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Abstract

We describe a technique for automatically adapt-
ing to the rate of an incoming signal. We first
build a model of the signal using a recurrent net-
work trained to predict the input at some delay,
for a “typical” rate of the signal. Then, fixing the
weights of this network, we adapt the time con-
stant 7 of the network using gradient descent,
adapting the delay appropriately as well. We
have found that on simple signals, the network
adapts rapidly to new inputs varying in rate from
twice as fast as the original signal, down to ten
times as slow. So far our results are based on
linear rate changes. We discuss the possibilities
of application to speech.

Introduction

Most approaches to processing temporal signals us-
ing connectionist networks assume a fixed rate of
the signal. This is true of most recurrent sequence
processing networks, such as Elman’s Simple Recur-
rent Networks [Elman, 1990] or Jordan’s output re-
current networks [Jordan, 1986). In these systems,
the network and the input are in lock-step. Thus,
even though these networks nominally deal with tem-
poral processing, in fact, they simply deal with se-
quences, while ignoring time. In many real-world
situations, the assumption of a fixed rate of input
1s violated. This is especially true in the case of
speech [Miller, 1984].

Rate detection is a notoriously difficult problem. It
seems that in order to detect the rate of a signal, you
first have to know what the signal is. But in order to
recognize the signal, you have to know its rate. This
1s a classic chicken-and-egg problem. The Interactive
Activation model of [McClelland & Rumelhart, 1981]
solved a similar part/whole problem in the spatial
domain using feedback from a representation of the
whole to a representation of its parts. This al-
lowed partial information to “bootstrap” recogni-
tion of wholes from ambiguous features, recogniz-
ing “RED” from noisy versions of its letters, each
of which was ambiguous.

In this paper we report on a technique for rate
adaptation that makes use of a similar notion. The
basic idea of our approach is to build a model of
the signal using recurrent networks. This model is
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trained on the signal occurring at a “normal” rate.
The network learns to predict the signal at this rate
and a fixed delay (see Figure 1). Thus, if it is a good
predictor, the network dynamics should match the
dynamics of the signal. Now, given a new instance of
the signal at a different rate, the network uses its own
prediction error to adapt its processing rate. For clas-
sification, multiple models can be compared, choosing
the model with the lowest error. We describe initial
results with simple signals, and discuss the possible
application of the technique to speech.

We call our system Tau Net for two reasons. First,
because the model uses a variable 7 to adapt its rate.
Second, there is a felicitous pun on Tao, since the
claim 1s that the way to recognize the rate of the
signal 1s to be an adaptive model of the signal: “The
way to do is to be” [Bynner, 1944].

The Method

The idea of the technique is quite simple: We use
the temporal auto-association idea of [Elman, 1990]
to train a network to be a model of the signal.
There are two differences between what we do and
Elman’s original formulation. First, we use real
time recurrent learning [Williams & Zipser, 1989] in-
stead of truncated back propagation through time.
Second, in order to have a way of adjusting the
speed of the network, we use the Delta-Net technique
of [Tsung, 1991]. The Delta-net is a finite-difference
approximation of a continuous time network. As
such, it has a parameter, the time constant of the
network, that changes how fast the units integrate
their input. Basically, this is a knob that adjusts the
speed of the network. The network architecture is
shown in Figure 1.

We train this network for a particular delay and a
particular value of 7, the time constant of the net-
work. ! We then fiz the weights of this network, and
present 1t with an abrupt new signal. Activation is
propagated through the network, and the error signal
is used to compute F*.

The equations describing a continuous neural net-
work are:

dy(t)

Thi——

dt

—uk(t) + fsk (1)) (1)

!Since we are only dealing with linear rate changes in
this paper, a single 7 for the network is sufficient.
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Figure 1: Tau Network

se(t) = Z wi;y;(t),
)

where s, (t) 1s the net input to unit k& at time ¢, yi(?)
1s the output of unit k at time ¢, wy; are the weights
from unit j to unit k, f(z) is the transfer function,
and 7; 1s the time constant of unit k. Time constants
determine the time scale of the system. This can be
easily seen by dividing both sides of Equation (1)
by mk. As 7 increases, the right hand side of the
equation decreases, which means that the network is
changing more slowly. Analogously, as 7, decreases,
the opposite effect is achieved.

The equations for the Delta net are derived from
a discretized version of the continuous network. One
advantage of this approach is that the learning al-
gorithm is simpler than the continuous versions, but
the network still retains some essential characteris-
tics of the continuous network [Tsung, 1991]. For
a finite-difference approximation to the continuous
equations, we use

dy (1) ye(t + A1) — (1)
dt At
to get the following activation rule for the Delta net:
At At
ue(t + A1) = (1 - —)u(t) + — f(s(2)). (2)
Tk Tk

The rule for updating the weights in the Delta net is:

__OE
e

2o

where, by defining p¥(t+ At) =

Awyj(t) (1)

oF ayg
Ok aw,J

(3)

—1—(! + At), we have

p+an = (1-Sphe)+

T (e ) | 5w 0) + s 0)] (0
J
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and where 6;x 1s the Kronecker delta:

478 1 ifi=k
=1 0 otherwise.

Updating the time constants is similar to updating
the weights. The learning rule for time constants is

oL
—ﬂa—n(f)

Z oF ayk

Oy 61"
where, by defining ¢¥(t + At) =

AT.'(!)

(5)

22 (t+ At), we have

¢ (t + A1) 4. F(t) +

I (sx(1)) Zwm,(t) +

SO - M) ©
The motivation for using the Delta net instead of a
discrete network is that the notion of time scale is
incorporated into the Delta learning algorithm, pro-
viding a natural way to modify the processing speed
of a network.

To have the network estimate the rate of the input
signal, we first train the network to predict S(t) from
S(t — 8) for a particular 6 and with = 1 initially.
After the network has learned to predict S(t), the
weights are fixed. The network is then presented the
same signal at a different rate. The tlme constant 7
of the network is then adjusted usmg a— In this way,
the network adapts its processing speed to the rate
of the input signal, and the final value of 7 can be
used as a measure of the rate of the input. In order
to scale things properly, the delay § must be adjusted
as well. Although a more sophisticated approach is
possible, in what follows, we simply adjusted é by the
same amount as 7. There is no guarantee that this
will converge, but it did for our test cases.

Experimental results
Sine waves

We trained a 4-3-4 network ? to predict four sine
waves of 4 different phases, with a delay of 8 time
steps (there were 80 time steps per period) which
corresponds to a phase lag of 36 degrees. We set
initially to one. The results are shown in Figure 2
(a).

Note that the system adjusts within a single cycle
to the rate of the input. The problem posed to the

2An i-h-o network refers to a network with i inputs, h

hiddens, and o outputs.
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Figure 2: Sine wave experiments — The left-hand graphs show the output with respect to the teacher for the
two-frequency problem. The right-hand graphs show results for the four-phase problem. Top Row: Trained
network on normal-rate input. Middle Row: Network adapting 7 and ¢ to fast-rate input. Bottom Row:
Network adapting 7 and § to slow-rate input. The number of updates is on the x-axis, and the activation

values are on the y-axis.

system is exacerbated by the fact that we did not
start the system at the original rate and slowly ad-
Just it; we simply presented 1t with the fast signal
abruptly. Note that even though the system is pre-
dicting the signal quite well, it only approximately
gives the correct time constant (0.54 instead of 0.5
for an input speed of 2x, 4.55 instead of 5 for an
input slowed by 0.2x).

The results for a two-frequency problem are shown
in Figure 2 (b). For the 2-frequency net, the adapted
7’s came quite close to the correct values (0.45 vs.
0.50, and 1.7 vs. 2.0). Thus, even though the system
does not fit the signal perfectly during initial train-
ing, 1t still 1s able to converge to an acceptable time
constant.

Gait data

The tinal problem is a set of motion variables gen-
erated by children walking. We used data extracted
at the Motion Analysis Laboratory at the Children’s
Hospital, San Diego, from free-speed, level walking
subjects The data are based on film recordings by
fixed-position cameras of the subjects as they tra-
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verse a walkway. Each subject has 12 “markers” and
4 “sticks” precisely placed on their waist, legs and
feet as reference points for the analysis. A complete
description of the data-gathering process and prepro-
cessing is given in [Sutherland et al., 1988]. The re-
sults of this calculation are 12 different joint rotation
parameters from each side of the body. The data is
arranged in a gait cycle, defined as (for example) the
time from heel-strike to heel-strike, and thus is tem-
porally normalized between subjects. For this prob-
lem, we used averaged data from normal seven-year

olds.

Each vector consists of 24 floating point numbers
to represent the joint angles in both legs at each time
step. We do not have data for children walking at dif-
ferent rates, which would be a more interesting prob-
lem; instead, we simulated different rates by sampling
the signal at different intervals. “Normal rate” refers
to every other time step; “fast rate” refers to every
third time step for a speedup of 1.5; and “slow rate”
refers to every time step for a speedup of 0.5 relative
to the normal rate. We use a 24-10-24 network, and
ask it to predict the 24-dimensional signal two time
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Figure 3: Gait data experiment — The left-hand graph shows the network’s performance on normal-rate gait
before time constant learning). The right-hand graph shows how the network adapts its prediction (solid line)
uring time constant learning. The number of updates is on the x-axis, and the activation values are on the

y-axis. Components zg, z,, and z,4 of the gait data are shown.

steps ahead.

After 50,000 training updates with a learning rate
of 0.01, the network learns to predict the data quite
well, though not perfectly. This 1s shown in Figure 3.
Only three of the components are shown here. Sim-
ilar results were obtained for all twenty-four compo-
nents in the gait data. With a time constant learning
rate of 0.05, the network learns to predict the fast
input within approximately 250 updates. The net-
work’s prediction of the fast-rate input as 7 and é
are adjusted is shown with respect to the actual val-
ues of the delayed input in Figure 3 (right). Similar
results were obtained for slowed input. The predic-
tion error during time constant learning and the time
constant values for the fast input evolve in a cyclic
manner. In the next section, we describe a variation
on this approach that ameliorates this problem.

Current Work

Recently, we have been experimenting with a some-
what different set of equations. A potential problem
with our system is that %—’f results in a 72 term in the
denominator of equation 6, which can lead to instabil-
ity when 7 is small. Also, there are range constraints
on the ratio of the step size of the integration (At)
to 7, 1.e., equation 2 makes sense only if 0 < e—: < 1,
The learning algorithm can lead to values for 7 that
make this ratio greater than one, which requires a
check to set the ratio back to less than one. To avoid
these two problems, following a suggestion by David
Rumelhart, we decided to use a change of variables
to replace the ratio &t with g(a) = Wexlp_-‘-n Now
we adjust a instead of 7. and 7 can be recovered as
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Figure 4: Tau as a function of alpha.

1+exp~“ (note that At is now assumed to be 1). This
gives a new set of update equations for Tau Net:

ye(t + A1) (1 — g(@))ye(t) + g(@) f(se (1))(7)
Besides being a familiar friend, using this sigmoidal
expression for the ratio scales the changes to T prop-
erly. When 7 is very big, large changes are needed
to make a difference in equation 2. When 7 1s very
small, small changes make a big difference. Fig-
ure 4 shows that changing a instead of 7 scales these
changes properly. That is, when a is negative, and
thus the time constant is big (and the system slug-
gish), a small change in a makes a large change in the
effective time constant. When « is positive, and the
effective time constant is small, a large change in a
makes a small change in the effective time constant.



The update equations for « are:

oF
Au.—(l) = —I,M
_ OFE Oy (t)
= T2 55 ba &)

The second part of Equation (8) is evaluated as fol-
lows. Let g¥(t + At) = 22048 Then taking the

partial derivative of Equauon (7) with respect to a;,
we obtain the following:

g (L + At) g (1) +

sk(t )Zu)k)ql

)) — k()] .

(9)

9 _q|(t) +

bik - 9(1—g)- [f(Sk

l+ex -t

Preliminary Eesults show that this version works
in all of the above experiments, and the learning is
more stable. Figure 5 shows the comparison between
the old (Equation 2) and a-version (Equation 7) of
Tau Net. Note that the a-version results in more
stable convergence and more accurate final value for
the time constant.

where ¢ =

Discussion

So far the technique has worked well for simple sig-
nals. It turns out that it is not necessary for the
system to either predict the signal perfectly to be-
gin with or to converge to exactly the correct time
constant to do a good job of prediction. Tau net
rapidly adapts to sudden-onset signals at different
rates when started “cold”, with an incorrect internal
state. It works for simple sine waves and for more
complicated gait data.

It remains to be seen if this can be applied to sig-
nals with variable internal rates. For this, we can
use a l'au Net with a time constant for every unit
adapting independently. Such a system, if it is a good
imodel, would need to adapt to different “gaits” of the
signal. We have not had experience with problems of
this type.

How could this system be applied to speech? It is
characteristic of speech that rate changes are nonlin-
ear, in that vowels are shortened in rapid speech more
than consonants. However, it seems reasonable to as-
sume that if we knew the global rate change, we could
adapt to the differences. A Tau Net can be used as a
rate-estimation module. Then the rate of the recog-
nizers can be set by this global “rate box”. The input
1t receives is the acoustic energy computed from the
speech signal. Vowels are the speech sounds with the
strongest intensities [Denes & Pinson, 1963]; thus,
acoustic energy peaks can be used to indicate vocalic
segments in the speech signal. Since the rate at which
vocalic segments occur 1s comparable to the syllable
rate in speech production [Rabiner & Schafer, 1978],
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acoustic energy can be used to give an estimate of
speaking rate.

The rate estimator will be trained initially to pre-
dict the acoustic energy function for speech spoken at
a normal rate. Then, when it receives energy values
computed from speech spoken at a different rate, it
will adapt itself to the rate of the new input. We are
currently pursuing this, and have successful prelimi-
nary results on the speech of Jeff Elman saying “This
1s the voice of the neural network” at three different
rates. Obviously, we need a less biased data sample
to perform a proper evaluation of this system.

Conclusions

Tau Net is a new approach to using connectionist net-
works for temporal processing. Tau networks adapt
their rate of processing to the rate of the signal by
first learning to predict the signal, effectively becom-
ing a model of the signal. The prediction error is then
used online to adapt the network’s processing rate to
the signal rate.

The approach has been shown to work on sine
waves of different phases and frequencies, and on
compllcated motion variables from human gait stud-
ies. The network rapidly adapts to different rates,
and does not have to be a perfect model to achleve
this.

We have begun investigation of a more robust ap-
proach, and plan to apply it to speech by building
phoneme models and then adapting their rates to the
signal online. Rate variation abounds in speech data,
and we hope to provide recognizers that are robust
with respect to rate using this approach.
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