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ABSTRACT OF THE DISSERTATION

Rigidification of Algebras Over Algebraic Theories in Diagram Categories

by

Alex Haig Sherbetjian

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2018

Professor Julie Bergner, Co-Chairperson
Professor John Baez, Co-Chairperson

The notion of an algebraic theory, which is able to describe many algebraic structures,

has been used extensively since its introduction by Lawvere in 1963. This perspective

has been very fruitful for understanding in a wide variety of algebraic structures, including

rigidification results for simplicial algebras over algebraic theories by Badzioch and Bergner.

In this thesis, we extend the rigidification results to algebras over a larger class of categories,

which includes bisimplicial sets. In particular, we prove the rigidification result is true in

any diagram category SSetsCop for a small category C.
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Chapter 1

Introduction

In 1963, Lawvere introduced the notion of an algebraic theory in [13]. The development

of these algebraic theories provided a syntax to describe a variety of algebraic structures

by focusing on the structure maps of these objects as opposed to the objects themselves.

A benefit of utilizing this equivalent interpretation of algebraic categories is that it pro-

vides a functorial description of the objects in these categories rather than focusing on

particular generating sets and relations. This approach provides a much more categorical

interpretation of such categories and facilitates the study of these structures in the context

of category theory. In Lawvere’s paper, he proves that for categories for which an algebraic

theory exists, an algebraic category C is equivalent to the category of product-preserving

functors from the theory into the category of sets. Many of the categories we would expect

to be “algebraic”, such as the category of groups, are indeed algebraic categories.
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Additionally, one can build these algebraic objects in categories other than that of sets.

For instance, functors from the algebraic theory of groups into the category of spaces are

models for group objects in the category of spaces, i.e. topological groups. However, there

are many natural structures, such as loop spaces or H-spaces, which are not topological

groups, but whose structure holds as a group “up to homotopy”. In [3] and [6], Badzioch

and Bergner proved that an algebraic object defined up to homotopy is weakly equivalent to

an algebraic object whose maps are strict. That is to say, given a weakly defined structure

on a topological space X, we can pass to a space X ′ equipped with a strict structure that

is homotopy equivalent to X.

In this paper, we generalize this rigidification result to a larger class of categories. In

particular, we will prove that it holds for diagram categories of the form M = SSetsCop ,

where C is any small category. Recall that the category of simplicial sets, denoted SSets,

provides a combinatorial analogue of topological spaces.

For some motivation for this paper, we consider the work of Bergner and Rezk in [8], as

they proved a rigidification result for algebras in a specific collection of diagram categories,

SSetsΘop
n . Here Θn is an iterated wreath product of the simplex category ∆ [5]. When

n = 1, we have Θ1 = ∆, which corresponds to the category of simplicial spaces, i.e. the

category of bisimplicial sets.
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1.1 Organization

In Section 2, we discuss many of the definitions and foundational prerequisites to provide

the contextual background of our problem. We first introduce the necessary definitions for

model categories, followed by a discussion of the previous rigidification results of Badzioch

and Bergner. In Section 3, we show that the diagram categories M = SSetsCop satisfy the

necessary conditions to support the rigidification result. In Section 4, we discuss the model

structures that we must impose on the categories of strict as well as homotopy algebras over

our algebraic theories. Finally in Section 5, we develop the main result, namely to determine

that the two model categories described in Section 4 are in fact Quillen equivalent.

1.2 Future Work

While the result found in the thesis expands the rigidification result to a wide class

of categories, there are many categories for which that question is still uncertain. One

such collection would be to extend this rigidification result to the category of all small

categories, where a notion of a strong and weak algebraic structure is already understood

and well studied.
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Chapter 2

Background

2.1 Overview of model categories

In this section, we give a brief overview of the necessary tools for model categories that

we need. A more extensive treatment of model categories can be found in [11] or [12]. We

begin by introducing the definition of a model category.

Definition 2.1. [11, 7.1.3] A model category is a category M with three distinguished

classes of maps, labeled weak equivalences, fibrations, and cofibrations. Each of these

classes is closed under composition and contains all identity maps. A map which is both

a fibration (resp. cofibration) and a weak equivalence is called a acyclic fibration (resp.

acyclic cofibration). Additionally, we require the following axioms to hold.

MC1 (Limit axiom) The category M admits all small limits and colimits.

MC2 (Two-out-of-three axiom) If f and g are maps in M such that gf is well-defined and

if two of the three maps f , g, gf are weak equivalences, then so is the third.
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MC3 (Retract axiom) If f is a retract of g and g is a fibration, cofibration, or a weak

equivalence, then so is f .

MC4 (Lifting axiom) Given a commutative diagram

A
f
//

i
��

X

p

��

B g
//

h

>>

Y

a lift h : B → X exists in the diagram in either of the following situations:

1. the map i is a cofibration and p is an acyclic fibration, or

2. the map i is an acyclic cofibration and p is a fibration.

MC5 (Factorization axiom) Any map f can be factored in two ways:

1. f = pi, where i is a cofibration and p is an acyclic fibration, or

2. f = pi, where i is an acyclic cofibration and p is a fibration.

We say that an object X is fibrant if the unique map from X into the terminal object is a

fibration. Likewise, an object Y is said to be cofibrant if the unique map from the initial

object into Y is a cofibration.

At an intuitive level, we can understand that imposing a model category structure on

a category allows us to consider homotopy theory in a context more general than that of

topological spaces. Notice that by the lifting axiom, if any two of the three classes of maps

are provided, then the remaining class of maps can be described by the lifting property.
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In addition to the model structure, the underlying category may also be equipped with

a monoidal structure. In the case where the monoidal product is given by the cartesian

product, we can rephrase the definition of a closed monoidal category [7, 1.1.36] in the

following manner.

Definition 2.2. A category C is said to be cartesian closed if it has finite products and, for

any two objects X and Y of C, an internal function object Y X , together with a bijection

HomC(Z, Y
X) ∼= HomC(Z ×X,Y )

for any third object Z of C.

When a category that is cartesian closed also has a model category structure imposed

on it, it is important to consider the compatibility of these two structures, which we have

as follows.

Definition 2.3. A model category M is cartesian if its underlying category is cartesian

closed, its terminal object is cofibrant, and the following equivalent conditions hold.

1. If f : A→ A′ and g : B → B′ are cofibrations in M, then the induced map

h : A×B′
∐
A×B

A′ ×B → A′ ×B′

is a cofibration. If either f or g is a weak equivalence, then so is h.
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2. If f : A → A′ is a cofibration and p : X → X ′ is a fibration in M, then the induced

map

q : (X ′)A
′ → (X ′)A ×XA XA′

is a fibration. If either f or g is a weak equivalence, then so is h.

Of particular importance for the purposes of this paper is the localization of these carte-

sian model categories with respect to a collection of maps P . In order for such a localization

to result in a suitable model category, or even to ensure the localization exists, we first re-

quire that the model categories satisfy the following condition.

Definition 2.4. A model category is said to be cofibrantly generated if

1. there exists a set I of maps (called a set of generating cofibrations) that permits the

small object argument [9, 7.12] and such that a map is an acyclic fibration if and only

if it has the right lifting property with respect to every element of I, and

2. there exists a set J of maps (called a set of generating acyclic cofibrations) that per-

mits the small object argument and such that a map is a fibration if and only if it has

the right lifting property with respect to every element of J.

Additionally, to make sure that the lifting axioms of the model category carry over to

the localization, it is necessary to have the model category be left proper.
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Definition 2.5. A model category M is said to be left proper if every pushout of a weak

equivalence along a cofibration is a weak equivalence.

Given a left proper cofibrantly generated model structure, there are two sufficient con-

ditions that ensure that the localized model structure is indeed a model structure. The

key feature of each of these additional structures is that they both provide the necessary

control over the generating cofibrations in the model category structure. The first sufficient

condition is that the model structure be combinatorial, and the second is that the model

category be cellular.

Definition 2.6. A model category M is combinatorial if:

1. it is cofibrantly genererated,

2. it admits all small colimits, and

3. there is a set S of small objects of M such that any object of M can be obtained as a

colimit of a small diagram with objects in S.

Definition 2.7. A celluar model category is a cofibrantly generated model category M

for which there are a set I of generating cofibrations and a set J of generating acyclic

cofibrations such that

1. both the domains and the codomains of the elements of I are compact [11, 11.4.1],

2. the domains of the elements of J are small relative to I [11, 10.5.12], and

3. the cofibrations are effective monomorphisms [11, 10.9.1].
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2.2 Overview of algebraic theories

In this section we discuss the necessary background needed in the study of algebraic

theories within the context of this paper. We begin by providing the definition of an

algebraic theory.

Definition 2.8. For a given set S, we say an S-sorted algebraic theory (or a multi-sorted

theory) T is a small category with objects Tαn with n ≥ 0, αn = 〈α1, . . . , αn〉 for αi ∈ S,

and for each Tαn, an isomorphism

Tαn ∼=
n∏
i=1

Tαi .

The entries αi may repeat for some αn, but they are not ordered. There exists a terminal

object T0, which corresponding to the empty subset of S.

For the remainder of the paper, we refer to any multi-sorted theory as an algebraic

theory, or more simply as a theory. Note that an algebraic theory with one sort coincides

with the definition found in [3, 1.1]. To define algebras over these theories as in [3] and [6],

we must define a simplicial set. Recall that the category ∆ has finite ordered sets as objects

and weakly-order preserving functions as morphisms .

Definition 2.9. A simplicial set is a functor from ∆op → Sets.

The category of simplicial sets, denoted by SSets, has a model category structure where

the weak equivalences are the maps f : X → Y such that the induced map |f | : |X| → |Y |,

which takes a simplicial set X to its geometric realization |X|, is a weak equivalence of
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topological spaces, the cofibrations are monomorphisms, and the fibrations have the right

lifting property with respect to acyclic cofibrations [10, 11.3]. With this model structure in

mind, Badzioch and Bergner defined a collection of functors out of an algebraic theory and

into the category of simplicial sets that preserved the product structure.

Definition 2.10. Given an S-sorted theory T , a strict T -algebra is a product-preserving

functor A : T → SSets, where product-preserving in this setting means that the map

A(Tαn)→
n∏
i=1

A(Tαi),

induced by the projections Tαn → Tαi for all 1 ≤ i ≤ n, is an isomorphism in SSets.

The collection of all T -algebras forms a small category, which is denoted by AlgT . The

other type of functors that are important throughout the paper are those functors that

preserve the structure of the algebraic theory, but only up to homotopy.

Definition 2.11. Given an S-sorted theory T , a homotopy T -algebra is a functor X :

T → SSets which preserves products up to homotopy, i.e. for any α ∈ Sn, the canonical

map

X(Tαn)→
n∏
i=1

X(Tαi)

induced by the projection maps Tαn → Tαi (for each 1 ≤ i ≤ n) is a weak equivalence in

SSets.
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Unlike strict T -algebras, the collection of homotopy T -algebras does not admit all small

limits and colimits, so there is no model category structure of homotopy T -algebras. How-

ever, there is a model category structure for homotopy T -algebras.

Theorem 2.12. [3, 5.4], [6, 4.9] There is a model category structure on the category of all

diagrams from an algebraic theory T → SSets for which the fibrant objects are homotopy

T -algebras.

With the appropriate model structures defined for each type of T -algebra, Badzioch and

Bergner proved their respective rigidification results.

Theorem 2.13. [3, 6.4], [6, 5.13] There is an equivalence of model categories between the

model category of strict algebras and the model category for homotopy algebras.
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Chapter 3

Properties of M = SSetsCop

For the remainder of this paper, we let C be any small category, and defineM to be the

functor categoryM = SSetsCop . The objects in this category are functors X : Cop → SSets

and the morphisms are natural transformations between the functors. In order to use this

categoryM, we must first verify thatM possesses the properties necessary to define strict

and homotopy algebras, specifically that M is a model category. In this section, we will

work out the necessary background results of Badzioch and Bergner found in the previous

section in our more general context.

First, we would like to equipM with a model structure, building it from the model struc-

ture on SSets. Inspired from the model structure on simplicial sets, we choose the weak

equivalences to be taken to be levelwise; that is to say a map f : X → Y is a weak equiva-

lence inM if for any c in Ob(C), we have f(c) : X(c)→ Y (c) is a weak equivalence in SSets.
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We can then define two different model category structures on M, both of which are cofi-

brantly generated, where either the cofibrations or the fibrations are chosen to be defined

levelwise as well.

Theorem 3.1. [10, VIII 2.4] There is a cofibrantly generated model category onM, denoted

by Mc, where the weak equivalences and cofibrations are taken levelwise, and the fibrations

are the maps with the right lifting property with respect to maps that are both weak equiva-

lences and cofibrations. This model category structure is referred to as the injective model

structure.

Theorem 3.2. [10, IX 1.4] There is a cofibrantly generated model category on M, denoted

by Mf , where the weak equivalences and fibrations are taken levelwise, and the cofibrations

are the maps with the left lifting property with respect to maps that are both weak equivalences

and fibrations. This model category structure is referred to as the projective model structure.

In addition to the structure provided by the model category structure, it is also necessary

to check that the category M is also cartesian in order to ensure that there is an internal

function object, which will be important as we enter the upcoming sections.

Theorem 3.3. The categories Mc and Mf are cartesian model categories.

The internal function object Y X for both cartesian structures is described by

Y X(c) = Map(HomC(c,−), Y X) = Map(X ×HomC(c,−), Y ).

13



Now by the Yoneda Lemma [11, 11.5.8], it is sufficient to only consider representable functors

in M. These representable functors have the form HomC(c,−), which is to be taken as a

constant diagram inM. Hence with the projective model structure,Mf , in addition to the

cartesian model structure given, we determine the generating cofibrations as follows:

Let X → Y in M be an acyclic fibration and consider the diagram

∂∆[n] //

��

X(c)

��

∆[n] //

;;

Y (c)

where X(c) → Y (c) is an acyclic fibration in SSets. Note using the isomorphism X(c) =

HomM(HomC(c,−), X) given by the Yoneda Embedding [7, 1.1.34], we can rewrite the

diagram as

∂∆[n] //

��

HomM(HomC(c,−), X)

��

∆[n] //

66

HomM(HomC(c,−), Y ).

Focusing on the horizontal arrows, we notice that the top map is an morphism in

HomM(∂∆[n],HomM(HomC(c,−), X) ∼= HomM(∂∆[n]×HomC(c,−), X).

Thus by the adjuction given in a cartesian category, we can display the lift in the diagram

above as:

∂∆[n]×HomC(c,−) //

��

X

��

∆[n]×HomC(c,−) //

77

Y.
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Hence for the model category M, one can describe the generating cofibrations as

I = {∂∆[n]×HomC(c,−)→ ∆[n]×HomC(c,−) | n ≥ 0, c ∈ Ob(C)}

and the generating acyclic cofibrations, using a similar style of proof, are

J = {V [n, k]×HomC(c,−)→ ∆[n]×HomC(c,−) | n ≥ 1, 0 ≤ k ≤ n, c ∈ Ob(C)}

With these cofibrantly generated cartesian model categories defined on M, we now

verify that these structures are left proper, cellular and combinatorial to ensure that a

left Bousfield localization is well-defined. We already know that SSets are left proper [11,

13.1.13], cellular [11, 12.1.4] and combinatorial, and these properties are passed onto the

diagram category as well.

Theorem 3.4. [11, 12.1.5; 13.1.14] The categoryM is a left proper cellular model category.

Theorem 3.5. [4, 2.14] The category M is a combinatorial model category.

With M satisfying all of the necessary conditions, we can now define strict T -algebras

as well as homotopy T -algebras over M.

Definition 3.6. Let M be any model category. Given an S-sorted theory T , a strict T -

algebra is a product-preserving functor A : T → M, where product-preserving means that

the map

A(Tαn)→
n∏
i=1

A(Tαi),

induced by the projections Tαn → Tαi for all 1 ≤ i ≤ n, is an isomorphism of M.

The collection of all T -algebras forms a category, and we denote this category by AlgTM

to indicate the model category M that we are mapping into.
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Definition 3.7. Let M be any model category. Given an S-sorted theory T , a homotopy

T -algebra is a functor X : T →M which preserves products up to homotopy, i.e., for any

α ∈ Sn, the canonical map

X(Tαn)→
n∏
i=1

X(Tαi)

induced by the projection maps Tαn → Tαi (for each 1 ≤ i ≤ n) is a weak equivalence in M.
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Chapter 4

Model Structures for Categories of

Algebras

Having shown that our category M satisfies the necessary conditions, in this section

we equip the category of all product-preserving functors with the structure of a cofibrantly

generated model category. However, before doing so, we must present the following defini-

tions to understand the next theorem, proven by Kan, which we use to verify that such a

model structure even exists.

Definition 4.1. [11, 10.5.2] Let I be a set of maps in a category M.

1. A map is an I-fibration if it has the right lifting property with respect to all maps in

I.

2. A map is an I-cofibration if it has the left lifting property with respect to all the I-

fibrations.
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Definition 4.2. [11, 10.5.8] Let M be a category that admits all small colimits, and I be

a set of maps in M. Then

1. the subcategory of relative I-cell complexes is the subcategory of maps that can be

constructed as a transfinite composition of pushouts of elements of I, and

2. an object is an I-cell complex if the map to it from the initial object ofM is a relative

I-cell complex.

Theorem 4.3. [11, 11.3.1] Let M be a category that admits all small limits and colimits

and let W be a class of maps in M that is closed under retracts and satisfies the “two out

of three” axiom. If I and J are sets of maps in M such that

1. both the sets I and J permit the small object argument,

2. every I-fibration is both a J-fibration and an element of W ,

3. every J-cofibration is both an I-cofibration and an element of W , and

4. one of the following two conditions hold:

(a) a map that is both an I-cofibration and an element of W is a J-cofibration, or

(b) a map that is both a J-fibration and an element of W is an I-fibration.

then there is a cofibrantly generated model category structure on M in which W is the class

of weak equivalences, I is a set of generating cofibrations, and J is the set of generating

acyclic cofibrations.
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Given a cofibrantly generated model structure on a category M and an adjunction

F :M� N : U , one would like be able to define a model structure for N . For sufficiently

nice categories N , such a statement holds as in the theorem below.

Theorem 4.4. [11, 11.3.2] LetM be a cofibrantly generated model category with generating

cofibrations I and generating acyclic cofibrations J . Let N be a category that is closed under

small limits and colimits, and let F : M� N : U be a pair of adjoint functors. If we let FI

= {Fu | u ∈ I} and FJ = {Fv | v ∈ J} and if

1. both the sets FI and FJ permit the small object argument and

2. U takes relative FJ-cell complexes to weak equivalences,

then there is a cofibrantly generated model category structure on N in which FI is a set of

generating cofibrations, FJ is a set of generating acyclic cofibrations, and the weak equiva-

lences are the maps that U takes into a weak equivalence in M. Furthermore, with respect

to this model category structure, (F,U) is a Quillen pair.

In our situation we have an adjoint pair Fα :M� AlgTM : Uα for each α ∈ S. Here, Uα

is the evaluation functor Uα(A) = A(Tα) for any strict algebra A. Hence for our purposes,

we will need to use a generalized version of Theorem 4.4 to allow for multisorted theories.

Theorem 4.5. LetM be a cofibrantly generated model category with generating cofibrations

I and generating acyclic cofibrations J . Let N be a category that is closed under small limits

and colimits, and let Fα : M� N : Uα be a collection of pairs of adjoint functors for α ∈ S.

If we let FαI = {Fαu | u ∈ I} and FαJ = {Fαv | v ∈ J} and if

19



1. the sets FαI and FαJ permit the small object argument for each α ∈ S and

2. Uα takes relative FαJ-cell complexes to weak equivalences for each α ∈ S,

then there is a cofibrantly generated model category structure on N in which FI = {Fαu | u ∈

I, α ∈ S} is a set of generating cofibrations, FJ = {Fαv | v ∈ J, α ∈ S} is a set of

generating acyclic cofibrations, and the weak equivalences are the maps that U takes to weak

equivalences in M. Furthermore, with respect to this model structure, (Fα, Uα) is a Quillen

pair for each α ∈ S.

Proof. To prove this theorem, we use Theorem 4.3 on the category N . Note for a fixed

α ∈ S, FαI and FαJ satisfy the conditions of Theorem 4.3. Let FW be the collection of

weak equivalences in N . Note that this class of maps in N is closed under retracts and

satisfies the “two-out-of-three” axiom required in Theorem 4.4.

1. For each α ∈ S, FαI and FαJ satisfy the small object argument, so FI and FJ satisfy

the small object argument.

2. Given an FI-fibration f , we have that f has the right lifting property with respect

to any element of FI. By Theorem 4.4, it follows that for any α in S, f is an FαJ-

fibration as well as an element of FαW . Thus f is an FJ-fibration as well as an

element of FW .

3. Given an FJ-cofibration p, we have that p has the left lifting property with respect

to any element of FI. By Theorem 4.4, it follows that for any α in S, p is an FαI-

cofibration as well as an element of FαW . Thus p must be an FI-cofibration as well

as an element of FW .

20



4. Suppose g is a map that is both an FI-cofibration and and element of FW . Then g

is an FαI-cofibration and an element of FαW for every α in S. Hence by Theorem

4.4, g is an FαJ-cofibration for every α in S, and thus a FJ-cofibration, as desired.

Using the preceding theorem, we can now show that AlgTM is a cofibrantly generated

model category.

Theorem 4.6. Let T be a multi-sorted algebraic theory, and let M = SSetsCop for a small

category C. Define Uα : AlgTM → M to be the evaluation functor for each sort α ∈ S,

and define Fα to be its left adjoint. Then there is a cofibrantly generated model category

structure on AlgTM in which a weak equivalence is a map which induces a weak equivalence

in the category M after applying the inclusion functor Uα for any α ∈ S. Similarly, we

define a fibration to be a map which induces a fibration in the category M after applying

the evaluation functor Uα. Finally, we define a cofibration to be a map with the left lifting

property with respect to the acyclic fibrations.

Proof. Let I and J be sets of generating cofibrations and generating acyclic cofibrations,

respectively, as part of the cofibrantly generated model structure of M. We use Theorem

4.5 with the adjoint pairs Fα : M� AlgTM : Uα for all α ∈ S and the cofibrantly generated

model structure defined on M. First, note that the existence of all limits and colimits in

AlgTM follows from [1, 1.2]. Next, we must show FαI permits the small object argument,

that is to say we must show every domain element in FαI is small relative to FαI. So

suppose Fα(∂∆[n]× HomC(c,−)) is a domain element of FαI and there is some T -algebra

A that can be written as a directed colimit colimm(Am). Then
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HomAlgTM
(Fα(∂∆[n]×HomC(c,−)), colim

m
(Am))

= HomM(∂∆[n]×HomC(c,−), Uα colim
m

(Am))

= HomM(∂∆[n]×HomC(c,−), colim
m

(UαAm))

= colim
m

HomM(∂∆[n]×HomC(c,−), UαAm)

= colim
m

HomAlgTM
(Fα(∂∆[n]×HomC(c,−)), Am).

(4.0.1)

The first equality is given by adjointness, while the second equality is true because we

can compute colimts objectwise, so

Uα colim
m

(Am) = [colim
m

(Am)](Tα)

= colim
m

[Am(Tα)]

= colim
m

(UαAm).

(4.0.2)

The third equality in (4.0.1) is because ∂∆[n] × HomC(c,−) is small relative to I and I

is closed under transfinite pushouts, and the final equality of (4.0.1) is again given by

adjointness. A similar proof shows that any domain element Fα(V [n, k] × HomC(c,−)) is

small relative to FαJ .

To show that Uα takes colimits of pushouts along maps of FαJ to weak equivalences,

we note that because weak equivalences are taken levelwise, and the colimit of weak equiv-

alences is still a weak equivalence, it suffices to show the result holds for a single pushout.

So consider a map Fα(V [n, k] × HomC(c,−)) → Fα(δ[n] × HomC(c,−)) which is a map in

FαJ and suppose there is a map from Fα(V [n, k]×HomC(c,−)) to some object A in AlgTM.
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Define B to be the pushout of the diagram

Fα(V [n, k]×HomC(c,−)) //

��

A

��

Fα(∆[n]×HomC(c,−) // B.

We need to show that the map from A to B is a weak equivalence. If P → Q is a map in

AlgTM with the right lifting property with respect to maps in FαJ , then we note that this

map P → Q must be a fibration in AlgTM. Thus we have a diagram

Fα(V [n, k]×HomC(c,−)) //

��

A

��

// P

��

Fα(∆[n]×HomC(c,−)) //

44

B // Q

and note that a lift Fα(∆[n] × HomC(c,−)) → P exists since fibrations in AlgTM have the

right lifting property with respect to maps in FJ , which implies since B is a pushout of the

left diagram that there is also a lift B → P . Applying the functor Uα to the this diagram,

we get the diagram

V [n, k]×HomC(c,−) //

��

UαA

��

// UαP

��

∆[n]×HomC(c,−) //

44

UαB // UαQ

and note that by our lift B → P , we have a lift UαB → UαP . Since UαP → UαQ is a

fibration in M , and the fibration UαP → UαQ has the right lifting property with respect

to the map UαA → UαB, then we have that UαA → UαB is an acyclic cofibration in M.

Therefore, we can conclude A → B is an acyclic cofibration in AlgTM, and is thus a weak

equivalence, as desired.
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Next, we turn our attention to the category of homotopy T -algebras, as we wish to

impose a model structure on this category. However, such a structure is not possible to

construct, as the category of homotopy T -algebras do not admit all small limits and colimits.

To work around this issue, we instead focus on creating a model structure the category of

all functors from our theory T →M so that the fibrant objects in that model category are

homotopy T -algebras. To do this, we first provide several definitions that will be necessary

as we move forward.

Definition 4.7. [11, 9.1.6] A simplicial model category M is a model category M that is

also a simplicial category such that the following two axioms hold:

• (SM6) For every two objects X and Y of M and every simplicial set K, there are

objects X ⊗K and Y K in M such that there are isomorphisms of simplicial sets

Map(X ⊗K,Y ) ∼= Map(K,Map(X,Y )) ∼= Map(X,Y K)

that are natural in X, Y , and K.

• (SM7) If i : A → B is a cofibration in M and p : X → Y is a fibration in M, then

the map of simplicial sets

i∗ × p∗ : Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration which is an acyclic fibration if either i or p is a weak equivalence.
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Definition 4.8. For any objects X and Y in a simplicial categoryM, the function complex

is the simplicial set Map(X,Y ).

Note that a function complex in a simplicial model category is homotopy invariant only

when X is cofibrant and Y is fibrant. So in general, we must use the following definitions:

Definition 4.9. [7, 1.4.6] Let X be an object of a model category. A cofibrant replacement

for X is a cofibrant object X̃ together with a weak equivalence X̃
'→ X. A fibrant replace-

ment for X is a fibrant object X̂ together with a weak equivalence X
'→ X̂.

Definition 4.10. [11, 17.3.1] A homotopy function complex Maph(X,Y ) in a simplicial

model category M is the simplicial set Map(X̃, Ŷ ) where X̃ is a cofibrant replacement of X

in M and Ŷ is a fibrant replacement for Y .

Some of the model structures we use are created after localizing a given model category

structure with respect to a collection of maps. Let P be a set of maps that one uses to

localize a model category M.

Definition 4.11. A P -local object W is a fibrant object of M such that for any f : A→ B

in P , the induced map on homotopy function complexes

f∗ : Maph(B,W )→ Maph(A,W )

is a weak equivalence of simplicial sets.
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A map g : X → Y in M is then a P -local equivalence if for every local object W , the

induced map on homotopy function complexes

g∗ : Maph(Y,W )→ Maph(X,W )

is a weak equivalence of simplicial sets.

We now describe two model category structures we can impose on all diagrams from

T →M.

Theorem 4.12. [10, VIII 2.4] The category of all diagrams T → M has a cofibrantly

generated model category structure, denoted MTc , where cofibrations and weak equivalences

are taken objectwise, and fibrations are maps with the left lifting property with respect to

maps that are both weak equivalences and cofibrations.

Theorem 4.13. [10, IX 1.4] The category of all diagrams T → M has a cofibrantly gen-

erated model category structure, denoted MTf , where fibrations and weak equivalences are

taken objectwise, and cofibrations are maps with the right lifting property with respect to

maps that are both weak equivalences and fibrations.

In fact, since the two preceding model structures are cofibrantly generated, one can

determine explicitly the generating cofibrations and generating acyclic cofibrations of MTf

in a manner similar to that found in the discussion after Theorem 3.2. We will now localize

the model category structure on MTf , utilizing the following theorem.
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Theorem 4.14. [11, 4.1.1] Let N be a left proper cellular model category and P a set of

morphisms of N . There is a model category structure LPN on the underlying category of

N such that:

1. The weak equivalences are the P -local equivalences.

2. The cofibrations are the cofibrations of N .

3. The fibrations are the maps which have the right lifting property with respect to the

maps which are both cofibrations and P -local equivalences.

4. The fibrant objects are the P -local objects.

5. If N is a simplicial model category, then that simplicial structure gives LPN the

structure of a simplicial model category.

The set of maps P that we localize with respect to will be constructed in a similar manner

those done by Badzioch and Bergner. They used free diagrams which were corepresented by

the objects of the theory T . Hence the maps are built on the projections maps Tαn → Tαi

for each αn = 〈α1, . . . , αn〉 and 1 ≤ i ≤ n. These projections induce the maps

HomT (Tαi ,−)→ HomT (Tαn ,−),

which we view as maps in MT with trivial structure maps. Taking the coproduct of all

such maps, we establish

P = {pαn :

n∐
i=1

HomT (Tαi ,−)→ HomT (Tαn ,−)| αn ∈ Sn, n ≥ 0}.
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Theorem 4.15. There is a model category structure LMT on the category MT with weak

equivalences the P -local equivalences, cofibrations as in MTf , and fibrations the maps which

have the right lifting property with respect to the maps which are cofibrations and weak

equivalences.

By localizing with respect to the maps in P , the P -local objects will be exactly those

functors X : T →M such that

Map(HomT (Tαn ,−), X)
'−→ Map(

n∐
i=1

HomT (Tαi ,−), X).

But as for any n ≥ 0,

Map(HomT (Tαn ,−), X) ∼= X(Tαn)

as well as

Map(

n∐
i=1

HomT (Tαi ,−), X) ∼=
n∏
i=1

X(Tαi),

then we have

X(Tαn)
'−→

n∏
i=1

X(Tαi),

which is exactly the condition to be a homotopy T algebra. So with this model category

structure on MTf , we can now describe any fibrant objects of the model structure as a

homotopy T -algebras.

Proposition 4.16. An object X in LMT is fibrant if and only if it is a homotopy T -algebra

that is fibrant as an object of MTf .
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Proposition 4.17. A map f : X → Y is a P -local equivalence if and only if for any

T -algebra Z which is fibrant in MTc , the induced map of function complexes

f∗ : Map(Y, Z)→ Map(X,Z)

is a weak equivalence in M.

In fact the above results are just a special case of a more general statement concerning

fibrant objects in a localized model category; more details can be found in [11].
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Chapter 5

Quillen Equivalence of AlgTM and

LMT

Now that we have constructed the two model categories necessary, we can now prove

the main result of the paper. Many of the arguments are similar to those found in [6]. To

do so, we must first define a Quillen pair between our categories AlgTM and LMT . Let the

functor

JTM : AlgTM → LMT

be the inclusion functor. To show that this functor has a left adjoint, we begin by intro-

ducing the following definitions.

Definition 5.1. Let D be a small category and MD the category of functors D → M.

Let P be a set of morphisms in MD. An object Y in MD is strictly P -local if for every
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morphism f : A→ B in P , the induced map on function complexes

f∗ : Map(B, Y )→ Map(A, Y )

is an isomorphism in M.

A map g : M → N in MD is a strict P -local equivalence if for every strictly P -local

object Y in MD, the induced map

g∗ : Map(N,Y )→ Map(M,Y )

is an isomorphism in M.

Now we will show that category of all diagrams does indeed have a right adjoint with

respect to the inclusion functor.

Lemma 5.2. Consider two categories, the category of all diagrams X : D → M and the

category of strictly local diagrams with respect to the set of maps P = {f : A → B}.

Then the forgetful functor from the category of strictly local diagrams to the category of all

diagrams has a left adjoint.

Proof. Without loss of generality, we can suppose there is one map f in P , since otherwise

we can just replace f by
∐
α fα. Given an arbitrary diagram X, we would like to construct

a strictly local diagram from X. So, suppose that X is not strictly local, i.e., the map

f∗ : Map(B,X)→ Map(A,X)
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is not an isomorphism. To make f∗ is surjective, we create an object X ′ as the pushout in

the following diagram:

∐
n≥0

∐
A×∆[n]→X A×∆[n] //

��

X

��∐
n≥0

∐
A×∆[n]→X B ×∆[n] // X ′

.

If f∗ is not injective, then we make f∗ injective by creating an object X ′′ by taking the

pushout ∐
n≥0

∐
(B

∐
AB)×∆[n] //

��

X ′

��∐
n≥0

∐
B ×∆[n] // X ′′

,

where the map B
∐
B → B is the fold map.

In the construction of X ′, given a strictly local object Y , we can create a pullback

diagram

Map(X ′, Y ) //

��

Map(
∐
B, Y )

��

Map(X,Y ) //Map(
∐
A, Y )

and since f : A → B is a strict local equivalence, then the map X → X ′ is a strict local

equivalence as well.

In the construction of X ′′, we can again obtain a pullback diagram

Map(X ′′, Y ) //

��

Map(
∐
B, Y )

��

Map(X ′, Y ) //Map(
∐

(B
∐
AB), Y )

.
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As before, to see that X ′ → X ′′ is a strict local equivalence, it is sufficient to show that the

right-hand vertical arrow is an isomorphism.

Since B
∐
AB is defined as the pushout in the diagram

A //

��

B

��

B // B
∐
AB

we can look at the pullback diagram

Map(B
∐
AB, Y ) //

��

Map(B, Y )

��

Map(B, Y ) //Map(A, Y ).

Hence the map

B → B
∐
A

B

is a strict local equivalence. But, this map fits into

B //B
∐
AB

//B

where the composite map is the identity map on B. Since the identity map is a strict local

equivalence, it follows that the map

B
∐
A

B → B

is a strict local equivalence, since it can be shown that the strictly local equivalences satisfy

model category axiom MC2.
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Thus, we have created a map X → X ′′ which is a strict local equivalence. However, this

construction does not guarantee that the map

Map(B,X ′′)→ Map(A,X ′′)

is an isomorphism. By attaching n-cells in the construction of X ′′, we cannot be certain

that the map f∗ remains surjective onto X ′′. So we must repeat this process, taking a

potentially transfinite colimit to obtain a strictly local object X̃ such that there is a local

equivalence X → X̃.

What we must show is that the functor that takes X to X̃ is the functor that is left

adjoint to the forgetful functor. That is to say, we must show that

Map(X,Y ) = Map(X, JY ) ∼= Map(KX,Y ) = Map(X̃, Y )

where X is any diagram, Y is any strict local diagram, J is the forgetful functor from the

category of strictly local diagrams to the category of all diagrams, and K is the functor that

sends a diagram X to a strictly local diagram X̃. However, note that the outer function

complexes Map(X,Y ) and Map(X̃, Y ) have been proven already to be isomorphic at every

step of the procedure to construction of X̃, and thus holds for the colimit as well. Thus we

do indeed have that

Map(X,Y ) ∼= Map(X̃, Y )

and restricting our focus to the 0-simplices of each object yields

Hom(KX,Y )→ Hom(X, JY )

which is exactly the isomorphism desired.
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Now to use the preceding lemma in our situation, we must first show that the category

of strictly local diagrams with respect to P and AlgTM are in fact the one and the same

category. To see this we must prove the following lemma, which is the Yoneda Lemma in

our setting.

Lemma 5.3. Let Tα be an object in an algebraic theory T and A a strict T -algebra. Then

there is an isomorphism in M

MapMT
f

(HomT (Tα,−), A) ∼= A(Tα).

Proof. As the functor A is an object inMTf , we can also view A as a functor from T ×Cop →

SSets. Thus we can consider A to be a diagram in SSetsT in the shape of C, and hence for

any object c in C, A(c) is an object in SSetsT . Then by [6, 5.7], a homotopical extension

of the classical Yoneda Lemma, we have a natural isomorphism

MapSSetsT (HomT (Tα,−), A(c)) ∼= A(Tα)(c),

for any c in C. Taking objects to be constant diagrams in their respective categories as

needed, we have that

MapSSetsT (HomT (Tα,−), A(c)) ∼= MapMT
f

(HomT (Tα,−),MapMT
f

(HomC(c,−), A(−)))

∼= MapMT
f

(HomT (Tα,−)×HomC(c,−), A(−))

∼= MapMT
f

(HomT (Tα,−), A)(c).

Since each of the maps above are natural, we obtain a natural functor

MapMT
f

(HomT (Tα,−), A)→ A(Tα)

which is an isomorphism since it is an isomorphism at each level.
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Now we the Yoneda Lemma proven in our context, we can now show that the category

of strictly local diagrams with respect to P and AlgTM are equivalent.

Lemma 5.4. A diagram A : T → M is a strict T -algebra if and only if the diagram A is

strictly local with respect to the maps in P .

Proof. Recall that a diagram A is a strict T -algebra if and only if for each αn = 〈α1, . . . , αn〉,

we have a natural isomorphism

A(Tα) ∼=
n∏
i=1

A(Tαi)

induced by projection maps in T . By Lemma 5.3, the above isomorphism is equivalent to

having an isomorphism

MapMT
f

(HomT (Tα,−), A) ∼=
n∏
i=1

MapMT
f

(HomT (Tαi ,−), A)

∼= MapMT
f

(

n∐
i=1

HomT (Tαi ,−), A).

Since these isomorphisms are all induced by the projection maps, it follows that all strict

T −algebras are strictly local with respect to maps in P .

Conversely, given a diagram A that is strictly local with respect to maps in P , we have

that

MapMT
f

(HomT (Tα,−), A) ∼= MapMT
f

(

n∐
i=1

HomT (Tαi ,−), A)

which is equivalent to

MapMT
f

(HomT (Tα,−), A) ∼=
n∏
i=1

MapMT
f

(HomT (Tαi ,−), A).
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By Lemma 5.3, we have

A(Tα) ∼=
n∏
i=1

A(Tαi)

and thus A must be a strict T -algebra.

This theorem shows that AlgTM is in fact the category of strictly local diagrams, and so

by Lemma 5.2, we have that the forgetful functor JTM : AlgTM → MTf , has a left adjoint,

denoted KTM :MTf → AlgTM.

Proposition 5.5. The adjoint pair of functors

KTM :MTf
//AlgTM : JTMoo

is a Quillen pair.

Proof. Using Lemma 5.4, we see that AlgTM is a subcategory ofMTf by the inclusion functor

JTM. Since the fibrations and weak equivalences are defined objectwise, and JTM is a right

adjoint, then it must preserves fibrations and acyclic fibrations.

Lemma 5.6. Each map KTM(pαn) is a weak equivalence in AlgTM.

Proof. Recall that the functor HomT (Tα,−) is a strict T -algebra and that JT A = A for

any strict T -algebra A. Then, for each map in P , we have by Lemma 5.3 and adjointness

the following composite isomorphism.
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MapAlgTM
(KTM(HomT (Tα,−)), A) ∼= MapMT

f
(HomT (Tα,−), A)

∼= A(Tα)

∼=
n∏
i=1

A(Tαi)

∼=
n∏
i=1

MapMT
f

(HomT (Tαi ,−), A)

∼= MapMT
f

(
n∐
i=1

HomT (Tαi ,−), A)

∼= MapAlgTM
(KTM(

n∐
i=1

HomT (Tαi ,−)), A).

Since all the isomorphisms are naturally induced, it follows that KTM(pα) is a strict local

equivalence inMT , and by the preservation of weak equivalences over KTM, it is also a weak

equivalence in AlgTM.

Having established that the adjoint pair of functors

KTM :MTf
//AlgTM : JTMoo

is a Quillen pair, we must now show that this adjoint pair in fact remains a Quillen pair

when the MT is replaced by the category LMT . To show this, we utilize the following

proposition.

Proposition 5.7. [11, 3.3.18] Let M be a model category and let P be a class of maps

in M. If LPM is the left Bousfield localization of M with respect to P , N is a model

category, and F : M → N is a left Quillen functor that takes every cofibrant replacement

to an element of P into a weak equivalence in N , then F is a left Quillen functor when

considered as a functor LPM→N .
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With this proposition, we now prove the pair of functors remains a Quillen pair.

Proposition 5.8. The adjoint pair

KTM : LMT //AlgTM : JTMoo

is a Quillen pair.

Proof. Consider again the set of maps used to localize the model categoryMT , P = {pαn :∐
i HomT (Tαi ,−)→ HomT (Tα,−)}. Since all of these maps free diagrams corepresented by

the objects in the theory T , then these maps are all cofibrant in MTf . The model category

structure LMT is defined by localizing with respect to these maps in P . By Lemma 5.6,

we know that each map in P is sent by KTM to a weak equivalence in AlgTM. Hence, by

Proposition 5.7, the pair of adjoints also forms a Quillen pair on LMT and AlgTM.

Now to prove that the Quillen pair above is indeed the desired Quillen equivalence, we

must first prove the following result concerning the unit map in LMT .

Lemma 5.9. If X is cofibrant in LMT , then the unit map η is a weak equivalence in LMT .

Proof. First, we note that any cofibrant object X in LMT can be expressed as a homotopy

colimit of representable functors in LMT [4, 2.5]. To examine the general case, let us

first consider the special case where the cofibrant object X =
∐
α HomT (Tα,−), with the

coproduct taken over elements α from the sorts Sn. Then for any P -local object Y in LMT ,
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MapLMT (X,Y ) = MapLMT (
∐
α

HomT (Tα,−), Y )

'
∏
α

MapLMT (HomT (Tα,−), Y )

'
∏
α

MapAlgT (KTM(HomT (Tα,−)), Y )

' MapAlgT (
∐
α

KTM(HomT (Tα,−)), Y )

' MapAlgT (KTM(
∐
α

HomT (Tα,−)), Y )

' MapLMT (JTMK
T
M(

∐
α

HomT (Tα,−)), Y )

' MapLMT (JTMK
T
M(X), Y ).

Hence the unit map η is a P -local equivalence, and thus a weak equivalence, in LMT .

Now for any cofibrant object X in LMT , we can write X ' hocolimCop×∆op Xi, with

each Xi as described in the special case above. Using Proposition 4.17 as well as the previous

case, for any P -local object Y , we have the following:

Map(X,Y ) ' MapLMT (hocolimXi, Y )

' holim MapLMT (Xi, Y )

' holim MapLMT (KTMXi, Y )

' MapLMT (hocolimKTMXi, Y )

' MapLMT (KTMX,Y ).

Thus for any cofibrant object X in LMT , the unit map η is a weak equivalence in LMT .
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And now we are finally ready to prove the main result of the thesis.

Theorem 5.10. The Quillen pair

KTM : LMT //AlgTM : JTM.oo

is a Quillen equivalence.

Proof. Suppose X is a cofibrant object in LMT , Y a fibrant object in AlgTM, and f : X →

Y = JT Y a map in LMT . To show that f is a weak equivalence in LMT if and only if

its adjoint map g : KTMX → Y is a weak equivalence in AlgTM, consider the commutative

diagram

X
η
//

f
��

KTMX

g

��

JTMY
=
// Y

If f is a weak equivalence in LMT . Then g must also be a weak equivalence since

by Lemma 5.9, η is a weak equivalence. However, g is a map in AlgTM, and so a weak

equivalence in AlgTM.

Conversely, suppose that g is a weak equivalence in AlgTM. Then JTMg = g is a weak

equivalence in LMT . Hence, f = g ◦ η is also a weak equivalence in LMT , and the result

is proven.
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