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Abstract

Tafazzin, which is encoded by the TAZ gene, catalyzes transacylation to form mature cardiolipin 

and shows preference for the transfer of a linoleic acid (LA) group from phosphatidylcholine (PC) 

to monolysocardiolipin (MLCL) with influence from mitochondrial membrane curvature. The 

protein contains domains and motifs involved in targeting, anchoring, and an active site for 

transacylase activity. Tafazzin activity affects many aspects of mitochondrial structure and 

function, including that of the electron transport chain, fission-fusion, as well as apoptotic 

signaling. TAZ mutations are implicated in Barth syndrome, an underdiagnosed and devastating 

disease that primarily affects male pediatric patients with a broad spectrum of disease pathologies 

that impact the cardiovascular, neuromuscular, metabolic, and hematologic systems.
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1. Introduction

TAZ, also known as G4.5, is a 10kb gene located at position 28 on the q arm of chromosome 

X within a gene-rich, 450kb cluster of 13-16 small genes with CpG islands initially 

identified by Bione et al. as potential candidates for involvement in neuromuscular and 

cardiovascular disorders (Bione et al., 1993; Bione et al., 1996). TAZ encodes the 

transacylase protein tafazzin (Table 1), so named by Bione et al. based on a masochistic 

comic character named Tafazzi from an Italian sports show, apparently due to the difficulty 

they encountered in the original identification and characterization of this protein (Bione et 

al., 1996). Tafazzin, located in the inner and outer mitochondrial membranes (IMM and 

OMM), acts as an acyl-specific transacylase that is essential to lipid metabolism through 

cardiolipin (CL) remodeling. CL remodeling, in turn, is essential for mitochondrial 

respiratory chain homeostasis, and disruptions to this process as a result of TAZ mutations 

have been shown to be a major cause of the complex, multi-system Barth syndrome. 

Mutations in the TAZ gene are associated with severe cardiovascular defects observed in 

Barth syndrome (BTHS), including endocardial fibroelastosis (EFE), X-linked dilated 

cardiomyopathy 3A (CMD3A, and left ventricular noncompaction (LVNC). As such, the 

gene is known by several aliases, including BTHS, EFE and EFE2, CMD3A, and LVNCX 

(Table 1). Due to unfortunate naming conventions, the TAZ gene and its tafazzin protein 

product have been confused in the literature with the TAZ protein, and WWTR1 gene, which 

are associated with various cancers (NCBI, 2019). TAZ and tafazzin are not known to have 

any role in cancer. To date, there is no cure for Barth syndrome, and treatments for tafazzin 

deficiencies have focused on symptom-based management. Deeper investigation of TAZ, 
tafazzin, and cardiolipin is necessary to increase our collective understanding of 

mitochondrial biology and may help find treatments for Barth syndrome and mitochondrial 

myopathies.

2. Structure

Tafazzin is part of a superfamily of acyltransferases based on conserved regions and motifs 

identified through sequence alignment with other acyltransferase proteins involved in 

phospholipid biosynthesis (Neuwald, 1997; Acehan et al., 2007). The crystal structure of 

tafazzin has not been determined by x-ray crystallography; the closest homologous protein is 

plant glycerol-3-phosphate acyltransferase (G3PAT) from Cucurbita moscata and Spinacea 

oleracea (PDB ID: 1IUQ) (Tamada et al., 2004), which has just 18.1% sequence identity 

with human tafazzin (Waterhouse et al., 2018). The half-life of tafazzin in mammalian cells 

is much shorter than that of many other mitochondrial proteins at only 3-6 hours (Xu et al., 

2015); the median half-life for mouse mitochondrial proteins is 17.2 days in the heart and 

4.26 days in the liver (Kim et al., 2012). This rapid turnover rate has likely contributed to the 

difficulty in elucidating the structure of tafazzin or acquiring a detailed understanding of its 

post-translational modifications (PTMs) from mass spectrometry data.
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2.1. Tafazzin active site.

The putative phospholipid-binding site of human tafazzin is a 57 amino acid cleft with two 

open ends and a stretch of conserved, positively charged residues, based on homology 

modeling using ALAdeGAP for improved amino acid sequence alignment (Hijikata et al., 

2011; Hijikata et al., 2015). Tafazzin and related hydrolases contain a conserved histidine 

residue required for their enzymatic action (Neuwald, 1997). In human tafazzin, His-69 

(His-77 in yeast) and Asp-74 form part of a conserved HX4D motif seen in acyltransferases 

composed of a histidine (His) and aspartic acid (Asp) separated by any 4 amino acids (X4) 

(Heath and Rock, 1998; Xu et al., 2006; Abe et al., 2016). The HX4D motif facilitates the 

Asp-His dyad mechanism seen commonly in serine proteases, whereby Asp raises the pKa 

of His and aids the deprotonation of a hydroxyl group (Tang et al., 2018).

2.2. Mitochondrial localization and membrane anchoring.

Mitochondrial localization and membrane anchoring domains in tafazzin are of critical 

importance to its role in cardiolipin remodeling. In the H9c2 rat cardiomyocyte cell line, 

TAZ encodes two peptides external to the active site of the tafazzin protein that act 

independently to direct it to mitochondria (Dinca et al., 2018). The first of these sequences, 

encoded in exon 3 and spanning residues 84-95 on the tafazzin protein, targets exclusively to 

mitochondria, while the second, encoded in exon 7/8 and forming residues 185-220, also 

targets other cytosolic compartments (Dinca et al., 2018). The yeast TAZ1 orthologue is 

homologous to human TAZ and has been used extensively to study the structure of tafazzin, 

its function, and in modeling Barth syndrome (Vaz et al., 2003; Gu et al., 2004; Ma et al., 

2004; Claypool et al., 2006). In yeast, tafazzin has been shown to localize to membrane 

leaflets facing the intermembrane space (IMS) between the IMM and OMM, where it 

associates peripherally due to its lack of a transmembrane domain (Gawrisch, 2012; Abe et 

al., 2016). A hydrophobic sequence from residues 215-232 in yeast tafazzin confers its 

characteristic interfacial anchoring behavior in both the IMM and OMM (Herndon et al., 

2013). Together, the translocase of the outer membrane (TOM) and the translocase of the 

inner membrane (TIM) facilitate tafazzin’s movement across and insertion into the outer 

membrane, as well as its anchoring to inner membrane regions of intermediate density 

(Herndon et al., 2013).

2.3. TAZ mutations and effects on tafazzin structure.

In characterizing the mutations of a family of patients with Barth syndrome, many unique 

forms of tafazzin were identified based on differential splicing events, ranging in length 

from 129 to 292 amino acids and affecting regions throughout the protein (Bione et al., 

1996). Many of the shorter forms of the protein lack a 30-residue hydrophobic N-terminus 

thought to contain a localization signal sequence, as well as modifications to the hydrophilic 

center of the protein in a 71 amino acid domain profuse with glycine and glutamic acid 

(Bione et al., 1996). Mutations within the localization region result in mistargeting that 

directs the protein into inner membrane leaflets facing the matrix, rather than facing the IMS 

(Herndon et al., 2013). Whited et al. categorized TAZ mutations into 7 functional classes 

based on the pathogenic loss-of-function mechanisms of each mutation (Whited et al., 

2013). The largest class of mutations, Class 1, contains frameshift and splice-site mutations 
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along the length of the gene. Class 2 and 3 mutations are both found in the membrane 

anchor domain: Class 2 mutations, including V224R, V223D, and I226P variants, represent 

pleiotropic biochemical defects and often result in mitochondrial mistargeting, while Class 3 

mutations (G230R) affect tafazzin macromolecular assembly. Class 4 mutations are 

composed primarily of missense mutations resulting in catalytically inactive tafazzin and 

Class 5 mutations, including L90P and N109V, encode hypomorphic alleles which retain 

transacylase activity. Class 6 mutations, including A88R and L148H, have folding and 

assembly defects, and Class 7 mutations result in temperature sensitive proteins that undergo 

activity loss before degradation. There is limited knowledge regarding a link between the 

different classes of TAZ mutations and disease severity. Whether tafazzin is rendered 

catalytically inactive, mistargeted, or incapable of membrane anchoring, there does not 

appear to be a clear distinction between phenotypic presentations of patients with different 

mutations. The diverse nature of TAZ mutations is clearly demonstrated in the expansive 

database maintained and regularly updated by the Barth Syndrome Foundation, which 

actively collects new data from healthcare professionals on both pathogenic and benign 

variants (https://barthsyndrome.org/research/tazdatabase.html). Mutations along the length 

of the TAZ gene, their frequency, and their pathogenicity (benign, pathogenic, or unknown 

effect) are depicted in Figure 1. Exonic, pathogenic variants along the length of the tafazzin 

protein, their frequency, and the type of genetic mutation from which they arise (deletion, 

frame shift, point mutation, or stop codon) are represented in Figure 2, along with the 

primary protein domains extracted from the literature.

3. Function

Tafazzin plays a critical role in cardiolipin remodeling, limits the structural diversity of CL 

molecular species, and restricts CL composition to two fatty acids, typically linoleic and 

oleic acids (Schlame, 2008). Tafazzin displays a preference for the transfer of linoleic acid 

(LA) from phosphatidylcholine (PC) to monolysocardiolipin (MLCL) and may be affected 

by and contribute to the negative curvature of the IMM and OMM (Schlame et al., 2017). 

Through its effects on CL, tafazzin impacts many aspects of mitochondrial structure-

function, including inner membrane curvature, oxidative phosphorylation (OXPHOS), 

supercomplex formation, oxidative stress repair, apoptosis, and fission and fusion (Haines 

and Dencher, 2002; Schug and Gottlieb, 2009; Baile et al., 2014; Vernon et al., 2014; 

Frohman, 2015).

3.1. Transacylase activity.

Tafazzin is an acyl-specific transferase that catalyzes reversible acyl transfer reactions 

between phospholipids and lysophospholipids in a CoA-independent manner, playing a 

critical role in the deacylation-reacylation cycle of cardiolipin (Xu et al., 2006; Epand et al., 

2015; Schlame et al., 2017). Generally, transacylases exhibit phospholipase activity and 

catalyze acylation and deacylation through a free enzyme acyl intermediate. Tafazzin, on the 

other hand, does not exhibit phospholipase activity, nor does it utilize the free enzyme acyl 

intermediate mechanism; it acylates and re-acylates, but deacylation occurs independently of 

tafazzin (Xu et al., 2006). After de novo synthesis of CL from phosphatidylglycerol by CL 

synthase (Crd1 in yeast, hCLS1 in humans) (Chen et al., 2006; Ye et al., 2016), the 
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remodeling process is initiated with cardiolipin deacylation to form MLCL by the 

cardiolipin specific phospholipase Cld1 in yeast (Beranek et al., 2009) or the calcium-

independent phospholipase A2 (iPLA2) in humans (Mancuso et al., 2007a; Mancuso et al., 

2007b; Malhotra et al., 2009; Yoda et al., 2010; Hsu et al., 2013). In order for MLCL 

produced by Cld1 to be exposed to tafazzin in the IMS, it must be transported through a 

different and unknown remodeling step (Baile et al., 2013). In mammals, tafazzin functions 

along with other enzymes to achieve CL remodeling, including MLCL acyltransferase 

(MLCLAT), acyl-CoA:lysocardiolipin acyltransferase (ALCAT), and phospholipase (Ye et 

al., 2016). Remodeling by tafazzin adds an acyl residue to immature CL, most frequently in 

the form of a linoleoyl residue in humans (Houtkooper et al., 2009b; Minkler and Hoppel, 

2010). Tafazzin reacylates MLCL in a single-step acyl group transfer reaction (Figure 3) 

from a variety of phospholipids (PL), including CL, PC, phosphatidylethanolamine (PE), 

and phosphatidic acid (PA). Thus, tafazzin effectively acts as a shuttle for specific acyl 

groups between different phospholipids (Xu et al., 2006; Schlame, 2013).

3.2. Acyl specificity and sensing curvature.

Tafazzin shows a clear preference for the transfer of an LA group from PC to MLCL to form 

mature CL (Schlame et al., 2017). This remodeling process converts cardiolipin into a 

mature composition that contains a predominance of tetralinoleoyl moieties. This results in 

an enrichment of tetralinoleoyl-cardiolipin (CL4) in the IMM (Houtkooper et al., 2009b). 

Indeed, Xu et al. report that, in Drosophila melanogaster, tafazzin can catalyze acyl transfer 

using multiple substrates, yet has a preference for the transfer of linoleoyl groups from PC to 

MLCL at a rate 10 times greater than that of oleoyl groups and twenty times greater than 

that of arachidonoyl groups, indicating a clear predilection for CL and PC substrates (Xu et 

al., 2006). Conflicting explanations for this preference have been proposed, namely that 

tafazzin has an inherent enzymatic preference for specific acyl residues, or that it acts on the 

basis of energy minimization and is influenced by the surrounding mitochondrial 

microenvironment. Abe et al. propose that tafazzin exhibits acyl specificity for the PC to 

MLCL reaction, and that its function is predominately centered on the transacylation of 

unsaturated acyl PC to MLCL under any conditions (Abe et al., 2016). Schlame et al., on the 

other hand, propose the ‘thermodynamic remodeling’ hypothesis, whereby a perturbation of 

the lipid bilayer state and the physical properties of the lipid membrane determines 

tafazzin’s preference for specific acyl groups (Schlame et al., 2012; Epand et al., 2015). 

Schlame et al. propose that alternative phospholipases and acyltransferases (MLCAT and 

ALCAT), as well as the thermodynamic properties of lipids, provide the acyl specificity in 

CL remodeling and that tafazzin itself has no kinetic properties that suggest any sort of acyl-

specificity. This mechanism proposes that since CL formation by tafazzin is reversible and 

has a minimal overall free energy, tafazzin’s role is to non-specifically transfer acyl groups 

among phospholipids to achieve optimal lipid composition and reduce the impact of 

membrane constraints (Schlame et al., 2012; Schlame et al., 2017).

According to the model proposed by Schlame et al. tafazzin specificity ultimately depends 

on the physical characteristics and packing properties of the lipid domain, including 

structural order and state. In D. melanogaster, tafazzin requires phospholipids that have a 

propensity to form non-bilayer phases such as HII phase, which is characterized by its 
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negative curvature, disorganized acyl chains, and low packing order (Schlame et al., 2012; 

Schlame et al., 2017). Stable lipid bilayers were found to have the lowest rate of reaction by 

tafazzin, while lipids in the hexagonal or micellar phases, which were characterized by 

packing order changes due to positive or negative curvature, had significantly higher 

reaction rates. In addition to the rate of reaction, curvature was also shown to determine the 

specificity of acyl transfer (Epand et al., 2015). The cristae of the IMM have negatively 

curved lipid monolayers and a predominance of phospholipids with small polar head groups, 

such as CL, and asymmetric, unsaturated hydrocarbon chains, such as linoleic acid. CL and 

linoleic acid specificity may thus be driven by curvature segregation of phospholipids based 

on physical properties of the lipid domains, which causes tafazzin to transacylate 

phospholipids that are located in negatively curved monolayers (Gawrisch, 2012; Schlame et 

al., 2012). In Saccharomyces cerevisiae, however, Abe et al. determined that tafazzin can 

efficiently catalyze a transacylation reaction even in a highly ordered lipid bilayer domain. 

Further, they posit that tafazzin has a unique acyl chain specificity for the PC to MLCL 

reaction in which tafazzin acts selectively to transfer PC’s sn-2 acyl chain to MLCL’s sn-1 

and sn-2 positions. They determined that these reactions can occur in any environment, 

regardless of packing order and thermodynamic considerations (Abe et al., 2016). These 

studies illustrate the propensity of tafazzin to transfer a linoleoyl group from PC to MLCL; 

however, more research into the specific mechanisms is required to fully understand the 

process and specificity of tafazzin’s actions. Further experiments with NMR analysis by 

groups such as Epand et al. may aid in elucidating these mechanisms due to its ability to 

probe curvature properties of lipid assemblies and observe structures with minor isotropic 

resonance (Epand et al., 2015).

3.3. Tafazzin and cardiolipin in mitochondrial structure and function.

Cardiolipin, modified by tafazzin, constitutes 13 - 20% of the total phospholipid mass and 

exhibits a cone-shaped structure that facilitates its distribution into mitochondrial cristae 

(Daum and Vance, 1997; Vernon et al., 2014). In the tafazzin-impaired fibroblasts of Barth 

syndrome patients, a greater proportion of saturated acyl chain substitution compromises 

this cone-shaped structure, and CL is heavily depleted with a concurrent accumulation of 

MLCL species (Oemer et al., 2018). CL assists in various aspects of OXPHOS, supporting 

the stability and function of the mitochondrial respiratory chain complexes through linkages 

between acyl chains (Houtkooper et al., 2009b). CL binds selectively to the c-rings of ATP 

synthase, which is required for the function and assembly of the ATP synthase. It also 

smooths the rotation (Mehdipour and Hummer, 2016) and facilitates dimerization for 

efficient ATP synthesis (Acehan et al., 2011). The structural properties of CL and its pK 

above 8 facilitate trapping proteins in the IMS. This is thought to achieve proton localization 

for ATP synthase function and minimization of pH fluctuations (Haines and Dencher, 2002). 

CL also interacts with other proteins such as the ATP/ADP translocase, pyruvate carrier, and 

carnitine carrier, assisted by glycerol bridges which enable flexibility for interaction with 

diverse surface shapes.

The lipid-to-protein mass ratio of OXPHOS complexes located in the mitochondrial cristae 

is 22:78 (Lotan and Nicolson, 1981), meaning that each complex is surrounded by just 

40-400 lipid molecules (Xu et al., 2019). The molecular packing of lipids in a bilayer with 

Garlid et al. Page 6

Gene. Author manuscript; available in PMC 2021 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



such a high protein density causes elastic stress on the curvature of the membrane (Brown, 

2017). Tafazzin remodeling is triggered by OXPHOS complex assembly so as to mitigate 

this stress and stabilize the membrane by generating CL species with reduced free energy 

(Xu et al., 2019). The OXPHOS complexes I, III, and IV also form supercomplexes within 

the mitochondrial cristae such as the I1III2IVn=1–4 “respirasome” (Schagger and Pfeiffer, 

2000; Schagger, 2001; Stuart, 2008; Gu et al., 2016). CL is directly involved in the 

formation and maintenance of supercomplexes, providing structural support for trimer- and 

tetramerization (Zhang et al., 2002; Mileykovskaya and Dowhan, 2014). Furthermore, 

supercomplexes are disrupted and destabilized in Barth syndrome patients due to the loss of 

mature CL from the IMM (McKenzie et al., 2006).

Cardiolipin’s intimate association with the electron transport chain brings it into close 

proximity with reactive oxygen species (ROS) generated by OXPHOS complexes and which 

have been shown to target CL. The proximity and its enrichment in long-chain 

polyunsaturated fatty acid (PUFA) chains make CL susceptible to the attack. In the process 

of lipid peroxidation, highly reactive oxygen free radicals oxidize the fatty acid chains of CL 

to form lipid peroxides (Paradies et al., 2002). Oxidative damage leads to a loss of functional 

CL, a basis for mitochondrial dysfunction (Lesnefsky and Hoppel, 2008; Shi, 2010). CL 

remodeling removes and replaces acyl chains damaged by oxidative stress and is thought to 

play a key role in oxidative stress repair mechanisms (Baile et al., 2014) and the recovery of 

the normal oxidative functions of mitochondria (Baile et al., 2013). Aside from its damaging 

effects, ROS is also critical in mitochondrial and intracellular signaling, particularly in the 

context of cardioprotection from ischemia-reperfusion injury (Garlid, 2000). Phospholipids 

in the bilayer, such as cardiolipin, can be oxidized to form hydroperoxy fatty acids, which 

are hypothesized to carry the cardioprotective signal from mitochondria (Garlid et al., 2013).

CL forms membrane domains localized to negatively curved regions and induced by 

mitochondrial creatine kinase (mtCK) and cytochrome c that play critical roles in energy 

transfer, apoptosis, and functional recovery from ischemic insult (Laclau et al., 2001; Epand 

et al., 2007; Renner and Weibel, 2011). The microdomains occur at contact sites where the 

IMS narrows such that the IMM and OMM are positioned in close proximity to one another 

(Epand et al., 2007; Renner and Weibel, 2011; Pennington et al., 2018). The IMS at these 

contact sites is replete with mtCK, which induces their formation, recruits CL, and provides 

stabilization (Speer et al., 2005; Epand et al., 2007). Mature tetralinoleoyl-CL species 

generated by tafazzin remodeling are required for the formation of these domains and CL4 

depletion disrupts their formation, which may explain the mitochondrial impairment 

observed in Barth syndrome and cardiac ischemia-reperfusion injury (Sparagna et al., 2007; 

Paradies et al., 2015; Pennington et al., 2018). Further, mtCK is functionally coupled to 

adenine nucleotide translocase (ANT) in the IMM to facilitate efficient energy transfer by 

shuttling high-energy phosphates from the mitochondria to the cytosol through the voltage-

dependent anion channel (VDAC) of the outer membrane (Laclau et al., 2001; Saks et al., 

2006). During ischemia, for example, this IMS structure-function is disrupted, reducing the 

functional coupling of mtCK and ANT and increasing the permeability of the OMM to ADP, 

thereby limiting energy transfer processes and exacerbating damage from an ischemic event 

such as a heart attack (Laclau et al., 2001). The cardioprotective ischemic preconditioning 

(IPC) protocol opens the mitochondrial ATP-sensitive K+-channel (mitoKATP), which causes 
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matrix swelling and results in preservation of IMS volume, contact sites, and tight coupling 

between mtCK and ANT (Garlid, 2000; Laclau et al., 2001; Costa and Garlid, 2009). CL 

clustering at these contact sites is dependent on the octameric structure of mtCK, which 

readily binds to anionic phospholipids and may mediate intermembrane contact by binding 

to VDAC on the OMM (Epand et al., 2007).

Cardiolipin mediates apoptosis through its interactions with members of the Bcl-2 family, 

caspases, Bid, Bax, and Bak, with a direct impact on the apoptotic signaling cascade (Schug 

and Gottlieb, 2009). The total level of CL as well as the oxidative state of its acyl side chains 

directly impacts apoptosis by regulating cytochrome c mobilization; decreased CL content 

or oxidation of the normally unsaturated acyl side chains releases cytochrome c from the 

membrane (Schug and Gottlieb, 2009). This can be prevented with antioxidants (Petrosillo et 

al., 2003; Tyurina et al., 2006) and by the presence of mitochondrial redox proteins (Ran et 

al., 2004; Enoksson et al., 2005). Therefore, CL remodeling by tafazzin restores cytochrome 

c affinity for CL and its localization in the membrane by replacing oxidized fatty acids with 

non-oxidized acyl groups (Ye et al., 2016). Mobilized cytochrome c released from the 

mitochondrial membrane activates caspases 8 and 9, which cleave Bid to produce its 

truncated and active form, tBid (Kantari and Walczak, 2011). Once recruited by 

mitochondrial carrier homologue 2 (MTCH2), tBid activates apoptosis via Bax and Bak 

activation (Katz et al., 2012). Caspases 8 and 9, activate caspase 3, which drives apoptosis 

and inhibits ROS production (Brentnall et al., 2013). The apoptotic pathway is further 

amplified by this ROS inhibition, as it is a ROS signal that is responsible for protective 

mitoKATP opening that blocks the mitochondrial permeability transition (MPT) and prevents 

apoptosis (Costa and Garlid, 2008; Garlid et al., 2013).

Additionally, through interactions with both inner and outer mitochondrial membranes and 

proteins such as the GTPase Opa1, CL plays an important role in mitochondrial fission, 

fusion, and mitophagy (Frohman, 2015; Hsu et al., 2015). TAZ deficiency reduces the 

generation of mitophagosomes and prevents initiation of mitophagy, further exacerbating the 

already reduced function of mitochondrial populations in TAZ-deficient organisms (Hsu et 

al., 2015). Under mitochondria-stress conditions, CL has been shown to promote 

mitochondrial fusion and membrane tethering with L-Opa1 and trans-Opa1, respectively, 

further illustrating its multifunctional importance in mitochondrial form and function (Ban et 

al., 2017).

4. Clinical Significance: Barth syndrome

Considering its critical role in the construction and maintenance of the IMM, it is of little 

surprise that TAZ has been implicated in a broad spectrum of disease pathologies that impact 

the cardiovascular, neuromuscular, metabolic, and hematologic systems. TAZ mutations are 

specifically associated with the multi-faceted Barth syndrome. An X-linked autosomal 

recessive disorder also known as 3-Methylglutaconic Aciduria Type II (3MGA2) (Barth et 

al., 1983; Aprikyan and Khuchua, 2013; Clarke et al., 2013). Characterized initially by Barth 

et al. in 1983 (Barth et al., 1983) as a uniformly lethal disease that affects only males, it has 

now been found that the age distribution ranges between 0 to 49 years, and symptoms peak 

around puberty (Barth et al., 2004). At least one female patient with BTHS has been 
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identified (Cosson et al., 2012). The Barth Syndrome Foundation reports that 151 living 

Barth patients have been identified up to 2012 and 10 new patients are diagnosed each year 

in the United States with no apparent racial or ethnic predilections. BTHS is estimated to 

appear in 1 out of every 300,000 to 400,000 live births, although predictions have suggested 

that the prevalence is actually closer to 1 out of every 140,000 live births as a result of the 

generally accepted notion that the disease is underdiagnosed (Cantlay et al., 1999; Barth 

Syndrome Foundation, 2019). In an effort to impose structure on otherwise unstructured 

clinical language contained in clinical case reports on BTHS (among other diseases), 

Caufield et al. extracted metadata from the reports and characterized patient symptomology 

using codes from the International Statistical Classification of Diseases and Related Health 

Problems (ICD-10) (Caufield et al., 2018b; Caufield et al., 2018a). The MitoCases platform 

(http://mitocases.org/) houses data on mitochondrial diseases, including Barth syndrome. 

Figure 4 displays the distribution of 997 instances of 206 unique ICD-10 codes represented 

across 54 clinical case reports covering 133 patients with BTHS, including top symptoms 

overall as well as top cardiovascular symptoms. Classifying Barth syndrome symptomology 

using ICD-10 codes has the potential to facilitate a greater understanding of the disease, its 

phenotypes, as well as to aid in diagnosis and treatment.

BTHS diagnosis and treatment is complicated and frequently delayed due to the complexity 

and variation of disease presentation. Early cardiomyopathy and hypertrophy combined with 

neutropenia (a low neutrophil count in the blood) is a hallmark of the disease, but 

confirmation of the diagnosis typically relies on genetic analysis of TAZ. Over 160 

mutations or errors in the TAZ gene have been identified in BTHS patients, with a wide 

variety of onset, progression, and severity (Aprikyan and Khuchua, 2013). 3-

methylglutaconic acid (3-MGA) and CL content levels are often used to identify BTHS, but 

they are not always a reliable indicator, which led some to propose using an HPLC-tandem 

mass spectrometry blood spot assay to measure the ratio of MLCL to CL4. Although 

indirect, this highly specific biochemical measure of tafazzin function has the potential to 

provide a clinically valid method for BTHS diagnosis (Kulik et al., 2008; Houtkooper et al., 

2009a; Bowron et al., 2015; Thompson et al., 2016). Combining biochemical analyses with 

physical tests, such as the 6-minute walk test (6MWT), may allow clinicians to determine 

the extent of the musculoskeletal impact and cardiac function in patients who survive 

infancy and those with unknown mitochondrial deficiencies. A combination of these 

procedures may help to improve diagnostic abilities and shape patient-specific treatment 

plans (Thompson et al., 2016).

4.1 Cardiovascular pathology.

Cardiomyopathy is a major characteristic of BTHS resulting from TAZ mutations. TAZ 
mutations lead to altered acyl chain composition and lipid peroxidation, and this can result 

in a failure of the sarcomeric action required to generate a sufficient power stroke. 

Disruption of the uniform contraction of sarcomeres can severely weaken the tissue, enlarge 

the left ventricular chamber, result in partial or incomplete contraction, and lead to decreased 

ejection volume. This results in the gradual thinning of the ventricular wall, stretching and 

dilation of cardiac chambers, and a cardiomyopathic phenotype of Barth syndrome, 

characterized by a weakened heart and diminished contractility (Barth et al., 2004; Ikon and 

Garlid et al. Page 9

Gene. Author manuscript; available in PMC 2021 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mitocases.org/


Ryan, 2017). Among all patients, about 95% exhibited a history of cardiomyopathy, with 

41.5% of all diagnosed cardiomyopathies occurring from birth to one month of age. 

Furthermore, statistical analysis revealed that cardiac function of patients declines over time 

(Roberts et al., 2012). Contrary to ATP depletion, Wang et al. suggest ROS as the main 

cause of cardiomyocyte dysfunction and cardiovascular impairments such as defective 

sarcomere assembly and contractile stress (Wang et al., 2014). The typical approach to 

treating the cardiovascular symptoms of Barth syndrome is to follow the treatment paradigm 

for heart failure. This includes: 1) diuretics for fluid retention (e.g., spironolactone or 

furosemide), 2) angiotensin-converting enzyme (ACE) inhibitors for vasodilation to reduce 

afterload (e.g., captopril), 3) positive inotropes to increase contractility and as an 

antiarrhythmic (e.g., digoxin), and 4) beta blockers to reduce heart rate (e.g., propranolol, 

carvedilol). Regular echocardiography is used to monitor cardiovascular function and 

ejection fraction (McCanta et al., 2008; Masarone et al., 2017). Severe forms of cardiac 

symptoms in BTHS patients necessitate heart transplantation. Spencer et al. reported nine 

out of 73 (12%) patients referred to the BTHS Registry (https://

barthsyndromeregistry.patientcrossroads.org) who have undergone cardiac transplantation 

are alive at the last update (Roberts et al., 2012; Clarke et al., 2013). Transplantation is 

generally successful (Clarke et al., 2013); among four BTHS patients described in Mangat et 
al., one developed a severe infection but they did not show an increased rate of rejection and 

rated their quality of life as good (Ronghe et al., 2001; Mangat et al., 2007).

Cardiomyopathy in BTHS includes dilated cardiomyopathy (DCM) and left ventricular 

noncompaction (LVNC) (Barth et al., 2004). DCM is a specific type of cardiomyopathy 

characterized by an enlarged heart that is limited in function due to its inability to contract 

and pump blood efficiently (Araco et al., 2017; Soares et al., 2017). A patient with BTHS 

resulting from a c.83T>A mutation in tafazzin exhibited DCM with an ejection fraction of 

30%, providing a direct association between the gene and DCM (Zapala et al., 2015). LVNC 

is a condition that exhibits prominent trabeculations and deep intertrabecular recesses in the 

left ventricle that resemble a spongy structure on the ventricular wall (Shemisa et al., 2013). 

One such case involves a family of 6 affected members that presented with LVNC with 

BTHS due to TAZ mutations (Bleyl et al., 1997). Isolated noncompaction of the ventricular 

myocardium (INVM) has also been found to affect the right ventricle and the 

interventricular septum (Bleyl et al., 1997; Barth et al., 2004). Despite the general 

occurrence of cardiomyopathy, there have been instances of BTHS caused by TAZ 
mutations with mild or late-onset cardiac involvement, as seen in Woiewodski et al. and 

again in Rigaud et al. Each discuss a cohort of BTHS patients exhibiting varying levels of 

cardiomyopathy, including two infantile patients who did not present with cardiomyopathy 

at the time of diagnosis (Woiewodski et al., 2017), another infantile patient whose autopsy 

revealed no cardiomyopathy, and one 12-year-old patient with no manifestation of 

cardiomyopathy (Rigaud et al., 2013). There is no clear structural or functional reason for 

the relatively mild presentations of certain patients, nor a direct mechanistic link between 

different mutations and disease presentations, representing an intriguing area of research 

necessary to glean a greater understanding of tafazzin and its role in disease.
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4.2. Musculoskeletal pathology.

Although skeletal myopathy is often a typical characteristic of patients with disease-causing 

TAZ mutations, it manifests itself in a wide range of symptoms from nonexistent to severe. 

One of the most common musculoskeletal symptoms in BTHS patients is general and 

localized weakness. This includes overt muscle weakness and increased exertional fatigue 

due to skeletal myopathy and exaggerated by the cardiovascular complications associated 

with Barth syndrome (Spencer et al., 2011). Hypotonia, fatigue, and weakness can present 

early in life, persist, and may result in delayed motor development; most patients can walk 

unassisted by 2 years of age. Common phenotypes include short stature and facial 

dysmorphia and can extend to rarer phenotypes such as clubfoot (bilateral talipes) (Ades et 

al., 1993). Christodoulou et al. describes 6 cases of BTHS from four families with 

dysmorphic features, all of which exhibited persistent short stature. Four of the patients had 

also been found to exhibit similar myopathic facial appearances in conjunction with 

neuromuscular, cardiovascular and infectious symptoms (Christodoulou et al., 1994). A 

growth curve generated by examining 73 BTHS patients in Roberts et al. revealed a common 

down-shift in weight, length, and height relative to the normal population. Developmental 

delays are prevalent in BTHS patients with motor skills being the most affected, as indicated 

by a 65% prevalence of a delay in sitting up and a 71.6% delay in walking (Roberts et al., 

2012).

Developmental delay has been treated with some success using cornstarch supplementation. 

This alternate source of glucose production ameliorates muscle wasting due to overnight 

fasting (Clarke et al., 2013). Other treatments, including oral arginine and carnitine 

supplementation, have centered on treating metabolic deficiencies, which improves cardiac 

function and muscle weakness in some patients (Ferreira et al., 1993; Rigaud et al., 2013; 

Vernon et al., 2014). However, while carnitine supplementation was initially offered as a 

treatment paradigm for all cases of BTHS (Ino et al., 1988), its effect has subsequently been 

called into question, and no formal assessment of the utility of arginine supplementation has 

been published. Thus far, both carnitine and arginine have demonstrated efficacy only in 

patients with those specific deficiencies (Ferreira et al., 1993; Rigaud et al., 2013; Vernon et 

al., 2014).

4.3. Neurological pathology.

Neurological complications tend to manifest as mild cognitive impairments in BTHS 

patients with TAZ mutations. While these patients were found to have a higher incidence of 

cognitive impairment (Mazzocco et al., 2007) and mild learning and speech difficulties 

(Roberts et al., 2012), many patients were found to have normal cognitive development, 

including a three-generation family with no cognitive impairment despite BTHS diagnosis 

(Ades et al., 1993). The limited neurologic involvement of BTHS is interesting given that 

tafazzin has been shown to play an important role in brain mitochondrial respiration and 

normal cognitive function (Cole et al., 2018). One postulate contends that the brain’s 

reliance on glucose, over tissues in the heart and liver that require high mitochondrial 

activity, allows the brain to have a more diverse and less tetralinoleoyl-dependent CL 

composition. Reducing the need for highly symmetric remodeled tetralinoleoyl-CL to 

achieve sufficient mitochondrial function may allow the brain to mitigate or avoid the 
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detrimental effects of a tafazzin deficiency (Houtkooper et al., 2009b). Indeed, CL in the 

brain has higher amounts of arachidonic (AA) and docosahexaenoic (DHA) acids, distinct 

from the preference for tetralinoleoyl-CL seen in other tissues (Houtkooper et al., 2009b). 

Over 80% of CL in the liver and heart take the 18:2n-6 form, whereas the brain demonstrates 

less of a preference and has a higher concentration of saturated acyl chains, with only 48% 

polyunsaturated fatty acids and just 20% of its CL in the 18:2n-6 form (Corazzi and Roberti, 

2009). It has also been proposed that the higher ROS scavenging capability of the brain, 

which is about 100 times higher than the rate of ROS generation (Starkov et al., 2014), may 

allow the brain to avoid the harmful effects more effectively than in other tissues even 

though it generates higher total levels of ROS (Cole et al., 2018).

4.4. Metabolic disorder.

3-methylglutaconic aciduria (3-MGA) is a major indicator of a variety of syndromes 

including BTHS, and is the result of mutations, including those in TAZ, that are linked to 

mitochondrial dysfunction (Su and Ryan, 2014). 3-MGA refers to increased levels of the 

organic acids 3-methylglutaconic acid, 3-methylglutaric acid, and 2-ethyl-hydracrylic acid in 

urine (Wortmann et al., 2012). BTHS patients typically demonstrate a large and consistent 

increase in the excretion of 3-MGA (Wortmann et al., 2013). A diagnosis of 3-MGA type II 

is synonymous with BTHS. While most BTHS patients exhibit varying severities of 3-MGA, 

a case report by Schmidt et al. describes a 15 year-old-boy with typical BTHS symptoms, 

such as dilated cardiomyopathy, but normal levels of organic acids, amino acids, and 

mucopolysaccharides in urine. Thus, there was no diagnosis of 3-MGA, despite a TAZ 
missense mutation in nucleotide 877 at exon 8 (Schmidt et al., 2004). Therapeutics such as 

riboflavin or coenzyme Q10 have been reported to show substantial improvement in some 

patients with 3-MGA (Wortmann et al., 2012). Overall, however, metabolic treatments vary 

between patients and are largely designed to target symptomatic deficiencies rather than the 

underlying cause of the disease (Clarke et al., 2013; Reynolds, 2015).

4.5. Hematologic pathology.

Neutropenia is one of the most frequent characteristics of BTHS caused by TAZ mutations, 

characterized by a decline in total number of circulating neutrophils accompanied by an 

increase in monocytes and eosinophils with no fluctuations in lymphocyte numbers (Clarke 

et al., 2013). Makaryan et al. found that neutropenia in BTHS is caused by a disruption of 

mitochondrial membrane potential as well as caspase-3 activation resulting in an increased 

rate of apoptosis of myeloid progenitor cells (Makaryan et al., 2009; Makaryan et al., 2012). 

Neutropenia is a particularly variant symptom, and can present itself in many different 

forms, from severe to mild, cyclical to non-cyclical, and intermittent to chronic (Steward et 

al., 2019). Severe chronic neutropenia (SCN), defined by an absolute neutrophil count of < 

500/μL, is the most detrimental phenotype (Dale et al., 2006).

In a cohort study, Roberts et al. describe 73 patients with BTHS and indicate that 69.1% 

self-reported neutropenia with varying severity (Roberts et al., 2012). Ranging from a 

complete lack of neutrophils to a mild decline, neutropenia may be absent at presentation 

and change over the course of the disease in the same patient (Clarke et al., 2013). For 

instance, all seven members of a family with TAZ mutations exhibited no signs of 
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neutropenia (Ferri et al., 2015), while another case of siblings with severe BTHS both 

exhibited intermittent neutropenia (Bowron et al., 2015). Including persistent or intermittent 

forms of neutropenia, nearly 90% of BTHS patients exhibit the symptom to some degree 

(Clarke et al., 2013), though it is mentioned in just over 65% of available clinical case 

reports on Barth syndrome (Figure 4). Neutropenia is an immune system deficiency that 

results in diminished response to invading organisms. Therefore, decreased defense 

mechanisms leads to serious bacterial infections including prolonged upper respiratory tract 

infections, mouth ulcers (chronic aphthous stomatitis) due to Candida infections, inflamed 

gums and perianal dermatitis, as well as sepsis and multi-organ failure, which are frequently 

treated by prophylactic antibiotics (Barth et al., 2004; Dale et al., 2006; Clarke et al., 2013). 

Among 73 BTHS patients in Roberts et al., 65% of those with neutropenia exhibited mouth 

ulcers, relative to only 35% of patients without neutropenia, while 28% had a history of 

pneumonia and 10% had a history of blood infections (Roberts et al., 2012). Granulocyte 

colony-stimulating factor (G-CSF) has been identified as an effective and safe treatment for 

SCN (Dale et al., 2006), leading to improvement in many BTHS patients with symptoms 

including aphthous ulcers, bacterial infections, and lethargy (Clarke et al., 2013).

4.6. Therapies in Barth syndrome.

Although several therapeutic strategies have proved successful in select clinical 

presentations, treatments are focused on treating the cardiovascular, musculoskeletal, and 

metabolic disorders, rather than the root cause of the disease. There is currently no cure for 

Barth syndrome (Barth Syndrome Foundation, 2019). Based on the observation that the fatty 

acid environment of cells impacts CL composition, ATP synthesis, membrane potential, and 

ROS production, dietary fatty acids have been suggested as a therapeutic strategy to target 

mitochondrial lipid metabolism and ameliorate effects on bioenergetics and cardiac function 

in mitochondrial diseases such as BTHS (Monteiro et al., 2013). It is unclear whether these 

treatments have significant effects in clinical practice. Direct modulation of CL content by 

lipid replacement therapy using CL nanodisks has also been tested in cell and animal models 

of Barth syndrome. Apoptosis induced by shRNA-mediated knockdown of TAZ in cultured 

HL60 myeloid progenitor cells (Makaryan et al., 2012) is attenuated by incubation with CL 

nanodisks and confers a significant increase in cellular CL content (Ikon et al., 2015). 

However, translation to an in vivo setting was unsuccessful, with no alteration in the CL 

profile of either wildtype mice or a TAZ knockdown mouse model of Barth syndrome (Ikon 

et al., 2018). Another study aimed to investigate whether overexpression of an alternate CL 

remodeling enzyme could restore CL in TAZ-deficient cells. Lymphoblasts from Barth 

syndrome patients transfected with MLCLAT1 saw increased CL levels, improved 

mitochondrial basal respiration and proton leak, and reduced superoxide production, but 

only partial compensation for respiratory function and no restoration of OXPHOS 

supercomplex formation (Taylor et al., 2012; Mejia et al., 2018). These results show some 

promise, but it remains to be seen whether they can be recapitulated in a live animal model.

Elevated ROS and oxidative stress have been proposed as significant culprits in Barth 

syndrome and the development of cardioskeletal myopathy in these patients (Xu et al., 2005; 

Dudek et al., 2013; Saric et al., 2015). In vitro studies of TAZ-deficient cardiomyocytes 

treated with the mitochondrially-targeted Mito-Tempo antioxidant demonstrated improved 
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contractile function, cardiac hypertrophy, and cell death (He et al., 2014; Wang et al., 2014). 

Mice with TAZ deficiency (TAZKD) and mitochondria-specific overexpression of catalase, 

however, developed cardiomyopathy and muscle weakness similar to the Barth syndrome 

mouse, indicating that amelioration of oxidative stress is insufficient in the in vivo setting 

(Johnson et al., 2018).

Peroxisome proliferator-activated receptors (PPARs) and the PPAR-gamma coactivator-1 

alpha (PGC-1α) are central to energy metabolism and bioenergetics in mitochondria, 

presenting opportunities for treatment in a variety of mitochondrial and metabolic disorders. 

Bezafibrate is a fibric acid derivative pan-agonist of PPAR signaling pathways that activates 

oxidative metabolism genes (Huang et al., 2017). In patients with dyslipidemia or metabolic 

syndrome, bezafibrate reduces triglyceride levels and the incidence of myocardial infarction 

(Arbel et al., 2016). It also significantly decreases HbA1c in diabetic patients with 

dyslipidemia (Teramoto et al., 2012). Because of its role in mitochondrial bioenergetics, it 

has been proposed as a potential treatment for Barth syndrome as well. In a TAZKD mouse 

model with isoproterenol (iso) treatment to induce more significant cardiac dysfunction, 

bezafibrate rescued iso-induced heart failure with marked increases in left ventricular 

fractional shortening and ejection fraction and prevention of the development of 

cardiomyopathy (Huang et al., 2017). However, the treatment also caused a significant 

reduction in CL content and increase in MLCL/CL ratio in both wild type and TAZ 
knockdown mice, a common biomarker for Barth syndrome. Concurrently, mitochondrial 

biogenesis was amplified drastically, as indicated by a two-fold increase in mtDNA content 

and mitochondrial citrate synthase activity in bezafibrate-treated hearts. Additionally, the 

dose used in the mouse model was 60-80 times greater than is typically prescribed in 

dyslipidemic humans. The modification of CL content and dosage discrepancy presents 

significant hurdles to determine the mechanism of action, further evaluate the importance of 

MLCL and CL concentrations, and conduct toxicity studies before any enrollment in clinical 

trials (Huang et al., 2017).

Gene replacement therapy presents another avenue of exploration that has the potential to 

address underlying tafazzin deficiencies resulting from the TAZ mutations that cause Barth 

syndrome. Recombinant adeno-associated virus (rAAV) vectors provide stable and long-

lasting gene transfer to the nucleus of an organism’s cells using a non-pathogenic virus with 

minimal immune response (Schnepp et al., 2003). The successful application of an AAV-

delivered gene therapy in spinal muscular atrophy also establishes an important precedent 

for the safety and efficacy of this approach in a clinic setting (Mendell et al., 2017). AAV 

serotype 9 (AAV9) demonstrates high affinity for the heart and skeletal muscle, making it 

ideal for application to Barth syndrome (Bish et al., 2008). In the TAZKD mouse model of 

Barth syndrome, an AAV9-TAZ vector with a desmin promotor resulted in significant TAZ 
gene and tafazzin protein expression levels in the heart and muscle and minimal levels in the 

liver (Suzuki-Hatano et al., 2019a). Measures of muscular strength and fatigue as well as 

whole body activity (e.g., exercise and distance travelled) of the treated mice improved 

significantly. Increased fractional shortening and ejection fraction as well as decreased heart 

weight/body weight ratio indicate significant improvements in cardiac function. 

Mitochondrial structure and function defects were ameliorated, with improved cristae and 

sarcomeric organization, greater numbers and size, as well as improved mitochondrial 

Garlid et al. Page 14

Gene. Author manuscript; available in PMC 2021 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respiration and OXPHOS complex activity (Suzuki-Hatano et al., 2019a). In further studies, 

multiplex tandem mass tagging-based proteomics has provided a deeper mechanistic insight 

into the progression of Barth syndrome and its impact on critical proteins involved in cardiac 

development, heart failure, transcription, translation, and carnitine biosynthesis. (Suzuki-

Hatano et al., 2019b). The striking result of AAV9-TAZ gene therapy across a range of 

treatment ages in the mouse model of Barth syndrome paints an optimistic picture for its 

potential as a future clinical option for these patients.

Elamipretide (MTP-131, SS-31, Bendavia) is a novel mitochondria-targeted tetrapeptide 

designed to temporarily bind to CL and protect it from oxidative damage by blocking CL-

mediated conversion of cytochrome c into a peroxidase, thereby preserving cristae structure, 

promoting OXPHOS, and maintaining mitochondrial integrity (Birk et al., 2014; Szeto, 

2014). In the canine model of intracoronary microembolization-induced chronic heart failure 

(Sabbah et al., 1991), long-term therapy with elamipretide was demonstrated to improve left 

ventricular ejection fraction, normalize key plasma biomarkers including tumor necrosis 

factor-alpha (TNF-α) and C-reactive protein (CRP), and reverse mitochondrial deficiencies 

in the heart (Sabbah et al., 2016) and skeletal muscle (Sabbah et al., 2019). In explanted 

human cardiac ventricular tissue from patients with a wide demographic range, elamipretide 

improved impaired mitochondrial function in heart failure and had no effect on normal 

mitochondrial function in nonfailing hearts. Additionally, supercomplex function was 

improved, but no change was observed in the activities of OXPHOS complexes II or V 

(Chatfield et al., 2019). In a clinical trial for patients with heart failure with reduced ejection 

fraction (HFrEF), elamipretide was safe, well-tolerated, and achieved significant decreases 

in left ventricular end-diastolic volume (LVEDV) and end-systolic volume (LVESV) in the 

highest dose cohort. Ejection fraction also improved in the treatment group as compared to 

those administered a placebo, though the measures did not reach statistical significance 

(Daubert et al., 2017). Elamipretide is currently in Phase 2 clinical trials (TAZPOWER) to 

treat Barth syndrome specifically, and recruitment is in progress for a Phase 3 clinical trial 

(MMPOWER-3) in patients with primary mitochondrial myopathies (ClinicalTrials.gov 

[Internet]). The previous animal studies and clinical trials in heart failure bode well for 

successful applications of Elamipretide in the Barth syndrome and mitochondrial myopathy 

patient populations.

5. Conclusions

Tafazzin is a transacylase responsible for remodeling cardiolipin in the mitochondrial 

membrane and plays an integral role in maintaining mitochondrial structure and function. 

The tight bends of the cristae in the inner membrane require a specific acyl profile, afforded 

by the activity of tafazzin. The protein has targeting and anchoring domains that direct it to 

the IMM and OMM and position it to face the IMS, build mature, tetra-linoleoyl cardiolipin 

species, and repair damaged membranes. Mutations in TAZ produce a dysfunctional or 

improperly localized protein that causes Barth syndrome, a multi-factorial and devastating 

disease that presents in infancy and results in heart failure, neutropenia, and musculoskeletal 

abnormalities. Current therapeutic paradigms are wide-ranging and attempt to treat the 

symptoms of individual systems. No cure exists for Barth syndrome, though there are a 

number of different treatments in development aimed at modulating metabolic processes, 
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reducing oxidative stress, protecting CL from degradation, as well as conducting targeted 

gene-replacement of TAZ. Additional studies are necessary to fully characterize and 

understand the unique and integral role of tafazzin in mitochondrial biology and in the 

manifestation of Barth syndrome.
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Abbreviations

3-MGA 3-methylglutaconic aciduria

AA arachidonic acid

aa amino acid

rAAV recombinant adeno-associated virus

AAV9 adeno-associated virus serotype 9

ACE angiotensin-converting enzyme

ALCAT acyl-CoA:lysocardiolipin acyltransferase

ANT adenine nucleotide translocase

BTHS Barth syndrome

CL cardiolipin

CL4 tetralinoleoyl-cardiolipin

CMD3A cardiomyopathy, dilated 3A (X-linked)

DCM dilated cardiomyopathy

DHA docosahexaenoic acid

EFE2 endocardial fibroelastosis 2

G3PAT glycerol-3-phosphate acyltransferase

G-CSF granulocyte colony-stimulating factor

HFrEF heart failure with reduced ejection fraction

IMM inner mitochondrial membrane
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IMS intermembrane space

INVM isolated noncompaction of the ventricular myocardium

iPLA2 calcium-independent phospholipase A2

LA linoleic acid

LVEDV left ventricular end-diastolic volume

LVESV left ventricular end-systolic volume

LVNC left ventricular noncompaction

mitoKATP mitochondrial ATP-sensitive K+-channel

MLCL monolysocardiolipin

MLCLAT monolysocardiolipin acyltransferase

mtCK mitochondrial creatine kinase

nt nucleotide

OMM outer mitochondrial membrane

OXPHOS oxidative phosphorylation

PA phosphatidic acid

PC phosphatidylcholine

PE phosphatidylethanolamine

PL phospholipids

PPAR peroxisome proliferator-activated receptor

PGC-1α PPAR-gamma coactivator-1alpha

PUFA polyunsaturated fatty acid

ROS reactive oxygen species

SCN severe chronic neutropenia

TIM translocase of the inner membrane

TOM translocase of the outer membrane

VDAC voltage-dependent anion channel
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Highlights

• TAZ encodes the tafazzin transacylase responsible for cardiolipin (CL) 

remodeling.

• Tafazzin localizes to the mitochondrial membranes for direct access to CL.

• Tafazzin generates mature CL to maintain mitochondrial structure-function.

• Mutations throughout TAZ cause the rare mitochondrial disease Barth 

syndrome.

• There is no cure for Barth syndrome, but PPAR agonists, AAV9 gene therapy, 

CL protection, and protection from oxidative stress are in development.

Garlid et al. Page 31

Gene. Author manuscript; available in PMC 2021 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. TAZ genetic mutations, frequency and pathogenicity.
The frequency of intronic and exonic mutations across the length of the TAZ gene are shown 

here, categorized by pathogenicity and mapped to the nucleotide (nt) position on the gene, 

with exons represented by thick grey bars below the x-axis. Patient mutation data was 

acquired from the Barth Syndrome Foundation TAZ database (https://barthsyndrome.org/

research/tazdatabase.html).
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Figure 2. Tafazzin domains, mutation frequency, and mutation type.
The frequency of pathogenic, exonic mutations across the length of the tafazzin protein are 

shown here, categorized by mutation type, with key functional domains of the tafazzin 

protein displayed below the x-axis. Tafazzin contains a transmembrane helix (TM helix) and 

a membrane anchor at positions 15-34 and 215-232, respectively. The acyltransferase active 

site spans 176 amino acids (aa) from residue 41-217, with His77 forming part of the His-

Asp motif (HX4D). Mitochondrial targeting domains are encoded in exon 3 as well as exon 

7/8, spanning protein residues 84-95 and 185-220, respectively. Patient mutation data was 

acquired from the Barth Syndrome Foundation TAZ database (https://

www.barthsyndrome.org/research/tazdatabase.html).
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Figure 3. Mechanism of acyltransferase activity by tafazzin.
Tafazzin acts as a shuttle for specific acyl groups between different phospholipids to 

generate mature cardiolipin, Tafazzin transfers an acyl side chain from a phospholipid such 

as phosphatidylcholine (PC) to reacylate monolysocardiolipin (MLCL) in a single-step acyl 

group transfer reaction, resulting in the formation of lysophosphatidylcholine (LPC) and the 

mature tetralinoleoyl form of cardiolipin. The red acyl side chains indicate the acyl group 

that is transferred by tafazzin, and the blue circles indicate the location on MLCL where the 

new acyl chain is added to form the mature tetralinoleoyl cardiolipin.
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Figure 4. Complex symptomology of Barth syndrome codified by ICD-10.
Symptom occurrence codified using the 10th edition of the International Statistical 

Classification of Diseases and Related Health Problems (ICD-10) from 133 Barth syndrome 

patients described in 54 clinical case reports (please see References Cited: Clinical Case 
Reports). Panel (A) presents the full collection of 997 instances of 206 unique ICD-10 

codes across all patients in these reports, grouped by disease category (Caufield et al., 

2018b; Caufield et al., 2018a). Cardiovascular diseases and symptoms are the most highly 

represented among all ICD-10 categories (n = 272). Panel (B) highlights the top 10 

symptoms from all ICD-10 categories. Panel (C) depicts the top 10 cardiovascular 

symptoms. All data is housed on the MitoCases platform (http://mitocases.org/) along with 

detailed metadata on the medical information contained in the text of each CCR.
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Table 1.
Essential properties and identifiers of TAZ and tafazzin.

The table contains a summary of the essential properties, identifiers, and names of the TAZ gene and the 

encoded tafazzin protein in Homo sapiens (human) and Mus musculus (mouse) (NCBI, 2019).

Species Homo sapiens (human) Mus musculus (mouse)

Gene TAZ TAZ

Synonyms BTHS, EFE, EFE2, CMDA3, LVNCX, G4.5 5031411C02Rik, 9130012G04Rik, AW107266, AW552613, G4.5

NCBI Gene ID 6901 66826

Chromosomal location chrXq28:154,411,524-154,421,726 chrX:74,282,697-74,290,151

Length (nt) 10,171 7,454

Exons/Introns 11/10 10/9

NCBI Gene ID 6901 66826

UniProt ID Q16635 I7HJS2

Ensembl ID ENSG00000102125 ENSMUST00000069722.12

Length (aa) 292 263

Molecular weight (Da) 33,459 30,433

Gene. Author manuscript; available in PMC 2021 February 05.


	Abstract
	Introduction
	Structure
	Tafazzin active site.
	Mitochondrial localization and membrane anchoring.
	TAZ mutations and effects on tafazzin structure.

	Function
	Transacylase activity.
	Acyl specificity and sensing curvature.
	Tafazzin and cardiolipin in mitochondrial structure and function.

	Clinical Significance: Barth syndrome
	Cardiovascular pathology.
	Musculoskeletal pathology.
	Neurological pathology.
	Metabolic disorder.
	Hematologic pathology.
	Therapies in Barth syndrome.

	Conclusions
	References
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.



