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ABSTRACT

We have conducted a search for new strong gravitational lensing systems in the Dark
Energy Spectroscopic Instrument Legacy Imaging Surveys’ Data Release 8. We use
deep residual neural networks, building on previous work presented in Huang et al.
(2020). These surveys together cover approximately one third of the sky visible from the
northern hemisphere, reaching a z-band AB magnitude of∼ 22.5. We compile a training
sample that consists of known lensing systems as well as non-lenses in the Legacy
Surveys and the Dark Energy Survey. After applying our trained neural networks
to the survey data, we visually inspect and rank images with probabilities above a
threshold. Here we present 1210 new strong lens candidates.

Keywords: galaxies: high-redshift – gravitational lensing: strong

1. INTRODUCTION

Strong gravitational lensing systems are a powerful tool for astrophysics and cosmology. They have
been used to study how dark matter is distributed in galaxies and galaxy clusters (e.g., Kochanek
1991; Koopmans & Treu 2002; Bolton et al. 2006; Koopmans et al. 2006; Vegetti & Koopmans 2009;
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Tessore et al. 2016; Monna et al. 2017; Jauzac et al. 2018; Shajib et al. 2019; Meneghetti et al. 2020),
and are uniquely suited to probe dark matter substructure beyond the local universe (e.g., Vegetti
et al. 2014, 2018; Ritondale et al. 2019; Diaz Rivero & Dvorkin 2020). Furthermore, by modeling
galaxy-scale strong lenses as the sum of luminous and dark components, the mass-to-light ratio and
inner density profile of the dark matter halo can be simultaneously constrained (e.g., Auger et al.
2010; Sonnenfeld et al. 2019; Shajib et al. 2020). Such measurements for a large number of lensing
systems over a wide range of redshifts makes it possible to study the structural evolution of massive
elliptical galaxies, and possibly in the future, lenses of any Hubble type (e.g., Sonnenfeld et al. 2015;
Nightingale et al. 2019). For nearby strong lensing galaxies, extra-galactic tests of General Relativity
can be performed by combining lens modeling with spatially resolved stellar kinematic observations
(Collett et al. 2018).

For redshifts beyond the range that lensing galaxies can typically probe, together with high resolu-
tion imaging (from the Hubble Space Telescope, adaptive optics, or the James Webb Space Telescope
in the near future), strong lensing as an cosmic telescope magnifies spectral (e.g., Cornachione et al.
2018) and spatial features (e.g., Marshall et al. 2007; Patŕıcio et al. 2019; Vanzella et al. 2020) of the
lensed distant galaxies, providing the only way to study the morphology and internal structures of
galaxies at sub-kpc scales at high redshifts that can extend to z > 2.

Recent measurements of the Hubble constant H0 span a range of ∼10% (e.g., Abbott et al. 2017,
2018; Riess et al. 2019; Wong et al. 2019; Freedman et al. 2019, 2020; Planck Collaboration et al.
2020; Khetan et al. 2020; Philcox et al. 2020; Choi et al. 2020), and significant tension between
predictions for H0 based on early-universe observables and direct late-universe measurements remain
(e.g., Verde et al. 2019). Multiply-lensed supernovae (SNe) are ideal for measuring time delays and H0

because of their well-characterized light curves, and in the case of Type Ia, with the added benefit
of standardizable luminosity (Refsdal 1964; Treu 2010; Oguri & Marshall 2010). In recent years,
strongly lensed supernovae, both core-collapse (Kelly et al. 2015; Rodney et al. 2016) and Type Ia
(Quimby et al. 2014; Goobar et al. 2017), have been discovered. Time-delay H0 measurements from
multiply imaged supernovae can therefore be an important independent approach to address the
discrepancy between H0 measured locally and the value inferred from the CMB (e.g., Goldstein &
Nugent 2017; Goldstein et al. 2018a,b; Wojtak et al. 2019; Pierel & Rodney 2019; Suyu et al. 2020).

Furthermore time delay H0 measurements are a powerful complement to other independent mea-
surements of the dark energy equation of state (e.g., Linder 2011; Treu & Marshall 2016). Beyond
the flat ΛCDM cosmological model, by combining strong lensing time delay of multiply-imaged time-
varying sources and SNe Ia distance measurements, one can determine H0 in a model-independent
way and measure the spatial curvature (e.g., Li et al. 2018; Taubenberger et al. 2019; Collett et al.
2019), and test the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric (Räsänen et al. 2015).

For many of these analyses, the available sample sizes of confirmed strong lenses is a major limiting
factor. In the last few years, several groups have used convolutional neural networks to search
for strong lensing systems in photometric surveys including, in increasing sky coverage, CFHTLS
(Jacobs et al. 2017), KiDS (Petrillo et al. 2017, 2019; Li et al. 2020), DES (Jacobs et al. 2019a,b),
and Pan-STARRS (Canameras et al. 2020).



Strong Lenses in DESI Legacy Surveys 3

Data release 8 (DR8) of the DESI Legacy Surveys1 (Dey et al. 2019), for which at least z band
is observed with a 4-m telescope, covers ∼14,000 deg2, three times the size of the DES footprint.
In Huang et al. (2020, H20), we identified hundreds of new strong lenses in the Legacy Surveys
Data Release 7 (DR7) by using a residual neural network. In this paper, building on H20, we have
significantly improved the efficiency of the neural network and report the discovery of new strong
lensing systems over a wide ranged of redshifts in DESI Legacy Surveys DR8.

This paper is organized as follows. A brief description of the Legacy Surveys is given in § 2. In § 3,
we describe our methodology, including the improvements we have made on H20. In § 4, we show
the inference results and present our best strong lensing system candidates. We discuss our results
in § 5, and conclude in § 6.

2. OBSERVATIONS

The Legacy Imaging Surveys consist of three projects: the Dark Energy Camera Legacy Survey
(DECaLS), observed by the Dark Energy Camera (DECam; Flaugher et al. 2015) on the 4-m Blanco
telescope at the Cerro Tololo Inter-American Observatory; the Beijing-Arizona Sky Survey (BASS),
by the 90Prime camera (Williams et al. 2004) on the Bok 2.3-m telescope owned and operated by the
University of Arizona located on Kitt Peak; and the Mayall z-band Legacy Survey (MzLS), by the
Mosaic3 camera (Dey et al. 2016) on the 4-meter Mayall telescope at Kitt Peak National Observatory.
Together they cover ∼14,000 deg2 of the extragalactic sky visible from the northern hemisphere with
at least three passes in each of the three bands, grz. The 5σ z-band median limiting AB magnitude
is 22.5 mag for galaxies with an exponential disk profile with rhalf = 0.45′′.

The combined survey footprint is split into two contiguous areas by the Galactic plane. DECaLS
covers the∼9000 deg2 δ . +32◦ sub-region of the Legacy Surveys, while BASS/MzLS the∼ 5000 deg2

northern sub-region. Figure 1 shows the different regions in the the Legacy Surveys footprint and
the depth of the z-band observation.

1 http://www.legacysurvey.org/

http://www.legacysurvey.org/
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Figure 1. The DESI Legacy Imaging Surveys footprint in an equal area Aitoff projection in equatorial
coordinates. The blue and gold borders approximately outline the north (coinciding with MzLS/BASS) and
south (residing within DECaLS) regions of the spectroscopic survey, respectively. Slightly above δ = 32◦,
there is a small amount of overlap between the imaging surveys. Patches with different shades of blue
indicate the depth in z band: light for between three and seven passes; medium, between seven and ten, and
dark, greater than ten. Note that DECaLS includes the DES footprint, but has incomplete coverage below
δ ≈ −32◦ in Data Release 8.

For DECaLS (gold outline in Figure 1), the delivered image quality has FWHM of approximately
1.29, 1.18, 1.11′′ for g, r, and z bands, respectively. For the δ & +32◦ (blue outline in Figure 1)
footprint of the Legacy Surveys, MzLS has imaged in z-band that complemented the BASS g- and
r-band observations in the same sub-region, with median delivered image quality of approximately
1.61′′, 1.47′′, and 1.01′′ for g, r, and z bands, respectively.

The Legacy Surveys used The Tractor package (Lang et al. 2016) as a forward-modeling approach
to perform source extraction on pixel-level data. The Tractor takes as input the individual images
from multiple exposures in multiple bands, with different seeing in each. After source detection,
the point source (“PSF”) and spatially extended (“REX”, round exponential galaxy) models are
computed for every source and the better of these two is used when deciding whether to keep the
source. The spatially extended sources (REX) are further classified if χ2 is improved by 9 by treating
it as a deVaucouleurs (DEV), an exponential (EXP) profile, or a composite of DEV + EXP, or
COMP2. The same light profile (EXP, DEV, or COMP) is consistently fit to all images in order to
determine the best-fit source shape parameters and photometry.

The categories of DEV and COMP indicate the classification of elliptical galaxies. Given that the
vast majority of lensing events are caused by massive early type galaxies, we decided to first target
objects with DEV and COMP classifications, and then REX, which tend to be smaller and/or fainter
galaxies.

2 http://legacysurvey.org/dr8/description/

http://legacysurvey.org/dr8/description/
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3. THE TRAINING SAMPLE AND RESIDUAL NEURAL NETWORKS

Deep convolutional neural networks (CNNs) and their variations have been shown to be highly ef-
fective in image recognition. In recent years, this technique has been successfully applied to recognize
instances of strong lenses in simulations (e.g., Metcalf et al. 2018, and references therein). As men-
tioned in § 1, several groups have searched for and found strong lenses in existing imaging surveys.
In all these efforts, at least the positive examples (lenses) in the training samples were constructed
from simulated lenses, typically on the order of O(105). This is because the number of known lenses,
on the order of several hundred, is thought to be too small to effectively train CNN models. Building
on H20, we continue to use only observed data for lenses and non-lenses in our training sample. In
this section (and § 4), we show we can train deep neural networks with a much smaller sample and
far fewer positive examples and achieve comparable if not superior results. In § 3.1, we describe our
training sample. We show the training results using the residual neural network from Lanusse et al.
(2018) in § 3.2. Finally in § 3.3, we present an improved neural network model.

3.1. Training Sample

The Master Lens Database3 (Moustakas et al. 2012), which contains hundreds of lensing events
discovered prior to 2016, provided the initial list for the lens training sample. We have since added
several hundred more lenses and lens candidates from more recent publications (Carrasco et al. 2017;
Diehl et al. 2017; Pourrahmani et al. 2018; Sonnenfeld et al. 2018; Wong et al. 2018; Jacobs et al.
2017, 2019a,b; and H20). Initially our primary goal was to find lenses in DECaLS, part of which was
observed by DES. Therefore in total we have identified 632 previously known lenses or lens candidates
in DECaLS and DES, to be used in our training sample. For the lenses in the DES footprint, we
only include grz bands. We also assemble ∼ 21, 000 non-lens image cutouts from DECaLS and DES,
all with at least three passes in each of the grz bands, a z-band mag < 20.0, and typed as DEV or
COMP, randomly distributed in the footprint. Given that on average we expect one strong lens in
O(104) galaxies (e.g., Collett 2015; Jacobs et al. 2019b) incidental inclusion of a lens or two in these
randomly selected galaxies is not a significant concern.

In the training sample of H20, we found that the images for the lenses tend to be much deeper than
the non-lenses. This led to the neural net during the inference stage preferentially assigning high
probabilities to images with deeper observations whether they are lenses or not. To correct for this
bias, given that many (359) of our lenses in the training sample are from DES south of δ = −18◦ with
deeper observations (see Figure 2), we have included in the non-lens sample five thousand random
cutout images from the same region.

As with H20, included in the non-lens sample are cutouts selected by eye so as to cover as many
non-lens configurations as possible, especially cases that can potentially be confused by the neural
net. These include spiral galaxies of different sizes and spiral arm configurations, elliptical galaxies,
galaxy groups, images having objects with different colors (typically a blue galaxy next to a red
one), cosmic rays appearing in different bands (some of which have curved trajectories), unusual
arrangements of galaxies or stars, and finally certain data reduction artefacts.

3 http://admin.masterlens.org/index.php

http://admin.masterlens.org/index.php
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Figure 2. Previously known lenses or lens candidates in our training sample shown as red dots, against
the background of the depth map of Legacy Surveys DR8 (see the caption for Figure 1). The lenses south
of the DESI spectroscopic footprint (gold outline) are from DES.

Figure 3. The yellow and violet columns show the fractions of lenses and non-lenses in the training sample,
respectively, for the three bins of z-band depth.

The distribution of the lenses and non-lenses in our training sample is shown in Figure 3. While
fractionally there are still more non-lenses in the shallowest bin and more lenses in the deepest bin,
overall the disparity between the relative proportions of lenses and non-lenses in each depth bin is
much improved compared with the training sample in H20.
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3.2. Residual Neural Networks

We use the Residual Neural Network (ResNet) model of Lanusse et al. (2018, L18), after re-
implementing it in TensorFlow4. We have left their architecture and hyperparameters unchanged
(for details, see Section 3.3 of L18), except that we double the batch size to 256. The lens and
non-lens images in the training sample are cutouts with a dimension of 101 × 101 pixels, following
the specification in the Lens Challenge (Metcalf et al. 2018).

We split the training sample into training and validation sets, with a ratio of 7:3. We then train
the ResNet on Google Colab5 using a GPU (NVIDIA Tesla v100). The 120 epochs of training took
4 hours.

The ResNet attempts to minimize the cross entropy loss function:

−
N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (1)

where yi is label for the ith image (1 for lens and 0 for non-lens), and ŷi ∈ [0, 1] is the model predicted
probability.

While the loss function is monitored during the training process to determine the point of termi-
nation, the overall performance of the trained model is typically assessed by the Receiver Operating
Characteristic (ROC) curve. The ROC curve shows the True Positive Rate (TPR) vs. the False
Positive Rate (FPR) for the validation set, where P(ositive) indicates a lens and N(egative), a non-
lens. With the definitions True Positive (TP) = correctly identified as a lens, False Positive (FP) =
incorrectly identified as a lens, True Negative (TN) = correctly rejected, and False Negative (FN) =
incorrectly rejected,

TPR =
TP

P
=

TP

TP + FN

and

FPR =
FP

N
=

FP

FP + TN

The curve is generated by gradually increasing the threshold probability for a positive identification
from 0 to 1. Random classifications will result in a diagonal line in this space with an area under the
ROC curve (or AUC) equal 0.5. For a perfect classifier, AUC = 1.

In Figure 4, left panel, we show how the cross entropy loss functions vary as training progresses.
For the validation set, we show the value at every epoch. For the training set, the cross entropy was
reported for every step, which we have boxcar smoothed with a window size of 57. This is because
the training set has a total of 14,725 images, with a batch size of 256 images, it takes approximately
57 steps to complete one full training epoch. Figure 4 shows that the AUC for the validation set has
plateaued well within the 120 epochs of training. We achieve an AUC of 0.992 for the validation set
(Figure 4, right panel). This is a significant improvement over an already high AUC of 0.977 from
H20.

4 https://www.tensorflow.org/
5 https://colab.research.google.com/

https://www.tensorflow.org/
https://colab.research.google.com/
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Figure 4. Left: The cross entropy loss functions for the training and validation sets over 120 epochs.
Right: The receiver operative characteristic (ROC) curve for the validation set with the area under the curve
(AUC) = 0.992 for the last model after 120 epochs of training.

3.3. Improvement on the L18 Model

We have experimented with a variety of ways to improve on the model in L18, including transfer
learning and domain adaptation (e.g., Tzeng et al. 2017), among other techniques. We will provide
the full results of the comparisons from these different approaches in a future publication.

So far we have run inference and visually inspected the results for one of the variants. In this modi-
fication on the original L18 model was the addition of “shielding” layers, inspired by the InceptionNet
architecture of Szegedy et al. (2014). These “shields” are 1× 1 convolutional layers inserted between
every three blocks of the L18 architecture (see their Figure 4), so named because they have the ef-
fect of reducing dimensionality and mitigating the exponential increase in computational complexity
present in the original architecture. With appropriate adjustments to the number of channels in the
shielding layers, we reduce the number of trainable parameters by a factor of 50 (from 3 million to 60
thousand), thereby shortening the training time by 17%. Moreover, the validation AUC has increased
from 0.992 (using the original L18 model; § 3.2) to 0.997. Thus the reduction in model complexity
does not appear to have an adverse impact on performance, and in fact has improved it. This is
likely because the problem at hand (to tell lenses apart from non-lenses) although complex, does not
require a large number of dimensions in the underlying latent space. The addition of “shielding”
layers compresses dimensionality by more than an order of magnitude, forcing the network to learn
only the most salient features. For example, in the final block of the architecture in L18 (see their
Figure 4) we experimented with reducing the output from 512 channels to 256, 128, 64, 32, and 16
channels. We find that “shields” that keep the output to 32 channels perform the best.

In § 4, we will show lens candidates from both the original model in L18 and the “shielded” model
(the one with 32 output channels), to achieve greater completeness for the lens search in DR8 and
to demonstrate that a different neural network model can identify new lens candidates.

4. RESULTS

In this section we present the lens candidates. In § 4.1, we present all the candidates found by using
the ResNet model of L18, specifically: § 4.1.1, candidates that are DEV or COMP in DECaLS; § 4.1.2,
candidates that are DEV or COMP found in BASS/MzLS, and § 4.1.3, candidates that are typed as
REX in DECaLS and MzLS. In § 4.2, we show candidates that are found with the “shielded” model
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(see § 3.3). To determine the probability threshold for human inspection, we consult the precision-
recall curve (PRC), where precision = TP/(TP+FP) and recall = TP/(TP + FN), which is the same
as TPR (§ 3.2). The PRC for the validation set, with probability threshold values marked, is shown
in Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Validation Set

Figure 5. The precision-recall curve for the validation set. The blue points from left to right correspond
to probability threshold values from 0.9 to 0.1 with an interval of 0.1.

We recognize that different terms have been used for the same quantities. To avoid confusion, in
this paper:

recall = TPR = completeness

and
precision = purity

This redundancy in terminology in part stems from fairly standard usage (e.g., recall or TPR de-
pending on the context) and in part from the difference in terminology between machine learning
and astrophysics (recall or completeness, precision or purity).

While ideally we would like to identify all the lenses that are discoverable in the data set, there is
a ceiling to the number of images that can be inspected in a reasonable amount of time. We choose
the threshold of 0.1 because it seems to be a reasonable compromise between purity (precision) and
completeness (recall). Keep in mind that the PRC provides completeness and purity for the validation
set. For deployment on the whole data set, it is not possible to determine the completeness without
inspecting the entire data set, which is infeasible. We will address the question of completeness in the
context of comparing the results of different neural network models in a future publication (see § 3.3).
Since our training sample has a lens to non-lens ratio (∼ 1 in 33) that is much higher than expected
for the data set as a whole (∼ 1 in 104), we estimate the expected purity for deployment at our chosen
probability threshold of 0.1 in the following way. Given the 7:3 training and validation split, there
are approximately Nl = 190 lenses and Nnl = 6300 non-lenses in the validation set. The number
of non-lenses misclassified as lenses is then ∼ 33(= Nl × r × 1−p

p
), where r(= 0.87) and p(= 0.83)

are the recall (or, completeness) and precision (or, purity), respectively. The fraction of non-lenses
that are misclassified as lenses is 33/Nnl ≈ 0.00052. With the expectation of one strong lens in
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O(104) galaxies, this translates to a purity of 1 in 52, or 1.9%. We will refer to all cutout images
with probabilities above this threshold as the ResNet “recommendations”. Below, through human
inspection, we will compare the percentage of lens candidates relative to the “recommendations”
with this estimated purity for deployment. (Note that in H20, we used the term “human inspection
efficiency” for this quantity).

Throughout this section, all objects we run inference on have ≥ 3 passes for all three bands and z-
band mag < 20.0. For the ensuing human inspection, we follow this process. Co-authors S.B., A.G.,
A.P., V.R., C.S., W.S., and R.V. make the “first pass” selections, according to these criteria, erring
on the generous side: small blue galaxy/galaxies (red galaxies are rare but certainly acceptable) next
to the red galaxy/galaxies at the center that

• are typically 1 - 5′′ away

• have low surface brightness

• curve toward the red galaxy/galaxies

• have counter/multiple images with similar colors (especially in Einstein-cross like configuration)

• are elongated (including semi- or nearly full circles)

Typically, most candidates do not have all these characteristics. In general, the greater the number
of characteristics listed above an image has, the higher they are ranked by humans. For the “second
pass”, co-authors X.H. and A.D. examine all “first pass” selections and assign an integer score
between 1 and 4. These two scores are averaged. We assign a letter grade according to the average,
using the following criteria. For the third criterion below, and for the rest of the paper, we define
the angular scale of the a candidate system as the angular separation between the lens and the
most prominent putative arc. Note that this can be somewhat different from (and in the case of a
single large tangential arc, tends to be larger than) the extent of the critical curve (e.g., Narayan &
Bartelmann 1996; Kneib & Natarajan 2011).

• ≥ 3.5: Grade A. We have a high level of confidence of these candidates. Many of them have
one or more prominent arcs, usually blue. The rest have one or more clear arclets, sometimes
arranged in multiple-image configurations with similar colors (again, typically blue). However,
there are clear cases with red arcs.

• = 3.0: Grade B. They have similar characteristics as the Grade A’s. For the cutout images
where there appear to be giant arcs they tend to be fainter than those for the Grade A’s.
Likewise, the putative arclets tend to be smaller and/or fainter, or isolated (without counter
images).

• = 2.5 or 2.0: Grade C. They generally have features that are even fainter and/or smaller than
what is typical for Grade B candidates, but that are nevertheless suggestive of lensed arclets.
Counter images are often not present or indiscernible. In a number of cases, the angular scales
of the candidate systems are comparable to or only slightly larger than the seeing. Therefore,
for some of these candidates, to attain a higher level of certainty, higher spatial resolution or
deeper data would be required.
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For Grade B and C candidates, we have included a small percentage of cases where it is difficult to
judge whether it is a lensing event vs. a coincidental placement of galaxies, a spiral galaxy, a ring
galaxy, or tidal features associated with galaxy interactions.

4.1. Lens Candidates from the L18 ResNet

Below we present all the strong lens candidates found by using the ResNet model in L18.

4.1.1. Candidates from DEV and COMP in DECaLS

Searching for strong lenses among the DEV and COMP objects in the DECaLS region originally
was our primary goal. Our training sample is selected from the same region (see Figure 2). We
deploy our model on ∼ 10 million cutouts centered on galaxies typed as DEV or COMP. With the
probability threshold set at 0.1, in total we have examined 22, 879 ResNet recommendations.

We have found 115 Grade A, 110 Grade B, and 501 Grade C candidates. The locations of these
candidates in the sky are shown in Figure 6. In total, we have identified 726 candidates, achieving a
purity of approximately 1 in 31 ResNet recommendations.

Figure 6. The new candidate lensing systems typed as DEV and COMP by The Tractor in the DECaLS
and BASS/MzLS regions (see Figure 1 caption) are shown as red (Grade A), black (Grade B), and yellow
(Grade C) circles.

We now briefly discuss the purity of the ResNet results thus far, since this is the primary data set
in which we originally planned to search for lenses.
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Figure 7. The orange columns (left y-axis) show the percentages of objects given a greater than 0.1
probability by our ResNet model (or “recommendations”) for the three bins of z-band depth. The gray
columns (right y-axis) show the percentages of ResNet recommendations that are selected as lens candidates
through human inspection, or, the purity. The number of recommendations or candidates for each bin is
shown atop the corresponding column.

In H20, we noted that due to the composition of our training sample (comparatively smaller number
of non-lens images with deep observations), the neural net showed a preference for images with deep
observations, whether they contain lensing systems or not. For the inference results in this paper,
Figure 7 shows how a) the percentage of the ResNet recommendations relative to the objects and
b) the percentage of candidates (determined by human inspection) relative to recommendations
depend on the observational depth (see Figure 1). For the three depth bins, the percentages of
lens candidates relative to the neural net recommendations are similar, approximately between 2.2 -
3.8%. This indicates that the neural net now makes recommendations largely free of bias with regard
to depth. This is consistent with our expectation based on the composition of the training sample
used in this paper. The orange columns show that 0.82% of the objects in the 10+ pass bin receive
probability > 0.1 (“recommendations”), five times the value of 0.16% in the 3 - 7 passes bin. This
trend in the ResNet recommendations indicates that, not surprisingly, there are more lenses to be
discovered for deeper images. In fact, approximately one in 16,337, 8795, 3710 galaxies is a lens,
from the shallowest to the deepest bin, assuming 100% completeness. These values are consistent
with the expectation of one strong lens in O(104) galaxies.

Overall, our ResNet model achieves a purity of 3.2%, broadly consistent with our estimation of
1.9% (see the introduction to § 4). Compared with H20, this much improved purity likely stems
from three factors: 1) a larger (by about ∼ 60%) training sample; 2) the lenses in the training sample
are all well observed in DECaLS with clearly discernible lensing features; and 3) the non-lenses in the
training sample includes a large number of images from DES that have observations with comparable
depth as the lenses from DES in our training sample, which significantly reduced, if not eliminated,
the ResNet’s bias toward images with greater depth.
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4.1.2. Candidates from Deployment on DEV and COMP in BASS/MzLS

For the northern MzLS/BASS region, the gr band observations have worse seeing. Given the
success of the deployment in DECaLS, however, we decide to proceed with applying our trained
ResNet model, without modification or re-training, to this region.

We run inference on 5.4 million cutouts centered on DEV and COMP objects, with z-band magni-
tude < 20.0. The inspection of 8761 ResNet recommendations finds 29 A’s, 22 B’s, and 103 C’s. The
locations of the candidates in the sky are shown, together with the candidates found in DECaLS, in
Figure 6. In total, we have identified 154 candidates, approximately 1 in 57 ResNet recommenda-
tions. As expected, the purity of the ResNet recommendations is worse than for DECaLS, but is still
competitive. Keep in mind that we used the same ResNet trained for DECaLS without any modifi-
cation. Furthermore, as we mentioned in § 2, the gr band seeings are 1.61′′ and 1.47′′, respectively.
To our knowledge, this is the first time a lens search has been attempted and successfully carried
out, with competitive neural network recommendation purity, for a survey with seeing & 1.5′′. This
is a remarkable result.

4.1.3. Lens Candidates from Deployment on REX in Legacy Surveys

The REX category contains an order of magnitude more objects than the DEV and COMP types
combined, since most faint, extended galaxies are modeled by the REX profile (see § 2). This category
likely includes many elliptical galaxies, though the percentage is unknown.

Given the success with DEV and COMP in both DECaLS and BASS/MzLS, without modification
of the model or additional training, we deploy our trained ResNet on 6.7 million cutouts centered
on REX (5 million in DECaLS and 1.7 million in BASS/MzLS), with z-band mag < 20.0. When we
performed this inference run, the source extraction and typing by The Tractor became available for
certain patches below δ = −32◦. These objects are included in the deployment.

In total, we have inspected 7039 (5861 in DECaLS and 1178 in BASS/MzLS) ResNet recommenda-
tions and identified 168 candidates. Of these, 156 are in DECaLS and 12 in BASS/MzLS, resulting
in recommendations with purities of 1 in 38 and 1 in 98, respectively. The average purity is ∼ 1 in
42. We have removed candidates that have already been found in DEV and COMP (these lensing
systems are “discovered” again because the cutout images containing the same systems are centered
on different objects this time).

In the end, we identify 15 A’s (13 in DECaLS and 2 in BASS/MzLS), 7 B’s (6 in DECaLS and 1 in
BASS/MzLS), and 46 C’s (42 in DECaLS and 4 in BASS/MzLS), for a total of 68 new candidates.
The locations of the candidates in the sky are shown in Figure 8.
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Figure 8. The new candidate lensing systems typed as REX by The Tractor in the Legacy Surveys are
shown as red (Grade A), black (Grade B), and green (Grade C) triangles.

All the lens candidates found by the L18 model are summarized in Table 1.

Table 1. L18 Model

Grade A B C Total by Type (DECaLS,MzLS)

Human Score ≥ 3.5 3.0 2.5 2.0

DC (DECaLS,MzLS) 144 (115,29) 132 (110,22) 280 (242,38) 324 (259,65) 880 (726,154)

REX (DECaLS,MzLS) 15 (13,2) 7 (6,1) 22 (20,2) 24 (22,2) 68 (61,7)

Total by Grade (DECaLS,MzLS) 159 (128,31) 139 (116,23) 302 (262,40) 348 (281,67) 948 (787,161)

4.2. Candidates Found with the “Shielded” Model in Legacy Surveys

As mentioned in § 3.3, we have experimented with modifications on the L18 ResNet model to
optimize performance, but so far using the same training sample (although we will experiment with
the makeup of the training sample as well). Here we present the lens candidates found by one of
these attempts.

We deploy the “shielded” model on the entire Legacy Surveys footprint on objects that satisfy the
same criteria as for the L18 ResNet model. We achieve a similar level of purity, and have found 364
new lens candidates, including 57 A’s, 60 B’s, and 247 C’s. This demonstrates that a different neural
network is capable of finding new lenses in the same footprint. These lens candidates are summarized
in Table 2 with their locations on the sky shown in Figure 9.
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Table 2. Shielded Model

Grade A B C Total by Type (DECaLS,MzLS)

Human Score ≥ 3.5 3.0 2.5 2.0

DC (DECaLS,MzLS) 19 (16,3) 20 (19,1) 36 (34,2) 50 (45,5) 125 (114,11)

REX (DECaLS,MzLS) 38 (34,4) 40 (37,3) 49 (47,2) 112 (109,3) 239 (227,12)

Total by Grade (DECaLS,MzLS) 57 (50,7) 60 (56,4) 85 (81,4) 162 (154,8) 364 (341,23)

Figure 9. The new candidate lensing systems found by the “shielded” model are shown as red (Grade A),
black (Grade B), and yellow (Grade C) circles (DEV or Comp) and triangles (REX).

4.3. Summary of § 4

Altogether, we have found 1312 strong lens candidates (Table 3). Of these, 102 have been found
by other groups, none of which were included in our training sample. This leaves 1210 new lens
candidates. Of these, there are 193 A’s, 175 B’s, and 842 C’s. For each candidate system, we report
the average numerical scores from A.D. and X.H. and the absolute difference, the region where it is
found, its type from The Tractor , and the neural network model used. The strong lens candidates
discovered in this work are summarized in Table 3. We have checked our candidate list against the
spectroscopic database from SDSS DR166 and found that for approximately half of them the putative
lensing galaxy has a spectroscopic redshift. For the rest, we have found photometric redshifts from
Zhou et al. (2020).

We believe we have held a high standard in grading our candidates. Many of our Grade C systems
are in fact likely lensing candidates. Among our candidates, of the 102 systems that have been
identified by other groups (but were not in our training sample), 55 are in Grade C, 27 of which have
a score of 2.5 (see Table 3). This speaks to the quality of our Grade C candidates. We would like
to note that 42% (360) of our Grade C candidates have a human inspection score of 2.5. As shown
in the examples in Figure 10 below, many of these systems are high likelihood candidates. In total,
there are 728 new candidates with a score ≥ 2.5.

6 https://www.sdss.org/dr16/

https://www.sdss.org/dr16/
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Many of our lens candidates have spectroscopic or photometric redshifts z & 0.8, greater than
the typical redshifts of 0.3 to 0.8 for the current known lensing sample (e.g., Brownstein et al.
2012; Wong et al. 2018). In fact, the highest spectroscopic redshift from SDSS DR16 is 0.8924
(DESI-241.7346+42.1102) and the highest photometric redshift (Zhou et al. 2020) is 1.021 ± 0.061
(DESI-072.0873-19.4173). In addition, the angular scales of our systems are typically between 1.5-
5′′ (see Figure 10), significantly larger than the typical value for previously known galaxy lensing
systems (. 1.5′′). This translates to longer time delays and a smaller relative uncertainty per system
for quasars and supernova events in the background galaxy, and therefore higher precision in the
measurement of H0 (e.g., Suyu et al. 2020).

We end this section by highlighting in Figure 10 four examples each for four types of strong lens
candidates that we have discovered. Among the 16 candidates shown, four have a average human
inspection score of 2.5, and therefore are given a C grade, but they are nevertheless very likely lensing
candidates.

Table 3. Lens Candidates

Grade A B C Total

Human Score ≥ 3.5 3.0 2.5 2.0

L18+Shielded Models 216 199 387 510 1312

Known Lenses or Candidates 23 24 27 28 102

New Lens Candidates in this work 193 175 360 482 1210
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Figure 10. Sixteen of the 1210 new lensing candidates discovered in this paper. The naming convention
is RA and Dec in decimal format. Top right corner of each image indicates the average human inspection
score with ∆ being the absolute difference; bottom left corner, the region and The Tractor type (REX or
DC = DEV or COMP); and bottom right, the neural network model. North is up, and east to the left. The
images without rims have a width of 101 pixels ≈ 26.5′′; with orange rims, 151 pixel ≈ 39.6′′; and green
rims, 201 pixel ≈ 52.7′′. First Column: large arcs. The third system (DESI-118.4491+20.9528) clearly has a
counter-image and the fourth one (DESI-015.6763-14.0150) is a near Einstein ring. Second Column: doubly
lensed systems. The second (DESI-062.2475-05.9982) and third (DESI-152.3889-05.6017) systems hint at a
possible Einstein cross (or a quad) and the fourth one (DESI-273.3831+34.2652) is a likely doubly lensed
quasar system. Third column: quadruply lensed systems. The first system, DESI-072.0873-19.4173, has the
highest photometric redshift, 1.021 ± 0.061, among our candidates. These 12 systems have a single galaxy
as the main lens. Fourth Column: cluster/group lensing systems. The first one (DESI-021.1715-06.9096)
has a faint, giant blue arc (white arrow). The second (DESI-355.2727-57.2679) and third (DESI-010.8534-
20.6214) systems show one and two sets of red arcs, respectively. The fourth one (DESI-090.9854-35.9683)
is a spectacular system: at least four lensed sources at different redshifts are apparent, including a quad
(1, white arrows), a “broken” long arc (2, yellow arrows), one red arc near the core of the group (3, green
arrow), and a giant red arc at approximately 14′′ away from the lens center (4, red arrow). Note that the
four candidates receiving a score of 2.5, and therefore a grade of C, are nevertheless very likely lensing
candidates.
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The first eighty (sorted by RA) of the 216 Grade A lenses are shown in Figure 17 and Table 4. All
1312 candidates reported in this paper can be found on the website for this project7 in this online
table.

5. DISCUSSION

In our training sample there are 632 lenses. This is generally considered too small a number for
training a neural network. Even our non-lens sample is much smaller than what is typically used
(e.g., Jacobs et al. 2019a,b). Nevertheless, we have succeeded in finding 1210 new lens candidates
in the three band Legacy Surveys with nonuniform depth (see Figure 1). The training sample was
designed for searching among the DEV and COMP types in one of the two regions of the footprint,
DECaLS, and our neural network model performed well for this category. The purity of our neural
network recommendations is at least on par with the best in the literature. Compared with H20,
using a larger training sample that includes a larger proportion of non-lenses with deep observations,
we have improved the performance of our neural network model (as measured by recommendation
purity) by a factor of 5 for DEV and COMP in DECaLS (from 1 in 150 to 1 in 31), where the
majority of our lenses are found.

Just as significantly, our results show that our trained neural network models can be applied to
data sets beyond the scope of the training sample. For DEV and COMP in BASS/MzLS, which has
inferior gr band seeing, and for REX in the entire Legacy Surveys footprint, which typically have
smaller apparent sizes, we applied the exact same trained model, and the purities are only slightly
lower: 1 in 57 and 1 in 42, respectively.

To the best of our knowledge, to-date most of the confirmed lensing systems are from spectroscopic
searches in the SDSS (e.g., Bolton et al. 2008; Treu et al. 2011; Brownstein et al. 2012; Shu et al.
2017). These systems typically have an angular scale of ∼ 1′′. Our candidates, discovered from
ground-based imaging surveys, have angular scales & 1′′. Thus they not only significantly expand
the number of lensing systems but are complementary to most of the confirmed systems. We will
leave a detailed comparison to a future publication, between the confirmed lensing systems and results
from our next search.

5.1. Magnitude Distributions

For a comparison in apparent magnitudes, Figure 11 shows the distributions of the grz magnitudes
for the candidate lensing galaxies and lenses in the training sample. Recall that for both, we have
imposed a cut of z-band mag < 20.0. Fractionally, there are more brighter lenses in the training
sample. This is in part because the brighter lenses are more likely to have been discovered before
and are included in the training sample. Beyond this trivial difference, it is important to note the
following. 1) The distributions of our candidates are fainter than the lenses in the training sample,
that is, we can discover lenses that have a fainter distribution than the training lenses. 2) There
are more lenses to be found fainter than z-band mag = 20.0 (Figure 11, third panel). In our next
search we will use a fainter magnitude limit. We will also add to our training sample lenses that are
fainter than this limit, though this number is likely to be small. However, we do not expect this to
be a major limitation to our ability to find fainter lenses, for two reasons: a) we have shown that
we can find lens candidates with a fainter distribution than training lenses, and b) we will include

7 https://sites.google.com/usfca.edu/neuralens

https://sites.google.com/usfca.edu/neuralens/publications/lens-candidates-huang-2020b
https://sites.google.com/usfca.edu/neuralens/publications/lens-candidates-huang-2020b
https://sites.google.com/usfca.edu/ neuralens
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the lens candidates found in this paper, which will greatly boost the number of lenses near the faint
end of the magnitude distributions and likely will help significantly with discovering even fainter
lenses. We expect to find many more lenses fainter than z-band mag < 20.0. With the expectation
that the neural net recommendation purity is likely to be worse for these fainter systems, we are
developing new neural network models for our next search, as mentioned before. We may also carry
out experiments using a fainter magnitude cut for the search than the training lenses, to see how the
neural net purity and completeness depend on the search magnitude cut.

Figure 11. Magnitude distributions for grz bands of our candidate lensing galaxies and lenses
in our training sample.

A more detailed comparison by galaxy type is presented in Figure 12, for DEV+COMP (DC) and
REX. The REX type has a narrower distribution for all three bands. Recall that in the classification
scheme of The Tractor , REX is the designation for those objects classified as galaxies that cannot be
confidently promoted to DEV, COMP, or EXP. They are generally fainter and smaller in apparent
size. This explains the smaller fractions for REX on the bright side of the distributions. Due to their
smaller apparent sizes, if they are too faint, they may not be classified by The Tractor as spatially
extended (see § 2) at all. Hence the dearth on the faint side of the gr distributions. The exception
is the z band: there is a significant contribution of REX near the magnitude limit of 20.0.

Figure 12. Apparent magnitude distributions for DEV and COMP (DC) and REX for grz
bands.

5.2. Redshift Distributions

We now compare the redshift distributions of our candidates and the lenses in the training sample
(Figure 13). For spectroscopic redshifts, our candidates approximately have the same distribution as
the training lenses. One notable difference is the higher fraction of training lenses for zlens . 0.25,
which is expected: a large fraction of these relatively nearby lenses have been observed spectroscop-
ically in SDSS. A more detailed discussion about the behavior of the mid-range (0.25 . zlens . 0.6)
is given below in the context of comparing the distributions of DC vs. REX candidates.
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Figure 13. Distributions of the 642 of the 1312 candidates and 201 of the 632 training lenses that
have spectroscopic redshifts from SDSS DR16 are shown in the left panel. The right panel adds
photometric redshifts from Zhou et al. (2020) for those objects without spectroscopic redshifts.

With photometric redshifts added for objects without spectroscopic redshifts (right panel of Fig-
ure 13), the distributions of the candidates again are similar to the lenses in the training sample. One
difference is the peak of the distribution of the training lenses is ∼ 0.1 higher than our candidates.

To understand this difference, we show the color comparison between our candidates and the
training lenses (Figure 14). The training lenses are slightly redder. A strong majority of the training
lenses are from the DES region, all of which are of the DC type (see Figure 2). Given that many of
our candidates that are DC are from outside of the DES region (DECaLS but non-DES or MzLS),
and the remaining are REX from the entire Legacy Surveys footprint, it is not a surprise that there
is a small color difference. The vast majority of the DES lenses in the training sample above z = 0.5
only have photometric redshifts. This small offset in redshift distributions is consistent with the color
difference between the training lenses and our candidates.

Figure 14. The r − z color distributions of our candidates and the training lenses.

The comparison of redshift distributions for DC and REX are shown in Figure 15. There is clear
contrast between these two types. For both spectroscopic and photometric redshift distributions,
around zlens ∼ 0.5, while the DC lenses peak, we find a “valley” for the REX.
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For spectroscopic redshift distributions, as stated earlier, in the low redshift range (zlens . 0.25),
a large percentage of DC lenses are known systems and have been included in the training sample,
leaving fewer new DC lenses to be discovered. In the mid-range (0.25 . zlens . 0.6), the DC
fractions are higher. For background sources at zs ∼ 2, the integrated optical depth for strong
lensing significantly increases in this redshift range (e.g., Robertson et al. 2020). Indeed, most of the
training lenses with spectroscopic redshifts are in this range (Figure 13, left panel). Therefore it is
reasonable to expect that our ResNet models perform well in finding DC lenses (possibly with a high
level of completeness, although as mentioned before, to assess completeness is difficulty to do at this
time). That we have found a large number of DC lenses is consistent with this expectation. As for
the “valley” for REX, one possible explanation is that given the large number of DC training lenses
in this redshift range, our neural net models are highly “tuned” to find DC lenses, and consequently
somewhat biased against finding REX lens candidates. We will test this hypothesis by including REX
lenses in a training sample for our next search. If true, this would suggest that there are more REX
lenses to be found in this range. With photometric redshifts added for objects without spectroscopic
redshifts (right panel of Figure 15), the same “valley” for the REX candidates in approximately the
same redshift range can be seen.

Figure 15. Distributions of the 517 of the 1005 DEV and COMP (DC) and 125 of the 307
REX candidates that have spectroscopic redshifts from SDSS DR16 are shown in the left panel.
The right panel adds photometric redshifts from Zhou et al. (2020) for those objects without
spectroscopic redshifts.

5.3. Probability Distributions

We compare the neural network probabilities for DC and REX candidates in Figure 16. The
difference for the three lowest probability bins is rather striking. It almost certainly means that at
the probability threshold of 0.1, the level of completeness for REX candidates is much lower than
for DC. In our discussion in § 5.2, we suspected that this might be the case. We can improve the
completeness for the REX candidates by lowering the threshold. But that likely implies a much
larger set of images to inspect. As we have suggested in § 5.2, a better remedy may be to include
REX lenses in a future training sample, and this would also allow us to do a fairer comparison of the
probability distributions of DC and REX candidates in our next search.
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Figure 16. The probability distributions of our DEV+COMP (DC) and REX candidates.

5.4. Implications for Future Searches

As we have noted above, for future searches, there is still room for improvement, both in terms
of algorithm and the construction of the training sample. On the algorithm side, we have started
experimenting with a variety of approaches (see § 3.3). In this paper we have shown the results from
one of them, the “shielded” model, with 364 new candidates found in the same footprint. This is
a promising sign that further exploration is warranted. In terms of the training sample, with the
candidates reported in this paper and other recent discoveries (e.g., Canameras et al. 2020) we can
add more lenses and lens candidates to our training sample. It is possible that further increasing the
number of non-lenses in our training sample would help as well, as the current number of 21,000 is
still relatively small.

We also note that in our training sample, we did not include any lensed QSO systems. It is
therefore not a surprise that the overwhelming majority of the candidates are galaxy-galaxy lensing
systems. However, we have found a small number of lensed QSO candidate systems, e.g., DESI-
273.3831+34.2652 (see Figure 10) and DESI-055.7976-28.4777 (#68 in our online table). In a future
search, we will explore the possibility of including known lensed QSOs in the training sample, or
possibly do a separate lensed QSO search.

The Rubin Observatory Legacy Survey of Space and Time (LSST), will commence in the near
future, with O(105) strong lenses expected to be discovered (e.g., Collett 2015). We have shown
that a large number of strong lenses can be discovered by using 632 observed lenses in the training
sample. We have also shown that it is possible to discover lenses that are fainter than the ones in the
training sample. Therefore from our experience, using observed images is a viable path for LSST.
One strategy would be to find new lenses iteratively as the observation depth increases over time.
As we pointed out at the end of § 4.1.1, from the two searches we have conducted in H20 and this
paper, respectively, a larger number of lenses in the training sample is likely a major factor in the
improvement of the ResNet’s performance. Thus this kind of “active learning” strategy will possibly
result in the improvement of the neural net model from each successive training, as the observation

https://sites.google.com/usfca.edu/neuralens/publications/lens-candidates-huang-2020b
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depth increases and more lensing systems become discoverable, precisely when higher neural net
purity becomes more desirable.

6. CONCLUSIONS

We have carried out a search for strong gravitational lensing systems in the DESI Legacy Surveys
data by using a deep residual neural network, developed by Lanusse et al. (2018), trained on observed
lenses and non-lenses. We applied our trained neural network to a total of ∼ 20 million cutout images
in DR8 with at least three passes in each of the grz bands and a z-band magnitude cut of 20.0 for
the galaxy at the center of each image. We have found 193 Grade A, 175 Grade B, and 842 Grade C
new candidates. These include 364 candidates found by applying a modified neural network to the
same data set. We believe we have held a high standard in grading these candidate systems. 728 of
our candidates have a human inspection score ≥ 2.5, all of which are at least likely lensing systems.

We note that the candidates reported in this paper do not include the 335 strong lensing candidates
(with 159 Grade A’s and B’s) we already found for Legacy Surveys DR7 (Huang et al. 2020).

Compared with efforts by other groups to search for strong lensing systems in other surveys, we use
a much smaller training sample of 632 lenses and ∼21,000 non-lenses from observed data, for a survey
that covers one third of the sky with nonuniform depth and seeing. We nevertheless have achieved
competitive neural network recommendation purity and in this paper we report the discovery of 1210
new strong lens candidates.

For our future searches, it is important to note that on one hand, our neural network models are
capable of finding lenses outside the scope of the training sample in multiple aspects, and on the
other hand, it is also vital to build a “statistically representative” training sample as much as possible
to achieve a good balance between purity and completeness, so as to maximize the reward for human
inspection. With the lenses we have discovered in this paper, we can now build a training sample
that is more statistically representative of the Legacy Surveys for our next search.

Thus for future ground-based large surveys, such as the LSST, we suggest an iterative search
strategy using observed images with increasingly number of lenses in the training sample. This
“active learning” strategy will allow for discovering lenses not represented (or not well-represented)
in the training sample and the continual improvement of the training sample to increase the capacity
and enhance the performance of the neural network model.
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Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the
University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the
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Figure 17. Eighty of the 216 Grade A candidates arranged in ascending RA. Top right corner indicates
the average human inspection score with ∆ being the absolute difference; bottom left corner, the region and
The Tractor type (REX or DC = DEV or COMP); and bottom right, the neural network model. For each
image, N is up, and E to the left. Images without rims have a width of 101 pixels (26.5′′); with orange rims,
151 pixel (39.6′′); and green rims, 201 pixel (52.7′′). Images with red rims are known lenses or candidates
but not included in our training sample, with citations given in Table 4. All 1312 candidates are shown on
the project website: https://sites.google.com/usfca.edu/neuralens.

https://sites.google.com/usfca.edu/neuralens
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Table 4. Grade A Candidates

Name Type mag g mag r mag z Probability zspec zphot

DESI-002.0299+18.3723 DC 20.63 19.16 17.84 0.97 0.4724

DESI-003.6745-13.5042 DC 20.00 18.17 17.18 0.34 0.406± 0.021

DESI-006.0673-28.7195 REX 20.80 18.86 17.55 0.97 0.533± 0.025

DESI-007.6741-33.9765 REX 21.64 20.85 19.61 0.20 0.858± 0.041

DESI-007.8631-01.7215 DC 21.61 19.79 18.60 0.53 0.5201

DESI-008.0136+07.6678 DC 21.14 19.57 18.10 0.99 0.5566

DESI-008.0732+01.0100e DC 20.25 18.4 17.45 0.31 0.426± 0.091

DESI-008.6173+02.4228b,e DC 22.62 20.73 19.81 0.54 0.4548

DESI-009.7307+07.3230 DC 18.65 17.21 16.36 0.22 0.2547

DESI-010.0606-06.7620 REX 20.98 19.69 18.64 1.00 0.6152

DESI-010.8534-20.6214 DC 18.93 17.4 16.56 0.11 0.3381

DESI-011.9249-19.6443 DC 21.78 20.32 18.92 0.84 0.688± 0.056

DESI-012.1155-17.9645 DC 22.57 21.17 19.76 0.90 0.735± 0.069

DESI-012.9008-09.3904 DC 22.30 20.33 18.64 1.00 0.4485

DESI-014.9899+13.3320 DC 20.07 18.09 16.86 0.91 0.5163

DESI-015.6763-14.0150 DC 22.07 20.27 18.79 1.00 0.658± 0.036

DESI-015.8440-18.3629 DC 20.42 18.71 17.83 1.00 0.364± 0.019

DESI-016.2202-07.9520 DC 23.36 21.16 19.29 0.48 0.764± 0.032

DESI-016.7705-31.4780 DC 21.77 19.95 18.12 1.00 0.772± 0.018

DESI-017.4814+04.1605 DC 19.66 18.53 17.85 0.19 0.281± 0.140

DESI-018.1307-62.1502 REX 20.07 18.27 17.32 0.98 0.427± 0.024

DESI-021.0887-32.0706 DC 22.59 20.88 19.25 0.82 0.754± 0.080

DESI-022.2123-29.9602 DC 21.73 19.98 18.50 1.00 0.649± 0.023

DESI-022.3887-15.1097 DC 21.78 20.01 18.81 1.00 0.524± 0.063

DESI-024.2940-10.5728 DC 20.89 18.92 17.30 0.87 0.4135

DESI-024.5974-28.7358d DC 20.42 18.60 17.62 1.00 0.414± 0.022

DESI-024.7783+22.1231 DC 21.06 19.09 17.93 0.13 0.4684

DESI-025.9952+12.9370 DC 20.75 18.86 17.80 0.92 0.5114

DESI-026.2765+10.3100 REX 21.56 20.16 19.51 0.28 0.462± 0.138

DESI-027.2716-16.9818d DC 20.91 19.07 17.65 0.92 0.6916

DESI-027.4830-28.5753 DC 21.32 19.43 18.14 0.97 0.557± 0.008

DESI-027.9088-04.1209 DC 21.89 20.11 18.58 0.81 0.6412

DESI-027.9613-10.0977 DC 22.05 20.36 18.87 1.00 0.5234

DESI-029.4044-12.3606 REX 20.77 20.19 19.20 0.95 0.747± 0.169

DESI-030.4025+03.7476 DC 19.16 17.93 17.16 0.64 0.1696

DESI-031.3208-01.3890d REX 21.01 20.18 19.05 1.00 0.6992

Table 4 continued on next page
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Table 4 (continued)

Name Type mag g mag r mag z Probability zspec zphot

DESI-031.6711-17.9929 REX 20.49 19.62 19.27 0.10 0.1548

DESI-031.7778-27.4457d DC 18.78 17.26 16.37 1.00 0.294± 0.018

DESI-032.4042-25.3555 DC 18.15 16.87 16.13 0.49 0.224± 0.015

DESI-032.4765-35.7990 REX 21.42 19.78 18.95 0.98 0.380± 0.076

DESI-034.2366-59.8485 REX 21.01 19.34 18.29 0.66 0.498± 0.017

DESI-035.2405-38.5511d REX 18.98 17.32 16.39 0.45 0.407± 0.038

DESI-035.7946-22.8049 DC 22.44 21.10 19.33 1.00 0.890± 0.048

DESI-036.2340+08.8300 DC 18.15 16.50 15.61 1.00 0.326± 0.035

DESI-036.8326-24.1921 REX 19.27 17.43 16.46 0.39 0.405± 0.022

DESI-037.0621-29.3949 DC 19.74 18.11 17.25 0.93 0.312± 0.013

DESI-037.4837-31.1730 DC 22.06 20.28 19.17 0.99 0.466± 0.075

DESI-038.0264-35.4899 REX 21.31 20.00 18.90 1.00 0.550± 0.097

DESI-038.8136-21.5095 REX 22.15 20.64 19.83 0.94 0.328± 0.035

DESI-040.2205-05.8472 DC 21.68 19.81 18.52 0.97 0.5238

DESI-040.5664-25.1054 REX 21.68 20.12 19.31 0.82 0.325± 0.045

DESI-040.7627-00.1001d DC 19.95 18.14 17.19 1.00 0.4127

DESI-041.7608+03.9333 DC 18.53 16.99 16.14 0.30 0.2603

DESI-042.0371-02.2771 REX 20.04 18.66 17.90 0.93 0.247± 0.018

DESI-043.1867-13.2239 REX 22.31 20.58 19.67 0.67 0.431± 0.033

DESI-043.5347-28.7960 DC 22.19 20.30 18.82 0.93 0.632± 0.021

DESI-043.6660-04.3071 DC 19.35 17.68 16.79 1.00 0.2880

DESI-044.4121-22.1575 DC 21.01 19.36 18.49 0.46 0.484± 0.070

DESI-044.4344-20.1488 DC 23.07 21.09 19.42 0.49 0.711± 0.025

DESI-044.7161-19.9477 REX 20.04 19.79 19.07 0.89 0.535± 0.327

DESI-044.9811+01.1387 DC 21.54 20.39 18.66 1.00 0.834± 0.079

DESI-046.7690-06.4805 DC 22.11 20.70 19.80 0.32 0.480± 0.105

DESI-047.1434-32.9919 REX 20.70 19.76 19.24 0.22 0.500± 0.091

DESI-049.8264+02.0934 REX 22.33 20.35 19.37 0.90 0.3189

DESI-051.8321-21.6081 REX 19.43 18 16.69 0.16 0.502± 0.201

DESI-053.6254-13.1866 DC 19.51 17.72 16.79 1.00 0.362± 0.010

DESI-055.0891-25.5584d DC 21.94 20.17 18.70 1.00 0.667± 0.047

DESI-055.7976-28.4777 DC 20.93 19.27 18.38 1.00 0.447± 0.049

DESI-057.2073-10.2962 DC 21.97 20.33 18.65 1.00 0.745± 0.075

DESI-057.9070-07.8706 DC 21.98 20.28 18.72 1.00 0.677± 0.051

DESI-058.6486-30.5959 DC 16.63 15.50 14.74 0.12 0.173± 0.021

DESI-058.7926-18.5262 DC 18.30 16.76 15.93 1.00 0.282± 0.011

DESI-060.5238-22.0990d DC 21.11 19.32 18.25 1.00 0.367± 0.051

DESI-060.7613-21.3645 REX 20.19 19.34 18.83 0.28 0.455± 0.100

Table 4 continued on next page
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Table 4 (continued)

Name Type mag g mag r mag z Probability zspec zphot

DESI-060.9953-26.0348 REX 20.63 19.74 19.12 0.80 0.289± 0.083

DESI-063.0145-18.9874 REX 22.06 20.27 19.30 0.18 0.572± 0.073

DESI-064.8536-25.2248 DC 19.51 17.72 16.82 0.98 0.360± 0.012

DESI-065.6447-28.0652 DC 21.63 19.81 18.31 0.53 0.641± 0.036

DESI-066.1601-07.6524 REX 21.62 20.45 19.71 0.79 0.278± 0.049

DESI-066.3798-37.7174 REX 20.79 19.16 18.32 0.23 0.290± 0.041

Note—Eighty of the 216 Grade A lens candidates are listed in this table. All 1312 candidates are shown
on the project website: https://sites.google.com/usfca.edu/neuralens. The spectroscopic redshifts are from
SDSS DR16, all with uncertainties < 3.7× 10−4. References for known lenses or candidates are as follows:
aCanameras et al. (2020), bCarrasco et al. (2017), cInada et al. (2003), dJacobs et al. (2019b).

https://sites.google.com/usfca.edu/neuralens



