citation in the 

query result from the BioNav database. This is possible since MeSH concepts have tree identifiers 

encoding their location in the MeSH hierarchy, which are also retrieved from the BioNav database. 

This process is done once for each user query. The navigation tree is trivially converted to an active 

tree (see Section 3.2) and passed on the Navigation Subsystem that supports the user’s actions on 

the BioNav web interface.  



 

71 

 

Initially, the navigation subsystem just visualizes the active tree on the web interface, that 

is, it simply shows its root node. Subsequently, the user requests an EXPAND action on the root. 

Then, the navigation subsystem executes the Heuristic-ReducedOpt algorithm on the tree V(
) of 

the root 
, and the resulting active tree is visualized on the web interface. When the user makes a 

SHOWRESULTS request, BioNav uses the Entrez ESummary utility to download high level 

information of the citations to be shown, such title and authors. 

3.7.2 Navigation Cost Evaluation 

To evaluate the navigation cost benefit of BioNav, we asked two researchers, who use 

PubMed regularly, to create a set of 10 queries each. The first researcher was a biochemist and the 

second a medical doctor. We asked them to consider queries that cover topics within their fields 

and are of exploratory nature, that is, queries that return more than just a few citations. For each 

query, we also asked them to designate a target MeSH concept in the corresponding navigation tree 

that they would subjectively consider as most interesting. The two sets of queries we received 

consist our workload and is show in Table 3.1. Apart from the queries (“Keywords” column), listed 

are statistics on the initial navigation trees, the target concepts and information regarding their 

Table 3.1. Bionav Evaluation Query Workload. 
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location depth in the MeSH hierarchy, the number of citations |�(�)| attached to them for the given 

query, and the total number of citations |�´(�)| attached to them in MEDLINE. 

 “Follistatin” and “LbetaT2” are terms that mainly interest biochemists studying 

reproductive endocrinology and gynecology. The “dyslexia genetics” query accumulates results 

related to genes associated with dyslexia. “Melibiose permease” and “Na+/I- symporter” are 

transport proteins related to bacterial growth and thyroid function respectively. On the other hand, 

“vardenafil” (Levitra), used for the treatment of erectile dysfunction, and “varenicline” (Chantix), 

used for quitting smoking, are two new drugs that interest many medical doctors. 

Interestingly, some queries correlate with quite a few fields of research and others 

concentrate in more specific topics. For example, the literature for “prothymosin”, although not 

particularly broad in number of citations in the query result (313), is associated with several topics 

such as cancer, cell proliferation, apoptosis, chromatin remodeling, transcriptional regulation and 

immunity. In contrast, “vardenafil” retrieves a higher number of citations (486) but the literature is 

mostly targeted to erectile dysfunction and hypertension. This fact is reflected on the navigation 

tree characteristics for the two queries, also shown in Table 3.1. The navigation tree for 

“prothymosin” is bigger than the one for “vardenafil” in every respect, that is, tree size, maximum 

width and height. 

Figure 3.8.  Overall Navigation Cost Comparison for Biochemistry and Medicine. 
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In this experiment we assume that the user follows a top-down navigation where she 

always chooses the right node to expand in order to finally reveal the target concept. We compare 

the navigation cost of BioNav, where EXPAND is implemented using the Heuristic-ReducedOpt 

algorithm (with � = 10), to the two navigation strategies, Static and Top10LevelWise, described in 

Section 3.6.3. 

 

Figure 3.9.  Number of Expand Actions Comparison. 

Figure 3.8 compares the navigation cost for these three methods. We observe that BioNav 

often improves the navigation cost by an order of magnitude, over Static navigation. The average 

improvement of BioNav, over static navigation, is 82%, for � = 15. The improvement is high 

regardless of the navigation tree characteristics (87% for “prothymosin” (Q5), 85% for “vardenafil” 

(Q12)), and regardless of the number of citations in the query result (80% for “LbetaT2” (Q1), 90% 

for “tourette syndrome” (Q20)). The smallest improvement (71%) was observed for “ebola virus” 

(Q14). The reason is that its target concept (Ebola Vaccines) is located far away, in terms of 

navigation tree distance, from other query results. Most query results are distributed under a MeSH 

concept called “Viruses”, while the target concept is located under a sibling concept called 

“Complex Mixtures”. Hence, it takes several EXPAND actions until BioNav reveals the latter. 

Query “ice nucleation” (Q6) also exhibits small improvement (75%), but for a different reason. Its 

target concept (Plants, Genetically Modified) has an extremely low |�(�)| = 2. Hence, its äå 	is 

quite low and so it takes several EXPAND actions until it is revealed. 
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Figure 3.10. Number of Concepts Revealed Comparison. 

 

Figure 3.11. Overall Navigation Cost Comparison. 

Consistent, but more modest, improvement in navigation cost is achieved by BioNav over 

Top10LevelWise. The average improvement is 41%, with a minimum of 16% for query “asperger’s 

syndrome” (Q15) and a maximum of 63% for “tourette syndrome” (Q20). Since Top10LevelWise 

explores the navigation tree level-wise, a concept that is high up in the hierarchy, such as the target 

concept of “asperger’s syndrome”, can be reached as fast by Top10LevelWise as it does by BioNav. 

On the other hand, a concept that is deep inside the navigation tree but with high äå, such as the 

target concept of “tourette syndrome”, is reached much faster by BioNav. 

Figure 3.9 shows the number of EXPAND actions for the three methods for the 

biochemistry query set only. Note that these numbers are relatively close, which means that the 

dramatic differences in Figure 3.8 are due to the fact that BioNav selectively reveals few 

descendant nodes for each EXPAND, instead of a possibly large number of child nodes. The worst 

case is the “ice nucleation” (Q6), where BioNav requires 6 EXPAND actions, compared to 4 of 
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static navigation, since the target concept is quite high in the MeSH hierarchy, and at the same time 

has a low äå, as discussed above. A similar increase in the number of EXPAND actions is 

observed for query “ebola virus” (not shown in Figure 3.9) for the reason discussed above. Figure 

3.10 shows the number of revealed concepts for each method and demonstrates the superiority of 

our approach. 

Procedure	Procedure	Procedure	Procedure	GenReducedTree				InputInputInputInput:				 Initial	 Navigation	 Tree	 V(�),	 the	 target	 concept	 1,	 and	 the	 desired	 number	%�wú	of	nodes	in	the	reduced	tree	OutputOutputOutputOutput:	A	reduced	tree	with	at	most	%�wú	nodes,	including	1	1 collect	all	nodes	of	V(�)	in	list	�	2 create	list	�′	to	store	the	nodes	of	the	reduced	tree	3 add	to	�′	a	concept	node	in	�	with	the	same	label	as	1	and	all	its	ancestors	4 whilewhilewhilewhile	("(��
q(�ü) � %�wú)	repeatrepeatrepeatrepeat	5 	 select	a	node	1′	uniformly	at	random	from	�	6 	 add	1′	and	all	its	ancestors	to	�′,	excluding	duplicates	7 create	a	tree	Vü(�)	from	the	nodes	in	�′,	preserving	the	parent-child	relationship	8 return	Vü(�)	
3.7.3 Opt-EdgeCut Comparison 

To compare the optimal algorithm Opt-EdgeCut and Heuristic-ReducedOpt, we use the 

same query workload as in Section 3.7.1. As mentioned earlier, it is infeasible to execute Opt-

EdgeCut on the navigation tree obtained for any query in Table 3.1. Therefore, we base our 

comparison on a reduced navigation tree Vü(�) obtained by applying the procedure 

GenReducedTree to an initial navigation tree V(�). The procedure GenReducedTree ensures that a 

reduced navigation tree has (1) at least one concept node with the same label as the target concept 
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of the queries in Table 3.1, and (2) up to a maximum number %�wú	of concept nodes. In this 

experiment, we set %�wú	to 25. 

Figure 3.11 compares the proportional navigation cost of Opt-EdgeCut over Heuristic-

ReducedOpt for the biochemistry query set only. Opt-EdgeCut performs better than Heuristic-

ReducedOpt for all queries. However, the improvement varies over a wide range (6% for 

“LbetaT2” (Q1), to 75% for “Na+/I symporter” (Q3)). This is because partitioning in Heuristic-

ReducedOpt hides away the target nodes inside one of the partitions during an EXPAND action, 

effectively excluding their participation in an EdgeCut. Thus, more EXPAND actions are needed to 

reach the target concept, which increases the cost. The opposite is true for query “ice nucleation” 

(Q6). The target concept is relatively high up in the hierarchy and the partition algorithm creates a 

partition for the target concept during the first expansion. Thus the same number of expansions is 

needed to reach it, resulting in the same overall cost. 

 

Figure 3.12. Heuristic-ReducedOpt EXPAND Performance. 

3.7.4 Performance Evaluation 

Figure 3.12 shows the average time of Heuristic-ReducedOpt to execute an EXPAND 

action for each query in Table 3.1. The average was taken over the number of EXPAND actions 

partially shown in Figure 3.9. For an input tree V(�), Heuristic-ReducedOpt first creates a reduced 

tree V′(�), and then runs the Opt-EdgeCut algorithm on it. The execution time is dominated by Opt-



 

77 

 

EdgeCut as it is an exponential algorithm and depends on the size of the input tree. As stated 

earlier, we restrict the size of the reduced tree V′(�) to 10 nodes and the EXPAND cost � is set to 

15. However, V′(�) can have a smaller size (see Section 3.6.2), in which case Opt-EdgeCut 

executes faster but with reduced accuracy. 

For example, the reduced tree V′(�) for “oxaluria” (Q17), in both EXPAND actions, had 

sizes 10 and 9 respectively, which explains the highest average execution time, and also among the 

highest improvements in Figure 3.8. On the other hand, for “Na+/I symporter” (Q3), the first three 

EXPAND actions resulted in an V′(�) of sizes 8, 8 and 7, respectively. Hence, the average 

execution time in Figure 3.12 is lower, as is the improvement in navigation cost. 

3.8 Related Work 

Pubmed Search: Several systems have been developed to facilitate keyword search on 

PubMed using the MeSH concept hierarchy. Pubmed itself allows the user to search for citations 

based on MeSH annotations. This interface poses significant challenges, even to experienced users, 

since the annotation process is manual and thus prone to errors. The closest to BioNav is 

GoPubMed [31, 59], which implements a static navigation method on Pubmed results. GoPubMed 

lists a predefined list of high-level MeSH concepts, such as “Chemicals and Drugs” etc., and for 

each one of them displays the top-10 concepts. After a node expansion, its children are revealed 

and ranked by the number of their attached citations, whereas BioNav reveals a selective and 

dynamic list of descendant (not always children) nodes to the user’s query.  

Biomedical Search: Other systems that tackle PubMed search using the MeSH concept 

hierarchy include PubMed PubReMiner [64] and XplorMed [65, 66]. Both of them are query 

refinement tools and do not implement a particular navigation method. In particular, PubMed 
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PubReMiner outputs a long list of all MeSH concepts associated with each query along with their 

citation count. The user can select one or more of them and refine her query. XplorMed performs 

statistical analysis of the words in the abstracts of the citations in the query result and proposes 

query refinements/extensions to the user in a multi-step process. Ali Baba [67] displays the results 

on a graph where edges denote associations between the result nodes, which are typically genes 

and proteins. iHOP [68, 69] shows to the user the genes associated to a query gene, where the 

association is measured through co-occurrence in a sentence. LSLink [70] uses the physical links 

between objects in the query result to find meaningful associations between pairs of terms in 

different controlled vocabularies annotating objects in multiple datasources.  

Categorization: Two academic proposals [23, 56] dynamically categorize SQL query 

results by inferring a hierarchy based on the characteristics of the result tuples. Their domain is the 

tuple attributes and their problem is how to organize them hierarchically in order to minimize the 

navigation cost. One of the systems [56] takes into consideration the user’s preferences during the 

inference for a more personalized experience. Once the hierarchy is inferred, they follow static 

navigation. BioNav is distinct since it offers dynamic navigation on a predefined hierarchy. Hence, 

BioNav is complementary to these systems- it can be used to optimize the navigation, after these 

systems construct the initial navigation tree. 

Clustering: Clustering systems [60, 71, 72] create unsupervised query-dependent clusters. 

PubMatrix[73] takes as input two sets of keywords terms, in addition to query keyword, and 

generates a co-occurrence frequency matrix of each pair of terms from the two lists, in the query 

result. The user can then browse this matrix and perform independent searches on pairs of terms. 

The Clusty [60] search engine clusters keyword-based query results on the web and operates on top 

of other search engines. HighWire Press [72] uses Clusty’s algorithms to cluster query results in 
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the biomedical domain. [74] clusters PubMed documents by the drug they refer to based on the 

UMLS [75] drugs classification. Once the clusters are created, a static navigation method is 

followed. BioNav could be adapted to work on top of the (typically shallow) hierarchy created by 

clustering systems. 

3.9 Summary 

We address this problem of navigating results using the Mesh Concept Hierarchy by 

organizing the query results according to their associations to concepts and propose a dynamic 

navigation method on the resulting navigation tree. We formally stated the underlying framework 

and the navigation and cost models used for evaluation of our approach. We prove that the problem 

of selecting the set of nodes that minimize the navigation cost is NP-complete, we propose an 

efficient heuristic, and we validate it for diverse sets of queries and navigation trees. 

 

 

 

 

 

 

 

 



 

80 

 

Chapter 4 

Cost-Driven Exploration of Faceted 

Results 

4.1 Introduction 

In a very common search scenario, when users are not familiar with the content or the 

structure of the underlying database, or they are not experienced with sophisticated search 

interfaces, they issue queries that are exploratory in nature and may return a large number of 

results. In other cases, users often issue broad (underspecified) queries in fear of missing 

potentially useful results. As a consequence, users end up spending considerable effort browsing 

long lists of query results. This phenomenon, known as information overload, is a major hurdle in 

querying large databases. 

Information overload has been tackled from two directions – ranking and categorization. 

There are many recent works on ranking database results for both keyword [13, 40] and structured 

queries [20]. Ranking is effective when the assumptions used by the ranking function are aligned 

with user preferences. Ranking may not perform well for exploratory queries, since it is hard to 

judge which result is better than the other when the query is broad. Moreover, no summary 

(grouping) of the query result is provided for the user to refine her query. In categorization, query 

results are grouped based on hierarchies, keywords, tags, or attribute values. For instance, consider 



 

81 

 

the MEDLINE database of biomedical citations [8], whose articles are tagged with terms from the 

MeSH concept hierarchy [58]. Categorization systems propose a method for users to effectively 

explore the large results by navigating the MeSH sub-hierarchy relevant to the particular query 

result [27]. Wider adoption of such hierarchical categorization systems is limited, as building these 

concept hierarchies requires an intense manual effort, and automatically assigning terms to tuples 

afterwards is not always a successful process [76]. 

A popular variant of categorization, which is the focus of this chapter, is faceted navigation 

[33]. Here, the tuples in a query result are classified into multiple independent categories, or facets, 

instead of a single concept hierarchy. For an example car dataset, the result for keyword query 

"ℎ
���" shown in Figure 4.1(a) is categorized based on 
��
, '(	� and $	�	� facets, among 

others. Each facet is associated with a set of facet conditions, each of which appears in the number 

of tuples shown in parenthesis (cardinality). For instance, the 
��
 facet in Figure 4.1(a) is 

associated with the set (2000, 2001,… ) of facet conditions. The user can narrow down or refine 

this result set by selecting a facet condition (e.g., 
��
 = 2003) and clicking on it. User studies 

have shown that faceted navigation improves the ability of users to explore large query results and 

identify tuples of interest when compared to single concept hierarchies [77]. 

Faceted navigation has been studied extensively by the Information Retrieval community, 

where the challenge is to dynamically determine the facets for a given set of documents. The 

drawback of these systems is the unpredictability and counter-intuitiveness of the resulting facets 

[76, 78]. In contrast, faceted navigation is much more intuitive and predictable for structured 

databases, where each attribute is a facet describing a particular characteristic of the tuples in the 

dataset.  
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(a) I nitial Query Results  and Sugges ted Facet Cond itions (b) REFINE Action (c) EXPAND Action

Figure 4.1. The FACeTOR Interface. 

The following are key concerns that need to be addressed to achieve effective faceted 

navigation when the number of facets and facet conditions are large: 

1. Which facets and facet conditions should be suggested (displayed) to the user? For 

example, the query result in Figure 4.1(a) consists of 789 tuples that can be categorized 

using 41 facets and 234 facet conditions. Suggesting “familiar” facets and facet conditions 

would help the user make a refinement decision without requesting additional facet 

conditions (by clicking the “More” hyperlinks in Figure 4.1(a)). For example, if users are 

more familiar with the 
��
 facet than the �(���&� facet in Figure 4.1(a), it is intuitive to 

suggest conditions from the Year facet.  Most current solutions, try to address the facet 

conditions selection problem in an ad hoc manner by ranking the facet conditions using 

results cardinality or other ad-hoc factors. 

2. Which facet conditions will lead to the tuples of interest in fewer navigation steps? For 

example, although the facet condition ��d� = :
��� has the highest cardinality for the 

query result in Figure 4.1(a) (the approach followed by most current systems), selecting 
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this facet will not refine the query result by a large margin, thereby forcing the user to 

perform additional refinements to narrow down the query result. 

3. The overlap of the query results among the set of suggested conditions is another critical 

concern, since a low overlap can reduce the suggestions inspected and shorten the 

navigation. In Figure 4.1(a), if most of the '(	� = �����" cars were made in 
��
 =
2001, it is not wise to suggest both facet conditions. If the user chooses one of them in one 

navigation step, she would have to inspect the other in the next step anyway. 

In this chapter, we present the FACeTOR system that takes a cost-based approach to 

selecting the set of facet conditions to suggest to the user at each navigation step. These facet 

conditions are selected using an intuitive cost model that captures the expected cost of navigating a 

query result. At each navigation step, FACeTOR first computes the applicable facet conditions. 

However, instead of showing all of them or ranking them by an ad hoc function, FACeTOR 

suggests a subset of them based on an intuitive navigation cost model, which considers factors 

including the user’s familiarity with the suggested conditions, their overlap, and the expected 

number of navigation steps. The suggested facet conditions are chosen such that they minimize the 

expected navigation cost until the tuples of interest are reached, although these are not known a 

priori. 

Recent works on faceted navigation of database query results [23, 33] have limitations that 

we address in this chapter. In both works, the navigation algorithm selects one facet (or possibly 

multiple ones [33]) and displays all its facet conditions to the user. Instead, we suggest a mix of 

facet conditions from several facets, that is, our algorithm operates at the facet condition level and 

not the facet level. Further, our cost model more closely estimates the actual user navigation cost. 
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These improvements introduce novel algorithmic challenges, due to the explosion of the search 

space and the interactive time requirement of exploration systems.  

Table 4.1. Symbol Reference. 

Symbol Meaning $� The schema of the initial result set with attributes !2, … , !3 E The initial result set B The query formulated during a faceted navigation Ef Ef ⊆ E, the result of a query B over E 1 A facet condition of the form !7 = �Z '(Ef) All possible facet conditions for Ef '(!7) All possible facet conditions for attribute !7 'G(Ef) 'G(Ef) ⊆ '(Ef), the suggested conditions given Ef 

4.2 Framework and Definitions 

The starting point of the FACeTOR framework is a result set that the user explores. 

Definition 4.1 (Result Set): A result set is a relation E with schema $� = (!2, … , !3). 
Each attribute !7 ∈ $� has an associated active domain !�
%(!7, E) of un-interpreted constants.  

The initial result set E could be the whole database or more realistically, the result of a 

keyword query. In this work, we assume that the user first submits a keyword query (e.g., "ℎ
���" 
in Figure 4.1(a)). At each step of a faceted navigation, FACeTOR classifies the tuples of a result 

set E according to their facets. Each attribute !7 ∈ $� of E contributes a facet to the classification 

which in turn, contributes a set of conditions. 

Definition 4.2 (Facet Condition): Given a result set E, a facet condition is an equality 

predicate 1: !7 = �7, where !7 ∈ $� and �7 ∈ !�
%(!7, E). The set of all possible facet conditions 

for a result set E is '(E). 
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Our running example considers a cars result set E whose tuples are classified by their 


��
, '(	�, ¹w	�
(

 '
�

 and 37 more facets. As shown in Figure 4.1(a), FACeTOR displays 

the name of each facet along with a list of facet conditions as hyperlinks, followed in parenthesis 

by the number of tuples in E satisfying the condition (cardinality). 

When the user clicks on a hyperlink corresponding to a facet condition 17, FACeTOR 

filters the result set E to the tuples that satisfy 17, thus yielding a new result set Ef ⊆ E, and the 

faceted navigation proceeds to the next step where Ef is now being classified. FACeTOR captures 

the progression of the faceted navigation using a query B. When the user clicks on a facet condition 

17, then the equality predicate is added conjunctively to B, thus forming a refined query B ∧ 17. At 

each navigation step, FACeTOR suggests only a subset 'G(Ef)	of all possible facet conditions in 

'(Ef). 
NAVIGATE(B)	1 Choose	one	of	the	following:	2 				SHOWRESULT(Ef)	3 				Examine	all	suggested	conditions	'G(Ef)	4 								Choose	one	of	the	following:	5 												REFINE(B, 1)	6 																B = B ∧ 1	7 												EXPAND^!7 , Ef_	8 																Examine	all	remaining	conditions	in	'(!7)\'G(Ef)	9 																Choose	a	condition	1′ ∈ ^'(!7)\'G(Ef)_	10 																B ← B	 ∧ 1′	11 								NAVIGATE(B)	

Figure 4.2. Faceted Navigation Model 
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Definition 4.3 (Suggested Conditions): For a result set Ef, a set of facet conditions 

'G(Ef) ⊆ '(Ef), are suggested if ⋃ (Ef∧5)5∈x
(��) = Ef, that is, every tuple in Ef satisfies at 

least one suggested condition. 

In this work, we are interested in minimizing the overall expected navigation cost incurred 

by the user, by choosing the best set of suggested conditions for a given Ef, without making any 

assumptions about the user’s preference over the tuples in Ef. The navigation cost is based on an 

intuitive model of user navigation. 

4.3 Navigation and Cost Model 

The faceted navigation model is formally presented in Section 4.3.1 and forms the basis for 

the navigation cost model defined in Section 4.3.2.  

4.3.1 Faceted Navigation Model 

At each faceted navigation step, FACeTOR displays to the user the set of suggested 

conditions 'G(Ef) for the current result set Ef. The user then explores Ef by examining all 

conditions in 'G(Ef) and proceeds to the next navigation step by performing one of the following 

actions: 

1. SHOWRESULT(��): The user examines all tuples in the result set Ef. If, in Figure 4.1(a), 

the user chooses to stop navigation and read all the results, she would have to read a total of 

789 result tuples and 21 labels. 

2. REFINE(�, �): The user chooses a suggested condition 1 ∈ 'G(Ef) and refines query B, that 

is, B becomes B ∧ 1. The result of E¹²Vú¹(B, 1: ���
 = 2003) is shown in Figure 4.1(b). As 
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a consequence of this action, the result set has now been narrowed down to 200 tuples and the 

new set of suggested conditions is available for this refined result set. 

3. EXPAND(��,��) : The user is dissatisfied with (rejects) all suggested conditions in 'G(Ef). 
Instead, she EXPANDs an attribute !7, by clicking on its “More” hyperlink, which reveals the 

remaining facet conditions for !7 in Ef, and selects one of them to REFINE the query B. This 

occurs when the user is not familiar with any of the suggested conditions. The effect of 

EXPAND is shown in Figure 4.1(c), where the remaining facet conditions for $	�	� are 

revealed. 

The formal navigation model is presented in Figure 4.2. It is a recursive procedure and is 

initially called on the entire result set E and the identity query B, and terminates when the user 

finds all the tuples of interest, i.e. when the user executes SHOWRESULT(Ef). The set Ef and the 

suggested conditions 'G(Ef) is computed at the beginning of each NAVIGATE step. 

4.3.2 Faceted Cost Model 

The cost model measures the navigation cost incurred by the user when exploring a query 

result set Ef, using the navigation model described in Section 4.3.1. The navigation cost is the sum 

of costs of the actions performed by the user, which is, examining suggested conditions, 

SHOWRESULT, REFINE and EXPAND actions. 

The cost of examining all tuples in a result set Ef, that is, the cost of SHOWRESULT(Ef) 
is |Ef|, and the cost of examining all suggested conditions is i'G(Ef)i.We assume that the 

REFINE and the EXPAND actions have a cost � associated with them, that is, � is the cost of 

“clicking” on a suggested condition or executing an EXPAND action on the attribute !7 ∈ $�. 
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If the exact sequence of actions followed by the user in navigating Ef were known a 

priori, we could accurately determine the cost of navigation. Since this sequence cannot be known 

in advance, we estimate the navigation cost, taking into account the inherent uncertainty in the user 

navigation. To estimate the navigation cost, we introduce four probabilities: 

• SHOWRESULT Probability í��(��) is the probability the user examines all tuples in the 

result set Ef and thus terminates the navigation. If no facet conditions can be suggested, then 

äG�(Ef) = 1. 

• REFINE Probability í(�) is the probability the user refines the query B by a suggested 

condition 1 ∈ 'G(Ef). 
• Attribute Preference Probability í�(��) is the probability the user prefers suggestions from 

attribute !7. 
• EXPAND Probability íî(��) is the probability the user does not choose a suggested 

condition and instead performs an EXPAND action is äå(Ef) = ∏ (1 � ä(1))5∈x
(��) . 

Since the navigation model is recursive, the expected navigation cost can be estimated by 

the following recursive cost formula: 

1
"	(B)
= äG�^Ef_ ∙ iEfi + [1�äG�^Ef_`
∙ � � + i'G^Ef_i + (1 � äå(Ef)) ∙ 
�q(�� [B, 'G^Ef_` +äå^Ef_ ∙ h äÇ(!7) ∙ ði'(!7)\'G^Ef_i + 
�q(�� [B, '(!7)\'G^Ef_`óÇ®∈G�

� 							(4.1)	
where   
�q(��(B, ') = ∑ ^ä@km3(1) ∙ 1
"	(B ∧ 1)_5∈x 																																																									(4.2) 
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The first line of Equation 4.1 captures the fact that the user has two options, when 

presented with a set of suggested conditions. One is to execute a SHOWRESULT action with 

probability äG�(Ef) and cost |Ef|. The other is to execute a REFINE or EXPAND action with 

probability 1 � äG�(Ef). The cost consists of the following parts shown in the square brackets of 

cost formula: 

1. A fixed cost � of a REFINE action. 

2. The user reads the suggested conditions with cost |'G(Ef)|. 
3. With probability 1 � äå^Ef_ the user decides to REFINE. The cost of REFINE, shown in 

Equation 4.2, is the sum of all possible REFINE choices weighted by their probabilities. 

These probabilities are normalized to sum to 1, as follows: 

ä@km3(1) = ä(1) Σ5∈xä(1)⁄  

4. With probability äå(Ef), the user does not choose any of the suggested conditions and 

performs an EXPAND action instead (third line of Equation 4.1). With probability äÇ(!7), 
the user prefers attribute !7 over all other attributes and EXPANDs it. She examines all the 

non-suggested conditions for !7, i'(!7)\'G(Ef)i in total, chooses one of them and refines 

query B. The estimated cost for the last step is also given by the refine formula in Equation 

3.2 above, where ' = '(!7)\'G(Ef). 
The cost formula (Equation 4.1) quantizes the effort incurred by the user navigating the 

results Ef of the query B. The challenge now is to choose the set of conditions 'G^Ef_ ⊆ C(R�), 
that minimizes the overall navigation cost. 
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4.4 Estimating Probabilities 

Our aim here is to present a framework for effort based navigation of faceted query results. 

The problem of estimating probabilities, äG�^Ef_, ä(1), äÇ(!7) and äå(Ef), is orthogonal to the 

solution and can be estimated in various ways viz. information theoretic approaches such as 

entropy, user navigation logs etc. However, for the sake of completion and evaluation of the 

framework, we present a method to estimate these probabilities. 

Estimating í��(��), the probability the user executes SHOWRESULT on a given result 

set Ef. We use the information theoretic measure of Entropy to estimate äG�. The rationale behind 

this decision is that the user would choose to further refine the query B and narrow down the result 

set Ef if the tuples in Ef are widely distributed among all possible facet conditions '(Ef). The 

entropy of a result set Ef distributed amongst the facet conditions in '(Ef) is given by: 

: [Ef , '^Ef_` = � h ^iEf∧5i ú⁄ _ ��^iEf∧5i ú⁄ _5∈x(��)
	

where ú = ∑ |Ef∧5|5∈x(��)  is the sum of the number of tuples over all facet conditions. 

Since the value of entropy can be greater than 1, we normalize it with the maximum value 

of entropy for a given result set Ef distributed over i'(Ef)i facet conditions. Entropy is maximal 

when ú tuples are distributed equally amongst i'(Ef)i facet conditions, that is, each facet 

condition is satisfied by ú/|'(Ef)| tuples. The total entropy of such a system is: 

:3l� [Ef , '^Ef_` = � h �ú i'^Ef_i⁄ ú ��ú i'^Ef_i⁄ ú �5∈x^��_ = ��i'^Ef_i	
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Hence, 

äG�(Ef) = �∑ iEf∧5i ú⁄ �� iEf∧5i ú⁄5∈x(��) ��i'^Ef_i 	

Estimating í�(��): This is the probability the user knows or likes attribute !7. We 

estimated this probability using a survey of 10 users (students and faculty in our institutions) who 

rated each attribute !7 in the dataset on a scale from 0 to 1. These values are taken to be the user 

preference äÇ(!7) for attribute !7. 
Estimating í(�): ä(1) is the probability the user executes a REFINE action on suggested 

condition 1. A user would REFINE by 1, if she knows or likes the attribute of 1 and is also familiar 

with the value of the attribute in 1. Therefore, we used a two-pronged approach to compute ä(1). 
To estimate the popularity of a value of a facet condition, we computed the frequency q
�C(!7 . F7) 
of each value for each attribute in E. Then, we multiply each frequency with the attribute 

preference to obtain the attribute/value preferences ä(1: !7 = F7) = q
�C(!7 . F7) ∙ äÇ(!7), which 

we then normalize by dividing by the maximum frequency for each attribute. 

4.5 Algorithms 

Given the intractability of the Facet Selection problem (Section 4.5.1), we have to rely on 

heuristics to compute the set of suggested conditions. To develop these heuristics, we analyzed the 

cost model presented in Section 4.3.2 to determine the characteristics of suggestions that form good 

candidates for suggested conditions.  

Next, we present two heuristics to efficiently compute the best set of suggested conditions. 

The first, ApproximateSetCover (Section 4.5.3), is inspired by an approximation algorithm for the 

weighted set cover problem [79], and attempts to find a relatively small set of suggestions that have 



 

92 

 

a high probability of being recognized by users (high P(c)). The second heuristic, 

UniformSuggestions (Section 4.5.4), follows Equation 4.1 more closely and greedily selects facet 

conditions based on a heuristic assumption that is derived from the analysis of the cost model. 

4.5.1 Complexity Results 

We prove that the problem of finding the suggested facet conditions that minimize the 

expected navigation cost given by Equation 4.1 is NP-Hard, by showing that a simplified version of 

the problem is also NP-Hard. The Simplified Facet Selection (SFS) problem considers a simpler 

navigation model than the one in Section 4.3.1, called NAVIGATE-SINGLE and defined next. 

NAVIGATE-SINGLE: In this model, the system performs a single REFINE action, 

where the user randomly selects one of the suggested conditions, and then performs a 

SHOWRESULT action. The cost of NAVIGATE-SINGLE navigation is the cost to examine all 

suggested conditions displayed (|'G(Ef)|) plus the cost iEf∧5i of performing the SHOWRESULT 

action for the randomly-selected suggested condition 1. 
Suppose that the dominant cost of our cost model is that of examining a suggested 

condition. That is, suppose the cost to examine a suggested condition is 1 and the cost of 

SHOWRESULT is 0. Also suppose that all attributes of Ef are Boolean (0, 1) and that the 

suggested conditions in 'G(Ef) are always positive, that is, |'(!7)| = 1. Recall that facet 

conditions only specify a single attribute. 

Theorem 4.1: The SFS problem is NP-Hard. 

Proof (sketch): SFS is clearly in NP. To prove the NP-Hardness we reduce from 

the HITTING-SET problem. An instance of the HITTING-SET problem consists of: 
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• a hypergraph : = (�, ¹), where � is a finite set of vertices and ¹ = (¹2, … , ¹@) is a set 

of hyperedges, that is, subsets of �, and 

• a positive integer � � |�|. 
The problem is to determine whether there is a hitting set : ⊆ � of size � such that 

∀( ∈ �1,…��:: ∩ ¹7 ≠ ∅. 

We reduce HITTING-SET to SFS as follows. A node #7 in � becomes a facet condition 

!7 = 1. A hyperedge ¹7 ∈ ¹ becomes a tuple 	7 in the result set Ef. ¹7 connects the vertices 

corresponding to the attributes that have value 1 for the result 	7. The solution of HITTING-SET 

translates naturally to a solution to NAVIGATE-SINGLE and vice versa.  

4.5.2 Cost Model Analysis 

Consider a sample result set Ef shown in Figure 4.3. Also shown, are three alternative sets 

of suggested conditions (Figure 4.3(a), 4.3(b) and 4.3(c)) selected from the set of all facet 

conditions '(Ef). Which one of the alternative set of suggestions shown in Figures 4.3(a), 4.3(b) 

and 4.3(c) has the lowest cost, and therefore is more likely to be selected by the navigation cost 

model? 

The suggested conditions shown in Figure 4.3(a) are highly selective, since each one of 

them appears in a small number of results (low cardinality). Therefore, a large number of such 

conditions are required to cover the result set Ef causing the navigation cost to increase as the user 

now has to read all the labels before proceeding to the next navigation step. 



 

94 

 

CS(RQ)

RQ C(RQ)
Make Year State Color

t1 Honda 2001 NY Red

t2 Honda 2005 NY Green

t3 Honda 2001 NY Gold

t4 Honda 2005 NY Green

t5 Toyota 2005 NY White

t6 Toyota 2005 NY Black

Facet Condition P(c)

Make=Honda 0.8

Make=Toyota 0.7

Color=Red 0.1

Color=Gold 0.1

Color=Green 0.4

Color=White 0.1

Color=Black 0.1

State=NY 0.2

Year=2001 0.5

Year=2005 0.7

Make

•Honda (4)

Year

• 2005 (4)

Color

• Red (1)

•White (1)

•Green (2)

•Gold (1)

• Black (1) 

Make

• Toyota (2)

Year

• 2001 (2)

Color

•Green (2)

(a) (b) (c)
 

Figure 4.3. Result Set ��, All Facet Conditions õ(��), and Three Alternative Sets of 

Suggested Conditions õ�(��). 
A set of suggested conditions where each condition has low selectivity (Figure 4.3(b)) also 

leads to a high overall expected navigation cost. Such conditions typically have a high overlap and 

do not effectively narrow down the result set and therefore, the user has to execute more REFINE 

actions to narrow down the result set. For example, refining by either ��d� = :
��� or 
��
 =
2005, in Figure 4.3(b), reduces the number of results from the initial six to four, and the resulting 

result set may need to be refined further before reaching the desired result(s). Conditions with low 

selectivity can potentially lead to redundant navigation steps. For example, refining by $	�	� =
ú
 does not narrow down the result but still adds to the navigation cost. 

Based on the above discussion, we observe that the facet conditions selected by the cost 

model as suggested ones should neither have high nor low selectivity. The suggested conditions in 

Figure 4.3(c) are facet conditions with such desired characteristics. The conditions ��d� =
�
�
	�, 
��
 = 2001 and '
�

 = �
��� are moderately selective and thus have minimum 

overlap and do not require a large number of conditions to cover Ef. 

Another factor that increases the navigation cost is the EXPAND action, since the user can 

potentially see a large number of conditions, thereby increasing the navigation cost. The expected 
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cost of EXPAND is multiplied by ∏ (1 � 	ä(1))5∈x
(��) , which is minimized when all the 

conditions in 'G(Ef) have a high ä(1). 
Algorithm:Algorithm:Algorithm:Algorithm:	ApproximateSetCover(B, Ef)	Input:Input:Input:Input:	A	query	B,	a	result	set	Ef		Output:Output:Output:Output:	The	suggested	conditions	'G(Ef) ⊆ '(Ef)	
1 'G(Ef) ← ∅	
2 Ã ← ∅	 //	Ã	are	results	covered	so	far	
3 while	Ã ≠ Ef 	 //	while	not	all	results	covered	
4 	 1 ← �
&%�w5∈x(��)^ä(1) ∙ |Ef∧5\Ã|_	
5 	 'G(Ef) ← 'G(Ef) ∪ �1�	
6 	 Ã ← Ã ∪ Ef∧5	
7 	 B ← B ∧ 1	
8 return	'G(Ef)	

Figure 4.4. ApproximateSetCover Heuristic. 

4.5.3 ApproximateSetCover Heuristic 

Given a result set Ef and its facet conditions '(Ef), the objective is to compute the set of 

suggested conditions 'G(Ef) such that the expected navigation cost, based on our cost model, is 

minimal and the set 'G(Ef) covers Ef, that is, ⋃ Ef∧5 = Ef5∈x
(��) , where each facet condition 1 
covers iEf∧5i results in Ef.This problem closely resembles the well-known NP-hard weighted set 

cover problem – given a set system (ö, $), such that ⋃ "D∈G = ö, and weights ù: $ → ℝ�, find a 

subfamily ℱ ⊆ $ such that ⋃ "D∈ℱ = ö and ∑ ù(")D∈ℱ  is minimal. The approximation algorithm 

for weighted set cover [79] adds at every step the set " that maximizes the number of newly 

covered items divided by the weight ù(").  In order to apply the approximation algorithm for 

weighted set cover to our problem, we need to define the weight function ù:'(Ef) → ℝ�. By 
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observing the cost formula in Equation 4.1, each facet condition in the suggested set 'G(Ef) should 

have a high probability ä(1) of being selected for REFINEment. Otherwise, the probability that the 

user does not select a suggested condition and chooses EXPAND would be high, resulting in a high 

overall cost. To achieve this objective, we set the weight function to be ù: 1 ∈ '(Ef) → 1/ä(1). 
Note that the overlap among conditions and number of elements covered by a selected 

condition do not need to be part of ù, since they are considered directly in the approximation 

algorithm. 

Figure 4.4 presents the ApproximateSetCover heuristic, which is an adaptation of the 

weighted set cover approximation algorithm [79] using the above defined weight function, and has 

a running time of �(|'(Ef)| ∙ |Ef|) and an approximation ratio of �(log(|'(Ef)|)). Note that this 

approximation ratio assumes that the quantity we want to minimize is the sum of the weights 

(1/ä(1)) of the selected conditions. However, the real objective of ApproximateSetCover is to 

minimize the navigation cost, which is much harder to bound, given that ApproximateSetCover 

does not capture all the details of Equation 4.1. Also note that this approximation ratio can be large 

if the number of conditions in '(Ef) is large. However, the number of facet conditions is generally 

small and this algorithm performs reasonably well in practice, as demonstrated by the experiments 

in Section 4.6. 

Example 4.1: Figure 4.3(b) shows the result of the ApproximateSetCover heuristic on the 

result set Ef in Figure 4.3. The algorithm requires two iterations of the while loop (lines 3-7) 

before terminating with the set of suggested conditions in Figure 4.3(b). In the first iteration, the 

algorithm selects ��d� = :
���, since this facet condition covers 4 results and has the maximum 
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value of ä(1) ∙ |Ef∧5| = 3.2 amongst all the conditions in '(Ef) and Ã is empty. In the next 

iteration, two results (	2	&		 ) remain uncovered and are covered by facet condition 
��
 = 2005. 

4.5.4 UniformSuggestions Heuristic 

In this heuristic we follow the cost formula in Equation 4.1 more closely, which leads to a 

more robust heuristic. Computing the optimal suggested conditions involves recursively evaluating 

Equation 4.1 for each combination of facet conditions in '(Ef). This translates to a very large (in 

both height and width) recursion tree. UniformSuggestions replaces this recursion tree with a set of 

very small recursion trees, one for each condition in '(Ef). For that, we evaluate the expected cost 

of each facet condition independently, assuming that all future suggested conditions will have 

identical properties, and then select the facet conditions with minimal expected cost, until all 

results in Ef are covered. 

In particular, the uniform-condition heuristic assumption states that for a given condition 

1 ∈ '(Ef), evaluate the navigation cost using Equation 4.1, while assuming that every other 

condition in '(Ef) has the same characteristics as 1. The characteristics of 1 are (a) its probability 

ä(1), and (b) the ratio 
(1) = |Ef∧5|/|Ef| of the uncovered results that 1 covers. This heuristic 

assumption reduces the search space of suggestions to i'(Ef)i as each condition is now evaluated 

independently. It also allows us to simplify the cost formula in Equation 4.1 as follows. 

If each suggested condition in 'G(Ef) covers a ratio 
 of the results in Ef, we need a total 

of � = 1/
 conditions to cover all the results in Ef. Also, REFINEment by 1 narrows down Ef to 

an estimated |Ef|/� number of results. On the other hand, if the user does not select a suggested 

condition and instead EXPANDs an attribute !7, she views an additional |'(!7)\'G(Ef)| ≈
|'(!7)| facet conditions. Also, in the absence of any prior knowledge about the selectivity of facet 
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conditions in '(!7), we assume that each 1′ ∈ '(!7) narrows down Ef to an estimated iEfi/
|'(!7)|. Thus, we can simplify the recursion in Equation 4.1 as follows: 

1
"	^1, iEfi_ 			= äG�^Ef_ ∙ iEfi + [1�äG�^Ef_`

∙ 		
"##
###
##$ � + � + ^1 � äå(1)_ ∙h%ä@km3(1) ∙ 1
"	 �1, iEfi� �&@

7÷2 +
äå(1) ∙ h äÇ(!7) ∙

çè
é |'(!7)| +

h %ä@km3(1ü) ∙ 1
"	 �1ü, iEfi|'(!7)|�&5'∈x(Ç®) êë
ì

Ç®∈G� ())
)))
))* 										(4.3)	

 

where äå(1) = ^1 � ä(1)_@ 

 

Observe that instead of B, the cost function in Equation 4.3 above uses 1 and iEfi as 

arguments for this heuristic, since a cost is computed for each 1, and only the number of results 

|Ef| is important. The parameter B in the original cost formula (Equation 4.1) captured the query 

progression with REFINE actions, which is not required in this heuristic. In Equation 4.3 above, 

ä@km3(1) is the normalized probability of following one condition of type 1. Since all � suggested 

conditions have the same ä(1), then ä@km3(1) = 1 �⁄ . Therefore the cost component in Equation 

4.3 for navigating all � suggested conditions can be rewritten as: 

hä@km3(1) ∙ 1
"	^1, iEfi �⁄ _ =@
7÷2 1
"	^1, iEfi �⁄ _	
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By a similar argument, and since every facet condition 1′ has the same characteristics as 1 
in Equation 4.3, we can simplify the summation last line of Equation 4.3 as follows, where !5 is 

the attribute of 1: 
h äÇ(!7) ∙ � |'(!7)| +1
"	^1, iEfi �⁄ _�Ç®∈G� = |'(!5)| + 1
"	^1, |Ef|/|'(!5)|_	

Algorithm:Algorithm:Algorithm:Algorithm:	UniformSuggestions(B, Ef)	Input:Input:Input:Input:	A	query	B,	a	result	set	Ef		Output:Output:Output:Output:	'G(Ef) ⊆ '(Ef),	the	suggested	conditions.	
1 Bü ← B;	'G^Ef_ ← ∅; 	
 ← Ef	 //	
:	uncovered	results	
2 äG� ← äG� [Ef , '^Ef_`	3 while	
 ≠ ∅	do	4 					foreach	1 ∈ '(Ef)	5 										� ← |Y| |Y ∩ Efü∧5|⁄ 	6 										äG� ← äG�^Ef_	7 										# ← |
|	8 										compute	1
"	(1, #)	using	Equation	4.4	9 					endFor	10 					Let	1%(�	be	the	suggestion	with	min	�"	'
"	(1, |
|)	11 					'G(Ef) ← 'G(Ef) ∪ 1%(�	12 					B′ ← B ∧ 1%(�	13 					
 ← 
\Efü∧537@	14 					'^Ef_ ← '^Ef_\1%(�	15 endWhile	16 return	'G(Ef)	

Figure 4.5. UniformSuggestions Heuristic 



 

100 

 

Therefore, the cost equation (4.3) can now be rewritten as: 

1
"	^1, iEfi_ =
,-.
-/ iEfi																																																																													, iEfi < �äG�^Ef_ ∙ iEfi + [1 � äG�^Ef_` ∙
0 � + � + ^1 � äå(1)_ ∙ 1
"	^1, iEfi/�_ +äå(1) ∙ [|'(!x)| + 1
"	^1, iEfi/|'(!5)|_`1 		 , iEfi > �

																												(4.4)	

The recursion terminates when the size of the result iEfi drops below a threshold �. Since 

a navigation should be able to narrow down the result to a single tuple, we set � to 1. 

The algorithm, based on the uniform-condition heuristic assumption is presented in Figure 

4.5. The algorithm computes the estimated 1
"	 of each facet condition using the simplified cost 

formula in Equation 4.4 (lines 4-9), and selects the condition with the minimum 1
"	 (1%(�) to be 

added to the set of selected conditions (lines 10-11). Next, we remove from the set Ã of uncovered 

results the results covered by 1%(�. The algorithm terminates when all the results in Ef are 

covered. 

The result of applying the UniformSuggestions heuristic algorithm to the result set Ef in 

Figure 4.3 is shown in Figure 4.3(c). Recall from the discussion in Section 4.5.1 that the cost model 

selects conditions with moderate selectivity and high ä(1). Under our heuristic assumption, a facet 

condition 1 is evaluated under the assumption that all conditions in '(Ef) have the same 

characteristics as 1. Therefore, a condition with moderate selectivity and a high ä(1) has a lower 

cost when evaluated using the simplified cost formula in Equation 4.4 and these are just the 

conditions selected by the algorithm. 
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4.6 Experimental Evaluation 

In this section, we present a thorough evaluation of the algorithms and heuristics described 

in Section 4.5 and show that FACeTOR achieves a significant decrease in navigation cost 

compared to current approaches The experiments are based on a large-scale simulation of user 

navigations presented in Section 4.6.2. The metric used is the average navigation cost as defined by 

the cost formula in Equation 4.1. Section 4.6.3 measures the time requirements of our heuristics 

and shows that they can be used for real-time interaction. 

Table 4.2. FACeTOR Evaluation Query Workload. 

Query #Results # of Facet Conditions Query #Results # of Facet Conditions 

UsedCars Dataset IMDB Dataset 

honda 789 234 baldwin 112 1545 

toyota 1470 366 oscar 189 2141 

dallas 2932 990 love 415 2989 

miami 211 230 American 111 1096 

coupe 599 334 history 272 2716 

sedan 1693 524 white 284 3058 

2000 896 641 black 221 2327 

2004 3711 1124 time 145 907 

black 2391 972 john 2007 391 4545 

gold 709 508 action 2007 272 2601 

4.6.1 Setup 

The primary goal of these experiments is to evaluate the effectiveness of the system in 

decreasing the user navigation cost for a set of query results. To this end, we compare the two 

heuristics presented in Section 4.5 to each other and to the current state of the art algorithm, which 

is the single-facet-based-search [33], henceforth called INDG. All experiments were conducted on 

a Dell Optiplex machine with 3GHz CPU and 3GB of RAM. We use MySQL as our database and 

Java for algorithms. 
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Datasets: We evaluate FACeTOR on two datasets, UsedCars and IMDB. We assume that 

the numeric attributes have been appropriately discretized. The UsedCars database was 

downloaded from Yahoo! Autos site and contains 15,191 car tuples with 41 attributes/facets. From 

the IMDB dataset, we extracted a total of 37,324 movies. For our experiments we only leveraged 

the movie, actors, directors, ratings and genre data. Note that actors, directors and genres are set-

valued attributes, that is, each movie can have multiple actors and/or directors. 

Experimental Methodology: For each dataset, IMDB and UsedCars, we select a number of 

keyword queries (see Table 4.2) whose results from the initial result set E, and a random result 

tuple as the target for navigation for each query. Next, we measure the number of navigation 

actions (REFINE/EXPAND actions, facet conditions displayed and results viewed) incurred before 

reaching the target tuple as the navigation cost for the query. In our system, the target tuple can be 

reached by multiple navigations. For example, tuple 	2 in the result set of Figure 4.3 can be reached 

by REFINEing by any one of the two conditions in Figure 4.3(b). 

Since, the user’s navigation cannot be known in advance, we consider an evaluation 

approach that considers both these navigation paths. To account for uncertainty in user navigation, 
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Figure 4.6. For the UsedCars Dataset: (a) Average Navigation Cost, and (b) Average 

Number of REFINE and EXPAND Actions, and Average Number of Suggested Conditions 

per Navigation Step (numbers on top of the bars), for 3 = �. 
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we use a guided randomized simulation of user navigation. In this simulation, we randomly select 

one of the facet conditions 1 ∈ 'G(Ef) for navigation. The probability that the agent selects a 

condition 1 is proportional to ä(1), the probability that the user would know or likes the facet 

condition 1. The simulation is guided in the sense that it only follows the paths that lead to the 

target result. For example, if the agent encounters the two suggestions in Figure 4.3(b) and the 

target is tuple 	 , the simulation would choose either ��d� = :
��� or EXPAND. The 

probability of choosing EXPAND is ∏ (1 � ä(1))5∈x
(��) , where 'G^Ef_ are the suggested 

conditions. We execute the navigation for each query 1000 times using this simulation technique 

and average the cost over the individual navigations. We also report the average number of times 

each navigation action is executed during the simulation. 

The navigation cost is sensitive to the constant � according to the cost function in Equation 

4.1. Varying these constants changes the set 'G(Ef) for UniformSuggestions, but not for 

ApproximateSetCover, since it does not consider �. Intuitively � denotes the patience of the user 

towards suggestions generated by the system. If the user sees a small number of conditions she 

would have to execute more REFINE actions to reach the result. Thus by setting � to a large value 

the user should typically see more suggestions per REFINE and vice versa. 
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Figure 4.7. Average Overlap per Navigation Step for the UsedCars Dataset, for 3 = �. 
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We experiment with different values of � and observe the effect on the overall navigation 

cost for the UsedCars query workload in Table 4.2. We also compare the number of suggested 

conditions generated (on average) and the number of REFINE actions. We compare our approach 

with the current state of the art INDG algorithm [33]. This algorithm constructs a decision tree that 

partitions the result set Ef by a facet (attribute) at each level. 
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Figure 4.8. Average Navigation Cost for 3 = � and 3 = �� (UsedCars Dataset). 

The aim is to minimize the average depth of the tree in reaching the results. The user is 

presented with all the facet conditions on the attribute that forms the root of the decision tree. Since 

INDG generates suggestions from a single attribute, the simulation for this algorithm differs from 

above as follows: at each step, the agent chooses to EXPAND or REFINE by one of the 

suggestions of an attribute !7 with probability äÇ(!7) and EXPAND action reveals all the facet 

conditions for a different attribute. 

4.6.2 Experiments with Navigation Cost 

The average navigation costs for the INDG, ApproximateSetCover and 

UniformSuggestions algorithms for the UsedCars queries in Table 4.2 are shown in Figure 4.6(a). 

As seen in the graph, by following our approach leads to significant savings in navigating cost. 

Figure 4.6(b) shows some of the individual components of the total cost for Figure 4.6(a), that is, 

the average number of REFINE actions, average number of EXPAND actions. Also shown (top of 
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the bars) are the average numbers of suggestions per navigation step. As expected, the INDG 

algorithm has very few REFINE and EXPAND actions, but reveals a large number of facet 

conditions, resulting in high overall cost. The INDG algorithm ignores the cost of inspecting 

suggested and therefore produces a large number of suggestions at each navigation step. 

The average cost incurred by UniformSuggestions algorithm is less compared to 

ApproximateSetCover. ApproximateSetCover has a higher number of REFINE and EXPAND 

actions as compared to UniformSuggestions, even though the average number of suggestions at 

each navigation step is comparable. In each iteration, the greedy ApproximateSetCover algorithm 

selects a small set of facet conditions with a high value of ä(1) that also cover a large number of 

results. These suggested conditions therefore, have a low selectivity and therefore tend to have a 

high degree of overlap among the suggested conditions, as shown in Figure 4.7, thereby reducing 

the effectiveness of REFINE actions. Thus, the user has to perform many REFINE actions in order 

to reach the target result. Figure 4.8 shows the effect of increasing �, the cost of executing a 

REFINE. As expected, the average overall cost increases. The UniformSuggestions heuristic adapts 

to a changing value of �, whereas the ApproximateSetCover heuristic and INDG do not. Therefore 

the cost of UniformSuggestions increases at a slower rate than the other two algorithms. This is 

primarily because, for a higher	�, UniformSuggestions generates more suggestions per 

REFINE/EXPAND. 

The results of IMDB workload queries in Table 4.2 are shown in Figure 4.9. As in the 

UsedCars workload, the UniformSuggestions heuristic outperforms ApproximateSetCover. Also, 

the observations for the number of EXPAND and REFINE actions and the number of suggested 

conditions generated is also similar to those for the UsedCars dataset. However, the navigation cost 

with the UniformSuggestions algorithm is much lower than ApproximateSetCover. A movie in the 
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IMDB dataset can be classified into a large number of facet conditions. For example, each movie 

can have multiple actors or directors or genres. Therefore executing an EXPAND action reveals a 

very large number of facet conditions (the number on top of bars in Figure 4.9(b)), thereby 

significantly increasing the navigation cost. 
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Figure 4.10. Average Execution Time of UniformSuggestions Heuristic (UsedCars dataset & 3 = �). 
4.6.3 Execution Time Evaluation 

This experiment aims to show that UniformSuggestions is fast enough to be used in real-

time. The average execution time of UniformSuggestions per REFINE action for the queries in 

Table 4.2 (UsedCars dataset) is shown in Figure 4.10. The execution time for this heuristic 

depends primarily on the number of facet conditions in the result set Ef. As the number of facet 

conditions decreases, as is the case towards the end of navigation, the performance of 
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UniformSuggestions improves dramatically. In the interest of space, we omit reporting these 

values, as well as the results for ApproximateSetCover which, given its simplicity, is much faster. 

4.7 User Evaluation 

In this section, we present the results of a large scale user study we conducted to compare 

the user experience with FACeTOR and other state of the art interfaces. We measure the following: 

(a) the actual time it took users to navigate using different interfaces, (b) how realistic is our cost 

model, by studying the relationship of the actual time (actual cost) with the estimated cost and (c) 

the user’s perception of the faceted interfaces through a questionnaire. By comparing the actual 

navigation time to the users’ perception, we study if lower actual time corresponds to more 

intuitive (cognitively easier) interfaces. 

We constructed 8 randomly created result sets of 1000 tuples from the UsedCars dataset 

and for each one we created a task that involves locating a set of target tuples (cars), which satisfy 

a set of attribute/value conditions. For each one of the 8 result sets, we showed the requested 

conditions to the users and asked them to locate the target tuples using three interfaces: (a) 

FACeTOR, (b) Amazon-Style, which suggests at most 5 facet conditions with the highest cardinality 

for each attribute, and (c) One-attribute-at-a-time INDG [33], where an attribute is selected at each 

step and all its conditions are displayed. We deployed our system on Amazon Mechanical Turk 

[24] task and collected a total of 37 responses. 

Actual Time Figure 4.11 shows the actual time as well the average time taken by users to 

navigate each of the eight result sets using the three interfaces. As shown, FACeTOR speeds up the 

navigation by 18% and 37% over Amazon-Style and INDG respectively, even for relatively small 

result sets of 1000 tuples and short navigations consisting of only 4 REFINE actions (Figure 4.12). 
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This is primarily because users spend less time in reading suggested conditions and deciding which 

one to follow next, as evidenced by Figure 4.12. FACeTOR shows 36% fewer suggestions than 

Amazon-style and 57% fewer suggestions than INDG, while it requires the same number of 

REFINE and EXPAND actions (on average) to reach the target tuples. This is an indication of high 

quality suggestions provided by FACeTOR. 
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Figure 4.12. Average number of Suggestions and Actions. 

0

50

100

150

200

250

300

350

0 50 100 150 200

E
st

im
a

te
d

 C
o

st
 (

E
q

u
a

ti
o

n
 1

)

Actual Time (sec)

FACeTOR Amazon-Style INDG  

Figure 4.13. Actual Time vs. Estimated Navigation Cost. 



 

109 

 

17 17

2 1

14

19

2 2

7 8

18

4

0

5

10

15

20

Very Easy Easy Difficult Very 

Difficult

17 17

3
0

10

22

5

0

9
12 11

5

0

5

10

15

20

25

Very Easy Easy Difficult Very 

Difficult

11

24

2
5

25

7
9

11

17

0

5

10

15

20

25

30

Too Few Just Right Too Many

(a) Quality of Suggestions (c) Quantity of Suggestions(b) Difficulty in Selection 

FACeTOR Amazon-Style INDG
 

Figure 4.14. Users Perception (Questionnaire). 

Estimated Cost Figure 4.13 displays the data points of actual time vs. estimated cost, as 

computed by Equation 4.1, for the eight result sets for the three interfaces. Based on these data 

points, Figure 4.13 also shows the trend line between actual time and estimated navigation cost for 

each interface. We observe that the actual time is linearly proportional to the estimated navigation 

cost for all three interfaces, which shows that our cost model is realistic. 

Users Perception The study also included a questionnaire where we elicited the users’ 

opinion on various aspects of the three interfaces, including the ease of use, size and intuitiveness 

of suggested conditions and preferred choice of interface. The results of this survey are shown in 

Figure 4.14. 92% of users said that they thought the suggestions presented by FACeTOR at each 

step made the task of locating the target tuples easier (Figure 4.14(a)), compared to 89% for 

Amazon-style and 40% for INDG. A large majority of users (92%) also said that the suggestions 

provided by FACeTOR had a low “cognitive dissonance” (Figure 4.14(b)) in the sense that it was 

very easy (45%) or easy (46%) to decide which suggestion to follow. The corresponding 

cumulative percentages for Amazon and INDG were 81% and 54% respectively. We also asked the 

users if the number of suggestions provided by the interfaces were adequate (Figure 4.14(c)). A 

significant percentage (30%) said that FACeTOR provided too few suggestions at each navigation 

step, indicating that users prefer more choices even if it means an increase in absolute navigation 

cost – a situation that could easily be remedied by increasing the value of constant �. 



 

110 

 

4.8 Related Work 

Ranking Ranking could be applied in conjunction with a faceted interface. Chaudhuri et 

al. [20] use the unspecified attributes and apply Probabilistic Information Retrieval principles to 

rank the results of a database selection query. Various ranking techniques have also been proposed 

for keyword search on structured databases [13, 80] based on the size and relevance of the results. 

Faceted Search on Structured Data Faceted search is employed by major e-Commerce 

websites (Amazon, eBay) that typically display all the facet conditions applicable to the current set 

of query results. If too many values are available for a facet, then the most popular are displayed, 

and a “more” button reveals the rest. In contrast, our approach displays only a subset of applicable 

facet conditions chosen to minimize the overall navigation cost. English et al. [81] was one of the 

first to introduce faceted search and discusses facets from a user interface perspective. 

Our work is closest to the works of Chakrabarti et al. [23] and Roy et al. [33], which also 

use a navigation cost based approach for faceted navigation. In particular, we adopt ideas from both 

works and addresses their key shortcomings. In both these works, the navigation algorithm selects 

one attribute (or possibly multiple attributes [33]) and displays all the values of these attributes to 

the user. Alternatively, a text box could be displayed [33], but we believe that this is impractical, 

given all known values would have been in the original query. Our approach differs from these 

works, because at each navigation step, we display a mix of facet conditions from several 

attributes, that is, our algorithm operates at the attribute value level and not the attribute level. 

Keyword-Based Faceted Search and Query Refinement: The GrowBag project [43] and 

Sarkas et. al [44] suggest additional search terms based on the co-occurrence patterns of these 

terms in the query result. The GrowBag algorithm [43] computes higher order co-occurrences of 
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terms in the document collection and suggests terms appearing in the neighborhood of each search 

term as refinement suggestions whereas [44] suggests terms that co-occur with search terms and 

narrow down the result-set to interesting subsets using the surprise metric. Our work is also related 

to query refinement systems [82, 83]. [82] recommends new terms for refinement such that the 

recall of the resulting query is maximized, whereas [83] uses relevance judgment feedback on the 

results to refine the query. Our approach also suggests facet conditions to refine the query, but we 

use the navigation cost as metric. Our navigation model is similar to BioNav [25, 27], which uses 

the ontological annotations of PubMed publications to create a navigation tree. A key difference is 

that in BioNav, there is a given concept hierarchy [58], which prunes the search space. In contrast, 

there is not such tree in FACeTOR, which makes the selection of a set of faceted conditions harder. 

OLAP: A faceted interface can be viewed as an OLAP-style cube over the results. Wu et 

al.[84] generate hierarchical partitions over the query results based on a cost model for user 

navigation and display this hierarchy to the users. The interestingness of group-by aggregations is 

used to rank candidate aggregations to display. 

4.9 Summary 

Faceted navigation is employed to reduce the information-overload. The effectiveness of 

these interfaces is limited as they often show too many or irrelevant facet conditions. Our system 

addresses these problems by selectively showing a subset of the available facet conditions that are 

selected based on an intuitive cost-based navigation model that attempts to minimize the navigation 

cost by hiding uninteresting or ineffective conditions. We provide feasible solutions for this 

problem and demonstrate their effectiveness by a thorough experimental evaluation and a user 

study. 
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Chapter 5 

Comprehension-Based Result Snippets 

5.1 Introduction 

A large number of databases are heterogeneous in nature. Examples of such databases 

include product catalogs (Amazon, eBay etc.) and medical data (Stanford diabetes study, patient 

records, Human Genome project), among many others. Such heterogeneous data is characterized 

by a high structural variance amongst the objects in the database, where objects have different and 

usually overlapping sets of attributes. As an example, consider the Amazon product catalog which 

consists of objects of different types including Laptop, Desktop and Camera etc. 

Each object type is associated with different and possibly overlapping schemas. For 

instance, Laptop has attributes Price, Display Size, Fingerprint Reader etc., whereas Camera has 

attributes such as Price, Shutter Speed, Zoom etc. As another example, a patient record stores 

various types of data, e.g., a diabetic patient’s record includes Blood Pressure, Blood Sugar level 

and Insulin Dosage, whereas a patient’s record with Osteoporosis includes Bone Density, Calcium 

Level, etc. 

Keyword search is the dominant query interface in most such systems. Hence, naturally the 

query answer typically consists of a list of heterogeneous objects, due to the ambiguous nature of 

keyword queries. Query interfaces use a variety of methods to help users find the results that they 
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are most interested in, like ranking[15, 16, 41] , categorization (facets) [23, 27, 28], and result 

snippets. 

A snippet is a summary of the information contained in a result and its purpose is to help 

the user make a decision about the relevance of the given result. As an example, consider snippets 

for the results of the query ‘acer laptop 3gb’ on an e-commerce Web site, as shown in Figure 5.1. 

Amazon.com, as most other similar systems, uses a fixed hardcoded snippet schema for each type 

of object, as in Figure 5.1(b). In particular, Amazon.com always displays attributes Brand, Model, 

Display, Model Name and Color for Laptop results (only Brand and Display are in our result-set). 

This is clearly suboptimal, since such snippets do not always allow differentiating among the 

displayed results ([21] makes this point for XML results). For example, the snippets of two Laptop 

results (#1 and #3) in Figure 5.1(b) show the same attributes and values.  Instead, it is beneficial to 

include a discriminating attribute for Acer laptops (e.g. Cover Material) in the snippet, which may 

not be important for other results in the query. Further, this fixed-schema approach is inefficient for 

diverse result-sets [22, 85, 86]  in which the results have few attributes in common. 

The only work we are aware of on snippets construction for structured data, studies 

snippets of XML results, has focused on the informativeness of the snippets, which describes how 

useful the information on the snippets is to help user select a result, e.g., how representative or 

distinguishable the snippets are [21, 22]. For instance, if many results have Display Size=11.3’’, 

this information should be displayed on the snippets. Figure 5.1(c) shows a list of snippets 

generated with informativeness in mind. Comparing Figures 5.1(b) and 5.1(c), we observe that the 

snippets in Figure 5.1(b) appear to have a somewhat uniform schema (at least for items of the same 

type), while the ones in Figure 5.1(c) look very jagged and disorganized. The tradeoff is that the 

more uniform snippets are easier to read, while the disorganized ones may offer more useful 
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information about the returned results. The goal of snippets is to minimize the user effort (time) in 

finding the results of interest. Hence, we argue that the user time spent reading the snippets is 

important as is the information on the snippets. Figure 5.1(d) shows an example of a snippet that is 

both highly informative (contains a number of attributes) and is easy to comprehend since the 

attributes in snippets of results are aligned and are therefore easy to read. 

ID Type Brand Memory Capacity Processor Display Cover Material Price

1 Laptop Acer 4Gb Intel i5 13.3” Aluminum $1299

2 Tablet Acer 16Gb Nvidea Ion 7” Gorilla Glass $380

3 Laptop Acer 3Gb Intel i5 13.3” Carbon Fiber $1250

4 HDD Seagate 500Gb Plastic $200

5 Memory Kingston 2Gb $100

6 Memory Corsair 4Gb $150

1 Brand: Acer Display:13.3”

2 Brand: Acer Capacity: 16Gb Display: 7”

3 Brand: Acer Display:13.3”

4 Brand: Seagate Capacity: 500Gb

5 Brand: Kingston

6 Brand: Corsair

1 Memory:4Gb Processor: Intel i5 Price: $1299

2 Capacity:16Gb Display: 7” Cover: Gorilla Glass

3 Brand: Acer Processor: Intel i5 Display: 13.3”

4 Capacity: 500Gb Cover: Plastic Price: $200

5 Brand: Kingston Memory: 2Gb Price: $100

6 Brand: Corsair Memory: 4Gb Price: $150

1 Cover: Aluminum Memory:4Gb Processor: Intel i5

2 Brand: Acer Display: 7” Processor: Nvidea Ion

3 Cover: Carbon Fiber Display: 13.3”

4 Brand: Seagate Capacity: 500Gb Price: $200

5 Brand: Kingston Memory:2Gb Price: $100

6 Brand: Corsair Memory:4Gb Price: $150

(a) Result-set of query ‘acer laptop 3gb’

(b) Fix Schema Snippet, with high information loss (c) A very informative, but hard to read snippet

(d) An informative and easily comprehensible snippet

Figure 5.1. A heterogeneous result-set for query ‘acer laptop 3gb’ and three snippets with 

different characteristics. 

No work has studied the comprehension cost of structured snippets, which is the user effort 

required to read and digest the information displayed by the snippets. We argue that the 

comprehension cost should be taken into consideration during the snippets generation process.  In 

this chapter, we propose a methodology to construct snippets that simultaneously minimize the 

comprehension effort and information loss (i.e. maximize informativeness). Our work achieves this 

goal as follows: 
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First, we propose the first model for the user comprehension cost of reading structured 

snippets. We perform user surveys that confirm our intuition that by indenting the snippet attributes 

in a way that common attributes have the same position across the snippets we dramatically reduce 

the user comprehension cost. In particular, we show the surprising result that the comprehension 

cost for an attribute does not depend on the number of snippets that contain it, but only on the 

number of different positions where it appears in the snippets.  

Next, we define a quantitative model for the information content (termed informativeness) 

of snippets with respect to the complete results. We leverage previous work on snippet 

informativeness and adapt it to structured objects.  

We analyze the problem of constructing optimal snippets, i.e., minimizing both the 

comprehension cost and the information loss, for a list of results and show that this problem is NP-

hard. We present efficient algorithms for snippet construction and evaluate their performance and 

efficiency. 

5.2 Framework and Definitions 

Definition 5.1 (Database): The database is a single relation �	with % attributes ! =
�!2, … , !3�. Each attribute !7 has an associated active domain !�
%(!7) of un-interpreted 

constants, which includes the null value. The database �	is sparse and heterogeneous, i.e. tuples 


 ∈ � have values for different subsets of !, and have the 4 value for the rest of the attributes. We 

use !m ⊆ !	(typically |!m| ≪ |!|) to denote the set of attributes of a tuple 
	. 
Definition 5.2 (Result-set): A user exploring � typically submits a query and the system 

returns a ranked result-set E = �
2, … , 
@� ⊆ � of objects
 
(we use the terms object, tuple and result 

interchangeably depending on the context).  
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Example 5.1: Figure 5.1(a) shows a subset of the results of query ‘acer laptop 3gb’ on 

Amazon.com. Only seven (we do not count Type as an attribute) of nearly hundred attributes are 

shown. The query returns not only Laptops (indicated by the Type attribute), but also results of type 

Memory, Tablets and Hard Disk Drives. The schema of each object depends on its type and can 

have common attributes with other types (e.g. Price), but also different attributes (e.g. Laptops and 

Tablets have a value for attributes Display and CPU, whereas Memory does not).  

A snippet with many attributes can be difficult to present and can overwhelm the user with 

details. Therefore we typically require that the size of each snippet be bounded to d attributes. (The 

snippets in Figures 5.1(b-d) have size d � 3). Note that the size of a snippet could also be defined 

in other ways like the number of characters. However, we have found that the number of attributes 

offers a reasonable bound that also allows a structurally uniform presentation (e.g., in tabular 

form). 

Definition 5.3 (Result Snippet): A snippet "(
) for a result 
 is a k-tuple 

< !2 = �2, … , !� = �� >, where !7 ∈ !m is an attribute of 
 or is empty, and �74�
%(!7)  is a 

value. To simplify the presentation, we often denote "(
) as < !2, … , !� > and use |"(
)| to 

denote the number of attributes in "(
). E.g., the first snippet r in Figure 5.1(b) is <Brand, null, 

Display>, and |s(r)|=2. 

Definition 5.4 (Result-set Snippet): A result-set snippet $(E, d) of a result-set E =
�
2, … , 
@� is $(E, d) = �"(
2),… , "(
@)� where "(
7)	is the snippet of result 
7, and |"(
7)| � d.  

Figures 5.1(b-d) show example result-set snippets of the result-set in Figure 5.1(a). It is 

possible that results of same type have different attributes in their snippets, e.g. the first and the 

third Laptop snippets in Figure 5.1(c). To construct $(E, d), a subset !D ⊆ !m of size at-most d	has 
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to be selected for each result 
, and the attributes in !D have to be ordered as a d-tuple. The order 

(position) of the attributes is important factor for the comprehension cost, as we explain in Section 

5.3. 

Result-set Snippet Construction Problem: Before formally defining the problem, we 

must define what a good result-set snippet is. Let function ℱ($, E, d), which will be defined below, 

be the goodness of $(E, d), given E and d. By goodness, we mean that $(E, d) simultaneously 

minimizes the comprehension cost and maximizes the informativeness.  

Given a result-set E and snippet size bound d, construct a result-set snippet $(E, d) such 

that: 

$(E, d) = �
&%�wG'(�,�)^ℱ($ü(E, d), E, d)_																																																				(5.1) 
To capture the comprehension effort, we introduce the following function predicate: 

'
%�
�ℎ($, E, d) that quantifies the user effort in reading and understanding the result-set snippet 

$(E, d). Analogously, V�q

%($, E, d) captures the informativeness of the result-set snippet.  

The goodness of a result-set snippet decreases with increasing comprehension effort, i.e.  

ℱ($, E, d) 	∝ 1 '
%�
�ℎ($, E, d)⁄  

and increases with the informativeness, i.e. 

ℱ($, E, d) 	∝ V�q

%($, E, d) 
To combine the two competing factors, we formulate the snippet construction problem as a 

bi-criteria optimization problem and introduce a trade-off parameter 7 ∈ [0,1]. The range (and 

units) of '
%�
�ℎ is different from that of V�q

%. Therefore, to avoid having the goodness be 
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dominated by a single factor, we choose to define the optimization function as a product, instead of 

the more common linear combination, as follows:  

ℱ(E, $, d) = V�q

%($, E, d)8'
%�
�ℎ($, E, d)2¬8 																																																																								(5.2) 
Intuitively, smaller values of λ lead to result-set snippets with smaller comprehension cost, 

which translates to fewer unique attributes and stricter alignment of same attributes (Section 5.3), 

whereas a large value of λ favors more informative snippets. 

5.3 Comprehension Model 

In this section we model how users read snippets and present a comprehension cost model. 

We start by describing the process by which a user reads and understands a list of results and 

identify the factors that affect comprehension. Next, we describe the details of a user study 

specifically designed to study the effect of the aforementioned factors on comprehension effort. 

Finally, we present the results of this study and use it to formulate a comprehension model that 

quantifies this effort. 

5.3.1 Comprehension Model and Factors 

Users can read tables horizontally −one snippet at a time− or vertically –one column at a 

time. When users view a result-set snippet, they generally look for attributes of interest and for 

each such attribute scan all snippets to see its value in other results, in order to get a picture of the 

result-set. E.g., in Figure 5.1(d), the user may scan the result-set snippet and get interested in 

attribute Memory, and then scan vertically to examine the value of Memory in other snippets. Then, 

the user may pick Brand and repeat the process. Eventually, the user will have comprehended the 

result-set snippet, that is, examine all attributes of interest to her, in order to make a decision (e.g. 
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select a result or refine the query). The comprehension cost '
%�
�ℎ($, E, d) is the total user cost 

during this process. 

A key assumption is that the effort required to locate the attributes of interest and their 

values, depends on how they are arranged in the result-set snippet. More specifically, we 

hypothesize that if all the snippets have the same schema (as in Figure 5.1(b)), then the user first 

determines the position of a given attribute that she is interested in and then reads its values for all 

snippets. The associated comprehension cost then mainly consists of the cost to locate the attribute 

position, since reading (comparing) a list of aligned values entails an almost fixed effort, as we 

show below. However, fixing the schema is not possible for heterogeneous result-sets when 

informativeness (e.g., diversity) must be taken into consideration. This leads to increased user 

effort and thereby increased comprehension cost.  

Another factor that possibly affects comprehension is the number of times an 

attribute	("��	!7)	 appears in the snippets. For example, if an attribute appears multiple times in the 

snippets, then the user would have to locate each instance of the attribute to satisfy her information 

need, thereby increasing the comprehension effort. For example, if the user is interested in the 

Brand attribute in Figure 5.1(c), then she would have to locate its three occurrences. Based on the 

above discussion, we identify two factors that may play a role in the comprehension effort: 

• ��11#
(!7) : number of times an attribute appears in the result-set snippet, e.g., 3 for 

Memory in Figure 5.1(c).   

• �ä
"(!7) : number of unique positions of an attribute in the result-set snippet, e.g., 2 (first 

and second) for Memory in Figure 5.1(c).   
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Hence, the comprehension cost for an attribute !7 in the result-set snippet $(E, d)	is a 

function: 

'
%�
�ℎ($, E, d, !7) = q^�ä
"(!7), ��11#
(!7)_																																									(5.3)	
Note that we overload '
%�
�ℎ(. ) from Section 5.2.  

Given the above discussion on vertical scanning of the snippets, the overall comprehension 

cost for $(E, d) is approximated by the sum of the costs of its attributes, that is: 

'
%�
�ℎ($, E, d) = h '
%�
�ℎ($, E, d, !7)																																	(5.4)	k55�mDÅ@(G,Ç®)
	

where 
11#
"V�($, !7) returns true is attribute !7 is in at least one of the snippets in $(E, d).  
Equation 5.4 shows that only two factors affect the comprehension cost. Although this is 

supported by our user surveys below, we acknowledge that there can be several other factors that 

affect comprehension cost such as comprehension difficulty of attribute names and values. For 

example, understanding a Legal Disclaimer attribute of results requires more effort than 

understanding the Color attribute. Yet another factor could be the format in which attributes are 

displayed – e.g. highlighting attributes. However, such factors cannot be quantitatively modeled in 

any straightforward way, e.g. comprehension difficulty is data-dependent, and highlighting 

depends on the presentation design. We leave the study of such additional factors as future work. 

What is left is to study the properties of function q(. ) in Equation 5.3. As mentioned 

above, comprehension of snippets is a complex activity involving a number of factors such as 

locating, reading and understanding the data present in the snippets. The effort or cost of these 

actions is subjective and is difficult to measure. Instead, we propose to measure the overall effort 

by measuring the time taken by a user to complete a comprehension task. Next, we describe the 
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user experiment we conducted to measure the effort in comprehending an attribute !7, namely,  

[q^�ä
"(!7), ��11#
(!7)_` in a result-set snippet. 

Table 5.1. Combinations of �:����(��)	;<=	�í��(��). Each cell is a task. 

��11#
(!7) 1 4 8 12 15 �ä
"(!7) 1 1 1 1 1 	�ä
"(!7)  2 2 2 2 �ä
"(!7)  4 4 4 4 

 

5.3.2 User Study Setup 

To determine the effect of the parameters of our comprehension model, namely number of 

positions �ä
"(!7) and its occurrences ��11#
(!7) in snippet $(E, d), and the relationship 

between them, it is necessary to determine the time it takes for users to comprehend the given 

attribute for different configurations of these parameters. More concretely, for a snippet size d and 

a result-set size of �	(> d), an attribute can be present in snippets of all or some (between 1 and �) 

of the � results and can be placed in any number of positions between 1 and d. Measuring the time 

taken by users to comprehend the attribute in these multiple configurations gives the estimated 

relative effort.  

For this study, we manually constructed snippets for results of queries on a popular e-

commerce website. The snippets were constructed for first 15 results of each query and the snippet 

size d was fixed to k=6. An attribute that appears in 5 or fewer snippets can appear in at-most as 

many positions, whereas an attribute that appears in 6 or more (up to 15) result snippets can appear 

in between one and 6 positions, giving a total of 75 ^∑ (7÷[2,>] + 10 × 6_  possible configurations 

of an attribute in a result-set snippet. Instead of checking for all 75 configurations, we test on a 

subset consisting of 16 configurations, as shown in Table 5.1. 
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In particular, we chose five different values for the number of occurrences ��11#
(!7) of 

attribute	!7, and for each value, we consider a number of positions �ä
"(!7) of !7 according to 

Table 5.1. For example, for Table 5.1 entry (��11#
, �ä
") = (8,2) corresponds to a snippet in 

which a particular attribute (e.g. Price) appears in 8 results and in 2 (vertically aligned) positions. 

The user is asked a single question about a particular attribute in the result set. These questions are 

designed to gauge the overall comprehension of the attribute. A sample question for the task of 

query ‘acer laptop 3gb’ (Figure 5.1), might be ‘Which product has the maximum Price?’ For each 

task, we measure the time taken to answer the question correctly, which estimates the value of 

q(. ). 

Figure 5.2.  Comprehension Cost User Study Results. 
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5.3.3 User Study Results 

We deployed the user study on Amazon Mechanical Turk [24]. Figure 5.2 shows the 

response times of users to answer the question for different configurations of attribute arrangement 

(except �ä
" = ��11#
 = 1, which cannot be easily compared). This experiment was repeated to 

test for repeatability and the results shown in Figure 5.2. The first row of Figure 5.2 shows the plot 

of response times for differing number of occurrences of an attribute, while keeping the number of 

attribute positions in snippets (�ä
"), fixed. Here, we observe that for a given number of positions, 

the mean response time does not vary significantly based on the number of occurrences (��11#
).  
For example, Figure 5.2(a) shows that when the number of positions of an attribute is fixed 

to 1 (second line, in Table 5.1), the mean response times for 4, 8, 12 and 15 occurrences of the 

attribute were 27, 29, 27 and 24 seconds, respectively, indicating that the response times, and 

therefore effort, does not depend much on the number of occurrences of the attribute. This 

observation is supported by Figures 5.2(a-d) and also by statistical hypothesis tests for equivalence, 

the two one-sided testing (TOST) procedure, developed by Schuirmann et al.[87].  

Intuitively, the reason is that once the user located the position, it is fast to make a vertical 

scan to check the values of this attribute in the other snippets.  Of course, the above observation 

assumes that the number of snippets is reasonably small (15 in our experiment), which is the case 

in practice, given that the result-set snippet must fit in the screen. On the other-hand, as shown in 

Figures 5.2(e-h), the number of positions of an attribute does affect navigation cost. This is 

because, the user has to expend more effort in navigating the result and check for each position of 

the snippet and look for a particular attribute. In particular, we see that the user time increases 

linearly with the number of positions. We summarize our finding as follows. For a result-set 

snippet:   
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Observation 1: The comprehension cost does not depend on the number of occurrences of 

an attribute. 

Observation 2: The comprehension cost increases linearly with the number of different 

positions of the attribute. 

Therefore, the per-attribute cost function q(. )	can now be expressed as follows  

q^�ä
"(!7)_ = � ∙ �ä
"(!7) + �																																																																									(5.5)			
To compute � and � we fit the response time against the number of positions into a linear 

function and obtained the following function, where the unit is seconds.   

q^�ä
"(!7)_ = 5.17 ∙ �ä
"(!7) + 22																																																														(5.6)	
We also experimented with higher order functions, but observed that they did not fit well 

with the data, which confirms our initial linearity observation. Note that the particular values for � 

and � depend on the nature of the result-set snippet, and particularly on factors like the number of 

snippets (15 in our experiment) and the comprehension difficulty of the attributes and values (see 

discussion in Section 5.3.1). 

5.4 Informativeness 

In this section we present a set of factors that make a result-set snippet informative. In the 

example of Figure 5.1, it is useful to show the Price attribute since a user at an e-commerce 

website is typically very interested in the price of the product. The importance of an attribute in a 

result-set is subjective and depends on factors such as user preferences, global (result-set-

independent) attribute importance or the distribution of attribute values in the result-set. 

Furthermore, informativeness could be defined at the attribute value level, instead of the attribute 
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level. This is particularly desirable when different values have different importance for the user. 

For example, $��1(��	�qq�
 = 	
#� is more important than $��1(��	�qq�
 = q��"� since it is 

advantageous to display a special offer to the user, if it is available for the given product.  

There is no previous work defining the informativeness (or usefulness) of tabular snippets. 

For that, we borrow ideas from works on faceted navigation [28, 33], results diversity[85, 86, 88, 

89], text snippets[90, 91] and XML snippets [21, 92]. These works define desirable principles for 

useful attributes or snippets, but do not provide a quantitative measure to compare the usefulness of 

two snippets. Note that this section should not be viewed as a key contribution of our work, but is 

included for completeness. We introduce the function V(. ) → ℝ�	 to quantify the informativeness, 

and specifically two variants:  

• V(!7, E)     :  Informativeness of attribute !7 in result-set E  

• V(!7, E, F) :  Informativeness of value F of !7 in E.  

Without loss of generality, we assume that V(. ) assigns higher values to more informative 

attributes, i.e., if V(!7 , E) > 	V^!Z, E_, then it is preferable to include !7 	in the result-set snippet 

instead of !Z.Some of the attribute usefulness factors that have been proposed in previous work are: 

• Distinguishability: snippets should show the differences between results [22, 33, 93]. 

• Diversity: showing a variety of attributes gives to the user a broader view of the results [85, 

88, 94, 95].  

• Importance: show attributes that are more important in the result-set than in the whole 

database [21, 22, 96]. 
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Next we present concrete ways to quantify V(!7 , E) and V(!7 , E, F), which use some of the 

proposed factors, and we use in our experiments. We define V(!7 , E) to be equal to inverse of the 

indistinguishability (INDG) [33] of the values of !7 in R: 

V(!7 , E) = ú(!7, E)(ú(!7, E) � 1)2 � Vú��(!7, E)																																								(5.7) 
where  ú(!7 , E) is the number of occurrences of attribute !7 in E and Vú��(!7 , E) is the 

indistinguisability score defined as 

Vú��(!7 , E) = 	 h |�(�, E)|(|�(�, E)| � 1)2l∈ÇAk3(Ç®,�) 																																									 
where, !�
%(!7, E)is the active domain of !7 in the resultset E, which also includes the 

null value, and  |�(�, E)| is the number of times a value � ∈ !�
%(!7, E) appears in E. 

Alternatively, we could use the entropy of these values or a user-specified global importance of the 

attributes (e.g., Price is more important than Processor).  For example, in Figure 5.1(a), 

I(Brand,R)=12, I(Capacity,R)=2 (due to the 3 null values). Next, we define the total 

informativeness of result-set snippet $(E, d) as the sum of the informativeness of its attributes: 

V�q

%($, E) = h V(!7, E)																																																										(5.8)Ç®∈G
	

The above formula assumes that the scores of attributes are independent of each other, 

which is a reasonable simplifying assumption, but clearly not true for all informative definitions. A 

number of value-specific informativeness functions (V(!7, E, F)) can be defined, such as in[21]. 

The choice of such function is orthogonal to our problem, and for the rest of the chapter we focus 

only on attribute specific informativeness. The algorithm discussed in Section 5.6 can be adapted 

for value-specific informativeness functions.  
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5.5 Complexity Results 

In this section we study the complexity of the Snippet Construction Problem. We consider 

a simplified version of the Snippet Construction Problem, termed Fixed Snippet Construction 

(FSC), where the comprehension cost is the number of attribute positions. The key simplification in 

FSC is that it does not try to maximize informativeness. By showing that FSC is NP-hard, we also 

show that Snippet Construction Problem is NP-hard. 

FSC Problem: Given a result-set E, construct a result-set snippet $(E) (FSC has no 

snippet size constraint k), such that the comprehension cost is up to � and each snippet in $(E) is 

non-empty.  The comprehension cost for an attribute is the number of positions it appears in, and 

the comprehension cost of $(E) is the sum over all attributes in $(E). The informativeness is 

constant. 

ö = 	 �2, ��, � , �2, �>	 �2 = �2, ��, � �� = ��, � , �2� = � , �2, �>�2 = �2, � 	�> = �2, ��	!2 !� ! !2 !>
2 × × ×
� × × ×
 × × × ×
2 × ×
> ×
 

Figure 5.3. Reduction of Set Cover to the Fixed Snippet Construction (FSC) Problem. 

Theorem 5.1: FSC is NP-Complete.  

Proof: The problem is obviously in NP. Given a result-set snippet $(E), it is easy to verify 

that S(R) has comprehension cost �. To prove that the problem is NP-Complete, we reduce the Set 

Cover Problem (SCP) to FSC. 
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SCP: Given a set of elements ö = (�2, … , �@) and a set of subsets � = ��2, … , �3�		of ö 
find a subset �ü ⊆ � of size at most ³, such that ⋃ �7 = ö´®∈´ü . 

Given an arbitrary instance (ö, �) of SCP, we construct an instance of FSC as follows. For 

each � ∈ ö, create a result 
l. For each �7 ∈ �, create an attribute !7, and add this attribute to all 

results 
l whose corresponding element � is in �7. Figure 5.3 shows this reduction. Recall that 

results are heterogeneous, that is, they have different attributes. Finally, we map Z=L.  We now 

show that this mapping is indeed a reduction. A solution $(E) to FSC is mapped to a solution �ü to 

SCP by including to �ü the subsets that correspond to the attributes in $(E). Note that when we add 

an attribute !7	to $(E), we simply add it to the snippets of all results that contain !7 since it does 

not increase the comprehension cost and there is no limit k on the size of a snippet. A solution to 

FSC is a solution to SCP because every result is non-empty, which means that every element in the 

universe in SCP is selected at least once. The comprehension cost of $(E), which is the number of 

attributes in $(E), is |�ü|. Similarly, we can show the other direction of the solutions mapping. 

5.6 Snippet Construction Algorithm 

Challenges: Due to the intractability result of Theorem 5.1, in this section we propose 

efficient approximate algorithms for the Snippet Construction problem. Intuitively, there are two 

sources of intractability regarding the comprehension cost:  

• how to select which attributes to display in each snippet of the result-set snippet, and  

• how to arrange them, i.e., assign positions.  

To minimize the comprehension cost, we want to select common attributes across the 

snippets and assign them the same position, as in Figure 5.1(d). However, we must also consider 
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informativeness, which further complicates computation. Note that the informativeness 

contribution of an attribute or value in the result-set snippet S does not depend on the other 

attributes or values in S, according to the formulas presented in Section 5.4, which is clearly not 

true for the comprehension cost. Hence, the latter is the main complexity source that our algorithms 

must tackle. 

Algorithm Overview: To create an efficient approximate algorithm, we carefully relax 

both intractability sources listed above. The result-set snippet construction algorithm, presented in 

Figure 5.4, iteratively constructs a result-set snippet $(E, d) by greedily evaluating and adding one 

attribute at a time. The selected attribute is placed in the minimum number of positions possible in 

the partially constructed result-set snippet. We can view the result-set snippet as an initially empty 

� × d matrix. At each iteration, we select an attribute !7 and add it to the row of each result r that 

contains !7, i.e.,  !7 ⊆ !m. We continue until either the matrix is full or adding an attribute 

decreases the goodness of the result-set snippet, as computed by Equation 5.2. The algorithm works 

by maintaining a �

� of candidate attributes that can be added to the snippet $(E, d) along with 

auxiliary information about which results and the number of positions the attribute can be placed in 

the snippet matrix and a heuristic goodness score based on number of positions an attribute can 

occupy in $(E, d). The attributes in the �

� are processed in the decreasing order of score and the 

remaining entries in the pool are updated to reflect this addition. 

Algorithm Details: As a first step, the algorithm initializes a �

� of candidates (line 2). 

Each attribute !7 in the result-set E is represented in the pool by an entry �7 of the form �7: <!7 , ��11#
, �ä
", "1

� > which includes the number of times (��11#
) and the number of 

positions (�ä
") the attribute will appear in the final result-set snippet $. The entry also stores the 

"1

� as defined by Equation 5.2, which is computed by assuming that the snippet consists solely 
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of the given attribute placed in the given number of positions	(�ä
"). Of course, the algorithm also 

has knowledge of which results in R contain which attributes.   

The �

� is implemented as a priority queue arranged by decreasing "1

�. The �

� is 

initialized (lines15-20) with entries for all attributes in E in their most optimal arrangement, i.e., 

assuming that all values of an attribute are added to the snippet in perfect alignment (�ä
" = 1). 
Next, in lines 3-14 the snippet is built iteratively by processing attributes in decreasing order of 

"1

�.  At each step, the attribute with the maximum score is chosen (line 7) and added (line 13) to 

the result-set snippet with the configuration (places and positions) dictated by the entry.  

Given that an attribute is added independently of others, it is possible that the entry being 

processed cannot be added to the snippet in the configuration dictated by the entry – in �ä
" 
positions occupying ��11#
 in the snippets. This situation arises when potential spots are filled up 

by other attributes in previous iterations. 

For instance, attribute A5 may be part of the 2
nd

 and 4
th
 result of the result-set, but the 

result-set snippet matrix does not have any position (column) for which both the cell of the 2
nd

 and 

4
th
 rows are free. This situation is handled in lines 5-6, where this incompatibility is checked and 

the �

� is recomputed (lines 21-26) by adjusting the positions and places the remaining attributes 

can occupy, given the snippet $(E, d) computed this far. 
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Algorithm:Algorithm:Algorithm:Algorithm:	SnippetConstructionAlgorithm		
Input:Input:Input:Input:	Result-set	E,	snippet	size	bound	d	and			trade-off	parameter	7.		
Output:Output:Output:Output:	Snippet	$(E, d)	of	E	with	size	bound	d	
1. �
�F$1

�	 = 	0, (�q

% = 0, 1
%�'
"	 = 0		2. �

� < !7 , ��11#
, �ä
", "1

� >	←	initPool()		3. whilewhilewhilewhile	(�

�. "(�� > 0	���	$	("	�
		q#��)		4. 						� ← �

�. ���d��w()		5. 						ifififif	((�1
%��	(���(�, $))		6. 										recomputePool();	7. 													� ← �

�. 
�%
F���w();	
8. 												�
�F$1

� ← 	 7@¸km3@5k3�xkD�µA@	9. 												(�q

% ← (�q

% + V�q

%(�. ��11#
)	10. 1
%�'
"	 ← 1
%�'
"	 + '
%�
�ℎ(�. �ä
")	
11. 						ifififif	[�
�F$1

� < 7@¸km3@5k3�xkD�µA@`	12. 											stopstopstopstop	and	returnreturnreturnreturn	$.			13. ���(�, $)	//	add	�. ��11#
	instances	of	�. !7	to	$	at	�. �ä
"	positions							14. endendendend	whilewhilewhilewhile				15. returnreturnreturnreturn	$.					Procedure:Procedure:Procedure:Procedure:	initPool	Input:	Input:	Input:	Input:	Result-set	E	and	trade-off	parameter	7.				Output:	Output:	Output:	Output:	The	�

�	of	candidate	attributes	to	add	to	snippets	16. foreachforeachforeachforeach	!7 ∈ �		
(�#	�"(E)		17. 						��11#
 ← �#%E�"#�	"(!7 , E)	18. 						� =	< !7, ��11#
, 1, Å@¸km3(Ç®)@xk3�m«¦(Ç®)µA@ >	19. 						�

�. ���(�)	20. endfor			endfor			endfor			endfor							
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Procedure:Procedure:Procedure:Procedure:	recomputePool	
Input:	Input:	Input:	Input:	A	�

�	of	candidates,	the	partial	result-set	snippet	$.					
Output:	Output:	Output:	Output:	The	�

�	of	candidate	attributes	to	add	to	snippets	
21. foreachforeachforeachforeach	� ∈ 	�

�		22. 												if	if	if	if	^(�1
%��	(���(�)_					23. 																																												while	while	while	while	^(�1
%��	(���(�)_	24. 																																																												AlternatelAlternatelAlternatelAlternatelyyyy				�. �ä
"	++	or		�. ��11#
--		25. 															� =	< !7, ��11#
, �ä
", Å@¸km3(Ç)@xk3�m«¦(Ç)µA@ >	26. endforendforendforendfor				

Figure 5.4. Snippet Construction Algorithm. 

The algorithm also maintains the global informativeness and comprehension cost of the 

partially constructed result-set snippet $	. It is possible that adding an attribute would decrease the 

overall goodness of a snippet. For example, if the attribute being added has a very low 

informativeness and it is being added to a many different positions, then the overall 

informativeness of the snippet can potentially decrease. To avoid this, the algorithm checks (lines 

11 & 12) to see if adding the attribute would decrease the overall score. If the global score 

decreases, not only is the attribute not added, but the computation stops since any attribute that is 

added in future would not increase the score. 

The adjustment (line 23) works by increasing the number of positions (�. �ä
") or 

decreasing number of results that it can placed in (�. ��11#
). For example, in the case of A5 

above, the algorithm might decide to place A5 in the snippet of only one of the result (2
nd

 or 4
th
), 

depending on availability or it might choose to place them in two different positions (columns).The 
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algorithm prioritizes informativeness over comprehension cost, therefore attempts to place the 

attribute in multiple positions (by increasing �ä
") before decreasing informativeness. The score 

of the attribute is recomputed (line 25) which might result in a change of position in the score 

ordered �

�. 
To check if a given configuration (entry) of an attribute is compatible, the 

(�1
%��	(���(�, $) method (not shown in Figure 5.4) scans the positions (columns) of the 

partially constructed snippet	^$(E, d)_ in the decreasing order of number of cells available for 

coverage of the attribute in results. For example, if an attribute A6 appears in 10 of (say) 15 results 

(i. e. �B. ��11#
 = 10), and the configuration dictates that the attribute should be placed in 2 

positions (�B. �ä
" = 2), then the (�1
%��	(���(�B, $) method looks for two positions (columns) 

with empty cells that would cover 10 occurrences by scanning positions (columns) in the snippet 

matrix in decreasing order of number of empty cells. The rationale for doing so is to fit the given 

attribute in the minimum number of possible positions. 

Complexity: Let	úl be the number of attributes in E. The worst case complexity of the 

SnippetsConstructionAlgorithm is �(dúl�) since the algorithm (lines 3-14) considers a �

� of úl 

attributes to be placed in d positions, giving a complexity of dúl. Furthermore, in each iteration 

the �

� can be recomputed, to give the overall (worst-case) running time. However, this worst-

case running time is misleading the pool is rarely recomputed. We further employ efficient bit-

vector manipulation to check for incompatibility making the cost of  (�1
%��	(��� negligible. 
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Table 5.2 Snippet Construction Evaluation Queries 

 Query # Categories # Attributes 

Q1 toshiba laptop 6 39 

Q2 dell laptop 3GB 7 43 

Q3 dell printers 4 40 

Q4 Asus laptops 7 40 

Q5 hard drive 7 42 

Q6 dell Intel 6 55 

Q7 seagate drive 7 40 

Q8 dell 13.3 6 51 

Q9 hp printer  7 42 

Q10 seagate 1TB  4 52 

5.7 Experimental Evaluation 

In Section 5.7.1, we describe the experiment setup including the datasets used, query 

workload and the comparison baselines. We present the results of the experiments in Section 5.7.2 

and show that snippets constructed using our methods effectively balance comprehension cost and 

informativeness. We also present the time requirements of our heuristics and shows that they add 

an insignificant overhead to overall query processing. 

5.7.1 Experimental Setup 

Dataset and Query Workload: We evaluate our approach on a subset of products data 

from a popular e-commerce website. The dataset consists of diverse products types such as 

Computers (Desktops, Laptops etc.), Printers (InkJet, LaserJet etc.) among many others. In total 

we extracted 63,126 products from 52 categories (types) and 150 unique attributes distributed 
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amongst the different types. The queries used in the evaluation are shown in Table 5.2. Table 5.2 

also shows some characteristics of the result-set of each query, namely, the number of categories 

(types) and the total number of unique attributes in query results. 

Baselines: We compare our approach with the following two commonly used methods to 

construct snippets:  

Baseline 1 (Fixed-Schema): In this snippet construction method, the schema of the result-

set is fixed by choosing the most commonly occurring attributes in results. In a heterogeneous 

result-set, a result-set snippet would have many empty (�#��) values, since a result may not have a 

value one or more selected attributes and therefore be less informative. However, these snippets 

have a low comprehension cost, since all displayed attributes are aligned.  

Baseline 2 (Popular-attributes): This method chooses the most informative attributes for 

each result, as its snippet. The informativeness of an attribute is computed based on the result-set 

using Equation 5.8. The d selected attributes from each result are displayed in a tabular format and 

are ordered by decreasing informativeness scores. These snippets have are highly informative, 

since they always select the maximum possible d informative attributes, for each snippet. However, 

the comprehension cost would be high, due to partial non-alignment of attributes across result 

snippets and due to inclusion of superfluous or unnecessary attributes. 

Evaluation Methodology: For each query, we construct snippets of one page of the 

results, i.e. 15 results, using the algorithm described in Section 5.6 and for the aforementioned 

baselines. The snippets size d was set to 6 in all our experiments. For snippets constructed using 

each method, we compute the total comprehension cost and attribute informativeness using 

Equations 5.4 and  5.8 respectively and report the absolute numbers. We also report the combined 
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cost ℱ, using Equation 5.2. All experiments were performed by setting 7 = 0.5, i.e. by giving equal 

weights to informativeness and comprehension factors.  

5.7.2 Results 

The resulting goodness scores for the snippets of the 10 queries used in the evaluation are 

shown in Figure 5.5. The goodness scores for our snippet construction algorithm are much better 

on average as compared to the other two baselines, with an improvement of nearly 27% over 

Fixed-Schema and 32% over Popular-Attributes approach. Both the Fixed-Schema and Popular-

Attributes baseline have similar scores for these queries, since Fixed-Schema approach minimizes 

comprehension cost while Popular-Attributes maximizes informativeness. Our approach balances 

both these factors, thereby achieving higher scores. 

 

Figure 5.5. Goodness Score (C) of Result-set Snippets 

Figure 5.6 shows the overall informativeness of the snippets constructed using the two 

baselines and our approach. As expected, the informativeness of Fixed-Schema approach is 

uniformly lower than other two approaches. This is because, by fixing the schema, a number of 

places in the snippets remain empty (as in Figure 5.1(b)) or less informative attributes get selected. 

In contrast, the informativeness of snippets constructed by the Popular-Attributes baseline is better 

than other two approaches since each position in the snippet is occupied by highly informative 

attributes. For our approach, the informativeness is lower than Popular-Attributes, by about 22%. 
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This is expected, since we sacrifice informativeness in an effort to make a snippet more 

comprehensible. By selecting attributes based on comprehension cost, in addition to 

informativeness, results in selection of some attributes that have low informativeness. Also, some 

positions in the snippets might remain unoccupied since adding additional attributes might result in 

degrading of the overall goodness score of the snippet. 

 
Figure 5.6. Total Informativeness of Attributes in Snippets. 

 

 

Figure 5.7. Total Result-set Snippet Comprehension Cost. 
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Figure 5.8. Snippet Construction Algorithm Performance. 

The loss in informativeness is more than made up (113% improvement, on average) when 

we consider the comprehension cost, in Figure 5.7, of our snippets to those constructed by the 

Popular-Attributes approach. The Popular-Attributes baseline does not consider comprehension 

cost and therefore arranges attributes in jagged or non-aligned order across results resulting in a 

high comprehension cost. Additionally, by selecting attributes independently for each result, the 

number of attributes that are selected across snippets is high, thereby adding a huge comprehension 

cost overhead. The snippets constructed using the Fixed-Schema approach have a fixed 

comprehension cost (Figure 5.7). This is the lowest possible cost, given that all positions in the 

snippet are occupied. Our approach, which balances comprehension and informativeness, 

constructs snippets with higher comprehension cost (by 20%) but the resulting snippets are also 

highly informative (Figure 5.6). 

Figure 5.8 compares the execution times of our approach with those of the two baselines.  

The Fixed-Schema approach, whose schema is fixed beforehand, takes almost negligible amount of 

time (26ms) on average. Our algorithm takes much longer, 107ms on average, which is higher than 

Popular-Attributes (avg. 63ms), but is still fast and adds a small overhead to the search and 

retrieval process since the time to execute the query and retrieve results is considerably higher.  
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5.8 Related Work 

Snippets of text documents: There has been much work on snippets construction for Web 

documents. Earlier work relied on query-independent document summarization techniques [90, 

91]. More recently, query-specific snippet generation techniques have been proposed [97]. 

However, none of these works consider the problem of comprehension cost across snippets, since 

each snippet is just a list of sentences.  

Faceted Search on Structured Data: Faceted search employed by most e-commerce 

websites (Amazon, eBay) typically supports predefined top-down navigation on the concept 

hierarchy, where all the attributes of the currently selected concept are also displayed. Recent 

works[28, 33]  have studied the problem of what attributes to display to minimize the user effort, 

but operate on flat relations of products without any classification. BioNav[27]  presents the 

bibliographic results of queries on PubMed on an ontological hierarchy and allows users to 

effectively navigate on that hierarchy. However, attributes are not considered and each publication 

is viewed as a result hung on a leaf of the hierarchy. 

Search Results Comprehension: Comprehension, as applied to designing data-driven 

user interfaces is a subjective measure that falls into the realm of cognitive psychology [98] and 

Computer Human Interaction (CHI) and focuses on identifying design features of user interfaces 

and results presentation that maximize the efficiency of user in understanding the set of results or 

the interface in question. We use the methods and techniques from cognitive psychology and 

computer human interaction to design user-studies to develop our comprehension cost model and 

here we discuss works that are related to the goals of our user-study.  
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Dalal et al. [99] propose a design of website’s home pages along several “theoretical” 

guidelines and conduct user studies to measure the comprehension of web-site home pages along 

three dimensions – accuracy, speed and perceived comprehension and conclude that pages 

designed with their theorized guidelines achieve better cognition. We also theorize a model of 

comprehension (Section 5.3) and we use the user study to parameterize the model (define the 

function '
%�
�ℎ(. )). Several recent works[100, 101] study the effect of layout of data elements 

on their cognition. Our study focuses on measuring the effect of placement of snippet constituents 

near each other. [100, 101] conduct eye-movement studies of pieces of text to conclude with a 

direct correlation between placement of target text and comprehension, measured as answers to 

questions. We follow a similar mechanism, but instead use time spent in reading and answering 

questions as measure of comprehension. 

5.9 Summary 

In this chapter, we introduced the problem of incorporating the user comprehension cost 

into the construction of snippets for structured data. In particular, we defined the framework and 

identified the criteria for constructing snippets that minimize the effort required by users in 

comprehending the set of results. We presented a complexity analysis of the problem and efficient 

algorithms to construct snippets that minimize the comprehension cost, while maximizing the 

informativeness of the snippets. Our results are supported by user studies and quantitative 

experiments. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

This dissertation focuses on improving user efficiency and experience in data exploration 

tasks over structured databases. Even though data exploration is a very common activity on the part 

of everyday users, it has not been adequately addressed in the research community. The current 

solutions are therefore rife with the use of ad-hoc techniques and methods which often adds to the 

burden of users in data exploration activities. We carefully scrutinize the existing solutions for data 

exploration tasks such as query formulation, results navigation and presentation and identify 

several problems and limitations. We provided holistic solutions to these problems and evaluated 

them to show that by using our approaches, the burden or effort incurred by users in data 

exploration tasks is significantly reduced.  

In Chapters 3 and 4, we focused on the results navigation aspect of data exploration and 

presented a navigation cost based approach to minimize the user effort in navigating the results. 

Chapter 3 focuses on the problem commonly encountered by users in searching databases in which 

results can be classified into a classification or a concept hierarchy. Instead of the static level-by-

level approach commonly used to navigate the concept hierarchy, we propose a dynamic approach 

that exposes concept nodes selected from descendants. The nodes are selected based on a 

navigation cost model of the user and selects nodes based on several factors including the current 
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state on navigation and distribution of results amongst the concepts. The resulting navigation cost 

or effort is significantly less compared to standard approaches, as evident from the experimental 

evaluation. We analyze the complexity of the problem of minimizing the navigation effort and 

show that the problem is NP-Hard and propose heuristics to compute the optimal (in terms of 

navigation cost) set of nodes in each expansion.  

Largely inspired by the performance of our navigation cost based model for concept 

hierarchies, we extended this approach to faceted navigation, as described in Chapter 4. Here a 

result (or a database tuple), instead of being classified into one or more concepts, is classified into 

multiple facets and the problem is to choose the best subset of facets and facet conditions such that 

the user effort in navigating faceted result-sets is minimized. The additional complexity due to 

multiple classifications warrants a different and more intricate navigation and cost models. The 

analogous problem of minimizing effort is again NP-Hard and we propose efficient heuristics to 

select a near-optimal set of facets. We experimentally evaluate our approach and show a significant 

reduction in user-effort using our approach as compared to state-of-the-art. We augment our 

evaluation with user studies which in addition to showing improvement in navigation effort, also 

show that our model is realistic and is highly correlated to actual user time.  

In Chapter 5, we shift focus on the presentation of search results of structured databases. 

Typically, a result contains a lot of information (attribute-values) to be displayed entirely on the 

query interface and only a snippet or a subset of fields can be displayed. Whereas existing works 

have focused on selecting the best (defined by an objective score) attribute-values to select to 

display, in Chapter 5 we consider the auxiliary problem of presenting these attributes. By means of 

a comprehensive user study, we identify factors that influence the difficulty in reading or 
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comprehending a snippet and device a simple model to quantify this effort. Further, we presented 

and evaluated an algorithm to select result-set snippets that balance the score and comprehension. 

In Chapter 2, we revisit the keyword-based query formulation paradigm which, due to its 

inherent simplicity and ease of use, is commonly used in structured databases. However, keyword 

queries are typically ambiguous and return a large set of results, many of which are irrelevant to the 

user. We proposed a novel approach in which a keyword query is augmented by adding structured 

conditions to focus the keyword query to results that the user might be interested in. We presented 

the design, implementation and evaluation of the framework to support such rich queries.  

6.2 Future Work 

The query formulation framework suggested in Chapter 2 is based solely on the data-

distribution of the underlying dataset and could be augmented with user preferences gleaned from 

query logs. In this framework, we only consider a specific type of dataset (see Tree Data Model). 

However many datasets are organized as Directed Acyclic Graphs (DAGs). While the query 

formulation on such datasets would benefit from the ideas described in the chapter (HCDs), it is not 

straightforward to apply the algorithms and summarization techniques described to these scenarios 

and adapting the provided solutions is in itself a very interesting problem.  

The problems addressed in this dissertation span a wide variety of components of a query 

interface. Most of our solutions are built around a model of user, which is inherently difficult to 

capture due to the existence of a large number of factors. The models we have proposed capture a 

subset of these factors and can be augmented with additional factors. For example, in Chapter 5 we 

considered two factors (#occurrences and #positions of attributes) effecting comprehension cost or 

effort and ignored such factors as complexity of values, the dependence between attributes etc. 
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These factors were also not considered in the navigation models of Chapters 3 and 4. However, it 

should be noted that additional factors add to the complexity of the model and can result in 

computationally in-efficient models whose utility in terms of reducing user effort is not guaranteed.  

The techniques presented in Chapters 3 and 4 are quite general and can easily be applied to 

other navigation scenarios. For example, one could easily develop a model to navigate a list of 

paginated results where the ranked list of results is computed with additional factors such as 

clustering[74, 76]  or diversity[56, 85, 86, 89, 102] and the corresponding cost-minimization 

problem being a way to compute the best page of results at each step that would minimize the 

number of pages a user has to navigate. Furthermore, the two techniques could be combined 

together in a single navigation and cost model for structured datasets that have both facets and a 

navigation hierarchy.  
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