
UC Irvine
UC Irvine Previously Published Works

Title
AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems

Permalink
https://escholarship.org/uc/item/01h0r48n

Authors
Ferlez, James
Shoukry, Yasser

Publication Date
2020

DOI
10.1145/3365365.3382213

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/01h0r48n
https://escholarship.org
http://www.cdlib.org/

AReN: Assured ReLU NN Architecture for Model Predictive
Control of LTI Systems

James Ferlez

University of California, Irvine

Dept. of Electrical Engineering and Computer Science

jferlez@uci.edu

Yasser Shoukry

University of California, Irvine

Dept. of Electrical Engineering and Computer Science

yshoukry@uci.edu

ABSTRACT
In this paper, we consider the problem of automatically designing

a Rectified Linear Unit (ReLU) Neural Network (NN) architecture

that is sufficient to implement the optimal Model Predictive Control

(MPC) strategy for an LTI system with quadratic cost. Specifically,

we propose AReN, an algorithm to generate Assured ReLU Archi-

tectures. AReN takes as input an LTI system with quadratic cost

specification, and outputs a ReLU NN architecture with the assur-

ance that there exist network weights that exactly implement the

associated MPC controller. AReN thus offers new insight into the

design of ReLU NN architectures for the control of LTI systems:

instead of training a heuristically chosen NN architecture on data –

or iterating over many architectures until a suitable one is found

– AReN can suggest an adequate NN architecture before training

begins. While several previous works were inspired by the fact that

both ReLU NN controllers and optimal MPC controller are both

Continuous, Piecewise-Linear (CPWL) functions, exploiting this

similarity to design NN architectures with correctness guarantees

has remained elusive. AReN achieves this using two novel features.

First, we reinterpret a recent result about the implementation of

CPWL functions via ReLU NNs to show that a CPWL function

may be implemented by a ReLU architecture that is determined by

the number of distinct affine regions in the function. Second, we

show that we can efficiently over-approximate the number of affine

regions in the optimal MPC controller without solving the MPC

problem exactly. Together, these results connect the MPC problem

to a ReLU NN implementation without explicitly solving the MPC

and directly translates this feature to a ReLU NN architecture that

comes with the assurance that it can implement the MPC controller.

We show through numerical results the effectiveness of AReN in

designing an NN architecture.

1 INTRODUCTION
End-to-end learning is attractive for the realization of autonomous

cyber-physical systems, thanks to the appeal of control systems

based on a pure data-driven architecture. By taking advantage of

the current advances in the field of reinforcement learning, several

works in the literature showed how a well trained deep NN that

is capable of controlling cyber-physical systems to achieve certain

tasks [7]. Nevertheless, the current state-of-the-art practices of de-

signing these deep NN-based controllers is based on heuristics and

hand-picked hyper-parameters (e.g., number of layers, number of

neurons per layer, training parameters, training algorithm) without

an underlying theory that guides their design. In this paper, we

focus on the fundamental question of how to systematically choose

the NN architecture (number of layers and number of neurons per

layer) such that we guarantee the correctness of the chosen NN

architecture.

In this paper, we will confine our attention to the state-feedback

Model Predictive Control (MPC) of a Linear Time-Invariant (LTI)

system with quadratic cost and under input and output constraints

(see Section 2 for the specific MPC formulation). Importantly, this

MPC control problem is known to have a solution that is Continuous

and Piecewise-Linear (CPWL)
1
in the current system state [5]. This

property renders optimal MPC controllers compatible with a ReLU

NN implementation, as any ReLU NN defines a CPWL function of

its inputs. For this reason, several recent papers focus on how to

approximate an optimal MPC controller using a ReLU NN [9].

However, unlike other work on the subject, AReN seeks to use

knowledge of the underlying control problem to guide the design

of data-trained NN controllers. One of the outstanding problems

with data-driven approaches is that the architecture for the NN is

chosen either according to heuristics or else via a computationally

expensive iteration scheme that involves adapting the architecture

iteratively and re-training the NN. Besides being computationally

taxing, neither of these provide any assurances that the resultant

architecture is sufficient to adequately control the underlying sys-

tem, either in terms of performance or stability. In the context of

controlling an LTI system, then, AReN partially addresses these

shortcomings: AReN is a computationally pragmatic algorithm that

returns a ReLU NN architecture that is at least sufficient to imple-

ment the optimal MPC controller described before. That is given an

LTI system with quadratic cost and input/output constraints, AReN

determines a ReLU NN architecture – both its structure and its size

– with the guarantee that there exists an assignment of the weights

such that the resultant NN exactly implements the optimal MPC

controller. This architecture can then be trained on data to obtain

the final controller, only now with the assurance that the training

algorithm can choose the optimal MPC controller among all of the

possible NN weight assignments available to it.

The algorithm we propose depends on two observations:

• First, that any CPWL function may be translated into a ReLU

NN with an architecture determined wholly by the number

of linear regions in the function; this comes from a careful

interpretation of the recent results in [3], which are in turn

based on the hinging-hyperplane characterization of CPWL

functions in [23] and the lattice characterization of CPWL

functions in [12].

• Second, that there is a computationally efficient way to over-

approximate the number of linear regions in the optimal

1
Although these functions are in fact continuous, piecewise-affine, the literature on
the subject refer to them as piecewise “linear” functions, and hence we will conform

to that standard.

ar
X

iv
:1

91
1.

01
60

8v
1

 [
cs

.L
G

]
 5

 N
ov

 2
01

9

BLANK, BLANK, BLANK James Ferlez and Yasser Shoukry

MPC controller without solving for the optimal controller
explicitly. This involves converting the state-region spec-

ification equation for the optimal controller into a single,

state-independent collection of linear-inequality feasibility

problems – at the expense of over-counting the number of

affine regions that might be present in the optimal MPC

controller. This requires an algorithmic solution rather than

a closed form one, but the resultant algorithm is computa-

tionally efficient enough to treat much larger problems than

are possible when the explicit optimal controller is sought.

Together these observations almost completely specify an algorithm

that provides the architectural guidance we claim.

Related work: The idea of training neural networks to mimic the

behavior of model predictive controllers can be traced back to the

late 1990s where neural networks trained to imitateMPC controllers

were used to navigate autonomous robots in the presence of obsta-

cles (see for example [15], and the references within) and to stabilize

highly nonlinear systems [8]. With the recent advances in both the

fields of NN and MPC, several recent works have explored the idea

of imitating the behavior of MPC controllers [1, 2, 10, 11, 18]. The

focus of all this work was to blindly mimic a base MPC controller

without exploiting the internal structure of the MPC controller to

design the NN structure systematically. The closest to our work are

the results reported in [9, 13]. In this line of work, the authors were

motivated by the fact that both explicit state MPC and ReLU NNs

are CPWL functions, and they studied how to compare the perfor-

mance of trained NN and explicit state MPC controllers. Different

than the results reported in [9, 13], we focus, in this paper, on how

to bridge the insights of explicit MPC to provide a systematic way

to design a ReLU NN architecture with correctness guarantees.

Another related line of work is the problem of Automatic Ma-

chine Learning (AutoML) and in particular the problem of hyper-

parameter (number of layers, number of neurons per layer, and

learning algorithm parameters) optimization and tuning in deep

NN, in general, and in deep reinforcement learning, in particular

(see for example [4, 6, 16, 17, 19] and the references within). In this

line of work, an iterative and exhaustive search through a manually

specified subset of the hyperparameter space is performed. Such a

search procedure is typically followed by the evaluation of some

performance metric that is used to select the best hyperparameters.

Unlike the results reported in this line of work, AReN does not

iterate over several designs to choose one. Instead, AReN directly

generates an NN architecture that is guaranteed to control the

underlying physical system adequately.

2 PROBLEM FORMULATION
2.1 Dynamical Model and Neural Network

Controller
We consider a discrete-time Linear, Time-Invariant (LTI) dynamical

system of the form:

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) (1)

where x(t) ∈ Rn is the state vector at time t ∈ N, u(t) ∈ Rm is the

control vector, and y(t) ∈ Rl is the output vector. The matrices A,
B, and C represents the system dynamics and the output map and

have appropriate dimensions. Furthermore, we consider controlling

(1) with a state feedback neural network controller NN :

NN : Rn → Rm (2)

while fulfilling the constraints:

ymin ≤ y(t) ≤ ymax, umin ≤ u(t) ≤ umax (3)

at all time instances t ≥ 0 where ymin,ymax,umin and umax are

constant vectors of appropriate dimension with ymin < ymax and

umin < umax (where < is taken element-wise).

In particular, we consider a (K-layer) Rectified Linear Unit Neu-

ral Network (ReLU NN) that is specified by composing K layer
functions (or just layers). A layer with i inputs and o outputs is

specified by a (o × i) real-valued matrix of weights,W , and a (o × 1)
real-valued matrix of biases, b, as follows:

Lθ : Ri → Ro

z 7→ max{Wz + b, 0} (4)

where the max function is taken element-wise, and θ ≜ (W ,b) for
brevity. Thus, a K-layer ReLU NN function as above is specified

by K layer functions {Lθ (i) : i = 1, . . . ,K} whose input and output

dimensions are composable: that is they satisfy ii = oi−1 : i =
2, . . . ,K . Specifically:

NN (x) = (Lθ (K) ◦ Lθ (K−1) ◦ · · · ◦ Lθ (1))(x). (5)

When we wish to make the dependence on parameters explicit,

we will index a ReLU function NN by a list of matrices Θ ≜
(θ (1), . . . ,θ (K)) 2. Also, it is common to allow the final layer func-

tion to omit the max function altogether, and we will be explicit

about this when it is the case.

Note that specifying the number of layers and the dimensions of
the associated matrices θ (i) = (W (i),b(i)) specifies the architecture
of the ReLU NN. Therefore, we will use:

Arch(Θ) ≜ ((n, o1), (i2, o2), . . . , (iK−1, oK−1), (iK ,m)) (6)

to denote the architecture of the ReLU NN NN Θ. Note that our

definition is general enough since it allows the layers to be of

different sizes, as long as oi−1 = ii for i = 2, . . . ,K .

2.2 Neural Network Architecture Specification
We are interested in finding an architecture Arch(Θ) for the NN Θ

such that it is guaranteed to have enough parameters to exactly

mimic the input-output behavior of some base controller µ : Rn →
Rm . Due to the popularity of usingmodel predictive control schemes

as a base controller [1, 2, 8, 10, 11, 15, 18], we consider finite-horizon

roll-out Model Predictive Control (MPC) scheme as the base con-

troller that the ReLU NN is trying to mimic its behavior.

Finite-horizon roll-out MPC maps the current state, x(t), to the

first control input obtained from the solution to an optimal control

problem over a finite time horizon Ny with the first Nu control ac-

tions chosen open-loop and the remaining Ny −Nu control actions

determined by an a-priori-specified constant-gain state feedback.

Since this control scheme involves solving an optimal control prob-

lem at each time t (with initial state x(t)), we will use the notation
xt ′ |t to denote the “predicted state” at time t ′ > t from the initial

state x(t) supplied to the MPC controller (the same notation as in

2
That isΘ is not the concatenation of the θ (i) into a single large matrix, so it preserves

information about the sizes of the constituent θ (i) .

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems BLANK, BLANK, BLANK

[5]). In particular, for fixed matrices P ,Q ≥ 0, R > 0 and K , we
define the cost function:

J (U ,x(t)) ≜ xTt+Ny |t P xt+Ny |t

+

Ny−1∑
k=0

[
xTt+k |t Q xt+k |t + u

T

t+k R ut+k |t
]

(7)

as a function of an (m × Nc + 1) control variables matrix:

U ≜
[
ut

T
;ut+1

T
; . . . ; ut+Nc

T

]
T

. (8)

Then the MPC control law is specified as:

µMPC : x(t) 7→ u∗t (9)

where [
u∗t

T

;u∗t+1

T

; . . . ; u∗t+Nc

T

]
T

= arg min

U
J (U ,x(t)) (10)

subject to the constraints:

ymin ≤ yt+k |t ≤ ymax k = 1, . . . ,Nc (11)

umin ≤ ut+k ≤ umax k = 0, 1, . . . ,Nc (12)

xt |t = x(t) (13)

xt+k+1 |t = Axt+k |t + But+k k ≥ 0 (14)

yt+k |t = Cxt+k |t (15)

ut+k = Kxt+k |t Nu ≤ k < Ny . (16)

The matrix P is typically chosen to reflect the quadratic cost-to-

go (using matrices Q and R) resulting from the feedback control K
applied from time-step t + Ny onwards (i.e. P is the solution to the

appropriate algebraic Ricatti equation). We will henceforth consider

only this scenario, since this is the most common one; furthermore,

since it doesn’t benefit from Ny >> Nc , we will henceforth assume

that Ny − 1 = Nc . For future reference, this problem then has:

ω ≜m · (Nc + 1) decision variables; and (17)

ρ ≜ 2 · l · Nc + 2 ·m · (Nc + 1) inequality constraints. (18)

2.3 Main Problem
We are now in a position to state the problem that we will consider

in this paper.

Problem 1. Given system matrices A, B and C (as in (1)); perfor-
mance matrices (cost function matrices) P ,Q ≥ 0, R > 0 (as in (7));
constant-gain feedback matrix K (as in (16)); and integer horizon
Nc > 1, choose a ReLU NN architecture Arch(Θ), such that there
exists a real-value assignment for the elements in Θ that renders:

NN Θ(x) = µMPC(x) (19)

for all x in some compact subset of Rn .

3 FRAMEWORK
As we have noted before, it is known that µMPC is a CPWL function

[5]. However, CPWL functions are usually specified using both

linear functions and regions as in this example:

f (x) =
{

2x + 3 x > 0

−2x + 3 x ≤ 0

. (20)

This specification is difficult to implement using ReLU NNs, though,

because the structure of a ReLU neural networks intertwines the
implementation of the linear functions and their active regions.

Fortunately, there are several representations of CPWL functions

that avoid the explicit specification of regions by “encoding” them

into the composition of nonlinear functions with linear ones. Recent

work [3, Theorem 2.1] considered one such representation based on

hinging hyperplanes [23], and showed that this representation can

be translated easily into a ReLU neural network implementation,

whenever the CPWL function is known explicitly.
Given the computational cost of computing µMPC explicitly, the

chief difficulty in Problem 1 thus lies in inferring the neural net-

work architecture Arch(Θ) without access to the explicit MPC con-

troller µMPC. Unfortunately, the hinging hyperplane representation

employed in [3, Theorem 2.1] cannot be easily used in this cir-

cumstance (for more about why this particular implementation is

unsuitable when µMPC is not explicitly known, see also Section 6.)

However, every CPWL function also has a (two-level) lattice
representation [25]

3
: unlike the particular hinging hyperplane rep-

resentation mentioned above, we will show that the lattice represen-

tation can be used to solve Problem 1 without explicitly solving for

µMPC. In particular, the lattice representation of a CPWL function

has two properties that facilitate this:

(1) It has a structure that is amenable to implementation with a

ReLU NN (by mechanisms similar to those used in [3]); and

(2) It is described purely in terms of the local linear functions
and the number of unique-order regions (exact definitions of
these terms are given in the next subsection) in the CPWL

function, both of which we can efficiently over-approximate

for µMPC.

Thus, a description of the lattice representation largely explains

how to solve Problem 1; we follow this discussion by connecting it

to a top-level description of our algorithm.

3.1 The Two-Level Lattice Representation of a
CPWL Function

To understand the lattice representation of a CPWL, we first need

the following definition. Throughout this subsectionwewill assume

that f : Rn → R is a CPWL function. All the subsequent discussion

can be generalized directly to the case when f : Rn → Rm .

Definition 1 (Local Linear Function). Let f : Rn → R be
a CPWL function. Then ℓ is a local linear function of f if there
exists an open setU ⊂ D ⊂ Rn such that for all x ∈ U :

f (x) = ℓ(x). (21)

The set of all local linear functions will be denotedR = {ℓ1, ℓ2, . . . , ℓN }.

The CPWL function in (20) consists of the two local linear functions

ℓ1(x) = 2x + 3 and ℓ2(x) = −2x + 3, for example.

The lattice representation is based on the following idea: Con-

sider the set of distinct local linear functions of f namely {(1, ℓ1(x)),
. . . , (N , ℓN (x))} along with the natural projections of this set π1 :

(i, ℓi (x)) ∈ N × R 7→ i and π2 : (i, ℓi (x)) ∈ N × R 7→ ℓi (x).
It follows from the fact that the f is continuous PWL function

3
The lattice representation is in fact an intermediary representation used to construct

the hinging hyperplane representation; see [23].

BLANK, BLANK, BLANK James Ferlez and Yasser Shoukry

`1

`2

`3

f

x′ x′′ x′′′

Figure 1: Ordering of local linear functions changes at the
boundary between linear regions: f is aCPWL functionwith
local linear functions ℓ1, ℓ2 and ℓ3. Note that ℓ1(x ′) ≥ ℓ2(x ′) ≥
ℓ3(x ′) and ℓ2(x ′) ≥ ℓ1(x ′) ≥ ℓ3(x ′) are two different orderings
at the boundary point x ′. Also note that the ordering can
change within a linear region: c.f. x ′′. See also [25, Figure 1].

that at least two local linear functions intersect for each x on the

boundary between linear regions. Therefore, the ordering of the

set {(1, ℓ1(x)), . . . , (N , ℓN (x))} by ≥ on the projection π2 induces

at least two different orderings of the projection π1 (see Figure 1

for an example). It is a profound observation nevertheless, because

it means that the relative ordering of the values {ℓ1(x), . . . , ℓN (x)}
can be used to decide which of the local linear function is “active” at

a particular x . This is illustrated in Figure 1; see also a similar figure

in [25, Figure 1]. This also suggests that we make the following

definition, which allows us to talk about regions in the domain of

f over which the order of the local linear functions is the same.

Definition 2 (Uniqe-Order Region (rephrasing of [25, Def-

inition 2.3])). Let f : D ⊂ Rn → R be a CPWL function with
N distinct local linear functions R = {ℓ1, . . . ℓN }; that is for all
x ∈ D, f (x) = ℓi (x) for some ℓi ∈ R. Then a unique-order re-
gion of f is a region O ⊆ D from the hyperplane arrangement
in Rn defined by those hyperplanes Hi j = {x : ℓi (x) = ℓj (x)}
that are non-empty. In particular, for all x in a unique-order region
O , ℓi1 (x) ≥ ℓi2 (x) ≥ · · · ≥ ℓiN (x) for some permutation of ik of
{1, . . . ,N }.

We are now in a position to describe the two-level lattice repre-

sentation of a CPWL function.

Theorem 1 (Two-Level Lattice Forms From Uniqe-Order

Regions [25, Theorem 4.1]). Let f be as in Definition 2 withM the
number of unique-order regions of f in D. Then there exists at most
M subsets si ⊆ {1, . . . ,N }, i = 1, . . . ,M such that:

f (x) = max

1≤i≤M
min

j ∈si
ℓj (x) ∀x ∈ D. (22)

3.2 Structure of the Main Algorithm
Having described in detail the lattice representation of a CPWL,

we return to the specific claims we made about how it structures

our solution to Problem 1.

We first note that the form (22) is well suited to implementation

with a ReLU neural network: it is comprised of linear functions and

1/2

−1/2

1/2

1/2

a

b

max{a, b}

1

1

−1

−1

−1

1

1

−1

Σ

Σ

Σ

Σ

max{·, 0}

max{·, 0}

max{·, 0}

max{·, 0}

Σ

Figure 2: Illustration of aReLUnetwork to compute themax-
imum of two real numbers a and b. See also [3].

max/min functions, so many observations from [3] apply to (22)

as well. In particular, the two-argument maximum function can be

implemented directly with a ReLU using the well-known identity

max{a,b} = a + b

2

+
|a − b |

2

(23)

and the following ReLU implementations of its constituent expres-

sions [3]:

|x | = max{x , 0} +max{−x , 0} (24)

x = max{x , 0} −max{−x , 0}. (25)

Thus max can be implemented by a NN NN Θmax
where:

Θmax = (
[

1 1

−1 −1

−1 1

1 −1

]
, [1

2
− 1

2

1

2

1

2
]) (26)

This implementation is illustrated in Figure 2. Using the min variant

of the identity (23), namely:

min{a,b} = a + b

2

− |a − b |
2

(27)

leads to a similar ReLU implementation of the two-argument mini-

mum function. In the previous notation, the architectures of these
max and min networks are the same, i.e. Arch(Θmax) = Arch(Θmin)
= ((2, 4), (4, 1)) with no activation function on the last layer.

This implementation further suggests a natural way to imple-

ment the multi-element max (resp. min) operation with a ReLU

network [3]. Such an operation can be implemented by deploying

the two-elementmax (resp.min) networks in a “divide-and-conquer”

fashion: the elements of the set to be maximized (resp. minimized)

are fed pairwise into a layer of two-element max (resp. min) net-

works; the output of that first max (resp. min) layer is fed pairwise

into a subsequent layer of two-element max (resp. min) networks,

and so on and so forth until there is only one output. Note that this

approach can also be used on sets whose cardinality is not a power

of two while maintaining a ReLU structure of the neural network

NN : the same value can be directed to multiple inputs as necessary.

This structure is illustrated in Figure 3 for a network that computes

the maximum of five real-valued inputs. Following this example, an

N -input max (or min) network maxN (resp. minN) is represented

by a parameter list ΘmaxN (resp. ΘminN) which has architecture:

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems BLANK, BLANK, BLANK

max{x1, x2, x3, x4, x5}

max

max

max

max

max

max

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

1/2

−1/2

1/2

1/2

1

1

−1

−1

−1

1

1

−1

max{·, 0}

max{·, 0}

max{·, 0}

max{·, 0}Σ

Σ

Σ

Σ

Σ

(network from Figure 2)

max5

Figure 3: Illustration of a ReLU network to compute the maximum of five real numbers {x1,x2,x3,x4,x5}. Callout depicts the
network from Figure 2. See also [3].

Arch(ΘmaxN) = Arch(ΘminN) =((
N , 2· ⌈N /2⌉

)
, ⌈N /2⌉ ·Arch(Θmax) ,

(⌈N /2⌉ − 1)·Arch(Θmax) , . . . , Arch(Θmax)
)

(28)

where c ·Arch(Θmax)means multiply every element in Arch(Θmax)
by c; nested lists are “flattened” as appropriate; and there is no

activation function on the final layer.

Now, given these multi-element max/min networks, the remain-

ing structure for a ReLU network implementation of the lattice

form (22) is clear: we need a neural network architecture capable of

(i) implementing f ’s local linear functions R = {ℓ1, . . . , ℓN } and
(ii) handling the selection of the subsets si . The implementation

of the local linear functions is straightforward using a fully con-

nected hidden layer. The selection can be handled by routing – and

replicating, as needed – the output of those linear functions to a

min network. Since we do not know the exact size of the subsets si
in (22), and hence the number of input ports for each min network,

we must use min networks with as many pair-wise min input ports

as there are local linear functions. Then, for subsets si of size less
than N , the architecture replicates some local functions multiple

times to different input ports of the same min network to achieve

the correct output. As discussed before, such replication does not

affect the correctness of the architecture. Moreover, there will be

one such min network for each unique-order region for a total of

M . This replicating and routing of signals can be accomplished by

an auxiliary fully connected linear layer with N inputs andM · N
outputs. Since the purpose of this layer is to allow the weights to

only select subsets of the local linear functions, this layer should

have the property that all of the weights are either zero or one, and

each output of the layer should select exactly one input. That is the

weight matrix for this layer should have a exactly one 1 in each

row with all of the other weights set to 0. For a real-valued CPWL

function f : Rn → R, this overall architecture is depicted in Figure

4. The selection and routing layer is depicted in red. The notation

Rŝi (x) reflects the routing and (one possible) replication of values

of the local linear functions, and it is defined as follows:

Rŝi (x) ≜
{(
{j}, ℓj (x)

)
: j ∈ si

}
∪
{(
{N + k}, ℓmax si (x)

)
: k = 1, . . . ,N − |si |

}
. (29)

(That is Rŝi (x) contains one copy of each of ℓj (x) : j ∈ si , and as

many additional copies of ℓmax si (x) as necessary to have N total

elements. In particular, maxp∈Rŝi (x) π2(p) = maxj ∈si ℓj (x).)
Finally, we note that it is straightforward to extend this archi-

tecture to vector-valued functions like µMPC. The structure of NN
(Section 2.1) means that a scalar pairwise min (or max) network can

trivially compute the element-wise minimum between two input

vectors by simply allowing more inputs and applying the weights

from Figure 2 in an element-wise (diagonal) fashion. The result is

an architecture that looks exactly like the one in Figure 4, only with

the number of outputsm multiplying the size of most signals.

The structure of the above described ReLU implementation is

general enough to implement any CPWL function f with N local

linear functions and M unique order regions. We state this as a

theorem below.

Theorem 2. Let f : Rn → R by CPWL with distinct local linear
functions R = {ℓ1, . . . , ℓN } andM unique order regions. Then there
is a parameter list ΘN ,M with:

Arch(ΘN ,M) =(
(n,N ·M)︸ ︷︷ ︸
linear layer

, M · Arch(ΘminN)︸ ︷︷ ︸
min layer

, Arch(ΘmaxM)︸ ︷︷ ︸
max layer

)
(30)

such that there exist an assignments for ΘN ,M that renders:

NN ΘN ,M (x) = f (x) ∀x ∈ Rn ,
whereM ·Arch(ΘminN)meansmultiply every element inArch(ΘminN)
byM , and where nested lists are “flattened” as needed. The final layers
of the min layer and the max layer lack activation functions.

Proof. The proof is constructive: the discussion above explains

the construction, which is based on [25, Theorem 4.1]. □

BLANK, BLANK, BLANK James Ferlez and Yasser Shoukry

Corollary 1. Any CPWL controller µ (such as µMPC) can be
implemented by a ReLU network Θ with architecture Arch(ΘN ,M) as
described in Theorem 2, where N is the number local linear functions
of µ andM is the number of unique-order regions of µ.

Note that in many cases it is hard to exactly know the parameters

N andM exactly. The next result show that our correctness claims

in Theorem 2 can be extended when an upper bound N ≥ N

and M ≥ M is used to design the neural network architecture as

explained in the next result.

Theorem 3. LetΘN ,M be a parameter list such thatArch(ΘN ,M)
is as specified in Theorem 2, (30), and let N ≥ N and M ≥ M . Then
there exists a parameter list ΘN ,M with Arch(ΘN ,M) as in (30) such
that:

NN ΘN ,M (x) = NN ΘN ,M
(x) ∀x . (31)

Proof. In order to implement the same function with a larger

network, the extra linear-layer neurons can simply duplicate calcu-

lations carried out by neurons in the smaller network. For example,

the extra neurons in the the first linear layer can duplicate the cal-

culation of ℓN , and the extra neurons in the second linear layer can

duplicate the calculation of the M th
subset of {ℓ1, . . . , ℓN }. This

will not change the output of the min and max layers. □

Note: when “embedding” a smaller network, ΘN ,M , into a larger

one, ΘN ,M , it is incorrect to set the extra parameters in ΘN ,M to

zero, as this could affect the output of the min and max networks!

Thus, to use this framework to obtain an architecture that is

capable of implementing µMPC, one needs to simply upper-bound

the number of local linear functions N in µMPC (ultimately without

solving the actual MPC problem) and upper-bound the number

of unique order regions M in µMPC. This is precisely the AReN

algorithm, as specified in Algorithm 1. The constituent functions

EstimateRegionCount and EstimateUniqueOrder are described
in detail in the subsequent sections Section 4 and Section 5, respec-

tively. The implementation of the function InferArchitecture
follows directly from the (constructive) discussion in this section.

input : system matrices A,B,C; cost matrices P ,Q ≥ 0, R > 0;

feedback matrix K ; horizon Nc
output : (K , dim(θ (1)

1
), . . . , dim(θ (K)

1
))

1 function GetArchitecture(A,B,C,P,Q,R,K,Nc)
2 N_est← EstimateRegionCount(A,B,C,P,Q,R,K,Nc)

3 M_est← EstimateUniqueOrderCount(N_est)
4 ArchList← InferArchitecture(N_est,M_est)
5 return ArchList
6 end

Algorithm 1: AReN.

4 APPROXIMATING THE NUMBER OF
LINEAR REGIONS IN THE MPC
CONTROLLER

In this section, we will discuss our implementation of the func-

tion EstimateRegionCount from Algorithm 1. A natural means to

approximate to the number of local linear functions of µMPC is to

approximate the number of maximal linear regions in µMPC.

Definition 3 (Linear Region of µMPC). A linear region of
µMPC is a subset of R ⊆ Rn over which µMPC(x) = L(x) for some
linear (affine) L : Rn → Rm . Amaximal linear region is a linear
region that is strictly contained in no other linear regions. Two linear
regions are said to be distinct if they correspond to different linear
functions, L.

Thus, the maximal linear regions of µMPC are in one-to-one corre-

spondence with the local linear functions in µMPC (Definition 1), so

an upper bound on the number of maximal linear regions in µMPC

is an upper bound on its number of local linear function, which in

turn will provide an over-approximation of N that can be used to

generate a NN architecture.

To upper bound the number of maximal linear regions effectively,

we need to consider in detail some specifics about how the piecewise

linear property arises in the solution for µMPC. Ultimately, µMPC

is piecewise linear because we have posed a problem for which (i)

the gradient of the Lagrangian (34) is linear in both the Lagrange

multipliers and the decision variable; and (ii) the dependence on

the initial state x(t) is linear. Linearity is important in both (i) and

(ii) because we are really not solving one optimization problem but

a family of them: one for each initial state x(t). Thus, the linearity
of the Lagrangian together with the linearity of the inequality

constraints in x(t) leads to an equation (a necessary optimality

condition) that is linear in both the Lagrange multipliers and the

initial state x(t): hence the piecewise-linear controller µMPC.

Moreover, the distinct linear regions of µMPC – i.e. those with

distinct linear functions – arise out of a particular aspect of the

aforementioned linear equations. In particular, the Lagrange mul-

tipliers, λ, and the initial state, x(t), appear together in a linear

equation that has different solutions – and hence creates different

linear regions for µMPC – based on which of the inequality con-

straints are active (at a particular optimizer) [5, Theorem 2]. Since

the linear regions obtained in this way partition the domain of

µMPC (see also Proposition 1 below), this suggests that we can over-

approximate the number of linear regions in µMPC by counting

all of the possible constraints that can be active at the same time.

Indeed, this is more or less how EstimateRegionCount arrives at
an estimate for N , although we do not simply over-approximate

with 2
of constraints

.

4.1 The Optimal MPC Controller
As preparation for the rest of the section, we begin by summarizing

some further details regarding the solution of µMPC from [5]. In

particular, the optimization problem specified by (7)-(16) can be

simplified by directly substituting the dynamics constraint (14) to

get:

min

U

{
1

2

x(t)T Y x(t) + 1

2

U T H U + x(t)T F U

}
(32)

subject to: GU ≤W + Ex(t)

with appropriately defined matricesH , F ,G ,W and E of dimensions

(ρ × ρ), (n ×ω), (ρ ×ω), (ρ × 1) and (ρ × n), respectively (where ω
and ρ are defined in (17) and (18), respectively). Then, completing

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems BLANK, BLANK, BLANK

x=

x1

x2

...
xn

`1(x)

...

`2(x)

`N (x)

(M min nets)

maxM 1

(linear layer)

...

minN

...

Σ

Σ

Σ

...

Σ

Σ

Σ

...

Σ

Σ

Σ

...

Σ

Σ

Σ

...
minN

minN

N

N

N

Mn

f(x)

1

1

1

minj∈s1 `i(x)

minj∈s2 `i(x)

minj∈sM `i(x)

Σ

Σ

Σ

x1

x2

xn

Rŝ1(x)

Rŝ2(x)

RŝM (x)

Real-valued weights (trainable)

Binary weights (trainable)

...

Figure 4: Illustration of the overall architecture to implement a scalar CPWL function. The symbols for various signals are
indicated above the line, and their dimensions are indicated below the line. The red lines represent a fully-connected linear
layer in which the weights flowing into a single summer have the property that exactly one of them is equal to 1, and the
others are all 0. Rŝi (x) is defined in (29).
the square by means of the change of variables z ≜ U +H−1FTx(t)
provides the following, simplified quadratic program [5]:

min

z

{
1

2

zT H z

}
subject to: Gz ≤W + Sx(t). (33)

Note that this change of variables is only valid whenH is invertible,

but this is assumed in [5], and it will be assumed throughout.

A solution to the optimization problem in (33) can be easily

formulated using the KKT (necessary) optimality conditions [14].

This results in the following system of equations:

Hz +GTλ = 0 λ ∈ Rρ (34)

λi (Giz −Wi − Six) = 0 i ∈ 1 . . . ρ (35)

λ ≥ 0 (36)

Gz ≤W + Sx . (37)

That is for a (local) minimizer to the optimization problem (33), there

exists non-negative Lagrange multipliers λ that solve the above

system. Moreover, solving (34) for the minimizer, z, demonstrates

that such a minimizer has a particular structure. Indeed, under

the assumption that H is invertible, we may solve (34) for z and

substituted it into (37) to obtain:

−GH−1GTλ ≤W + Sx . (38)

Now given the relevance of active constraints in (34) - (37) to[5,

Theorem 2], we introduce the following notation.

Definition 4 (Selector Matrix). Let α ⊆ {1, . . . , ρ}, and de-
fine the auxiliary set (and associated vector):

α̃ ≜ {(1,min

j ∈α
j), . . . , (|α |,max

j ∈α
j)}.

Then the selector matrix, Ĩα is defined as:

Ĩα ≜ [eα̃ (1), . . . , eα̃ (|α |)]T (39)

where ej is the jth column of the (ρ × ρ) identity matrix.

The selector matrix can thus be used to describe equality in

(38) for the active constraints by removing inequalities associated

with the inactive constraints. In particular, given a set of active

constraints specified by a subset α ⊆ {1, . . . , ρ}, the Lagrange

multipliers for the active constraints, λα , will satisfy the following:

− ĨαG(H−1GTĨTα)λα = Ĩα (W + Sx). (40)

In particular, (40) is a linear equation in λα and x that ultimately

specifies the region in x-space over which a single affine function

characterizes µMPC. Indeed, back substituting solutions of (40) into

(37) and λ ≥ 0 specifies a set of linear inequalities in x . These equiv-
alently define an intersection of half-spaces in Rn that characterize

a (convex) linear region of µMPC [5, Theorem 2]. Moreover, since

every possible solution to the optimization problem admits some

set of active constraints, these convex linear regions partition the

state space.

For our purposes, (40) is the relevant consequence of this discus-

sion, since it most readily suggests how to over-approximate the

number of linear regions of µMPC. We describe how to do this in

the next subsection.

4.2 Over-approximating the Number of
Maximal Linear Regions

From the previous discussion, the problem of finding all possible

sets of active constraints for (34) - (37) is a significant amount of

the work in solving for the optimal controller µMPC. However, we

BLANK, BLANK, BLANK James Ferlez and Yasser Shoukry

are content not solving for µMPC exactly: thus, we only need to

simplify (40) in such a way that we obtain a new equation with all

of the same solutions plus some spurious ones (keep in mind that

(40) is an equation in α , too).
Before we begin counting regions, we need to state the following

proposition, which is trivial given the observations in [5].

Proposition 1. Let ¯R be a maximal linear region for controller
µMPC. Then there exists a finite collection of sets Γ ¯R = {αi ⊆ {1, . . . , ρ} :

i = 1, . . .V } with the following property:

• for every x ∈ ¯R, there exists an αx ∈ Γ and |αx | Lagrange
multipliers λαx ≥ 0 such that:

ĨαxGH
−1GTĨTαx λαx = Ĩαx (W + Sx). (41)

In particular, any maximal linear region of µMPC can be partitioned
into |Γ | convex linear regions.

Proof. Since we are considering a maximal linear region of

µMPC, the quadratic program (33) is feasible for every x ∈ ¯R by

definition. Consequently, there is for every such x , a unique solution
z∗x

4
, and so by necessity, there is some set of constraints αx ⊆

{1, . . . , ρ} that is active at z∗x . Moreover, by the KKT necessary

conditions, there exists |α | Lagrange multipliers λαx that satisfy

(41). This proves the existential assertions for x ∈ ¯R related to (41).

However, we have implicitly defined a function that associates

to each x ∈ ¯R a subset in 2
{1, ...,ρ }

:

act : Rn → 2
{1, ...,ρ }

x 7→ αx . (42)

We define Γ ¯R = act(¯R) to be the range of act, so that equivalence

modulo act partitions
¯R into |Γ | disjoint regions. Finally, by [5,

Theorem 2] and the discussion about degeneracy on [5, pp. 9], each

of these regions is necessarily convex. □

Proposition 1 gives us a hint about how to over-approximate the

number of maximal linear regions: in particular, we will simplify

equation (41) in such a way that we still find solutions for each

α ∈ Γ at the expense of including solutions for α < Γ. This gives us
our first main counting theorem:

Theorem 4. Let Ξ ⊆ 2
{1, ...,ρ }\∅ such that for every α ∈ Ξ there

exists a vector ηα ∈ Rρ such that:

GH−1GTĨαλα = ηα . (43)

has a solution λα ≥ 0, λα , 0. Then |Ξ|+1 upper bounds the number
of maximal linear regions for µMPC.

Proof. If we show that for every maximal linear region
¯R, the

Γ ¯R ⊆ Ξ ∪ ∅, then the conclusion will follow.

But this follows directly from Proposition 1: for each α ∈ Γ ¯R ,

there exists an x and α = λαx such that (41) holds. Thus if λα = λαx
and λαx , 0, then set α = αx , ηα =W + Sx and conclusion holds.

The situation when no constraints are active is accounted for with

the addition of 1 in the final conclusion. □

4
This is because H is positive definite [5, pp. 9].

Theorem 4 is significant because Farkas’ lemma [14] tells us how

to describe the solutions of (43) using a linear inequality feasibility

problem. In particular, (43) has a non-trivial solution if and only if

the problem (GH−1GTĨTα)Tχ ≤ 0 is feasible (and it can’t have only
the trivial solution for non-trivial λα). This reasoning is included
in the proof of the subsequent Theorem, which connects the bound

from Theorem 4 to the number of feasible “sub-problems” defined

by GH−1GT
. First, we introduce the following definition.

Definition 5 (Non-trivially Feasible). Let V be a (ρ × ρ ′)
matrix and let α ⊆ {1, . . . , ρ}. Then α is a non-trivially feasible
subset of V if there exists a χ ∈ Rρ′ , χ , 0 such that IαV χ ≥ 0.
Such a set ismaximal if adding any other row makes it infeasible.

Now we state the main theorem in this section.

Theorem 5. Let I be the set of maximal non-trivially feasible
subsets of GH−1GT (see Definition 5). Then the number of maximal
linear regions in µMPC is bounded above by:��� ⋃

α ∈I
2
α
��� ≤ ∑

α ∈I
2
|α | . (44)

Proof. This follows from Farkas’ lemma and Theorem 4.

In particular, let α ⊆ {1, . . . , ρ} and ηα , 0 ∈ Rρ . Now, by
Farkas’ lemma,

∃λα ≥ 0 . GH−1GTĨαλ
T

α = ηα ⇔

∃χ ∈ Rρ s.t. ηTα χ < 0 and Ĩα (GH−1GT)Tχ ≤ 0. (45)

In particular,GH−1GTĨαλ
T

α = ηα can have a non-negative solution

if and only if α is a non-trivially feasible subset of (GH−1GT)T.
Thus, by Theorem 4, we conclude that α ∈ Ξ implies α is a non-

trivially feasible subset of (GH−1GT)T, and hence, that the number
of maximal linear regions is bounded by the number of non-trivially
feasible subsets of GH−1GT

. The conclusion of the theorem thus

follows because every non-trivially feasible subset is a subset of

some maximally non-trivially feasible subset. □

4.3 Implementing EstimateRegionCount

To find maximal non-trivially feasible subsets ofGH−1GT
, we start

by introducing one Boolean variable bi for each column of the

matrix GH−1GT
. The first non-trivially feasible subset can then be

found by solving the following problem:

arg max

(b1, ...,bρ ,λ)∈Bρ×Rω

ρ∑
i=1

bi (46)

subject to bi ⇒ [GH−1GT]iλ < 0, i = 1, . . . , ρ (47)

where [GH−1GT]i denotes the ith column of the matrix GH−1GT
.

Such optimization problems can be solved efficiently using Satisfia-

bility Modulo Convex programming (SMC) solvers [21, 22]. SMC

solvers first use a pseudo-Boolean Satisfiability (SAT) solver to find

a valuation of the Boolean variables that maximizes the objective

function (46); this is then followed by a linear programming (LP)

solver that finds solutions to the constraints in (47). Indeed, the

SAT solver may return an assignment for the Boolean variables

b1, . . . ,bρ for which the corresponding LP problem is infeasible. In

such a case, we use the LP solver to search for a set of Irreducibly

Infeasible Set (IIS) that explains the reason behind such infeasibility.

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems BLANK, BLANK, BLANK

input : system matrices A,B,C; cost matrices P ,Q ≥ 0, R > 0;

feedback matrix K ; horizon Nc
output :N_est

1 function EstimateRegionCount(A,B,C,P,Q,R,K,Nc)
2 G_Hinv_Gtr← GetHyperplanes(A,B,C,P,Q,R,K,Nc)

3 NumHyperplanes← Dimensions(G_Hinv_Gtr)[0]

4 (h[1], . . . , h[NumHyperplanes]) ← G_Hinv_Gtr
5 (b[1], . . . , b[NumHyperplanes]) ←

createBooleanVariables(NumHyperplanes)
6 Solutions← () ; SATConstraints← ()

7 while True do
8 SATsolver.setConstraints(SATConstraints)

9 SATsolver.Maximize(
∑NumHyperplanes
i=1

b[i])
10 if not SATsolver.SAT?() then
11 break
12 end
13 HyperplaneSet← G_Hinv_Gtr.
14 GetHyperplanes(SATsolver.TrueVars())
15 Feasible?← CheckFeasibility(HyperplaneSet*z

≤ −ε)
16 if not Feasible? then
17 IIS← GetIIS(HyperplaneSet)
18 SATConstraints.Append(

∨
h[i]∈IIS ¬b[i])

19 else
20 Solutions.Append(HyperplaneSet)
21 SATConstraints.Append (

22
∑
h[i]∈HyperplaneSetb[i]< |HyperplaneSet|⇒

23
∑
h[i]<HyperplaneSet b[i] ≥ 1

24)

25 end
26 end
27 return N_est← CountAllUniqueSubsets(Solutions)
28 end

Algorithm 2: EstimateRegionCount.

This IIS is then encoded into a constraint that prevents the SAT

solver from returning any assignment that can lead to the same

IIS. We iterate between the SAT solver and the LP solver until one

Boolean assignment is found for which the corresponding LP prob-

lem is feasible. It follows from maximizing the objective function

that this set of active constraints is guaranteed to be a maximal

non-trivially feasible subset of GH−1GT
.

Once amaximal non-trivially feasible subset ofGH−1GT
is found,

we can add a blocking Boolean constraints to the SAT solver, thus

preventing the SAT solver from producing any subsets of this maxi-

mal non-trivially feasible set.We continue this process until the SAT

solver can not find any more feasible assignments to the Boolean

variables, at which point our algorithm terminates and returns all

of the non-trivially feasible subsets it has obtained. This discussion

is summarized in Algorithm 2 whose correctness follows from the

correctness of SMC solvers [21, 22].

5 APPROXIMATING THE NUMBER OF
UNIQUE-ORDER REGIONS IN THE MPC
CONTROLLER

In this section, we discuss our implementation of EstimateUniqueOrder
fromAlgorithm 1. Unlike our implementation of EstimateRegionCount,
which we could base of aspects of the MPC problem, the imple-

mentation of this function merely exploits a general bound on the

number of possible regions in an arrangement of hyperplanes.

In particular, we noted in Definition 2 that the unique-order

regions created by a set of local linear functions R = {ℓ1, . . . , ℓN }
correspond to the regions in the hyperplane arrangement specified

by non-empty hyperplanes of the form Hi j = {x : ℓi (x) = ℓj (x)},
each of which is a hyperplane in dimension of n (when x ∈ Rn).

There seems to be a well-known – but rarely stated – upper

bound on the number of regions that can be formed by a hyperplane

arrangement of N hyperplanes in dimension n. The few places

where it is stated (e.g [20, Lemma 4]) seem to ambiguously quote

Zaslavsky’s Theorem [24, Thoerem 2.5] in their proofs. Thus, we

state the bound, and sketch a proof.

Theorem 6. Let A be an arrangement of N hyperplanes in di-
mension n. Then the number of regions created by this arrangement,
r (A) is bounded by:

r (A) ≤
n∑
i=0

(
N

i

)
(48)

(with equality if and only if A is in general position [24, pp. 4]).

Proof. First, we note that the bound holds with equality for

arrangements in general position (defined on [24, pp. 4]); this is

from [24, Proposition 2.4], a consequence of Zaslavsky’s theorem

[24, Theorem 2.5]. Thus, the claim holds if every other arrangement

has fewer regions than an arrangement in general position with

the same number of hyperplanes.

This is indeed the case, but it helps to have a little bit of termi-

nology first. In particular, we introduce the general formula for the

number of regions in a hyperplane arrangement, r (A), in terms

of a triple of hyperplane arrangements (A,A ′,A ′′) [24, pp. 13],
namely [24, Lemma 2.1]:

r (A) = r (A ′) + r (A ′′). (49)

Such a triple is formed by choosing a distinguished hyperplane

Hd ∈ A, and defining A ′ as A\{Hd } and A ′′ as the arrangement

of hyperplanes {H∩Hd , ∅ : H ∈ A ′}. Note thatA ′′ characterizes
the regions in A ′ that are split by Hd .

From here, we will only provide a brief proof sketch. The proof

proceeds by induction: first on the number of hyperplanes in n = 2,

and then on by induction on the dimension, n. For n = 2, the result

can be shown for arrangements of size N using (49), and noting that

r (A ′′) = N if and only if Hd intersects all the other hyperplanes

exactly once. This, together with the induction assumption, shows

r (A) can satisfy the claim with equality only if A is in general

position. For n > 2, the proof proceeds similarly, using (49) to

invoke the conclusion for n − 1 as necessary. □

Thus, our implementation of EstimateUniqueOrderCount sim-

ply computes and returns the value in (48). In the worst case, this

estimate is 2
of hyperplanes

: this occurs for example when N = n.

BLANK, BLANK, BLANK James Ferlez and Yasser Shoukry

But for N >> n, this bound clearly grows more slowly than expo-

nentially in N . This is extremely helpful in keeping the size of the

second linear layer in Figure 4 of a reasonable size.

We conclude this section by noting that the result in Theorem

6 may be used to state Theorem 3 independently ofM entirely. In

particular, we have the following theorem.

Theorem 7. Let f be a CPWL function, and let N be an upper-
bound on the number of local linear functions in f . Then for M ′ =∑n
i=0

(N
i
)
there exists a parameter list ΘN ,M ′ with Arch(ΘN ,M ′) as

in (30) such that:

f (x) = NN ΘN ,M′
(x) ∀x . (50)

6 DISCUSSION: HINGING HYPERPLANE
IMPLEMENTATIONS

For comparison, we will make some remarks about the hinging

hyperplane representation used in [3, Theorem 2.1].

Theorem 8 (Hinging Hyperplane Representation [23]). Let
f : Rn → R be a CPWL function. Then there exists a finite integer
K and K non-negative integers {ηk : k = 1, . . . ,K}, each less than
n + 1, such that

f (x) =
K∑
k=1

σk max

{
L(k)

1
(x),L(k)

2
(x), . . . ,L(k)ηk (x)

}
∀x ∈ Rn

(51)

for some collection of L(k)i , i ∈ {1, . . . ,ηk }, each of which is an affine
function of its argument x , and each constant σk ∈ {−1,+1}. (Each
L(k)i beyond the first one is referred to as a “hinge”. That is ηk − 1 is
the number of “hinges” in the k th summand.)

The problem with creating a NN architecture from Theorem 8

is that its proof provides only an existential assertion – by means

of explicit construction – and that construction relies heavily on

particular knowledge of the actual local linear functions in the

CPWL [23, Theorem 1]. Thus, the number K in (51) – which is

essentially the only architectural parameter in the ReLU – has a

complicated dependence on the particular CPWL function (see [23,

Corollary 3] as it appears in the proof of [23, Theorem 1]). This

even makes it difficult to “replay” the proof of Theorem 8 and

upper-bound the size of the existential assertions in each step as

necessary; there are naive upper bounds for each step, but they

lead to an extravagant number of max operations (exponentially

many, in fact).

Moreover, a further complication is that hinging hyperplane rep-

resentations need not even be unique. For example, consider f (x) =
|x |: for this function, K = 1 works because |x | = max{x ,−x}. But
the same function could also be implemented as

|x | = max{−x , 3x + 4} −max{0x , 4x + 4} +max{0x , 2x} (52)

which has K = 3 and five different linear functions L. However,
this clearly suggests an alternate approach to upper-bounding the

steps in Theorem 8: create an architecture derived from the CPWL

with the largest minimal hinging-hyperplane representation. We

conjecture that such a maxi-min hinging hyperplane form would

in fact lead to fewer max units than the lattice representation used

in AReN. Unfortunately, as far as we are aware, there exists no

such minimal characterization in the literature (as a function of the

number of local linear functions, say), so we leave consideration of

this problem to future work.

7 NUMERICAL RESULTS
The function EstimateRegionCount (Algorithm 2) is the bottle-

neck in Algorithm 1. Therefore, we chose to benchmark Algorithm

2 to gage the overall performance of our proposed framework. We

implemented EstimateRegionCount using SAT solver Z3 and con-

vex solver CPLEX using their respective Python interfaces. We

tested our implementation on single-input,single-output MPC prob-

lems in two contexts: (1) with a varying number of states; and (2)

with a varying prediction horizon Nc . The computer used had an

Intel Core i7 2.9-GHz processor and 16 GB of memory.

Figure 5 (top) shows the performance of Algorithm 2 as a func-

tion of the number of plant states, n, with all other parameters held

constant. The estimated number of local linear functions N_est

output by EstimateRegionCount is plotted on one axis; the max-

imum number of linear functions needed, 2
ρ
, is also shown for

reference. The other axis shows the execution time for each prob-

lem in seconds. It follows from Theorem 5 that the number of plant

states doesn’t change the number of constraints and hence does

not contribute to the complexity of Algorithm 2. Note that Algo-

rithm 2 reported a number of local linear functions that is one order

of magnitude less than the maximum number of linear functions

needed, 2
ρ
while taking less than 1.5 minutes of execution time.

Figure 5 (bottom) shows the performance of our algorithm (in

semi-log scale) as a function of the number of constraints, ρ, with
all other parameters held constant (n = 100). The estimated number

of linear functions output by EstimateRegionCount is plotted on

one axis; the maximum number of linear functions needed, 2
ρ
,

is also shown for reference. The other axis shows the execution

time for each problem in seconds. Again, we notice an order of

magnitude difference between the reported number of local linear

functions versus the maximum number of linear functions needed,

2
ρ
. Indeed, the execution time is affected by increasing the number

of constraint, nevertheless, Algorithm 2 terminates in less than 1.5

hours for a system with more than 300,000 maximal linear regions.

REFERENCES
[1] Bernt M Akesson and Hannu T Toivonen. A neural network model predictive

controller. Journal of Process Control, 16(9):937–946, 2006.
[2] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Dif-

ferentiable mpc for end-to-end planning and control. In Advances in Neural
Information Processing Systems, pages 8289–8300, 2018.

[3] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Under-

standing Deep Neural Networks with Rectified Linear Units. 2016.

[4] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural

network architectures using reinforcement learning. arXiv:1611.02167, 2016.
[5] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopoulos.

The explicit linear quadratic regulator for constrained systems. Automatica,
38(1):3–20, 2002.

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-

mization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.
[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, et al. End to end learning for self-driving cars. arXiv:1604.07316, 2016.
[8] L Cavagnari, Lalo Magni, and Riccardo Scattolini. Neural network implemen-

tation of nonlinear receding-horizon control. Neural computing & applications,
8(1):86–92, 1999.

[9] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M. Morari.

Approximating Explicit Model Predictive Control Using Constrained Neural

AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems BLANK, BLANK, BLANK

100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

number of states n

ex
ec

ut
io

n
tim

e
[s

ec
]

Execution time

0

0.5

1

1.5

2

2.5

·105

nu
m

be
ro

fl
oc

al
fu

nc
tio

ns
N

e
s
t

Execution Time
Number of local functions

Max number of local functions

2 4 6 8 10 12 14 16 18 20 22

10−2

10−1

100

101

102

103

104

Number of constraints ρ

ex
ec

ut
io

n
tim

e
[s

ec
]

Execution time

100

101

102

103

104

105

106

107

nu
m

be
ro

fl
oc

al
fu

nc
tio

ns
N

e
s
t

Execution Time
Number of local functions

Max number of local functions

Figure 5: Execution time results: (top) when the number of
states n increases for a fixed number of constraints and (bot-
tom) when the number of constraints ρ increases for a fixed
number of states n = 100.

Networks. In 2018 Annual American Control Conference (ACC), pages 1520–1527,
2018.

[10] Arthur Claviere, Souradeep Dutta, and Sriram Sankaranarayanan. Trajectory

tracking control for robotic vehicles using counterexample guided training of

neural networks. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, pages 680–688, 2019.

[11] Michael Hertneck, Johannes Köhler, Sebastian Trimpe, and FrankAllgöwer. Learn-

ing an approximate model predictive controller with guarantees. IEEE Control
Systems Letters, 2(3):543–548, 2018.

[12] C. Kahlert and L. O. Chua. A generalized canonical piecewise-linear representa-

tion. IEEE Transactions on Circuits and Systems, 37(3):373–383, 1990.
[13] Benjamin Karg and Sergio Lucia. Efficient representation and approximation of

model predictive control laws via deep learning. arXiv:1806.10644, 2018.
[14] David G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons,

1997.

[15] J Gomez Ortega and EF Camacho. Mobile robot navigation in a partially struc-

tured static environment, using neural predictive control. Control Engineering
Practice, 4(12):1669–1679, 1996.

[16] Supratik Paul, Vitaly Kurin, and ShimonWhiteson. Fast efficient hyperparameter

tuning for policy gradients. arXiv:1902.06583, 2019.
[17] Fabian Pedregosa. Hyperparameter optimization with approximate gradient.

arXiv:1602.02355, 2016.
[18] Marcus Pereira, David D Fan, Gabriel Nakajima An, and Evangelos Theodorou.

Mpc-inspired neural network policies for sequential decision making.

arXiv:1802.05803, 2018.
[19] Yao Quanming, Wang Mengshuo, Jair Escalante Hugo, Guyon Isabelle, Hu Yi-Qi,

Li Yu-Feng, Tu Wei-Wei, Yang Qiang, and Yu Yang. Taking human out of learning

applications: A survey on automated machine learning. arXiv:1810.13306, 2018.
[20] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding

and Counting Linear Regions of Deep Neural Networks. arXiv:1711.02114, 2018.
[21] Yasser Shoukry, Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Sanjit A

Seshia, George J Pappas, and Paulo Tabuada. SMC: Satisfiability Modulo Convex

optimization. In Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control (HSCC), pages 19–28. ACM, 2017.

[22] Yasser Shoukry, Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Sanjit A

Seshia, George J Pappas, and Paulo Tabuada. Smc: Satisfiability modulo convex

programming. Proceedings of the IEEE, 106(9):1655–1679, 2018.
[23] Shuning Wang and Xusheng Sun. Generalization of hinging hyperplanes. IEEE

Transactions on Information Theory, 51(12):4425–4431, 2005.
[24] Richard P Stanley. An Introduction to Hyperplane Arrangements. page 90.

[25] J. M. Tarela and M. V. Martínez. Region configurations for realizability of lattice

Piecewise-Linear models. Mathematical and Computer Modeling, 30(11):17–27,

1999.

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Dynamical Model and Neural Network Controller
	2.2 Neural Network Architecture Specification
	2.3 Main Problem

	3 Framework
	3.1 The Two-Level Lattice Representation of a CPWL Function
	3.2 Structure of the Main Algorithm

	4 Approximating the number of linear regions in the MPC controller
	4.1 The Optimal MPC Controller
	4.2 Over-approximating the Number of Maximal Linear Regions
	4.3 Implementing EstimateRegionCount

	5 Approximating the Number of Unique-Order Regions in the MPC Controller
	6 Discussion: Hinging Hyperplane Implementations
	7 Numerical Results
	References

