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Abstract 

 

Advances in Zero-Field Nuclear Magnetic Resonance Spectroscopy 

 

by 

 

Thomas Theis 

 

Doctor of Philosophy in Chemistry 

 

University of California, Berkeley 

 

Professor Alexander Pines, Chair 

 
In the course of the last century, Nuclear magnetic resonance (NMR) has 

become a powerful and ubiquitous analytical tool for the determination of 

molecular identity, structure, and function. Traditionally, the great analytical 

power of NMR comes at the cost of mobility and large expenses for cryogenic 

cooling. This thesis presents how zero-field NMR detected with an atomic 

magnetometer is emerging as a new, potentially portable and cost-effective 

modality of NMR with the ability of providing information-rich and high-

resolution spectra. A detailed description of the zero-field NMR spectrometer 

and its operation is provided. The thesis details how the acquired zero-field 

NMR spectra result from the electron mediated scalar interaction (J-coupling) 

of nuclear spins in an analyte. Simple rules of addition of angular momenta are 

introduced for the prediction of the observed spectral lines overcoming the 

need for numerical simulations and enabling unambiguous assignment of peaks 

to different molecules. Additional information can be obtained in the near zero 

field regime, where the Zeeman interaction can be treated as a perturbation to 

the J-coupling. The presence of small magnetic fields results in splitting of the 

zero-field NMR lines, imparting additional information to the pure zero-field 

spectra. In addition to the utilization of the atomic magnetometers for enhanced 

sensitivity, hyperpolarization schemes can be implemented. This thesis shows 

that chemically specific zero-field NMR spectra can be recorded using 

hydrogenative and non-hydrogenative parahydrogen induced polarization 

(PHIP, NH-PHIP), enabling high-resolution NMR. The increased sensitivity 

enables detection of compounds with 
13

C or 
15

N in natural abundance. Since 

PHIP and NH-PHIP operate in situ, and eliminate the need for a prepolarizing 

magnet, they broaden the analytical capabilities of zero-field NMR. Lastly, this 

thesis gives insight into the PHIP and NH-PHIP mechanism by developing an 

appropriate theoretical framework. 
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1. Introduction 
 

Nuclear magnetic resonance experiments are typically performed in high 

magnetic fields, often in excess of 10 T, in order to maximize chemical shifts, 

in order to achieve high nuclear spin polarization and efficient detection via 

inductive pickup.
[1,2]

 The advent of alternative methods of detection based on 

superconducting quantum interference devices (SQUIDs)
[3]

 or atomic 

magnetometers 
[4,5]

 has enabled NMR experiments in low (Earth’s field) and 

even zero magnetic field, generating significant experimental 
[6–21]

 and 

theoretical 
[16,22]

 interest. Atomic magnetometers 
[4,23]

 and SQUIDs 
[3]

 are 

sensitive to low-frequency signals, offering dramatically improved signal-to-

noise ratio (compared to inductive pickup coils) in low-field NMR
[6,11,17,24] 

 and 

magnetic resonance imaging
[12,25,26]

. This is leading to the development of 

portable sensors for chemical analysis and imaging by elimination of 

cryogenically cooled superconducting magnets. This new type of 

spectrometers has enabled chemical analysis via 
129

Xe chemical shifts 
[10]

 and 

spin-spin or J-couplings between 
1
H-

13
C, 

1
H-

29
Si, and 

1
H-

19
F in low- or zero-

magnetic field 
[6,13,19]

. In regard to portability and cost effectiveness, atomic 

magnetometers are an ideal tool because, in contrast to SQUIDs, they do not 

require cryogenic cooling. The work presented in this uses atomic 

magnetometers to detect NMR at zero field. The primary advantage of zero-

field NMR detection is that the NMR spectra become simpler than at small 

fields (~Earth’s field) where the J-coupling and Zeeman contributions are 

comparable in strength. In addition, at zero magnetic field the resonance 

frequencies of the nuclear spins and the magnetometer’s alkali spins are 

matched, thereby operating in the regime where atomic magnetometers are 

most sensitive.
[19,21]

  

Much effort has been devoted to the interpretation of NMR spectra 

acquired in the low-field regime.
[13,16,20,22,27,28]

 At low fields the effect of a 

magnetic field does not fully truncate the transverse components of the J-

coupling and the emerging patterns quickly become complex (e.g. Earth’s field 

NMR spectra). One way to reduce complexity (other than increasing the 

magnetic field) is to eliminate the magnetic field entirely
[19]

. Pure J-coupling 

spectra result that are more amenable to straightforward interpretation.  
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This thesis, first, provides theoretical background and describes the 

experimental details of the zero-field NMR spectrometer in Chapters 2 and 3 

respectively. Then, in Chapter 4, a formalism is provided to readily interpret 

and assign spectral features arising in zero-field NMR. Simple rules governing 

the addition of angular momenta can be used to predict the number of lines and 

their positions for given spin systems. This work overcomes the need for 

numerical simulations for chemical identification and makes the assignment of 

peaks more intuitive, thereby moving beyond just-fingerprinting applications. 

Furthermore, it has been pointed out in the literature, that pure zero-field NMR 

leaves some ambiguity in determination of chemical groups, and that this 

ambiguity can be removed by application of small magnetic fields
[22]

. In 

Chapter 5 this thesis shows that by application of a small magnetic field, where 

the Zeeman interaction is only a perturbation to the J-coupling a significant 

amount of additional information can be obtained and ambiguities can be 

removed concerning the nuclear species in a spin system.  

To further increase the sensitivity of zero-field NMR it the atomic 

magnetometer may be combined with hyperpolarization schemes
[29–32]

. A 

variety of available hyperpolarization techniques such as dynamic nuclear 

polarization (DNP),
[32,33]

 chemically induced DNP (CIDNP)
[34]

, spin-exchange 

optical pumping (SEOP)
[35–37]

 of noble gases and parahydrogen induced 

polarization (PHIP)
[31,38–41]

suggests that sensitivity limitations given by the 

Boltzmann thermal polarization can be overcome for a large range of analytes. 

Most of these hyperpolarization techniques, DNP
[9,42–44]

, CIDNP
[45–47]

, 

SEOP
[48]

 and PHIP
[21,49]

, have been shown to greatly enhance sensitivity of 

low-field NMR experiments where thermal polarization is even lower. Chapter 

6 of this thesis shows that through the combination of an atomic magnetometer 

with parahydrogen induced polarization (PHIP)
[31,38,39]

 the sensitivity of zero-

field NMR can be greatly enhanced. High-resolution, high signal-to-noise 

ratio, zero-field NMR spectra result. The acquired spectra are information rich 

and chemically specific. The sensitivity is sufficient to easily observe complex 

spectra exhibiting 
1
H-

13
C J-couplings in compounds with 

13
C in natural 

abundance in just a few transients, a task that would require considerable 

signal averaging using thermal prepolarization. Similarly, in Chapter 7, it is 

shown that non-hydrogenative parahydrogen-induced polarization
[50–52]

 (NH-

PHIP) can also dramatically enhance the sensitivity of zero-field NMR. The 

thesis demonstrates the detection of pyridine, at concentrations as low as 6 mM 

in a sample volume of 250 L, with sufficient sensitivity to resolve all 

identifying spectral features because the NH-PHIP mechanism is non-reactive, 

operates in situ, and eliminates the need for a prepolarizing magnet, its 
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combination with optical atomic magnetometry could greatly broaden the 

analytical capabilities of zero-field and low-field NMR. Lastly in Chapter 8 a 

theoretical formalism is developed that explains in detail how parahydrogen 

derived scalar order is imposed on analytes and converted into detectable 

magnetization. This formalism is relevant for both, the hydrogenative and the 

non-hydrogenative modalities of PHIP at zero magnetic field.   
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2. Theoretical Background 
 

In this Section the essential background will be provided to enable 

understanding of the later more advanced Chapters. A basic quantum 

mechanical description of a standard high-field NMR experiment will be 

provided, forming a starting point for understanding zero-field NMR and 

parahydrogen induced polarization. The notion of a density matrix and the role 

of commutators will be introduced in this first Section. 

In high-field NMR the primary spreading parameter giving spectral 

information is the chemical shift. Chemical shift is the resonant frequency of a 

nucleus relative to a standard. The physical effect results from diamagnetic 

shielding of the nucleus by the surrounding electrons, such that chemical shift 

is an indirect measure of the electron density at a given position in a molecule. 

In high-field NMR this effect is typically much larger than the so called J-

coupling interaction and is the primary indicator for chemical identity in the 

context of standard high-field NMR experiments. J-coupling is the scalar 

interaction between nuclei mediated by bonding electrons in a molecule. At 

zero-magnetic field in an isotropic liquid the J-coupling interaction is the only 

observable interaction on the timescales of zero-field NMR and is, hence, 

responsible for the appearance of the zero-field NMR spectra presented 

throughout this thesis. In this Chapter, the treatment of the evolution of a 

density matrix under a J-coupling Hamiltonian and/or chemical shift will be 

introduced, in the context of high-field Fourier-Transform NMR (FT-NMR) 

experiments. In the subsequent Chapters the evolution under J-couplings alone 

will be in the center of the discussions. 

Furthermore, the addition of quantum mechanical angular momenta will 

be reviewed in this Chapter. This concept is typically of secondary importance 

in high-field NMR experiments but, as will be shown in Chapter 4, it forms the 

basis for understanding zero-field NMR spectra. The reason is that in high-

field experiments the strong magnetic field and the chemical shifts truncates 

parts of the J-coupling Hamiltonian, however at zero-magnetic field the full 

spherical symmetry of the J-coupling Hamiltonian has to be taken into account. 

Lastly, in the present Chapter, the concept of para-hydrogen induced 

polarization will be introduced and the classical high-field NMR description of 

PHIP experiments will be reviewed and spectra acquired from hydrogenations 

of symmetric substrates will be described. 
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2.1 Quantum mechanical description of a FT-NMR 

experiment 
 

This review is intended to provide the necessary tools for understanding 

the basic quantum mechanical description of the simplest pulsed NMR 

experiment i.e. ninety, pulse, acquire on a two-level system formed by a single 

spin one-half. At the end of this Section an introduction to the treatment of J-

coupled spin one-half systems at high magnetic fields is given. Other 

appropriate sources for the basics of NMR as presented here are Levitt’s book 

“Spin Dynamics”
[53]

 or Cavanagh’s book “Protein NMR Spectroscopy”
[54]

. 

Some of the quantum mechanical basics presented in this first Section can also 

be found in Sakurai’s book “Modern Quantum Mechanics”
[55]

 for example. 

 

2.1.1 Basis states 
 

In a two level system we represent each of the two states of the system,  

and  as a vector: 

 1 0
and .

0 1
 

   
    
   

 (2.1) 

These are referred to as the ket vectors, the corresponding bra vectors are 

 (1 0) and (0 1).  
 (2.2) 

Together they form the basis of the “bra-ket” notation. (A more formal 

introduction of basis states is provided in Section 2.2.1.) 

In this two level system we can describe any state or superposition state 

|> as a linear combination of the two vectors: 

 1 2c c   
.
 (2.3) 

In this equation the coefficients c1 and c2 can be imaginary such that they can 

carry phase information. The bra-ket notation in the spin one-half case can now 

be simplified and |> can be expressed as 
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  
†1 * *

1 2

2

c
and (c c ) ,

c
  

 
   
   

(2.4) 

where, the coefficients cn are the individual components of the vector |>.  One 

important property of the basis states, in this case and   is that they be 

orthonormal. This means that they should have the following properties: The 

inner product of two basis states gives the Kronecker delta: 

 
nm

1 if n m
n m ,

0 if n m



 


 (2.5) 

where |n> and |m> are general basis states of systems with more than just two 

energy levels. The stated property of orthonormality also implies that the sum 

over all outer products of basis states gives the identity matrix 

 
n

n n ˆ 1 , (2.6) 

where n sums over all basis states of the system under consideration. This is 

the useful “resolution of the identity” as will be shown and used in Eq. (2.10) 

 

 

2.1.2 Expectation values and the density matrix 
 

The expectation value of a measurable quantity is defined as follows: 

 *A A A d .    




    (2.7) 

Here A represents an operator with some associated physical measurable 

quantity (examples follow). In the spin one-half case operators are two by two 

matrices that act on the wave functions represented by vectors with two 

components. When evaluating the above equation with unspecified variables 

we obtain the following. 
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11 12 1* *

1 2

21 22 2

* * * *

1 1 11 1 2 12 2 1 21 2 2 22

A A c
A A (c c )

A A c

c c A c c A c c A c c A

 
  

    
  

     

(2.8) 

As is apparent from Eq. (2.8) there are quadratic terms (like c1
*
c1) of the 

coefficients, which determine the expectation value. Therefore, it seems 

reasonable to concern ourselves with an object that carries these quadratic 

terms, in addition this object should be independent of a specific observable. 

This object is the density matrix defined as 

 
* *

1 1 1 2

* *

2 1 2 2

c c c c
.

c c c c
  

 
   

   

(2.9) 

In NMR the density matrix the diagonal terms are called populations and the 

off-diagonal elements are called coherences. 

In order to calculate an expectation value of some observable using the 

density matrix we need to evaluate Eq. (2.7) 

 A A .   (2.7) 

We make use of Eq (2.6), the resolution of the identity, and can derive Eq. 

(2.10) which serves as the basis of understanding the origin of NMR signals 

and will find ample use in the remainder of this thesis. 

 

n

n

A n n

n A n

Tr( A) Tr( A).

 

 

  





 





 

(2.10) 

 

2.1.3 Time evolution of the density matrix  
 

The initial density matrix in a simplified case representing 100% 

polarization is the density matrix in which only state   is populated, we call 

this matrix I

 



                                                                     Chapter 2: Theoretical Background 

8 

 1 0
I .

0 0

  
 

   
   

(2.11) 

It is useful to express all our matrices in the form of the Pauli spin 

matrices because they obey cyclic commutation relationships which have 

useful properties for the prediction of time-evolution as we will see in Eq. 

(2.23) through Eq. (2.25) (Note: The notation used in this thesis suppresses ħ) 

For a two level system (one spin) the fundamental Pauli-matrices are: 

 
z x y

1 0 0 1 0 i1 1 1
I , I and I .

0 1 1 0 i 02 2 2

     
       

       
(2.12) 

Using these we can write I


as  

 
z

1 ˆI 1 I .
2

  
 

(2.13) 

In order to examine how this density matrix evolves under some 

Hamiltonian H it is reasonable to start by examining the time dependent 

Schrödinger equation: 

 d
iH ,

dt
  

 
(2.14) 

which can be solved to give 

 (t) exp( iHt) (0) .  
 (2.15) 

Similarly, for the bra we obtain 

 (t) (0) exp(iHt) . 
 (2.16) 

Thus for the density matrix as a function of time we derive 

 (t) (t) exp( iHt) (0) (0) exp(iHt)    
 (2.17) 

or 

 (t)=exp(-iHt) (t=0)exp(iHt).   (2.18) 

The expression exp(-iHt) is often referred to as the propagator and replaced by 

U(t), such that  

 (t) U(t) (t 0)U( t) .     (2.19) 
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In the specific case of pulses exp(-iHt) is sometimes replaced by R(which 

represents a rotation by angle  and phase  as will be shown below. On the 

basis of the presented equations all evolution of density matrices can be 

addressed. 

 

2.1.4 Commutators and the sandwich formula 
 

Before jumping into how to easily evaluate this equation we will make a 

sideline discussing commutators and their use in the context. It will become 

apparent instantaneously why this is useful. 

The commutator of two operators is defined as 

  A,B AB BA. 

 

(2.20) 

If [A,B]=0 then A and B are said to commute. Furthermore, if [A,B]=0 then 

      exp(A),exp(B) 0 , A,exp(B) 0 , B,exp(A) 0.  

 

(2.21) 

For the density matrix in Eq. (2.18) this has the following implications;  

 if [H, ] = 0 then (t) = (t = 0).    (2.22) 

This means there is no time evolution, however if the commutator of the 

density matrix and the Hamiltonian is nonzero then time evolution is to be 

expected. 

In the special case of cyclic commutation relationships the time evolution 

is easy to evaluate. Luckily cyclic commutation relationships apply for the 

Pauli spin matrices. 

 
x y z z x y y z x[I ,I ]= I [I ,I ]= I [I ,I ]= I .i i i  (2.23) 

In this case the sandwich relationships apply. If [A,B] = i C and circular 

permutations thereof, 

 then exp( A)Bexp( A) Bcos Csin .i i     

 
(2.24) 

If the order in inverted such that [B,A]=-iC and its cyclic permutations 

 then exp( i B)Aexp(i B) Acos Csin .       (2.25) 



                                                                     Chapter 2: Theoretical Background 

10 

 

2.1.5 Hamiltonians during the NMR experiments and their action 
 

The Hamiltonians acting during an NMR experiment, in the simplest 

case, is H=-BI. Here is the gyromagnetic ratio of the examined spin. B 

represents the strength of an applied magnetic field acting on the spin and I is 

the spin operator. During the sequence of a basic NMR experiment consisting 

of a pulse and subsequent acquisition only two different Hamiltonians need to 

be considered. The Hamiltonian during the pulse is typically represented as 

 H=-B1Ix  or  H=-B1Iy , (2.26) 

if a RF pulse with phase x or phase y of strength B1is applied. 

The Hamiltonian during the period of free evolution which is  

 H=-B0Iz . (2.27) 

The frequency =-B defines the precession frequency which is the so called 

Larmor frequency i.e. -B0 =is the precession frequency during free 

evolution and B1=is the precession frequency when the pulse is applied. 

At this point we have all the tools to evaluate what happens to the density 

matrix I

when applying a 90 degree pulse. (Here the concept of rotating 

frames will not be introduced and RF pulses are treated as magnetic fields in 

the x or y direction without z component, the interested reader is referred to the 

literature
[53,54]

) 

We are now in a position to evaluate Eq.(2.18) under the specific action 

of these Hamiltonians. For a pulse along y, Eq.(2.18) can now be expressed as: 

 1 1

1 1

(t)=exp(- tI ) (t=0)exp( tI )

1 ˆ= +I cos( t)+I sin( t) .
2

y y

z x

i i  

 1
 (2.28) 

If we choose 1t to be exactly 90° (i.e. a 90° pulse) then only x

1

2
I1̂  remains 

after the pulse. At this point the Hamiltonian changes because the pulse is 

stopped and the free evolution under H=0 Iz begins. We can propagate the 

density matrix after the pulse under this Hamiltonian: 
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0 z x 0 z

x 0 y 0

0 0

0 0

1
(t) exp( tI )( I )exp( tI )

2

1
I cos( t) I sin ( t)

2

1 cos( t) sin ( t)1
.

cos( t) sin ( t) 12

1̂

1̂

i i

i

i

  

 

 

 

  

  

 
  

   

(2.29) 

In the NMR experiment I

 representing a coherence between the two available 

states, is the observable hence we obtain the signal using Eq. (2.10) as: 

 
0 0 0s(t) Tr( I ) cos( t) sin( t) exp( t)i i       

, (2.30) 

which after Fourier transform gives a delta function i.e. one peak at frequency 

0, as shown in Figure 2.1 

 

Figure 2.1 NMR signal from an uncoupled spin one-half system. Only one 

frequency 0 is observed. Instead of the delta function expected from Eq. (2.30). 

A Lorentzian line-shape is shown assuming some exponential relaxation of the 

signal which after FT-transform gives the Lorentzian line shape convoluted with 

the original -function. 
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2.1.6 High-field NMR experiments on two coupled spins 
 

Before addressing how the Hamiltonian in a two-spin system looks and 

how the evolution in the two-spin system proceeds, some basic characteristics 

of the two-spin system will be described: What are the basis states? How does 

a density matrix for two coupled spins look? How do we construct a complete 

set of spin operators? 

The basis states can be constructed such that they obey the 

orthonormality condition given in Eq. (2.5) (a more formal introduction of 

basis states follows in Section 2.2.2): 

 1 0 0 0

0 1 0 0
.

0 0 1 0

0 0 0 1

   

       
       
          
       
       
       

 (2.31) 

All states and superposition states are now represented by vectors with four 

components such that the density matrix becomes: 

 

 

* * * *
11 11 11 11 12 11 21 11 22

* * * *
12 * * * * 12 11 12 12 12 21 12 22

11 12 21 22 * * * *
21 21 11 21 12 21 21 21 22

* * * *
22 22 11 22 12 22 21 22 22

c c c c c c c c c

c c c c c c c c c
c c c c .

c c c c c c c c c

c c c c c c c c c

  
  
   
  
  

   

 (2.32) 

In this density matrix, similarly to the case of only one spin one-half, the 

diagonal elements are referred to as populations and the off-diagonal elements 

are coherences. 

As described above for the spin one-half case there are only four 

pertinent operators: ½1, x, Iy and Iz, which are represented by two-by-two 

matrices. For two coupled spins there will be 16 spin operators represented by 

four-by-four matrices. 

If we name the two coupled spins I and S we can construct sixteen spin 

operators by combining the four spin one-half operators using the Kronecker 

product (   ) in the 16 possible combinations as shown in Eq.(2.33)  
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x x y y z z

x x y y z z

x x x x x y x y x z x z

y y y y y z y z y x y z

z z x z z x z z z y z y

1 1 1
2

2 2 2

1 1 1
2 2 2

2 2 2

1 1 1
S 2 2 2

2 2 2

2I S 2 2I S 2 2I S 2

2I S 2 2I S 2 2I S 2

2I S 2 2I S 2 2I S 2 .

I I I

S S

ˆ ˆ ˆ1 1 1

ˆ ˆ ˆ1 1 1

ˆ ˆ ˆ1 1 1

  

  

     

     

     

 

     

     

     

     

     
 

(2.33) 

 

In so doing we obtain the operators that can be used to represent density 

matrices and Hamiltonians acting on them with their elements in the order 

 {  ,  ,    }. 

For example the new two spin operator Iy is formed as:  

 

y y

0 0 0

0 / 2 1 0 0 0 01 1 1
2 2

/ 2 0 0 1 0 0 02 2 2

0 0 0

I 1̂

i

i i

i i

i



 
 

                  
 
 

 

(2.34) 

 

In isotropic liquids the Hamiltonian for two spins has to take into 

account two primary effects. These are the different chemical shift of the two 

spins (vs and the J-coupling, J. The Hamiltonian under chemical shift 

only is  

 HCS = 1Iz +2Sz . (2.35) 

The Hamiltonian under J-coupling only is  

 HJ = 2J I∙S=2J (IzSz + IxSx + IySy). (2.36) 

However, in a typical situation, where -  >>2J, the chemical shift 

difference truncates the off-diagonal elements of the full scalar I∙S term and 

the Hamiltonian is 
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 H = 1Iz +2Sz+2J IzSz . (2.37) 

It is important to note that  

 [Iz,Sz] = [Iz, IzSz]= [Sz, IzSz] = 0 , (2.38) 

and therefore the different parts of the Hamiltonian acting on the density 

matrix can be evaluated independently and sequentially. 

The only part that has not been addressed thus far, is how to evaluate the 

J-coupling term IzSz acting on the density matrix. For that purpose it is useful 

to be aware of the following cyclic commutation relations: 

 [2IzSz, Ix]=i 2IySz 

[2IzSz, Sx]=i 2IzSy 

[2IxSz, Iy]=i 2IzSz 

[2IzSx, Sy]=i 2IzSz , 

(2.39) 

and 

 [2IzSz, Iz]=[2IzSz, Sz]=0 

[2IzSz, 1]=0 

[2IzSz, 2SxIx]=[2IzSz, 2IxSy]=0 

[2IzSz, 2IyIx]= [2IySz, 2IxSy]=0. 

(2.40) 

With the knowledge of the commutation relations we can track the 

evolution of a coupled two-spin system in a standard FT-NMR experiment. 

An idealized, initial, fully polarized state is given as  

 
0 z z

1 1 1ˆ I S .
4 4 4

   1  (2.41) 

Under a 90y-pulse the Hamiltonian H1 = (Iy+Sy)1 with 1t = /2 acts on 0 

and transforms the density matrix into 

 
1

1 1 1ˆ I S .
4 4 4

x x   1  (2.42) 

The period of free evolution can now be examined in two steps. First, 

evolution under the chemical shift is considered and second, evolution under 
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the J-coupling. The chemical-shift Hamiltonian is H2 = 1Iz+2Sz and it 

transforms 1 into 

 
2 1 1

2 y 1

1 1ˆ [I cos( ) I sin( )
4 4

S cos( ) S sin( )] .

x y

x

t t

t t

  

 

  

 

1
 (2.43) 

 

Lastly, the J-coupling Hamiltonian H3= J IzSz acts on 2 resulting in  

 
3 1 1

y z 1 x z 1

2 y 2

z y 2 z 2

1 1ˆ (I cos( )cos( ) I sin( )cos( )
4 4

2I S cos( )sin( ) 2I S sin( )sin( )

S cos( )cos( ) S sin( ))cos( )

2I S cos( )sin( ) 2I S sin( )sin( ) .

x y

x

x

t Jt t Jt

t Jt t Jt

t Jt t Jt

t Jt t Jt

    

   

   

   

  

 

 

 

1

 (2.44) 

Evaluation of these expressions in matrix form leads to 

 2 1

2 1

1 2

1 2

( ) ( )

( ) ( )

3 ( ) ( )

( ) ( )

0 0

0 0
1/ 2 .

0 0

0 0

i J t i J t

i J t i J t

i J t i J t

i J t i J t

e e

e e

e e

e e

   

   

   

   



   

  

  

 

 
 
 
 
 
 

 (2.45) 

Now we can apply Eq. (2.10) to calculate the expected signal as 

 
1 1 2 2( ) ( ) ( ) ( )- - 1

( ) ( (I S )) ( ),
2 2

i J t i J t i J t i J ts t Tr e e e e           
       (2.46) 

where I

 and S


 are given as 

 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 01 1
I S .

1 0 0 0 0 0 0 02 2

0 1 0 0 0 0 1 0

 

   
   
    
   
   
   

 (2.47) 

Equation (2.46) can be Fourier transformed and it is becomes apparent that we 

obtain a spectrum with two doublets centered on 1 and 2 respectively as 

depicted in Figure 2.2. 
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Figure 2.2 NMR signal from a two spin system with two distinct chemical shifts 

1 and 2, and a scalar coupling constant J. Instead of delta functions that would 

be obtained from Eq (2.46) Lorentzian line shapes are drawn assuming some 

relaxation rate associate with the signal.  
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2.2 Spin operators and the addition of angular momenta 
 

This Section will provide the basis for understanding the essential 

differences between zero-field NMR and standard high-field NMR as 

presented in the preceding Chapter. These differences are the result of the lack 

of a magnetic field in the Hamiltonian in zero-field NMR. In Eq. (2.37) we 

have seen that at high magnetic field the Hamiltonian is well described as a 

combination of local magnetic fields inducing frequency differences and the 

truncated action of the J-coupling. The frequency differences at high magnetic 

field are a result of differing chemical shifts or differing gyromagnetic ratio. At 

zero field these frequency differences vanish, and the full J-coupling 

Hamiltonian remains as presented in Eq. (2.36) The zero-field Hamiltonian and 

the high-field Hamiltonian have different symmetry. The high-field 

Hamiltonian is dictated by the magnetic field in a given invariant direction, 

whereas the J-coupling Hamiltonian is spherically symmetric. This change in 

symmetry has profound effects on the spectra and their interpretation. A 

reasonable approach to interpret zero-field NMR spectra is based on the 

description of spin and angular momentum as used in optical spectroscopy. 

The fundamental connection between zero-field NMR and the optical atomic 

spectroscopy of electron spins is primarily the same spherical symmetry in 

these two, at first glance, separate fields. Properties of spin one-half particles 

and the addition of angular momenta are described in many quantum 

mechanics textbooks. Here only some of the most essential features important 

to the interpretation of zero-field NMR spectroscopy shall be shown and later 

applied in every subsequent Chapter. Here, first, basic properties of spin one-

half operators will be discussed, followed by a description of the addition of 

angular momentum for two spin one-half particles, which will lead into the 

description of the addition of angular momentum in general. Similar 

introductions to the addition of angular momenta presented here can also be 

found for example in the Cohen-Tannoudji’s book “Quantum Mechanics”
[56]

, 

Shankar’s book “Principles of quantum mechanics”
[57]

 or “Optically Polarized 

Atoms: Understanding Light-Atom Interactions ”
[58]

 by Auzinsh et al.. 
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2.2.1 Basic properties of spin one-half operators  
 

It is useful to start by introducing a general angular momentum I that 

consists of three observables {Ix, Iy, Iz} such that the scalar square I
2
 is given as 

 I
2
 = Ix

2
 + Iy

2
 + Iz

2
 . (2.48) 

Also, in the case of a general angular momentum the circular commutation 

relationships, given in Eq. (2.23), hold.  

 [Ii,Ij]=ijkiIk , (2.49) 

where ijk is the Levi-Civita Symbol, which is equal to 1 if the elements i,j,k are 

in alphabetical order and -1 if they are out of alphabetical order.  

An additional important property is that I
2
 commutes with each of the 

three components of I 

 [I
2
, Ix]= [I

2
, Iy]= [I

2
, Iz]=0. (2.50) 

Furthermore, I
2 

and Iz form a complete set of commuting observables 

(C.S.C.O.) in the spin state space. This space is spanned by the eigenstates of 

I
2
 and Iz such that 

 2 , ( 1) ,

I , , .

i i

z i i i

i m i i i m

i m m i m

 



I

 

(2.51) 

In Eq. (2.51) i is half-integer and mi ranges from i to –i. The value of i is the 

spin of the particle under consideration. The state space spanned by the vectors 

|i,mi> has a dimension of (2i+1).  

In addition, it is also useful to be aware of the raising and lowering 

operators, that are defined and act on the basis states as follows:  

 ± x y

±

I =I ± I

I , = ( 1) - ( 1) , 1 .i i i i

i

i m i i m m i m  
 

(2.52) 

The most widely examined nuclei in NMR such as 
1
H, 

13
C, 

15
N, 

31
P, 

19
F 

are all spin 1/2 particles. Also in this thesis only systems containing spin 1/2 

nuclei are examined. It is hence worthwhile to consider some of the special 
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properties of angular momentum 1/2. The state space in this case is two 

dimensional and the basis states can be denoted as {|+>,|>}. “+” referring to 

mi=+1/2 and “–“ referring to mi =-1/2.The value of i is omitted since there is 

only one option i =1/2 In the basis of Iz these states are represented as the 

vectors used in Eq.(2.1). In that same basis the Pauli matrices introduced in Eq. 

(2.12) form the three components of the angular momentum I. Beside their 

cyclic commutation relations they have a few more important properties.  

The Pauli matrices are traceless: 

 Tr[Ix]= Tr[Iy]= Tr[Iz]=0. (2.53) 

The square of any Pauli matrix is 1/4 identity 

 Ix
2  

= Iy
2
 = Iz

2 
= 1/4 1. (2.54) 

As a consequence I
2 
is also proportional to identity 

 I
2 
= Ix

2 
+ Iy

2
 + Iz

2
 = 3/4 1. (2.55) 

With these properties at hand we are in a place to consider the addition of two 

spin one-half particles in the next Section. 

 

2.2.2 Addition of two spin one-half angular momenta 
 

In networks of more than one spin, coupled by some interaction, it is 

important to have the ability to describe the system on the basis of its overall 

properties rather than on the basis of the characteristics of the individual spins. 

This is especially true in a case, such as zero-field NMR, where the spin-spin 

interaction is the only interaction determining the Hamiltonian. Hence it is 

worthwhile to find the operators and states resulting from the addition of the 

individual angular momenta.  

Let us denote, similarly as in the preceding Chapter I and S to be the spin 

operators of two spin-one half particles to be added. The state space will now 

be spanned by four vectors formed using the tensor product of the spin one-

half basis states: 

 , , : , , , .i s i si m s m i m s m 
 (2.56) 
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In the specific case of two spin one-half particles, where i and s are always 

equal to 1/2 and mi and ms can only be 1/2. Thus the following notation for 

the four spin states is appropriate: 

 { , , , },       
 (2.57) 

where i and s are omitted and “+” indicates m=+1/2 and “” indicates m=1/2.    

These are eigenvectors of the four observables I
2
,
 
S

2
, Iz, and Sz, which 

form a complete set of commuting observables (C.S.C.O.). The following 

eigenvalues result when applying these operators to the basis states.  

 2 2

z

z

3
,  = ,  = ,  

4

I ,  = ,  

S ,  ,  .

i s i s i s

i s i i s

i s s i s

m m m m m m

m m m m m

m m m m m

I S

 

(2.58) 

Let us consider the total angular momentum operator 

 F = I + S, (2.59) 

which characterizes the two-spin system rather than the two spins as separate 

entities. 

This total angular momentum F now consists of the set 

{Fx=Ix+Sx, Fy=Iy+Sy, Fz = Iz+Sz}. 

In this new space we should now find the eigenvalues of F
2
 and Fz. 

F
2
 is calculated as 

 2 2 2

2 2

z z + - - +

=( + ) ( + )= + +2

= + 2I S +(I S +I S ) ,

 

 

F I S I S I S I S

I S  

(2.60) 

where I+,I-,S+ and S- are the raising and lowering operators. 
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Using the properties of Eq. (2.58) above we obtain for Fz:  

 
z

z

z

z

F 1

F 0

F 0

F 1

    

    

    

     
. 

(2.61) 

Similarly, for F
2 using Eq (2.58) we obtain 

 

2

2

2

2

2

2

    

       

       

    

F

F

F

F
. 

(2.62) 

In the product basis we thus obtain Fz  and F
2
 represented as 

 

2

1 0 0 0 2 0 0 0

0 0 0 0 0 1 1 0
F .

0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 2

z

   
   
    
   
   

   

F

 

(2.63) 

As can be observed F
2
 is not diagonal in the product basis. This is because F

2
 

does not commute with Iz nor Sz, which is a result of the terms Ix, Sx, Iy and Sy 

contained in F
2
.  

To solve the problem of adding the angular momenta we need to diagonalize 

F
2
. This way we find the new eigenvectors 

 

 

 

1

2

1

2

.

 

    

    

 
 

(2.64) 

Finally, we should associate a total spin f and a magnetic component mf 

with each of these states, which are found by applying F
2
 and Fz to these states. 
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The eigenvalues in the order of the states in Eq. (2.64) are {2 , 2, 0, 2} and {1, 

0, 0, -1} respectively. If we know choose f and mf such that they obey  

 2

z

, ( 1) ,

F , , .

f f

f f f

f m f f f m

f m m f m

 



F

 

(2.65) 

similar to Eq.(2.58). We obtain f to have the values 1 and 0 while the allowed 

values for mf are -1 0 and 1. In this new basis we now can characterize the 

states as |f, mf> such that: 

 
 

 

1,1

1
1,0

2

1
0,0

2

1, 1 .

  

     

     

   
 

(2.66) 

The states with f =1 form a triplet and the f =0 state is a singlet state. Note 

the differing symmetry of triplet and singlet states. The triplet states are 

symmetric under the exchange of two particles whereas the singlet state is 

antisymmetric under the exchange of two particles. This property is of 

fundamental importance for the following discussions and throughout the 

remainder of the thesis. 

 

2.2.3 Addition of two arbitrary angular momenta 
 

Let us consider the addition of two arbitrary angular momenta I and S, 

for both of which a standard basis is spanned by {|i, mi>} and {|s, ms>} which 

are eigenvectors of I
2
, Iz and S

2
, Sz respectively. Being angular momentum 

operators the following equations hold: 

 2

z

±

, ( 1) ,

I , ,

I , ( 1) - ( 1) , 1 .

i i

i i i

i i i i

i m i i i m

i m m i m

i m i i m m i m

 



   

I

 

(2.67) 
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And similarly 

  2

z

±

, ( 1) ,

S , ,

S , ( 1) - ( 1) , 1 .

s s

s s s

s s s s

s m s s s m

s m m s m

s m s s m m s m

 



   

S

 

(2.68) 

Just as in the two spin one-half case we define the total angular momentum as  

 F=I+S (2.59) 

We obtain a basis that diagonalizes I
2
, S2

, Iz, Sz easily by forming the tensor 

product. 

 , , : , , , .i s i si m s m i m s m 
 (2.69) 

The problem to be solved is exactly the same as for the addition of two 

spin-one-half angular momenta: We need to find a orthonormal basis that 

diagonalizes I
2
, S

2
, F

2
 and Fz that will then be characterized by the total spin f 

and its z-component mf with states denoted as |f,mf>. 

The questions to be addressed are: 

(1) what are the possible values for mf ? 

(2) what are the possible values for f ?  

(3) what are the degeneracies associated with the new states?  

(4) how do we perform the basis change from the basis {|i,mi, s,ms>} 

to the basis {|f, mf>}? 

In the following the answers for these questions will be provided and important 

properties of the obtained states will be discussed with the purpose of 

providing the tools necessary to understand zero-field NMR spectra. However, 

no rigorous derivations will be provided and the interested reader is referred to 

quantum mechanics text books
[55–57]

 for complete deductions. 

(1)   The vectors , , ,i si m s m  are already eigenvectors of Fz with 

eigenvalues 

  mf = mi+ms , (2.70) 

consequently mf takes on the values 



                                                                     Chapter 2: Theoretical Background 

24 

 mf = i+s, i+s-1,……,-(i+s). (2.71) 

(2)   The values of f are obtained by calculating the eigenvalues of F
2
 

resulting as f (f+1), such that f takes on the values 

 f = i+s, i+s-1,……,|i-s|. (2.72) 

(3)   For one given value of f the z-component, mf, takes on the values 

mf= f, f-1,….,-f  Hence for a group of vectors with one specific f there 

are  2f+1 vectors |f,mf> that form a degenerate manifold. The overall 

dimension of the eigenvector space is identical in the product basis 

{|f,mf>} or the total angular momentum basis {|i,mi, s,ms>} and given as 

(2i+1)(2s+1).  

  

(4)   The requested basis change can be performed using the so called 

Clebsch-Gordan (CG) coefficients. These coefficients connect the two 

bases. The resolution of the identity given in Eq. (2.6) allows us to 

express the states |f,mf> as: 

 , ,  , , ,  , , , .
i s

f i s i s f

m m

f m i m s m i m s m f m
 

(2.73) 

The coefficients ,  , , ,i s fi m s m f m  are referred to as Clebsch-Gordan 

coefficients. These coefficients are tabulated in standard tables in textbooks
[56]

 

and it shall suffice to say that they can be calculated using the following 

properties: a) For the vector with maximum mf =i+s the CG coefficient is one. 

b) Repeated application of the lowering operator F- to gives additional CG 

coefficients for states with f=i+s. c) The next CG-coefficient with f=i+s-1 and 

mf=i+s-1 is obtained by requiring real CG-coefficients (by convention) and 

orthonormality to the preceding total-f states. d) The additional states in the 

f=i+s-1 group are obtained by applying the lowering operator again. 

Proceeding iteratively, all CG-coefficients are obtained. 

It is useful to be aware of the fact that CG-coefficients are only non-zero 

whenever  

 mf = mi + ms and |i-s|  f  i+s. (2.74) 

This is also referred to as the triangle selection rule for CG-coefficients, which 

states in words: The CG-coefficient is only non-zero if it is possible to form a 

triangle with sides of length i, s and f. 
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Figure 2.3 Illustration of the triangle rule for the addition of angular momenta. 

The value for the total spin f is restricted such that only values for f are allowed 

such that is possible to form a triangle with sides of length i, s and f. This 

requirement limits f to be smaller or equal to i+s and larger or equal to the 

absolute value of i-s.  

 

2.2.4 The Wigner-Eckart Theorem 
 

As introduced in Eq. (2.8) the expectation value for a given observable is 

defined as <|A|> in the context of the present discussion it will be our goal 

to obtain these expectation values for given angular momentum states.  

 ',  ' A ,  .f ff m f m
 (2.75) 

As a first step it is possible to determine whether the expectation value is zero 

or non-zero for a given pair of angular momentum states. This is usually done 

invoking the Wigner-Eckart Theorem. Let us first describe how the Wigner-

Eckart theorem works for expectation values associated with scalar and 

vectorial observables and then the general form will be given for expectation 

values associated with spherical tensor operators of arbitrary rank. Scalar and 

vectorial operators are given as rank zero and rank one operators respectively.  

For, example if A is a scalar “a”, then it immediately follows from the 

orthonormality of the basis states that 

f ff',f m ',m

1if ' and '
',  ' ,  ',  ' ,  

0 otherwise

f f

f f f f

f f m m
f m a f m a f m f m a 

 
   

  
(2.76) 
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If the observable is a component of a first rank tensor such as for example 

F={Fx, Fy, Fz} then we can also evaluate the expectation value associated with 

each of these components. For example 

 
x ', , 1 ', 1

F F
',  ' F ,  ',  ' ,  

2

1if 1 ' | -1 |  and ' 1
.

0 otherwise

f ff f f f f f f m m

f f

f m f m f m f m

f f f m m

 
 

 


 

    
 
  

(2.77) 

And similarly 

 
', , 1 ',',  ' F ,  

1if 1 ' | -1 |  and '

0 otherwise

f ff z f f f f m m

f f

f m f m

f f f m m

 

   
 
  

(2.78) 

These results can be confirmed by invoking the general form of the Wigner-

Eckart Theorem, which separates the matrix elements, such as e.g. the shown 

expectation values, into parts dependent on spatial orientation and the rest. 

 ',  ' T ,  ' T ',  '; ,   ,  .q

f k f k f ff m f m f f f m k q f m
 (2.79) 

The parts dependent on spatial orientation, (i.e. on m, and q) are given entirely 

as CG-coefficients.  

In order to link this to the previous examples it is important to understand 

that Tk
q 

are the components of a spherical tensor operator of rank k with (2k+1) 

components q that take on the values q=k, k-1,……,-k. In the example of the 

scalar operator a=T0
0
 which is the only component of a rank zero operator. In 

the case of the vector F the spherical tensor operator of rank one has the three 

components Fz = T1
0
, F

+
= T1

1
 and F


= T1

-1
. And in general for matrix elements 

of Tk
q
 between angular momentum manifolds: 

 q

k',  ' T ,  =0 unless ' - and ' .f f f ff m f m k f f k f m m q    
 (2.80) 

This directly leads us to the results of Eq. (2.77) and Eq. (2.78). In physical 

terms it is reasonable to assert that Tk
q 

imparts angular momentum (k,q) to the 

states it acts on as exemplified by Eq. (2.52), (2.72) and (2.73).  
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2.2.5 Eigenvalues of a scalar-coupling Hamiltonian 
 

The Hamiltonian for two coupled spins of arbitrary size (integer or half 

integer) is given as  

 H ( ),J I S  (2.81) 

where J is the coupling strength and I and S are the spin operators as 

introduced above. In order to find the energy values of the system the 

expectation values of H are to be calculated 

 
, ,  ( ) ,  .

ff m f fE f m J f m I S
 (2.82) 

I∙S can be replaced by operators, of which we know how they act on the 

|f,mf>basis. Since, 

 2 2 2 2+ 2 ,    F (S I) S I S I
 

(2.83) 

we can rearrange to obtain 

 2 2 21
.

2
   S I (F S I )

 
(2.84) 

Since, F
2
, S

2 
and I

2 
 act as 

 2

2

2

( 1)

( 1)

( 1)

f f

f f

f f

f m f f f m

f m s s f m

f m i i f m

 

 

 

F , ,

S , ,

I , , ,

 (2.85) 

we obtain the eigenvalues given in terms of the quantum numbers as 

 
, [ ( 1) ( 1) ( 1)].

2ff m

J
E f f s s i i     

 (2.86) 

This is an important result for zero-field NMR spectroscopy as will become 

apparent in the later discussions.  
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2.3 Parahydrogen induced polarization in high-field 

NMR 
 

In 1986 Weitekamp and Bowers discovered parahydrogen induced 

polarization (PHIP) and introduced the acronym PASADENA for 

(Parahydrogen and Synthesis Allow Dramatically Enhanced Nuclear 

Alignment)
30

. In this effect the parahydrogen spin order is transferred to a 

substrate using a hydrogenation reaction. After hydrogenation the symmetry of 

the para-state is broken and can then be transformed into detectable 

magnetization. In this Section the underlying physics will be explained 

followed by a discussion of hydrogenations with parahydrogen of symmetric 

substrates, giving an interesting perspective on the PASADENA effect leading 

into PHIP applied at zero magnetic field. 

 

2.3.1 The hydrogen molecule and its spin states 
 

In order to understand the PHIP effect it is useful to start with an 

examination of the hydrogen molecule, its states and possible wave functions. 

In general under the Born-Oppenheimer approximation the total wave function 

of a molecule can be separated into an electronic, a vibrational, a rotational and 

a nuclear wave function such that 

 total =  e r n (2.87) 

The Pauli principle states, for half-integer nuclei (fermions), that total has 

to be antisymmetric under exchange of two identical particles. In order to make 

a statement about the symmetry of the total wave function we shall examine 

the individual factors. The temperature regime that we are interested in is ~100 

C and below. In this regime only the electronic and vibrational ground states 

are populated. The electronic ground state is the symmetric 
1
g

+
 state. The 

vibrational ground state is well represented by symmetric ground state of a 

harmonic oscillator with =0. At the same time, a wide range of rotational and 

nuclear states are populated at a given temperature determined by the 

Boltzmann distribution. As a result of the stated Pauli principle, the 

symmetries of the nuclear and vibrational states must be correlated.  
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The nuclear states are given by the wave functions presented in Eq. (2.64) 

resulting from the addition of two spin one-half nuclei. Where the symmetric 

triplet states are referred to as the ortho states and the antisymmetric singlet 

state is referred to as the para state. 

 

 

 

1,1

1
1,0 ortho

2

1, 1

1
0,0 para .

2

  



      

    


      

  

(2.88)

 

The rotational states of parahydrogen can be described by the spherical 

harmonics  

 
, ,( , ) ( , ) (cos ) ,l l

l l

m im

l m l m lY P e
        (2.89) 

where l is the rotational quantum number. The spherical harmonics depend on 

the Legendre-polynomials, Pl
m

l, which alternate from symmetric to 

antisymmetric depending on l. The spherical harmonics under point inversion 

obey 

 
, , ,( , ) ( , ) ( 1) ( , ) .

l l l

l

l m l m l mY Y Y             (2.90) 

As a result of the Pauli principle in combination with the stated symmetry 

properties the para state “lives” in even rotational states and the ortho state 

“lives in” odd rotational states. This property is crucial to the enrichment of 

parahydrogen. 

 

2.3.2 Enrichment of parahydrogen 
 

In order to produce parahydrogen in essence all we need to do is to 

populate the rotational ground state with l = ml = 0. This is a symmetric 

rotational state, which therefore must contain the antisymmetric nuclear spin 

state, the para state. A reasonable path to populate the ground state is by 

cooling the hydrogen and establishing thermal equilibrium at the lower 

temperature. The equilibrium ortho-para mixture can be predicted by 

calculating the rigid-rotor partition function using the characteristic 
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temperature of rotation for hydrogen R. Each manifold of states given by l is 

(2l+1) times degenerate, since ml ranges from –l to +l in steps of 1. The 

rotational energy is given as  

 
1  ( 1) ,R bE l l k    (2.91) 

where kb is the Boltzmann constant and R is given as  

 2

R bΘ  = /2k M  = 85.3 K ,  (2.92) 

with M= r12
2
 the moment of inertia for the inter-nuclear distance r12 and  the 

reduced mass of molecular hydrogen. This results in an ortho to para ratio 

given as 

 ( 1)/

odd l

( 1)/

even l

3 (2 1)

.
(2 1)

R

R

l l T

ortho

l l T

para

l e
N

N l e

 

 









 (2.93) 

 

 

Figure 2.4 Plot of the thermally equilibrated percentage of parahydrogen in a 

mixture of ortho- and parahydrogen as a function of temperature. At room 

temperature (RT) a statistical 3:1 ratio is the thermodynamic equilibrium. At 

liquid nitrogen temperatures of 77 K the thermal equilibrium is a 1:1 mixture 

and at temperatures below 30 K almost all hydrogen is parahydrogen when 

thermally equilibrated. 
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In Figure 2.4 resulting from this ratio the percentage of parahydrogen is plotted 

as a function of temperature. As can be seen, at room temperature (RT) the 

thermal equilibrium is given as a statistical 3:1 mixture. At liquid nitrogen 

temperatures of 77 K, ~50.6% parahydrogen is obtained, and starting at ~30K 

close to 100 % parahydrogen can be produced. 

The last difficulty to overcome lays in establishing thermal equilibrium at 

a given temperature. The interconversion between the ortho and the para form 

of hydrogen is associated with a half-time of approximately three weeks. In 

order to establish thermal equilibrium faster it is possible to bring the hydrogen 

in contact with a paramagnetic surface, which has strong magnetic gradients 

that can intermittently mix the singlet and the triplet states thereby inducing 

transitions. Presently a parahydrogen production station is in place operated at 

temperatures between 20 and 35 K that will be described in detail in Section 

3.2.6 .  

As depicted in Figure 2.5 normal hydrogen flows into copper tubing that 

is filled with iron oxide, where it comes into contact with the paramagnetic 

surface and thermal equilibrium is quickly established. The copper tubing is 

contained in a vacuum shroud for insulation and brought in touch with a cold 

finger, typically operated at 30 K producing close to 100% parahydrogen. The 

cold finger is cooled by expansion of compressed Helium. More detailed 

information is given in the experimental Section 3.2.6. 
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Figure 2.5 Schematic of the parahydrogen-production setup on the left and a 

photograph of the containing vacuum chamber to the right. Normal hydrogen 

flows in a tube filled with iron-oxide powder cooled to ~30 K. The iron-oxide 

catalyzes the para- to orthohydrogen conversion thereby establishing thermal 

equilibrium at the desired temperature. 

 

 

2.3.3 Parhydrogen induced polarization (PHIP) 
 

The underlying principle of the PHIP effect is the conversion of the 

parahydrogen singlet state into a state with observable magnetization. In the 

hydrogen molecule itself it is difficult to break the symmetry of the wave 

functions, hence the first step in PHIP experiments is a chemical manipulation. 

In most cases a hydrogenation reaction is performed. As shown in Figure 2.6 

parahydrogen can be added onto a double (or triple) bond via some transition-

metal catalyst. In the specific case of Figure 2.6 Wilkinson’s catalyst is chosen 

for the catalysis of an alkene. After hydrogenation the parahydrogen derived 

protons are typically in location of differing chemical shift. This change in 

symmetry then allows for manipulations of the spin states. 
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Figure 2.6 Schematic of a typical hydrogenation reaction. 

Rhodium(I)tris[triphenylphosphine chloride] also known as Wilkinson’s catalyst 

catalyzes the hydrogenation of an alkene to form a alkane. The alkane contains 

two additional hydrogen atoms derived from the same original hydrogen 

molecule.  

 

Before hydrogenation the density matrix describing the para spin state in 

the Zeeman basis is given as the outer product [introduced in Eq (2.9)] of the 

singlet states given in Eq. (2.88): 

 

0 0

0 0 0 0

1 1
0 0

12 2

1 1 4
0 0

2 2

0 0 0 0

- ,S S

 
 
 
   
 

 
 
 
 

1 I S 

 

(2.94) 

where  

 
x x y y z z=I S +I S +I S .I S

 (2.95) 

Upon hydrogenation this density matrix is projected onto a new spin system 

given in the substrate and represents a highly ordered density matrix far away 

from thermal equilibrium, thus carrying a high degree of polarization that can 

be exploited. 

In an idealized case, which will serve best for an introductory discussion, 

the only difference in the adduct consists of a differing chemical shift 1 and 

2 for the two parahydrogen derived protons. Additional J-couplings that may 

be present in the substrate will be ignored for the purpose of this introduction 

to PHIP because they typically represent a weaker interaction than the 

chemical shift difference and also the effect of J-coupling will be discussed in 

great detail in later Chapters since in zero-field NMR chemical shifts are 

absent. On this basis the next two Sections will discuss how to extract and use 

this polarization to obtain detectable signal. 
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2.3.4 The PASADENA effect 
 

The classic PASADENA (Parahydrogen and Synthesis Allows 

Dramatically Enhanced Nuclear Alignment) experiment consists of a 

hydrogenation reaction conducted with parahydrogen at a high magnetic field 

under which the chemical-shift differences dominate any J-coupling 

interactions. Under these conditions it is appropriate to use a sudden 

approximation in which the parahydrogen singlet state is projected onto the 

new Hamiltonian given as introduced in Eq. (2.35) 

 

1 2

1 2

1 z 2 z

1 2

1 2

ω +ω
0 0 0

2

ω -ω
0 0 0

2
H=ω I +ω S = .

-ω +ω
0 0 0

2

-ω -ω
0 0 0

2

 
 
 
 
 
 
 
 
 
 
   

(2.96) 

This Hamiltonian is diagonal in the Zeeman basis. After the hydrogenation of a 

single molecule, the off-diagonal elements of the initial density matrix will 

begin to evolve at some frequency given by the difference in chemical shifts. 

Over the course of many hydrogenation reactions of individual molecules 

additional off-diagonal terms experience the same evolution but with random 

phase thereby averaging the off-diagonal terms to zero. This process is referred 

to as incoherent averaging. After this process, only elements of the original 

density matrix on the diagonal remain. In the discussed case I∙S is converted 

into IzSz:  

 

0 0 0 0 0 0 0 0

1 1 1
0 0 0 0 0

1 12 2 2
.

incoherent1 1 14 4
0 0 0 0 0averaging

2 2 2

0 0 0 0 0 0 0 0

- - I Sz z

   
   
   
     
   

   
   
   
   

1 I S 1

 

(2.97) 
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In other words, the singlet state  1 / 2     
 
is split into its components 

in the Zeeman basis 
1 1

 and
2 2
    . 

In order to examine the type of NMR signal obtained after hydrogenation 

of many individual molecules we can examine the effect of a RF pulse on -IzSz 

and calculate the ensuing evolution. Following the concepts introduced in 

Section 2.1.6 -IzSz is transformed as by a pulse of angle  as follows: 

 
2 2

z z x x z x x z - cos (θ)-I S sin (θ) sin(θ)cos(θ)(I S +I S ).
angle θ 
y-pulse 

-I S I Sz z  

 
(2.98) 

Both IzSz and IxSx are not directly observed in simple NMR experiments, 

which can be verified using the trace formula of Eq. (2.10). The only term we 

should concern ourselves with hence is -(IzSx+IxSz). To choose the pulse angle 

that gives maximum signal the expression sin()cos() has to be maximized 

and we thus find the first maximum with application of a 45 pulse.  

Evaluation of Eq. (2.18) gives the evolution of IzSx+IxSz under the 

Hamiltonian H = 1Iz +2Sz+2J IzSz as 

2 1

2 1

1 2

1 2
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( ) ( )

( ) ( )
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( ) ( ) .

4 0 0
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e e

e e
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e e

e e
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   

   



   

  

 

  

 

  
 
     
  
 

    

(2.99) 

Using the trace formula introduced in Eq (2.10) we obtain: 

1 1 2 2( ) ( ) ( ) ( )- - 1
( ) ( ( )(I S )) ( ),

4 2

i J t i J t i J t i J ts t Tr t e e e e           
      

 
(2.100) 

which clearly indicates the expected peaks and their relative amplitudes in a 

PASADENA experiment as shown in Figure 2.7. It is worthwhile to recall that 

the signal is maximized with a 45 pulse and that a 90 pulse would not result 

in any signal in the discussed scenario.  



                                                                     Chapter 2: Theoretical Background 

36 

 

Figure 2.7 Simulated PASADENA spectrum for a typical two-spin system with  

frequencies 1 and 2 and a J-coupling constant J. In the specific case (1-

2)/J=7. The peaks of individual doublets appear 180 out of phase. These 

individual peaks are said to be antiphase. 

 

2.3.5 The ALTADENA effect  
 

In ALTADENA (Adiabatic Longitudinal Transport After Dissociation 

Engenders Net Alignment) experiments, also, hydrogenation reactions are 

conducted with parahydrogen and signals are observed in high-field-NMR 

spectrometers. What distinguishes ALTADENA experiments from 

PASADENA experiments is that the hydrogenation is conducted at a low 

magnetic field where the chemical shift differences are small as compared to 

the J-coupling. Subsequently, the sample is transferred into the magnet such 

that the density matrix can adiabatically follow the change from low-field to 

high-field where the signal is acquired.  

Under idealized circumstances, that is, in the absence of additional J-

couplings to nuclei not derived from parahydrogen, the density matrix before 

and after hydrogenation in ALTADENA experiments is identical because the 

symmetry of the Hamiltonian after hydrogenation is the same as before 
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hydrogenation. We can hence describe the density matrix after hydrogenation 

by Eq.(2.94), where only the singlet is populated. The population in the singlet 

state is then adiabatically transferred into its corresponding states at high field. 

Since the states    and    are identical at high and low field these do not 

change upon the transfer and will not be populated. The assignment of the 

   and    states to the singlet S0 or the triplet T0 is less obvious. During 

the adiabatic transfer there are avoided crossings, hence the energetically lower 

singlet will transfer to the energetically lower state at high field. In the case 

that the second spin, S, has the lower frequency then    is the state with 

lower energy at high field and it is this state that will be populated. The density 

matrix is hence transformed as follows during adiabatic transfer: 

z z z z

0 0 0 0

0 0 0 01 1
0 0

0 0 0 01 1 12 2
(I S (I -S )).

adiabatic 1 1 0 0 1 04 4 2
transfer0 0

2 2 0 0 0 0

0 0 0 0

- -

 
   
   
      
   

   
   
 
 

1 I S 1

 

(2.101)

 
As discussed above the signal obtained from IzSz is maximized with a 45 

pulse but ALTADENA experiments produce the additional term Iz-SZ, which 

produces signals maximized with a 90 pulse.  

 
z x z x- )  - cos(θ) -I sin(θ) cos(θ) + S sin(θ).

angle θ 
y-pulse 

-(I S I Sz z  

 
(2.102) 

The -Ix+Sx term evolves under the magnetic field Hamiltonian. We employ Eq. 

(2.18) and obtain the density matrix as a function of time. 
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 (2.103) 

Once again using the trace formula of Eq. (2.10), then, gives the signal as a 

function of time: 

1 1 2 2( ) ( ) ( ) ( )- - 1
( ) ( ( )(I S )) ( ).

2 2

i J t i J t i J t i J ts t Tr t e e e e           
      

 
(2.104)
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This signal is multiplied by an exponentially decaying function and Fourier-

transformed to give the spectrum depicted in Figure 2.8. 

 

 

Figure 2.8 Simulated ALTADENA spectrum for a typical two-spin system with 

frequencies 1 and 2 and a J-coupling constant J. In the specific case (1-

2)/J=7. The doublets as entities appear 180 out of phase. The doublets are said 

to be antiphase. 
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2.3.6 PHIP experiments on symmetric molecules 
 

Before undertaking PHIP experiments at zero magnetic field where there 

are no chemical shifts it seems worthwhile to perform classical PHIP 

experiments (ALTADENA and PASADENA) on a symmetric substrate to 

examine whether signals can be obtained even if the two parahydrogen derived 

protons are in chemically equivalent positions with identical chemical shifts. 

To that end, hydrogenations of butyne shown in Figure 2.9 were conducted in 

both the ALTADENA and PASADENA mode. After the hydrogenation 

reaction hyperpolarized butane is formed. (These experiments were conducted 

at the initial stages for preparation of this thesis) 

 

Figure 2.9 Schematic showing the hydrogenation reaction of butyne. The 

product butene contains two parahydrogen derived hydrogen atoms. 

When the hydrogenation was conducted at high magnetic field 

(PASADENA) and a 45 pulse was applied the spectrum shown in Figure 2.10 

was obtained. Despite the chemical equivalence of the hydrogenated sites a 

strong PASADENA signal is observed after a small amount of hydrogenation 

(~1% of the substrate). Primarily signals at 5.3 ppm are expected 

corresponding to the parahydrogen derived protons in the vinyl positions of 

butene. As is typical for the PASADENA experiments, the signals are 

antiphase and separated by distances determined by the J-coupling constants in 

the molecule. At 1.55 ppm also strong signals are observed, however, the 

majority of the observed signal is associated with thermal signal from butyne 

that has not been hydrogenated yet representing ~99% of the sample. At the 

same time, at somewhat lower chemical shift an antiphase signal can be 

observed to overlap with the thermal butyne signal. This antiphase 

PASADENA signal is associated with the methyl groups of the hyperpolarized 

butene. 
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Figure 2.10 PASADENA spectrum acquired from the hydrogenation of butyne 

to form butene. The antiphase quartet at 5.3 ppm can be assigned to the 

parahydrogen derived vinyl protons in butene. The antiphase doublet expected 

for the methyl groups in butene appearing at 1.55 ppm overlaps with the 

thermal signal of the remaining butyne that has not reacted yet. 

 

Similarly, hydrogenation reactions were carried out at low magnetic 

fields (~0.5 G) and the sample was subsequently transferred into the magnet 

and a 90 pulse was applied (ALTADENA). The resulting spectrum is shown 

in Figure 2.11. Strong antiphase signals at 5.3 and 1.55 ppm separated by the 

chemical shift are observed as predicted for ALTADENA experiments. The 

component at 1.55 ppm that is in phase with the signal at 5.3 ppm is signal 

from thermally polarized butyne which is partially canceled out by the 

hyperpolarized butene signal. 
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Figure 2.11 ALTADENA spectrum acquired from the hydrogenation of butyne 

to form butene. The inphase quartet at 5.3 ppm can be assigned to the 

parahydrogen derived vinyl protons in butene. The in phase doublet expected 

for the methyl groups in butene at 1.55 ppm is antiphase with respect to the 

quartet but partially canceled by the thermal signal of the remaining butyne that 

has not reacted yet. 

 

The take home message from this Section is that the chemical 

equivalence of the hydrogenated sites does not preclude the PHIP from 

becoming observable. However, the magnetic equivalence in this 

butyne/butene model system is broken by the methyl groups which do not have 

the same coupling constants to the individual parahydrogen derived protons in 

butene. In order to further convince ourselves that breaking the magnetic 

equivalence by means of J-couplings in a hydrogenated product is sufficient, 

simulations have been undertaken for a simpler model spin system. This model 

consists of two parahydrogen derived nuclei coupled to two additional spin 

one-half nuclei. This model spin system is depicted in Figure 2.12 along with a 

simulated PASADENA spectrum for that spin system. The parameters were 

chosen randomly as follows: The nutation frequency of spins I and S are set to 

50 Hz, the nutation frequency of both spins R is set to 200 Hz. The J-coupling 

constant between spins I and S is chosen to equal 10 Hz and the additional 

couplings that break the magnetic equivalence are set to 7 Hz all other possible 
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coupling constants are set to zero. The magnetic equivalence is broken because 

the coupling constant of I to R1 (7 Hz) is different from the coupling constant 

of I and R2 (0 Hz) and similarly (JSR1= 0Hz ≠ JSR2= 7 Hz). 

The simulations are carried out following the procedures described in the 

previous Sections. A brief outline of the important steps in these simulations 

seems most appropriate to wrap up this introductory Chapter. 

The initial density matrix in the parahydrogen molecule is 1/4 1-I∙S. The 

state space is 16-dimensional. And all involved matrices are 16-by-16 matrices 

 

 

Figure 2.12 Simulated PASADENA spectrum for a four-spin model system. The 

symmetry of the singlet state of parahydrogen is broken solely on the basis of J-

coupling constants. The coupling constant of I to R1 (7 Hz) differs from the 

coupling constant of S and R1 (0 Hz). Similarly, the coupling constant of S to R2 

(7 Hz) differs from the coupling constant of I to R2 (0 Hz). This difference 

suffices to obtain observable PHIP.  

 

2 2

IS IR ISJ J J 

2 2

IS IR ISJ J J 
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that are formed by using the Kronecker product much in the same way as going 

from one to two spins as performed in Eq. (2.33).  

In this 16-dimensional state space the initial density matrix, 0, for an 

individual parahydrogenated molecule is: 

 0 = 1/16 1-I∙S. (2.105) 

In order to take into account all hydrogenation reactions occurring at random 

points in time, incoherent averaging is performed. This averaging process is 

accounted for by expressing 0 in the eigenbasis of the Hamiltonian of the spin 

system:  

 H = I (Iz + Sz) + R (R1z + R2z) + 2JIS (I∙S) + 2JIR (IzR1z + 

SzR2z),  
(2.106) 

and eliminating all off-diagonal elements. This results in the averaged density 

matrix over all hydrogenation reactions av. Next a 45 pulse is simulated by 

applying the adequate propagator U(/4) to the density matrix. 

 1 =U(/4) av U
-1

(/4), (2.107) 

where 

 U(/4) = exp(-i Hpulse t) = exp(-i (Iy+Sy+R1y+R2y) /4). (2.108) 

This density matrix is then propagated under the Hamiltonian given in Eq. 

(2.106), giving the time dependent density matrix after the pulse (t)  

 (t) = exp(-i H t) 1 exp(i H t), (2.109) 

and the signal can then be calculated using the trace formula of Eq. (2.10) as: 

 s(t)=Tr((t) (I
-
+S

-
+ R1

-
+ R2

-
). (2.110) 

This signal is then Fourier-transformed and plotted as given in Figure 2.12. 

This simulation confirms that the magnetic equivalence of I and S can be 

broken with the effect of J-couplings alone and PHIP can be converted into 

observable signal also under the condition of identical chemical shift, which 

was encouraging for the future experiments using PHIP at zero-magnetic field 

where chemical shift differences are entirely absent. 
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3. The zero-field-NMR spectrometer: operation 

and setup 
 

The detection of the zero-field NMR signal is performed with an atomic 

magnetometer.
4,23,59–61

 In the last decade atomic magnetometers have become 

one of the most sensitive magnetic sensors with demonstrated sensitivities 

below1fT/ Hz .
23

 Thereby beating SQUIDS (super conducting quantum 

interference devices),
62–65

 which have previously held the record as the most 

sensitive magnetometers. Atomic magnetometers are particularly appealing in 

the context of NMR measurements. They are small in size (mm scale) with 

large potential for further miniaturization and unlike SQUIDS, they do not 

require cryogenic temperatures for operation. These characteristics of atomic 

magnetometers give zero-field NMR great potential of becoming a low cost 

and portable NMR platform, giving NMR access to spaces inaccessible by 

traditional NMR spectrometers. In this Chapter the operation and the 

experimental setup of 
87

Rb vapor magnetometer will be discussed in the 

context of zero-field NMR measurements. 

 

3.1 Rubidium magnetometer: basics of operation 
 

In the present work a rubidium-87-vapor magnetometer is employed. The 

central component is a glass cell filled with rubidium-87 and nitrogen buffer 

gas. The magnetometer is operated with a pump laser, for polarizing the 

rubidium atoms, and a probe laser, orthogonal to the pump beam, detecting a 

perpendicular component of the magnetization, thereby measuring the 

magnetic field experienced by the 
87

Rb atoms. The details of the measurement 

will be expanded on in the following Sections.  An overview of the essential 

components, of the experimental setup, is provided in Figure 3.1. As shown in 

a), four layers of -metal and one innermost layer of a ferrite shield is used to 

shield out the Earth’s magnetic field and the surrounding noise. Any remaining 

fields are reduced to the G level with a set of three orthogonal shimming coils 

(not shown but discussed in more detail in Section 3.2). Part b) of Figure 3.1 

shows the arrangement of magnetometer cell, sample, pump beam and probe 
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beam. The cell is arranged at a 45 angle with respect to the pump and the 

probe beam traveling in the horizontal plane such that both beams intersect 

inside the Rb-vapor cell at a 90 angle. The sample is arranged vertically 

immediately above the magnetometer cell. In this configuration the 

magnetometer is arranged to detect magnetic fields in the vertical direction 

produced by the sample. The direction of propagation of the pump beam is 

defined as z-direction, the direction of propagation of the probe beam is 

defined as x-direction and the vertical direction of the detected magnetic field 

is defined as y-direction. In part c) the mode of operation is illustrated. In brief, 

the pump beam is circularly polarized, pumping the rubidium atoms into a 

stretched state aligned with the pump beam in the z-direction. The action of a 

magnetic field in the vertical y-direction is to rotate the polarized spins in the 

horizontal plane. The combined action of continued pumping and a small 

magnetic field causes a steady state polarization aligned, at a given angle 

between the z- and the x-direction. With the probe beam the component of 

polarization in the x-direction is detected. This is then a direct measure of the 

magnetic field we strive to observe. The ensuing Sections 3.1.1-3.1.3 provide a 

more detailed explanation of these effects. 

 

 

Figure 3.1 Overview of a typical zero-field NMR spectrometer. Part a) shows the 

magnetic shielding containing the sample and the detector. Part b) zooms inside 

the shields, showing the arrangement of rubidium cell, heater, NMR sample, 

pulse coils, pump and probe laser beams. Part c) indicates the mode of 

operation. The circularly polarized pump beam aligns the rubidium spins, which 

slightly rotate under the influence of magnetic field. The linearly polarized probe 

beam detects the effect of the magnetic field by experiencing 

rotation/birefringence caused by the slightly rotated rubidium spins. 
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3.1.1 Optical pumping  
 

The characteristics of 
87

Rb exploited in magnetometry applications are 

primarily dictated by the lone electron in the valence shell. This electron is in 

the 
2
S1/2 state as its ground state. The pump beam is tuned to the D1 line, 

inducing transitions between the 
2
S1/2  ground state and the 

2
P1/2 state. Figure 

3.2 shows the states and the relevant energy differences for the D1 transition in 
87

Rb. The hyperfine states with f=1 or f=2 are a result of the combination of the 

angular momentum, J=L+S, with the nuclear spin I in 
87

Rb as F=J+I.(l=0, 

j=1/2, s =1/2, i=1/2)  

 

Figure 3.2 Energy level diagram of 
87

Rb for the D1 transition. The excited-state 

values are taken from the literature
[66,67]

. The approximate gyromagnetic ratios 

for each level are given, for the corresponding Zeeman splittings between 

degenerate magnetic sublevels.  
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Optical pumping of alkali vapors has been extensively studied in the 

literature
[35,58,61,68]

 and here only an introductory overview shall be provided. 

For the purposes of optical pumping + circularly polarized light tuned to 

the D1 line is employed. All photons in the beam have the same spin projection 

along the direction of propagation of the pump beam. This direction is 

conventionally defined as the z-direction. Along this axis all photons have 

angular momentum +1. This angular momentum can be transferred to a 

rubidium atom upon absorption of a photon. Large degrees of polarization, on 

the order of unity, can be obtained by this form of optical pumping
[69]

. In the 

described magnetometer a polarization on the order of 50% is ideal. As 

indicated in Figure 3.3 levels with lower mf are depopulated and excited states 

with mf’ = mf+1 are populated. Simultaneously, the Rb-cell contains a large 

amount of N2 buffer gas causing large amounts of collisional quenching.  

  

Figure 3.3 Energy level diagram for the D1 transition in 
87

Rb illustrating the 

effect of + circularly polarized light tuned to the D1 transition optically 

pumping the Rb-vapor resulting in polarization as depicted in Figure 3.4. 
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Also, given a large rubidium density, Rb-Rb collisions cause collisional 

mixing. These relaxation mechanisms are non-radiative processes with equal 

probability of inducing decay into any of the Zeeman ground-state levels 

thereby partially counteracting the effect of the pumping. The relative rates of 

relaxation and pumping determine the steady state polarization. The relaxation 

processes are random in nature, such that eventually the mf =+2 becomes 

primarily populated. This mf=+2 state is transparent to the incident pump beam. 

To achieve 50% polarization the relaxation rate has to equal the pumping rate. 

The power level of the pump laser is adjusted accordingly. In the next Section 

the different types of collisions and their consequences for the operation of the 

magnetometer are discussed in more detail. 

 

3.1.2 Relaxation mechanisms and the SERF regime 
 

There are different types of collisions and respective relaxation 

mechanisms for a 
87

Rb atom in the glass cell. These collisions can be 

categorized as spin-destruction collisions, spin-exchange collisions and 

collisions with the wall. In cells, such as used here, with a large alkali density 

spin exchange collisions are most frequent. In spin-exchange collisions, the 

direction of the electron spin is reversed while the nuclear spin and the total 

spin, fm ,are conserved. These collisions are alkali-alkali collisions and can 

be represented as: 

 A( ) B( ) A( ) B( ).        (3.1) 

As result, the spin-exchange collisions change the value of mf by 1, 2 and 

can also change the hyperfine state in a given electronic state, such as within 

the 
2
S1/2 state. The overall effect is to redistribute the population among all 

Zeeman sublevels in a given electronic state. If the spin exchange collision rate 

is much faster than the optical pumping rate, then a spin population described 

by a Boltzmann distribution is obtained. For example at a polarization level P 

of 0.5 the distribution depicted in Figure 3.4 is obtained. The population in 

each level is given by a Boltzmann distribution as 

 
β

,fm
e   (3.2) 

with 
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 1
ln .

1

P

P


 
  

   
(3.3) 

The polarization level P itself is primarily dependent on the ratio of the optical 

pumping rate to the rate of depolarization. As implied above, there is a 

different type of collisions, so called spin destruction-collisions responsible for 

depolarization. These can be either collisions with the buffer gas, or with other 

alkali atoms. They can be represented as: 

 A( ) B( ) A( ) B( )       . (3.4) 

Unlike in the case of spin-exchange collisions, these spin-destruction collisions 

do not conserve total angular momentum and hence depolarize the alkali vapor. 

The Rb-Rb spin-destruction collisions typically have cross sections that are 

two to four orders of magnitude smaller than the cross sections of spin-

exchange collisions and are hence much less frequent.  

 

Figure 3.4 Energy level diagram for the D1 transition in 
87

Rb, illustrating the 

distribution of populations at a polarization level of P=0.5. Under each Zeeman 

level labeled by its magnetic component mf the numerical value for the 

population  is given. 
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In addition to spin-destruction collisions between gas molecules and 

atoms also collisions with the wall can cause large amounts of depolarization. 

Especially in small cells as used here, (5 mm  2 mm  1 mm) collisions with 

the wall can be a major source of relaxation. In order to suppress collisions 

with the wall the cell contains buffer gas, which reduces diffusion of the 
87

Rb 

atoms towards the walls. Here the 1200 Torr of N2 are chosen as a good 

intermediate value for minimizing the total amount of depolarizing collisions, 

by balancing wall collisions and spin-destruction collisions. The buffer gas is 

also important to broaden the detection bandwidth such that signals up to 400 

Hz can easily be detected.  

The regime described here is the so called spin-exchange relaxation free 

(SERF) regime. Two important conditions have to be met in order to be in this 

regime. First, as described, the spin relaxation rate has to be much faster than 

the optical pumping rate and any other relaxation rate. Second, magnetic fields 

experienced by the rubidium vapor have to be small such that spin-rotations 

induced by the magnetic field also occur at a much slower rate than the spin-

exchange-relaxation rate. In order to understand this effect let’s consider the 

effect of a magnetic field on the Zeeman levels.  

 

Figure 3.5 Illustration of the effect of magnetic field on the energy level diagram 

of the hyperfine levels of the 
2
S1/2 manifold in 

87
Rb.  
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For small magnetic fields non-linear Zeeman effects can be ignored and 

we can write the energy of the Zeeman levels as: 

 ,E =  B ,
ff m f fm

 
(3.5) 

where B is the magnetic field and f is the gyromagnetic ratio f, which is equal 

to 2 0.7 MHz/G for the f =2 manifold and -2 0.7MHz/G for the f =1 

manifold as indicated in Figure 3.2. Figure 3.5 shows the spreading of the 

Zeeman sublevels under the influence of a magnetic field. The precession 

frequency of the spins at 100% polarization is. 

 
0 2 B .f

E
 


 

 
(3.6) 

Under SERF conditions, all Zeeman levels of both hyperfine states (f =1 

and f =2) are populated according to the Boltzmann distribution described in 

Eq.(3.2) and depicted in Figure 3.4. Since these hyperfine states have opposite 

f the average spin precession frequency depends on the level of polarization. 

In the present case this average precession frequency is given as function of 

polarization as, 
[61]

 

 0 2

4
ω  = ω 2

3 P
q

 
 

 
, (3.7) 

such that for P=1, q = 0 and for P=0 , q= 2/3 0. As described above the 

magnetometer is typically operated at P≈0.5. In that case we obtain an effective 

Larmor frequency of q = 10/13 0.
[61]

 

It should now be obvious that this type of averaging is only possible if the 

spin-exchange relaxation rate is fast as compared to the optical pumping and 

the precession frequency, such that the distribution of populations remains in a 

steady state. If these conditions are met the measurement is spin-exchange 

relaxation free (SERF), because the overall frequency is shifted and remains 

narrow. This should be contrasted to the alternative approach of observing a 

precession at 0, which would be quickly dephased by the spin-exchange-

collisions that are difficult to suppress given their relatively large cross section. 

Details of the employed detection modality follow in the next Section. 
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3.1.3 Magnetic field detection with the probe beam 
 

In the previous Section it has been established how polarization is created 

and alligned with the pump beam. Next, the effect of the magnetic field on the 

polarized rubidium spins will be described, followed by explanations of the 

detection modality. (Note: As we have seen in the previous Section spin-

exchange collisions fully mix the populations of the hyperfine states. Here, we 

will use this effect to simplify the description of the probing process and ignore 

the individual hyperfine states but rather focus on the electron alone and 

describe the 
2
S1/2 ground state and the 

2
P1/2excited state as composed of 

only two respective states with mS= +1/2 and mS= -1/2. A complete 

analysis including all details of the hyperfine states follows from there in 

a straightforward way.) 

The polarized steady state in the z-direction given by a Boltzmann 

distribution can be described by a density matrix. 

 
P zS , 

 
(3.8) 

where the proportionality constant is dependent on the polarization. As 

described in Eq. (2.24) a magnetic field in the vertical direction, defined here 

as the y-direction, induces a rotation of the polarization along Sz into Sx.  

 y y( S t) ( S t)

z z q x qe S e S cos(ω t) S sin(ω t).
i i 

 
 

(3.9) 

Counteracting this rotation is the continued action of the pump beam and the 

relaxation, resulting in a steady state polarization with components along Sz 

and Sx. Figure 3.6 illustrates this effect. The steady state angle between the z 

and the x component, is dependent on the magnetic field By, the optical 

pumping rate ROP and the relaxation rate Rrel. The components of the 

polarization under the influence of these different effects can be calculated by 

finding the steady state solutions to the Bloch equation as described in the 

literature
61,70

. Here, only the results are presented. In the presence of a pure By 

field the angle is found as: 

 yx

z OP rel

 BS
tanθ

S R +R

e
  , (3.10) 
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where e is the gyromagnetic ratio of a bare electron. The signal detected by the 

probe is proportional to Sx and we obtain:  

 0

2 2

( )
.

( ) ( )

e y OP rel

x

OP rel e y

S B R R
signal S

R R B






 

 
 

(3.11) 

S0 represents the steady state Sz (=1/2 Pz) polarization in the absence of a 

magnetic field. 

For sake of completeness it is worth mentioning that in the presented 

setup the magnetometer is actually also sensitive to the two remaining 

components of a magnetic field Bx and Bz as follows 

 y x z e
x 0 2 2 2

x y z OP rel

κ +κ κ γ
S =S , with  .

1+κ +κ +κ (R +R )
κ B 

 
(3.12) 

In the case of a pure By field Eq. (3.11) results. In Section 3.2.8 below details 

of Eq. (3.12) are elaborated upon in the context of initially reducing the 

magnetic field as far as possible. 

  

 

Figure 3.6 Illustration of the simultaneous effect of the pump beam and a small 

magnetic field, By. The pump beam aligns the polarization along z while, By, 

coming out of the plane, induces rotation of the polarized state such that a steady 

state polarization results at angle  in the x-z plane. The probe beam detects the 

x-component of the polarization. 
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Finally, to measure the Sx component we assert that the probe beam 

travels in an orthogonal direction to the pump beam and we define this 

direction as the x-direction. The probe beam consists of linear polarized 

light with a ~ 2 times lower power level than the pump beam and is tuned 

200 GHz off resonance from the D1 line. (ca. 2 to 4 times the optical 

line width) The reason for low power and off-resonance tuning is to 

avoid optical pumping by the probe beam, as much as possible. The 

linearly polarized probe beam can be understood as being composed of 

equal amounts of + and - circularly polarized light. When interacting 

with Rb vapor polarized in the x-direction the + component can be 

absorbed by Rb atoms in the ms=-1/2 state. Where as the - component is 

absorbed by Rb atoms in the ms=+1/2 state. If a Sx polarization is present 

then the populations of the ms=+1/2 and the ms= -1/2 state differ such that 

the rubidium vapor becomes birefringent for the probe beam and the 

linearly polarized light is rotated. This rotation is detected and gives a 

direct measure of the magnetic field experienced by the cell. The 

experimental implementation is detailed in the next Section. 

 

Figure 3.7 Illustration of the effect of the probe beam, explaining the 

birefringent property of the vapor cell. The - and the + components of linearly 

polarized light experience different extents of virtual absorption, depending on 

the polarization of the rubidium atoms in the direction of propagation of the 

probe beam. 



                    Chapter 3: The zero-field-NMR spectrometer: operation and setup 

55 

 

The fundamental sensitivity limit of the described alkali vapor 

magnetometers is due to shot-noise and given as
[4,60]

: 

 

2

1

e

B
nT Vt




 , (3.13) 

where e is the gyromagnetic ratio, n is the number density of alkali atoms T2 is 

the relaxation time, V is the volume of the cell and t is the measurement time. 

For SERF magnetometers the relaxation time T2 is determined by the spin 

destruction collisions limiting the fundamental sensitivity for cells smaller than 

one cm
3 

to about 1 fT/ Hz . 
[60]

 In Section 3.2.8 the experimental sensitivity 

measurement is detailed. 
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3.2 Experimental configuration 
 

In this Section a general overview of the experimental setup including all 

experimental components will be provided and a detailed description of their 

function is given. In the subsequent Sections the individual components are 

presented individually and further details are provided. In Figure 3.8 all 

individual components are shown and their connections are indicated 

schematically. In Figure 3.9 a photograph of the inside of the magnetometer is 

shown providing a look at the central components. 

At the center of the experiment is the NMR tube. Typically, standard 

5mm NMR tubes are employed, 7” to 9” long. The NMR tube is filled with 50 

to 300 L of a liquid sample. In experiments employing thermal 

prepolarization the sample is pneumatically shuttled from the prepolarizing 

magnet outside the magnetic shields to just above the magnetometer cell filled 

with rubidium vapor in the center of the magnetic shields. The distance 

between the Rb-cell and the bottom of the NMR tube is ~1 mm. For maximum 

 

 

Figure 3.8 Schematic overview of the important components of a zero-field NMR 

spectrometer. 
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signal the smallest possible distance is desirable. Simultaneously, thermal 

insulation between Rb-cell and NMR sample is required; also the Rb-cell must 

be protected from impact by the shuttling NMR tube in order to ensure stable 

operation of the magnetometer and to avoid damage to the Rb-cell. 

During the shuttling process a “guiding field” is provided inside the 

”shuttling tube” the sample travels in. This field is provided by a solenoid 

wrapped around the shuttling tube creating a field aligned with the direction of 

shuttling of the sample. This field ensures adiabatic transport of the sample’s 

magnetization into the detection region, thereby avoiding scrambling of the 

magnetization during the shuttling process. The pneumatic shuttling setup will 

be detailed in Section 3.2.5.  

The rubidium cell is mounted on an aluminum nitride spool around 

which, a twisted pair of wire is wrapped and used to provide resistive heating. 

The cell is typically operated between 180 C and 210 C. Details about the 

heater are provided in Section 3.2.3.  

Zero-magnetic field is established by multiple layers of magnetic 

shielding. Depending on configuration, 4 to 6 layers of magnetic shielding are 

used as can best be seen in Fig 3.1a). The outer shields are -metal shields and 

in some cases a ferrite shield is used as the innermost shield to reduce Johnson-

noise from that shield. In order to cancel any remaining magnetic fields, down 

to the G level a set of three solenoid and saddle coils are employed. The fields 

are controlled with Krohn-Hite


 model 523 low noise precision current 

sources. Additionally, a SRS
 

DSP lock in amplifier model SR830 is 

connected to these “field coils” in order to apply oscillating magnetic fields 

(test signals) for purposes of calibration and for determining the sensitivity of 

the magnetometer as a function of frequency. Details of the calibration 

procedure are provided in Section 3.2.8.  

Outside the magnetic shielding, typically above the shields, a permanent 

magnet is installed for purposes of prepolarization. Depending on the setup 

permanent magnets with magnetic field strengths between 0.6 T and 2 T have 

been used. 

In order to excite coherences in the NMR sample, after prepolarization 

and shuttling down to the detection region, three “pulse coils” are installed. 

Similarly to the field coils, the pulse coils consist of two saddle coils and a 

Helmholtz coil for the x, y and z directions. They are used to apply DC pulses 

of magnetic field. The desired pulse sequences are programmed on the 
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computer. The pulse sequence is then loaded onto the TTL pulse generator, 

PulseBlaster from Spin Core Technologies
 

model JP303. The PulseBlaster 

sends TTL pulses to a home built amplification circuit which provides the 

pulses to the pulse coils. Details of the pulse amplification circuit are provided 

in Section 3.2.4. 

Once the NMR sample is excited, the produced NMR signal is detected 

by the rubidium vapor. This magnetometer cell has dimensions of 

5 x 2 x 1 mm and was microfabricated using the techniques described in Ref. 
[71]

. The cell is operated in pump-probe mode as described in the previous 

Section 3.1. The setup of the employed optics will be described in Section 

3.2.1. For purposes of this overview it shall suffice to say that the rotation 

experienced by the linear polarized pump beam is read out using a Wollaston 

prism and two photodiodes which detect the intensity of the two counter-

rotating components of the linearly polarized pump beam. The intensity 

difference detected by the two photodiodes is the measure of the magnetic field 

emitted by the NMR sample. The voltages produced by the photodiodes are 

connected to a home built subtraction and amplification circuit, details of 

which are provided in Section 3.2.2. Alternatively a SRS model SR560 low-

noise preamplifier has been used in alternative configurations. 

After amplification of the signal it is sent to a data acquisition (DAQ) 

card. Here the National Instruments


 NI USB-6229 DAQ card was employed, 

which eventually sends the acquired and digitized signal to the computer for 

further processing. For purposes of triggering and synchronization a function 

and delay generator is connected to the PulseBlaster, the shuttling control 

circuit and the guiding-field solenoid. Here the SRS
 

model DS345 function 

generator was used. 
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Figure 3.9 Photograph of the inside of the zero-field NMR spectrometer. 
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3.2.1 Optics 
 

 

Figure 3.10 Configuration of the pump and the probe beam, displaying the 

optical elements used to achieve the desired characteristics of the pump and 

probe beams. 

A typical configuaration of the optical components is shown in Figure 

3.10. For the pump laser a DFB laser is employed and tuned on resonance of 

the D1 line at 794.798 nm. A Thorlabs


 ITC502 laser diode combi controller is 

used to adjust fequency and amplitude of the laser. The pump laser is typically 

operated such that ~15mW arrive at the Rb-cell. In order to avoid reflections 

into the laser an OFR


 optical isolator follows immediately after the laser. 

Next the pump beam travels through a half-wave plate used to rotate the light 

with respect to the following linear polarizer as desired to adjust the power 

level. However, before the pump reaches the linear polarizer a small fraction of 

the photons are diverted with a beam splitter to a wavelength meter to initially 

tune the laser. The majority of the pump beam reaches the linear polarizer 

where the linear polarization of the incident beam is increased by ~5 orders of 

magnitude, creating close to100% linearly polarized light. In order to convert 

the linear polarization into circular polarization a quarter wave plate is used. 
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The transmission axis of the linear polarizer is alligned at a 45 angle between 

the fast and the slow axis of the quarter wave plate such that circular 

polarization results. This circularly polarized pump beam then reaches the Rb-

cell and pumps the Rb into a stretched state alligned with the direction of the 

pump beam as described in Section 3.1.1. 

The probe beam is also controlled with a Thorlabs


 ITC502 laser diode 

combi controller controller and is tuned ~100-200 GHz off resonance. The 

intensity of the probe beam is further reduced by the half wave plate and the 

linear polarizer. By turning the polarization with respect to the transmission 

axis of the linear polarizer the intensity is reduced such that the probe beam 

induces a minimal amount of pumping in the Rb cell, yet suffices for sensitive 

detection. The typical power level of the probe reaching the Rb cell is ~5 mW. 

Before reaching the Rb-vapor cell a quarter wave plate is inserted and its 

optical axis is alligned close to parallel with the liner polarization of the beam 

such that it barely affects the polarization. This quarter wave plate is used to 

correct for birefringence of the glass cell walls of the Rb-cell by turning it 

slightly off-axis. Finally, after the Rb-vapor imparts rotation, in dependence of 

the magnetic field, on the probe beam the beam is split by a Wollaston prism 

into its two circular components and their relative intensity is detected on the 

photodiodes. At zero magnetic field and in the absence of a sample the 

magnetometer signal is “zeroed” (balanced) by adjusting the Wollaston prism 

such that the intensities detected on both photodiodes is equal.  

 

3.2.2 Subtraction and amplification circuit 
 

Once the two components of the probe beam hit the photodiodes the 

induced voltages are amplified and subtracted by the circuit displayed in 

Figure 3.11. The circuit consists of two op-amps connected to the respective 

photodiodes in the inverting amplifier configuration. This is then followed by 

the subtraction stage. 

The photodiodes are reversed biased for fast response times, i.e. the n-

type region is connected to the positive terminal such that in the absence of 

photons the resistance of the photodiode is large and no current flows. The gain 

of the op-amp in the inverting configuration is given as -Rf/RPh such that
[72]
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 f
out in

Ph

R
V -V

R
 . (3.14) 

When the photodiode is irradiated with light the resistance of the 

photodiode drops, and current flows. The voltage is then amplified by the 

inverting amplifier. 

Both photodiodes are connected in an identical manner; since we are 

interested in measuring the difference in signal from both photodiodes the 

outputs of the inverting amplifiers Va and Vb are connected to a differential 

amplifier.  

For the differential amplifier the output voltage is given as
[72]

 

 2
out b a

1

R
V = (V -V ).

R
 (3.15) 

The circuit is configured such that the gain can be switched between 

(R2/R1)=100 and (R2/R1)=1000 and is chosen depending on application. 

During most NMR measurements a gain of 1000 is chosen but during initial 

adjustments and setup where large test signals are applied a gain of 100 is 

preferred to avoid saturation of the signal. 

 

 

Figure 3.11 Circuit diagram of the subtraction and amplification circuit built to 

detect the intensity difference on the photodiodes. The photodiodes are 

connected to op-amps in the inverting configuration followed by an op-amp 

configured as differential amplifier. 
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3.2.3 Heater 
 

The Rb-cell is heated to between 180C and 210 C. These elevated 

temperatures are chosen to achieve a large Rb density in the gas phase. The 

temperatures are chosen for maximized sensitivity. The temperature is reached 

by resistive heating. A 19 gauge thick and ~30 ft long copper wire with high 

temperature coating is wrapped around a nitride spool as indicated in Figure 

3.12, Figure 3.8 or Figure 3.9. Before wrapping the wire around the nitride 

spool the wire is folded over once and extensively twisted (forming a twisted 

pair) to minimize magnetic fields that could be produced by the heater. Despite 

these efforts to reduce magnetic fields produced by the heating process the 

heater is a major source of noise if a DC-current flows through the heater 

during acquisition. Therefore two different heating modes have been 

implemented. In the DC configuration shown in Figure 3.12 the heater is 

simply turned off during acquisition, whereas in the AC configuration resistive 

heating is performed at a high frequency of ~10 kHz far away from the signals 

of interest and outside the bandwidth (~400 Hz) of the magnetometer. 

Figure 3.12 a) shows the heater in the DC configuration. An Omega
 

model CNI3243 PDI temperature controller measures the temperature with a 

thermocouple placed on the aluminum nitride spool. This temperature 

controller regulates the temperature via an SRS model DS345 function 

generator. The function generator is used to turn the heater off during the 

acquisition period. Typically acquisition periods have the same length as the 

prepolarization periods during which the heater is on. Depending on the 

measurements the acquisition and prepolarizing periods are set between 5 and 

60 s. The function generator connects to Darlington pair, which has a large 

enough current gain such that sufficient current is drawn from the Kepco
 

bipolar operational power supply/amplifier.  

Figure 3.12 b) shows the heater configuration in AC mode. The same 

temperature controller, function generator and power supply/amplifier are 

used. However, now the function generator is set to put out a high frequency 

signal 5 kHz or above and is connected directly to the power amplifier. The 

temperature controller modulates the amplitude of the high frequency signal 

and in this configuration the heating is constantly on, also during acquisition. 
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The advantage of the DC-mode is that potential noise from the heater is 

entirely eliminated, however the disadvantage is that the dropping temperature 

of the cell during acquisition causes large drifts of the signal, which are 

avoided in the AC-configuration. 

The temperature range of 180-210 C is chosen to maximize the signal. It 

may, however, be advisable to choose even higher temperatures associated 

with higher rubidium densities. In the present configuration the heaters tend to 

fail if run at even higher temperatures but experimental adjustments could be 

made to prevent failure. 

 

 

Figure 3.12 Configuration of the electrical components used for heating the 

rubidium vapor cell in DC or AC mode. 
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3.2.4 DC pulses 
 

Pulses of DC-magnetic field are applied to the NMR sample to excite 

coherences. The pulse sequences are first encoded on the computer then loaded 

onto the Spin Core Technologies
 

PulseBlaster which puts out TTL signals that 

are amplified in a amplification stage. In Figure 3.13, the employed pulsing 

circuit is shown. Besides amplification we also desire to apply pulses for two 

directions from single sided TTL signals. As shown in the figure, TTL1 is 

connected to an op-amp in the non-inverting configuration
72

  

 2
out in in in

1

R 1000
V V 1 V 1 11V .

R 100 

   
       

    

(3.16)

 

After this first small amplification step the signal is fed into an NPN transistor, 

which gets saturated, such that +15V are applied to the coil for the time the 

TTL1 signal is high. 

TTL2 is connected to an op-amp in the inverting configuration such that 

 2
out in in in

1

R 1000
V V V 10V .

R 100 

   
        

    

(3.17)

 

Similarly this signal is then fed into a PNP transistor, that gets saturated, such 

that -15V are applied to the coil for as long as TTL2 is high. 

This configuration allows for application of pulses in two opposite 

directions with single sided TTL signals. However, since the components for 

either direction are not identical pulses have to be separately calibrated for both 

directions.  
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Figure 3.13 Circuit diagram of the pulsing circuit used to apply pulses of DC 

magnetic field onto the NMR sample. Two TTL lines are followed by op-amps in 

the inverting and in the non-inverting configuration, which control transistors 

such that pulses in two opposite directions can be applied using single sided TTL 

signals.  
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3.2.5 Prepolarization and shuttling  
 

The prepolarizing and sample transfer step from the prepolarizing magnet 

to the detection region are critical for high SNR experiments. The 

prepolarization time should typically be at least three times T1 or longer. The 

sample-transfer or shuttling time should be fast compared to T1, yet slow 

enough to allow for adiabatic transfer of the polarized spin state into the 

detection region preserving the polarization. Figure 3.14 shows the 

experimental configuration of the shuttling setup which enables effective 

polarization and sample transfer. 

 

Figure 3.14 Schematic of the pneumatic shuttling setup built for efficient sample 

transfer from prepolarization region to the detection region and vice versa. Also 

heating and cooling is implemented to control the temperature of the NMR 

sample.  
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The sample is filled in a standard 5mm NMR tube. Onto the NMR tube 

two retainers are mounted which keep the NMR tube centered inside the 

shuttling tube and allow for efficient pneumatic control. The shuttling tube is 

connected, on the bottom to an inlet of air stream, whose temperature is 

controlled by the heating and cooling jacket. The heating and cooling jacket 

allows for controlling the sample temperature. Additionally this air stream 

from the bottom helps to lift the sample up into the magnetic field of the 

prepolarizing magnet. The top of the shuttling tube is connected such that 

either vacuum or slight pressure is applied. The solenoid actuated valve turns 

the vacuum on and off and is indirectly controlled by a function generator via 

the depicted circuit. The employed circuit consists of a op-amp in the non-

inverting configuration with a gain of (1+R2/R1) = 11. After this amplification 

stage the TTL signal controls a solid state relay switching the solenoid actuated 

valve on or off, which is operated with 110V / 60Hz AC power.  

The shuttling speed can be controlled with the displayed manually 

controlled valves, which control the pressure difference above and below the 

NMR tube. The shuttling time is typically adjusted between 0.1 s and 0.5 s. 

Faster shuttling speeds are associated with stronger impacts on the bottom of 

the shuttling tube, risking damage to the NMR tube, whereas slower speeds can 

involve more signal loss due to relaxation during the shuttling time.  

During the shuttling process of the NMR tube from the prepolarizing 

region to the detection region the guiding solenoid is turned on to provide a 

guiding field of ~1G. This ensures that the Larmor-frequency even of low  

nuclei such as 
15

N to always be above the rate of change of the Hamiltonian as 

discussed in the following.  

We can undertake exemplary estimations to convince ourselves that 

adiabaticity of the transport is guaranteed even under conditions of relatively 

strong inhomogeneties. We make the following assumptions: The sample 

leaves a prepolarizing magnetic field in the horizontal direction of 10 kG at a 

velocity of 200 cm/s. The field drops exponentially such that after 0.5 cm the 

magnetic field has half its original value; i.e. with a half-time of 

(0.5cm/(200cm/s)) = 0.0025 s Under these assumptions the prepolarizing field 

drops as  

 BP(t) = 10kG (1-exp(-1/(0.0025s) t). (3.18) 

We also assume a constant vertical field in the guiding solenoid of BG =1 G. To 

remain in an adiabatic regime the rate of change of the angle  between both  
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Figure 3.15 Illustration of polarization transfer from a prepolarizing field BP 

into a perpendicular guiding field BG. For adiabatic polarization transfer the 

rate of change of the angle ddt has to be slower than the Larmor precession 

frequency .  

 

fields (or both Hamiltonians) has to be much slower than the rate of precession 

of the spins about the Hamiltonian at any point in time. In Figure 3.15 the 

change of the Hamiltonian is shown as going from a prepolarizing field BP to a 

perpendicular guiding field BG. The Laromor precession frequncy around the 

field is indicated by a cone around the field containing both componets of BP 

and BG during the transfer. 

Making use of the fact that the angle between BP and BG is given as 

tarctan(BG / BP), we can evaluate ddt and compare the frequency of 

precession with the rate of change of the angle  as a function of transfer time 

as plotted in Figure 3.16. The rate of change of the angle  is largest when the 

two fields BP and BG are comparable in size. But as can be seen from the plot 

the d/dt remains smaller than the nutation frequency  even under these 

unfavorable conditions of low , large magnetic field gradients and fast transfer 

speeds. 
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Figure 3.16 Comparative plot of the Larmor frequency  and the rate of change 

for the angle  as a function of polarization transfer time. The parameters used 

in this simulation are: prepolarizing field, BP= 10kG, guiding field, BG=1G, 

gyromagnetic ratio = 430 Hz/G, sample velocity, v=200cm/s, exponential 

magnetic field gradient EG = 2/cm. 
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3.2.6 Parahydrogen production equipment 
 

As described in Section 2.3.2 for the production of close to 100% 

parahydrogen, normal hydrogen gas has to be brought in contact with a catalyst 

that induces the ortho to para conversion at temperatures of below 30K. In 

Figure 3.17 a schematic diagram of the experimental configuration of all 

components is provided. The presented setup was used to fill a 10L aluminum 

cylinder with 150 psi of parahydrogen, which was subsequently used for 

experiments during the following days (up to four). 

Before filling the aluminum cylinder with parahydrogen all traces of 

oxygen need to be removed from the cylinder since oxygen significantly 

increases the rate of relaxation of the parahydrogen in the cylinder. To that 

end, the aluminum cylinder is evacuated with the membrane pump to ~ 1 mbar 

and subsequently filled with nitrogen up to 200 psi (~14 bar) and evacuated 

again. This flushing procedure is repeated four times essentially eliminating all 

oxygen. Once the aluminum cylinder has been evacuated the fifth time the 

actual parahydrogen fill begins. All tubing, from the pressure regulator of the 

compressed hydrogen cylinder up to the needle valve, is filled with 150 psi of 

hydrogen. This includes the copper coil inside of the Janis Research


, Model 

CCS-200/202 “Non-Optical, Sample in Vacuum 10 K Cryocooler with SHI 

Coldhead”. The copper coil contains iron oxide as conversion catalyst. It is 

made with 3/8” OD 1/8’’ID copper tubing and has a total length of ~4 ft. The 

needle valve is adjusted such that ca. 700 sccm are measured on the hydrogen 

flow meter. At the beginning of the filling process the out-streaming hydrogen 

is directed towards the exhaust. Then the Sumimoto (SHI)


 model HC-2 

helium compressor is turned on to start cooling the cold finger. The 

temperature is adjusted to 30K with the LakeShore Cryotronics


, Model 321 

temperature controller, which is connected to the heating element in the cold 

finger. To provide sufficient insulation the cryostat is evacuated with a 

Pfeiffer


 model TMH07IP turbo-molecular pump. As soon as the temperature 

in the cryostat has reached 30K the produced parahydrogen is directed toward 

the aluminum cylinder. The filling process then takes ~4h. 
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Figure 3.17 Flow chart for the production of parahydrogen. During the filling 

process, normal hydrogen flows from the compressed hydrogen cylinder into the 

iron oxide containing tubing, held at 30K. There it is converted into 

parahydrogen. From the cryostat on, the parahydrogen flows into the aluminum 

cylinder where it is stored. 

 

3.2.7 Gas manifold for PHIP experiments 
 

The gas manifold used to bubble parahydrogen through the NMR tube, 

next to the rubidium cell, is configured such that nitrogen and parahydrogen 

can be bubbled through the solution interchangeably. Figure 3.18 shows a 

schematic of the employed setup. At the beginning of an experiment the NMR 

tube is filled with a solution containing solvent, hydrogenation substrate and 

hydrogenation catalyst. Typically volumes between 50 and 400 L are 

employed. Subsequently, the entire manifold is pressurized to ~70 psi.  

One of the important features of the gas manifold is the ability of 

stopping the bubbling in a short time (< 200 s) relative to the bubbling and 

the acquisition time, such that no bubbles occur during acquisition distorting 

the signal. This is achieved by means of the short valves connecting the inlet 
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and the outlet. As long as one of the short valves is open it is guaranteed that 

no bubbles occur and that the sample stays in the NMR tube.  

During the pressurization stage the manual short is open such that the 

system can be pressurized quickly without necessitating flow through the NMR 

tube. Only once the system is at a stable pressure, the manual short is closed 

and the solenoid actuated valve is activated. When both short valves are closed 

the needle valve at the outlet is opened slowly and the bubbling in the NMR 

tube is monitored ensuring gentle bubbling which does not spew the sample 

out of the NMR tube. The flow rate typically used is ~300 sccm. The pressure 

difference before and after the NMR tube is typically kept below 1 psi, which 

is sufficient for gentle bubbling through the 1/32’’ Teflon


 tubing feeding into 

the NMR tube. 

In Figure 3.18 b) a typical time sequence of bubbling and acquisition is 

shown. During the initial 5s bubbling time the short valves are closed and the 

exhaust valve is open. To stop the bubbling the exhaust is closed and the short 

is opened. (Closing the exhaust is not critical but it conserves parahydrogen.) 

Before pulse and acquisition a setting delay of 200 s is interleaved that allows 

for the remaining bubbles to disappear such that the solution sits physically 

still during acquisition. 
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Figure 3.18 (a) Gas manifold used for controlling the bubbling during a zero-

field PHIP experiment. (b) typical timing sequence for a zero-field PHIP 

experiment. 
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3.2.8 Calibration and sensitivity of the magnetometer  
 

When initially setting up the magnetometer and before acquiring spectra 

a number of calibrations need to be performed. The magnetic fields needs to be 

reduced with the field coils as much as possible, the magnetometer signal as a 

function of frequency needs to be calibrated and the sensitivity of the 

magnetometer should be determined. 

To reduce the magnetic fields first the pump beam is blocked and the 

Wollaston prism is turned until the intensity difference detected on the 

photodiodes is zero. Subsequently the pump beam is unblocked and signal is 

measured according to Eq. (3.12), which can be rewritten for purposes of 

illustration as  

 y x z

2 2 2 2

x y z

BB +B B
Signal .

B +B +B +B





 
(3.19)

 

According to this proportionality, a dispersive Lorentzian, the signal is plotted 

as a function of By in Figure 3.19.  

OP(R R )
B = rel

e


  is the linewidth of this Lorentzian. 

The magnetometer is most sensitive when operated in the central linear region 

close to zero magnetic field, where the slope is largest. 
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Figure 3.19 Typical appearance of the magnetometer response as a function of 

magnetic field as dispersive Lorentzian. 

At the time the pump is unblocked and some magnetic field is detected 

the the DC level of the magnetometer signal changes accordingly. Since, 

primarily, the y-magnetic field in the vertical direction is measured, By is 

adjusted until the measured DC-level returns to zero. Of course, there are also 

contributions of the x and the z magnetic field. In order to reduce, e.g., the x 

field, an oscillating magnetic field in the z direction is applied at ~0.5 Hz. A 

dispersive Lorentzian as shown in Figure 3.19 is observed. Subsequently the x 

field is adjusted until the contribution from the oscillating z field is no longer 

detected. This is possible because the product of x and z fields are detected as 

shown in Eq. (3.19). To reduce the z field the same procedure is followed: An 

oscillating field is applied in the x direction and the z field is adjusted. The 

procedure of reducing By, Bx and Bz is performed iteratively until all fields are 

no longer detected. Unfortunately, there are additional effects that cause 

fictitious fields such as light shifts or improper alignment of the laser beams. 

(The pump and probe beam may not intersect at a perfect right angle.) 

These effects are also compensated for when following the above “field-

zeroing procedure” such that some actual magnetic fields may remain. At that 

point the fields have to be further adjusted by observing the NMR signals as a 

function of magnetic field. As will be described in great detail in Chapter 5 the 

zero-field NMR signals can be split by application of a magnetic field. The 

magnetic fields can be further reduced by minimizing the splitting of the zero-

field-NMR lines. 



                    Chapter 3: The zero-field-NMR spectrometer: operation and setup 

77 

Next, the detected signal as a function of frequency has to be calibrated. 

To that end, a lock-in amplifier is used to apply an oscillating magnetic field 

ranging from 2 to 402 Hz in steps of 10 Hz. The real and the imaginary part of 

the signal relative to the applied magnetic field are recorded with the lock-in 

amplifier. 

The relative phase, , is calculated as: 

 Re(signal)
arctan ,

Im(signal)

 
   

   
(3.20) 

and the magnitude of the signal, A, is calculated as:  

    
2 2

A Re(signal) Im(signal) . 
 

(3.21) 

 

 

 

Figure 3.20 Calibration curves of the magnetometer response as a function of 

test frequency. The acquired calibration data is fit to a complex Lorentzian as 

given by Eq. (3.22). with the following parameters: a=52, d=120,  =  
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The data can then be fit to a complex Lorentzian, which in return is used 

to correct the phase and the amplitude in the acquired NMR spectra. Figure 

3.20 depicts exemplary calibration data fit to a complex Lorentzian of the form 

 φa
,

dν ν

ie
i  

(3.22) 

with the a, d and  as fitting parameters. In this specific case the parameters 

are chosen as described in the caption of Figure 3.20.  

As can be observed, this calibration is quite crucial since the phase 

changes from zero to almost radians at 400Hz and the magnitude drops by 

close to 65% at 400 Hz. 

Often times a better fit to the data is obtained using polynomial fits, not 

following a particular physical model as the Lorentzian does. Either way 

produces well phased spectra with the appropriate amplitudes. 

Finally, the sensitivity of the magnetometer is determined. After the 

discussion of the calibration experiment one may expect a frequency dependent 

sensitivity. This is indeed the case if sensitivity is dependent solely on 

characteristics of the rubidium cell, however if the noise is dominated by noise 

sources outside the rubidium cell, such as for example Johnson noise from the 

shields then the noise is attenuated in the same way as the signal and the 

sensitivity does not change strongly as function of frequency. Often times low 

frequency noise from the building does indeed cause worse sensitivity below 

~10 Hz and SNR is essentially flat out to 500 Hz. As a standard in these 

experiments the sensitivity was determined at 100 Hz. To that end, a 100 Hz 

signal of known amplitude, V, is applied to a coil generating a field, By, in the 

vertical direction. This coil has to be previously calibrated such that a magnetic 

field of known strength, By, is detected. This signal is then acquired for a time, 

t. The acquired signal is Fourier-transformed and the signal-to-noise ratio 

(SNR) is measured. In this context, the sensitivity, B, is defined as the 

detectable field strength per square root of unit time with an SNR of one. In 

other words the sensitivity is simply equal to the calibrated rms-noise floor and 

is calculated from the measured quantities as:  

 
yB t

,
SNR 

B 
 

(3.23) 

where By can be calculated after calibration of the coil as:  



                    Chapter 3: The zero-field-NMR spectrometer: operation and setup 

79 

 
y

V
B = α ,

R  
(3.24) 

where  is determined from previous calibration and R is a chosen resistance, 

connected to the coil in order to obtain the desired magnetic field. Typical 

values are  44 T/A, V=0.1V and R=10
6
 giving a field of By = 4.4 pT. 

Application of this field and acquisition for t = 1 s typically results in an SNR 

of ~150 such that the sensitivity results as B ≈ 30 fT/ Hz . These are only 

representative values, which vary from magnetometer to magnetometer and 

depend on the exact configuration but illustrate how the sensitivity is 

determined.  
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4. Zero-field NMR using thermal polarization 
 

The timing sequence of a typical zero field NMR experiment consists of 

prepolarization in a permanent magnet outside of the magnetic shields, sample 

transfer from prepolarization region into the detection region by shuttling, 

application of a pulse inducing observable coherences and acquisition. While 

the experimental aspects have been described in Chapter 3, here the zero-field 

NMR experiment will be described with the focus on the NMR sample. 

Before going into any detail, it is important to be aware of a change in the 

definitions of the axes. While in Chapter 3 the z-direction is given as the 

direction of propagation of the pump beam in the horizontal plane, in the 

context of the NMR experiment itself, it is more appropriate to define z in the 

vertical direction along which the NMR sample is polarized initially. 

Accordingly, the x and y axes are defined to lay in the horizontal plane for the 

discussions of the NMR experiments. This does represent a source of potential 

confusion but it seems inappropriate in either context to deviate from defining 

the direction of polarization as z-axis. Unfortunately, they do not coincide for 

the NMR sample and the rubidium vapor.  

 

4.1 Zero-field NMR experiment on two coupled spins 
 

As introduction to the zero-field NMR experiment, first, a description 

will be provided, on the basis of a system composed of two nuclei, I and S, 

with differing gyromagnetic ratio that are coupled by a J-coupling interaction. 

In the prepolarizing magnet the density matrix formed is much like in the 

case of the high-field experiment given in Eq. (2.41) however here, since we 

use two heteronuclear spins the individual z-terms, Iz and Sz are scaled by the 

individual gyromagnetic ratios I and S. 

 
0 I z s z= γ I  + γ S .

 
(4.1) 
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After prepolarization, the sample is adiabatically shuttled (see Section 

3.2.5) into the detection region through the guiding solenoid, which maintains 

a field of ~1G during the shuttling process. The shuttling process is typically 

fast as compared to any relaxation such that the density matrix is practically 

unchanged; only, the magnetization of the sample is aligned with the guiding 

field in the vertical direction once the sample has arrived in the detection 

region. 

Immediately after turning off the guiding field a pulse of magnetic field 

in the horizontal plane (x or y) can be applied. The pulse that maximizes the 

signal is strongly dependent on I and S. As will be described below the term 

that is detected is Iz-Sz and with the pulse we seek to maximize this 

contribution. The expression for the initial density matrix can be expressed as: 

 I s I s
0 I z s z z z z z

γ γ γ γ
= γ I  + γ S (I S ) (I S ).

2 2


 
   

 
(4.2) 

From this expression it is immediately apparent that for all heteronuclear pairs 

the initial density matrix does already contain an Iz-Sz component and 

furthermore, if I and S have opposite sign it is best not to apply any pulse but 

much rather to start acquisition immediately after turning off the guiding 

solenoid. However, if I and S have the same sign the signal can be enhanced 

by the application of a pulse of DC-magnetic field in a direction perpendicular 

to the polarization, which can convert Iz+Sz into IzSz and vice versa. The 

pulse Hamiltonian for a pulse in the y-direction is given as:  

 
P y I y s yH = B (γ I  + γ S ),  (4.3) 

which rotates the spins by angles I y Iα =B γ t and S y Sα =B γ t in dependence of the 

respective gyromagnetic ratios. Given these rotation angles it may take an 

arbitrarily long time to perfectly invert Iz+Sz, however typically a reasonably 

short pulse can be found that performs the desired inversion with a high 

enough accuracy keeping the amount of lost signal to a minimum. A 

particularly good example is the heteronuclear combination of 
1
H and 

13
C 

because in that case the gyromagnetic ratios are roughly related as (
13

C) ≈ 1/4 

(
1
H). As depicted in Figure 4.1, in that case, a 4 rotation of the protons 

corresponds, roughly, to a  rotation of the 
13

C and when applying a pulse of 

the appropriate length, this can be used to invert the Iz+Sz and IzSz 

contributions in the density matrix. 
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Figure 4.1 Effect of a DC-magnetic field pulse in y on the initial density matrix. 

Converting Iz+Sz into Iz-Sz after a 4 rotation of protons in the case where I spins 

are 
1
H and S spins are 

13
C 

 

In the context of the present thesis only molecules containing 
1
H and 

15
N 

or 
1
H and 

13
C were analyzed. In the case of 

1
H-

15
N pairs no pulses were applied 

because of the opposing sign of the gyromagnetic ratios and in the case of 
1
H-

13
C pairs the described 4 proton pulse was used. 

Finally, after shuttling, turning off the guiding field and the pulse, 

evolution and detection at zero magnetic field begins. 

At zero magnetic field the Hamiltonian is given as 

 HZF= J I∙S, (4.4) 

The components of the initial density matrix are Iz+Sz and Iz-Sz. Iz+Sz 

commutes with I∙S, therefore only the Iz-Sz component produces observable 

oscillations. To illustrate these effects, remember that the eigenstates of the 

Hamiltonian J I∙S are the singlet state S0 and the triplet states T-1, T0 and T1, as 

introduced in Section 2.2.2. In Figure 4.2 Iz+Sz and Iz-Sz are represented as 

populations and coherences between the available states. Iz+Sz can be 

represented as populations in the T-1 and T+1 state, which do not evolve and Iz-

Sz is a coherence under the J-coupling Hamiltonian oscillating at the frequency 

J, which is equal to the energy separation between singlet and triplet states.  
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Figure 4.2 Energy level diagram of a simple J-coupling Hamiltonian and 

depiction of the Iz+Sz and Iz-Sz components of a density matrix as population and 

coherence respectively 

 

As discussed in Section 3.1.3 the observable is magnetization in the z-

direction (y-direction of the magnetometer). Since I ≠ S, Iz-Sz bears 

magnetization. This magnetization is detected with the magnetometer. 

The detected signal is described by a coherence between the singlet state 

S0 and the central triplet state T0. Given that this is a transition between two 

states, a formalism can be constructed, using matrices reminiscent of the Pauli 

matrices, in order to describe the observed transition: They are called zero-

quantum operators describing transitions conserving mf.  

 

 

x x x y y

0 0 0 0

0 0 1 01
ZQ = I S +I S ,

0 1 0 02

0 0 0 0

 
 
 
 
 
 

  (4.5) 
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y x x y

0 0 0 0

0 0 01
ZQ = I S +I S ,

0 0 02

0 0 0 0

y

i

i

 
 


 
 
 
 

 (4.6) 

 

 

z z z

0 0 0 0

0 1 0 01 1
ZQ =  (I S )   .

0 0 1 02 2

0 0 0 0

 
 
  
 
 
 

 (4.7) 

These operators are connected with the states represented in Figure 4.2 such 

that the following identities hold: 

  

 

 

x x x y y 0 0 0 0

y y x x y 0 0 0 0

z z z 0 0 0 0

1
ZQ = I S I S   = T T + S S ,

2

1
ZQ =  I S I S   = T S S T ,

2

1 1
ZQ =  (I S )  = S T + T S ,

2 2

i i



 



 (4.8) 

Using these zero-quantum operators, the zero-field Hamiltonian introduced in 

Eq. (4.4) can be decomposed as: 

 HZF = J I∙S= IxSx+IySy+IzSz =ZQx + IzSz. (4.9) 

The IzSz part of the Hamiltonian can be ignored because it commutes with ZQz 

= Iz-Sz, the initial density matrix. We can hence represent the Hamiltonian as 

ZQx. The initial density matrix, ZQz, is then in a perpendicular position to the 

Hamiltonian and the evolution of the density matrix can be described as 

rotation of the density matrix about the Hamiltonian as depicted in Figure 4.3. 

The evolution of the density matrix can then be calculated as: 

 (t) = exp(i J ZQx) ZQz exp(i J ZQx) 

= ZQz cos (J t) + ZQy sin (J t). 
(4.10) 
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Figure 4.3 Illustration of the evolution of an initial density matrix along ZQz 

precessing about a zero-field Hamiltonian aligned with ZQx 

 

The effect of the zero field Hamiltonian is hence described as inducing an 

oscillation between Iz-Sz magnetization and its opposite –(Iz-Sz), via the ZQy 

term, which does not bear magnetization. The oscillation occurs at the 

frequency given by the J-coupling. For the simplest case of two spins I and S 

the zero-field NMR spectrum consists of one line at frequency J. The spectrum 

of 
13

C-formic acid presents such a simple situation: One proton coupled to one 

carbon-13 nucleus. In Figure 4.4 the associated zero-field spectrum is shown. 

The observed line occurs at the frequency J = 221 Hz. 

 

Figure 4.4 Zero-field-NMR spectrum of 
13

C formic acid. One single peak at the 

frequency given by the J-coupling between the 
13

C spin X and the 
1
H spin A. 

JXA=221 Hz.  
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4.2 Zero-field NMR formalism for a general spin system 
 

For a general spin system involving an arbitrary number of coupled spins 

the Hamiltonian is given by: 

 ZF ,

,

H .j k j k

j k j

J


  I I  (4.11) 

The initial density matrix can be described as: 

 0 I .j zj

j

   (4.12) 

Under the zero-field Hamiltonian this density matrix evolves according to Eq. 

(2.18) as  

 ( ) exp( ) (0)exp( ),ZF ZFt iH t iH t    (4.13) 

and the signal is subsequently calculated as  

 
( ) ( ) I .j zj

j

s t Tr t 
 

  
 

  (4.14) 

In cases with many spins in a molecule that constitute a complicated J-

coupling network it is sometimes necessary to resort to numerical simulations 

but it will be the task of the following Sections to present an array of zero-field 

spectra of varying complexity and interpret in detail the observed spectral 

patterns without such full numerical simulations. 

We present a straightforward path for the interpretation of zero-field 

spectra associated with spin systems commonly found in organic molecules. 

First, we review the interpretation of “zero-order spectra” which result when a 

system is determined by one single J-coupling constant, i.e. spin systems of 

one nucleus coupled, by the same J-coupling constant, to multiple nuclei with 

differing gyromagnetic ratio.  We show experimental examples for such simple 

cases which are formic acid-[
13

C], formaldehyde-[
13

C] and methanol-[
13

C]. 

Then we focus on the interpretation of spectra from molecules with more 

complex J-coupling networks. The experimental spectra are compared to 

simulated “first-order spectra” which result when the zero-order systems are 

perturbed by additional weaker J-couplings. We provide a perspective giving 
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insight into the underlying quantum mechanics of the problem, resulting in 

simple equations for the observed frequencies. Detailed discussions for five 

exemplary cases are given. These are methylformate-[
13

C], formamide-[
15

N], 

ethanol-[1-
13

C], ethanol-[2-
13

C] and glycerol-[2-
13

C]. The first-order spectra 

typically agree well with the experimental data but in order to judge the 

accuracy of the first order description additional second order simulations are 

shown which are in excellent agreement with the experimental data. In 

previous publications the analysis of zero-field NMR spectra was restricted to 

the expected patterns produced by the “zero-order energy levels”. This zero 

order approach does correctly predict the position of multiplets even for the 

more complex spin systems. However, within these multiplets the exact 

number of lines and their amplitudes was not predictable without computer 

based numerical calculations. The analysis presented here makes the 

assignment of peaks straightforward and more intuitive. 
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4.3 Notation of spin systems in zero-field NMR  
 

Spin systems that can give a zero-field NMR signals consist of spins with 

differing gyromagnetic ratio coupled by scalar J-coupling. The simplest type of 

observed systems are XAn groups where X is a spin with gyromagnetic ratio X 

and An are equivalent spins with gyromagnetic ratio A ( X) which are 

coupled to X by a scalar J-coupling constant JXA. Typically, X is either 
15

N or 
13

C and An are protons (
1
H), they are however not restricted to those choices. If 

such a XAn spin system is fully isolated then the “zero-order spectra” result. 

These spectra are simple and can be readily understood as will be reviewed in 

the next Section. However, in many organic molecules XAn systems are 

perturbed by additional spins Bm forming (XAn)Bm spin systems, where the Bm 

spins also have the same gyromagnetic ratio as the An spins (B = A), i.e. Bm 

typically are additional protons. Distinguishing the spins An from the spins Bm 

is the relative strength of the J-coupling in these systems.  The spins within the 

parentheses, X and An, are strongly coupled to one another and the spins 

outside the parentheses Bm weakly couple into the system acting as a 

perturbation. In typical organic molecules where X is either a 
13

C or a 
15

N 

nucleus and An and Bm are protons (
1
H) the one bond coupling constants 

between X and An ranges from ~70 Hz to ~250 Hz whereas the coupling 

constants between X and Bm or An and Bm are an order of magnitude weaker 

and typically range between ~-20 to ~20 Hz..  

This chosen nomenclature is not in agreement with the standard Pople 

nomenclature 
[73,74]

 used at high magnetic fields, which is based on differences 

in chemical shifts relative to J-couplings. Given that at zero magnetic field all 

chemical shifts vanish and even different nuclei have the same precession 

frequency the chosen notation seems more practical. Table 4.1 provides an 

overview of the nomenclature along with the letters chosen for the angular 

momentum of the individual groups in the spin system which become 

significant for the interpretation of the observed spectra discussed below. 
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Table 4.1. Notation for spin systems and the associated angular momenta in 

zero-field NMR . 

Nuclear  type in (XAn)Bm Spin 
Angular 

momentum 
Total angular momentum 

Heteronucleus  (typically 
13

C or 
15

N) 
X S(=1/2)  

n spin(s) strongly coupled 

to X 
1
JXA>70 Hz          

(typically 
1
H) 

An 
IA 

= up to n1/2 

S+IA=FA 

fA=|s-iA|...|s+iA| 

m spin(s) weakly coupled 

to X and A  

(
≥2

JXB,
≥2

JAB) <20 Hz 

(typically 
1
H) 

Bm 
IB 

= up to m1/2 

FA+IB=F 

f=|fA-iB|...|fA+iB| 
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4.4 J-coupling spectra of XAn systems 
 

In this Section we provide a review of zero-field spectra resulting from 

pure XAn systems on the basis of simple rules governing addition of angular 

momenta. This material has been covered briefly in Ref. 
[19]

. The energy levels 

and frequencies arising from pure XAn systems is what we refer to here as the 

“zero order” description because it does not take into consideration 

neighboring groups that may also couple to a XAn system. Pure XAn systems, 

consisting of one spin-1/2 nucleus, X, coupled by JXA to n equivalent spin-1/2 

nuclei, An give simple zero-field NMR spectra, provided that X and A have a 

differing gyromagnetic ratio.  

As simple examples we show, in Figure 4.5, spectra of an XA group (
13

C 

formic acid), an XA2 group (
13

C formaldehyde) and an XA3 group (
13

C 

methanol). Note, in most common organic molecules n rarely exceeds 3, and 

thus the number of lines in these systems is small. From Figure 4.5 it is 

apparent that the XA group produces one line at frequency JXA = 221.1 Hz, the 

XA2 group produces one line at 3/2 JXA = 245.85 Hz and the XA3 group 

produces two lines at JXA = 141.0 Hz and 2 JXA = 282.0 Hz respectively. 

For odd n, an XAn system produces (n+1)/2 lines at  frequencies ranging 

from JXA to (n+1)/2JXA in steps of JXA. For even n, the number of lines is n/2 

with frequencies ranging from 3/2 JXA to (n+1)/2JXA in steps of JXA.  

In order to analyze the spectra let us denote the angular momentum of 

spin X as S and the angular momentum of the spins An as IA Since X is a spin 

1/2-paricle, the quantum number s equals 1/2 in all cases. Similarly, since the 

An are spin 1/2-particles, iA ranges from 0 to n/2 in steps of 1 for even n, and 

from 1/2 to n/2 in steps of 1 for odd n. Lastly, let us introduce FA as the sum of 

IA and S, such that the associated quantum number fA ranges from iA+s to |iA-s| 

in integer steps. These three quantum numbers fully determine the XAn 

systems. By evaluating the Hamiltonian (see Section 2.2.5) we obtain n+1 

angular momentum manifolds whose energies are given by  

 E
0
 = JXA/2 [fA(fA+1)-iA(iA+1)-(s(s+1)], (4.15) 

which results in simple structure of the energy levels and their spacing. For all 

XAn systems the energies range from -((JXA  n/4)+1/2) to (JXA  n/4) in steps  
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Figure 4.5 Zero-field NMR spectra of 
13

C formic acid, 
13

C formaldehyde and 
13

C 

methanol as examples of pure XAn systems for n=1, 2 and 3 respectively. 

of 1/2JXA, however omitting  -1/4 JXA or -1/2 JXA in the cases of odd and even 

n respectively. 

Figure 4.6 shows the energy levels for the XA, XA2 and XA3 systems. 

The angular momentum manifolds are labeled according to their quantum 

numbers. Energy levels in each angular momentum manifold are labeled with 

their magnetic quantum number mfA. n the case of XA3 the manifolds with iA 

=1/2 occurs twice because in a A3 system consisting out of three spin one-half 
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particles it is possible to combine the individual spins in two different ways to 

obtain iA=1/2  

 

Figure 4.6 Energy level diagrams for XAn systems with n=1,2 and 3. The 

allowed transitions between different energy level manifolds are indicated by red 

arrows. Each manifold is labeled by its characteristic quantum numbers. The 

quantum number for s equa1s 1/2  in all systems under consideration and is thus 

omitted.  Next to the energy level diagram a geometrical picture for addition of 

angular momentum is provided for the case of maximum fA. The length of the 

depicted arrows is given as (k(k+1)) where k refers to the respective quantum 

number.  
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Since the observable in these experiments is a vector operator we can 

derive the selection rules for transitions in these systems as: 

 iA=0; s=0; fA=0,1 and mfA = 0. (4.16) 

Employing these selection rules the allowed transitions are found to occur 

exactly at the frequencies described in the beginning of this Section (or given 

as JXA(fA+1/2) for fA1/2 where fA ranges from 0 or 1/2 (odd vs. even n) to 

(n+1)/2).  This analysis predicts the observations in Figure 4.5; for the XA 

system only one peak is expected at JXA, and for the XA2 system, only one 

peak is expected at 3/2 JXA. For the XA3 system, two peaks at JXA and 2JXA are 

expected.  

The origin of the energy-level manifolds can be illustrated with a vector 

picture shown in Figure 4.6. FA is shown as the sum of IA and S. The total 

angular momentum FA is a conserved quantity at zero magnetic field and IA 

and S oscillate about FA at the frequency proportional to the respective energy. 

For each energy-level manifold the involved angular momenta can be 

represented by vectors of length (k(k+1)), with k referring to the respective 

quantum number. Using these vectors, the addition of angular momenta can be 

represented as vector additions by arranging the vectors in a triangle such that 

IA+S=FA. These representations are shown only for those manifolds with 

maximum fA. The importance of this picture will become more apparent when 

introducing additional first-order interactions.  
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4.5 J-coupling spectra of (XAn)Bm systems 
 

The effect of additional spins coupling into pure XAn systems on the 

spectra are additional line splittings of the zero-order spectra. We will analyze 

typical (XAn)Bm systems to first order and compare the predictions with 

experimental results. Typically, it is appropriate to use a first order 

perturbation approach when the strength of the perturbation is at least 10 

times smaller than the zero order interaction. To zero order, the (XAn)Bm 

systems are determined solely by JXA which is a one bond J-coupling constant 

on the order of 100 Hz or larger. The first order interactions result from 

additional J-couplings through at least two bonds. Here, the additional 

coupling constants are JXB and JAB which typically are on the order of 10 Hz. 

This situation is thus amenable to analysis with a first order approach. 

  



                                      Chapter 4: Zero-field NMR using thermal polarization 

95 

 

4.5.1 The (XA)B system as simple example 
 

The simplest case of a perturbed XAn system at zero magnetic field is the 

(XA)B system. This system will serve as a introduction into the more general 

case.  

Figure 4.7 a) shows a simulated spectrum of the simple (XA)B system 

using the following coupling constants JXA=150Hz, JXB=-4Hz JAB=8 Hz, which 

are typical values in organic compounds where X is a 
13

C nucleus and A and B 

are 
1
H nuclei. The peak that, to zero order, is expected at JXA = 150 Hz is now 

split into a doublet separated by 3/4 (JXB+JAB). Additionally a low frequency 

peak at 3/4 (JXB+JAB) is observed.  

In order to understand the effect of the perturbing spins, let us introduce 

two additional quantum operators IB and F where IB is the angular momentum 

operator of the Bm group and F is the total angular momentum operator with 

quantum numbers f ranging from fA+iB to |fA-iB|. IB interacts with the 

projections of S, and IA onto FA (S|| and IA||) (see Section 4.6). Figure 4.7 

shows a pictorial representation of the sum of FA and IB, where IB and FA 

precess about F. To first order FA is simply given as the sum of S|| and IA|| This 

can be intuitively reasoned: The precession frequencies of IA and S about F is 

proportional toJXA, where as the precession frequencies of IB and FA about F is 

proportional to JXB+JAB which are much smaller. Therefore IB only interacts 

with the average values of S and IA given by S|| and IA||. More details are 

provided in the Section 4.6. 

Figure 4.7 c) shows the corresponding energy level diagram for the 

(XA)B system. 

Addition of spin B splits the zero order energy level fA = 1 to f = 3/2 and f 

=1/2, and the zero order energy level fA = 0 to to f =1/2. For fA = 0 the total 

angular momentum f can only be 1/2 and for fA=1 the total angular momentum 

f can have the values 3/2 or 1/2. Whenever fA = 0, the first order energy shift 

are zero in general, only energy levels with fA > 0 will be affected by the 

additional couplings from the Bm group. In the present case the first order 

energy shifts, E
1
, to the fA = 1 manifold are given as E

1
(F=3/2) = 1/4(JXB+JAB) 

and E
1

(f=1/2) = -1/2(JXB+JAB).  
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Figure 4.7 a)Simulated zero-field spectrum of a (XA)B system. The high 

frequency line of the pure JXA spectrum is split into a doublet and a additional 

low frequency line is observed. b)  Geometrical depiction of the addition of 

angular momentum IB to the angular momentum FA of the pure XA system, 

resulting in the total angular momentum F. In this illustration S|| and I|| 

represent the projections of S and IA onto FA.  c) Energy level diagram for the 

(XA)B system. The observed transitions at high frequencies are shown with red 

arrows and the additional low frequency transition is indicated by the blue 

arrow. For sake of clarity transitions are only shown for one value of mf.    
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The selection rules are given as 

 iA = 0;iB = 0; fA = 0, 1; f = 0, 1; mf  = 0.          (4.17) 

In the case of (XA)B all possible transitions between all angular-

momentum manifolds are allowed. We thus observe the zero-order peak for 

which fA=  1 split by 3/4(JXB+JAB). The relative amplitudes of the peaks are 

1:2. Additionally, a peak at low frequency appears at the frequency 

3/4(JXB+JAB) due to fA = 0 transitions between the two split fA=1 manifolds. 

The observed transitions are depicted by arrows. Red arrows indicate high 

frequency lines with fA = 1 and blue arrows indicate low frequency lines 

withfA = 0. Note that transitions are always shown for one randomly chosen 

mF and the remaining transitions with the same frequency are omitted to avoid 

overcrowding of the images.  

 

4.5.2 First order energy shifts in (XAn)Bm systems 
 

Having summarized the main features of the spectrum obtained from the 

XAB system, we can now move to a more general description of the (XAn)Bm 

systems and provide experimental examples that are of increased complexity.  

It is possible to derive a general formula for all first order energy shifts 

based on the discussion above which gives access to the exact positions of all 

angular-momentum manifolds and hence all frequencies. Here we will attempt 

to make the formulas somewhat intuitive only hinting at the exact derivation, 

which will be the subject of a forthcoming publication. As mentioned above 

the zero-order energies are given by Eq. (4.15). Similarly, the first-order shifts 

are given by 

 E
1
 = (J’XB + J’AB)/4 [f(f+1)-fA(fA+1)-(iB(iB+1)],  (4.18) 

where J’XB and J’AB are given as     

 J’XB = JXB [1+{s(s+1)-iA(iA+1)}/(fA(fA+1))] ,   (4.19) 

and 

 J’AB = JAB [1+{iA(iA+1)-s(s +1)}/(fA(fA+1))].           (4.20) 
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The factors modulating JXB and JAB can be understood as a result of the 

projection of IA and S onto FA. This can be understood by noting that, to first 

order, IB only interacts with these projections rather than with IA and S 

directly. The degeneracy of each energy-level manifold is given by 2f+1 and 

the total number of energy levels is 2
(n+m+1)

 where, (n+m+1) is the total number 

of spins in the system. The amplitude of the signal is proportional to (A-X)
2
. 

The relative amplitudes are given by sums over Clebsch-Gordan coefficients 

and can be calculated as such for the general (XAn)Bm system (see Section 

4.7). The relative amplitudes are given as simple ratios of small integer 

numbers and they are provided together with the first order simulations next to 

the respective peaks.  

 

4.5.3 Analysis of selected experimental spectra 
 

The (XA)B3 system: methyl formate-[
13

C] 

Figure 4.8 a) shows the experimental spectrum of methylformate-[
13

C], 

which constitutes an (XA)B3 system. Plotted below the experimental spectrum 

are first and second spectra. In this case both the first and second order 

spectrum agree well with the experimental spectrum.  

The J-coupling values used for the simulations are: JXA= 226.5 Hz, 

JXB=4.0 Hz and JAB=-0.8 Hz. To zero-order one peak at 226.5 Hz is expected. 

This peak is split into four lines by the additional couplings JXB and JAB. In the 

present case the strong JXA coupling is 70 times larger than the sum of JXB and 

JAB, hence it is not surprising that the spectrum is already reproduced 

excellently to first order. The angular momentum manifolds can be found 

starting from the facts that s=1/2, iA=1/2 and iB=(1/2 or 3/2). To zero-order this 

gives the energy diagrams of a XA system with fA=0 and fA=1,   these are then 

perturbed by iB=1/2 or iB=3/2 respectively. The case of iB=1/2 has already been 

fully described for the (XA)B system and, accordingly, we find peaks at all the 

positions as expected for the (XA)B system. These are 1
L
 at low frequency 

and 2 and 3 at high frequency. In addition, we observe two more peaks at 

high frequency (1 and 4) and one additional low frequency peak (2
L
). 

These additional lines (1, 4, 2
L
) result from the iB=3/2 configuration 

which generates additional angular momentum manifolds, two of which have 

differing first-order energy shifts. These additional shifts are given as 
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E
1
=-5/4(JXA+JXB) for f=1/2 and E

1
=3/4(JXA+JXB) for f=5/2. Employing the 

selection rules as introduced in Eq. (4.17), the additional lines are found to be 

at frequencies  JXA-5/4(JXA+JXB) and JXA + 3/4(JXA+JXB). The additional low-

frequency line occurs at 5/4(JXA+JXB). The degeneracy of each manifold is 

given as 2f+1 but all manifolds with iB=1/2 occur twice because in a CH3 group 

there are two ways to obtain 1/2 in a sum of vectors, where as there is only one 

way of obtaining 3/2 for iB when summing over three spin one-half particles. 

Figure 4.8. Part a) shows the experimental spectrum of a (XA)B3 system, methyl 

formate-[
13

C], together with simulations to first and second order . The high 

frequency line of the pure XA system occurring at JXA is split into a quartet and 

two additional lines are observed at low frequency. Part b) provides the energy 

level diagram for the (XA)B3 system. The observed transitions at high 

frequencies are shown with red arrows and the additional low frequency 

transitions are indicated by blue arrows. For sake of clarity, transitions are only 

shown for one value of mF. 
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The (XA2)B system: formamide-[
15

N] 

Depicted in Figure 4.9 a) are the spectrum and the simulations for 

formamide-[
15

N] which represents a (XA2)B system. The zero-order peak 

expected at 3/2 JXA is split into a triplet and three additional low frequency 

lines are observed. All observed frequencies and amplitudes for the (XA2)B 

system are listed. The simulations have been calculated using the following 

values for the J-couplings:  JXA=89.3 Hz, JXB = 13.5 Hz and JAB =- 8 Hz. As 

can be seen from Figure 4.9 a) the second order corrections are larger in this 

case than in methylformate, which is caused by the smaller ratio between the 

strong one-bond coupling JXA and the weaker long range couplings JXB and 

JAB. 

The analysis can be performed quickly using the information provided 

thus far. The zero-order energy levels are given by a XA2 system which has 

two fA=1/2 manifolds and one fA=3/2 manifolds. Both fA=1/2 manifolds get 

split, by the perturbing spin B into two manifolds each. The total angular 

momentum f of those new manifolds are f=0 and f=1 this is in analogy to the 

pure XA system where two spin 1/2 particles couple together to form a singlet 

with f=0 and a triplet with f=1 illustrating the self-consistency of this approach. 

The fA=3/2 manifold of the pure XA2 system also is split into two manifolds 

with f=1 and f=2. 

Recalling that the degeneracy is 2f+1 for these manifolds we encounter 3 

and 5 degenerate levels accordingly. For the central energy levels where fA=1/2 

we do only expect a contribution from JXB and none from JAB because iA = 0. In 

analogy to the zero-order energy levels for the XA system here the first order 

energy shifts are E
1
=-3/4JXB for the singlet and 1/4JXB for the triplet. For the 

lowest energy levels with iA=1 and fA=1/2 the contribution to the energy shifts 

from JXB and JAB is unsymmetrical because IA and S have differing projections 

onto FA. Similarly, for the highest energy levels where iA=1 and fA= 3/2 the 

projections of IA and S onto FA differ, hence the unsymmetrical contribution of 

JXB and JAB to the first order shifts. Evaluating the general formula Eq. (4.18) 

results in the frequencies given in Figure 4.9 b next to the depicted energy 

levels. 
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Figure 4.9. Part a) shows the experimental zero-field spectrum of a (XA2)B 

system, formamide-[
15

N], together with simulations to first and second order . 

The high frequency line of the pure XA2 system occurring at 3/2 JXA is split into 

a triplet and three additional at low frequency lines are observed. Part b) 

provides the energy level diagram for the (XA2)B system. The observed 

transitions at high frequencies are shown with red arrows and the additional low 

frequency transitions are indicated by the blue arrows. For sake of clarity 

transitions are only shown for one value of mf.    
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The (XA2)B3 system: ethanol-[1-
13

C] 

The spectrum of ethanol-[1-
13

C], a (XA2)B3 system, and the respective 

energy diagram are shown in Figure 4.10. The J-couplings used to fit the 

spectrum are JXA=141Hz, JXB=-4.65 Hz and JAB= 7.1Hz. The observed 

frequencies together with the respective amplitudes are included. The multiplet 

(nine lines) at high frequency occurs centered around the zero-order frequency 

of 3/2JXA  and seven low frequency lines are observed. 

In Figure 4.10 we encounter the same energy levels and transitions as for 

formamide-[
15

N] as long as iB=1/2. The (XA2)B3 system of course also allows 

for iB=3/2 resulting in further angular momentum manifolds and additional 

splitting. As a result of the B3 group all manifolds with iB=1/2 occur twice as 

discussed for the (XA)B3 system. The energy level diagram in Figure 4.10 b) 

shows only transitions for iB = 3/2 for sake of clarity. The transitions for iB=1/2 

are identical to the transitions of the (XA2)B system discussed above. 

Interestingly, for the central manifold with iA=0 and fA=1/2 the first order 

energy shifts still are only dependent on JXB and not dependent on JAB simply 

because iA = 0, but also the observed pattern of two frequencies at JXB and 2 

JXB is analogous to the situation introduced in the beginning for pure XA3 

systems where peaks appear at JXA and 2 JXA. 

The first-order energy shifts are calculated using Eq. (4.18). By using the 

selection rules provided in Eq. (4.17) it becomes apparent that we obtain six 

lines (1, 2, 4, 6, 8, 9) in addition to the three lines from the (XA2)B 

system (3, 5, 7) at the high frequencies.  At low frequency we obtain four 

lines (1
L
, 4

L
, 5

L
, 7

L
) in addition to the three lines from the (XA2)B 

system(2
L
, 3

L
, 6

L
) . Note, the line at frequency 2/3JXB+4/3JAB occurs twice; 

once from transitions with fA=1/2 and once from transitions with fA=3/2. Hence 

we obtain a total of nine high frequency lines centered on 3/2JXA and only 

seven low frequency lines. Higher order terms may split the overlapping lines. 
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Figure 4.10. Part a) shows the experimental zero-field spectrum of a (XA2)B3 

system, ethanol[1-
13

C], together with simulations to first and second order. The 

relative amplitudes are given next to the peaks. The high frequency line of the 

pure XA2 system occurring at 3/2 JXA is split into nine lines and seven additional 

lines at low frequency are observed. Part b) provides the energy level diagram 

for the (XA2)B3 system. The observed transitions at high frequencies are shown 

with red arrows and the additional low frequency transitions are indicated by 

the blue arrows. For sake of clarity transitions are only shown for one value of 

mf and transitions that have been provided for the (XA2)B system are also not 

displayed.    
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The (XA3)B2 system: ethanol-[2-
13

C] 

The next example, ethanol-[2-
13

C], contains two high frequency 

multiplets. Ethanol-[2-
13

C] constitutes a (XA3)B2 system. To zero order, two 

lines at JXA and 2 JXA are expected. These are the frequencies the observed 

multiplets are centered around. The spectrum and the energy-level diagram are 

shown in Fig 7. The J-couplings used to fit the spectrum are JXA=125.4 Hz, 

JXB=-2.2 Hz and JAB= 7.0 Hz. 

All first order energy-shifts can be calculated using Eq. (4.18) and the 

transitions are found applying the selection rules given in Eq. (4.17). The 

degeneracy of each manifold is given 2f+1 and all manifolds with iA=1/2 occur 

twice given the A3 group. From the energy level-diagram six low frequency 

lines four high frequency lines around JXA and seven high frequency lines 

around 2JXA are expected. Experimentally we observe only 5 lines at low-

frequencies because the low frequency lines (in blue) 3 and 4 are close 

together and overlap. The four high frequency lines around JXA are all visible 

and well separated. This part of the spectrum is interesting also because we can 

claim that for a (XA)B2 system this is exactly what the spectrum would look 

like i.e. without the multiplet centered on 2 JXA .  In the case of a (XA3)B2 

system  a multiplet centered on 2 JXA  does appear as shown. In the present case 

of ethanol-[2-
13

C] this multiplet appears to only show four lines at first glance. 

The discrepancy with the theoretically predicted seven lines is due to 

accidental overlap of the high frequency lines (in red) 8 with 9 and lines 10 

with 11 (see table 6); additionally the line at 5 has a weak relative intensity 

and hence barely shows, even in the simulation. 
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Figure 4.11 Part a) shows the experimental zero-field spectrum of a (XA3)B2 

system, ethanol[2-
13

C], together with simulations to first and second order. The 

relative amplitudes are given next to the peaks. The high frequency lines of the 

pure XA3 system occurring at JXA and 2 JXA are split into four and seven lines 

respectively. Additionally, 6 lines at low frequency are observed. Part b) 

provides the energy level diagram for the (XA3)B2 system. The observed 

transitions at high frequencies are shown with red arrows and the additional low 

frequency transitions are indicated by the blue arrows. For sake of clarity 

transitions are only shown for one value of mf.    
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The (XA)B4 system: glycerol-[2-
13

C] 

Lastly we discuss a case of the spin system in glycerol-[2-
13

C], that can 

be represented as a (XA)B4 system despite the fact that the two CH2 groups in 

glycerol are not magnetically equivalent. It appears that the coupling between 

the Figure 4.12 shows the experimental spectrum compared to the simulations 

and the appropriate energy-level diagram for a (XA)B4 system. The coupling 

constants used in the simulations are JXA=142.9 Hz, JXB=-3.1 Hz and JAB= 

6.3Hz. The high frequency multiplet has six lines and is centered on the zero-

order frequency of JXA. At low frequency only three lines appear. 

 The first-order energy shifts are given by Eq. (4.18). All first order shifts 

have a symmetric contribution from JXB and JAB because they perturb the XA 

system in which case the projection of S and IA onto FA have identical lengths. 

The degeneracy of each manifold is 2f+1, however some manifolds occur 

multiple times. In the B4 group, manifolds with iB = 0 occur twice, manifolds 

with iB =1 occur three times and manifolds with iB=2 occur once. This is the 

result of the number of possible combinations of four spin-one-half particles to 

obtain 0, 1 or 2 respectively. The transitions are obtained by employing the 

selection rules of Eq. (4.17). 

Since all the fA=0 manifolds do not experience any perturbation to first 

order the positions of the high-frequency peaks are easy to calculate. We 

obtain a transition from the fA=0 manifolds to each of the six fA =1 manifolds 

giving six lines. Additionally we obtain four low frequency lines, two of which 

have the same frequency to first order and overlap. These may be split due to 

higher order effects.       
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Figure 4.12 Part a) shows the experimental zero-field spectrum of a (XA)B4 

system, glycerol[2-
13

C], together with simulations to first and second order. The 

relative amplitudes are given next to the peaks. The high frequency lines of the 

pure XA system occurring at JXA is split into seven lines.  Additionally, three 

lines at low frequency are observed. Part b) provides the energy level diagram 

for the (XA)B4 system. The observed transitions at high frequencies are shown 

with red arrows and the additional low frequency transitions are indicated by 

the blue arrows. For sake of clarity transitions are only shown for one value of 

mf..  
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4.6 Energy levels in (XAn)Bm systems to first order 
 

The full Hamiltonian for the (XAn)Bm system can be written as 

 H=JXA IA∙S + JXB J S∙IB +JAB IA∙IB. (4.21) 

To first order the B spins only interact with the projection of IA and S onto FA, 

where FA = IA+S 

So we rewrite the Hamiltonian as 

 H=H0+H1= JXA IA∙S + JXB J S||∙IB +JAB IA||∙IB. (4.22) 

The eigenvalues of H0 are given by Eq. (2.86) as 

 XA
0 A A A A[ ( 1) ( 1) ( 1)].

2

J
E f f s s i i     

 (4.23) 

The projections S|| and IA||∙are given as 

 
A

A2

A

A A

A A2

A

.







||

||

S F
S F

| F |

I F
I F

| F |

 (4.24) 

Here we seek to find the eigenvalues of H1, which are the additional first 

order shifts: 

 
1 XB B AB A B, , .f fE f m J J f m   

|| ||
S I I I

 (4.25) 

If we insert the results from Eq. (4.24) we obtain 

 
A A A

XB A B AB A B2 2

A A

, , .
| | | |

f ff m J J f m
 

  
S F I F

F I F I
F F  (4.26) 

In the following we will show, first, how to evaluate 
A

S F and 
A

I F
A
 , 

and second, how to evaluate 
A

F I
B

  which then gives the first order shifts. We 

start from FA=IA+S, which is rearranged as IA=FA-S, such that  

 IA
2
= FA

2
+S

2
-2S FA , (4.27) 
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which is rearranged to give 

 S FA=1/2 (FA
2

 + S
2
-IA

2
), (4.28) 

and can be used to evaluate 
A

S F : 

 
A A A A A

1
1 1 1 .

2
f f s s i i      S F ( ( ) ( ) ( )  (4.29) 

To evaluate 
A

I F
A
 , similarly, we start from FA=IA+S, which is 

rearranged as S=FA-IA, such that  

 S
2
= FA

2
+IA

2
 -2IA FA, (4.30) 

which is rearranged to give 

 IA FA=1/2 (FA
2

 + IA
2 
-S

2
), (4.31) 

and allows us to obtain 

 
A A A A A

1
1 1 1 .

2
f f i i s s      S F ( ( ) ( ) ( )  (4.32) 

Evaluation of 
A

F I
B

  proceeds in analogy to the equations presented in 

Section 2.2.5 

 2 2 2 2

A B A B A B
+ 2 ,    F (F I ) F I F I

 
(4.33) 

we can rearrange to obtain 

 2 2 2

A B A B

1
,

2
   F I (F F I )

 
(4.34) 

now we obtain the eigenvalues given in terms of the quantum numbers as 

 
A B A A B B

1
( ( 1) ( 1) ( 1)).

2
f f f f i i     F I

 
(4.35) 

Combining the results from Eq. (4.29) (4.32) (4.35) and |FA|
2
= fA(fA+1)

 

into Eq. (4.26) gives the first order energies in terms of the quantum numbers: 
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1 A A B B

A A B B
XB

A A

A A B B
AB

A A

1
( ( 1) ( 1) ( 1))

2

( 1) ( 1) ( 1)

2 ( 1)

( 1) ( 1) ( 1)
,

2 ( 1)

E f f f f i i

f f s s i i
J

f f

f f i i s s
J

f f

      

     




    


 

 (4.36) 

which is simplified as 

 XB AB
1 A A A A

A A
XB XB

A A

A A
AB AB

A A

' '
( ( 1) ( 1) ( 1)),

4

where

( 1) ( 1)
' 1

( 1)

( 1) ( 1)
' 1 ,

( 1)

J J
E f f f f i i

s s i i
J J

f f

i i s s
J J

f f


     

   
  

 

   
  

 

 (4.37) 

giving a general formula for the first order shifts as a function of the quantum 

numbers. 
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4.7 Amplitudes and selection rules in (XAn)Bm systems 
 

The amplitude of a specific transition is given as 

 2

A A B A A BA , , , , , I , , ', , ', ' .f k kz f

k

s i f i f m s i f i f m   (4.38) 

This can be expressed in the uncoupled basis using Clebsch-Gordan 

coefficients as 

 A A

A B i A AA B A A A

A B A B

A B A B

' '' '

' '

, ', ' '

2

A B A B

A

, , I ', ', ' ,

f A ff f A

f s i A f B i s iB

s i i s i i

f m f mfm f m

f m i m sm i m f m i m sm i m

m m m m m m

s i i k kz s i i

k

C C C C

sm i m i m sm i m i m

 


 (4.39) 

which we can know evaluate using  

 
A B A B A BA B A BI , , ( ) , , ,k kz s i i S s I i I i s i i

k

sm i m i m m m m sm i m i m       (4.40) 

to give 

A A A

A B i A A A BA B A A A

A B

2

'' '

'

,

A ( ( )) .s i A s if f

s i s i A s i B i s iB

s i i

f m m f m mfm f m

f m m i m sm i m f m m i m sm i m S s I i i

m m m

C C C C m m m 
 

 

 
   
 
 


 

(4.41) 

From this it is apparent that s=iA=iB=ms=miA=miB=0. Additionally, 

the amplitude A is only non-zero for f=f-f’=0,1 and mf=mf-mf’=0. Which 

constitute the additional selection rules. 
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4.8 Ultra narrow lines in zero-field NMR 
 

In this Section we confine our attention on the linewidths that can be 

observed in zero-field NMR spectroscopy. In typical superconducting high-

field NMR spectrometers NMR linewidths of ~0.5 Hz are typical and large 

amounts of efforts are necessary to improve resolution by using shim coils of 

multiple orders. In zero-field NMR the magnetic field inside the shields can be 

easily reduced to the G level using one simple coil for each of the three 

spatial directions (x,y and z) The requirements on the coils are low and they 

can be configured as solenoids, Helmholtz or saddle coils. Once the G level is 

reached readjustments are typically not necessary since there are no field drifts 

as experienced in high-field NMR and measurements are typically not limited 

by field inhomogeneties. (One G corresponds to 4.2 mHz proton frequency)  

In the following we show multiple examples of zero-field spectra and fit 

the observed peaks to a complex Lorentzian of the form: 

 φ

0

a
,

dν (ν-ν )

ie
i  (4.42) 

in order to determine the linewidth and the peak position. The important fitting 

parameters are the frequency 0 and the width d (The phase,  is close to 

zero in all plots and the amplitude is a non-important trivial fitting parameter 

that will not be reported in this context) 

We begin by analyzing the individual peaks of the spectra presented in 

Figure 4.5 acquired from 
13

C formic acid, 
13

C formaldehyde and 
13

C methanol. 

As depicted in Figure 4.13 for formic acid we obtain, for the peak centered at 

=JXA = 221.181 Hz, a “Half Width at Half Maximum” (HWHM) = d of 27 

mHz corresponding to a decay rate of 5.9 s.  
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Figure 4.13 Zero-field-NMR spectrum of 
13

C-formic acid (black trace) and a 

Lorentzian fit to the observed peak (red trace). The fitting parameters resulted 

as d = 27 mHz and = 221.181 Hz  

 

Next, in Figure 4.14 the peak produced by 
13

C-formaldehyde centered at 

3/2JXA= 245.789 Hz is shown fit to a Lorentzian with a HWHM=0.051 Hz 

corresponding to a decay rate of 3.1s 

 

 

Figure 4.14 Zero-field-NMR spectrum of 
13

C-formaldehyde (black trace) and a 

Lorentzian fit to the observed peak (red trace). The fitting parameters resulted 

as d = 51 mHz and = 245.789 Hz 

 

The 
13

C Methanol sample produces two peaks centered at JXA= 140.975 

and 2 JXA= 281.951 Hz. Note that the frequencies of JXA and 2JXA are fit to 

independent Lorentzians resulting with exactly a 1:2 ratio in frequencies, 

confirming that the J-coupling constants can be determined down to the mHz 

level using simple 1D zero-field NMR.  
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Figure 4.15 Zero-field-NMR spectrum of 
13

C-methanol (black trace) and a 

Lorentzian fit to the observed peaks (red trace). The fitting parameters resulted 

as d = 43 mHz, = 140.975 Hz, d = 57 mHz and = 281.951 Hz 

 

Similarly to spectra from 
13

C-methanol, we show in Figure 4.16 spectra 

from 
13

C acetic acid yielding two peaks at JXA = 129.502 and 2 JXA =259.004. 

Again, for the peak at JXA exactly half the frequency of the peak at 2 JXA is 

obtained, down to the mHz level,  

 

 

Figure 4.16 Zero-field-NMR spectrum of 
13

C-2-acetic acid (black trace) and a 

Lorentzian fit to the observed peaks (red trace). The fitting parameters resulted 

as d = 26 mHz, = 129.502 Hz, d = 53 mHz and = 259.004Hz 

 

Interestingly, for both, the 
13

C-methanol spectrum, as well as, for the 
13

C-

acetic acid spectrum the peaks at JXA are slightly narrower than the peaks at 2 

JXA. There are different mechanisms that could be responsible for this 

broadening. First, the line at JXA results from a coherence between the singlet 

state (fA=0) and a triplet state (fA=1), as depicted in Figure 4.2. The line at 2JXA 

results from a coherence between a triplet state (fA=1) and a quintet state 

(fA=2), also shown in Figure 4.2. It is known from the literature that singlet 
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states are protected from some intermolecular relaxation mechanisms, thereby 

having increased lifetimes.
75–82

 In the context of zero-filed-NMR, these effects 

remain under current investigation. 

Second, a non-zero magnetic field can cause individual lines to split as 

will be described extensively in the following Chapter. For the present 

discussion it shall suffice to say, that the lines at JXA associated with 

fA=0↔fA=1 transitions split into two lines, whereas, the lines at 2JXA associated 

with fA=1↔fA=2 transitions split into six lines with a larger separation than the 

lines at JXA, thus a small magnetic field would cause a similar effect, 

broadening the lines at JXA less than the lines at 2JXA. 

To demonstrate this effect we purposefully applied a magnetic field 

splitting the NMR lines as demonstrated in Figure 4.16. As can be seen the line 

of 
13

C formic acid at JXA is split into two lines of reduced linewidths with 

HWHM = 0.017Hz and 0.015 Hz. This suggests that some of the broadening 

observed in Figure 4.16 can be reduced even further by adjustments to the 

magnetic field. As mentioned, the details of these broadening effects remain 

under investigation. 

 

Figure 4.17 Zero-field-NMR FID and its Fourier transform of 
13

C-2-acetic acid 

(black trace) and a Lorentzian fit to the observed peaks (red trace). The fitting 

parameters resulted as d = 17 mHz, d = 15 mHz for the peaks centered 

around JXA=129.502 Hz split by a magnetic field. 
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Lastly, we show, in Figure 4.18, that if the magnetic field is adequately 

reduced, linewidths close to 10 mHz can be obtained. A zero-field NMR 

spectrum of singly 
13

C-labeled benzene is provided. The acquired lines have 

linewidths of down to 11 mHz corresponding to signal decay times of 14.5 s. 

Below the experimental spectrum a numerical simulation of the spectrum is 

shown clearly identifying the compound. In the simulation a decay rate of 15 s 

was used producing good agreement with the experimental spectrum. More 

details concerning these measurements and the simulations will be provided in 

a forthcoming publication by Blanchard et al. 

 

 

Figure 4.18 Zero-field-NMR spectrum of singly 
13

C labeled benzene (black trace) 

and simulation thereof (red trace below). The inset shows two peaks appearing 

around 167.1 Hz together with a fit to these peaks (red trace). The HWHM 

resulted as d = 11 mHz. 
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4.9 Significance of zero-field NMR for chemical analysis 
 

This contribution provides a tool to analyze zero-field NMR spectra in a 

methodological and straightforward way without having to resort to non-

intuitive full numerical calculations. The presented method of analysis is based 

on a first-order perturbation approach that results in simple equations for the 

positions of peaks in given spins systems. The knowledge of the peak positions 

allows for assignment of peaks to the respective chemicals. For mixtures of 

chemicals only small amounts of overlap is expected given the excellent 

resolution, on the order of tens of mHz, in zero-field NMR, plus the large 

variations in one-bond coupling constants, which spread the observed 

multiplets widely. Since zero-field NMR is emerging as a cost effective, 

potentially miniaturizable type of NMR the successful interpretation of the 

obtained spectra is another key ingredient to make this modality of NMR 

attractive for applications ranging from bench-top chemical analysis to sample 

analysis in spaces previously not accessible by traditional NMR. 
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5. Near-zero-field NMR: the Zeeman field as 

perturbation 
 

Here, we examine, experimentally and theoretically, the effects of small 

magnetic fields in near-zero-field NMR. This work has been previously 

published under the title “Near-Zero-Field Nuclear Magnetic Resonance” by 

the American Physical Society
[28]

. In this contribution we show that application 

of weak magnetic fields results in splitting of the zero-field lines, restoring 

information about gyromagnetic ratios that is lost in zero-field NMR. In the 

regime where the Zeeman effect can be treated as a perturbation, we observe 

high-resolution spectra with easy-to-understand splitting patterns that are in 

good qualitative and quantitative agreement with first-order perturbation 

theory. This work forms the basis for a new type of NMR spectroscopy that 

serves as a complement to high-field NMR, where heteronuclear couplings are 

almost always treated as a small perturbation to the much larger Zeeman 

interaction. We also examine the case in which the Zeeman energies are 

comparable to the J-coupling energies, resulting in spectra of maximal 

complexity. Finally, we note that operating near zero field has two additional 

consequences. It enables us to take advantage of the spin-exchange relaxation-

free (SERF) regime
[23]

, and it facilitates efficient coupling between the nuclear 

spins and the magnetometer’s alkali spins by approximately matching the 

Larmor resonance frequencies of the two species, without resorting to the use 

of a solenoid as described in the literature.
[8,11,15]
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5.1 Pure XAN systems perturbed by a weak magnetic 

field 
 

The Hamiltonian in the presence of J couplings and a magnetic field is 

;

jk j k j j

j k j j

H J 


    I I I B . Here Ij represent both like and unlike spins with 

gyromagnetic ratio j and Jjk is the scalar coupling between spins j and k. The 

effects of dipole-dipole interactions are ignored here, as we work in an 

isotropic liquid state, although they are responsible for relaxation. In the 

absence of magnetic fields, the spherical symmetry of the Hamiltonian dictates 

that eigenstates |a> are also eigenstates of F
2
 and Fz, where F is the total 

angular momentum. jj
F I with energy Ea, and degeneracy 2f+1. 

Application of a magnetic field Bz lifts this degeneracy, splitting the zero-field 

NMR lines. We first examine the effects of small magnetic fields on a 
13

CHN 

system, with N equivalent protons, using perturbation theory. In zero field, the 

unperturbed energy levels are given as described in Chapter 2 Section 2.2.5 

 ( , ) / 2[ ( 1) ( 1) ( 1)],A A AE f i J f f i i s s     
 (5.1) 

where iA = 1/2; 1; 3/2,... are the possible spin quantum numbers of the operator 

IA describing the sum of the equivalent proton spins, and s = 1/2 is the spin 

quantum number associated with the operator S, representing the 
13

C spin. To 

first order in Bz, eigenstates are those of the unperturbed Hamiltonian, and 

Zeeman shifts of the eigenvalues can be read from the diagonal matrix 

elements of the Zeeman perturbation. One finds  

 

 
,

H

2

H C

( , , ) , ( I S ,

.
A A

f sA

A f f z Az C z f

z A i s f i s

m m

E f i m f m B f m

B i s m m f m m m

 

 

   

  
 

(5.2) 

Here H and C are the proton and 
13

C gyromagnetic ratios, and 

AA i sf sm m f m  are the Clebsch-Gordan coefficients. The observable in our 

experiment is the total x magnetization,  M ( ) Tr ( ) Ix jx jj
t t    where (t) is 

the time dependent density matrix. Writing Ijx in terms of the raising and 

lowering operators, we obtain selection rules for observable coherences: f = 
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0, 1 and mf = 1 valid in the limit where |j B|<<|J|. In the case at hand, with 

N equivalent protons, there is an additional selection rule,iA = 0 , since, in  

the absence of chemical shifts, the Hamiltonian commutes with IA
2
. 

Experimentally, we examine the case of N = 1 and N = 3. In the former case, iA 

1/2 , the zero-field levels are a singlet with f = 0 and a triplet with f = 1 . In the 

presence of a small magnetic field, the singlet level is unperturbed, while the 

triplet levels split, as shown by the manifolds on the left of Figure 5.1. In the 

following, 
', '

,
f

f

f m

f m  denotes the frequency of transitions between the states 

, ff m  and ', 'ff m . Employing Eq. (5.1) and the selection rules, one finds a 

single line for transitions with f = 0 between states with f = 1, and a doublet 

for transitions with f =  1 between states with f = 1 and f = 0: 

 1, 1

1, ( ) / 2,f

f

m

m z H CB  

   (5.3) 

 1, 1

0,0 ( ) / 2.z H CJ B       (5.4) 

For the case of N = 3, iA is either 1/2 or 3/2. The iA = 1/2 transition frequencies 

are given by Eqs. (5.3) and (5.4) and. The iA = 3/2 manifolds are shown on the 

right of Figure 5.1, and coherences between 1, ff m  and 2, 1ff m   

occur at frequencies given by 

 2, 1

1, 2 ( 7 6 ) (3 ).
4 4

f

f

m z z
m f H C H C

B B
J m    


       (5.5) 

There are two additional transitions for states with fA = 3/2 with f = 0 

that occur near zero frequency, 

 2, 1

2, (3 ); 3 / 2,
4

f

f

m z
m H C A

B
i  


    (5.6) 

 1, 1

1, (5 ); 3 / 2.
4

f

f

m z
m H C A

B
i  


    (5.7) 

 



                    Chapter 5: Near-zero-field NMR: the Zeeman field as perturbation 

121 

 

Figure 5.1 Energy levels for a 
13

CH3 group (both left and right). Energy levels 

for a 
13

CH group are given by the manifold on the left only. 

 

Equations (5.3) – (5.7) constitute a set of 11 transitions, three appearing 

near zero frequency, two near J, and six near 2J , representing the near-zero-

field NMR spectrum of a 
13

CH3 group. These calculations are discussed in 

more depth in the Section 5.4.1, and in Ref. 
[22]

.  

We now make two observations. (1) Even in more complex molecules 

with additional nonequivalent spins, the zero-field eigenstates are also those of 

F
2
 and Fz. Therefore, the near-zero-field splitting patterns can be used to 

identify the angular momenta of the states involved in the zero-field 

transitions. Transitions between levels with f = 0 and 1 will produce doublets, 

transitions between levels with f = 1 and 2 will produce a multiplet with six 

lines, and so on. (2) The selection rules presented here break down as the 

magnetic field becomes large enough to produce significant mixing of the 

zero-field eigenstates. Reference 
[22]

 shows theoretically that the maximum 

number of lines for a 
13

CHN group is (N+1)
2
,  most clearly visible when |(H + 

C)Bz| ≈ J. 
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5.1.1 Experimental configuration for near-zero-field NMR 

  
Experiments were performed using an apparatus similar to that of Refs. 

[19,21] 
and depicted in Figure 5.2. Samples (typically ≈ 200 L ) were contained 

in a 5 mm NMR tube, and pneumatically shuttled between a 1.8-T 

prepolarizing magnet and a magnetically shielded enclosure, housing a 

microfabricated 
87

Rb vapor cell, the central component of the atomic 

magnetometer. The cell is optically pumped by z-directed, circularly polarized 

laser light, tuned to the center of the D1 transition, and probed by y-directed, 

linearly polarized light, tuned about 100 GHz to the blue of the D1 transition. 

Optical rotation of the probe light is monitored by a balanced polarimeter. Bias 

fields and dc pulses of magnetic field, used to excite NMR spin coherences, are 

applied via a set of coils. At zero field, the magnetometer is primarily sensitive 

to fields in the x direction with a noise floor of about 40 – 50 fT/√Hz. As the 

bias field is increased, the magnetometer response moves to higher 

frequencies, compromising the low- frequency sensitivity by about a factor of 

5 for Bz = 3 mG. 

 

Figure 5.2 Experimental setup for near-zero-field spectroscopy, described in the 

text. 
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To maintain a quantization axis during transit of the sample, a solenoid 

provides a “guiding field”. The guiding field is turned off suddenly prior to 

acquisition of data, and a pulse applied in the z direction, with area such that 

the proton spins rotate through 4  and the carbon spins rotate through  (about 

480 s), maximizing the amplitude of zero-field signals. Zero-field and near-

zero-field spectra for formic acid (H
13

COOH) are shown in Figure 5.3, each 

resulting from the average of eight transients. The zero-field spectrum consists 

of a single line at J = 222 Hz , as well as a dc component, suppressed here for 

clarity. 

The near-zero-field spectrum arising from the 13CH group is as discussed 

above: a doublet with frequencies J  Bz (H + C)/2 and an additional line at Bz 

(H + C) ≈ 4:7 Hz. The large peak at 7.5 Hz corresponds to the uncoupled OH 

group. The asymmetry in the doublet centered about J, reproduced by a full 

numerical calculation, is due to higher-order corrections to the eigenstates. The 

peaks are well described by Lorentzians, with half width at half maximum ≈ 

0.1 Hz , and the locations of the peaks can be determined with a statistical 

 

 

Figure 5.3  ZF and NZF spectra for 13 C labeled formic acid, H
13

COOH . The 

inset shows the splitting of the two lines centered about J as a function of 

magnetic field. 
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uncertainty of about 1 mHz (estimated from the scatter of measurements 

obtained from the eight single transients in each data set). The splitting of the 

line at J as a function of magnetic field is shown inset, displaying a linear 

dependence. The slope is in agreement with that predicted by Eq. (5.4), (H + 

C), at the level of about 0.1%. 

To illustrate the case of a 
13

CH3 system, zero-field and near-zero-field 

spectra for acetonitrile-2 (
13

CH3CN) are shown in Figure 5.4. For Bz = 0, the 

spectrum consists of a zero-frequency peak, a peak at J, and a peak at 2J. 

Application of a magnetic field splits the zero-frequency peak into three lines, 

whose frequencies are given by Eqs. (5.3), (5.6) and (5.7). The smallest peak at 

11.2 Hz corresponds to an uncoupled proton due to an unknown solvent in the 

sample (likely water). The line at J splits into a doublet, whose frequencies are 

given by Eq. (5.4), and the line at 2J splits into six lines, whose frequencies are 

given by Eq. (5.5). The splitting of the lines at J and 2J clearly reveals the 

degeneracy of the zero-field levels. As with the formic acid spectrum, there is 

some asymmetry present in the multiplets centered about J and 2J, which is 

reproduced by 

 

 

Figure 5.4 Spectra for singly labeled acetonitrile-2, 
13

CH3CN in zero field and in 

a field of 2.64 mG. The smooth trace overlaying each data set is a fit described in 

the text. 
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numerical simulation. Nevertheless, the relative amplitudes of the lines 

centered about 2J are roughly in the ratio 1:3:6:6:3:1 as expected from first-

order perturbation theory (Section 5.4 [27]). Line positions are in excellent 

agreement with the first-order perturbation treatment. The smooth trace 

overlaying each data set is a fit to a sum of 11 Lorentzians, whose central 

frequencies are determined by just two parameters, J and Bz, via Eqs. (5.3)-

(5.7). The fitted value of Bz for the near zero field case is within 1% of the 

calibrated value.  
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5.2 Larger spin systems: fully labeled acetonitrile 
 

To illustrate the utility of near zero field NMR, we examine the case of 

fully labeled acetonitrile (
13

CH3
13

C
15

N). The zero-field spectrum is shown in 

the bottom trace of Figure 5.5. It is not immediately clear which lines 

correspond to which zero-field transitions. An expanded view of the zero-field 

spectrum in the range of 110 to 180 Hz is provided and compared to the 

spectrum obtained in the indicated finite magnetic fields. We see the 

appearance of doublets centered at 114, 126, and 151 Hz, indicating that these 

transitions occur between manifolds with f = 0 and f = 1. It is interesting to 

note that these doublets display different splitting 

 

Figure 5.5 Effects of small magnetic fields on fully labeled 

acetonitrile
13

CH3
13

C
15

N. The bottom trace shows the entire zero-field spectrum. 

The upper traces show the central part of the ZF and NZF spectra in the 

indicated fields. 
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due to differences in the Landé g factors for the different manifolds involved in 

these transitions. The line at 131 Hz splits first into a doublet, which split into a 

pair of doublets. One can show that such a splitting pattern arises for a f = 1 ↔ 

f = 1 transition (see Section 5.4 [27]). The small zero-field peak at 168 Hz 

splits into four lines, barely above the noise, indicating an additional f = 1 ↔ f 

= 1 transition. Finally, the zero-field peak at 155.5 Hz splits into a sextet 

indicating the transition is f = 1 ↔ f = 2 . The six lines in this multiplet appear 

‘‘inside out’’ compared to the six line multiplet observed at 2J in 2-acetonitrile 

due to a reversal in relative magnitude of the Landé g factor. The number of 

peaks in each multiplet can be understood as follows: starting with a 
13

CH3 

group, we confine our attention to the 1 ↔ 0 transition with total proton spin = 

1/2, yielding transitions in the neighborhood of 1 JCH. Addition of the second 
13

C splits these levels: f = 1 splits to 3/2, 1/2 manifolds, and f = 0 manifolds 

splits to 1/2. Addition of the 
15

N splits these so we now have fa = 2 or 1, fb = 1 

or 0, and fc = 1 or 0. Transitions between fa ↔ fb can be ignored because they 

occur at low frequency. Employing the f = 1 rule we expect three 1 ↔ 0 

transitions, producing doublets: fa = 1 ↔ fc = 0 , fb = 1 ↔ fc = 0 , and fb = 0 ↔ 

fc = 1 . Transitions between fa = 2 ↔ fc = 1 yields a multiplet with six lines, and 

transitions with f = 0 between fa = 1 ↔ fc = 1and between fb = 1 ↔ fc = 1 yield 

multiplets with four lines. More details are presented in Section 5.4. 
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5.3 Comparable strength of J-coupling and Zeeman 

interaction  
 

In systems with small couplings, such as 1-acetic acid (CH3
13

COOH) 

which has a two-bond coupling, 2JCH = 6.8 Hz , it is possible to explore the 

regime in which the Zeeman interaction is comparable to the J-coupling. 

Figure 5.6 shows experimental spectra for 1-acetic acid for the indicated 

magnetic fields. The large peak that does not split is due to the uncoupled OH 

group, while the rest of the spectrum corresponds to the CH3
13

C part of the 

molecule. Initially, the spectrum appears similar to the 2-acetonitrile spectrum, 

with a doublet at J, and an additional doublet at 2J composed of several 

unresolved lines. As the magnetic field is increased, additional lines in the 

multiplet at 2J 

 

 

Figure 5.6 Experimental spectra for 1-acetic acid (CH3
13

COOH) in the indicated 

magnetic fields. The smooth curve at the top of the plot presents the result of a 

full numerical simulation with high resolution. 
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become resolved. At the highest magnetic fields, the spectrum displays the 

highest complexity, and is no longer recognizable from the perturbative 

treatment presented above. The smooth trace at the top of the plot shows the 

log of the absorptive component of a high resolution numerical simulation, 

reproducing all features of the data, to the extent that lines are resolved. 

Careful examination reveals 17 lines, 1 for the OH group and (N+1)
2
 = 16 

lines, as theoretically predicted 
[22]

.   
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5.4 Calculations of the near zero-field spectra 
 

Here we present detailed calculations of the results presented in the the 

previous Sections of Chapter 5. To calculate near-zero-field nuclear magnetic 

resonance spectra, we start from the Hamiltonian containing both scalar and 

Zeeman couplings: 

 
J Z

;

H=H +H ,jk j k j j

j k j j

J 


    I I I B  (5.8) 

where HJ and HZ are the contributions from the scalar couplings and the 

Zeeman interaction, respectively. Here γj is the gyromagnetic ratio of the jth 

spin and Jjk is the scalar coupling between spins j and k. In the absence of 

magnetic fields, the spherical symmetry of the Hamiltonian dictates that 

eigenstates |φa>, with energy Ea, are also eigenstates of F
2
 and Fz, where 

j=
jF I is the total angular momentum. Manifolds characterized by the 

quantum number f have degeneracy 2f+1. Application of a magnetic field Bz 

lifts this degeneracy, resulting in a splitting of the zero-field NMR lines. The 

signal in our experiment is the x component of the magnetization. 

  M ( ) Tr ( ) I ,x jx jj
t n t    (5.9) 

where ρ(t) is the time dependent density matrix and n is the molecular density. 

The initial density matrix ρ0 can be expressed in terms of the operators 
a b 

, each of which evolves as abi t
e
 , where ωab = (Ea − Eb ). Equation (5.9) can be 

rewritten 

 

, ,

M ( ) (I I ) ,
2

abj i t

x ab b j j a

a b j

t n e



   

    (5.10) 

where 
0ab a b    and Ij± = Ijx ± iIjy are the usual raising and lowering 

operators. For arbitrary scalar-coupling networks and arbitrary magnetic fields, 

eigenstates and eigenvalues can be calculated numerically. In the limit where 

the magnetic field is small, such that |γj Bz|<<|Jjk| for all values of j, and k, its 

effects on the spectra can be calculated analytically using first-order 

perturbation theory, lending considerable physical insight to the problem.  
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5.4.1 Calculation from first-order perturbation theory 
 

We first consider the case of a 
13

CHN system, with N equivalent protons. 

In zero field, the unperturbed energy levels are given by

( , ) / 2[ ( 1) ( 1) ( 1)]A A AE f f J f f i i s s      , where iA is the quantum number 

associated with the operator IA representing the sum of the equivalent proton 

spins, and s is the quantum number associated with the operator S representing 

the 
13

C spin. To first order in Bz , eigenstates are those of the unperturbed 

Hamiltonian and Zeeman shifts of the eigenvalues can be read from the 

diagonal matrix elements of the Zeeman perturbation. One finds: 

 

 

,

,

H

H C

2

H C

( , , ) , ( I S ,

I S ' ' ' '

.

A A A A

f sA

A A

f sA

A f f z Az C z f

f A i s A i s z A z A f s A i s f

m m

z A i s f i s

m m

E f i m f m B f m

f m i s m m f s m m B i s m m i s m m f m

B i s m m f m m m

 

 

 

   

 

  





 

(5.11

) 

Here γH and γC are the proton and 
13

C gyromagnetic ratios, respectively, and 

AA i s fi sm m f m are the Clebsch-Gordan coefficients. Noting that the operators 

Ij±  in Eq. (5.11) are vector operators with magnetic quantum number ±1, one 

can employ the Wigner-Eckart theorem to obtain the selection rules for 

observable coherences: Δf = 0, ±1 and Δmf = ±1. We note that these selection 

rules break down in the limit where the Zeeman term is comparable to the J-

coupling term because of mixing of the zero-field eigenstates with different 

values of f. In the case at hand with N equivalent protons, there is an additional 

selection rule ΔfA = 0, since, in the absence of chemical shifts, the Hamiltonian 

commutes with F
2
. The observed frequencies in the spectrum can be obtained 

using these selection rules and Eq. (5.11). In the following, 
', '

,
f

f

f m

f m denotes the 

frequency of transitions between the states , ff m  and ', 'ff m  

In the case of N = 1, we have fA = 1/2, and the zero-field levels consist of 

a singlet with f = 0 and a triplet with f = 1. In the presence of a small magnetic 

field, the singlet level is unperturbed, while the triplet levels split: 

 E(0, 1/2, 0) = −3J/4, (5.12) 
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E(1, 1/2, mf) = J/4 − mf Bz (γH + γC)/2. 

With the selection rules presented above, one finds a single line for transitions 

with Δf = 0 between states with f = 1, and a doublet for transitions with Δf = ±1 

between states with f = 1 and f = 0: 

 1, 1

1, ( ) / 2,f

f

m

m z H CB  

   (5.13) 

 1, 1

0,0 ( ) / 2.z H CJ B       (5.14) 

Energy levels, transitions, and an example of the f = 1 ↔ f = 0 doublet are 

shown in Figure 5.1. For the case of N = 2, fA is either 0 or 1 (we did not 

examine this case experimentally, but include it for the sake of completeness). 

Adding the 
13

C spin to the system yields a zero-field manifold with f = 1/2 for 

iA = 0 and unperturbed energy 0.  For iA = 1, the zero-field manifolds have f = 

3/2, 1/2 with energies J/2 and −J, respectively. A small magnetic field perturbs 

these levels according to Eq. (5.11) 

 E(1/2, 0, mf)  =  −mf Bz γC /2, 

E(1/2, 1, mf)  =  −J − mf Bz (4 γH − γC )/3,  

E(3/2, 1, mf)  =  J/2 − mf Bz (2 γH + γC )/3.  

(5.15) 

Thus, there are three lines corresponding to transitions with Δf = 0: 

 1/2,

1/2, 1 ; 0,f

f

m

m z C AB i     (5.16) 

 
1

1/2,

1/2, (4 ); 1,
3

f

f

m z
m H C A

B
i  


    (5.17) 

 1,

1, 1 (2 ); 1.
3

f

f

m z
m H C A

B
i       (5.18) 

Transitions with Δf = ±1 and Δmf = ±1 between states with f = 1/2 and f = 

3/2 for iA = 1 yield four lines, at frequencies given by 

 3/2,

1, 1

3 2
( ) (2 ).

2 3 3

f

f

m z z
m f H C H C

J B B
m          (5.19) 

For the case of N = 3, iA is either 1/2 or 3/2. The iA = 1/2 energy levels 

are the same as for the 
13

CH system, and the transition frequencies are given by 

Eqs. (6) and (7). For the iA = 3/2 manifolds, evaluating Eq. (5.11), we find 
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 E(1, 3/2, mf )  =  −5J/4 − mf Bz (5 γH − γC )/2, 

E(2, 3/2, mf )  =  3J/4 − mf Bz (3 γH + γC )/4.  
(5.20) 

Transitions between |f = 1, mf > and |f = 2, mf ± 1> occur at frequencies 

given by 

 2, 1

1, 2 ( 7 6 ) (3 ).
4 4

f

f

m z z
m f H C H C

B B
J m    


       (5.21) 

There are two additional transitions for states with iA = 3/2 with f = 0 

that occur near zero frequency, 

 2, 1

2, (3 ); 3 / 2,
4

f

f

m z
m H C A

B
i  


    (5.22) 

 1, 1

1, (5 ); 3 / 2.
4

f

f

m z
m H C A

B
i  


    (5.23) 

Energy levels, transitions, and an example of the f = 2 ↔ f = 1 six-line 

multiplet are shown in Figure 5.8 (d). 

In the presently considered limit of small magnetic fields, the amplitude 

of a peak corresponding to a transition between states |φa> and |φb> can be 

found from the coefficients in front of abi t
e
  in Eq. (5.10),  

 
0 (P P ) ,ab a b b aa         (5.24) 

where 

 P I .j j

j

   (5.25) 

The polarized part of the initial density matrix corresponding to high-

field magnetization with B0 is  

 I P P .j jx

j

       (5.26) 

Hence, amplitudes are given by 
2

(P P )b a   . These matrix elements can 

be found using the Wigner-Eckart theorem for rank 1 vector operators with 

magnetic quantum number ±1: 

2 2 2

, (P P ) ', ' , (P P ) ', ' , ', 1, ' , 1 .f f f f f ff m f m f m f m f m f m        (5.27) 
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In the case of a 1 ↔ 0 transition, the two peaks corresponding to 

transitions with Δmf = ±1 have equal intensities. In the case of a 1/2 ↔ 3/2 

transition, the four peaks have intensities in the ratio of 1:3:3:1. For the 2 ↔ 1 

transitions, we find that the six peaks are in the ratio of 1:3:6:6:3:1. 

 

5.4.2 Calculation of multiplets for fully labeled acetonitrile 
 

We have analytically calculated the first-order corrections to the energy 

eigenvalues and the splitting patterns for the case of the 
13

CHN group. This can 

be extended to larger spin systems in a straightforward way. We now proceed 

to analyze the case of fully labeled acetonitrile 
13

CH3
13

C
15

N. The energy 

eigenstates |φa>can be approximately constructed by iteratively adding 

additional spins to the spin pair with the largest spin coupling. This treatment is 

valid in the limit where the coupling of each additional spin to the previous 

spin system is small compared to that of all the previous couplings. In the 

following, IA is the sum of the equivalent proton spins, S1 is the methyl 
13

C, S2 

is the second 
13

C, and N is the 
15

N spin. In zero magnetic field, the eigenstates 

of the strong one bond 
13

CH coupling are those of F1
2
 and F1z  (here F1 = S + 

IA), which can be expressed in terms of the uncoupled states via the Clebsch-

Gordan coefficients: 

 
1 1 1 1 1

,

, .
A A

k s

A i s A i s

m m

f m f m i s m m i m s m   (5.28) 

Adding S2 to F1 yields the states 

 
2 2

1 2

2 2 2 2 1 2 1 1 1 2

,

, ; .
s

A s s

m m

f m f m i f s m m f m s m   (5.29) 

The quantity 
22 2 1 2 1; A sf m i f s m m  is the usual Clebsch-Gordan coefficient for 

addition of angular momenta F1 and S2; the quantum number iA is included 

because the same value of f1 can be obtained with different values of iA. 

Finally, adding N to F2 yields the states: 

 
2

1 2 2 2 2

,

, ; , .
n

A n n

m m

f m f m f i f nm m f m n m   (5.30) 
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Now, to find the first-order energy shifts, we calculate the diagonal 

matrix elements 
zf m H f m . Inserting the expressions for the eigenstates, 

we find 

2 1

2
1 2

1 2

1

2 22

2 1 2 2 2 2 1 1 2 1 1 1 1; ; ;

( ) .n
A

f s

i sA

A n A S A A k s

z

m m
C s C s N n H i z

m m

m m

fm f f i f nm m f m f i f s m m f m i i s m m
f m H f m

m m m m B   


 

  


 

(5.31) 

 

 

 

Figure 5.7 Energy levels for fully labeled acetonitrile with protons, in iA = 1/2 

manifolds. 

 

We now connect this with the discussion in the main text regarding the 

fully labeled acetonitrile spectrum. The proton spins can be either iA = 1/2 or iA 

= 3/2.  Confining our attention to the latter, adding the first carbon S1 to the 

system yields f1 = 0 and 1, separated by 1 JHC. Adding S2 to the system 

produces manifolds with f2 = 1/2 and 3/2 for f1 = 1 and f 2 = 1/2 for f1 = 0.  

Finally, adding the nitrogen spin N to the system produces manifolds with fa = f 

= 2, 1 for f2 = 3/2 and f1 = 1, fb = f = 1, 0 for f2 = 1/2 and f1 = 1, and fc = f = 1, 0 

for f2 = 1/2 and f1 = 0.  These energy levels are shown schematically in Figure 

5.7, along with small Zeeman shifts. Lines that occur in the neighborhood of 1 

JHC must be due to transitions between states with Δf 1 = 1. The splitting 

patterns for a particular multiplet can be determined by applying the selection 

rules Δf = 0, ±1 and Δmf = ±1, with amplitudes determined by Eq. (5.27). 

Traces (a)-(c) in Figure 5.8 show the energy levels and splitting patterns for 

several of the transitions in fully labeled acetonitrile for protons in the ia = 1/2 

state. For contrast, trace (d) shows the splitting pattern for the f = 1 ↔ f = 2 
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transition for acetonitrile-2 (
13

CH3CN), displaying an “inside-out” pattern 

compared to the f = 1 ↔ f = 2 transition shown for fully labeled acetonitrile. 

This is because of the reversal in relative magnitudes of the Landé g factors for 

the f = 1 and f = 2 states.  
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Figure 5.8 Near-zero-field NMR multiplets arising from several different 

transitions, as indicated.  The upper three multiplets correspond approximately 

to those found in the fully labeled acetonitrile spectra. Trace (d) corresponds to 

the iA = 3/2 transitions of labeled acetonitrile-2, displaying an “inside-out” 

pattern compared to the f  = 1 ↔  f = 2 transition of fully labeled acetonitrile.  
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5.5 Significance of near-zero-field NMR 
 

In conclusion, we have investigated near-zero-field nuclear magnetic 

resonance, where the effects of magnetic fields can be treated as a perturbation 

to the scalar J-couplings. This work represents a new form of NMR 

spectroscopy, complementary to high-field NMR, in which heteronuclear 

scalar couplings are almost always treated as a small perturbation to the 

dominant Zeeman interaction. We find that the presence of small fields 

produces splitting of zero-field lines. The splitting patterns have easy-to-

understand rules and data are in excellent agreement with the predictions of 

first-order perturbation theory. It is interesting to note that the phenomenology 

observed here is similar to that of atomic spectroscopy of multi-electron atoms, 

and intuition developed in the latter field may be applied to interpretation of 

NZF NMR spectra. We have also investigated the case where Zeeman and J-

couplings are comparable, resulting in signals with much higher complexity, 

potentially useful for NMR quantum computing 
[22]

. 
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6. Parahydrogen enhanced zero-field NMR 
 

In this Chapter, we show that parahydrogen-induced polarization can be 

used to increase the sensitivity of zero-field NMR measurements by several 

orders of magnitude. This work has been previously published under the title 

“Parahydrogen enhanced zero-field nuclear magnetic resonance” by the Nature 

Publishing Group
[21]

. Despite the use of atomic magnetometers or SQUIDs, 

low-field NMR using samples thermally prepolarized in a permanent magnet 

typically suffers from low signal-to-noise ratio compared to inductively-

detected high-field NMR, in part because of the low polarization available 

from thermalization in a permanent magnet. To avoid this difficulty, in this 

work we produce large nuclear spin polarization in zero-field NMR by 

employing the technique of parahydrogen induced polarization (PHIP), 

whereby order from the singlet state of parahydrogen is transferred to a 

molecule of interest, either by hydrogenation 
[30,31,40,83]

, or through reversible 

chemical exchange 
[50,52]

. By flowing molecular hydrogen through an iron 

oxide catalyst at sufficiently low temperature (see Methods), it is possible to 

realize nearly 100% conversion of orthohydrogen to parahydrogen.  This 

results in significant signal enhancements compared to that obtained using 

thermal polarization, which is typically in the range of 10
-5

-10
-6

.  Before 

proceeding, it is worth noting that light induced drift can also be used for 

enrichment of nuclear spin isomers in other molecules 
[84,85]

, although the 

demonstrated enrichments are significantly lower, on the order of 2%. When 

combined with sensitive atomic magnetometers for detection of nuclear spin 

magnetization, PHIP enables NMR without any magnets.  The sensitivity is 

sufficient to easily observe complex spectra exhibiting 
1
H-

13
C J-couplings in 

compounds with 
13

C in natural abundance in just a few transients, a task that 

would require considerable signal averaging using thermal prepolarization. 

While PHIP has been investigated in a variety of magnetic fields, ranging from 

the earth’s field to high field, observation of the resulting NMR signals has 

always been performed in finite magnetic field.  To the best of our knowledge, 

the work reported here represents the first direct observation of PHIP in a zero-

field environment.  We show that polarization can be transferred through a 

number of chemical bonds to remote parts of a molecule, and that zero-field 

spectroscopy can be used to distinguish between different isotopomers in 

ethylbenzene, the product of hydrogenation of styrene. The mechanism by 

which observable magnetization is generated from the parahydrogen derived 
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singlet order requires only the presence of a heteronucleus, similar to the work 

of Ref.
 [86]

 , in contrast to a more commonly observed mechanism relevant to 

high field, which requires chemical-shift differences at the sites of the 

parahydrogen derived protons. Furthermore, our results are of particular 

interest in the context of recent work demonstrating that the lifetime of singlet 

polarization in low fields can considerably exceed the relaxation time T1 of  

longitudinal magnetization 
[79,81]

, These demonstrations of increased singlet 

lifetime relied on field cycling and high-field inductive detection, and our 

methodology may provide for more direct observation and exploitation of these 

effects. 

Zero-field NMR spectroscopy of samples magnetized by thermal 

prepolarization in a permanent magnet was discussed in Chapters 0 and 5. 

Additional information can also be found in the literature.
[19,87]

. In an isotropic 

liquid at zero magnetic field, the only terms in the NMR Hamiltonian are the 

spin-spin J-couplings, 

 .J jk j kH J  I I  (6.1) 

In the important case of XAN systems, where both X and A are spin-1/2 

particles, and each X spin couples to A with the same strength J, the resulting 

zero field J-spectra are simple and straightforward to interpret, consisting of a 

single line at J for XA, a single line at 3J/2 for XA2, and two lines, one at J and 

one at 2J for XA3. For larger molecules, as employed in the present work, 

long-range couplings to additional spins lead to splitting of these lines, 

however, the overall positions of the resulting multiplets remain unchanged. 

For large spin systems we rely on numerical spin simulations (presented in 

Section 6.5 below) to understand the splitting pattern, however as shown in 

Chapter 4 an approach based on perturbation theory yields simple rules for 

interpretation of the zero field splitting pattern.  

Zero-field spectroscopy using parahydrogen induced polarization differs 

from the case of thermal polarization in both the initial density matrix and in 

the method of excitation. In the case of homogeneous catalysis, the product 

molecule starts out with two parahydrogen derived spins in a singlet state.  

Averaging over random hydrogenation events and subsequent evolution under 

the J-coupling Hamiltonian lead to an equilibrium density matrix described by 

pairs of heteronuclear and homonuclear scalar spin pairs,  

   kjjka II0 , (6.2) 
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which bears no magnetic moment, and is static under the J-coupling 

Hamiltonian. Observable magnetization oscillating along the z direction, to 

which the magnetometer is sensitive, can be produced by applying a pulse of 

DC magnetic field B in the z direction. Immediately following such a pulse, the 

density matrix contains terms of the form sin (I I I I )jx ky jy kx  , where 

( )p j kBt    , tp is the pulse duration, and j is the gyromagnetic ratio of spin 

j.  Subsequent evolution under the J-coupling Hamiltonian results in terms in 

the density matrix of the form , ,(I I )sin sin( )j z k z jkJ t , which produces 

magnetization oscillating in the z direction. The dependence on η highlights the 

role of a heteronucleus in the symmetry breaking of the parahydrogen derived 

scalar order.  Numerical spin simulations of the propagation of the 

parahydrogen derived scalar order through the molecule and the dependence of 

the coherence amplitude on pulse area  for a heteronuclear spin pair with 

scalar order are presented in the Section 6.5.  A more detailed analysis of the 

polarization transfer is presented in Chapter 8. 
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6.1 Setup and sample preparation for ZF-PHIP 

experiments 
 

The zero-field spectrometer used in this work is similar to that of Ref. 
[19]

 

or as described in Chapter 3. The setup is shown in Figure 6.1 (a). The noise 

spectrum of the magnetometer is shown in (b), and the pulse sequence is 

shown in (c). We performed zero-field PHIP spectroscopy in hydrogenation 

reactions of styrene (which forms ethylbenzene) and 3-hexyne (hexene and 

hexane), 1-phenyl-1propyne (1-phenyl-1propene) and 

dimethylacetylenedicarboxlyate (dimethylmaleate). In measurements presented 

in the main text, parahydrogen was bubbled through the solution for ~10 s, the 

flow was halted, and excitation pulses of DC magnetic field were applied in the 

z direction with  for 
13

C and protons. The resulting z magnetization was 

recorded by the atomic magnetometer. The rate of hydrogenation can be 

monitored by the signal amplitude as a function of time, as presented in 

Section 6.4. More details of the experimental setup and procedures can be 

found in Section 6.1. The zero-field spectrometer is shown schematically in 

Figure 6.1 (a) An atomic magnetometer, consisting of a Rb vapour cell and two 

lasers for optical pumping and probing, operates in the spin-exchange 

relaxation-free 
[23]

 regime.  The cell is placed inside a set of magnetic shields 

(not shown), and residual magnetic fields are zeroed to within ≈1 G.  The 

vapour cell has dimensions 5 mm  2 mm  1 mm, contains 
87

Rb and 1300 torr 

of N2 buffer gas, and was microfabricated using lithographic patterning and 

etching techniques. The cell is heated to 210 ºC via an electric heating element 

wound around an aluminium-nitride spool.  The sensitivity of the 

magnetometer is about 0.15 nG/Hz
1/2

 above 120 Hz, and the bandwidth is in 

excess of 400 Hz.  A set of coils can be used to apply sharp, 1 G DC pulses in 

arbitrary directions to excite NMR coherences, and a separate set of coils (not 

shown) controls the ambient magnetic field inside the shields. Mixtures of 

catalyst, solvent, and substrate could be brought into proximity of the atomic 

magnetometer via a glass sample tube. The sample was maintained at 80ºC by 

flowing air through a jacket surrounding the glass tube. In experiments at 

lower temperature (not presented here), we found that there was some non-

uniform broadening of spectra, presumably due to the presence of catalyst in 

solid form. Parahydrogen was bubbled through the solution via 0.8 mm inner-

diameter tube for several seconds at a pressure of about 70 PSI and flow rate of 

about 120 standard cc/min. The parahydrogen was produced as described in  
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Figure 6.1 Scheme for detecting parahydrogen induced polarization at zero 

magnetic-field.  The experimental setup is shown in (a). A microfabricated alkali 

vapor cell is mounted inside a set of coils used for applying magnetic field pulses.   

The alkali vapour is optically pumped with a circularly polarized laser beam, 

resonant with the D1 transition of 
87

Rb.  A linearly polarized laser beam, tuned 

about 100 GHz off resonance, is used to probe the alkali spin-precession. The 

magnetometer is primarily sensitive to magnetic fields in the vertical (z) 

direction. A 7 mm inner-diameter glass tube contains the sample, and a 1/32" 

inner-diameter teflon tube is used to bubble parahydrogen through the solution.  

A set of magnetic shields surrounding the magnetometer, not shown, isolates the 

magnetometer from external magnetic fields. The magnetic field noise spectrum 

of the magnetometer is shown in (b).  Above 100 Hz, the noise floor is about 0.15 

nG/Hz
1/2

.  The experimental pulse sequence is shown in (c). 

 

Section 3.2.6 Bubbling was halted prior to application of excitation pulses and 

signal acquisition. Data were acquired with sampling rate of 2000 samples per 

second. In acquiring the spectrum of styrene with natural-abundance 
13

C, the 

phase of the excitation pulses was cycled with respect to that of the 60 Hz line 

frequency in order to reduce the line noise and its harmonics. Isotopically 

labeled styrene was obtained from Cambridge Isotope Labs.  Natural-

abundance styrene and Wilkinson's catalyst
[88]

 were obtained from Sigma-

Aldrich. Styrene hydrogenations were performed with 300 L styrene and 4 

mG Wilkinson's catalyst, Tris(triphenylphosphine)rhodium(I) chloride (CAS # 

14694-95-2). The 1-phenyl-propyne and dimethyl acetylenedicarboxylate 

reactions were performed with 100 L substrate in 300 l tetrahydrofuran, 
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catalyzed by 1,4-Bis(diphenylphosphino)butane](1,5-cyclooctadiene) 

rhodium(I)Tetrafluoroborate, (CAS # 79255-71-3). The hexyne reaction was 

performed in a solution of 50% tetrahydrofuran with 5 mL total and 30 mG 

Wilkinson’s Catalyst. Most of this volume does not contribute to signal since it 

is far from the magnetometer. 
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6.2 ZF-PHIP experiments with 
13

C labeled styrene  
 

Single shot, zero-field PHIP spectra of ethylbenzene-
13

C (labeled 
13

CH3 

group), and ethylbenzene-
13

C (labeled 
13

CH2 group), synthesized from 

labeled styrene, are shown in black in Figure 6.2 (a) and (b), respectively.  The 

ethylbenzene molecule is shown in the inset, with the blue carbon indicating 

the  label, and the green carbon indicating the  label. The spectrum of 

ethylbenzene-
13

C in Figure 6.2 (a) can be understood in terms of the 

discussion above, with multiplets at 
1
JHC and 21

J HC , and additional lines at 

low frequency.  Here the superscript indicates the number of bonds separating 

the interacting pair, and for ethylbenzene-
13

C, 
1
JHC=126.2 Hz 

[89]
. Isolated 

lines in the complex spectrum fit to complex Lorentzians with half-width-at-

half-maximum (HWHM) of about 0.1 Hz. It should be noted that this spectrum 

is similar to the correspondingly labeled ethanol-
13

C spectrum reported in Ref 
[19]

, although careful inspection reveals small splittings of some lines due to 

long-range (at least four-bond) homonuclear couplings to protons on the 

benzene ring.  The blue trace shows the result of a numerical simulation 

accounting for eight spins, including the six spins on the ethyl part of the 

molecule and the two nearest protons on the benzene ring.  The simulation 

reproduces most of the features of the experimental spectrum quite well, 

including small splittings of several lines.  More details of the numerical 

simulation can be found in the Section 6.5.  

The zero-field PHIP spectrum of ethylbenzene-
13

C shown in Figure 6.2 

(b) is qualitatively similar to the zero-field spectrum of ethanol-
13

C 
[19]

, with a 

multiplet at roughly 3/2 
1
J HC (

1
JHC = 126.2 Hz, measured in house with a 300 

MHz spectrometer) and features at low frequency. Many additional lines in the 

spectrum indicate that long-range couplings to the protons on the benzene ring 

are important. Since the ethanol-
13

C spectrum does not display such 

complexity, the largest perturbation to the ethyl part of the molecule must be 

due to three-bond 
3
JHC couplings. 
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Figure 6.2 Single-shot zero-field PHIP J-spectra (imaginary component) of 

ethylbenzene-
13

C (a) and ethylbenzene-
13

C (b), polarized via addition of 

parahydrogen to labeled styrene.  The inset shows the ethylbenzene molecule 

with the and  positions indicated by the blue and green carbons, respectively.  

The blue and green traces in (a) and (b), respectively, are the results of 

numerical simulations, described in the text. 

The green trace shows the result of numerical simulation, consisting of the six 

spins on the ethyl part of the molecule and the two nearest protons on the 

benzene ring. Simulation again reproduces most of features of the experimental 

spectrum, although careful inspection shows a number of additional splittings 

in the experimental spectrum, indicating that couplings to more remote spins 

on the benzene ring not included in the simulation, are important.  It is worth 

emphasizing that, despite the similarity of the one-bond heteronuclear J-

couplings, the spectra associated with different isotopomers display strikingly 

different features, which appear in different parts of the spectrum, facilitating 

easy assignment of isotopomers to their respective peaks.  
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6.3 ZF-PHIP experiments with 
13

C at natural 

abundance 
 

The sensitivity of the magnetometer and the degree of parahydrogen 

induced polarization are sufficient to detect J-spectra in compounds with 
13

C in 

natural abundance. Figure 6.3 shows the zero-field PHIP spectrum of 

ethylbenzene with 
13

C in natural abundance, obtained in just eight transients.  

 

 

Figure 6.3 Zero-field J-spectrum (imaginary component) of ethylbenzene, 

produced via parahydrogenation of styrene with 
13

C in natural abundance. 

These data result from averaging 8 transients following a pulse of magnetic field 

in the z direction with ≈/2. The high frequency components of the signals 

arising from the  and isotopomers are easily recognizable from the spectra 

shown in Figure 6.2, and are highlighted by the green and blue bands, 

respectively.  The signal in the neighbourhood of 156 Hz is due to isotopomers 

with 
13

C on the benzene ring, and is highlighted in red. 
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The spectrum shown here is the sum of spectra associated with the  and 

 isotopomers shown in Figure 6.2, as well as isotopomers that carry 
13

C in one 

of four non-equivalent positions on the benzene ring. The high frequency parts 

of the spectrum arising from the  and  isotopomers are highlighted in green 

and blue, respectively. The part of the signal arising from the benzene ring 

with a single 
13

C is a multiplet centred about the one-bond coupling 

frequencies (typically about 156 Hz in aromatic systems), and also a multiplet 

in the low-frequency range.  The high-frequency component is highlighted in 

red. Interestingly, spectra associated with the  or  isotopomers do not 

overlap with spectra associated with isotopomers with a 
13

C on the benzene 

ring.  It is also noteworthy that if the hydrogenation is performed in high field, 

large chemical shift differences between protons on the benzene ring and the 

parahydrogen derived protons would inhibit the transfer of polarization to the 

benzene ring. 

 

To further illustrate the capabilities of zero-field PHIP as a method for 

chemical fingerprinting, spectra obtained from several different hydrogenation 

reactions are presented in Figure 6.4: (a) phenyl propyne (forming phenyl 

propene upon hydrogenation) with a labeled 
13

CH3 group, (b) dimethyl-

acetylene-dicarboxylate (dimethyl maleate) with 
13

C in natural abundance, and 

(c) 3-hexyne (hexene and hexane) with 
13

C in natural abundance. isotopomers, 

and can approximately be understood as follows:  For a three-spin system, 

where one of the parahydrogen derived spins has a strong coupling to a 
13

C 

nucleus, one can show that the spectrum consists of two lines centred around 

the strong coupling frequency, and an additional low frequency peak. The 

antiphase lines centred about 165 Hz in (b) correspond to the isotopomer where 

the 
13

C is directly bonded to one of the parahydrogen derived spins, and is 

accompanied by a contribution at low frequency.  The other three-spin 

isotopomer, where the strongest coupling to the 
13

C nucleus is through two 

bonds, nominally gives rise to three lines at low frequency.   
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Figure 6.4 Zero-field PHIP spectra for several compounds.  In (a) parahydrogen 

is added to 1-phenyl-1-propyne, labeled with 
13

C in the CH3 group. In (b), 

parahydrogen is added to acetylene dimethylcarboxylate with 
13

C in natural 

abundance.  In (c) parahydrogen is added to 3-hexyne with 
13

C in natural 

abundance (c).  In (a) and (b), the imaginary component is presented; in (c), 

magnitude is presented. 
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These spectra are the result of averaging 1, 6, and 32 transients respectively.  

The phenyl propene spectrum displays characteristics similar to the 

ethylbenzene-
13

C spectrum, although the phase and splitting pattern is clearly 

different since neither of the parahydrogen derived protons are part of the 

labeled group.  The dimethyl maleate spectrum shown in (b) is the 

superposition of two different 
13

C There are some residual splittings in the low-

frequency part of the spectrum, which will be the subject of future 

investigation.  The spectrum obtained in the hexyne reaction in (c) is the sum 

of three different 
13

C isotopomers.  For labeled 
13

CH3 groups, signal arises at 
1
JHC and 21

JHC, where 
1
JHC ≈125 Hz.  For labeled 

13
CH2

 
groups, the 

contribution to the signal is centred about 3J/2, producing signal in the range of 

170 to 200 Hz.  Long range couplings to other spins yield additional splitting. 

A more detailed discussion of these spectra and rules for assigning transitions 

and understanding ZF-PHIP spectra will be presented in a forthcoming 

publication. 
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6.4 Observation of Reaction Dynamics with ZF-PHIP 
 

Our technique can be used to monitor the dynamics of a chemical 

reaction.  To illustrate, in Figure 6.5, we plot the area under the magnitude 

Fourier transform of the ethylbenzene spectra as a function of time for two 

different conditions.  

 

 

Figure 6.5: Area under the zero-field PHIP spectra of ethylbenzene as a function 

of time, displaying the dynamics of the reaction, with bubbling (a), and without 

bubbling (b) in between each transient. In (b), parahydrogen had been bubbled 

through the mixture for about 100 seconds prior to acquisition of these data. 

 

a) 

b) 
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Data shown in (a) were acquired in the styrene-α 
13

C reaction, with 

1 second of bubbling prior to each excitation pulse. The initial rise in signal 

amplitude is due to hydrogenation and solvation of Wilkinson’s catalyst. While 

the reaction is limited by the density of dissolved catalyst, the amplitude is 

roughly flat. When the styrene density drops below a critical value, signal starts 

to drop.  Data in (b) were acquired in the styrene-β 
13

C reaction without 

bubbling in between transients (these data were preceded by ≈ 100 total 

seconds of bubbling). The dissolved parahydrogen forms a reservoir of spin-

order, as signal persists for about 20 minutes. In a) the styrene is already 

consumed after 600 sec because fresh hydrogen is supplied before acquisition 

of each transient. In b) the reaction is much slower because no fresh hydrogen 

is supplied and both styrene and hydrogen are consumed. This is also the 

reason for the smaller maximum amplitude. This may be of considerable use in 

applications where it is not convenient to bubble through a region of interest, 

for example, in imaging or spectroscopy in microfluidic devices. 
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6.5 ZF-PHIP simulations  
 

Calculations for the simulations discussed in the text were performed as 

follows: The J-coupling Hamiltonian is 

 ,
J jk j k

j k k j

H J


 
, ;

I I  (6.3) 

where j and k run over M spins. Given an initial density matrix, ρ0, the time 

dependent density matrix is 

 
H H

( ) (0) ,J Ji t i t
t e e  
  (6.4) 

and the magnetization is determined by 

 ( ) ( ) I
z jz

j

M t nTr t 
 

  
 
  (6.5) 

where n is the molecular density and γj is the gyromagnetic ratio of the jth spin. 

Here ρ(0) = Uz ρave U
†

z is the density matrix following application of a pulse of 

magnetic field Bz in the z direction, where exp I B
z j jz zj

U i  
   and ρave is the 

result of averaging the density matrix for product molecules created at random 

times. 

The initial density matrix is determined by averaging over molecules 

created at t’ 

 0

1
'.

' 'j j
t iH t iH t

ave s
e e dt

t
 

 
   (6.6) 

Here ρs is the polarized part of the density matrix immediately following the 

addition of the parahydrogen derived spins, 

 ρs = 1/4 − I1 ∙ I2 , (6.7) 

with all other spins unpolarized. The result of this averaging is a density matrix 

described by pairs of heteronuclear and homonuclear singlets, 

 
( ) .

, ;

I I
ave jk j k

j k k j

a t


   (6.8) 
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Figure 6.6: Coefficients ajk(t) as a function of time after the beginning of random 

hydrogenations. The brown trace with the nonzero initial value corresponds to 

the parahydrogen derived spin pair. The dashed line is the sum of all ajk. 

 

To illustrate the propagation of “singlet order” through the molecule, 

Figure 6.6 shows the coefficients ajk(t) (solid traces) as a function of time since 

the start of hydrogenations. For these calculations, the model system consisted 

of 6 spins, a CH2
13

CH3 system. The term corresponding to the singlet order 

between the parahydrogen derived spins is given by the brown line, initially 

the only nonzero ajk. It is interesting to note that the sum ( )
, jkj k j

a t
  is 

constant, as indicated by the dashed line. More details of the propagation of the 

singlet order through a molecule will be presented in Chapter 8. The 

simulations presented in Figure 6.6 of the main text were performed on a 

truncated molecule consisting of eight spins, the five protons and the 
13

C on the 

ethyl part of the molecule, and the two nearest protons on the benzene ring.  

Including more spins is possible however our numerical code begins to run 

slowly. The J-coupling parameters used in these simulations for ethylbenzene-

β 
13

C can be found in the literature
[89,90]

, 
1
J(HC) =126.264 Hz, 

2
J(HC) = − 

4.906, 
4
J(HC) = − 0.245 Hz, 

3
J(CH2, CH3) = 7.596 Hz, 

4
J(H, CH2) = − 0.639 

Hz, and 
5
J(H, CH3) = − 0.02, with errors quoted at the mHz level. We 

measured the heteronuclear coupling parameters for ethylbenzene-α 
13

C on a 

300 MHz spectrometer finding, 
1
J(HC) = 126.3 Hz, 

2
J(HC) = − 4.2 Hz, and 

3
J(HC) = 3.8 Hz.  We conservatively estimate uncertainty in our measurements 
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at the level of 100 mHz. Simulations were not dramatically changed by varying 

the coupling parameters by 100 mHz. 

We now illustrate briefly how magnetization is generated starting from 

scalar order. Following addition of parahydrogen to a substrate molecule, 

evolution under the J-coupling Hamiltonian leads to terms in the density 

matrix of the form ajk IjIk (here I spins do not necessarily have the same 

gyromagnetic ratio). Suppose we now apply a pulse in the z direction with 

magnitude Bz and duration tp.  The density matrix following the pulse is 

 ρ0 = Rz (Bz tp) ρs R
†

z (Bz tp), (6.9) 

where 

 (B ) exp I B .
z z p j jz z p

j

R t i t
 

  
 
  (6.10) 

Focusing our attention on two spins, j and k, one can show as detailed in 

Chapter 8 that the density matrix following the pulse is 

  0
I I ZQ cos ZQ sin ,

jk jz kz x y
a      (6.11) 

where 

 

ZQ = I I +I I

ZQ = I I I I

1
ZQ = I -I ,

2

x jx kx jy ky

x jx ky jy kx

z jz kz

  
(6.12) 

and η =Bz tp (γj − γk). These operators are orthonormal under the trace 

operation, and have the following convenient commutation relations: 

 [ZQx , ZQy] = i ZQz ,  (6.13) 

and cyclic permutations thereof, 

 

[ZQx, HJ] = 0   ,   [IjzIkz, HJ] = 0, 

[ZQz , HJ] = − i J ZQy,   [ZQy, HJ] = i J ZQz, 
(6.14) 

and with HZ=  Bz(γj Ijz − γk Ikz) 

 [ZQx , HZ] = − iBz (γj − γk) ZQy , (6.15) 
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[ZQy , HZ ]  =  iBz (γj − γk ) ZQx , 

[ZQz , HZ ]  =  0 , 

[IjzIkz, HZ]  =  0 , 

for Bx=By = 0. The time dependence is determined by the Liouville equation: 

  H .
J

d
i

dt


 ,  (6.16) 

We expand ρ in terms of the operators ZQx , ZQy , ZQz , insert it into Eq. 

(6.16), make use of the commutation relations of Eq. (6.13), and solve the 

resulting set of coupled first-order differential equations for the coefficients in 

the expansion of ρ. We find 

  ( ) I I ZQ cos ZQ sin cos sin sin ZQ .jk jz kz x y yt a Jt Jt        (6.17) 

Employing Eq. (6.5), we find that the magnetization is 

  ( ) sin sin .
2

z jk k j

N
M t a Jt     (6.18) 

This gives both the phase of the signal following the pulse, and indicates that 

the optimum pulse amplitude is η = π/2. 

It is worth emphasizing the following intuitive interpretation of the above 

discussion.  Prior to application of a pulse of magnetic field in the z direction, 

the initial scalar spin order is proportional to IjzIkz + ZQx. The IjzIkz term can be 

ignored since it commutes with HZ and HJ. A pulse along the z direction with η 

= π/2 rotates ZQx into ZQy, which then precesses about the Hamiltonian, 

proportional to ZQx, resulting in an oscillating ZQz term which bears 

observable magnetization. 
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6.6 Significance of ZF-PHIP and conclusions 
 

Finally, we make several observations:  1) Here we operate in zero 

magnetic field. Working in small but finite fields on the order of 1 mG may 

yield additional information regarding molecular structure, albeit at the 

expense of additional spectral complexity. 
[22]

  2) A common objection to low- 

and zero-field NMR is that spectra become complex as the number of spins 

increase, as exemplified by comparison of the ethanol-
13

C spectrum reported 

in Ref. 
[19]

 and the ethylbenzene- 
13

C obtained here. The increasing 

complexity of spectra with spin system size is a feature that is also encountered 

in standard high-field NMR, and has been successfully addressed by 

application of multi-pulse sequences and multidimensional spectroscopy. The 

theory of multiple pulse sequences for zero-field NMR has been worked out 

some time ago 
[91]

, and presumably, many of the techniques developed for high 

field could be adapted to zero-field.  3) We achieve linewidths of about 0.1 Hz.  

For 
13

C-H J-coupled systems, the dispersion in signal is about 300 Hz, so 

roughly 1500 lines can fit in a spectrum without overlapping.  This is similar to 

what may be achieved in a 400 MHz spectrometer if we assume proton 

chemical shifts ranging over 6 ppm and proton linewidths of about 0.5 Hz. 4) 

The sensitivity of the magnetometer used in this work was about 0.15 nG/Hz
1/2

 

using a vapour cell with a volume of 10 mm
3
.  Sensitivities about 2 orders of 

magnitude better have been achieved in larger vapor cells 
[92]

, which will 

enable measurements on larger samples with much lower concentration.
 

In conclusion, we have demonstrated NMR without the use of any 

magnets by using parahydrogen induced polarization and a high sensitivity 

atomic magnetometer with a microfabricated vapour cell.  The mechanism by 

which the symmetry of the singlet states is broken in zero field relies only upon 

the presence of heteronuclear J-coupling and not chemical shifts, in contrast to 

many experiments performed in high field. Hydrogen-carbon J-couplings 

through at least three bonds, and hydrogen-hydrogen couplings through four 

bonds are observed. We also observe that polarization is naturally transferred 

through several bonds to remote parts of the molecule.  This can be contrasted 

with in-situ hydrogenation in high field, where chemical shifts larger than J-

couplings prevent efficient polarization transfer without the use of auxiliary RF 

pulses. Sensitivity is sufficient to perform J-spectroscopy on samples with 
13

C 

in natural abundance with little signal averaging. The resulting spectra, while 
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exhibiting a large number of lines, can easily be divided into different parts, 

which can directly be assigned to different isotopomers of the molecule at 

hand. While our technique may appear limited to molecules to which hydrogen 

can be added, recent advances using iridium complex catalysts enable 

polarization of molecules without hydrogenation
[50,52]

, significantly expanding 

the scope of applicability of zero-field PHIP as detailed in the following 

Chapter.  
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7. Zero-field NMR using parahydrogen in 

reversible exchange 
 

This Chapter describes the first NMR experiments in zero field 

employing non-hydrogenative parahydrogen induced polarization (NH-PHIP) 

producing signal amplification by reversible exchange (SABRE).
[50–52]

 This 

work has been previously published under the title “Zero-field NMR using 

parahydrogen in reversible exchange” by the American Chemical Society
[93]

. 

Following the approach used in Refs.
 [19,21,28]

 we work at zero magnetic field by 

eliminating the Earth’s magnetic field with -metal shields, and we use an all-

optical rubidium magnetometer for detection. In addition to cryogen-free and 

potentially portable nature of our technique, the magnetically shielded 

environment has high absolute spatial and temporal homogeneity. We 

demonstrate that this technique enables the detection of small quantities of 

analyte (down to 6 mM in a sample volume of 250 L i.e. 100 nL as neat 

liquid) while retaining all analytically useful spectral information of the zero-

field spectrum. The sensitivity of the present experiments is also illustrated by 

the first observation of zero field NMR signals from nitrogen-15 in natural 

abundance. In contrast to previous work at high magnetic field
[50–52]

 and at low 

magnetic field,
[49,94]

 the NH-PHIP process presented here evolves entirely at 

zero field. The spectra exhibit significant shifts in line positions as a function 

of the molecular environment, in this case, due to solvent effects. The acquired 

spectra are in agreement with computer-simulated spectra, showing the 

dependence on the topology and parameters of the J-coupling network and 

demonstrating the high information content of zero-field spectra.  It is 

important to note that the NH-PHIP method is not limited to a specific 

substrate but can be used on a growing class of compounds containing 

nitrogen-heterocycles
[50,95]

 as well as amino acids and peptides.
[96]
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Figure 7.1 NH-PHIP transfer mechanism. Hydrogen and pyridine bind 

reversibly to the catalytic intermediate. Polarization is transferred from 

parahydrogen to pyridine through the network of J-couplings. 

Figure 7.1 illustrates the NH-PHIP transfer process, which occurs when 

parahydrogen and the analyte are in reversible exchange via an iridium-based 

catalytic intermediate. During the time period in which an analyte molecule 

and a parahydrogen molecule are simultaneously bound to the same metal 

complex, a J-coupling network is formed, causing the singlet spin order of 

parahydrogen to spread throughout the metal complex; in particular, scalar spin 

order develops among the spins of the analyte, which persists in the analyte 

after the complex dissociates.
[51]

 This scalar spin order is a form of polarization 

not bearing magnetization and without directionality, since there is no 

magnetic field along which alignment of the polarization could occur. 

Fortunately, spin order involving heteronuclear pairs can be converted to 

observable magnetization by application of a DC magnetic-field pulse. A coil 

is used to apply these pulses in the vertical direction. Such a DC pulse breaks 

the symmetry of the initial state for heteronuclear pairs because it rotates nuclei 

with differing gyromagnetic ratio by differing angles. Thereby the pulse 

creates the coherences whose ensuing evolution produce observable 

oscillations of the vertical component of magnetization. The duration of the 

pulse is short and the amplitude is strong compared to the J-couplings such that 

evolution under the J-couplings can be ignored during the pulse. Scalar spin 

order transferred to homonuclear 
1
H pairs is not excitable because it has singlet 

character and the symmetry is not broken by a pulse acting on nuclei with 

identical gyromagnetic ratio. Sections 7.1 and 7.2 provide a more detailed 

description of the experimental setup, as well as a discussion of the 

polarization process. Additionally, a two-spin model is presented that describes  
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Figure 7.2.  a) Single-shot transient and b) the imaginary part of its Fourier 

transform for NH-PHIP polarized pyridine. The solid blue trace in a) and b) 

shows data acquired with a 250 L sample after 10 s of bubbling parahydrogen 

through a solution containing Crabtree’s catalyst (0.6 mM), with methanol as 

solvent and 
15

N-labeled pyridine as analyte at a concentration of 40 mM. The 

red-dashed spectrum in b) is obtained from pyridine at natural abundance of 
15

N (0.36 %) at a concentration of 3 M, which implies a 10 mM concentration of 
15

N-containing pyridine. In c) a numerically simulated spectrum is provided for 

comparison.  
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the effect of the DC-pulse on a heteronuclear singlet and the ensuing evolution 

under the J-coupling Hamiltonian. 

A single-shot transient and the imaginary part of its Fourier transform 

obtained with 
15

N-labeled pyridine are shown by the solid blue curves in 

Figure 7.2 a) and b). The single-shot signal-to-noise of the largest peak is close 

to 300 at a noise floor of 1 nG. The dashed red curve in Figure 7.2 b) shows 

that it is possible to acquire identical spectra from pyridine with 
15

N at its low 

natural abundance of 0.36%. For the unlabeled sample, the concentration of the 

analyte was larger by a factor of 75 than for the labeled sample. 

Note, however, that the signal does not scale linearly with the 

concentration of the analyte but is dependent on many parameters such as 

exchange rates and the concentrations of parahydrogen, catalyst and analyte. 

The spectrum can be approximately understood as follows:  The largest J-

coupling in 
15

N-pyridine is the two-bond coupling, 
2
JNH, between the 

15
N and 

the two equivalent nearest protons, approximately forming an AX2 system. 

Such a system yields a peak at 3J/2.
19

 Since 
2
JNH = 10.14 Hz (see Chapter 4), 

we expect signal at ~15.3 Hz. Long-range couplings to other protons produce a 

number of additional sidebands and a small shift of the largest peak to ~15.6 

Hz. Note that the imaginary component of the Fourier transform is shown 

(without additional phasing). In these NH-PHIP experiments the imaginary 

part is absorptive because the evolution starts from a non-magnetized state (see 

Section 7.2). These features are also reproduced by a simulation shown in the 

solid red trace in part c) of Figure 7.2. (Details concerning the simulation are 

provided in Section 7.2) Interestingly, despite the excellent SNR for the 
15

N 

containing isotopomers of pyridine it was not possible to detect 
13

C-pyridine 

isotopomers at their natural abundance (see Section 7.2.2). We attribute this to 

the low (1.1%) abundance of 
13

C and the higher signal complexity in 

isotopomers with both 
13

C and 
15

N, as discussed in the SI. 

For comparison with the NH-PHIP experiments, we performed 

measurements of thermally polarized 
15

N-labeled pyridine. These experiments 

were performed with an identical 5 mm NMR tube.  A sample of 250 L neat 

(14 M) 
15

N-labeled pyridine was polarized in a 1.6 T permanent magnet and 

then pneumatically shuttled to the zero-field region for detection.
[28]

 The time 

for transfer of the sample from the magnet into the detection region was 

approximately 250 ms.  The NMR tube traveled in a solenoid that provided a 

“guiding field,” ensuring that the spins remained magnetized parallel to the 

guiding field during the shuttling. Upon arrival of the sample in the zero-field 
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region, the guiding field was turned off suddenly with respect to any spin 

dynamics that occur under the influence of the J-couplings, and the spectrum 

shown in Figure 7.3 was acquired. Note that for this experiment, evolution 

starts from a magnetized state and it is the real part of the Fourier transform 

that is absorptive, as in conventional 1D NMR. (see Section 7.2)  

After averaging 128 transients, the SNR of the main feature centered near 

17 Hz is ~70. Comparison of this value to the single-shot SNR of ~300 for the 

NH-PHIP measurements gives an estimate of the achieved sensitivity 

enhancement: scaling by 128 for the number of averages and by 14M / 40mM 

for the difference in concentration reveals a sensitivity gain of ~1.710
4
 with 

NH-PHIP. 

Additionally, a frequency shift of the main peak of (1.2  0.1) Hz is 

observed. For NH-PHIP measurements in methanol the main peak is centered 

around 15.6 Hz and shifts to 16.8 Hz in the neat liquid. The frequency shift is 

presumably due to the change in the microscopic environment associated with 

the presence of the solvent. This effect has been documented in detail in 

measurements performed at high field with cryogenically cooled magnets,
[97,98]

 

but the experiments presented here demonstrate that similar information can be 

extracted using zero-field spectroscopy with optical detection. 
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Figure 7.3 Spectrum obtained after averaging 128 transients of neat 
15

N-labeled 

pyridine, prepolarized in a 1.6 T permanent magnet and shuttled into the zero-

field region for detection. In a) the experimental data is shown and b) shows the 

simulated spectrum. 
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Finally, we show that NH-PHIP is particularly promising for analysis of 

compounds in low concentration. Table 1 provides the signal-to-noise ratio 

obtained for five different concentrations of 
15

N-pyridine. 

 

Table 8.1). Signal-to-noise ratio (SNR) of the largest spectral peak at 

15.6 Hz as a function of analyte concentration. Above 40 mM pyridine 

concentration, we observe constant SNR of about 300. All identifying spectral 

features have SNR >1 for concentrations down to 6 mM. In these experiments, 

the noise floor was about ~1 nG. 

Concentration 6 mM 12 mM 40 mM 80 mM 160 mM 

SNR 20  20 160  20 300   20 280   20 290   20 

All measurements were performed at a catalyst-to-analyte ratio of 1:6 by 

weight. For concentrations down to 40 mM the signal appears independent of 

the amount of analyte, and is presumably dictated by the amount of dissolved 

parahydrogen. This is in agreement with the findings by Gong et al.
[49]

. At a 

concentration of 6 mM, the main peak at ~15.6Hz has an SNR of ~15. At that 

concentration smaller peaks that are 10-30 times weaker than the main peak 

have an SNR on the order of one, and spectral information is lost at lower 

concentrations.  At the expense of spectral information, it is possible to go to 

even lower concentrations, as demonstrated in Ref. 
[49]

.  
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7.1 Setup and sample preparation for ZF-NH-PHIP 

experiments 
 

The experimental setup employed here was similar to that used in 

previous work
[19,21]

. The sample was contained in a standard 5 mm NMR tube 

placed directly above a zero-field alkali-vapor magnetometer. This detector 

consists of microfabricated 5 mm  2 mm  1 mm rubidium cell, thereby 

reducing much of the size requirements associated with traditional high-field 

NMR. The sample, with a total volume of 250 L, was composed of pyridine 

(Sigma CAS# 34322-45-7) and Crabtree’s catalyst (1,5-

Cyclooctadiene)(pyridine) (tricyclohexylphosphine)-iridium(I) 

hexafluorophosphate (Sigma CAS# 64536-78-3) in anhydrous methanol 

(Sigma CAS# 67-56-1) as solvent. The sample was held at a temperature of 

40 C. The tube was connected to a gas manifold and parahydrogen was 

bubbled through the solution at a flow rate of 50 sccm at a pressure of 70 psig 

(5.8 bar).  Bubbling was stopped 0.3 s prior to acquisition. All measurements 

were performed at a catalyst-to-analyte ratio of 1:6 by weight (following Ref. 
[49]

). The sensitivity of the magnetometer to fields in the vertical direction (i.e. 

the direction of detection) is about 1 nG/Hz
1/2

 in the frequency range of 0-20 

Hz, where signals occur in the present work.   

A schematic of the experimental setup is provided in Figure 7.4. 

Detection is performed with a Rb-vapor atomic magnetometer, operating in the 

spin-exchange relaxation-free regime
[23]

 and using two lasers for optical 

pumping and probing
[19,21,28]

. The vapor cell has dimensions 5 mm  2 mm  

1 mm, contains 
87

Rb and 1300 torr of N2 buffer gas and is operated at 190 C.  

The magnetic field of the pulses was 0.917 G, calibrated by determining 

the length of a pulse on proton spins of water (~128 s), prepolarized in a 

1.6 T permanent magnet. In order to establish zero field, the Earth’s magnetic 

field is shielded with a set of four layers of -metal shielding. Any remaining 

fields are reduced to the G level with a set of three orthogonal shimming 

coils. Data were acquired with a sampling rate of 2 kS/s.  

http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=34322-45-7&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=64536-78-3&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=67-56-1&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
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Figure 7.4) Experimental setup: The central part of the magnetometer is the Rb-

vapor cell heated to 190 C. The magnetometer is operated in a pump-probe 

mode using 795 nm diode lasers. Pulses of DC magnetic field can be applied with 

a set of coils to the sample held in a 5 mm NMR tube. Saddle and solenoid coils 

are available to control the magnetic field in all three directions.  To achieve zero 

magnetic field, the entire setup is surrounded by four layers of -metal magnetic 

shields. (Only the innermost layer is shown.) The coils are used to compensate 

for any remaining magnetic fields down to the G level.   

 

Parahydrogen was produced at 29 K by flowing hydrogen gas through a 

bed of hydrated iron(III) oxide (Sigma CAS# 20344-49-4) catalyst in a setup 

similar to that described in Ref. 
[99]

, and the parahydrogen was stored in an 

aluminum canister at room temperature at an initial pressure of 150 PSI. The 

population of the parahydrogen state was in excess of 98%, determined by 

NMR measurements of the orthohydrogen signal in a 300 MHz Bruker Avance 

NMR spectrometer. The rate of thermalization of the parahydrogen back to a 

1:3 para-ortho mixture of hydrogen was on the order of 1% per day.  

The timing sequence of the experiment is as follows: parahydrogen is 

bubbled through the solution for ten seconds, the bubbling is stopped, a pulse 
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of DC magnetic field is applied, and the resulting transient is acquired. Ten 

seconds of bubbling time was chosen to allow for the distribution of the scalar 

order driven by the J-coupling. Since the J-couplings are weak (on the order of 

10 Hz) sufficient time must be allowed for the redistribution of scalar order. 

For bubbling times longer than 10 s any further signal gain is offset by spin 

relaxation. 
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7.2 NH-PHIP at Zero Field: a Two Spin Model 
 

The chemical processes involved in the NH-PHIP polarization 

mechanism are described in the literature
[51]

. Here we provide a simplified 

picture of the polarization transfer mechanism at zero field to enable 

understanding of the origin of the detected signal. Parahydrogen is bubbled 

through a solution containing the catalyst and the analyte (
15

N-pyridine). The 

hydrogen and the pyridine bind reversibly to the catalytic intermediate, 

alternating between being bound to the iridium center and remaining unbound 

in solution. The complex that includes the bound ligands and the iridium center 

imposes a J-coupling network, and singlet spin order initially present in a 

bound parahydrogen molecule spreads throughout the network driven by the J-

coupling Hamiltonian. The J-coupling Hamiltonian HJ is given as sum over 

scalar products between all possible spin pairs including homo- and 

heteronuclear spin pairs: 

 
         I  I     

     

 (7.1) 

and the initial density matrix  has a term proportional to the scalar product 

between the two parahydrogen derived spins directly bound to the iridium 

center: 

    
 

 
    I1∙I2, (7.2) 

Since both the initial singlet and the J-coupling Hamiltonian transform as 

scalars, spreading of the initial spin order under HJ yields a spin state that also 

transforms as a scalar.  After spreading of the spin order, the ensemble 

averaged density matrix thus includes contributions from scalar products of the 

form Ij∙Ik, between arbitrary spins in the complex, i.e. for homo- and 

heteronuclear pairs, as well as higher-order scalar operators involving multiple 

spins.  Our discussion here uses a 2-spin model to illustrate the way in which a 

scalar product I∙S involving a heteronuclear spin pair in the analyte molecule 

gives rise to observable signal. Similar considerations apply for hydrogenative 

PHIP and are presented in Ref. 
[21]

. A more detailed discussion of the spreading 

of spin order from an initial singlet will be provided in Chapter 8.  
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Upon dissociation of the analyte from the catalyst, only the spin terms 

involving nuclei on a given pyridine molecule, are retained.  This scalar order, 

obtained using NH-PHIP at zero field, can be transformed into an observable 

magnetization with a pulse of DC magnetic field. We consider the evolution of 

a heteronuclear term IS  I∙S during the pulse and the ensuing evolution. 

(Homonuclear terms are not discussed because they do not change under the 

applied pulses and do not produce observable signal.  Their evolution under the 

zero-field Hamiltonian only produces scalar order that does not bear 

magnetization.)  The scalar product can be expressed as:
[21,31]

 

                              (7.3) 

where ZQx  is the x-component of a set of zero-quantum operators
1
: 

 

 

             , 

              

    
 

 
         

(7.4) 

These operators obey the commutation rules for a set of Cartesian components 

of angular momentum:  

                               (7.5) 

where ijk is the Levi-Civita symbol. Expressing I∙S in the form given by Eq. 

(7.3) is convenient for two reasons. First, the operator IzSz commutes with both 

HJ and the pulse Hamiltonian HDC (as shown below); so, the spin order 

represented by IzSz does not evolve coherently during the experiment nor does 

it contribute to the signal.  The term IS in the initial density matrix may thus 

be considered proportional to ZQx. Furthermore, for an initial density matrix 

ZQx, the evolution under HDC and HJ may be represented as a sequence of 

rotations that convert the density matrix into a linear combination of ZQx, ZQy, 

and ZQz.  This can be demonstrated by first noting that the Hamiltonian for the 

DC pulse applied along the z axis is  

 

         γ 
   γ

 
     

                                            
 γ  γ  

 
        

 γ  γ  

 
        . 

(7.6) 
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The term Iz + Sz produces no evolution, since it commutes with both the initial 

density matrix and with IzSz.  We can therefore consider the pulse 

Hamiltonian to be 

    

       

 
                        (7.7) 

Application of the pulse causes the density matrix to rotate in the transverse 

plane spanned by ZQx and ZQy, as shown in Figure 7.5.  (The weak effects of 

the J-couplings during the pulse can be safely neglected.)  During a pulse, the 

density matrix evolves as 

 (t) = ZQx cos (t) + ZQy sin (t), (7.8) 

where the frequency is given by 

  =  Bz (I S ). (7.9) 

   

At the end of the pulse, which maximizes the signal intensity (e.g. a /2 

pulse in the ZQ-subspace), the density matrix is aligned along ZQy. The term 

ZQy then evolves under HJ.  Since all terms in the ZQ-subspace commute with 

IzSz, we may consider that HJ  ZQx. The J-coupling thus causes the density 

matrix to precess in the plane spanned by ZQy and ZQz.  While ZQy exhibits no 

 

 

Figure 7.5 Depiction of the evolution of the density matrix in the “zero-quantum 

space” under the pulse and the zero-field J-coupling Hamiltonian. a) Initially, at 

zero field, the scalar spin order that develops during the NH-PHIP is parallel to 

the J-coupling Hamiltonian (both shown as vectors in this representation). b) 

Upon application of a /2 pulse in the z direction, the density matrix is rotated to 

ZQy. c) After the pulse, the density matrix rotates about the zero-field 

Hamiltonian, creating an oscillating ZQz term that bears observable 

magnetization. 
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magnetization and is not directly observable, the spin order described by ZQz 

does correspond to sample magnetization; since the gyromagnetic ratios of 

spins I and S are different, a net magnetization is present when the two spins 

are oriented in opposite directions. A Fourier transform of the oscillating 

sample magnetization associated with the precession of the density matrix in 

the ZQ-subspace yields the zero-field spectrum. 

 

 

7.2.1 Validation of the Two-Spin Model 
 

We make two distinct observations that validate the two-spin model. The 

first observation is that all NH-PHIP transients recorded start at zero net 

magnetization, which implies that the imaginary part of the Fourier transform 

is absorptive.  The pulse itself does not produce magnetization, but rather 

creates the ZQy term that evolves into the observable ZQz term after a period of 

evolution under HJ. The second observation validating the two-spin model is 

the behavior during the pulse. The ideal pulse for maximizing the signal, when 

starting from a density matrix ZQx, is a /2 pulse in the ZQ-subspace.  The /2-

pulse length depends on the difference in gyromagnetic ratios of the two spins 

I and S, since the density matrix precesses in the transverse plane of the ZQ-

subspace at frequency  = Bz (I S). Figure 7.6 shows the experimentally 

measured dependence of observed signal intensity at the strongest spectral 

peak vs. proton tip angle  (a proton pulse is 128 s long). This way of 

formatting the x-axis highlights the fact that the observed nutation frequency is 

indeed faster than the pure proton nutation by a factor of  = -(H 
N)/H =-

1.10. Overlaying the data is a fit to a sinusoid sin() with  = (-1.09  0.02)  

in agreement with the prediction of the two-spin model. The error in  stems 

mainly from inaccuracies in the calibration of the proton tip angle. In this 

specific case,  is larger than unity because the gyromagnetic ratios of 
1
H and 

15
N have opposite signs, with (

1
H) = 4.258 kHz/G and (

15
N) = -0.432 kHz/G. 



            Chapter 7: Zero-field NMR using parahydrogen in reversible exchange 

173 

 

Figure 7.6 Signal intensity as a function of pulse length. The pulse length is given 

as a proton tip angle, which has been calibrated on water samples beforehand to 

have a length of 128 s for a  rotation.  The graph shows a fit to a sinusoid 

sin(), with =-(H N) /H .  

Given the large SNR in the NH-PHIP measurements it is possible to post-

process the data to increase the spectral resolution. Figure 7.7 shows the NH-

PHIP spectrum obtained by multiplication of the transient by a shifted 

Hamming window
100

. Note that this process reveals a splitting of the largest 

peak. In Figure 7.7 as well as in Figure 7.2, we compare the experimental 

spectra to simulations performed by numerically diagonalizing the J-coupling 

Hamiltonian, expressing the initial density matrix in terms of its eigenstates 

and propagating the density matrix under the J-coupling Hamiltonian. The J-

coupling values used in the simulations are given in Table 7.1.  In the 

simulations we postulate an initial density matrix of the form. 

 0) = c1 ( I
(2)

∙S + I
(6)

∙S ) + c2 ( I
(3)

∙S + I
(5)

∙S
 
) + c3 (I

(4)
∙S) , (7.10) 

where S represents the 
15

N nucleus and I represents the 
1
H nuclei, which are 

numbered according to the position in the molecule shown in the inset Figure 

7.7. Subsequently, the evolution under the pulse Hamiltonian HDC and the J-

coupling Hamiltonian HJ were simulated.  A relaxation time constant was 

chosen that produced linewidths similar to those observed experimentally. Eq. 

(7.10) is a natural guess of the initial density matrix, for several reasons. First, 

the zero-field Hamiltonian is spherically symmetric, which implies that the 

initial scalar order associated with the singlet state of parahydrogen can only 

evolve into scalar terms. Second, the system is symmetric under exchange of 

spins 2 and 6 or 3 and 4. Finally, homonuclear scalar pairs are neglected 

because they do not evolve under the application of a magnetic field pulse, and 
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their evolution during the detection period only produces scalar order free of 

magnetization. A more rigorous but much more complex simulation to obtain 

the correct initial density matrix should include the propagation of the scalar 

order through the iridium complex and the unbound analyte driven by the 

different and large (>10 spins) J-coupling networks present during the 

reversible exchange. Choosing c1 = 1, c2 = 0.5 and c3 = 0 produces good 

agreement with the experimental spectrum.  In Figure 7.7 the imaginary part of 

the experimental spectrum is compared with simulation for this choice of c1, c2, 

and c3. All features of the experimental spectrum, including the phase, are 

reproduced by the simulation. It should be noted, however, that the phases and 

amplitudes of all lines in the spectrum are strongly dependent on the initial 

density matrix and the coefficients ci. For instance, relative phase shifts of up 

to 180 between individual lines can be observed in the simulations when 

changing the relative sign or size of the coefficients. 

 

Figure 7.7 NH-PHIP-zero-field spectra after multiplication of the transient by a 

shifted Hamming window for increased resolution. The upper curve (blue) 

shows experimentally acquired and processed data and the lower curve (red) 

shows simulated data. An additional splitting of the main spectral peak due to 

the smaller long-range couplings can be observed. The J-coupling values used in 

the simulation are given in Table 7.2. 
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In Figure 7.3 measurements of thermally polarized 
15

N-labeled pyridine 

are also compared to simulations. In these measurements the density matrix 

corresponding to thermal polarization immediately after turning off the guiding 

field has a term proportional to (IIz+SSz).  Since I≠S, this density matrix does 

not commute with the zero-field Hamiltonian HJ, and evolution occurs without 

application of any additional pulse. In this case we chose a thermally polarized 

initial density matrix for the simulation, i.e.  (0) = S Sz + k ( Iz,k), where the 

index k labels the five protons of pyridine. As can be seen from the values in 

Table 7.2, the coupling constants that yield agreement between experiment and 

simulation vary slightly when the chemical environment of the pyridine is 

changed.   

Table 7.2) J-coupling values (in Hz) used to simulate zero-field pyridine spectra 

from NH-PHIP in methanol and from thermally prepolarized neat pyridine. The 

values are taken from a) Ref. 
[97]

, b) Ref. 
[98]

 and c) Ref. 
[101]

.  J12 is adjusted 

slightly to improve agreement between experiment and simulation. The original 

value from the reference is given in parenthesis. 

 

J-coupling 

constant 

NH-PHIP spectrum 

of pyridine in 

methanol 

thermal 

spectrum of neat 

pyridine 

J12 -10.14 (-10.06)
a
 -10.93 

b
 

J13 -1.56
 a
 -1.47 

b
 

J14 0.18
 a
 0.27

 b
 

J23 4.87
c
 4.88

a
 

J24 1.85
 c
 1.83

 a
 

J25 1.01
 c
 0.97

 a
 

J26 -0.15
 c
 -0.12

 a
 

J34 7.65
 c
 7.62

 a
 

J35 1.35
 c
 1.38

 a
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The presence of the catalytic species in the case of NH-PHIP is most likely not 

responsible for any of the observed shifts given the good agreement between 

experiment and simulation using the literature values that were obtained from 

solutions without any metal ions
[97,98,101]

. Also, the original NH-PHIP literature 

describes polarization enhancement of free pyridine in solution and does not 

report large contributions of intermediately bound pyridine to the signal
[50]

.  

 

7.2.2 Current sensitivity limits 
 

Lastly, we discuss the apparent lack of signals from 
13

C-pyridine 

isotopomers. In these isotopomers the one-bond J-coupling constants between 
13

C and 
1
H range from 123 Hz to 150 Hz. For 

13
C containing pyridine, signals 

around the one-bond J-coupling values are expected.  

Figure 7.8 shows a spectrum of 
15

N labeled pyridine after 108 averages. 

The SNR of the main peak at 15.6 Hz is close to 3200. Despite this good SNR 

for the 
15

N-containing compound there is no detectable signal at higher 

frequencies that would be produced by isotopomers containing 
13

C. In this 

case, where 
15

N-enriched pyridine was employed, the main reason for the lack 

of high frequency (100-300Hz) signals is that, in addition to the low natural 

abundance of 
13

C (~1%), pyridine isotopomers containing both 
13

C and 
15

N 

produce complex spectra, such that intensity is spread throughout many lines. 

According to our simulations (not shown) for one particular 
15

N-
13

C-

isotopomer more than 60 lines are spread across a range of ~35 Hz surrounding 

the one-bond 
13

C-
1
H J-coupling constant. A small additional factor is that 

signals are proportional to the difference in gyromagnetic ratio of the observed 

nuclei. The signals associated with 
13

C are additionally reduced be the ratio 

(



13
C))/(




15
N)) = 0.68 even when the pulse length is optimized 

for 
13

C-
1
H pairs. 
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Figure 7.8 NH-PHIP-zero-field spectrum of 
15

N labeled pyridine after 108 

averages. The SNR of the main peak is ~3200. The inset shows the observed 

noise in the range from 105 to165 Hz. The only apparent peak is at exactly 120 

Hz which is a remainder of discrete noise at multiples of 60 Hz. No apparent 

signals are detected associated with one-bond coupling constants between 
13

C 

and 
1
H expected in that window. 

Similarly, in experiments that show signals with 
15

N-pyridine at its low 

natural abundance, signatures of 
13

C-containing isotopomers could not be 

detected. In these experiments the majority (99.7%) of 
13

C-pyridine 

isotopomers contain 
14

N. Here we attribute the lack of high frequency lines to 

fast relaxation due to the large quadrupole moment of 
14

N. This is supported by 

the observation that in other experiments on thermally polarized 
14

N-containing 

compounds we generally observe weak or no zero-field NMR signals. These 

effects remain under current investigation. 
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7.3 Significance of ZF-NH-PHIP and concluding 

remarks 
 

In conclusion, we have demonstrated that NH-PHIP can be used in zero-

field NMR spectroscopy. Polarization, in the form of scalar order, can be 

obtained at zero magnetic field, which can be converted to magnetization 

solely through the presence of a heteronucleus. The sensitivity is enhanced by 

four orders of magnitude as compared to measurements using thermally 

prepolarized samples at 1.6 T. While inductive detection at zero field is 

generally insensitive, the optical magnetometer enables the acquisition of 

information-rich J-coupling spectra that can be used for chemical identification 

and fingerprinting, as demonstrated by our results and their agreement with 

numerical simulation and theory (see Section 7.2). The combination of non-

perturbative hyperpolarization and detection by optical methods that we 

demonstrate here will broaden the applicability of low and zero-field NMR in 

chemical analysis. NH-PHIP works on a wide and still growing range of 

analytes.
[50,95,96]

 The presented analysis suggests that all NH-PHIP substrates 

are polarizable and detectable under identical zero-field conditions. In the 

future, we expect the combination of sensitive optical magnetometers with 

general hyperpolarization techniques such as NH-PHIP to enable chemical 

analysis in locations not accessible by traditional bulky and expensive NMR 

technology, thereby making NMR more widely used. 
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8. A three spin model for the zero-field PHIP 

experiments 
 

In this Section we shall consider the case of hydrogenation of a simple 

molecule containing a single 
13

C label, forming a 3-spin system upon 

hydrogenation. As experimental analogue we chose the hydrogenation of 

acetylene-dimethyl-carboxylate forming dimethyl-maleate presented in Figure 

8.1 

 

 

Figure 8.1: Hydrogenation of the acetylene dimethylcarboxylate 

The spin system formed by the dimethyl-maleate upon hydrogenation can 

be  one of the three possible 
13

C isotopomers of the molecule. Here, we will 

only consider the two cases where the 
13

C is close to the double bond in the 

center of the molecule. The isotopomer with 
13

C in the methyl group is only 

weakly coupled to the parahydrogen derived hydrogens in the center of the 

dimethyl-maleate molecule and does not give an observable signal. Both 

remaining  isotopomers can be modeled by a 3-spin system containing two 

protons and one 
13

C (on either the carboxy or the vinyl position). In this 

Section, we demonstrate that the singlet symmetry is broken by the difference 

in the two proton-carbon scalar coupling, and as a consequence, the initial 

proton singlet state is spread over the 3-spins meaning that proton-carbon 

scalar product (IA∙S) terms are generated. This feature is an important result 

because, as we have demonstrated in Sections 6.5 and 7.2, it is this 

heteronuclear singlet order, which is converted into detectable magnetization. 
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8.1 Evolution of the initial density matrix upon 

hydrogenation 
 

In this and the following Sections the PHIP zero-field dynamics will be 

presented from two perspectives. The first involves typical high-field NMR 

operators and the second involves the usage of angular momentum operators 

and manifolds as used in Chapter 4. They both are equivalent descriptions 

linked through basis transforms but appear with different flavor and giving 

different physical insight. 

We begin by defining the proton spins as IA and IB and the 
13

C spin as S. 

Using these definitions the initial density matrix ρ0 for a molecule just 

after hydrogenation is given by: 

 ρ0 =1/4 1 – IA∙IB . (8.1) 

This assertion relies on the fact that spin dynamics at zero field occurs on 

timescales of a few hundreds of hertz, where the described hydrogenation 

reactions at a molecular level occur on timescales of picoseconds. We, hence, 

assert that the spin state of the parahydrogen is suddenly projected onto the 

hydrogenated molecule. The Hamiltonian of the hydrogenated molecule is 

determined by the network of scalar coupling in the absence of magnetic field 

and given by: 

 HZF = JXA S∙IA + JAB IA∙IB +  JXB S∙IB . (8.2) 

First we will evaluate the proton singlet spin dynamics at zero field after 

the hydrogenation. In order to do so, we need to calculate all the terms that will 

be generated by the evolution of the density matrix ρ(t) under the Hamiltonian 

HZF.  The dynamics of the system’s density matrix is calculated by integrating 

the Liouville equation:  

 ZF[H , ]
d

i
dt


  . (8.3) 

To that end, we need to evaluate the commutators of the different terms in 

the Hamiltonian with the initial density matrix. We will ignore the identity 

term in ρ0 as it commutes with every operator. For the remaining terms in the 
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Hamiltonian and the initial density matrix the following commutation relations 

hold: 

 [ I A·IB , IB·S ] = [ IA·S , IA·IB] = [ IB·S , IA·S] . (8.4) 

We introduce the operator Γ so that: 

 [ I A·IB , IB·S ] = iΓ. (8.5) 

Γ is a 3-spin operator independent of the projection basis and antisymmetric 

with respect to 2-spin permutation. This inherent symmetry is also apparent 

when representing Γ in terms of projction operators: 

 

Γ = IAz IBy Sx + IAy IBx Sz + IAxIBzSy  

( IAx IBy Sz + IAy IBz Sx + IAz IBx Sy ). 
(8.6) 

In order to obtain the individual terms that are generated the zero field 

dynamics, we can calculate the commutator of Γ with the respective terms of 

the zero field Hamiltonian: 

 

[ IA·IB, Γ]  = i/2 ( IA·S − I2·S)  , 

[ IB·S , Γ]  = i/2 ( IA ·IB − IA·S ), 

[ IA·S , Γ]  = i/2 ( IB·S − IA· IB ). 

(8.7) 

Since no term other than Γ and all the 2-spin scalar product terms appear in 

Eqs.   (4) and (7),  we can evaluate the spin dynamics in this particular case. 

The starting density operator only contains identity and IA·IB terms. As a result 

of the shown commutation relationships, the spin evolution is limited to the 

subspace defined by the 3 different 2-spin scalar products operators and the 

operator Γ. The density matrix at any time t can thus be written as: 

 ρ(t) = a(t) IA·IB + b(t) IA·S + c(t) IB·S + d(t)Γ. (8.8) 

We introduce the following short hands:  

 

=JXB-JXA 

= JAB-JXB 

= JXA-JAB, 

(8.9) 

such that using Eqs. (3), (4), (5) and (7), we can write more specifically: 
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   A B A B

1
( ) ( ) ( ) ( ) .

2

d
a t b t c t d t

dt


              Γ I I I S I S

 

(8.10) 

Since the three scalar product operators and the operator Γ are orthogonal 

under the trace operation, the evolution of a, b, c and d can be separated from 

Eq.  (8.10) and give the differential system: 

 

 

( )
2

( )
2

( )
2

( ) ( ) ( ) .

da
d t

dt

db
d t

dt

dc
d t

dt

dd
a t b t c t

dt







  







   

 (8.11) 

Upon differentiation of the last line, we obtain: 

 

2 2 2 2

2
( ).

2

d d
d t

dt

   
  (8.12) 

The exact solution to this equation can be calculated given the initial condition 

ρ0 =1/4 1 – IA∙IB, which means that, for t = 0, we have a(0) = −1 and b(0) = c(0) 

= d(0) = 0. 

Therefore: 

 ( ) sin(2 ),d t t





  (8.13) 

where: 

 

2 2 2

.
2

  


 
  (8.14) 

From the expression of d(t), we can deduce the expressions for a(t), b(t) and 

c(t): 
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2

2

2

2

1
( ) 1 (1 cos(2 )),

2

1
( ) (1 cos(2 )),

2

1
( ) (1 cos(2 )).

2

a t t

b t t

c t t

 


 


 


   

 

 

 (8.15) 

Another important feature appears as we consider all the scalar product 

components of the density matrix. It turns out that, according to Eq. (8.11), we 

can obtain: 

 
( )

0.
d a b c

dt

 
  (8.16) 

which also implies that a(t)+b(t)+c(t)=constant. This feature is a restriction on 

the spin dynamics that makes its description simpler as only two out of the 

three 2-spin scalar amplitudes are therefore needed to fully describe the 

system. 

An alternative approach for understanding the PHIP effects on a 3-spin 

system is the usage of angular momentum manifolds, much in analogy to the 

description used in Chapter 4 to explain thermally produced zero-field spectra. 

For that purpose we construct our three spin system and the according angular 

momentum manifolds by first adding the angular momentum of the 
13

C spin S 

to one of the parahydrogen derived 
1
H spins IA. This process yields a total 

angular momentum FA, which gives the zero-order energy levels as a singlet 

with EfA=0 = -3/4 JXA and a triplet with EfA=0 = +1/4 JXA. The addition of the 

second more weakly coupled parahydrogen derived spin, IB, gives the total 

angular momentum, FA+IB=F, of the system determining the new angular 

momentum manifolds of the three spin system. In Figure 8.2 the energy level 

manifolds are depicted. The zero-order singlet with fA= 0 becomes a doublet 

with f =1/2 and the fA=1 triplet is split into a doublet with f=1/2 and a 

quadruplet with fA=3/2. 
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Figure 8.2  Energy level diagram for a general 3-spin system coupled by a scalar 

coupling Hamiltonian. 

 

 

We label the basis states in the basis of F
2 
in the following order  
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 (8.17) 

Using these basis states we can express the initial density matrix in this basis: 

1/41-IA∙IB, 
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 (8.18) 

and the only off diagonal elements are between states |n1>,|n2>,|n3> and |n4> 

which are the f=1/2 states. Since the Hamiltonian must also be diagonal in that 

basis all evolution is restricted to the f=1/2 state space after hydrogenation. Not 

surprising, the frequency of oscillation is given by the energy difference 

between the involved manifolds. 

 

2 2 2

,
2

  


 
  (8.19) 

which to first order just like derived in Section 4.6 is given as 

 XA XB AB

1
( ).

2
J J J     (8.20) 

In conclusion of this Section, it is important to note that the symmetry 

breaking of the parahydrogen singlet under the influence of the zero field 

Hamiltonian is that it comprises all the possible 2-spin scalar product terms 

amongst all the nuclei of the hydrogenated molecule. This is crucial in the 

sense that, upon hydrogenation of a 
13

C isotopomer, a set of heteronuclear 2-

spin scalar product terms will be generated, and that these terms are used for 

the generation of observable magnetization. 
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8.2 Incoherent averaging 
 

In the previous Sections, we have demonstrated that the density matrix of 

a parahydrogenated molecule evolves under the zero-field Hamiltonian and 

generates scalar terms involving all the spins connected to the initial proton-

proton singlet by a J-coupling network. During a experimental 

parahydrogenation experiment many individual molecular parahydrogen 

reaction occur over the course of an extended time during which parahydrogen 

is consumed. We shall call this time the “bubbling time”, during which 

parahydrogen is provided and the reaction continues. The density matrix of the 

ensemble of spins that correspond to the hydrogenated sample is a time 

average of the previously calculated terms over the bubbling time. Since the 

bubbling time is much longer than the evolution period of the J-coupling, any 

term in the previous general evolution will be averaged. We can describe the 

incoherently averaged density matrix ρav by calculating the averages of the 

coefficients given in Eq. (8.15): 

 
2

A B A A2 2 2

1 1 1
1 .

2 2 2
av   

  
    I I I S I S  (8.21) 

 

Figure 8.3  Buildup of the different possible terms in a 3-spin system defined by 

two protons A and B, and a carbon X, with the couplings corresponding to those 

of different isotopomers of the dimethyl-maleate: a)
13

C on the carboxylate 

group: (JXA = 2.7 Hz, JXB = 13.3 Hz, JAB = 12 Hz) b)
13

C on the vinyl group (JXA = 

167.7 Hz, JXB = −2.5 Hz, JAB = 12 Hz[13]). 
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The incoherently averaged density matrix does not contain terms 

invovling Γ. This is consistent with the dynamics as, according to Eq. (8.13), 

the function d(t) that characterizes the amplitude of this term does not have a 

constant component.  This result can be simulated for the vinyl and carboxy 
13

C isotopomers of the dimethylmaleate, and we can see the rapid buildup of 

the different 2-spin scalar products as presented on Figure 8.3. 

As a function of bubbling time many hydrogenation reactions occur, 

starting evolution in the individual molecules. The overall density matrix of the 

sample arrives at its average value on a timescale dictated by the J-coupling 

values in the respective spin-system. 

The process of incoherent averaging can also be described by using the 

angular momentum manifolds formalism. Simply, the off-diagonal elements of 

the initial density matrix are eliminated. In this case 1/41-IAIB is averaged such 

that  

     

 

 
 
 
 
 
 
 

 

 
       

 
 

 
      

  
 

 
     

   
 

 
    

        
        
        
         

 
 
 
 
 
 
 

, (8.22) 

which shows that the hydrogenation procedure in average creates population of 

1/4 on |fA=0, f=1/2> states and 3/4 population on |fA=1, f=1/2> states. 
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8.3 Generation of signal 
 

Analysis of the generation of signal can proceed as described in Sections 

6.5 or 7.2 using the zero-quantum operator formalism, which gives a nice 

picture and interpretation of the pulse and ensuing evolution in terms of NMR 

operator formalism yet fails to predict the exact shape of the spectrum. 

Hence, we will proceed, here, with the description based on the angular 

momentum manifolds. As introduced in Section 6.5 the part of the pulse 

Hamiltonian that acts on the spin system is given as: 

 HP = 1/2 (IAz+IBz-Sz) . (8.23) 

In the F
2
 basis this Hamiltonian is given as: 

       

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

  
    

 

 
  

  
 

 
  

 

  
    

 

 
 

 

  
  

 

 
   

  

 
  

  
 

  
 

 

 
   

  

 
 

    
 

 
   

  
 

 
  

  

 
  

 

 
  

   
 

 
  

  

 
   

 

 
 

        
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

. (8.24) 

It is useful to look at this Hamiltonian in the F
2
 basis because it indicates 

nicely which energy levels, depicted in Figure 8.2, are connected and which 

coherences are created. 

This Hamiltonian can be applied to avsuch that after a /2 pulse we 

obtain 1 = exp(-i HP /2) av (exp(i HP /2). 
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. (8.25) 

The primary purpose of displaying this matrix is again, to show between which 

states coherences are created. Since the Hamiltonian is diagonal in this basis it 

is straightforward to find the density matrix as a function of time evolving 

under the zero-field Hamiltonian. 

 (t)=exp(-i Hzf t) 1 (exp(i Hzf t), (8.26) 

and finally we can calculate the signal as a function of time as 

 

s(t)=Tr((t) (IAz+IBz-Sz))= 1/3 sin(21 t) 

     -1/3 sin(22 t) 

     +1/3 sin(23 t). 

(8.27) 

 

In Figure 8.4 the experimental spectra obtained from the hydrogenation 

of acetylene-dimethyl-dicarbxoylate are shown overlayed by simulations for 

the two different isotopomers confirming the theoretical predictions. In 

particular the blue trace corresponding to the 
13

C vinyl isotopomer clearly 

follows the predicted pattern with three visible peaks one peak in the low 

frequency region given by 3/4(JXB+JAB) and two antiphase peaks at high 

frequencies given by JXA-1/2(JXB+JAB) and JXA+1/4(JXB+JAB). The green trace 

is the result of a numerical simulation including 6 spins. For the carboxyl 
13

C 

isotopomer this is necessary because additional couplings to the methoxy 

group cause additional splitting and because all coupling constants have the 

same order of magnitude such that a perturbative description of the frequencies 

would fail to produce the exact peak positions. 
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Figure 8.4 Zero-field PHIP spectrum obtained from the hydrogenation of 

acetylene-dimethyl-dicarboxylate overlayed with simulations for the two 

isotopomers that produce signal. 
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9. Conclusions and Outlook 
 

The research described in this thesis further develops zero-field NMR, 

which holds the promise to enable chemical analysis at greatly reduced cost 

and in environments not accessible to standard high-field NMR technology. 

Detection of analytes at low concentrations primarily requires sensitive 

detectors and sufficient nuclear polarization. The weak thermal polarization of 

nuclear spins has given NMR, in general, the reputation of being an inherently 

insensitive method. For example, even in magnetic fields of superconducting 

magnets the polarization obtained does not exceed 10
-4

. Combinations of novel 

detection schemes and of hyperpolarization are thus particularly attractive in 

unconventional or portable NMR applications. This thesis details the use of 

mm scale atomic magnetometers with sensitivities of ~20fT/√Hz for the 

acquisition of zero-field NMR signals generated with thermal prepolarization 

and hyperpolarization schemes. 

The fundamental principles underlying zero-field NMR are outlined from 

the perspective of the detector and from the perspective of the NMR sample. 

The detailed analysis of the NMR signal, based on the fundamental properties 

of quantum mechanical angular momentum, results in the ability of 

straightforward interpretation and prediction of zero-field NMR spectra. 

Multiplets observed in zero-field NMR spectra can be quickly assigned to their 

corresponding spin systems. It is also shown, that the resolution in zero-field 

NMR can easily be on the order of tens of mHz such that only small amounts 

of overlap are expected from differing chemicals opening the door for the 

analysis of complex mixtures. Furthermore, this thesis shows that remaining 

ambiguities for peak assignment in zero-field NMR spectra can be removed by 

the application of a small magnetic field, which acts as a perturbation to the 

dominating J-coupling. The Zeeman perturbation causes splittings with simple 

rules for the resulting multiplets. The multiplets indicate the gyromagnetic 

ratio of the involved spins as well as the multiplicity of the involved angular 

momentum manifolds 

In addition to the these developments of zero-field NMR with thermally 

prepolarized samples the thesis introduces parahydrogen induced polarization 

(PHIP) as a hyperpolarization scheme that can easily be combined with zero-
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field NMR. PHIP can be produced directly next to the detector and is shown 

not to require the presence of a magnetic field. The presented combination of 

the sensitive atomic magnetometer with the PHIP hyperpolarization scheme 

allows for the detection of samples with carbon-13 at its low natural abundance 

of ~1%, which greatly increases the range of analytes that can be analyzed with 

zero-field NMR. Furthermore, recent advances have enabled the transfer of 

PHIP to molecules without hydrogenation 
[50,52]

 This NH-PHIP technique is 

introduced as a hyperpolarization technique for zero-field NMR. The detection 

of samples is demonstrates containing nitrogen-15 at its even lower natural 

abundance of ~0.36%. Also the NH-PHIP polarization widens the range of 

analytes that can be hyperpolarized and subsequently analyzed in a zero-field 

NMR spectrometer. Since PHIP created, excited and measured at pure zero 

field is a previously unknown phenomenon this thesis also provides theoretical 

insight by developing a formalism based on angular momenta and the 

respective operators to predict and understand the observed effects. The 

formalism is explicitly applied to a three spin system but generalizes to an 

arbitrary number of spins. 

Since the development of zero-field NMR is still at an early stage it is not 

possible to really and fully gauge its competitiveness with high-field NMR or 

portable lower resolution versions thereof, but one may leave with the 

impression that is emerging as a cost effective, potentially miniaturizable type 

of NMR with great sensitivity that will give access to applications and spaces 

not accessible conventional high-field NMR.  

There is no question that zero-field NMR still has much space to grow 

into many directions by, either, increasing the sensitivity of the magnetometer, 

or by implementation of other hyperpolarization techniques, or by the 

development of multidimensional pulse sequences, or by miniaturization and 

coupling with microfluidic platforms or any other improvement one may 

dream of, which could be fun and exciting of their own. 
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