Lawrence Berkeley National Laboratory
LBL Publications

Title
Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming

Permalink
https://escholarship.org/uc/item/01h204x9

Authors

Rasmussen, Katherine
Rouson, Damian
George, Najé

Publication Date
2022-11-15

DOI
10.25344/S4CP4S

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/01h204x9
https://escholarship.org/uc/item/01h204x9#author
https://escholarship.org
http://www.cdlib.org/

International Conference on High Performance Computing, Networking, Storage and Analysis (SC22)

Agile Acceleration of LLVM Flang Support for
Fortran 2018 Parallel Programming

Katherine Rasmussen, Damian Rouson,

Dan Bonachea, Brian Friesen, Hussain Kadhem

Lawrence Berkeley National Laboratory, USA

{krasmussen, rouson, dobonachea,bfriesen, hmk}@ 1bl.gov

Abstract—The LLVM Flang compiler (“Flang”) is currently
Fortran 95 compliant, and the frontend can parse Fortran
2018. However, Flang does not have a comprehensive 2018
test suite and does not fully implement the static semantics of
the 2018 standard. We are investigating whether agile software
development techniques, such as pair programming and test-
driven development (TDD), can help Flang to rapidly progress to
Fortran 2018 compliance. Because of the paramount importance
of parallelism in high-performance computing, we are focusing
on Fortran’s parallel features, commonly denoted “Coarray
Fortran”. We are developing what we believe are the first
comprehensive, open-source tests for the static semantics of
Fortran 2018 parallel features, and contributing them to the
LLVM project. A related effort involves writing runtime tests for
parallel 2018 features and supporting those tests by developing a
new parallel runtime library: the CoArray Fortran Framework
of Efficient Interfaces to Network Environments (Caffeine).

Index Terms—HPC, Exascale Computing, Compiler Testing

I. INTRODUCTION

The LLVM Compiler Infrastructure project [1] provides
open-source frontends for several languages, including C and
C++. Because of the essential role that Fortran plays in
high-performance computing, the U.S. Department of Energy
(DOE) has led a multi-year effort, through the Exascale
Computing Project (ECP), to develop a Fortran frontend for
LLVM [2] named “Flang”. At the time of writing, over 150
developers have authored 4895 commits to the Flang subdirec-
tory on the main branch of the LLVM repository [1] (hereafter
“upstream”); that work has brought Flang up to Fortran 95 [3]
compliance. In addition to full support for Fortran 95, Flang
can parse Fortran 2018 [4]. However, the Flang test suite does
not exhaustively check Fortran standards-compliance, and the
authors are unaware of a publicly available, comprehensive
Fortran 2018 compliance test suite. Moreover, Fortran’s evo-
lution through three subsequent standards, commonly denoted
Fortran 2003, 2008, and 2018 [4-6], implies significant re-
maining work to reach up-to-date compliance. This situation
makes it attractive to explore ways to accelerate Flang’s
progression through Fortran language standards.

Berkeley Lab’s ECP Flang project [7] focuses on writing
static semantic tests for Fortran’s parallel features, which are
commonly referred to as “Coarray Fortran.” We contribute
these tests to the main branch of the upstream LLVM reposi-
tory. We are also writing a comprehensive runtime test suite for

(©2022 LBNL doi:10.25344/S4CP4S

Najé George
Computational Science Research Center
San Diego State University, USA
ngeorge864l@sdsu.edu

parallel features. Fortran 2008 introduced parallel features but
Flang lacks complete 2008 support, so we are also developing
the Caffeine library to support runtime test execution.

Agile software development [8] encourages early release of
working software and subsequent iteration toward complete
solutions. To the extent that the concept of agility is associated
with deliberate speed, agile practices might provide helpful
avenues along which to attempt rapid development. This
abstract and our poster focus primarily on the outcomes of
approximately one person-year of effort, during which we
reached 56% completion of static semantics test coverage.
Although a direct comparison of speed with other development
approaches would require a great deal more information and
analysis, our subjective experience indicates that the agile
practices described herein save us development time through
frequent, rich developer interactions and through the unam-
biguous specification of feature requirements in the form of
unit tests.

Find
specification for a
language feature in
the Fortran 2018
Standard

Write new test
based on
specification

Contribute to
llvm-project

Create issue on
LLVM-Project
Repository and
contribute test

Develop
additional support
for language
feature

Fig. 1. Agile Test-Driven Development

II. METHODOLOGY
A. Agile Practices

The agile technique that we believe to be novel in its
application to an open-source Fortran compiler is test-driven
development (TDD) [9]. Our approach is illustrated in Fig. 1.

https://doi.org/10.25344/S4CP4S

Rasmussen, Rouson, et al.: Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming

TDD starts with writing software tests in lieu of other forms
of requirements documents and specifications. Given the re-
sulting tests, developers add features to the subject software
specifically to, and only to, support the tests.

Another agile practice we employ is pair programming:
interactive sessions in which coders receive immediate feed-
back from a live observer. Pair programming keeps team
members abreast of work progression in real time and enables
synchronous communication of useful input. Our experience
indicates that two minds are better than one. For example, we
find and fix mistakes more quickly when one member focuses
on writing the test while the other focuses on critiquing and
contextualizing it within the broader aims of the project.

Once a new test is ready for wider dissemination and
additional feedback, we post it to the LLVM community’s
code-review tool, Phabricator, which also records the devel-
oper dialogue and any resulting code updates. Throughout
this process, we leverage an agile practice embraced by the
wider LLVM community: continuous integration (CI) testing.
LLVM’s CI infrastructure uses automation to verify that con-
tributed changes do not break pre-existing code.

B. Static Semantic Tests

We register a static semantic test for each parallel feature
in a GitHub issue associated with a GitHub project [10]
that captures the test’s status. For each feature, such as
the intrinsic function num_images, we write a test pro-
gram containing a comprehensive set of standard-conforming
and non-conforming statements exercising the given feature.
Constructing each program requires consulting the formal
definition of the feature in the Fortran 2018 standard [4].
The list of conforming invocations of num_images, for
example, covers each of the function signatures defined in
the 2018 standard: num_images (), num_images (team),
and num_images (team_number), where team is of in-
trinsic type team_type and team_number is an integer.
For each allowable form of invocation, different lines test
keyword and non-keyword arguments; different keyword ar-
gument ordering; and variable, constant, or literal-constant
arguments. We also test each allowable argument type. For
example, the collective subroutine co_sum accepts a first
argument of any numeric type, so we test each of integer,
real and complex arguments in separate invocations.

The non-conforming statements include various disallowed
statement forms and procedure invocations with arguments
rendered invalid by their type, type parameters, array di-
mensions (rank), (im)mutability, or other attributes. For ex-
ample, if the standard requires a dummy argument to have
the intent (out) attribute, we intentionally violate the
argument’s intent specification by passing a literal constant.
We also test procedure invocations with incorrect numbers
of arguments, invalid or repeated keyword names, and other
static semantics violations. We check constraints the standard
requires compilers to report as errors as well as statically
verifiable non-conformance that the standard specifies but does
not require compilers to diagnose.

We use LLVM’s 11vm-1it testing tool [11], where tests
pass if and only if all lines of code marked by an ERROR
directive generate the error message provided in the directive
and no unmarked lines generate an error. The XFATIL directive
is used to mark a test that is expected to fail.

Our static semantics test suite reveals Flang’s current level
of parallel feature support. Many of our tests for intrinsic
procedures, for example, have revealed that the compiler
interpreted some intrinsic procedure references as user-defined
procedures with missing interfaces. In such cases, we mark
the corresponding tests with XFATL, thus directing attention
to features for which additional work will be needed for the
test to pass. In other cases, the interface for the intrinsic
procedure is already available, but our tests have revealed
potential programmer mistakes that can be caught at compile
time but are not currently caught. Where feasible, our team
has added either the interface for the intrinsic procedures or
the additional static semantic analysis.

III. RUNTIME WORK

Because Flang cannot yet produce executable programs
from Fortran 2018 source code, we develop runtime tests in a
separate repository: Caffeine [12], a compiler-agnostic Fortran
2018 parallel runtime library that executes atop the GASNet-
EX [13, 14] networking middleware — see Fig. 2. We are also
developing Caffeine itself. We report elsewhere [15] on the
design and implementation of Caffeine.

Application

r—52°

System Runtime & Memory Technologies

Fig. 2. Caffeine system stack

IV. OUTCOMES

We have deployed static semantics tests for 32 of 41 parallel
statements and intrinsic procedures, including tests for intrinsic
functions that support coarrays, collective subroutines, syn-
chronization statements, and event statements. All 32 tests
have been pushed to the main branch of the upstream LLVM
Compiler Infrastructure project. Additional tests remain in-
development or in-review. Based on missing features identified
by our tests, the authors have contributed upstream additional
static semantic analysis and error checking for 11 parallel
features. We have also developed 44 runtime tests that we
exercise by developing Caffeine.

Rasmussen, Rouson, et al.: Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming

ACKNOWLEDGMENT

This research was supported in part by the Sustainable
Research Pathways for High Performance Computing (SRP-
HPC), a project of the Sustainable Horizons Institute. This
research was supported in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

REFERENCES

[1] LLVM Compiler Infrastructure project, https://github.
com/llvm/llvm-project.

[2] Flang Project in the Exascale Computing Project, https:
/Iwww.exascaleproject.org/research-project/flang/.

[3] Fortran Standards Committee JTC1/SC22/WGS, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:1997. International Organization
for Standardization (ISO), Dec 1997, https://www.iso.
org/standard/26933.html.

[4] Fortran Standards Committee JTC1/SC22/WGS, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2018. International Organization
for Standardization (ISO), Nov 2018, https://www.iso.
org/standard/72320.html.

[5] Fortran Standards Committee JTC1/SC22/WGS, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2004. International Organization
for Standardization (ISO), Nov 2004, https://www.iso.
org/standard/39691.html.

[6] Fortran Standards Committee JTC1/SC22/WGS, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2010. International Organization
for Standardization (ISO), Oct 2010, https://www.iso.org/
standard/50459.html.

[7] Lawrence Berkeley National Lab, Flang Testing project,
https://go.1bl.gov/flang-testing.

[8] M. Beedle and et al., Manifesto for Agile Software
Development, https://agilemanifesto.org/.

[9] K. Beck, Test-driven development: by example.
Addison-Wesley Professional, 2003.

[10] Lawrence Berkeley National Lab, Semantics Tests for
Parallel Features in LLVM Flang, https://github.com/
BerkeleyLab/flang-testing-project/projects/1.

[11] lit - LLVM Integrated Tester, https://llvm.org/docs/
CommandGuide/lit.html.

[12] Caffeine: CoArray Fortran Framework of Efficient In-
terfaces to Network Environments, https://go.lbl.gov/
caffeine.

[13] D. Bonachea and P. H. Hargrove, “GASNet-EX: A High-
Performance, Portable Communication Library for Exas-
cale,” in Proceedings of Languages and Compilers for
Parallel Computing (LCPC’18), ser. LNCS, vol. 11882.
Springer, October 2018, doi:10.25344/S4QP4W.

[14] GASNet, https://gasnet.lbl.gov.

[15] D. Rouson and D. Bonachea, “Caffeine: CoArray Fortran
Framework of Efficient Interfaces to Network Environ-

ments,” in Proceedings of the Eighth Annual Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC2022), November 2022, doi:10.25344/S4459B.

https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project
https://www.exascaleproject.org/research-project/flang/
https://www.exascaleproject.org/research-project/flang/
https://www.iso.org/standard/26933.html
https://www.iso.org/standard/26933.html
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/39691.html
https://www.iso.org/standard/39691.html
https://www.iso.org/standard/50459.html
https://www.iso.org/standard/50459.html
https://go.lbl.gov/flang-testing
https://agilemanifesto.org/
https://github.com/BerkeleyLab/flang-testing-project/projects/1
https://github.com/BerkeleyLab/flang-testing-project/projects/1
https://llvm.org/docs/CommandGuide/lit.html
https://llvm.org/docs/CommandGuide/lit.html
https://go.lbl.gov/caffeine
https://go.lbl.gov/caffeine
https://doi.org/10.25344/S4QP4W
https://gasnet.lbl.gov
https://doi.org/10.25344/S4459B

Video Walkthrough

m Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming oy

fFrrrfrrers IlI|

]
Fi

SAN DIEGO STATE

BERKELEY LAB UNIVERSITY

Katherine Rasmussenl, Damian Rousonl; Najé George2, Dan Bonacheal, Hussain Kadheml, Brian Friesen!

IL.awrence Berkeley National Laboratory, 258an Diego State University
go.lbl.gov/sc22-flang-testing

Runtime Tests

Introduction GitHub Project Board

Test-Driven Development Example

Problem e Employ agile software development CO SUM (A [, RESULT IMAGE, STAT, ERRMSG]) Because Flang cannot yet produce
LLVM's Flang Fortran compiler 1s practices S owme . gemn o ban - — = executable files from Fortran 2013
currently Fortran 95 comphlant, and Qrom Ern @ T O i § s Figure 3: Signature for the intrinsic collective subroutine, co_sum, as defined by the Fortran source code, we are developing runtime

e 'lest a comprehensive range of
standard-conforming and non-
conforming Fortran 2018 syntax

2018 standard. ‘a’ is the only required argument and the rest of the arguments are optional. tests in a separate repository: Caffeine.

the frontend can parse Fortran 2018.
However, Flang does not have a

comprehensive 2018 test suite and

8 OnLLVM main (10of 4) 8 OnLLVM main (2 of 4)

1 ! RUN: %python %S/test _errors.ov %s %flana fci
2[L XFAIL: | XFAIL directive to inform LLVM lit testing framework that test should expectedly fail. The

3 ! This test check$s foz . . ,
4 1| the co reduce inter{ UCStS fails since compiler doesn’t know the interface to the intrinsic subroutine co_sum.

5
6 program test_co_sum
7 implicit none

1 ! RUN: %python %S/test errors.ov %s %flana fc1

2 ! This test B {XFAIL directive removed. The test passes now that the compiler knows that co_sum is an
|

3 ! the co_reduce 1inte,ingic subroutine and knows its interface.

e (laffeine 1s a runtime library that
supports parallel Fortran 2018 features.

program test_co_sum

does not fully implement the static

lest-driven development: any

9 integer i, status, integer_array(l), coindexed_integer([#*], coindexed_result_imagel[x*]
10 complex ¢, complex_array(1,1,1, 1,1,1, 1,1,1, 1,1,1, 1,1,1)

4
5
6 implicit none
7
8

integer i, status, integer_array(l), coindexed_integer[#*], coindexed_result_image[*]
complex ¢, complex_array(1,21,212, 1,2,14, 1,1,12, 1,1,1, 1,1,1)

. 11 double precision d, double_precision_array(1) 10 double precision d, double_precision_array(1) C [f . h GASI I E}I
SemanthS Of the 2018 Standard. U] . . 12 real r, real_array(1l), coindexed_reall*] 11 real r, real_array(1l), coindexed_reall[x*] a elne runs a‘top t e et-
Contrlbuted tCStS that fall prOVlde a 13 character(len=1) message, coindexed_character[*], character_array(1l), repeated_message 12 character(len=1) message, coindexed_character[*], character_array(1l), repeated_message
14 logical bool 13 logical bool

. . 15 . . 14
SOlutiOIl SpeClﬁcathn for Nnéw features tO add 1? ' standard-conforming calls with no keyword arguments ___ 12 | ___ standard-conforming calls with no keyword arguments ___
18 ! Calls with only the required argument | 11 i th 1 h ired
. t() Flan 19 ! Argument 'a', shall be of a numeric type, test all Fortran numeric types i; : f\igu;e\git.a?n thli ;zqg;rz niégiginzype test all Fortran numeric types A I' t'
Agile software encourages early g o ol so () 13 | Argment o, ' pplication =
o 4 o o DOne 22 call co:sum(d) g@ Caii co_sumggg M
23 call co_sum(r) 1 ca co_sum
dellvery Of Worilng SOftware SUbJGCt tO 24 ! Calls with one optional argument, 'result_image' 22 call co_sum(r) P
. . 25 call co_sum(i, 1) 23 I Calls with one optional argument, 'result_image' !
. 26 I Calls with two optional arguments, 'result_image' and 'stat' 24 call co_sum(i, 1) L
COntlnu al].m DTOVCment. We are ® 27 call co_sum(c, 1, status)) 25 | Calls with two optional arguments, 'result_image' and 'stat' E
4 28 ! Calls with three optional arguments, 'result_image', and 'stat', and 'errmsg' 26 call co sum(c, 1, status)
: : : h h .l h : 1 e O ;ZJ,Z ?all\l co_s;nmfd: L SEatus’ message) 27 | Calls with %hr('ae optional arguments, 'result_image', and 'stat', and 'errmsg' R
mvestigating whether agile techniques CVC men 30! Argument ‘' mey be an array 28 call co_sum(d, 1, status, message)
. . 32 B a 29 ! Argument 'a' may be an array
Centered around palr programmlng gi !___ standard-conforming calls with keyword arguments ___ gi call co_sum(integer_array) . :
. 35 ! all arguments present 32 | ___ standard-conforming calls with keyword arguments ___ System Runtime & Memory Technologies
® . . 36 call co_sum(a=i, result_image=1, stat=status, errmsg=message) 33
and t€St'dr1V€n develOpment <TDD> . Test-drlven develop ent Statlcieg??tICStesztiyforpara"elfeatures 80% complete 8 open 32 closed 37 call co_sum(a = i, result_image = 1, stat = status, errmsg = message) 34 I all arguments present
m T 00 L Shenge order of Kemiord SIQUIENSS o eesage, stat-status 0 ool co-sun(aci, result image-d, stat-siaius, ermsg-nessage) 0 ov/caffeine
: - - —he a=Lh - ' - 36 call co_sum(a = i, result_image = 1, stat = status, errmsg = message) .lbl. / ff
can help Flang to rapidly progress to o | 57 1 ohangs ordor of keynard svaunonts S OV
41 I one optional argument not present . _ s _ _
F . e oy adomatedas Tode) Manage 42 call co_sum(a=i, stat=status, errmsg-message) gg call co_sum(result_image=1, a=1, errmsg=message, stat=status)
Ortran 2018 COmpllance. Because Of 43 call co_sum(ai%, result_%mageil,) errmsg=message) P ! 5 1 c c ¢ F C ff o . R &
. ’ DLt T e, ermogenessage) or more on (atleine, see: Rouson
Start 46 ! two optional arguments not present 42 call co_sum(a=1i, result_image=1, errmsg=message) .
th 6 p a r a, m O U Il t 1 mp O I't a Il C € O f x 47 call co_sum(az::Lr result_image=1) 43 call co_sum(a=i, result_image=1, stat=status) BOnaChea (2022) ¢¢ qufélne. COA?’?’G
. . . Find 48 call co_sum(af}, stat=status)) Ll . . .)/
. . Push to F 1. - h t h t f F t 201 8 11 1 f t t t t 49 call co_sum(a=1i, errmsg=message) 45 I two optional arguments not present .
arallelism 1n hlgh-perf()rm ance specification | | 1gure 1: fixhaustive list ot Fortran parallel programming features to tes o @ call (ai. result image-1) F F I of E J
p for a language WI'];'[C IISW test LLV&\/I Prﬁjegt - g; ! r11$ option?l arguments present) i g:ll gg_z:m(g:;: result_image Ceattotue) Ortran YAINEWOT, Qf fﬁczent ntezﬁcef z—O
. . : ased on main branch after h o lbl /ﬂ t t cail co_sumia=1 48 call co_sum(a=i errmsg=message)
computing, we are focusmg on feature in the ficati - ttps.//go. ZOV/11aNg-1CSting 53 . e - ' ° "
D) Fortran 2018 specification review and 54 |___ non-standard-conforming calls ___ . NgtMO?’k EﬂUZ?'OnmentS SCQQ WorkShOp
1 55 50 I no optional grguments present
d 11 1 f 1 Standard approva 56 | missing mandatory arguments 51 call co_sum(a=1) .
Fortran’s parallel features, commonly L) e e [N e produced for i coe . on the LLVM Infrastructure in HPC
< ’9 Yes gg call co_sum(result_image=1, stat=statUs, errmsg-message) 53 | ___ non-standard-conforming calls ___
54
denOted Coarray Fortran. We are 60 | repeated keyvyord arguments 55 IERROR: missing mandatory 'a=' argument * ERROR directives now produced for invalid code d . ° 10 5344/8445 9B
. ; . Y T ° T 2%_ coll co_sunla=i, azc) g? ?Eééogo_sqm(? . that match the error the compiler produces. Ol. >
. A . ! : missing mandatory 'a=' argument
developlng What We Delleve are th@ ‘ Omplle_ lme e St ‘ " erage 22 éalﬁy\::vgrgu;fgi;umintzzzl;pplled positionally by an earlier actual argument 53 call co_sum(result image-1, stat=status, errmsg-message)
. 65 - C 59
; i i gt 60 'ERROR: repeated keyword argument to intrinsic 'co_sum'
first comprehensive, open-source tests 2 ey Ut Bruments for axgunent 1z R~ 1, e
_ | type mismatch 61 call co_sum(a=i, a=c)
2 - Test Passes Test Passes 68 call co_sum(a=1+1) I 'a' argument is intent(inout) and must be definable 62
1 69 call co_sum(a=coindexed_reall[1]) ! 'a' argument to 'co_sum' may not be a coindexed object 63 IERROR: keyword argument to intrinsic 'co_sum' was supplied positionally by an earlier actual argument
for Fortran 2018 parallel features. We " G e s, e
7; ! irlwompatit(@e actuil grgumegtslfor argument 'result_image'I .) 65 call co_sum(i, 1, a=c) utcomes
° i ° 7 ca co_sum(1l, result_image=boo I type mismatc . (P 1 1
push our compile-time behavior tests 3 o co-sune, xesultinagesinteger.array) R G ot cosumiboot) oS pad e THORIERES
. . . No 75 1 incompatible actual arguments for argument 'stat' 2&93 (':Eli{Fl%OEo Q(L:"‘IC]L(J:}liig)Jument associated with INTENT(IN OUT) dummy argument 'a=' must be definable
76 11 _ (a=1i, 1t_i =1, stat=1+1, =) ! t is intent(out) d t be definabl - - . .
tO the maln LL\’ M-PTOJ@Ct I'CpOSltOI‘Y. 77 2:11 ﬁg_zﬁm(2t§t=§§iﬁdexﬂfgﬁtege§[i], ;r=d)errmsg neseags ! Zigﬂmgﬂt ;:yl:oinbeog coi:de;‘::z{ ob?eci e 70 IERROR: 'a' argurpent to 'co_sum' may not be a coindexed object
. C 78 call co_sum(r, stat=message) ! type mismatch 71 call co_sum(a=coindexed_real[1])
reate 79 call co_sum(i, stat=integer_array) I rank mismatch 72 Th B k 1 L b f k f h LLS/ |\ /I -
We pUSh OU.I‘ runtlme t€StS fOr parallel issue on DeY?lOp 80 73 IERROR: Actual argument for 'result_image=' has bad type 'LOGICAL(4)' e er e ey a Or O t e
. additional 81 | incompatible actual arguments for argument 'errmsg’ 74 call co sum(i, result image=bool)
) : - ' —1lmag
LLVM PI’O_]eCt support for 82 call co_sum(a=1i, result_image=1, stat=status, errmsg='c') ! argument is intent(inout) and must be definable 75 IERROR: 'result_image=' argument has unacceptable rank 1

Fortran features to the repository of

Repository and

language

In Progress

Positive Tests Negative Tests

83 call co_sum(c, errmsg=coindexed_character[1])
84 call co_sum(c, errmsg=i)

! argument may not be a coindexed object
! type mismatch

call co_sum(c, result_image=integer_array)

exascale networking middleware.

Project GitHub repository includes a

contribute - : ; 77 . . .
o o o feature 85 call co_sum(d, errmsg=character_array) I rank mismatch 78 IERROR: Actual t iated with INTENT(OUT) d t 'stat= t be definabl
the Caffeine parallel runtime library st g T Jo LERROR: Actuel argunent gssocisted with INTENTIOUT) dumty arounent stat=" must be definabie project board capturing an exhaustive
. 88 call co_sum(r, result_image=1, stat=status, errmsg-message, 3.%) g? !EE“;OE; ;S;?E’Ic :rggmﬁgz ;g iﬁggsgﬁll:l?ay n8§ be a coindexed object .
o . o ° . o ° () . . ° . . ° o o ca u at= 1 X 1 P a=

that we are Concurrently dGVGIOplng. Valid intrinsic function invocations or subroutine calls Invalid intrinsic function invocations or subroutine calls O eyword argunent with incorrect name By ERRORY et e s bad type ' CHARACTER (KIND=L, LEN=1 8 list of 41 parallel features to test.
91 call _sum(fake=3.4) 83 11 _ (r, stat=)
92 co-sHmTaKe 84 (!:ERROE? ?:Tai.:'saigumgf\iaﬁzs unacceptable rank 1

e Pair programming sessions ey e e (resie imegescoondexes Tesult magel 1l imesindowed. veallal g oo E-imRge” ge o co-sumll, statsintegerarray) We have pushed static semantics tests
32 errmsg=coindexed_character[1], stat=coindexed_integer[1]) 87 !ERROR: ActL(Jal argument associated with INTENT(IN OUT) dl)Jmmy argument 'errmsg=' must be definable
. o o . 5 88 call co_sum(a=i, result_image=1, stat=status, errmsg='c'
Obi eCtiVeS Wlth minimum requlred W.th t. 1 t I t.bl t Statlcally_checkable 97 end program test_co_sum gg !EI;I;OR: 'erfmsg' arg;men‘g ;cjg 'cc;o_ﬁum' ran[gc]r)c be a goindexed object fOr 82 SU.Ch features upStream tO
® . : 1 Op 10114 argumen N ncompa 110) (& argumen S]] fa C?—ngug' girt‘;e;°°1gre’f2rl—rﬁsa£?° :15’ . o ,
Valuable team member interactions arguments semantic violations Figure 4: Static semantics test excerpt for the el o mate, e P LLVM-Project: intrinsic functions
. . . call co_sum(d, errmsg=character_array) . * .
co_sum subroutine, this test expectedly fails. o o supporting parallelism, collective
e FExhaustively delineate all of the * Getteedback early and frequently ’ b Y 37 conl co_sum(r, Yeeult inagect, statostarie, eremsg.message 3.4) : : :
Y brout t brout
arallel rO rammin features in W].th a COmprehGHSIVG Set Wlth ke Ord ar ments PaSS nOt €I10U.gh PaSS tOO Manv ar uments Zg I'ERROR: unknown keyword argument to intrinsic 'co_sum' Su rou lnesj a OmlC Su rou lnesj
. . . R . YW U 100 call co_sum(fake=3.4) * *
IF), t go 1g8 g ® Leverage €XISt1ng glt and Glthllb Of Compatlble arguments g arguments y g ig% 'ERROR: 'a' argument to 'co_sum' may not be a coindexed object SynChronlzatlon Statements’ and more.
Or ran 103 'ERROR: 'errmsg' argument to 'co_sum' may not be a coindexed object
104 IERROR: 'stat' argument to 'co_sum' may not be a coindexed object . o o .
Dervel . & TTVM tools 105 cobd co.sm(zentintge coinnnd romiCimmls), srcolneat o), We have contributed additional static
¢ cvelop semantics tests 1or : : 167 - ' - : : :
P . With out-of-order Repeated keyword Invalid keyword 169 end progran test_co_sun semantic analysis and error checking

Flang covering statically checkable
program errors that the Fortran
standard obligates the compiler to

Leverage existing agile practices of
the LLLVM developer community:

e Use LLVM’s continuous

keyword arguments arguments arguments

Figure 5: Updated static semantics test excerpt for the
co_sum subroutine that passes after interface 1s added

for 11 missing parallel features exposed
by our tests. More contributions are
under development or 1n code review.

detect , , , o cumt]
{{"a", AnyNumeric, Rank::anyOrAssumedRank, Optionality::required, common::Intent::InOut}, .
E d f d 1nt€g1.’at10n <CI> tGSj[lnfraStrUCture {"result_image", AnyInt, Rank::scalar, Opt::Lonality: :optional, common: :Intent::In}, We COntrlbU_ted CIrror ChCCkS fOI' 2
® Xpan ronten Support) tO qU.lely ﬁX GI fallures. {"stat", AnyInt, Rank::scalar, Optionality::optional, common::Intent::0ut},

including additional error
checking, when tests identity
missing capabilities

e (Code reviews on Phabricator for

feedback, edits, and approvals

Figure 2: Diagram outlining the components ot the static semantic tests for intrinsic
functions and intrinsic subroutines

{"errmsqg", DefaultChar, Rank::scalar,

Optionality::optional, common::Intent::InOut}},
{}, Rank::elemental, IntrinsicClass::collectiveSubroutine},

Figure 6: Interface to compiler tor co_sum allows the test to pass when
combined with a static semantic check for coindexed objects (not shown).

non-parallel tfeatures.

We have developed 44 runtime tests

that we exercise by developing Gatfeine.

A2 U.s. DEPARTMENT OF

V3 \%
£ 2
1= sk
® 5
N S
2N 43
L ZaTES 0%

Office of Science

This research was supported in part by the Sustainable Research Pathways for High Performance Computing (SRP-HPC) a project of the Sustainable Horizons Institute.
This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

cCP

EXASCALE COMPUTING PROJECT

https://go.lbl.gov/caffeine
https://dx.doi.org/10.25344/S4459B
https://go.lbl.gov/flang-testing
https://go.lbl.gov/sc22-flang-testing

	I Introduction
	II Methodology
	II-A Agile Practices
	II-B Static Semantic Tests

	III Runtime Work
	IV Outcomes
	Acknowledgments
	References
	Poster

