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ABSTRACT

Profiling of proteome dynamics is crucial for un-
derstanding cellular behavior in response to intrin-
sic and extrinsic stimuli and maintenance of home-
ostasis. Over the last 20 years, mass spectrome-
try (MS) has emerged as the most powerful tool
for large-scale identification and characterization of
proteins. Bottom-up proteomics, the most common
MS-based proteomics approach, has always been
challenging in terms of data management, process-
ing, analysis and visualization, with modern instru-
ments capable of producing several gigabytes of
data out of a single experiment. Here, we present
ProteoSign, a freely available web application, ded-
icated in allowing users to perform proteomics dif-
ferential expression/abundance analysis in a user-
friendly and self-explanatory way. Although several
non-commercial standalone tools have been devel-
oped for post-quantification statistical analysis of
proteomics data, most of them are not end-user ap-
pealing as they often require very stringent installa-
tion of programming environments, third-party soft-
ware packages and sometimes further scripting or
computer programming. To avoid this bottleneck, we
have developed a user-friendly software platform ac-
cessible via a web interface in order to enable pro-
teomics laboratories and core facilities to statisti-
cally analyse quantitative proteomics data sets in
a resource-efficient manner. ProteoSign is available
at http://bioinformatics.med.uoc.gr/ProteoSign and
the source code at https://github.com/yorgodillo/
ProteoSign.

INTRODUCTION

Bottom-up MS-based proteomics has been established dur-
ing the past decade as the definitive technique for profil-
ing the protein content of complex biological matrices at
a global scale (1). In spite of continuous software devel-
opment in supporting technology, end-user solutions for
proteomics data processing, analysis and visualization have
lagged behind. In differential proteomics, the acquisition
speed of current state-of-the-art instrumentation enables
extensive experiment replication, thus allowing for the util-
isation of statistical tools for rigorous assessment of data
quality and biological variability. The statistical analysis
is conducted at the end of the proteomics data processing
workflow (2) and until recently, the supporting software de-
velopment focus has mostly been given to upstream, more
fundamental stages of the workflow, such as raw data pro-
cessing, protein identification (database search) and quan-
tification.

To the authors’ knowledge, not a single non-commercial
software solution currently exists for running the entire data
processing workflow, the most comprehensive being those
that reach the stage of protein quantification. The statisti-
cal analysis of protein abundance measurements is usually
performed using specialized software and to our view, none
provides a high level of automation for wide range of exper-
imental data sets, usually requiring either a lot of user input,
or manual preparation and manipulation of the input data,
or the input of a statistician or even programming skills.

Hereby we present ProteoSign, an open source web-based
platform for protein differential expression/abundance
analysis. ProteoSign is specifically designed to serve the
needs of any end-user in a friendly and appealing way. Fur-
ther to our previously developed in-house software (3), Pro-
teoSign utilizes the well-established Linear Models For Mi-
croarray Data (LIMMA) (4) methodology in order to sta-
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tistically assess the difference in abundance of proteins be-
tween two or more proteome states. Similar applications an-
alyzing microarray data are also available (e.g. CARMAweb
(5)).

The software accepts as input proteomics quantification
data mainly produced by either MaxQuant (6) or Proteome
Discoverer (Thermo Scientific), both serving as the most
popular proteomics data processing desktop applications.
The quantification data can originate from label-free or la-
beled experiments, currently supporting SILAC (7), pulsed
SILAC (8), iTRAQ (9), TMTs (10) and dimethyl labeling
(11). Label-swap replication is also supported.

Through a simple, four-step wizard, the user begins the
analysis and within several minutes (see Table 1), Pro-
teoSign presents a set of publication-quality key data plots
in an automated way.

SOFTWARE DESCRIPTION AND METHODS

General design and implementation

ProteoSign comes with a frontend web interface, whereas
all calculations are computed in a remote server (see be-
low for server details). The frontend is written in HTML
and JavaScript and consists of a welcome page, a help page
and a further five pages designed to guide the user through
the process of data uploading and analysis in an intuitive
and interactive way. ProteoSign’s backend is written in PHP
and R and manages the data uploading and analysis pro-
cesses, as well as the results visualization and download-
ing processes. The frontend has been tested in all major
modern internet browsers such as Mozilla Firefox, Google
Chrome, Apple Safari, Opera and Microsoft Edge. Simi-
larly, the backend has been tested with over 40 different pro-
teomics data sets. For demonstration purposes, 10 represen-
tative, publicly available (through PRIDE) (12) proteomics
data sets can be found on the web site. Table 1 provides in-
formation on the demo data sets available in ProteoSign’s
web page. A high-level schematic view of the platform is de-
picted in Figure 1. In sections to follow, details on individual
parts of the figure are provided when relevant.

Format of input data

ProteoSign currently accepts quantified differential pro-
teomics data, produced with either Proteome Discov-
erer (PD) 1.3+ or MaxQuant (MQ) 1.3.0.5+. Data
can originate from labeled or label-free bottom-up ex-
periments. The experiments can comprise any num-
ber of biological conditions and replicates, as well as
chromatographic/electrophoretic fractions.

ProteoSign requires that the data produced by all LC–
MS/MS runs during the experiment (fractions and repli-
cates) must be processed simultaneously with PD or MQ,
producing this way a single output file in the case of PD,
referred to as a ‘consensus report’, and two output files
in the case of MQ. In the case of PD, the ProteoSign in-
put data file is produced by exporting the peptide-spectrum
matches (PSMs) information from a consensus report via
the PD desktop application. Detailed instructions on how
to produce the PSMs file can be found in the website’s help

page. In the case of MQ-processed data, ProteoSign re-
quires two output files that are automatically generated dur-
ing processing. These files are located in the MQ output di-
rectory and are always named ‘evidence.txt’ and ‘protein-
Groups.txt’.

In summary, ProteoSign prompts the user to either up-
load a single PSMs file for the case of PD or ‘evidence.txt’
and ‘proteinGroups.txt’ for the case of MQ.

Experimental parameters

After all input data files have been uploaded, the user,
through a two-step procedure, is requested to provide in-
formation regarding the proteomics experiment, namely the
replication and biological conditions details. In the first
step, the user is presented with a list of all LC-MS/MS runs
performed during the experiment and is requested to assign
to each one of them an experimental structure coordinate.
This is a pair of numbers specifying the biological and tech-
nical replicate respectively. In the case of label-free data,
the experimental condition is assigned here also. In the sec-
ond step, the user (i) chooses between biological conditions
to cross compare and (ii) enters descriptive information re-
garding the experiment.

In addition, the user can optionally instruct a special kind
of filtering on the data set, before submitting it for statisti-
cal analysis. The term ‘quantitation filtering’ is specifically
designed for application to pulsed SILAC data but can also
be applied to the data produced by any of the supported
precursor ion level labeling techniques, such as SILAC and
dimethyl. Its purpose is to improve the quality of the results
in pulsed SILAC data by possibly excluding contaminating
proteins from the statistical analysis. Such proteins for ex-
ample are the ones that were not pulse-labeled. This way,
removing relatively highly abundant background species is
crucial, as this can have a negative effect on the statistical
analysis. The filtering is mainly achieved in two ways: (i) by
optionally removing from the data set peptides with non-
pulsed, ‘background’ label, also known as ‘singlets’, or (ii)
by removing proteins that have been detected solely with
background peptides.

Moreover, users are able to modify default data analy-
sis and algorithmic parameters if desired. These include (a)
the adjusted P-value used to differentiate between regulated
and non-regulated proteins and (b) the pair of parameters
used to disqualify proteins that were not reproducibly quan-
tified from the statistical analysis. These are the number of
unique peptides a protein was identified from and the num-
ber of biological replicates in which these unique peptides
were found.

Finally, in order to save time, users can download their ex-
perimental parameters of preference in a text file and reuse
them in a different session.

Data analysis procedure and results

After experimental parameters have been defined, the user
submits the data for analysis to the core backend R module
(see Figure 1) and waits for the results. The core module
performs the following operations:
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Figure 1. Software architecture and information flow of the ProteoSign web server. Users can upload MaxQuant (MQ) or Proteome Discoverer (PD)
output files on the server via a simple web interface. A set of PHP scripts manage the uploading of the user’s input data files, the definition of various
experimental parameters, communication with the data analysis R module (blue box) and downloading of the results.

Table 1. Experimental information and running time evaluation regarding the demo data sets available on ProteoSign. MQ: MaxQuant, PD: Proteome
Discoverer

Data set name and
PRIDE ID

Data set size
(MB)

Biological
conditions

Biological
replicates

Technical
replicates Fractionation

Total number
of samples

Running time
(min)

Publication
reference

SILAC 2-plex (MQ)
PXD001909

122 2 3 2 Yes 72 <1 (18)

SILAC 2-plex (MQ)
large PXD000778

787 2 4 6 Yes 240 6 (19)

SILAC 2-plex (PD)
large PXD000778

1100 2 4 6 Yes 40 4 (19)

Label-Free (MQ) large
PXD004124

1070 2 2 3 Yes 108 7 (20)

TMT (MQ) PXD002622 62 2 5 0 Yes 50 2 (21)
TMT (PD) PXD002622 109 2 5 0 Yes 50 2 (21)
iTRAQ (PD)
PXD004869

684 4 2 0 Yes 42 12 -

pSILAC 3-plex (MQ)
PXD001976

336 2 6 0 Yes 120 3 (22)

pSILAC 3-plex (PD)
PXD001976

831 2 6 0 Yes 120 7 (22)

Dimethyl 2-plex (PD)
large PXD002073

1505 2 3 0 Yes 36 9 (23)
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1. Calculate proteins’ intensities through summation of
peptide intensities (13): For each protein i, in (biologi-
cal or technical) replicate r and condition (or label) j cal-

culate its intensity Pi jr =
N∑

k
pi jrk, where p is the peptide

intensity given by MQ or PD and N is the total number
of unique peptides quantified for protein i. Notably, Pro-
teoSign relies completely on the peptide false discovery
rate (FDR) calculated by MQ or PD, thus users do not
have control over the number of protein identifications.

2. Remove ‘noisy’ proteins: Disqualify proteins that were
not quantified with at least m different peptides in at
least n biological replicates. For example, with m = n =
2 (default value), given the sets B = {b1, b2, b3} and T
= {tb11, tb12, tb21, tb22, tb31, tb32} of biological and techni-
cal replicates respectively for an experiment where each
of the 3 biological replicates was measured twice, a pro-
tein quantified with 2 unique peptides in tb11 and tb12 but
with one peptide in the rest would be disqualified. Like-
wise, if there were not any technical replication (T = ∅),
a protein quantified with 1 unique peptide in each bio-
logical replicate would be disqualified.

3. Log2-transform the protein intensities and perform
quantile normalization across replicates and conditions
via the normalizeBetweenArrays function, which is avail-
able from the LIMMA R library as part of Bioconductor
(14).

4. Fit a linear model for each protein via the lmFit func-
tion (LIMMA) taking into account the estimated corre-
lation (calculated via the duplicateCorrelation function
(LIMMA)) between technical replicates, if any.

5. Compute the contrasts from the model fit and sum-
mary statistics via the contrasts.fit and eBayes functions
(LIMMA).

6. For each combination of conditions/labels, generate the
following protein intensities data plots:
a. A volcano plot: average log2(intensity ratio) against

–log10(P-value).
b. A value-ordered ratio plot: protein ID against

log2(intensity ratio).
c. A matrix of scatterplots and linear regression lines for

each combination of replicate log2(intensity ratio).
d. An MA plot: average log2(intensity ratio) against av-

erage log2(intensity).
7. In addition, generate the following plots:

a. A histogram of average log2(intensity ratio).
b. Boxplots of log2(intensity) for each technical repli-

cate before and after normalization.
8. Create a ZIP archive comprising the following files and

make it available to the user for downloading:
a. A PDF file for each of the plots mentioned in 6.
b. A single PDF file comprising the plots mentioned in

7.
c. A file comprising all the information generated by the

analysis in a tabular format.
d. A trimmed version of the aforementioned file com-

prising just the statistically significant results.
e. A file listing the proteins identified in each biological

replicate.

f. A file listing the proteins that satisfied the repro-
ducibility criterion (see 2.) for each biological repli-
cate.

g. Seven intermediate files generated during different
stages of the analysis and kept for diagnostic pur-
poses: a design matrix file, a contrasts file, a blocking
variable file, two protein intensities files (early- and
late-stage versions), an early version of the results file
and a log file comprising messages generated by the
R module.

h. A generated R source script together with a binary
data file which can be used to regenerate customized
versions of the data plots.

i. A text file containing the user parameters of the ses-
sion for future use.

j. A ‘README’ text file describing the content of all
files within the ZIP archive.

Figure 2 shows the four data plots previously described
(operation 6), generated by ProteoSign for one of the avail-
able demo data sets. Differentially expressed proteins (ad-
justed P-value < 0.05) are colour-coded.

COMPARISON WITH OTHER TOOLS

In order to highlight ProteoSign’s advantages and its contri-
bution in the field, in Table 2 we provide an overview of the
strengths and the weaknesses of other available proteomic
differential expression analysis tools. We emphasize on the
availability of distinguishing key features and user require-
ments and we show how ProteoSign can complement and
outperform existing state-of-the-art applications.

For example, many tools are not open-source, a great lim-
iting factor for their evolution and improvement via contri-
butions and customizations by the community, while others
are commercial. In addition, for many other tools, the input
of a statistician is mandatory to understand its function-
alities, whereas in more extreme cases programming skills
are required, thus making familiarity with such tools dis-
couraging (e.g. Msstats (15)). Even in cases where any of
the aforementioned expertise is necessary, reformatting and
preparation of the input data is most of the times unavoid-
able. Such preparation can vary from completely manual
editing with the use of in-house scripts or spreadsheets to
semi-automated preparation using data conversion tools.
Another important element is the support of a wide range
of experimental setups. Often, we find tools, which lack im-
portant functionality and come with many limitations like
for example supporting only the SILAC technique and ig-
noring others. For example, while ProteoSign accepts both
precursor ion, isobaric labeling and label-free data, PIQMIe
(16) accepts solely precursor ion data that were processed
exclusively by MQ whereas DAPAR/ProStaR (17) supports
label-free experimental data only and requires advanced sta-
tistical skills to operate. In order to cater for a greater pool
of users, ProteoSign accepts both MQ and PD data.

Finally, in our opinion, moving away from standalone ap-
plications and offering solutions as web services is a very
important step forward for the broader community. This
way, we eliminate uncertainty regarding supporting pack-
ages, stringent installations and input data reformatting,
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Figure 2. Representative plots generated by ProteoSign from the 4-replicate SILAC data set of Tian et al. (19). Average log2(protein intensity ratio) against
–log10(P-value), also known as volcano plot (A), protein ID versus log2(protein intensity ratio), also known as value-ordered ratio plot (B), scatter plots
between replicate log2(protein intensity ratio) along with fitted linear regression lines and corresponding (with respect to the matrix diagonal) Pearson
correlation coefficients (C) and average log2(protein intensity ratio) against average log2(protein intensity), also known as MA plot (D).

Table 2. Key features and requirements of current dedicated proteomics software offering differential protein expression analysis. DIA: data-independent
acquisition; MS: mass spectrometry

Features Requirements

Software name
Source code
open Web server GUI Free

Statistical
skills

Programming
skills

Manual
input data
preparation

Experimental
data
restriction(s)

Publication
reference

DAPAR/ProStaR Yes Yes Yes Yes Yes No Yes Label-free
only

(17)

Msstats Yes No No Yes Yes Yes Yes –– (15)
Msstats/Skyline Yes No Yes Yes No No No Targeted and

DIA MS
only

(24)

InfernoRDN Yes No Yes Yes Yes No Yes –– (25)
Scaffold Q+S No No Yes No No No No SILAC only
Perseus No No Yes Yes Yes No No –– (26)
HiQuant No No Yes Yes Yes No Yes –– (27)
Rover Yes No Yes Yes No No No –– (28)
PIQMIe Yes Yes Yes Yes No No No Precursor

ion only
(16)

MSqRob Yes No Yes Yes Yes No No Label-free
only

(29)

thus making such analyses more appealing to non-experts.
To do that, we utilize a client-server architecture to cope
with performance and calculations and we aim in increasing
the usability by simultaneously reducing the costs and the
resources required for purchasing and maintaining high-
end computer infrastructure. To our knowledge, none of the
currently available tools provides the level of automation
and usability offered by ProteoSign. This makes it unique

in its field and an ideal resource for post-quantification sta-
tistical analysis of protein abundance.

PERFORMANCE

We have empirically tested and evaluated the performance
of ProteoSign. We report all our benchmarks in Table 1.
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FUTURE DIRECTIONS

ProteoSign was designed to reach the broader community
varying from individual end-users to bigger proteomics core
facilities by requiring minimal training and user interven-
tion. There are, however, many features that could be added
to extend its functionality. Enrichment with other statisti-
cal methods for determining differential expression, more
advanced visualizations, support of open Proteomics Stan-
dards Initiative (PSI) standard file format for quantifica-
tion data, analysis at the peptide-level for post-translational
modification (PTM)-centred experiments (e.g. phosphopro-
teomics), analysis of time-series data, pathway analysis and
functional annotations are key points to be implemented in
the next versions. At the moment, ProteoSign is offered as
a web application, but we are planning to expose a REST
API to make its routines programmatically accessible.

CONCLUSION

Due to the rapid advances of MS instrumentation, an expo-
nential growth of large-scale quantitative proteomics stud-
ies has been observed during the past decade. The demands
for high-performance data processing and proteomics anal-
ysis software are today higher than ever, as an increasing
number of research groups have the capacity and capability
to generate large data sets every day. To this end, many tools
try to address this problem, but familiarity with them is of-
ten a bottleneck because of their steep learning curve. Due
to its automation and simplicity, ProteoSign is trying to ful-
fil this demand in the proteomics field and smoothly bridge
the gap between analysis, statistics and visualization. It of-
fers a user-friendly, web based interface, dedicated in pro-
tein differential expression analysis and it is our hope that
ProteoSign will be a protagonist in the ongoing and future
research of detecting key proteins in health and disease.

SERVER INFORMATION

The web server is a Dell PowerEdge R720xd machine run-
ning Ubuntu Linux (kernel 3.2) with 128 GB RAM and two
Intel Xeon E5-2650 processors clocked at 2GHz.
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