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ABSTRACT OF THE DISSERTATION

Topological States in Condensed Matter and Cold Atom Systems

by

Yi Li

Doctor of Philosophy in Physics

University of California, San Diego, 2013

Professor Congjun Wu, Chair
Professor Kenneth Intriligator, Co-Chair

The study of topological states has become a major research focus of con-

temporary physics. This thesis consists of several investigations on novel states

of matter with non-trivial topological properties in both condensed matter and

ultra-cold atom systems.

We have systematically generalized Landau levels (LL) from the two di-

mensions (2D) to 3D and above for both non-relativistic and relativistic fermions.

LLs with the full 3D rotation symmetry and flat energy spectra are constructed

by coupling fermions to the SU(2) Aharanov-Casher potential. Fermion spins are

coupled to orbital motions with a helicity structure, and time-reversal symmetry is

maintained. The lowest LL wavefunctions exhibit the quaternionic analyticity as a
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generalization of the complex analyticity of the 2D cases. Each LL contributes one

branch of gapless helical Dirac modes to the surface spectra. The elegant analytic

properties together with the flat energy spectra are expected to facilitate future

studies of high dimensional fractional topological states. LLs in the Landau-like

gauge are also constructed in high dimensions, which exhibit spatial separations of

2D helical Dirac modes with opposite helicities or 3D Weyl modes with opposite

chiralities. As a square root problem of the non-relativistic cases, LLs of Dirac

electrons are constructed in 3D and above. The zeroth LL states are a branch of

half-fermion Jackiw-Rebbi modes. We have also found parity breaking LL quanti-

zations in harmonic traps in the presence of strong spin-orbit(SO) couplings.

We have studied topological properties in fermion systems with magnetic

dipolar interactions. Different from electric dipoles which are classic vectors, atom-

ic magnetic dipoles are quantum-like. Magnetic dipolar interactions are isotropic

under simultaneous SO rotations. This feature gives rise to a novel p-wave spin

triplet pairing symmetry with the total angular momentum J = 1 of the Cooper

pair. Such a state is fundamentally different from both 3He A and B-phases and

exhibits Weyl type Bogoliubov excitations. In Fermi liquid theory, there exist-

s a novel SO coupled zero-sound-like collective mode exhibiting non-trivial spin

configurations over the Fermi surface.

xvii



Chapter 1

Introduction

1.1 Historical background

The mathematical concept of topology has played an essential role in mod-

ern physics. Topological properties are robust and invariant under continuous

deformations, and thus are insensitive to the detailed system structures. The first

application of topology in physics was by Lord Kelvin. He proposed that different

types of atoms correspond to various knot patterns of ether and the chemical sta-

bility of atoms arises from the topological stability. Even though this knot theory

of atoms turned out to be incorrect, the idea of exploring the topological stability

of matter is ingenious and has ever-lasting impacts in modern physics.

In modern condensed matter physics, topological states and the associated

topological invariant can be exhibited as various exotic observable phenomena. For

example, quantized vortices in superfluids and superconductors are characterized

by the winding number. Such an integer-valued topological invariant describes the

number of times of the U(1) superfluid phase winding around the real space S1

circle enclosing the vortex core [1]. In the context of p-wave spin triplet pairing

superfluids, such as 3He-A and B phases [2], topological analysis has been widely

used to classify various spin textures and superfluid phase vortices [3]. Further-

more, the concept of topological phase transition was developed. The celebrated

example is the Kosterlitz-Thouless (KT) transitions for 2D systems with the U(1)

symmetry [4]. The novelty of the KT transition is that it does not fit the cele-

1



2

brated Landau-Ginzburg formalism. It is not triggered by spontaneous symmetry

breaking but arises from the proliferation of topological defects of vortices and

anti-vortices.

For the quantum electronic states, the 2D integer quantum Hall (QH) effect

[5, 6] is among the earliest examples of states of matter characterized by topology

rather than symmetry [7, 8]. It arises from the Landau level (LL) quantization of

electron cyclotron motion in external magnetic fields. Their magnetic band struc-

tures possess topological Chern numbers defined in time-reversal (TR) symmetry

breaking systems [7, 9, 10, 11, 12]. Near the edges of samples, gapless chiral edge

modes arise which are responsible for the quantized charge transport [13, 14], a

result from the chirality of Landau level wave functions.

Later on, as firstly pointed out by Haldane, LL quantization is not neces-

sary for the integer quantum Hall effect [8]. The essential point is the non-trivial

topology of band structures, which can even be achieved in Bloch wave functions

in lattices with translation symmetry. The underlying topological quantization of

Hall conductance is the Berry phase structure in the 2D Brillouin zone. The value

of Chern number is just the number of the fictitious magnetic monoples enclosed

by the Brillouin zone which has the geometry of a torus in momentum space. Such

a Chern number can only be non-zero in time-reversal (TR) symmetry breaking

systems, such as the celebrated Haldane’s quantum anomalous Hall effect model

defined in honeycomb lattice with complex valued next-nearest-neighbor hoppings

[8].

The TR invariant generalization of Haldane honeycomb model gives rise

to the Kane-Mele model of 2D topological insulators (TIs). Although the Chern

number of the Kane-Mele model is zero, due to the property of T 2 = −1 for

TR transformation of fermions, their band structures are characterized by the Z2-

index. This Z2 topology was generalized into 3D TR invariant systems [15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26]. Such an index is stable against TR invariant

perturbations. On open boundaries, they exhibit odd numbers of gapless helical

edge modes in 2D systems and surface Dirac modes in 3D systems. Current studies

of TR invariant topological insulators (TIs) have made great success in both 2D

and 3D. TIs have been experimentally observed through transport experiments



3

[27, 28, 29] and spectroscopic measurements [30, 31, 32, 33, 34, 35, 36].

So far, most of the current study of 3D TIs have been focused on system-

s with crystal lattice structures whose energy spectra are dispersive and Bloch

wave functions are complicated. In comparison, Landau level (LL) wave functions

are based on harmonic oscillator wave functions, which are simple and explicit.

Furthermore, the LL energy spectra are flat such that interaction effects are non-

perturbative. In the lowest Landau levels (LLL), wave functions exhibit the elegant

complex analyticity. These two features have stimulated the study of fractional

quantum Hall effect (FQHE), in particular, in constructing the Laughlin wavefunc-

tion and the study of fractional statistics of quasi-particles [37, 38]. However, LLs

crucially rely on the 2D geometry, and it is not obvious how to generalize to high

dimensions straightforwardly. In this thesis, we will provide a systematic construc-

tion of high dimensional LLs for both non-relativistic and relativistic fermions, and

investigate their non-trivial topological properties.

Topological states of matter has also been generalized to Cooper pairing

states [39, 40, 41, 2]. For example, the 2D px + ipy pairing chiral superfluids

are also described the Chern number and exhibit chiral edge modes. Different

from the QHE edge modes, these chiral edge modes are Majorana modes due to

the particle-hole symmetry of the Bogoliubov-de Gennes equations of the pairing

states. The 3He-B phase is a topological pairing state in 3D, whose surface spectra

are 2D helical Majorana modes. It would be interesting to further exploring pairing

states with novel topological properties. In this thesis, we will present our study on

topological properties of a novel experimental system of ultra-cold magnetic dipolar

fermions. The magnetic dipolar interactions give rise to a novel mechanism leading

to the p-wave spin triplet pairing. Different from the usual p-wave pairing states,

such as 3He-A and B phases [2], we have found a novel pairing symmetry with

Weyl-type Bogolibov excitations. Topological effects from the magnetic dipolar

interactions on the Fermi liquid collective excitations are also present in this thesis.
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1.2 Motivations and Outline

In this thesis, we present novel topological states of condensed matter and

ultra-cold atom systems in three and higher dimensions. In Chapters 2 - 5, novel

topological Landau levels states for non-interacting spin-1/2 fermions are proposed

in continuum three and higher dimensions. In Chapters 6 and 7, novel topological

Weyl Cooper pairing and collective modes induced by magnetic dipolar interac-

tions are analyzed at the particle-particle channel and the particle hole channel

respectively. The motivations and main results in this thesis are explained as

below.

As we have seen, the success of the prediction and discovery of topological

insulator states in three dimensional Bloch-wave lattices greatly shifts the search

for topological states from two dimensional to three dimensional systems. On

another hand, two dimensional quantum Hall systems defined in the continuum

possess flat and highly degenerate Landau levels with elegant analytic wave func-

tions. Therefore, it would be interesting to develop their common counter part -

Landau level states in continuum three and higher dimensions independent of the

band inversion mechanism.

In Chapter 2, we construct SU(2) Landau level Hamiltonians in the isotropic

symmetric-like gauge in three and higher dimensions. Spin-1
2
fermions are coupled

to an Aharonov-Casher SU(2) gauge field which is equivalent to the 3D harmonic

potential with spin-orbit coupling. The orbital angular momentum and spin are

coupled with a fixed helicity in the flat Landau levels which are dispersionless with

respect to the total angular momentum J . The role of chirality in 2D Landau levels

is replaced by helicity, and thus time-reversal symmetry is maintained. Each Lan-

dau level contributes one branch of gapless helical Dirac modes on open boundaries

as characterized the Z2 topology. The magnetic translation for the highest weight

states and the algebra structure have also been constructed. This scheme can also

be generalized to 4D and arbitrary dimensions by combining harmonic potentials

and spin-orbit coupling of fermions in the fundamental spinor representations.

Inspired by the complex analyticity of 2D lowest Landau levels, we have

found an impressive result that the 3D and 4D LLL wave functions are quater-



5

nionic analytic. Since a two-component complex spinor can be mapped to a sin-

gle component quaternion, we reformulate the SU(2) LLL wave functions in the

quaternion representation. They satisfy the Fueter condition, the quaternionic

generalization of the Cauchy-Riemann condition, and form the complete basis of

quaternionic analytic polynomials. In addition, we have constructed the Laughlin-

type wave functions for spontaneously spin polarized states at fractional fillings

in 4D. The elegant analytic properties of 3D Landau level wave functions and the

non-perturbative interaction effects in flat Landau level spectra can be expected

leading richer results in 3D topological states.

In Chapter 3, to further exploit translational symmetries giving rise to more

convenient description of topological properties, 3D and 4D Landau levels in the

Landau-like SU(2) gauge are constructed. They are spatially separated 2D helical

modes and 3D Weyl modes along the 3rd and 4th directions, respectively. Modes

with opposite helicities or chiralities are shifted in opposite directions. Just like

that the 2D Landau level problem is equivalent to the quantization in the 2D

phase space, the 3D (4D) Landau levels can be viewed as quantization in the 4D

(6D) phase space. As a heuristic example of spatially separated (3+1)D chiral

anomalies, we calculated the 4D quantum Hall effect in Landau level states which

shows quantized non-linear electromagnetic responses.

In Chapter 4, nearly flat parity breaking Landau levels with high degenera-

cy on angular momentums are discussed. They have advantages in possible easier

realizations in two and three dimensional harmonic traps with strong Rashba and

�σ · �p-type spin-orbit couplings respectively. On top of the gapped radial quantiza-
tion provided by the harmonic trap, strong spin-orbit coupling plays an important

double role. At one hand, it selects ground states with a fixed helicity, which leads

topological nontrivial states at low fillings; on another hand, the angular momen-

tum dependence in the energy dispersion is strongly suppressed by this spin-orbit

coupling, which provides almost flat spectra with high degeneracy at the strong

spin-orbit coupling regime.

In Chapter 5, as a relativistic square root problem of Chapters 2, three and

higher dimensional isotropic Landau levels for Dirac fermions are discussed. It is

constructed as a 3D quaternionic generalization of the 2D quantum Hall Hamil-
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tonian in a single valley of graphene, whose square is a supersymmetric version

of the non-relativistic 3D Landau level problem for non-relativistic fermions. It

also shows a non-minimal Pauli coupling between 3+1 D Dirac fermions and the

background field, which can also be considered as a generalization of the parity

anomaly of the 2+1 D Dirac fermions. The zeroth 3D Landau level states are half-

fermion Jackiw-Rebbi zero modes for all the values of angular momentum numbers

(j, jz).

Next, let us move to the novel topological states induced by magnetic dipo-

lar interactions in ultra-cold atom system. Rare earth fermions 161Dy and 163Dy

have been laser-cooled in B. Lev’s group at Stanford. These are novel itinerant sys-

tems with magnetic dipolar interactions as an important energy scale. Unlike the

more commonly studied electric dipoles which are non-quantized classic vectors,

magnetic dipole moments, loosely speaking, are proportional to the total electron

angular momentum up to a Lande factor, and thus are quantum mechanical opera-

tors. Magnetic dipolar interactions are invariant under the simultaneous rotations

of both dipole orientations and the relative displacement between two dipoles, but

not under neither of them. This is a feature of spin-orbit coupling. It is different

from the usual single particle spin-orbit coupling, but an interaction effect.

In Chapters 6, we will find that this spin-orbit interaction gives rise to exotic

Weyl Cooper pairing for spin-1/2 fermions.. The magnetic dipolar interaction

induces a novel pairing symmetry: orbital p-wave L = 1, spin-triplet S = 1, and

total angular momentum J = 1. Such a pairing symmetry is different from those

in the 3He-3 B phase which corresponds to J = 0, and the AHe-3 A phase in which

spin and orbit decouple. To our knowledge, this novel pairing with J = 1 has not

been studied before. The resultant states can be either polar-like with Jz = 0 as

a time-reversal invariant generalization of the 3He-A phase, or, an axial-like time-

reversal symmetry breaking state with Jz = ±1 which is a Cooper pairing version
of the 3D Weyl fermions.

In Chapter 7, we study the spin-orbit coupled Fermi liquid properties with

topological structures for spin-1/2 fermions. The spin-orbit coupled nature of mag-

netic dipolar interaction exhibits exotic Fermi liquid properties, such as spin-orbit

coupled Pomeranchuk instabilities. In addition, we have identified a propagating
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spin-orbit coupled collective mode with non-trivial topological configurations. A

dynamic hedgehog type spin distribution appears on the Fermi surface, and oscil-

lates over space and time.

In Chapter 8, conclusions and outlooks for future investigation are present-

ed.



Chapter 2

Isotropic Landau levels of

non-relativistic fermions in three

and higher dimensions

2.1 Introduction

The current research of 3D topological insulators (TIs) has been focusing

on the Bloch-wave band structures. Nevertheless, Landau levels (LLs) in two

dimensional quantum Hall (2D QH) systems possess the advantages of the elegant

analytic properties and flat spectra, both of which have played essential roles in

the study of 2D integer and fractional QH effects [42, 43, 44, 45, 38, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56]. As pioneered by Zhang and Hu [57], LLs and QH effects

have been generalized to various high dimensional manifolds [57, 58, 59, 60, 61, 62].

However, to our knowledge, TR invariant isotropic LLs have not been studied

in 3D flat space before. It would be interesting to develop the LL counterpart

of 3D TIs in the continuum independent of the band inversion mechanism. The

analytic properties of 3D LL wavefunctions and the flatness of their spectra provide

an opportunity for further investigation on non-trivial interaction effects in 3D

topological states.

In this chapter, we construct 3D isotropic flat LLs in which spin- 1
2
fermions

are coupled to an SU(2) Aharonov-Casher potential. When odd number LLs are

8
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fully filled, the system is a 3D Z2 TI with TR symmetry. Each LL state has the

same helicity structure, i.e., the relative orientation between orbital angular mo-

mentum and spin. Just like that the 2D lowest LL (LLL) wavefunctions in the

symmetric gauge are complex analytic functions, the 3D LLL ones are mapped into

quaternionic analytic functions. Different from the 2D case, there is no magnetic

translational symmetry for the 3D LL Hamiltonian due to the non-Abelian nature

of the gauge field. Nevertheless, magnetic translations can be applied for the Gaus-

sian pocket-like localized eigenstates in the LLL. The edge spectra exhibit gapless

Dirac modes. Their stability against TR invariant perturbations indicates the Z2

nature. This scheme can be easily generalize to N dimensions. Interaction effects

and the Laughlin-like wavefunctions for the 4D case are constructed. Realizations

of the 3D LL system are discussed.

2.2 Three dimensional isotropic Landau levels

from Aharonov-Casher potential

We begin with the 3D LL Hamiltonian for a spin-1
2
non-relativistic particle

as

H3D,LL =
1

2m

∑
a

{− i�∇a − q

c
Aa(�r)

}2
+ V (r), (2.1)

where Aa
αβ = 1

2
Gεabcσ

b
αβr

c is a 3D isotropic SU(2) gauge with Latin indices run

over x, y, z and Greek indices denote spin components ↑, ↓; G is a coupling constant

and σ’s are Pauli matrices; V (r) = −1
2
mω2

0r
2 is a harmonic potential with ω0 =

|qG|/(2mc) to maintain the flatness of LLs. �A can be viewed as an Aharonov-

Casher potential associated with a radial electric field linearly increasing with r

as �E(r) × �σ. H3D,LL preserves the TR symmetry in contrast to the 2D QH with

TR symmetry broken. It also gives a 3D non-Abelian generalization of the 2D

quantum spin Hall Hamiltonian based on Landau levels studied in Ref. [15]. More

explicitly, H3D,LL can be further expanded as a harmonic oscillator with a constant

spin-orbit (SO) coupling as

H3D,LL
∓ =

p2

2m
+
1

2
mω2

0r
2 ∓ ω0�σ · �L, (2.2)
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where ∓ apply to the cases of qG > 0 (< 0), respectively. The spectra of Eq.

(2.2) were studied in the context of the supersymmetric quantum mechanics [63].

However, its connection with Landau levels was not noticed. Eq. (2.1) has also

been proposed to describe the electrodynamic properties of superconductors [64,

65, 66].

Figure 2.1: a) The eigenstates and energy spectrum of spinless 3D harmonic
oscillators labeled by the orbital angular momentum l. States of different radial
principle quantum numbers nr are marked by different colors. b) For spin-1

2
3D

harmonic oscillators, their eigenstates and energy spectrum are labeled by the
total angular momentum j± = l± 1

2
. Following the solid (dashed) lines, the states

with positive (negative) helicity are reorganized into 3D LLs. c) The reorganized
eigenstates show high degeneracy over the total angular momentum for the branch
of positive helicity and form the 3D Landau levels.

The spectra and eigenstates of Eq. 2.1 are explained as follows. We intro-

duce the helicity number for the eigenstate of �L ·�σ, defined as the sign of its eigen-
value of the total angular momentum �J = �L+ �S, which equals ±1 for the sectors of
j± = l ± 1

2
, respectively. At qG > 0, the eigenstates are denoted as ψnr;j±,jz ;l(�r) =

Rnr,l(r)Yj±,jz ;l(Ω̂), where the radial function is Rnrl(r) = rle
− r2

4l2
GF (−nr, l+

3
2
, r2

2l2G
);

F is the confluent hypergeometric function and lG =
√

�c
qG

is the analogy of the

magnetic length; Yj±,jz ;l(Ω̂)’s are the spin-orbit coupled spheric harmonic with

j± = l± 1
2
, respectively. Flat spectra appear with infinite degeneracy in the sector

of j+, where the energy dispersion E
+
nr,l

= (2nr +
3
2
)�ω0 is independent of l, and

thus nr serves as the LL index. For the sector of j−, the energy disperses with l

as E−
nr,l

= [2(nr + l) + 5
2
]�ω0. Similar results apply to the case of qG < 0, where
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the infinite degeneracy occurs in the sector of j−. These LL wavefunctions are the

same as those of the 3D harmonic oscillator but with different organizations. As

illustrated in Fig. 2.1, these eigenstates along each diagonal line with the posi-

tive (negative) helicity fall into the flat LL states for the case of qG > 0 (< 0),

respectively.

2.3 Ladder algebra for the spectra flatness

The degeneracy of the 3D LL over different values of angular momentum is

not accidental, but protected by a ladder algebra constructed below. For example,

we take the case of qG > 0 and consider the positive helicity Landau level states of

H+. The variable transformation for the radial eigenstates is applied as χnr,l(r) =

rRnr,l(r), and the corresponding radial Hamiltonians become

Hl = �ω0

{
− d2

dr∗2
+
l(l + 1)

r∗2
− l +

1

4
r∗2
}
, (2.3)

where the dimensionless radius is r∗ = r
lG
. The ladder operators are defined as

A+(l) =
d

dr∗
− l + 1

r∗
− 1

2
r∗,

A−(l) = − d

dr∗
− l

r∗
− 1

2
r∗. (2.4)

They satisfy the relations

Hl±1A±(l) = A±(l)Hl. (2.5)

Consequentially, χnr,l±1 = A±(l)χnr,l with the same energy independent of l. All

the states in the same LL can be reached by successively applying A± operators.

To connect different LLs, other two ladder operators are defined as

B−(l) = − d

dr∗
− l

r∗
+
1

2
r∗,

C+(l) =
d

dr∗
− l + 1

r∗
+
1

2
r∗, (2.6)

which satisfy

Hl−1B−(l) = B−(l)(Hl + 2�ω0),

Hl+1C+(l) = C+(l)(Hl − 2�ω0), (2.7)
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Figure 2.2: The algebra structure of the 3D Landau levels in the positive helicity
sector. Operators A±(l) connect states with different l in the same Landau level,
while B−(l) and C+(l) connect those between neighboring Landau levels.

respectively. By applying B−(l) (C+(l)) to χnr,l(r), we arrive at

χnr+1,l−1 = B−(l)χnr,l,

χnr−1,l+1 = C+(l)χnr,l, (2.8)

where the energy shifts ±2�ω0, respectively, as illustrated in Fig. 2.2. Similar

algebra can also be constructed for the case of qG < 0.

2.4 Magnetic translation for the highest weight

state

Compared to the 2D case, a marked difference is that the 3D LL Hamiltoni-

an has no magnetic translational symmetry. The non-Abelian field strength grows

quadratically with r as Fij(�r) = ∂iAj −∂jAi− iq
�c
[Ai, Aj] = gεijk

{
σk+ 1

4l2G
rk(�σ ·�r)}.

Nevertheless, magnetic translations still apply to the highest weight states of the

total angular momentum �J = �L + �S in the LLL at qG > 0. For simplicity, we

drop the normalization factors of wavefunctions below. For the positive helicity

states with jz = j+, �L and �S are parallel to each other. Their wavefunctions are

denoted by ψhw
ẑ,l (�r) = (x + iy)le

− r2

4l2
G ⊗ αΩ̂=ẑ, where αΩ̂ is the spin eigenstate of
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γ

y

z

(b)

x

Figure 2.3: The magnetic translation for the LLL state (l = 0) localized at the
origin in the case of qG > 0, whose spin is set along an arbitrary direction in
the xy-plane. The displacement vector �δ lies in the plane perpendicular to spin
orientation. The resultant state remains in the LLL as a localized Gaussian pocket.

Ω̂ · �σ with eigenvalue 1. For these states, the magnetic translation is defined as

usual Tẑ(�δ) = exp[−�δ · �∇+ i
4l2G
�rxy · (ẑ × �δ)], where �δ is the displacement vector in

the xy-plane and �rxy is the projection of �r in the xy-plane. The resultant state,

Tẑ(�δ)ψ
hw
ẑ,l (�r) = e

i
�rxy ·(ẑ×δ)

4l2
G ψhw

ẑ,l (�r − �δ), remains in the LLL. Generally speaking, the

highest weight states can be defined in a plane spanned by two orthogonal unit

vectors ê1,2 as ψ
hw
ê3,l
(�r) = [(ê1+ iê2) ·�r]le

− r2

4l2
G ⊗αê3 with ê3 = ê1× ê2. The magnetic

translation for such states is defined as Tê3(
�δ) = exp[−�δ · �∇ + i

4l2G
�r12 · (ê3 × �δ)],

where �δ lies in the ê1,2-plane and �r12 = �r− ê3(�r · ê3). As an example, let us translate
the LLL state localized at the origin as illustrated in Fig. 2.3. We set the spin

direction of ψLLL
ê3,l=0 in the xy-plane parameterized by ê3(γ) = x̂ cos γ + ŷ sin γ, i.e.,

αê3(γ) =
1√
2
(| ↑〉 + eiγ| ↓〉), and translate it along ê1 = ẑ at the distance R. The

resultant states read as

ψγ,R(ρ, φ, z) = ei
g
2
Rρ sin(φ−γ)e−|�r−Rẑ|2/4l2G ⊗ αê3(γ), (2.9)

where ρ =
√
x2 + y2 and φ is the azimuthal angular of �r in the xy-plane. Such a

state remains in the LLL as an off-centered Gaussian wave packet.

The highest weight states and their descendent states from magnetic trans-

lations defined above have a clear classic picture. The classic equations of motion

are derived as

�̇r =
1

m
�p+ 2ω0(�r × 1

�

�S), �̇p = 2ω0�p× 1

�

�S −mω2
0�r,

�̇S =
2ω0

�

�S × �L, (2.10)
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where �p is the canonical momentum, �L = �r × �p is the canonical orbital angular

momentum, and �S here is the expectation value of �

2
�σ. The first two describe the

motion in a non-inertial frame subject to the angular velocity 2ω0

�

�S, and the third

equation is the Larmor precession. �L · �S is a constant of motion of Eq. 2.10. In

the case of �S ‖ �L, it is easy to prove that both �S and �L are conserved. Then the

cyclotron motions become coplanar within the equatorial plane perpendicular to

�S. Centers of the circular orbitals can be located at any points in the plane.

The above off-centered LLL states break all the rotational symmetries. N-

evertheless, we can recover the rotational symmetry around the axis determined

by the origin and the packet center. Let us perform the Fourier transform of

ψγ,R(ρ, φ, z) in Eq. 2.9 with respect to the azimuthal angle γ of spin polarization.

The resultant state, ψjz=m+ 1
2
,R(ρ, φ, z) =

∫ 2π

0
dγ
2π
eimγψγ,R, is a jz-eigenstate as

e
−|�r−Rẑ|2

4l2
G eimφ

{
Jm(x)| ↑〉+ Jm+1(x)e

iφ| ↓〉
}
, (2.11)

with x = Rρ/(2l2G). At large distance of R, the spatial extension of ψjz=m+ 1
2
,R in

the xy-plane is at the order of ml2G/R, which is suppressed at large values of R and

scales linear with m. In particular, the narrowest states ψ± 1
2
,R exhibit an ellipsoid

shape with an aspect ratio decaying as lG/R when R goes large.

2.5 Quaternionic analyticity in the 3D lowest

Landau level wave functions

In analogy to the fact that the 2D LLL states are complex analytic func-

tions due to chirality, we have found an impressive result that the helicity in 3D

LL systems leads to the quaternionic analyticity. Quaternion is the first discovered

non-commutative division algebra, which has three anti-commuting imaginary u-

nits i, j and k, satisfying i2 = j2 = k2 = −1 and ij = k. It has been applied in

quantum systems [67, 68] and SO coupled Bose-Einstein condensations [69]. Just

like two real numbers forming a complex number, a two-component complex spinor

ψ = (ψ↑, ψ↓)T can be viewed as a quaternion defined as f = ψ↑+jψ↓. In the quater-

nion representation, the TR transformation iσ2ψ
∗ becomes Tf = −fj satisfying
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T 2 = −1; multiplying a U(1) phase factor eiφψ corresponds to feiφ; the SU(2) oper-
ations e−iσx

2
φψ, e−i

σy
2
φψ, and e−iσz

2
φψ map to e

k
2
φf , e

j
2
φf , and e−

i
2
φf , respectively.

The quaternion version of ψLLL
j=j+,jz=m+ 1

2

is fLLL
j+,jz(x, y, z) = Ψ↑,j+,jz+jΨ↓,j+,jz , where

Ψ↑,j+,jz = 〈j+, jz|l,m; 12 , 12〉rlYl,m, Ψ↓,j+,jz = 〈j+, jz|l,m + 1; 1
2
,−1

2
〉rlYl,m+1. Please

note that the Gaussian factor does not appear in fLLL
j+,jz which is a quaternionic

polynomial.

As a generalization of the Cauchy-Riemann condition, a quaternionic ana-

lytic function f(x, y, z, u) satisfies the Fueter condition [70] as

∂f

∂x
+ i

∂f

∂y
+ j

∂f

∂z
+ k

∂f

∂u
= 0, (2.12)

where x, y, z and u are coordinates in the 4D space. In Eq. 2.12, imaginary units

are multiplied from the left, thus it is the left-analyticity condition which works

in our convention. Below, we prove the LLL function fLLL
j+,jz(x, y, z) satisfying Eq.

2.12. Since fLLL
j+,jz is defined in 3D space, it is a constant over u, and thus only the

first three terms in Eq. 2.12 apply to it. Obviously the highest weight states with

spin along the z-axis, fLLL
j+=jz=l+ 1

2

= (x + iy)l, satisfy Eq. 2.12 which is reduced to

complex analyticity. By applying an arbitrary SU(2) rotation g characterized by

the Eulerian angles (α, β, γ), fLLL
j+=jz transforms to

f ′, LLL(x, y, z) = e−iα
2 ej

β
2 e−i γ

2 fLLL
j+=jz(x

′, y′, z′), (2.13)

where (x′, y′, z′) are the coordinates by applying the inverse of g on (x, y, z). It

can be checked that

(
∂

∂x
+ i

∂

∂y
+ j

∂

∂z
)f ′LLL(x, y, z)

= ei
α
2 e−j β

2 ei
γ
2

{ ∂

∂x′
+ i

∂

∂y′
+ j

∂

∂z′

}
fLLL
j+,jz(x

′, y′, z′) = 0. (2.14)

Essentially, we have proved that Fueter condition is rotationally invariant. Since

all the highest weight states are connected through SU(2) rotations, and they form

an over-complete basis for the angular momentum representations, we conclude

that all the 3D LLL states with the positive helicity are quaternionic analytic.

Next we prove that the set of quaternionic LLL states fLLL
j+=l+ 1

2
,jz
form the

complete basis for quaternionic valued analytic polynomials in 3D. Any linear su-

perposition of the LLL states with j+ can be represented as fl =
∑j+

jz=−j+
fLLL
j+,jz cjz ,
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where cjz is a complex coefficient. Because of the TR relation fLLL
j+,−jz = −fLLL

j+,−jzj,

fl can be expressed in terms of l + 1 linearly independent basis as

fl(x, y, z) =
l∑

m=0

fLLL
j+=l+ 1

2
,jz=m+ 1

2
qm, (2.15)

where qm = cm+ 1
2
− jc−m− 1

2
is a quaternion constant. On the other hand, it can

be calculated that the rank of the linearly independent l-th order quaternionic

polynomials satisfying Eq. 2.12 is just C2
l+2−C2

l+1 = l+1, thus fLLL
j+,jz ’s with jz ≥ 1

2

are complete.

For the case of the LLL with negative helicity, their quaternionic version

gLLLj−,jz(x, y, z) are not analytic any more. Nevertheless, since the wavefunctions of

the negative helicity sector can be related to the positive one via Yj−,jz ;l+1(Ω̂) =

−�σ · Ω̂Yj+,jz ;l(Ω̂), where �σ · Ω̂ has odd parity, their quaternionic version is related to

the analytic one through gLLL
j−=(l+1)− 1

2
,jz
= (−x̂k−ŷj+ẑi)fLLL

j+=l+ 1
2
,jz
i. Here, the repre-

sentation of quaternion imaginary units {i, j, k} as Pauli matrices {iσz,−iσy,−iσx}
are used, as derived from the rotational properties of the spin-orbit coupled spheric

harmonics.

2.6 Surface helical Dirac states

The topological nature of the 3D LL problem exhibits clearly in the gapless

surface states. We have numerically calculated the spectra with the open boundary

condition for the positive helicity states with j+ = l + 1
2
. The results for the first

four LLs are plotted in Fig. 2.4. At qG > 0, inside the bulk, LL spectra are

flat with respect to j+ = l + 1
2
. As l goes large, the classical orbital radius rc

approaches the open boundary with the radius R0. For example, for a LLL state,

rc =
√
2llG. When the orbital angular momentum States with l > lc ≈ 1

2
(R0/lG)

2

become surface states. Their spectra become E(l) ≈ l(l+1) �2

2mR2
0
− l�ω0. When the

chemical potential μ lies inside the gap, it cuts the surface states with the Fermi

angular momentum denoted by lf . These surface states satisfy �σ · �L = l�, thus

the their spectra can be linearized around lf as Hbd = (vf/R0)�σ · �L − μ. This is

the Dirac equation defined on a sphere with the radius R0. It can be expanded
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Figure 2.4: The energy dispersion of the first four Landau levels v.s. l = j − 1
2
.

Open boundary condition is used for a ball with the radius R0/lG = 8. The edge
states correspond to those with large values of l and develop linear dispersions
with l.The most probable radius of the LLL state with l is r = lG

√
l. l exceeds a

characteristic value lc ≈ 30, the spectra become dispersive indicating the onset of
surface states.

around �r = R0êr as Hbd = �vf (�k × �σ) · êr − μ. Although the surface spectra

look very similar to those of the 2D quantum Hall edges, a crucial difference is

that each l in Fig. 2.4 does not represent a single chiral state but a set of helical

states of 2j+ + 1 fold degeneracy with j+ = l + 1
2
. Similar reasoning applies to

other Landau levels which also give rise to Dirac spectra. Because of the lack of

Bloch wave band structure, it remains a challenging problem to directly calculate

the bulk topological index. Nevertheless, the Z2 structure manifests through the

surface Dirac spectra. Since each fully occupied LL contributes one helical Dirac

Fermi surface, the bulk is Z2-nontrivial (trivial) if odd (even) number of LLs are

occupied. In the Z2-nontrivial case, the gapless helical surface states are protected

by TR symmetry and are robust under TR invariant perturbations.

In Eq. 2, the harmonic frequency ωT is set to be equal with the SO frequency

ω0 to maintain the flatness of LL spectra. However, the Z2 topology of the 3D

LLs does not rely on this. Define Δω = ωT − ω0, and we set Δω ≥ 0 to maintain

the spectra bounded from below. Δω > 0 corresponds to imposing an external
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potential ΔV (r) = 1
2
m(ω2

T −ω2
0)r

2 to the bulk Hamiltonian of Eq. 2. If Δω � ω0,

ΔV (r) is soft. It results in energy dispersions of 3D LLs but does not affect

their topology. For simplicity, let us check the case of qG > 0. The �σ · �L term

commutes with the overall harmonic potential, thus the LL wavefunctions remain

the same as those of Eq. 2 by replacing ω0 with ωT . Their dispersions become

E+
nr,j+

= (2nr + 1)�ωT + 1
2
�ω0 + j+�Δω which are very slow. In other words,

ΔV (r) imposes a finite sample size with the radius of R2 < �/(mΔω) = 2lG
ω0

Δω

even without an explicit boundary. Inside this region, ΔV is smaller than the LL

gap, and the LL states are bulk states. Their energies are within the LL gap and

the angular momentum numbers j+ < 2ωT

Δω
. LL states outside this region can be

viewed as surface states with positive helicity. For a given Fermi energy, it also

cuts a helical Fermi surface with the same form of effective surface Hamiltonian.

2.7 Generalization to N-dimensions

The above scheme can be easily generalized to arbitrary dimensions by

combining the N -D harmonic oscillator potential and SO coupling. For example, in

4D, we haveH4D,LL =
p24D
2m

+ 1
2
mω2

0r
2
4D−ω0

∑
1≤a<b≤4 Γ

abLab, where Lab = rapb−rbpa
and the 4D spin operators are defined as Γij = − i

2
[σi, σj], Γi4 = ±σi with 1 ≤

i < j ≤ 3. The ± signs of Γi4 correspond to two complex conjugate irreducible

fundamental spinor representations of SO(4), and the + sign will be taken below.

The spectra of the positive helicity states are flat as E+,nr = (2nr+2)�ω. Following

a similar method in 3D, we prove that the quaternionic version of the 4D LLL

wavefunctions satisfy the full equation of Eq. 2.12. They form the complete basis

for quaternionic left-analytic polynomials in 4D. For each l-th order, the rank can

be calculated as C3
l+3 − C3

l+2 =
1
2
(l + 1)(l + 2).

More generally, 3D and 4D LL systems can be generalized to N -D by re-

placing the vector and scalar potentials in Eq. 1 in the main text with the SO(N)

gauge field

Aa(�r) = grbSab, V (r) = −N − 2

2
mω0r

2, (2.16)

respectively, where Sab are the SO(N) spin operators constructed based on the
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Clifford algebra. The rank-k Clifford algebra contains 2k + 1 matrices with the

dimension 2k × 2k which anti-commute with each other denoted as Γa (1 ≤ a ≤
2k + 1). Their commutators generate

Γab = − i

2
[Γa,Γb], (2.17)

for 1 ≤ a < b ≤ 2k+1. For odd dimensions N = 2k+1, the SO(N) spin operators

in the fundamental spinor representation can be constructed by using the rank-k

matrices as Sab = 1
2
Γab. For even dimensions N = 2k+2, we can select 2k+2 ones

among the 2k + 3 Γ-matrices of rank-(k + 1) to form Sab = 1
2
Γab, then all of Sab

commute with Γ2k+3. This 2k+1-D spinor representation of Sab is thus reducible

into the fundamental and anti-fundamental representations. Both of them are 2k-

D, which can be constructed from the rank-k Γ-matrices as Sa,2k+2 = ±1
2
Γa(1 ≤

a ≤ 2k + 1) and Sab = 1
2
Γab(1 ≤ a < b < 2k + 1), respectively.

As for TR properties, Γa’s are TR even and odd at even and odd values

of k, respectively. We conclude that at N = 2k + 1, the N -D version of the

LL Hamiltonian is TR invariant in the fundamental spinor representation. At

N = 4k, it is also TR invariant in both the fundamental and anti-fundamental

representations. However N = 4k + 2, each one of the fundamental and anti-

fundamental representations is not TR invariant, but transforms into each other

under TR operation.

Similarly, the N -D LL Hamiltonian can be reorganized as the harmonic

oscillator with SO coupling. For the case of qG > 0, it becomes

HN,+ =
p2

2m
+
1

2
mω2

0r
2 − �ω0ΓabLab, (2.18)

where Lab = rapb − rbpa with 1 ≤ a < b ≤ N . The l-th order N -D spherical har-

monic functions are eigenstates of L2 = LabLab with the eigenvalue of �
2l(l+D−2).

The N -D harmonic oscillator has the energy spectra of Enr,l = (2nr+ l+N/2)�ω.

When coupling to the fundamental spinors, the l-th spherical harmonics split into

the positive helicity (j+) and negative helicity (j−) sectors, whose eigenvalues of

the ΓabLab are �l and −�(l+N − 2), respectively. For the positive helicity sector,

its spectra become independent of l as E+ = (2nr +N/2)�ω, with the radial wave
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functions are

Rnrl(r) = rle−r2/4l2GF (−nr, l +N/2, r2/2l2G). (2.19)

The highest weight states in the LLL can be written as

ψhw
ab,±l(�r) = [(êa ± iêb) · �r]le−r2/4l2G ⊗ α±,ab, (2.20)

where α±,ab is the eigenstate of Γab with eigenvalue ±1, respectively. The magnetic
translation in the ab-plane by the displacement vector �δ takes the form

Tab(�δ) = exp
[− �δ · �∇+

i

2l2G
Γab(raδb − rbδa)

]
. (2.21)

Similarly to the 3D case, staring from the LLL state localized around the origin

with l = 0, we can perform the magnetic translation and Fourier transformation

with respect to the transverse spin polarization. The resultant localized Gaussian

pockets are LLL states of the eigenstates of the SO(N −1) symmetry with respect

to the translation direction �δ. Again each LL contributes to one channel of surface

Dirac modes on SN−1 described by Hbd = (vf/R0)ΓabLab − μ.

2.8 Discussions of interaction effects in 3D Lan-

dau levels

We consider the interaction effects in the LLLs. For simplicity, let us

consider the 4D system and the short-range interactions. Fermions can devel-

op spontaneous spin polarization to minimize the interaction energy in the LLL

flat band. Without loss of generality, we assume that spin takes the eigenstate

of Γ12 = Γ34 = σ3 with the eigenvalue 1. The LLL wavefunctions satisfying this

spin polarization can be expressed as ΨLLL,4D
m,n = (x + iy)m(z + iu)ne

− r24D
4lc

G
2 ⊗ |α〉

with |α〉 = (1, 0)T . The 4D orbital angular momentum number for the orbital

wavefunction is l = m+ n with m ≥ 0 and n ≥ 0. It is easy to check that ΨLLL,4D
m,n

is the eigenstate of
∑

ab LabΓ
ab with the eigenvalue (m + n)�. If all the ΨLLL,4D

m,n ’s

are filled with 0 ≤ m < Nm and 0 ≤ n < Nn, we write down a Slater-determinant

wavefunction as

Ψ(v1, w1; · · · ; vN , wN) = det[vαi w
β
i ], (2.22)
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where the coordinates of the i-th particle form two pairs of complex numbers

abbreviated as vi = xi + iyi and wi = zi + iui; α, β and i satisfy 0 ≤ α < Nm,

0 ≤ β < Nn, and 1 ≤ i ≤ N = NmNn. Such a state has a 4D uniform density as

ρ = 1
4π4l4G

. We can write down a Laughlin-like wavefunction as the k-th power of Eq.

2.22 whose filling relative to ρ should be 1/k2. For the 3D case, we also consider the

spin polarized interacting wavefunctions. However, it corresponds to that fermions

concentrate to the highest weight states in the equatorial plane perpendicular to

the spin polarization, and thus reduces to the 2D Laughlin states. In both 3D

and 4D cases, fermion spin polarizations are spontaneous, thus low energy spin

waves should appear as low energy excitations. Due to the SO coupled nature,

spin fluctuations couple to orbital motions, which leads to SO coupled excitations

and will be studied in a later publication.

2.9 Discussions of possible experimental realiza-

tions

One possible experimental realization for the 3D LL system is the strained

semiconductors. The strain tensor εab =
1
2
(∂aub + ∂bua) generates SO coupling

as HSO = �α[(εxyky − εxzkz)σx + (εzykz − εxykx)σy + (εzxkx − εyzky)σz] where α =

8×105m/s for GaAs. The 3D strain configuration with �u = f
2
(yz, zx, xy) combined

with a suitable scalar potential gives rise to Eq. 2.1 with the correspondence

ω0 =
1
2
αf . A similar method was proposed in Ref. [15] to realize 2D quantum

spin Hall LLs. A LL gap of 1mK corresponds to a strain gradient of the order of

1% over 60 μm, which is accessible in experiments. Another possible system is the

ultra-cold atom system. For example, recently evidence of fractionally filled 2D

LLs with bosons has been reported in rotating systems [71].

Furthermore, synthetic SO coupling generated through atom-light interac-

tions has become a major research direction in ultra-cold atom system [72, 73].

The SO coupling term in the 3D LL Hamiltonian ω�σ · �L is equivalent to the

spin-dependent Coriolis forces from spin-dependent rotations, i.e., different spin

eigenstates along ±x, ±y and ±z axes feel angular velocities parallel to these axes,
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respectively. An experimental proposal to realize such an SO coupling has been

designed and will be reported in a later publication [74].

2.10 Summary

We have generalized the flat LLs to 3D and 4D flat spaces, which are

high dimensional topological insulators in the continuum without Bloch-wave band

structures. The 3D and 4D LLL wavefunctions in the quaternionic version form

the complete bases of the quaternionic analytic polynomials. Each filled LL con-

tributes one helical Dirac Fermi surface on the open boundary. The spin polarized

Laughlin-like wavefunction is constructed for the 4D case. Interaction effects and

topological excitations inside the LLLs in high dimensions would be interesting for

further investigation. In particular, we expect that the quaternionic analyticity

would greatly facilitate this study.

Acknowledgements: This work grew out of early collaborations with

Professor J. E. Hirsch, to whom we are especially grateful. We thank S. C. Zhang

and J. P. Hu for helpful discussions. Near the completion of this manuscript, we

learned that the 3D Landau level problem is also studied by Zhang [75]. This

chapter is in part a reprint of the paper “High-Dimensional Topological Insulators

with Quaternionic Analytic Landau Levels”, by Yi Li and Congjun Wu, Phys.

Rev. Lett., 110, 216802 (2013).



Chapter 3

Topological insulators with SU(2)

Landau levels

3.1 Introduction

Time-reversal (TR) invariant topological insulators (TI) have become a

major research focus in condensed matter physics[76, 25, 26]. Different from the 2D

quantum Hall (QH) and quantum anomalous Hall systems which are topologically

characterized by the first Chern number [5, 7, 14, 11, 8], time-reversal invariant

TIs are characterized by the second Chern number in 4D [57, 22] and the Z2 index

in 2D and 3D [16, 15, 21, 22, 18, 20, 24]. Various 2D and 3D TIs are predicted

theoretically and identified experimentally exhibiting stable gapless 1D helical edge

and 2D surface modes against TR invariant perturbations [21, 27, 31, 77, 33, 34].

Topological states have also been extended to systems with particle-hole symmetry

and superconductors [78, 79, 41].

Most current studies of 2D and 3D TIs focus on Bloch-wave bands in lat-

tice systems. The non-trivial band topology arises from spin-orbit (SO) coupling

induced band inversions [21]. However, Landau levels (LL) are essential in the

study of QH effects because their elegant analytical properties enable construction

of fractional states. Generalizing LLs to high dimensions gives rise to TIs with

explicit wavefunctions in the continuum, which would facilitate the study of the

exotic fractional TIs. Efforts along this line were pioneered by Zhang and Hu

23
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[57]. They constructed LLs on the compact S4 sphere by coupling fermions with

the SU(2) monopole gauge potential, and various further developments appeared

[80, 59, 61, 62, 81]. 2D TIs based on TR invariant LLs have also been investigated

[15]. LLs of Schrödinger fermions have been generalized to high-dimensional flat

space [82] in Chapter 2 by combining the isotropic harmonic potential and SO

coupling. Further development for parity-breaking systems and high dimensional

Dirac fermions[83, 84] will be discussed in Chapter 4 and 5 respectively.

In all the above works, angular momentum is explicitly conserved, thus they

can be considered as LLs in the symmetric-like gauge. In 2D, LL wavefunctions in

the Landau gauge are particularly intuitive: they are 1d chiral plane-wave modes

spatially separated along the transverse direction. The QH effect is just the 1d

chiral anomaly in which the chiral current generated by the electric field becomes

the transverse charge current. In this article, we develop high dimensional LLs with

flat spectra as spatially separated helical Dirac or chiral Weyl fermion modes, i.e.,

the SU(2) Landau-like gauge. They are 3D and 4D TIs defined in the continuum

possessing stable gapless boundary modes. For the 4D case, they exhibit the

4D quantum Hall effect[57, 22], which is a quantized non-linear electromagnetic

response related to the spatially separated (3+1)D chiral anomaly. Our methods

can be easily generalized to arbitrary dimensions and also to Dirac fermions.

3.2 Three dimensional Landau levels with a “Lan-

dau” gauge

We begin with the 3D TR invariant LL Hamiltonian for a spin-1
2
fermion

as

H3D,ν=±
LL =

�p2

2m
+
1

2
mω2

soz
2 − νωsoz(pxσy − pyσx), (3.1)

which couples the 1D harmonic potential in the z direction and the 2D Rashba SO

coupling through a z-dependent SO coupling strength. H3D,ν
LL possess translation

symmetry in the xy-plane, TR and parity symmetries. H3D,+
LL and H3D,−

LL share

the same physics up to a z → −z transformation. For simplicity, unless explicitly
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mentioned, we only consider H3D,+
LL and suppress the index ν. Eq. 3.1 can be

reformulated in the form of an SU(2) background gauge potential as H3D
LL = 1

2m
(�p−

e
c
�A)2 − 1

2
mω2

soz
2, where ωso = |eG|/mc, and �A takes the Landau-like gauge as

Ax = Gσyz, Ay = −Gσxz and Az = 0. In Chapter 2, a symmetric-like gauge

with �A′ = G�σ × �r is used, which explicitly preserves the 3D rotational symmetry.

However, the SU(2) vector potentials �A′ and �A are not gauge equivalent. As

shown below, the physical quantities of Eq. 3.1, such as density of states (DOS),

are not 3D rotationally symmetric. Nevertheless, these two Hamiltonians belong

to the same topological class. A related Hamiltonian is also employed for studying

electromagnetic properties in superconductors with cylindrical geometry [66].

Eq. (3.1) can be decomposed into a set of 1D harmonic oscillators along the

z-axis exhibiting flat spectra, a key feature of LLs. We define a characteristic SO

length scale lso =
√

�

mωso
. Each of the reduced 1d harmonic oscillator Hamiltonian

is associated with a 2D helical plane-wave state as Hz(�k2D) =
p2z
2m

+ 1
2
mω2

so[z −
l2sok2DΣ̂2D(k̂2D)]

2, where k2D = (k2x+ k
2
y)

1
2 and �k2D = (kx, ky); the helicity operator

is defined as Σ̂2D(k̂2D) = k̂xσy − k̂yσx. The n-th LL eigenstates are solved as

Ψn,�k2D,Σ(�r) = ei
�k2D·�r2Dφn[z − z0(k2D,Σ)]⊗ χΣ(k̂2D), (3.2)

where �r2D = (x, y); χΣ(k̂2D) are eigenstates of the helicity satisfying Σ̂χΣ(k̂2D) =

ΣχΣ(k̂2D) with helicity eigenvalues Σ = ±1; φn[z−z0] are the eigenstates of the n-th
harmonic levels with the central positions located at z0, and z0(k2D,Σ) = Σl2sok2D.

The energy spectra of the n-th LL is En = (n+ 1
2
)�ωso, independent of �k2D and Σ.

The classical equations of motion for H3D
LL are derived as

�̇r =
�p− e

c
�A

m
, �̇p2D = 0, ṗz = 2ω(�p× �S)z −mω2z,

�̇S2D = −2ω
�
zSz�p2D, Ṡz =

2ω

�
z�S2D · �p2D, (3.3)

where �S2D = (1
2
σx,

1
2
σy) and Sz =

1
2
σz. If we choose the initial condition of spin

�S such that Sz,0 = 0 and �S2D,0 ⊥ �p2D,0, then �S is conserved and lies in the xy-

plane. The motion is reduced to a coplanar cyclotron one in the vertical plane

perpendicular to �S. In other words, the orbital angular momentum and spin are

locked, a feature from SO coupling.
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Figure 3.1: (Color online) 3D and 4D LLs for H3D
LL and H

4D
LL as spatially separated

2D helical SO plane-wave modes localized along the z-axis (A), and 3D Weyl
modes localized along the u-axis (B), respectively. Their central locations are

z0(�k2D,Σ) = Σl2sok2D and u0(�k3D,Σ) = Σl2sok3D, respectively. Note that 2D Dirac
modes with opposite helicities and the 3D ones with opposite chiralities are located
at opposite sides of z = 0 and u = 0 planes, respectively.

In the 2D LL case, the spatial coordinates x and y are non-commutative

if projected to a given LL, say, the lowest LL (LLL). The LLL wavefunctions are

chiral 1d plane-waves along the x-direction whose central y-position is y0 = l2Bkx,

thus 1d chiral modes with opposite chiralities are spatially separated. Consequent-

ly, the xy-plane can be viewed as the 2D phase space of a 1d system, in which y

plays the role of kx. The momentum cut-off of the bulk states is determined by the

system size along the y-direction as |kx| < Ly

2l2B
. Similarly, the 3D LL wavefunctions

in Eq. 3.2 are spatially separated 2D helical plane-waves along the z-axis. As

shown in Fig. 3.1 (A), for states with opposite helicity eigenvalues, their central

positions are shifted in opposite directions. After the projection into the LLL, z is

equivalent to l2so(kxσy − kyσx), and thus

[x, z]LLL = il2soσy, [y, z]LLL = −il2soσx, [x, y]LLL = 0. (3.4)

Interestingly, the 3D LL states can be viewed as states in the 4D phase

space of a 2D system (with x and y coordinates), in which |z| plays the role of the
magnitude of the 2D momentum. In fact, the momentum cut-off of the bulk states
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is exactly determined by the spatial size Lz along the z direction as

k2D < kB2D ≡ Lz

2l2so
, (3.5)

in which −Lz

2
< z < Lz

2
. Applying the open boundary condition along the z

direction, and periodic boundary conditions in the x and y directions with spatial

sizes Lx and Ly respectively, we can easily count the total number of states to

be N = LxLyL2
z

8πl4so
. The L2

z dependence of N may seem puzzling for a 3D system,

but expressing Lz in terms of Eq. (3.5), we find N = 1
2π
LxLy(k

B
2D)

2, which is the

conventional state counting of a 2D system expressed in terms of the 4D phase

space volume.

The topological property of this 3D LL system manifests through its helical

surface spectra. Let us consider the upper boundary located at z = zB for H3D
LL .

For simplicity, we only consider the LLL as an example. If zB > 0, the positive

helicity states Ψ0,�k2D,Σ=1 with k2D > kB2D = zBl
−2
so are confined at the boundary.

The 1d harmonic potential associated with �k2D and Σ = 1 is truncated at z = zB,

and thus the surface spectra acquire dispersion. If we neglect the zero-point energy,

the surface mode dispersion is approximated by 1
2
mω2

so(k− kB2D)
2l4so with k > kB2D.

If the chemical potential μ lies above the LLL, it cuts the spectra at surface states

with a Fermi wavevector kf > kB2D. The Fermi velocity is vf ≈ m(kf − kB2D)ω
2
sol

4
so.

The surface Hamiltonian is approximated as Hsf ≈ vf (�p × �σ) · ẑ − μ with an

electron-like Fermi surface with Σ = 1. In another case, if the upper boundary is

located at zB < 0, then the negative helicity states Ψ0,�k2D,Σ=−1 with k2D < kB2D,

and all the positive helicity states are pushed to the boundary as surface modes.

Depending on the value of μ, we can have a hole-like Fermi surface with Σ = −1,
a Dirac Fermi point, or, an electron-like Fermi surface with Σ = 1. Similarly, any

other LL gives rise to a branch of gapless helical surface modes, and each filled bulk

LL contributes one helical Fermi surface. For the lower boundary, the analysis is

parallel to the above. Each filled LL gives rise to an electron-like helical Fermi

surface with Σ = −1, or hole-like with Σ = 1.
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3.3 Construction of four dimensional Landau

levels with a “Landau” gauge

The above procedure can be straightforwardly generalized to any higher

dimension. For example, the 4D LL Hamiltonian is denoted as

H4D,ν=±
LL =

p2u
2m

+
1

2
mω2u2 +

�p23D
2m

− νωu�p3D · �σ, (3.6)

where u and pu refer to the coordinate and momentum of the 4th dimension,

respectively, and �p3D is the 3-momentum in the xyz-space. Without lose of the

generality, let us focus on the case of ν = + and Eq. 3.6 can be represented

as H4D
LL = 1

2m

∑4
i=1(pi − e

c
Ai)

2 − mω2u2, where the SU(2) vector potential takes

the Landau-like gauge with Ai = Gσiu for i = x, y, z and Au = 0. Eq. 3.6

preserves the translational and rotational symmetries in the xyz-space and TR

symmetry. Similar to the 3D case, the 4D LL spectra and wavefunctions are

solved by reducing Eq. 3.6 into a set of 1d harmonic oscillators along the u-axis

as Hu(�k3D) =
p2u
2m

+ 1
2
mω2(u − l2sok3DΣ̂3D)

2 where k3D = (k2x + k2y + k2z)
1
2 and

Σ̂3D = k̂3D · �σ. The LL wavefunctions are

Ψn,�k3D,Σ(�r, u) = ei
�k3D·�rφn[u− u0(k3D,Σ)]⊗ χΣ(�k3D), (3.7)

where, the central positions u0(k3D,Σ) = Σl2sok3D; χΣ are eigenstates of 3D helicity

Σ̂3D with eigenvalues Σ = ±1. Inside each LL, the spectra are flat with respect

to �k3D and Σ. This realizes the spatial separation of the 3D Weyl fermion modes

as shown in Fig. 3.1 (B). After the LLL projection for H4D
LL , the non-commutative

relations among coordinates are [ri, u] = il2soσi and [ri, rj] = 0 for i = x, y, z.

Similar to the discussions of the 3D case, the 4D LLs can be viewed as states of

the 6D phase space of a 3D system: increasing the width along the u-direction

corresponds to increasing the bulk momentum cut-off k3D < kB3D ≡ Lu/(2l
2
so). If

the LLL is fully-filled, the total number of states is given by N = LxLyLzL3
u

24π2l6so
. Re-

expressing Lu = 2kB3Dl
2
so we find N = 1

3π2LxLyLz(k
B
3D)

3, which is the conventional

state counting of a 3D system expressed in terms of the 6D phase space volume.

With an open boundary imposed along the u direction, 3D helical Weyl fermion

modes appear on the boundary.
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Figure 3.2: The central positions u0(m, kz, ν) of the 4D LLs in the presence of the

magnetic field �B = Bẑ. The branch of m = 0 runs across the entire u-axis, which
gives rise to quantized charge transport along u-axis in the presence of �E ‖ �B as
indicated in Eq. 3.10.

Now let us consider the generalized 4D QHE[57, 22] as the nonlinear elec-

tromagnetic response of (4 + 1)D LL system to the external electric and magnetic

(EM) fields, with �E ‖ �B in the xyz-space. Without loss of generality, we choose the

EM fields as �E = Eẑ and �B = Bẑ, which are minimally coupled to the spin-1/2

fermion,

H4D
LL(E,B) = − �

2

2m
∇2

u +
1

2
mω2

(
u+ il2so

�D · �σ
)2
, (3.8)

where �D = �∇ − i e
�c
�Aem. Here �Aem is the U(1) magnetic vector potential in the

Landau gauge with Aem,x = 0, Aem,y = Bx and Aem,z = −cEt. We define lB =√
�c
eB
, where eB > 0 is assumed.

The �B-field further reorganizes the chiral plane-wave states inside the n-th

4D LL into a series of 2D magnetic LLs in the xy-plane. For the moment, let us

set Ez = 0. The eigenvalues En = (n+ 1
2
)�ωso remain the same as before without

splitting, while the eigen-wavefunctions are changed. We introduce a magnetic LL

index m in the xy-plane. For the case of m = 0, the eigen-wavefunctions are spin

polarized as

Ψn,m=0(ky, kz) = eikyy+ikzzφn[u− u0(kz,m = 0)]

⊗ χm=0[x− x0(ky)], (3.9)
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where x0 = l2Bky and χ0 = [φ0(x−x0), 0]T is the zero mode channel of the operator
−i �D · �σ with the eigenvalue of λ0 = kz. The central positions of the u-direction

harmonic oscillators are u0(kz,m = 0) = l2sokz. For m ≥ 1, the eigen-modes

of −i �D · �σ come in pairs as χm,±[x − x0(ky)] = [αm,±φm(x − x0), βmφm−1(x −
x0)]

T , where, coefficients αm,± = lBkz ± √l2Bk2z + 2m, βm = −i√2m, and the

eigenvalues are λm,± = ±
√
k2z + 2ml−2

B . The corresponding eigen-wavefunctions

are Ψn,m,±(ky, kz) = eikyy+ikzzφn[u−u0(kz,m,±)]χm,±[x−x0(ky)], where the central
positions u0(kz,m,±) = ±l2so

√
k2z + 2ml−2

B .

For the solutions of Eq. 3.9 with the same 4D LL index n, the 2D magnetic

LLs with index m = 0 are singled out. The central positions of states in this

branch are linear with kz, and thus run across the entire u-axis, while those of

other branches with m ≥ 1 only lie in one half of the space as shown in Fig. 3.2.

After turning on Ez, kz is accelerated with time as kz(t) = kz(0)+eEzt/�, and thus

the central positions u0(m = 0, kz) moves along the u-axis. Only the m = 0 branch

of the magnetic LL states contribute to the charge pumping which results in an

electric current along the u-direction. Within the time interval Δt, the number of

states with each filled 4D LL passing a cross section perpendicular to the u-axis

is N = LxLy

2πl2B

eEΔtLz

2π
, which results in the electric current density e

LxLyLz

dN
dt
. If the

number of fully filled 4D LLs is nocc, the total current density along the u-axis is

ju = noccα
e

4π2�

�E · �B, (3.10)

where α = e2/(�c) is the fine-structure constant. This quantized non-linear elec-

tromagnetic response is in agreement with results from the effective theory [22] as

the 4D generalization of the QH effect. If we impose open boundary condition-

s perpendicular to the u-direction, the above charge pump process corresponds

to the chiral anomalies of Weyl fermions with opposite chiralities on the two 3D

boundaries, respectively. Since they are spatially separated, the chiral current

corresponds to the electric current along the u-direction.

Although the DOS of our 4D LL systems is different from the 4D TIs in the

lattice system with translational symmetry [22], their electromagnetic responses

obey the same Eq. 3.10. It is because that only the spin-polarized m = 0 branch

of LLs, Ψn,m=0(ky, kz), is responsible for the charge pumping. For this branch,
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Bz-field quantizes the motion in the xy-plane so that the x and u coordinates play

the role of ky and kz, respectively. Consequently, the system can be viewed as the

4D phase space of coordinates y and z, and scales uniformly as LxLyLzLu with

the conventional thermodynamic limit of a 4D system.

3.4 High dimensional LLs of Dirac electrons

The above procedure can be generalized to Dirac fermions as square root

problems to Eq. (3.1) and Eq. (3.6). For the 3D case, we have

H3D
LL,Dirac =

lsoωso√
2

⎡
⎣ 0 �σ · �p+ i z�

l2so
σz

�σ · �p− i z�
l2so
σz 0

⎤
⎦ , (3.11)

whose square exhibits a diagonal block form with a super-symmetric structure

as (H3D
Dirac)

2/(�ωso) = diag(H3D,+
LL − �ωso

2
, H3D,−

LL + �ωso

2
). The eigenvalues of E-

q. (3.11) are E±n = ±√
n�ωso. The eigen-wavefunctions are constructed based

on the eigenstates of H3D,ν=±
LL as Ψ3D

±n,Dirac(
�k2D,Σ) =

1√
2
[Ψ+

n,�k2D,Σ
,±Ψ−

n−1,�k2D,−Σ
]T ,

where Ψ−
n,�k2D,Σ

= ei
�k2D·�r2Dφn[z + z0(k2D,Σ)] ⊗ χΣ(k̂2D) is the eigenstate of H

3D,−
LL .

The 0th LL states are Jackiw-Rebbi half-fermion modes with only the upper two

components nonzero [85, 86]. The 4D Hamiltonian can be constructed as

H4D
LL,Dirac =

lsoωso√
2

[
0 �σ · �p3D − i au

lso

�σ · �p3D + i a
†
u

lso
0

]
, (3.12)

where au =
1√
2lso

(u+ i l
2
so

�
pu) is the phonon annihilation operator in the u-direction.

The eigen-values are still E±n = ±√
n�ωso, and the eigenstates are

Ψ4D
±n,Dirac(

�k3D,Σ) =
1√
2
[Ψ+

n,�k2D,Σ
,±Ψ+

n−1,�k2D,Σ
]T . (3.13)

3.5 Laughlin-type wavefunctions

The construction of the Laughlin-type wavefunctions for interacting fermion-

s is difficult for these SO coupled high dimensional LL systems. Nevertheless, for

the 4D case in the magnetic field, the LLL states with both n = 0 and m = 0 are



32

spin-polarized, and their total DOS is finite as ρ4Dn=m=0 =
1

4π2l2sol
2
B
. Even though

they are degenerate with other LLL states with (n = 0,m �= 0), they are favored

by repulsive interactions if they are partially filled. The Laughlin wavefunction

in the Landau gauge for the 2D LLs has been constructed in Ref. [87]. We gen-

eralize it to the 4D case, and define w = ei
x+iy
Lx and v = ei

z+iu
Lz , then LL states

are represented as whxvhz up to a Gaussian factor e
− u2

2lso
− y2

2l2
B . The Laughlin-type

wavefunction can be constructed as

Ψ(w1, v1; ...;wNxNy , vNxNy) = (det[whx
i v

hz
i ])

q, (3.14)

where q is an odd number; det[whx
i v

hz
i ] represents the Slater determinant for the

fully filled single particle states whxvhz and 0 ≤ hx ≤ Nx− 1 and 0 ≤ hz ≤ Nz − 1.

The study of the topological properties of Eq. 3.14 will be deferred to a later

publication.

3.6 Summary

We have generalized LLs into 3D and 4D in the Landau-like gauge by cou-

pling spatially dependent SO couplings with harmonic potentials. This method

can be generalized to arbitrary dimensions by replacing the Pauli-matrices with

the Γ-matrices in corresponding dimensions. These high dimensional LLs exhibit

spatial separation of helical or chiral fermion modes with opposite helicities, which

give rises to gapless helical or chiral boundary modes. The 4D LLs give rise to the

quantized non-linear electromagnetic responses as a spatially separated (3+1)D

chiral anomaly.
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Chapter 4

2D and 3D topological insulators

with isotropic and parity-breaking

Landau levels

4.1 Introduction

The study of topological insulators has become an important research focus

in condensed matter physics [25, 26]. Historically, the research of topological band

insulators started from the two dimensional (2D) quantum Hall effect. Landau level

(LL) quantization gives rise to nontrivial band topology characterized by integer-

valued Chern numbers. [7, 11] In fact, LLs are not the only possibility for realizing

topological band structures. Quantum anomalous Hall band insulators with the

regular Bloch-wave structure are in the same topological class as 2D LL systems in

magnetic fields [8]. Later developments generalize the anomalous Hall insulators

to time-reversal (TR) invariant systems in both two and three dimensions. [21, 16,

17, 15, 18, 19, 20, 22, 24] This is a new class of topological band insulators with

TR symmetry which are characterized by the Z2 index. Experimentally, the most

obvious signatures of band topology appear on open boundaries, in which they

exhibit helical edge or surface states. Various 2D and 3D materials are identified as

topological insulators, and their stable helical boundary modes have been detected

[27, 31, 77, 32, 33, 88]. Furthermore, systematic classifications have been performed

33
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in topological insulators and superconductors in all the spatial dimensions, which

contain ten different universal classes [41, 79].

Although the current research is mostly interested in topological insulators

with Bloch-wave band structures, the advantages of LLs make them appealing for

further studies. We use the terminology of LLs here in the following general sense

not just for the usual 2D LLs in magnetic fields: topological single-particle level

structures labeled by angular momentum quantum numbers with flat or nearly flat

spectra. On open boundaries, LL systems develop gapless surface or edge modes

which are robust against disorders. For example, in the 2D quantum Hall LL

systems, chiral edge states are responsible for quantized charge transport. For the

2D LL based quantum spin Hall systems, helical edge modes are robust against TR-

invariant disorders [21]. Similar topological properties are expected for even high-

dimensional LL systems, which exhibit stable gapless surface modes. For the usual

2D LLs, the symmetric gauge is used in which angular momentum is conserved.

We do not use the Landau gauge because it does not maintain rotational symmetry

explicitly. LL wavefunctions are simple and explicit, and their elegant analytical

properties nicely provide a platform for further study of topological many-body

states in high dimensions.

Generalizing LLs to high dimensions started by Zhang and Hu [57] on

the compact S4 sphere by coupling large spin fermions to the SU(2) magnetic

monopole, where fermion spin scales with the radius as R2. Later on various gen-

eralizations to other manifold were developed. [80, 59, 61, 62, 60] The LLs of

non-relativistic fermions have been generalized to arbitrary dimensional flat space

RD in Chapter 2. The general strategy is very simple: the harmonic oscillator plus

spin-orbit (SO) coupling LijΓij, where Lij and Γij are the orbital and spin angular

momenta in a general dimension. Reducing back to two dimensions, it becomes the

quantum spin Hall Hamiltonian in which each spin component exhibits the usual

2D LLs in the symmetric gauge, but the chiralities are opposite for two spin com-

ponents [15]. For a concrete example, say, in three dimensions, each LL contributes

a branch of helical Dirac surface modes at the open boundary, thus its topology

belong to the Z2-class. Furthermore, LLs have also been constructed to arbitrary

dimensional flat spaces for relativistic fermions [83], which is a square root prob-
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lem of the above non-relativistic cases. It is a generalization of the quantum Hall

effect in graphene [89, 90, 91] to high dimensional systems with the full rotational

symmetry. This construction can also be viewed as a generalization of the Dirac

equation from momentum space to phase space by replacing the momentum oper-

ator with the creation and annihilation operators of phonons. The zero-energy LL

is a branch of half-fermion modes. When it is empty or fully occupied, fermions

are pumped from the vacuum, a generalization of parity anomaly [92, 93, 94, 95]

to high dimensions.

In this chapter, we study another class of isotropic LLs with TR symmetry

but breaking parity in two and three dimensions, which can also be straightfor-

wardly generalized to arbitrary dimensions. The Hamiltonians are again harmonic

oscillator plus SO couplings, but here the SO coupling is the coupling between spin

and linear momentum, not orbital momentum. In 2D, it is simply the standard

Rashba SO coupling, and in 3D it is the �σ · �p-type SO coupling. In both cases,

parity is broken. The strong SO coupling provides the projection of the low energy

Hilbert space composed of states with the proper helicity. The radial quantization

from the harmonic potential further generates gaps between LLs. The SO coupling

strongly suppresses the dispersion with respect to the angular momentum within

each LL. In two and three dimensions, they exhibit gapless helical boundary modes

which are stable against TR-invariant perturbations, thus they belong to the Z2

topological class. In fact, parent Hamiltonians, whose first LL wavefunctions are

obtained analytically and whose spectra are exactly flat, can be constructed by

the dimensional reduction method from the high-dimensional LL Hamiltonians

constructed in Chapter 2.

This chapter is organized as follows. The study of isotropic and TR-

invariant LLs with parity breaking is presented in Sect. 4.2. The generalization

to three dimensions is given in Sec. 4.3. The experimental realization of the 3D

Rashba-like �σ · �p -type SO coupling is performed in Sec. 4.4. Conclusions and

outlook are summarized in Sec. 4.5.
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4.2 Two-dimensional spin-orbit coupled Landau

levels with harmonic potential

In this section, we consider the Hamiltonian of Rashba SO coupling com-

bined with a harmonic potential

H2D = −�
2∇2

2m
+
1

2
mω2r2 − λ(−i�∇xσy + i�∇yσx), (4.1)

where ω is the trapping frequency; λ is the SO coupling strength with the unit of ve-

locity. Equation (4.1) is invariant under the SO(2) rotation and the vertical-plane

mirror reflection. In other words, the system enjoys Cv∞ symmetry. Equation

(4.1) also satisfies the TR symmetry of fermions, i.e., T = iσ2K, with T
2 = −1

and K the complex conjugation. However, parity symmetry is broken explicitly

by the Rashba term.

Equation 4.1 can be realized in solid-state quantum wells and ultra-cold

atomic traps. Rashba SO coupling due to inversion symmetry breaking at 2D

interfaces has been studied extensively in the condensed matter literature; [96] its

energy scale can reach very large values. [97] Furthermore, Wigner crystallization

in the presence of Rashba SO coupling has been studied. [98] In the context of ultra

cold atoms, Bose-Einstein condensation with Rashba SO coupling plus harmonic

potential was studied by Wu and Mondragon in Ref. [99], in which the spontaneous

generation of a half-quantum vortex is found. Later, there was great experimental

progress in generating a synthetic gauge field from light-atom interaction, [72]

which inspired a great deal of theoretical interest. [100, 101, 102, 103, 104, 105]

4.2.1 Energy spectra

In a homogeneous system with Rashba SO coupling, i.e., ω = 0 in Eq. (4.1),

the single-particle states ψ±(�k) are eigenstates of the helicity operator �σ · (�k × ẑ)

with eigenvalues ±1, respectively. The spectra for these two branches are ε±(�k) =
�
2(k ∓ k0)

2/(2m), and the lowest energy states are located around a ring with

radius k0 = mλ/� in momentum space. Such a system has two length scales: the

characteristic length of the harmonic trap lT =
√

�

mω
, and the SO length scale
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lso = 1/k0. The dimensionless parameter α = lT/lso describes the SO coupling

strength with respect to the harmonic potential.

As presented in Ref. [106] for the case of strong SO coupling, i.e., α � 1,

the physics picture is mostly clear in momentum representation. The lowest energy

states are reorganized from the plane-wave states ψ+(�k) with �k near the SO ring.

Energetically, these states are separated from the opposite-helicity ones ψ−(�k) at

the order of Eso = �k0λ = α2Etp, where Etp = �ω is the scale of the trapping

energy. As shown below, the band gap in such a system is at the scale of Etp.

Since α � 1, we can safely project out the negative helicity states ψ−(�k). After the

projection, the harmonic potential in momentum representation becomes Laplacian

coupled to a Berry connection �Ak as

Vtp =
m

2
ω2(i�∇k − �Ak)

2, (4.2)

which drives particle moving around the ring with a moment of inertial I =Mkk
2
0;

Mk = �
2/(mω2) is the effective mass in momentum representation. The Berry

connection Ak is defined as

�Ak = i〈ψk+|�∇k|ψk+〉 = 1

2k
êk, (4.3)

where |ψk+〉 is the lower branch eigenstate with momentum �k. It is well known

that for the Rashba Hamiltonian, the Berry connection Ak gives rise to a π flux

at �k = (0, 0) but without Berry curvature at �k �= 0. [107] This is because a two-

component spinor after a 360◦ rotation does not come back to itself but acquires

a minus sign.

The crucial effect of the π flux in momentum space is that the angular

momentum eigenvalues become half-integers as jz = m+ 1
2
. The angular dispersion

of the spectra becomes Eagl(jz) = �
2j2z/2I = (j2z/2α

2)Etp. On the other hand, the

radial potential in momentum representation is V (k) = 1
2
Mkω

2(k−k0)2 for positive-
helicity states. For states with energies much lower than Eso, we approximate V (k)

as harmonic potential, thus the radial quantization is Erad(nr) = (nr +
1
2
)Etp up

to a constant. The same dispersion structure was also noted in recent works

[102, 104, 103], which show

Enr,jz ≈
(
nr +

1

2
− α2

2
+

j2z
2α2

)
Etp, (4.4)
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where the zero point energy is restored here. Since α � 1, we treat nr as a band

index and jz as a good quantum number for labeling states inside each band.

4.2.2 Dimensional reduction from the 3D Landau level

Hamiltonian

Equation (4.1) not only can be introduced from the solid-state and cold

atom physics contexts, but also can be viewed as a result of dimensional reduction

from a 3D LL Hamiltonian [Eq. (4.5)] proposed in Chapter 2. This method

builds up the connection of two topological Hamiltonians in three dimensions with

inversion symmetry and two dimensons with inversion symmetry breaking. The

resultant 2D Hamiltonian Eq. (4.7) exhibits the same physics that Eq. (4.1) does

for eigenstates with jz < α in the case of α � 1. The advantage of Eq. (4.7)

is that its lowest LL wavefunctions are analytically solvable and their spectra are

flat.

Just like the usual 2D LL Hamiltonian in the symmetric gauge, which is

equivalent to a 2D harmonic oscillator plus the orbital Zeeman term, the 3D LL

Hamiltonian is as simple as a 3D harmonic potential plus SO coupling as explained

in Chapter 2,

H3D,LL =
p2

2m
+
1

2
mω2r2 − ω�L · �σ, (4.5)

which possesses 3D rotational symmetry and TR symmetry. Its eigen-solutions are

classified into positive- and negative-helicity channels according to the eigenvalues

of �σ · �L = l� or −(l+ 1)�, respectively. In the positive (negative)-helicity channel,

the total angular momentum j± = (l ± 1
2
)�. The spectra in the positive-helicity

channel, Enr,l = (2nr +
3
2
)�ω, are dispersionless with respect to the value of j+,

thus these states are LLs. In the presence of an open boundary, each filled LL

contributes a branch of helical Dirac Fermi surface described as

Hsf = vf (�σ × �p) · êr − μ, (4.6)

where êr is the local normal direction of the surface, vf the Fermi velocity, and μ

the chemical potential. The stability of surface states under TR-invariant pertur-

bations are characterized by the Z2 topological index.
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Now let us perform the dimension reduction on Eq. (4.5) by cutting a 2D

off-centered plane perpendicular to the z-axis with the interception z0. Within this

2D plane of z = z0, Eq. (4.5) reduces to

H2D,re = H2D − ωLzσz. (4.7)

The first term is just Eq. (4.1) with Rashba SO strength λ = ωz0, and the 2D

harmonic trap frequency is the same as the coefficient of the Lzσz term. The

dimensionless parameter α = lT/lso = |z0|/lT . If z0 = 0, Rashba SO coupling

vanishes. In this case, Eq. (4.7) becomes the 2D quantum spin Hall Hamiltonian

proposed in Ref. [21], which is a double copy of the usual 2D LL with opposite

chiralities for spin-up and -down components. At z0 �= 0, Rashba coupling appears

which breaks the conservation of σz.

The lowest LL solutions have been found for Eq. (4.5), whose center is

shifted from the origin to �rc = (0, 0, z0) in Chapter 2. These states do not keep j

conserved but do maintain jz as a good quantum number as

ψ3D,jz ,z0(ρ, φ, z) = e
− ρ2+(z−z0)

2

2l2
T eimφ

×
(

Jm(k0ρ)

−sgn(z0)eiφJm+1(k0ρ)

)
, (4.8)

where ρ =
√
x2 + y2; jz = m+ 1

2
; k0 = z0/l

2
T ; and φ is the azimuthal angle around

the z axis. The ψ3D,jz ,z0 ’s form a complete set of the lowest LL wave functions, but

they are nonorthogonal if their jz’s are the same. By setting z = z0 in the above

wavefunctions, we define the 2D reduced wave functions as

ψ2D,jz(ρ, φ) = e
− ρ2

2l2
T

(
eimφJm(k0ρ)

−sgn(z0)ei(m+1)φJm+1(k0ρ)

)
.

(4.9)

Noticing that ∂zψ3D,jz ,z0 |z=z0 = 0, it is straightforward to check that ψ2D,jz ’s are

solutions for the lowest LLs for the 2D reduced Hamiltonian in Eq. (4.7) as

H2D,re ψ2D,jz =
(
1− α2

2

)
�ω ψ2D,jz . (4.10)
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Figure 4.1: (Color online) Energy dispersions of the solutions for the first four
LLs to the 2D reduced Hamiltonian Eq. (4.7) (solid lines), and those for (Eq. 4.1)
(dashed lines). The value of α = lT/lso = 35. The lowest LLs of Eq. (4.7) are
dispersionless with respect to jz. Please note that the overall shift of the zero-
point energy difference 1

2
�ω is performed for the spectra of Eq. (4.1) for a better

illustration.

The TR partner of Eq. (4.9) can be written as

ψ2D,−jz(ρ, φ) = e
− ρ2

2l2
T

(
sgn(z0)e

−i(m+1)φJm+1(k0ρ)

e−imφJm(k0ρ)

)

= (−)m+1sgn(z0)e
− ρ2

2l2
T

(
e−i(m+1)φJ−(m+1)(k0ρ)

−sgn(z0)e−imφJ−m(k0ρ)

)
. (4.11)

4.2.3 Relation between Eq. (4.1) and Eq. (4.7)

The difference between the two Hamiltonians, Eq. (4.7) and (Eq. 4.1),

is the Lzσz term. Its effect depends on the distance ρ from the center. We are

interested in the case of |z0| � lT , i.e., α � 1. Let us first consider the lowest LL.

With small values of jz, i.e., m < α, Jm(k0ρ) and Jm+1(k0ρ) already decay before

reaching the characteristic length lT of the Gaussian factor. We approximate their

classic orbital radii as the locations of the maxima of Bessel functions, which are

roughly ρc,jz ≈ m
α
lT < lT . In this regime, the effect of Lzσz compared to the Rashba

part is a small perturbation, of the order of ωρc,jz/λ = ρc,jz/z0 � 1. Thus, these

two Hamiltonians share the same physics. On the other hand, let us consider the

case of very large values of jz, say, m � α2. The Bessel function behaves like ρm

or ρm+1 at 0 < ρ < m
α
lT . The classic orbit radii are just ρc,jz ≈

√
mlT . The physics
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of Eq. (4.7) in this regime is dominated by the Lzσz term and, thus, is the same

as that of 2D quantum spin Hall LL wave functions. However, for Eq. (4.1), the

projection to the sub-Hilbert space spanned by ψ+(�k) is not valid. Its eigenstates

in this regime cannot be viewed as LLs anymore. For intermediate values of jz,

i.e., α < m < α2, the physics is a crossover between the above two limits.

For higher LLs of Eqs. (4.7) and (4.1), we expect that their wave functions

can be approximated by a form of Eq. (4.9) by multiplying a polynomial of ρ at

the nr-th power. As a result, the physics is similar to what is analyzed in the

previous paragraph. At small values of jz < α, the energy gap is quantized in

terms of the unit of Etp = �ω as in Eq. (4.4) for both Hamiltonians. At very large

values of jz � α2, the LLs of Eq. (4.7) become flat again and the quantization

gap is at 2Etp = 2�ω.

We perform the numerical calculation of the energy levels of the reduced

2D Hamiltonian Eq. (4.7), as plotted in Fig. 4.1. The numerically calculated

spectra of Eq. 4.1, which were plotted in Refs. [102] and [104], are also presented

for comparison. Only the spectra of jz > 0 are plotted, and those of jz < 0 are

degenerate with their partners by the TR transformation which flips the sign of

jz. The lowest LL of Eq. (4.7) is flat as expected, while higher LLs are weakly

dispersive which is hardly observable for the range of jz presented. The LLs of Eq.

(4.1) are dispersive with the dependence on jz shown in Eq. (4.4). Inside the gaps

between adjacent LLs of Eq. (4.1), the number of states is of the order of α.

4.2.4 The Z2 nature of the topological properties

Due to their connection to the 2D reduced version of the LL Hamiltonian,

we still denote the low-energy bands of Eq. (4.1) as 2D parity breaking LLs. As

shown in Eq. (4.4), although these LLs are not exactly flat, their dispersion over

jz is strongly suppressed by the large value of α. If the chemical potential μ lies

in the middle of the band gap, the Fermi angular momentum jkf,z is at the order

of α. The classic radius of such a state is roughly lT . As analyzed in Sec. 4.2.2,

for states with |jz| < α, two Hamiltonians Eqs. (4.1) and (4.7) share the same

physics.
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Compared to the usual 2D LL states, the SO coupled LLs of Eq. (4.1) in

the form of Eq. (4.9) are markedly different. The smallest length scale is not lT ,

but the SO coupling length scale lso = lT/α � lT . Instead, we can use lT as the

cut-off of the sample size by imposing an open boundary condition at the radius

of lT . States with |jz| < α are considered as bulk states which localize within the

region of ρ < lT . States with |jz| ∼ α are edge states.

We take the thermodynamic limit as follows. First, ω is fixed, which deter-

mines the LL gaps. Then we set m → 0 and λ → ∞ while keeping lso = �/(mλ)

unchanged, such that lT =
√

�

mω
→ ∞. The number of bulk states scales linearly

with α, and the level spacing scales as 1/α → 0 at the Fermi angular momentum

jkf ,z ∼ α.

The next important question is the stability of the gapless edge modes.

This situation is different from the usual 2D LL problem, in which inside each LL

for each value of angular momentum m, there is only one state. Those edge modes

are chiral and, thus, robust against external perturbations. Since Eq. (4.1) is TR

symmetric, for each filled LL there is always a pair of degenerate edge modes ψnr,±jz

on the Fermi energy, where nr is the LL index. Nevertheless, these two states are

Kramer pairs under the TR transformation satisfying T 2 = −1. In other words,

the edge modes are helical rather than chiral.

We generalize the reasoning in Ref. [16] and [17] for topological insulators

with good quantum numbers of lattice momenta to our case with angular momen-

tum good quantum numbers. Any TR-invariant perturbation cannot mix these

two states to open a gap. In other words, the mixing term,

Hmx = g(ψ†
2D,nr,jz

ψ2D,nr,−jz + h.c.), (4.12)

is forbidden by TR symmetry. On the other hand, if two LLs with indices nr and

n′
r cut the Fermi energy, the mixing term,

Hmx = g′(ψ†
2D,nr,jz

ψ2D,n′
r,−jz − ψ†

2D,n′
r,jz
ψ2D,nr,−jz

+ h.c.), (4.13)

is allowed by TR symmetry and opens the gap. Consequently, the topological

nature of such a system is characterized by the Z2 index, even though it is not
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clear how to define the Pfaffian-like formula for it due to the lack of translational

symmetry. [17] Similarly to the 2D topological insulators based on lattice Bloch-

wave states, in our case, if odd numbers of LLs are filled such that there are odd

numbers of helical edge modes, the gapless edge modes are robust.

Imagining an open boundary at ρ ≈ lT , we derive an effective edge Hamil-

tonian for these helical edge modes. As |jz| ∼ α and taking the limit of α → +∞,

these edge modes are pushed to the boundary. We expand the spectra around

jz,fm. The edge Hamiltonian in the basis of jz can be written as

Hedge =
∑
jz

(
�vf
lT

|jz| − μ)ψ†
nr,jz

ψnr,jz (4.14)

where μ =
�vf
lT
jz,fm. The edge modes ψnr,±jz around jz,fm can also be expanded as

ψnr,jz =

(
fnre

imφ

gnre
i(m+1)φ

)
, ψnr,−jz = Tψnr,jz . (4.15)

fnr and gnr are real numbers parameterized as

fnr = cos
θnr

2
, gnr = sin

θnr

2
, (4.16)

which are determined by the details of the edge. We neglect their dependence on

|jz| for states close enough to the Fermi energy. The effective edge Hamiltonian

can also be expressed in the plane-wave basis if we locally treat the edge as flat

Hnr,edge = vf

(
sin θnr [(�p× êr) · ẑ)](�σ · êr)

+ cos θnr(�p× êr) · σz
)
− μ, (4.17)

where êr is the local normal direction on the circular edge; both terms are allowed

by rotational symmetry, TR symmetry, and the vertical mirror symmetry in such

a system. Each edge channel is a branch of helical one-dimensional Dirac fermion

modes.

Equation (4.1) can be defined on the compact S2 sphere, which takes the

simple form

H =
L2

2I
− ω�L · �σ. (4.18)
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The eigenvalues of �L·�σ take l� and −(l+1)� for the positive and negative helicities
of j± = l± 1

2
, respectively. For convenience, we choose the parameter value of Iω/�

as a large half-integer, then for the lower energy branch, the energy minimum takes

place at j0,+ = l0+
1
2
= Iω/�. The lowest LLs become SO-coupled harmonics with

j+ = j0,+ and (2l0+2)-fold degeneracy. The gap between the lowest LLs and higher

LLs is Δ = �
2/(2I), which is independent of ω. To take the thermodynamic limit,

we keep I constant while increasing the sphere radius R, and maintain ω scaling

with R2, such that the density of states on the sphere is a constant.

4.3 Three-dimensional spin-orbit �σ ·�p coupling in

the harmonic trap

In this section, we generalize the results in Sec. 4.2 to three dimensions.

We consider the �σ · �p-type SO coupling combined with a 3D harmonic potential

H3D = −�
2∇2

2m
+
1

2
mω2r2 − λ(−i��∇ · �σ). (4.19)

Equation (4.19) possesses the 3D rotational symmetry, and TR symmetry of ferm-

ions with T 2 = −1. The parity symmetry is broken by the �σ ·�k term, and there is
no mirror plane symmetry either. The quantities lso, lT , α, and k0 are defined in

the same way as in Sec. 4.2.

Although it is difficult to realize strong SO coupling in the form of σ · �p
in solid-state systems, it can be designed through light-atom interactions in ultra

cold atom systems. We present an experimental scheme to realize Eq. (4.19) in

Sec. 4.4.

4.3.1 Energy spectra

Again, we consider the limit of strong SO coupling, i.e., α � 1. It is

straightforward to generalize the momentum space picture in Sec. 4.2 to the 3D

case as presented in Ref. [103] and summarized below. The helicity operator �σ · k̂
is employed to define the helicity eigenstates of plane waves (�σ · k̂)ψ�k,± = ±ψ�k,±.

Only positive-helicity states ψ�k+ are kept in the low energy Hilbert space. The
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harmonic potential becomes the Laplacian operator in momentum space, and thus

is equivalent to a quantum rotor subject to the Berry phase in momentum space

as Vtp =
1
2
m(i�∇k − �Ak)

2. The moment of inertial is again I = Mkk
2
0 and Mk =

�
2/(mω2). The Berry connection �Ak = i〈ψ�k,±|�∇k|ψ�k,±〉 is the vector potential of
the U(1) magnetic monopole. As a result, the angular momentum quantization

changes to that j takes half-integer values starting from 1
2
. The energy dispersion

becomes Eagl(j) = �
2j(j+1)/2I = (j(j+1)/2α2)Etp, and each level is (2j+1)-fold

degenerate. The radial quantization is the same as before. Thus the dispersion

can be summarized as

Enr,j,jz ≈
(
nr +

1

2
− α2

2
+
j(j + 1)

2α2

)
Etp, (4.20)

where nr is the band index, or, the LL index, and j is the angular momentum

quantum number.

4.3.2 Dimensional reduction from the 4D Landau level

Hamiltonian

Following the same logic as in Sec. 4.2.2, we present the dimensional re-

duction from the 4D LL Hamiltonian [Eq. (4.22)] to arrive at a 3D SO coupled

Hamiltonian closely related to Eq. (4.19). The 3D LL Hamiltonian, Eq. (4.5),

can be easily generalized to arbitrary dimensions by combining the n-D harmonic

potential and the n-D SO coupling between orbital angular momenta and fermion

spins in the fundamental spinor representations. In four dimensons, there are two

non-equivalent fundamental spinors, both of which have two components. Without

loss of generality, we choose one of them as

σij = εijkσk, σi4 = σi, (4.21)

where i, j = 1, 2, and 3. The orbital angular momentum operators are defined as

Lij = −i�xi∇j + i�xj∇i where i, j = 1, 2, 3, and 4. The 4D LL Hamiltonian in the
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flat space is defined as

H4D,LL =
4∑

i=1

−�
2∇2

i

2m
+
mω2

2

4∑
i=1

r2i

− ω
∑

1≤i<j≤4

Lijσij, (4.22)

which possesses TR and parity symmetry.

The lth-order 4D orbital spherical harmonics coupled to the fundamental

spinor can be decomposed into the 4D SO-coupled spherical harmonics in the

positive- and negative-helicity sectors, where Lijσij take eigenvalues of l� and

−(l + 2)�, respectively. The eigen wave functions of Eq. (4.22) in the positive-

helicity channel are dispersionless with respect to l as Enr,+ = (2nr + 2)�ω. Their

radial wave functions are Rnr,l(r) = rle−r2/2l2TF (−nr, l + 2, r2/l2T ), where F is the

standard confluent hypergeometric function. With an open boundary of an S3

sphere, each filled LL contributes to a gapless surface mode of 3D Weyl fermions

as

H3D,surface = vf êr,iσijpj − μ, (4.23)

where êr is the unit vector normal to the S
3 sphere. The topological index for such

a 4D LL systems with TR symmetry is Z rather than Z2.

We perform the dimensional reduction on Eq. (4.22) from four to three

dimensions. We cut a 3D off-center hyper-plane perpendicular to the fourth axis

with the interception x4 = w0 Within this 3D hyper-plane of (x1, x2, x3, x4 = w0),

Eq. (4.22) reduces to

H3D,redc = H3D,SO − ω�L · �σ, (4.24)

where the first term is just Eq. (4.22) with the SO-coupling strength λ = ωw0.

It contains another SO-coupling term, �L · �σ, and its coefficient is the same as the
harmonic trapping frequency. Similarly to the previous reduction from three to

two dimensions, here we have α = lT/lso = |w0|/lT . At w0 = 0, Eq. (4.24) becomes

the 3D LL Hamiltonian of Eq. (4.5) with parity symmetry. If w0 �= 0, the �σ · �p
term breaks parity symmetry. Following the same reasoning as in Sec. 4.2.2, Eqs.
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(4.19) and (4.24) share the same physics for eigenstates with j < α in the case of

α � 1.

Similarly as before, we construct an off-center solution to the 4D LL prob-

lem. We use �r to denote a point in the subspace of x1,2,3, and Ω̂ as an arbitrary

unit vector in the x1-x2-x3 space. We consider the plane of Ω̂-x̂4 spanned by the

orthogonal vectors Ω̂ and x̂4. It is easy to check that the following wave functions,

which depends only on coordinates in the Ω̂-x̂4 plane are the lowest LL solutions

to the 4D LL Hamiltonian, Eq. (4.22)

(�r · Ω̂ + ix4)
le

− r2+x24
2l2

T ⊗ αΩ̂, (4.25)

where αΩ̂ = (cos θ
2
, sin θ

2
eiφ)T satisfies

(σi4Ωi)αΩ̂ = (�σ · Ω̂)αΩ̂ = αΩ̂. (4.26)

In this set of wavefunctions, both the orbital angular momentum and spin are

conserved and added up; they are called the highest weight states in group theory.

In fact, these states can be rotated into any plane accompanied by a simultaneous

rotation in the spin channel. Based on the structure of the highest weight states,

we can still define the magnetic translation operator in the Ω̂-x4 plane along the

x4 axis as

TΩ̂x4
(w0x̂4) = exp

(
− w0∂x4 −

i

l2T
(�r · Ω)w0

)
. (4.27)

Applying this operator to the Gaussian pocket of the solution with l = 0 in Eq.

(4.25), we arrive at the off-center solution

ψΩ,w0(�r, x4) = e
− r2+x24

2l2
T e

−i
rw0
l2
T ⊗ αΩ̂. (4.28)

This solution, however, breaks the rotational symmetry. In order to restore the

3D rotational symmetry around the new center (0, 0, 0, w0), we perform a Fourier

transformation over the direction of Ω as

ψ4D;j,jz(�r, x4) =

∫
dΩ Y− 1

2
,l+ 1

2
,m+ 1

2
(Ω̂)ψΩ,w0(�r, x4).

(4.29)
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where j = l + 1
2
and jz = m + 1

2
. Please note that due to the singularity of αΩ

over the direction of Ω̂, monopole spherical harmonics, Y− 1
2
,l+ 1

2
,m+ 1

2
(Ω), are used

instead of regular spherical harmonics.

Again, noting that ∂x4ψ4D;j,jz(�r, x4)|x4,w0 = 0, we simply set x4 = w0; then

it is simple to check that the reduced 3D wave functions

ψ3D,j,jz(�r) = ψ4D;j,jz(�r, w0) (4.30)

are the solutions to Eq. (4.24) for the lowest LLs as

H3D,redcψ3D,j,jz(�r) =
(3
2
− α2

2

)
�ωψ3D,j,jz(�r).

(4.31)

ψ3D,j,jz(�r) can be simplified as

ψ3D,jjz(�r) = e
− r2

2l2
T

{
jl(k0r)Y+,j,l,jz(Ωr) + ijl+1(k0r)

× Y−,j,l+1,jz(Ωr)
}
, (4.32)

where k0 = w0/l
2
T = mλ/� and λ = w0ω; jl is the lth-order spherical Bessel

function. Y±,j,l,jz ’s are the SO-coupled spherical harmonics defined as

Y+,j,l,jz(Ω) =
(√ l +m+ 1

2l + 1
Ylm,

√
l −m

2l + 1
Yl,m+1

)T
with a positive eigenvalue of l� for �σ · �L, and

Y−,j,l,jz(Ω) =
(
−
√
l −m

2l + 1
Ylm,

√
l +m+ 1

2l + 1
Yl,m+1

)T
with a negative eigenvalue of −(l + 1)� for �σ · �L.

The difference between Eq. (4.24) and Eq. (4.19) is the term �σ · �L, whose
effect is weakened as the distance from center r gets small. The radial distributions

of jl(k0r) in Eq. (4.32) and Jm(k0ρ) in Eq. (4.9) are similar. Following the same

reasoning presented in Sec. 4.2.2, in the limit of α � 1, we can divide the lowest

LL states of Eq. (4.32) into three regimes: j < α, j � α2, and α < j < α2. At

j < α, the classic orbit radius scales as rc,j ≈ j
α
lT < lT . Again in this regime,

the effect of �σ · �L is a perturbation of the order of rc,jz/z0 � 1; thus the two

Hamiltonians, Eq. (4.24) and Eq. (4.19), share the same physics. Similarly, in the

regime of j � α2, �σ · �L dominates, and the physics of Eq. (4.24) comes back to

the 3D LL Hamiltonian, Eq. (4.5), while that of Eq. (4.19) is no longer LL-like.
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4.3.3 The Z2 helical surface states

Following the same reasoning as in Sec. 4.2.4, we denote the low-energy

bands of Eq. (4.19) as 3D parity breaking LLs. For the lowest LL, below the

energy of the bottom of the second LL, the angular momentum j takes values

from 1
2
to the order of α at which the radius of the LL approaches lT . For this

regime j < α, Eqs. (4.19) and (4.24) share the same physics. Again, the smallest

length scale is the SO coupling length scale lso = lT/α � lT . States with |j| � α

are considered bulk states which localize within the region ρ � lT . States with

|jz| ∼ α are edge states. The number of bulk states scales linearly with α2.

Now we impose an open boundary condition of an S2 sphere with radius r ≈
lT , and consider the stability of the edge modes against TR invariant perturbations.

Let us consider one filled LL. The Fermi energy lies between the gap, and thus cuts

the dispersion at surface states. In the limit of α → ∞, the energy level spacing

between adjacent angular momenta j and j + 1 scales as �ω/α → 0 for surface

modes with j ∼ α. Thus we can always choose the Fermi angular momentum jf

satisfying jf = 2l+ 1
2
. For this value of jf , there is an odd number of 2l+1 Kramer

pairs between ψjf ,±jz for jz =
1
2
to jf . Again according to the reasoning of the

Z2-classification in Refs. [16] and [17], these states cannot be fully gapped out by

applying TR invariant perturbations. Certainly, for those states with j = 2l + 3
2

close to the Fermi energy, they can be fully gapped, but they are only part of

the spectra, and do not change the topological properties. Again, if two LLs with

different indices nr and n
′
r cut the Fermi energy, the zero energy states at the Fermi

level can be fully gapped out. Thus, the topological nature of Eq. (4.19) is Z2.

We further present the effective surface Hamiltonian for surface modes in

the limit of jf ∼ α → +∞. The effective surface Hamiltonian of the 3D topological

insulators with the spherical boundary condition has also been discussed in Refs.

[108] and [109]. The surface Hamiltonian in the eigen-basis of j and jz can be

written as

Hsf =
∑
j,jz

(
�vf
lT

|j| − μ)ψ†
nr,j,jz

ψnr,j,jz , (4.33)

where μ =
�vf
lT
jf . The construction of the accurate surface Hamiltonian in the
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Figure 4.2: (Color online) Level diagram for atom-laser coupling. Four lower
energy levels are coupled to two excited levels to compose a hybrid tripod and
tetrapod configuration.

plane-wave basis depends on the detailed information of surface modes ψj,jz(r,Ωr)

for j ≈ jf and, thus, is cumbersome. Nevertheless based on the symmetry analysis,

we can write the general form as

Hnr,edge = vf

{
sin θnr(�p× �σ) · êr

+ cos θnr

[
�p · �σ − (�p · êr)(�σ · êr)

]}− μ. (4.34)

where êr is the local norm direction on the S2-sphere. Both terms obey the local

SO(2) rotational symmetry around the êr and TR symmetry. The first Rashba

term also obeys the vertical mirror symmetry, while the second term does not. The

second term favors the spin aligning with the momentum, while the second favors

a relative angle of 90◦. For a general value of θnr , which is determined by the

non-universal surface properties and θnr , Eq. (4.34) determines a relative rotation

between spin and momentum orientation at the angle of θnr . It is still a helical

Dirac Fermi surface.

4.4 Experimental realization for 3D SO coupling

In the ultra cold atom context, there has been great progress in the synthetic

gauge field, or, artificial SO coupling from light-atom interactions [73]. Experimen-

tally, artificial SO coupling has been generate in ultra cold atom systems. [72] Two
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dimensional Rashba and Dresselhaus SO coupling in the harmonic potential has

been proposed using a double-tripod configuration [110]. Since the pseudo-spin

degrees of freedom are represented by the two lowest energy levels, this scheme is

immune to decay due to collision and spontaneous emission process. [111]

In this section, we propose the experimental realization for the 3D SO

coupling of the �σ · �p type in Eq. (4.19). Here we generalize the scheme in Ref.

[110] to a combined tripod and tetrapod level configuration as depicted in Fig.

4.2. Three internal levels |1〉, |2〉, and |3〉 couple the excited state |a〉 to form a

tripod configuration. A tetrapod-like coupling is formed by coupling the four levels

|1〉 − |4〉 to the common excited state |b〉. The single-particle Hamiltonian reads

H =
p2

2m
+
1

2
mω2r2 +Hal, (4.35)

where m is the mass of the atom; Hal represents the atom-laser coupling. In the

interaction picture, Hal can be written under the rotating wave approximation as

Hal = −�

∑
m=a,b

{
Ω1m|m〉〈1|+ Ω2m|m〉〈2|+ Ω3m|m〉〈3|

+ h.c.
}− � [Ω4b|b〉〈4|+ h.c.] , (4.36)

where Ωim are the corresponding Rabi frequencies between the internal states |i〉
and |m〉 with m = a, b .

We introduce the following two bright states

|Bm〉 = (Ω∗
1m|1〉+ Ω∗

2m|2〉+ Ω∗
3m|3〉)/Ωm, (4.37)

where m = a, b and Ωm =
√|Ω1m|2 + |Ω2m|2 + |Ω3m|2. The atom-laser coupling

can be rewritten as

Hal = −�

{
Ωa|a〉〈Ba|+ h.c.

}
− �

{
Ωb|b〉〈Bb|+ Ω4b|b〉〈4|+ h.c.

}
. (4.38)

To further simplify the model, here we assume 〈Ba|Bb〉 = 0, which can be achieved

by choosing

Ωjm =
Ωm√
3
ei(

�kj ·�r+θjm), (j = 1, 2, 3;m = a, b) (4.39)
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Figure 4.3: Energy levels of the atom-laser coupling Hamiltonian Eq. 4.40.

with θja = (j−2)2π/3 and θjb = −(j−2)2π/3. We also choose Ω4b = Ω4e
i(�k4·�r+θ4),

and set Ωc = Ωa, Ωb = Ωc cosφ, and Ω4 = Ωc sinφ. Using these notations, Hal is

simplified as

Hal = −�

[
Ωc(|a〉〈Ba|+ |b〉〈B̃b|) + h.c.

]
, (4.40)

where |B̃b〉 = cosφ|Bb〉+ sinφ|4̃〉 and |4̃〉 = e−i(�k4·�r+θ4)|4〉. The above Hamiltonian
supports three pairs of degenerated eigenstates with energy difference �|Ωc|, as
depicted in Fig. 4.3. Explicitly, the eigen-vectors are written as

|G1〉 =
|Ba〉+ |a〉√

2
, |G2〉 = |B̃b〉+ |b〉√

2
,

|G3〉 = |D〉, |G4〉 = |B̃⊥
b 〉,

|G5〉 =
|Ba〉 − |a〉√

2
, |G6〉 = |B̃b〉+ |b〉√

2
, (4.41)

where |D〉 =∑j e
−i�kj ·�r|j〉/√3 and |B̃⊥

b 〉 = sinφ|Bb〉 − cosφ|4̃〉. Therefore, the two
degenerate ground states can be used as pseudo-spin 1/2 degrees of freedom.

If the trapping frequency satisfies ω � |Ωc|, according to the adiabatic

approximation, we neglect the coupling between the ground-state manifold and

other states. Therefore, atoms in the subspace spanned by |G1〉 and |G2〉 evolve
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according to the effective Hamiltonian

He =
(�p− �A)2

2m
+
1

2
mω2r2 + Φ, (4.42)

where the non-Abelian gauge potential �A is a 2× 2 matrix with the elements

�Aij = i�〈Gi|�∇|Gj〉, (4.43)

where i, j = 1, 2; Φ is a scalar potential induced by the coupling laser beams.

An isotropic 3D �σ · �p-like SO coupling can be obtained by a 3D set-up of

laser configurations as

�k1 = κ(−1
2
,−

√
3

2
, 0), �k2 = κ(0, 1, 0),

�k3 = κ(−1
2
,

√
3

2
, 0), �k4 = κ(0, 0,−

√
7 +

√
17

8
). (4.44)

In this case, the corresponding vector and scale potential are calculated as

�A

�
= 0.166κ [σx�ex + σy�ey + (σz − I)�ez] ,

Φ = 0.445
�
2κ2

2m
Î. (4.45)

The Φ term is a constant and, thus, can be dropped off. The Abelian part in the

gauge potential Az is a constant, which can be absorbed by a gauge transformation.

Consequently, the remaining constant non-Abelian gauge potential behaves as a

�σ · �p type SO coupling.

The above-considered level structure can be found for example, in alkali

atoms with large spins. Figure 4.4 shows the hyperfine ground state manifold-

s of 2S1/2 for 40K atoms under an external magnetic field. The energy levels

|1〉 ∼ |4〉, |a〉, and |b〉 can be selected as different Zeeman sublevels of F = 9
2
and

F = 7
2
. Using the notation of |FMF 〉 to denote each state, we choose |1〉 = |9

2
,−1

2
〉,

|2〉 = |9
2
, 3
2
〉, |3〉 = |7

2
, 3
2
〉, |4〉 = |7

2
,−1

2
〉, |a〉 = |9

2
, 1
2
〉 and |b〉 = |7

2
, 1
2
〉. The coupling

between different levels is achieved for example, by using two laser beams under

second-order resonant Raman process. The two lasers can be chosen to be circu-

larly polarized and π polarized, respectively, in order to satisfy the selection rule.

Finally, wave vectors of individual laser beams can also be adjusted so that Eq.

(4.45) is fulfilled.
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Figure 4.4: (Color online) Energy level scheme for alkali atoms 40K. The Zee-
man sublevels of two hyperfine states F = 9

2
and F = 7

2
can be used to fulfill

our requirements. Lines or curves with an arrow indicate effective transitions be-
tween different magnetic levels which can be implemented using resonant Raman
processes. Other levels, which are not involved in the scheme, are not shown.

4.5 Summary and Discussions

We have studied rotationally and TR symmetric LL systems in both 2D

and 3D systems with breaking parity symmetry, whose topological properties are

characterized by the Z2 class. These Hamiltonians are simply 2D harmonic po-

tentials plus Rashba SO coupling, or 3D harmonic potentials plus �σ · �p-type SO
coupling with a strong SO coupling strength. For low-energy bands, the disper-

sions over angular momenta are strongly suppressed by SO coupling, to be nearly

flat. Up to a small difference which can be treated perturbatively, these Hamil-

tonians can be systematically investigated through dimensional reduction on the

high-dimensional LL problems by cutting an off-center plane in the 3D LL Hamil-

tonian or an off-center hyper plane in the 4D LL Hamiltonian. The parity breaking

LL wavefunctions in two and three dimensions are presented explicitly. With open

boundary conditions, helical edge states are found in two dimensions, and surface

states are found in three dimensions. These states can be realized in ultra cold

atom systems in a harmonic trap combined with synthetic gauge fields, i.e., artifi-
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cial SO coupling. In particular, we propose an experimental scheme to realize the

3D Hamiltonian.

The above dimensional procedure can be straightforwardly generalized to

arbitrary dimensions based on our previous construction of high dimensional LL

Hamiltonians in Chapter 2, and so can the general parity breaking LL wavefunc-

tions in N dimensions. The nice analytic properties of the 2D and 3D LL wave

functions breaking parity symmetry also provide a good opportunity to further

construct many-body wave functions of the factional topological states. These

properties will be investigated in a future publication.

Acknowledgements: This chapter is in part a reprint of the paper “2D

and 3D topological insulators with isotropic and parity-breaking Landau levels”,

authored by Yi Li, Xiangfa Zhou, and Congjun Wu, Phys. Rev. B, 85, 125122
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Chapter 5

Isotropic Landau levels of Dirac

fermions in high dimensions

5.1 Introduction

The integer quantum Hall effect in two-dimensional (2D) electron gas arises

from the quantized 2D Landau levels (LL). The non-trivial band structure topology

is characterized by non-zero Chern numbers [7, 11]. Later on, quantum anomalous

Hall insulators based on Bloch-wave band structures were proposed in the absence

of Landau levels [8]. In recent years, the study of topological insulators (TI) in

both 2D and three dimensions (3D) has become a major focus of condensed matter

physics [26, 25, 21, 16, 17, 15, 27]. TIs maintain time-reversal (TR) symmetry,

and their band structures are characterized by the nontrivial Z2-index. As for

the 3D TIs, various materials with Bloch-wave band structures have been realized

and the stable helical surface modes have been detected [18, 19, 20, 22, 24, 31,

77, 32, 33]. Since LL wavefunctions have explicit forms with elegant analytical

properties, TIs based on high dimensional LL structures would provide a nice

platform for further theoretical studies. In particular, interaction effects in the

flat LLs are non-perturbative, which could lead to non-trivial many-body states in

high dimensions.

The seminal work by Zhang and Hu [57] generalizes LLs to the compact S4

sphere with particles coupled to the SU(2) gauge potential. The isospin of particles

56
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I scales as R2 where R is the radius of the sphere. Such a system realizes the four

dimensional integer and fractional TIs. The 3D and 2D TIs can be constructed

from the 4D TIs by dimensional reduction [22]. Further generalizations to other

manifold have also been developed [59, 61, 62, 80, 112, 60]. The LLs of non-

relativistic fermions have been generalized to arbitrary dimensional flat space RD

[82] in Chapter 2. For the simplest case of 3D, the SU(2) Aharanov-Casher gauge

potential replaces the role of the usual U(1) vector potential. Depending on the

sign of the coupling constant, the flat LLs are characterized by either positive or

negative helicity. In the positive and negative helicity channels, the eigenvalues of

spin-orbit coupling term �σ · �L take values of l and −(l+ 1), respectively. Each LL

contributes a branch of helical surface modes at the open boundary. When odd

numbers of LLs are fully filled, there are odd numbers of helical Fermi surfaces.

Thus the system is a 3D strong topological insulator. This construction can be

easily generalized to arbitrary D-dimensions by coupling the fundamental spinors

to the SO(D) gauge potential.

Quantized LLs of 2D Dirac fermions have also been extensively investigated

in the field theory context known as the parity anomaly [92, 93, 95, 94, 113, 114, 8].

This can be viewed as the square root problem of the usual 2D non-relativistic LLs.

External magnetic fields induce vacuum charges with the density proportional to

the field strength. The sign of the charge density is related to the sign of the fermion

mass. There is an ambiguity if the Dirac fermions are massless. In this case, there

appear a branch of zero energy Landau levels. Each of them contributes±1
2
fermion

charge. It is similar to the soliton charge in the Jackiw-Rebbi model [85, 86], which

is realized in condensed matter systems of one dimensional conducting polymer

[115]. Depending on whether the zero energy Landau levels are fully occupied

or empty, the vacuum charge density is ± 1
2πl′2 where l′ is the magnetic length.

In condensed matter physics, the best known example of Dirac fermions is in

graphene, which realizes a pair of Dirac cones. The quantized LLs in graphene

have been observed which distribute symmetrically with respect to zero energy.

Their energies scale as the square root of the Landau level index. The observed Hall

conductance per spin component are quantized at odd integer values, which reflects

the nature of two Dirac cones in graphene for each spin component [89, 90, 91, 116].
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In this chapter, we generalize the LLs with full rotational symmetry of Dirac

fermions to the three dimensional flat space and above. It is a square root problem

of the high dimensional LLs investigated in Chapter 2. Our Hamiltonian is very

simple: replacing the momentum operator in the Dirac equation by the creation

or annihilation phonon operators, which are complex combinations of momenta

and coordinates. The LLs exhibit the same spectra as those in the 2D case but

with the full rotational symmetry in D-dimensional space. Again the zero energy

Landau levels are half-fermion modes. Each LL contributes to a branch of helical

surface mode at open boundaries.

This chapter is organized as follows. In Sect. 5.2, after a brief review of

the 2D LL Hamiltonian of Dirac fermions in graphene, we construct the 3D LL

Hamiltonian of Dirac fermions. Reducing this 3D system to 2D, it gives rise to

2D quantum spin Hall Hamiltonian of Dirac fermions with LLs. In Sect. 5.3, we

further solve this 3D LL Hamiltonian of Dirac fermions, and its edge properties

are discussed. For the later discussion of generalizing the 3D LL Hamiltonian to

arbitrary higher dimensions, in Sect. 5.4, we briefly review some properties of

D dimensional spherical harmonics and spinors. In Sect. 5.5 and Sect. 5.6, we

extend the solutions of LL Hamiltonians to arbitrary odd and even dimensions,

respectively. Conclusions are given in Sect. 5.7.

5.2 The Landau level Hamiltonian of 3D Dirac

fermions

5.2.1 A Brief Review of the 2D LL Hamiltonian

Before discussing the LL problem of Dirac fermions in 3D, we briefly review

the familiar 2D case [91, 116] to gain the insight on how to generalize it to high

dimensions. The celebrated condensed matter system to realize 2D Dirac fermion

is the monolayer of graphene [91, 116], which possesses a pair of Dirac cones with

spin degeneracy. Here for simplicity, we only consider a single 2D Dirac cone under
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a uniform magnetic field Bẑ. The Landau level Hamiltonian in the xy-plane reads

H2D,LL = vF

{
(px − e

c
Ax)σx + (py − e

c
Ay)σy

}
, (5.1)

where the Dirac fermion with momentum �p is minimally coupled to the U(1)

magnetic field with symmetric gauge potentials

Ax = −B
2
y, Ay =

B

2
x, (5.2)

satisfying ∇× �A = Bẑ; the Fermi velocity vF is related to the cyclotron frequency

ω via the magnetic length l′ as

l′ =

√
�c

eB
, vF =

l′ω√
2
. (5.3)

For later convenience, we define l0 =
√
2l′ which will be termed as cyclotron

length below. The spectra of Eq. (5.1) consist of a branch of zero energy LL, and

other LLs with positive and negative energies distribute symmetrically around zero

energy. The energy of each LL scales as the square root of the Landau level index.

It is well-known that Eq. (5.1) can be recast in term of creation and annihilation

operators

H2D,LL =
�ω√
2

[
0 â†y + iâ†x

ây − iâx 0

]
, (5.4)

where âi(i = x, y) are the phonon annihilation operators along the x and y-

directions, with the form as

âi =
1√
2

{ 1
l0
ri + i

l0
�
pi

}
. (5.5)

In Eq. (5.4), two sets of creation and annihilation operators combine with

1 and the imaginary unit i. In order to generalize to 3D, in which there exist three

sets of creation and annihilation operators, we employ Pauli matrices to match

them as explained below.

5.2.2 The construction of the 3D LL Hamiltonian

We define the rotationally invariant operator B̂ as

B̂3D = −iσiâi = σi
1√
2

{pil0
�

− i
ri
l0

}
, (5.6)
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where the repeated index i runs over x, y and z; âi is the phonon annihilation

operator along the i-direction; l0 is the cyclotron length. We design the 3D Landau

level Hamiltonian of Dirac fermions as

H3D =
�ω

2

[
0 B†

3D

B3D 0

]
. (5.7)

Eq. (5.7) contains the complex combination of momenta and coordinates, thus it

can be viewed as the generalized Dirac equation defined in the phase space. Using

the convention of α, β and γ-matrices defined as

αi =

[
0 σi

σi 0

]
, β =

[
I2×2 0

0 −I2×2

]
,

γi = βαi =

[
0 σi

−σi 0

]
,

γ5 = iγ0γ1γ2γ3 =

[
0 I2×2

I2×2 0

]
,

Eq. (5.7) is represented as

H3D = vF
∑

i=x,y,z

{
αipi + γii�

ri
l20

}
, (5.8)

where vF = 1
2
l0ω. A mass term can be added into Eq. (5.8) as

H3D,ms = Δβ =

(
ΔI2×2 0

0 −ΔI2×2

)
. (5.9)

A similar Hamiltonian was studied before under the name of Dirac oscillator [117,

118], which corresponds to Eq. (5.7) plus the mass term of Eq. (5.9) with the

special relation l0 =
√

�c2/Δω. However, the relation between the solution of

such a Hamiltonian to the LLs and its topological properties were not noticed

before.

The corresponding Lagrangian of Eq. (5.8) reads

L = ψ̄
{
γ0i�∂t − ivγi�∂i

}
ψ − vF�ψ̄iγ0γiψF

0i(r), (5.10)

where F 0i = xi/l
2
0. Compared with the usual way that Dirac fermions minimally

couple to the U(1) gauge field, here they couple to the background field in Eq.
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(5.10) through iγ0γi. It can be viewed as a type of non-minimal coupling, the

Pauli coupling. Apparently, Eq. (5.7) is rotationally invariant. It is also time-

reversal invariant, and the time-reversal operation T is defined as

T = γ1γ3K =

(
iσ2 0

0 iσ2

)
K, (5.11)

where K represents the complex conjugation operation, and T 2 = −1.

5.2.3 Reduction to the 2D quantum spin Hall Hamiltonian

of Dirac fermions with LLs

If we suppress the z-component part in the definition of Eq. (5.6), we will

arrive at double copies of the usual LL problem of 2D Dirac fermions with Kramer

degeneracy, which can be considered as the Z2-topological insulator Hamiltonian

arising from LLs of 2D Dirac fermions. We define the operator B̂2D as B̂2D =

−iσxâx − iσyây, and the Eq. (5.7) reduces to

√
2

2
�ω

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 â†y + iâ†x
0 0 −â†y + iâ†x 0

0 −ây − iâx 0 0

ây − iâx 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

= vF

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 p− − A−

0 0 p+ + A+

0 p− + A− 0 0

p+ − A+ 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where p± = px±ipy and A± = Ax±iAy. It is reducible into a pair of 2×2 matrices
as

H2D,± = vF

(
0 p− ± A−

p+ ± A+ 0

)
, (5.12)

which are time-reversal partner to each other. Thus Eq. (5.12) can be viewed as

the quantum spin Hall Hamiltonian of 2D Dirac fermions.
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A similar situation occurs in the strained graphene systems in which lattice

distortions behave like a gauge field coupling. Signatures of LLs due to strains

have been observed in Ref. [119]. Due to the TR symmetry, the Dirac cones at

two non-equivalent vertices of the Brillouin zone see gauge fields with a opposite

sign to each other. Such a coupling is also spin-independent. However, the TR

transformation connecting two Dirac cones satisfies T 2 = 1, thus LLs due to strain

are not topologically protected. They are unstable under inter-valley scattering.

Equation (5.12) exhibits the standard minimal coupling to the background

U(1) gauge field. Its solutions are well-known thus will not be repeated here.

After all, there is no non-minimal coupling in 2D. Each state of the zero energy

LL is actually a half-fermion zero mode. Whether it is filled or empty contributes

the fermion charge ±1
2
. As the chemical potential μ = 0±, magnetic field pumps

vacuum charge density ρ(r) = ±1
2

e
hc
B. In the field theory context, this is an

example of the parity anomaly [92, 93, 95, 94, 113, 114, 8]. Our 3D version and

generalizations to arbitrary dimensions exhibit similar effects as will be discussed

below.

5.3 The bulk spectra of the 3D Dirac fermion

LLs

In this section, we will present the solution of the spectra and wavefunctions

of the 3D LL Hamiltonian for Dirac fermions, which can be obtained based on

solutions of the 3D LL problem of the non-relativistic case in Chapter 2. We start

with a brief review of the non-relativistic case of the 3D LL problem.

5.3.1 The 3D isotropic non-relativistic LL wavefunctions

As shown in Chapter 2, the 3D isotropic LL Hamiltonians for non-relativistic

particles are just spin-1
2
fermions in the 3D harmonic oscillator plus spin-orbit cou-

pling as

H3D,∓ =
p2

2M
+
1

2
Mω2 ∓ ω�L · �σ. (5.13)
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Their eigenfunctions are essentially the same as those of the 3D harmonic oscillator

of spin-1
2
fermions organized in the total angular momentum eigen-basis of j, jz as

ψnr,j±,l,jz(�r) = Rnr,l(r)Yj±,l,jz(Ω̂), (5.14)

where nr is the radial quantum number; j± = l± 1
2
represent positive and negative

helicity channels, respectively; and l is the orbital angular momentum. Please

note that l is not an independent variable from j±. We write it explicitly in order

to keep track of the orbital angular momentum. The radial wavefunction can be

represented through the confluent hypergeometric functions as

Rnr,l(r) = Nnr,l

( r
l0

)l
F (−nr, l +

3

2
,
r2

l20
)e

− r2

2l20 , (5.15)

where F is the standard first kind confluent hypergeometric function,

F (−nr, l +
3

2
,
r2

l20
) =

∞∑
n=0

Γ(−nr + n)

Γ(−nr)

Γ(l + 3
2
)

Γ(l + 3
2
+ n)

× 1

Γ(n+ 1)

(
r2

l20

)n

. (5.16)

When nr is a positive integer, the sum over n is cut off at nr. The normalization

factor reads as

Nnr,l =
l
− 3

2
0

Γ(l + 3
2
)

√
2Γ(l + nr +

3
2
)

Γ(nr + 1)
. (5.17)

The angular part of the wavefunction is the standard spin-orbit coupled

spinor spherical harmonic function, which reads as

Yj±,l,jz=m+ 1
2
(Ω̂) =

⎛
⎝ ±

√
l±jz+

1
2

2l+1
Yl,m(Ω̂)√

l∓jz+
1
2

2l+1
Yl,m+1(Ω̂)

⎞
⎠ . (5.18)

Depending on the sign of the spin-orbit coupling in Eq. (5.13), one of the

two branches of positive or negative helicity states are dispersionless with respect

to j, and thus are dispersionless LLs. ForH3D,−, the positive helicity states become

dispersionless LLs as

H3D,−ψnr,j+,l,jz = (2nr +
3

2
)�ωψnr,j+,l,jz (5.19)
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where nr serves as Landau level index. However, the negative helicity states are

dispersive whose eigen-equation reads

H3D,−ψnr,j−,l,jz = (2nr + 2l +
5

2
)�ωψnr,j−,l,jz . (5.20)

Similarly, we have the following eigen-equations for the H3D,+ as

H3D,+ψnr,j−,l,jz = (2nr +
1

2
)�ωψnr,j−,l,jz

H3D,+ψnr,j+,l,jz = (2nr + 2l +
3

2
)�ωψnr,j+,l,jz . (5.21)

In this case, the negative helicity states become dispersionless LLs with respect to

j, while the positive ones are dispersive.

5.3.2 3D LL wavefunctions of Dirac fermions

Now we are ready to present the spectra and the four-component eigen-

functions of Eq. (5.8) for the massless case. Its square is block-diagonal, and two

blocks become the non-relativistic 3D Landau level Hamiltonians with opposite

signs of spin-orbit coupling presented in Chapter 2,

H2
3D

1
2
�ω

=

[
H− 0

0 H+

]

=
p2

2M
+
1

2
Mω2r2 − ω

{
�L · �σ + 3

2
�

}[ I 0

0 −I

]
,

(5.22)

where M is defined through the relation l0 =
√
�/(Mω).

Its eigenfunctions can be represented in terms of non-relativistic Landau

levels of Eq. (5.14) as presented in Sect. 5.3.1. Eq. (5.7) has a conserved quantity

as

K =

[
�σ ·�l + � 0

0 −(�σ ·�l + �)

]
. (5.23)

According to its eigenvalues, the eigenfunctions of Eq. (5.7) are classified as

KΨI
±nr,j,jz = (l + 1)�ΨI

±nr,j,jz ,

KΨII
±nr,j,jz = −l�ΨII

±nr,j,jz , (5.24)
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respectively. ΨI
±nr,j,jz is dispersionless with respect to j, while Ψ

II
±nr,j,jz is disper-

sive, respectively. The dispersionless branch is solved as

ΨI
±nr,j,jz(�r) =

1√
2

[
ψnr,j+,l,jz(�r)

±iψnr−1,j−,l+1,jz(�r)

]
(5.25)

with the energy

E±nr,j,jz = ±�ω
√
nr. (5.26)

Please note that the upper and lower two components of Eq. (5.25) possess d-

ifferent values of orbital angular momenta. They exhibit opposite helicities of

j±, respectively. The zeroth Landau level (nr = 0) is special: only the first two

components are non-zero.

On the other hand, the wavefunctions of the dispersive branch read

ΨII
±nr,j,jz(�r) =

1√
2

[
∓iψnr,j−,l+1,jz(�r)

ψnr,j+,l,jz(�r)

]
, (5.27)

with the spectra solved as

E±nr,j,jz = ±�ω
√
nr + j + 1. (5.28)

These states are just discrete energy levels lying between two adjacent LLs. For

simplicity, let us only consider the positive energy states. The degeneracy of these

mid-gap states lying between the n-th and (n + 1)-th Landau levels with n =

nr + j +
1
2
is finite, n(n+1), due to finite combinations of nr and j. In particular,

between the zeroth LL and the LLs with nr = ±1, these discrete states do not
exist at all.

Because Eq. (5.8) satisfies βH3Dβ = −H3D, its spectra are symmetric

with respect to zero energy. If the zeroth branch of Landau levels (nr = 0) are

occupied, each of them contribute a half-fermion charge. The vacuum charge is

ρ3D(�r) = 1
2

∑
j,jz

Ψ†
0;j,jz

(�r)Ψ0;j,jz(�r), which are calculated as

ρ3D(�r) =
1

2l30

{ ∞∑
l=0

l + 1

2π

1

Γ(l + 3
2
)

(r2
l20

)l}
e
− r2

l20

=
1

2πl30

{ 1√
π
e
− r2

l20 +
( r
l0
+
l0
2r

)
erf
( r
l0

)}
,

−→ r

2πl40
, as r → +∞. (5.29)
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In 2D, the induced vacuum charge density in the gapless Dirac LL problem

is a constant, ρ2D(r) = 1
2πl20

= 1
4π

e
�c
B , which is known as “parity anomaly”.

However, in the 3D case, the vacuum charge density ρ3D(r) diverges linearly, which

is dramatically different from that in 2D. This can be easily understood in the

semi-classic picture. Each Landau level with orbital angular momentum l has a

classic radius rl =
√
2ll0. In 2D, between rl < r < rl+1, there is only one state.

However, in 3D there is the 2j+ + 1 = 2l + 2 fold degeneracy, which is the origin

of the divergence of the vacuum charge density as r approaches infinity. Generally

speaking, in the case of D dimensions, the degeneracy density scales as rD−2 as

shown in Sect. 5.5 and Sect.5.6. The intrinsic difference between high-D and 2D is

that the high dimensional LL problems exhibit the form of non-minimal coupling.

In 2D, due to the specialty of Pauli matrices, this kind of coupling reduces back

to the usual minimal coupling. In Eq. (5.10), the background field is actually a

linear divergent electric field, not the magnetic vector potential. Eq. (5.29) can be

viewed as a generalization of “parity anomaly” to 3D for non-minimal couplings.

Now we consider the full Hamiltonian with the mass term Eq. (5.9). The

mass term mixes the LLs in Eq. (5.25 with opposite level indices ±nr but the same

values of j and jz. The new eigenfunctions become[
ΨI,′

nr,j,jz

ΨI,′
−nr,j,jz

]
=

[
cos θ − sin θ

sin θ cos θ

][
Ψnr,j,jz

Ψ−nr,j,jz

]
, (5.30)

where cos2 θ = 1
2

[
1 +

√
nr/
√
nr + [Δ/(�ω)]2

]
. The spectra are

EI,ms
±nr,j,jz

= ±
√
nr(�ω)2 +Δ2. (5.31)

The zeroth LL ΨI
nr=0,j,jz(�r) singles out, which is not affected by the mass term.

Only its energy is shifted to Δ.

5.3.3 Gapless surface modes

As shown in Eq. (5.29), the 3D LL system of Dirac fermions has a center,

and does not have translational symmetry. Thus how to calculate its topological

index remains a challenging problem. Nevertheless, we can still demonstrate its

non-trivial topological properties through the solution of its gapless surface modes.
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We consider the surface spectra at a spherical boundary with a large radius

R � l0. The Hamiltonian Hr<R inside the sphere takes the massless form of Eq.

(5.8), while Hr>R outside takes the mass term of Eq. (5.9) in the limit of |Δ| → ∞.

Again the square of this Hamiltonian (Hr<R + Hr>R)
2 is just Eq. (5.22) subject

to the open boundary condition at the radius of R. The spectra of the open

surface problem of the non-relativistic 3D LL Hamiltonian have been calculated

and presented in Fig. 2.4, in which the spectra of each Landau level remain flat for

bulk states and develop upturn dispersions as increasing j near the surface. The

solution to the Dirac spectra is just to take the square root. Except the zeroth LL,

each of the non-relativistic LL and its surface branch split into a pair of bulk and

surface branches in the relativistic case. The relativistic spectra take the positive

and negative square roots of the non-relativistic spectra, respectively. The zeroth

LL branch singles out. We can only take either the positive or negative square

root, but not both. It surface spectra are upturn or downturn with respect to j

depending on the sign of the vacuum mass. For the current Hamiltonian, only

the first two components of the zeroth LL wavefunction are non-zero, thus it only

senses the upper 2×2 diagonal block of vacuum mass in Eq. (5.9), thus its surface

spectra are pushed upturn.

5.4 Review of D-dimensional spherical harmon-

ics and spinors

We will study the LL of Dirac fermions for general dimensions in the rest

part of this chapter. For later convenience, we present here some background

knowledge of the SO(D) group which can found in standard group theory text-

books [120].

The D-dimensional spherical harmonic functions Yl,{m}(Ω̂) form the rep-

resentation of the SO(D) group with the one-row Young pattern, where l is the

number of boxes and {m} represents a set of D − 2 quantum numbers of the
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subgroup chain from SO(D − 1) down to SO(2). The degeneracy of Yl;{m} is

d[l](SO(D)) = (D + 2l − 2)
(D + l − 3)!

l!(D − 2)!
. (5.32)

Its Casimir is
∑

i<j L
2
ij = l(l +D − 2)�2, where the orbital angular momenta are

defined as Lij = ripj − rjpi.

We also need to employ the Γ-matrices. The 2×2 Pauli matrices are just the
rank-1 Γ-matrices. They can be generalized to rank-k Γ-matrices which contains

2k+1 matrices anti-commuting with each other. Their dimensions are 2k × 2k. A

convenient recursive definition is constructed based on the rank-(k−1) Γ-matrices

as

Γ
(k)
i =

[
0 Γ

(k−1)
a

Γ
(k−1)
a 0

]
, Γ

(k)
2k =

[
0 −iI
iI 0

]
,

Γ
(k)
2k+1 =

[
I 0

0 −I

]
, (5.33)

where i = 1, ..., 2k − 1. For D = 2k + 1-dimensional space, its fundamental spinor

is 2k-dimensional. The generators are constructed Sij =
1
2
Γ
(k)
ij where

Γ
(k)
ij = − i

2
[Γ

(k)
i ,Γ

(k)
j ]. (5.34)

For the D = 2k-dimensional space, there are two irreducible fundamental repre-

sentations with 2k−1 components. Their generators are denoted as Sij and S ′
ij,

respectively, which can be constructed based on both rank-(k − 1) Γ
(k−1)
i and

Γ
(k−1)
ij -matrices. For the first 2k − 1 dimensions, the generators share the same

form as

Sij = S ′
ij =

1

2
Γ
(k−1)
ij , 1 ≤ i < j ≤ 2k − 1, (5.35)

while other generators Si,2k and S
′
i,2k differ by a sign as

Si,2k = S ′
i,2k = ±1

2
Γ
(k−1)
i , 1 ≤ i ≤ 2k − 1. (5.36)

We couple Yl,{m} to the SO(D) fundamental irreducible spinors. For sim-

plicity, we use the same symbol s in this paragraph to denote the fundamental



69

spinor representation (Rep.) for SO(D) with D = 2k + 1 and the two irreducible

spinor Reps. for SO(D) with D = 2k. The states split into the positive (j+) and

negative (j−) helicity sectors. The bases are expressed as Yj±;s,l,{jm}(Ω̂), where

{jm} is a set of D − 2 quantum numbers for the subgroup chain. The degeneracy

number of Yj+;s,l,{jm}(Ω̂) is

dj+ = ds
(D + l − 2)!

l!(D − 2)!
, (5.37)

where ds is the dimension of the fundamental spinor representation. Similarly, the

degeneracy number of Yj−,;s,l,{jm}(Ω̂) is

dj− = ds
(D + l − 3)!

(l − 1)!(D − 2)!
. (5.38)

The eigenvalues of the spin-orbit coupling term
∑

i<j ΓijLij for the sectors of

Yj+;s,l,{jm}(Ω̂) and Yj−;s,l,{jm}(Ω̂) are l� and −(l+D−2)�, respectively. We present

the eigenstates of the D-dimensional harmonic oscillator with fundamental spinors

in the total angular momentum basis as

ψD
nr,j±,s,l,{jm}(�r) = Rnr,l(r)Yj±,s,l,{jm}(Ω̂), (5.39)

where the radial wavefunction reads

Rnr,l(r) = ND
nr,l

(
r

l0

)l

e
− r2

2l2g F (−nr, l +
D

2
,
r2

l20
) (5.40)

and the normalization constant reads

ND
nr,l =

l
−D

2
0

Γ(l + 1
2
D)

√
2Γ(nr + l + D

2
)

Γ(nr + 1)
. (5.41)

5.5 The LLs of odd dimensional Dirac fermions

In this section, we generalize the 3D LL Hamiltonian for Dirac fermions

to an arbitrary odd spatial dimensions D = 2k + 1. We need to use the rank-k

Γ-matrices, which contains 2k + 1 anti-commutable matrices at the dimensions of

2k × 2k denoted as Γ
(k)
i (1 ≤ i ≤ 2k+1). The definition of Γ

(k)
i and the background

information of the representation of the SO(D) group is given in Sect. 5.4.
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We define B̂2k+1 = −iΓ(k)
i âi and the 2k+ 1-dimensional LL Hamiltonian of

Dirac fermions H2k+1 in the same way as in Eq. (5.7). Again the square of H2k+1

reduces to a block-diagonal form as

(H2k+1)
2

1
2
�ω

=
p2

2M
+
1

2
Mω2r2 − ω

{∑
i<j

LijΓ
(k)
ij

+
2k + 1

2
�

}[ I 0

0 −I

]
, (5.42)

where Γ
(k)
ij = − i

2
[Γ

(k)
i ,Γ

(k)
j ]. Each diagonal block of Eq. (5.42) is just the form the

2k + 1 D LL problem of non-relativistic fermions in Chapter 2.

Again we can define the following conserved quantity

K =

[
Γ
(k)
ij Lij + (D − 2)� 0

0 −(ΓijLij + �)

]
, (5.43)

K divides the eigenstates into two sectors ΨI
±nr,j,{jm} and Ψ

II
±nr,j,{jm},

KΨI
±nr,j,{jm} = �(l +D − 2)ΨI

±nr,j,{jm},

KΨII
±nr,j,{jm} = −�lΨII

±nr,j,{jm}, (5.44)

respectively. As explained in Sect. 5.4, j represents the spin-orbit coupled rep-

resentation for the SO(D = 2k + 1) group, and {jm} represents a set of good

quantum number of the subgroup chain from SO(D − 1) down to SO(2).

Similarly as before, the sectors of ΨI,II
±nr,j,{jm} are dispersionless and dis-

persive with respect to j, respectively. The concrete wavefunctions are the same

as those in Eq. (5.25) and Eq. (5.27) by replacing the 3D wavefunction to the

D-dimensional version of Eq. (5.39). The wavefunctions of ΨI,II
±nr,j,{jm} are given

explicitly as

ΨI
±nr,j,jz(�r) =

1√
2

[
ψD
nr,s,j+,l,{jm}(�r)

±iψD
nr−1,s,j−,l+1,{jm}(�r)

]
,

ΨII
±nr,j,jz(�r) =

1√
2

[
∓iψD

nr,s,j−,l+1,{jm}(�r)

ψD
nr,s,j+,l,{jm}(�r)

]
. (5.45)

The dispersion relation for the LL branch of ΨI
±nr,j,{jm} still behaves as

E±nr;j,{jz} = ±�ω
√
nr, (5.46)
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while that for the branch of ΨII
±nr,j,{jm} reads as

E±nr;j,{jz} = ±�ω

√
nr + l +

D

2
. (5.47)

Again each occupied zero energy LL contributes to 1
2
-fermion vacuum charge.

If the zeroth LLs are fully filled, the vacuum charge is expressed as

ρD(r) =
1

2

∑
j,{jm}

|ΨI
0,j,{jm}(�r)|2 =

1

lD0

{ ∞∑
l=0

1

Γ(l + D
2
)

( r
l0

)2l gl(D)
ΩD

}
e
− r2

l20 , (5.48)

where D = 2k + 1; gl(D) is the degeneracy of the positive helicity sector of the

fundamental spinor coupling to the l-th D-dimensional spherical harmonics, and

its expression is the same as dj+ given in Eq. (5.37); ΩD = DπD/2/Γ(D/2 + 1) is

the area of D-dimensional unit sphere. Eq. (5.48) can be summed analytically as

ρ(r) =

√
2

4

( 2

πl20

)D
2
F (D − 1,

D

2
,
r2

l20
)e

− r

l20

−→ 1

(2π)
D−1
2 lD0

1

Γ(D−1
2
)

( r
l0

)D−2

, as r → ∞. (5.49)

Similarly, if the D-dimensional version of the mass term inside Eq. (5.9) is

added, every wavefunction with the radial quantum number nr hybridizes with its

partner with −nr while keeping all other quantum numbers the same. The pair of

new eigenvalues becomes ±√(�ω)2nr +Δ2. Again, the zero-th LL wavefunctions

single out and remain the same, but their energies are shifted to Δ. For a similar

open surface problem to that in Sect. 5.3.3, each LL with nr �= 0 develops a branch

of gapless surface mode with the upturn (downturn) dispersion with respect to j for

nr > 0 (nr < 0), respectively. The surface mode from the zeroth LL develops either

upturn or downturn dispersions depending on the relative sign of the background

field coupling and the vacuum mass.

5.6 The LLs of even dimensional Dirac fermions

The LL problem in the even dimensions with D = 2k is more complicated.

The SO(2k) group has two irreducible fundamental spinor representations s and
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s′. Each of them is with the dimension of 2k−1. The construction of the SO(2k)

generators for the irreducible representations are introduced in Sect. 5.4.

Now we define B̂2k = −iΓ(k)
i âi where i runs over 1 to 2k. Similarly to the

2D case, the counterpart of Eq. (5.7) in the D = 2k dimensions HD=2k is reducible

into two 2k × 2k blocks as

H± =
�ω

2

[
0 ±â†2k + iΓ

(k−1)
i â†i

±â2k − iΓ
(k−1)
i âi 0

]
, (5.50)

where the repeated index i runs over from 1 to 2k−1. For each one of the reduced

Hamiltonians H±, each off-diagonal block has only the SO(2k − 1) symmetry.

Nevertheless, each of H± is still SO(2k) invariant. If we combine the two irre-

ducible fundamental spinor representations s and s′ together, the spin generators

are defined as

Sij;s⊕s′ = − i

4
[Γ

(k)
i ,Γ

(k)
j ]. (5.51)

Both of H± commute with the total angular momentum operators in the combined

representation of s⊕ s′ defined as

Jij;s⊕s′ = Lij + Sij;s⊕s′ . (5.52)

We choose H+ as an example to present the solutions of the LL wavefunc-

tions in even dimensions. The K-operator is similarly defined as in Eq. (5.43)

as

K+ =

[
2SijLij + (D − 2)� 0

0 −(2S ′
ijLij + �)

]
, (5.53)

where i, j run from 1 to 2k, and Sij and S
′
ij are generators in the two fundamental

spinor representations given in Eqs. (5.35) and (5.36), respectively. They again

can be divided into two sectors of Ψ+,I and Ψ+,II whose eigenvalues of K+ are

�(l + D − 2) and −�l, respectively. The dispersionless branch of Ψ+,I can be

viewed as LLs, whose wavefunctions read

Ψ+,I
±nr,j,{jm}(�r) =

1√
2

[
ψnr,j+,s,l,{jm}(�r)

∓iψnr−1,j−,s′,l+1,{jm}(�r)

]
. (5.54)
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Their spectra are same as before E±nr,j,{jm} = ±�ω
√
nr. Please note that the

upper and lower components involve the s and s′ representations, respectively.

Similarly, the dispersive solutions of ΨII become

Ψ+,II
±nr,j,{jm}(�r) =

1√
2

[
∓iψnr,j−,s,l+1,{jm}(�r)

ψnr,j+,s′,l,{jm}(�r)

]
, (5.55)

whose dispersions read E±nr,j,{jm} = ±�ω
√
nr + l + D

2
. The solutions to H− are

very similar to Eq. (5.54) and Eq. (5.55) by exchanging the irreducible fundamen-

tal spinor representation indices s and s′.

Again if the zeroth branch LLs are filled, the vacuum charge ρD(�r) =

1
2

∑
j,{jm} |ΨI

0,j,{jm}(�r)|2 is calculated as

ρD(r) =
1

lD0

{ ∞∑
l=0

1

Γ(l + D
2
)

( r
l0

)2l gl(D)
ΩD

}
e
− r2

l20 , (5.56)

where D = 2k, ΩD and gl(D) are defined similarly as in Eq. (5.48). It can be

summed over analytically as

ρD(r) =
1

4

( 2

πl0

)D
2
F (D − 1,

D

2
,
r2

l20
)e

− r2

l20 , (5.57)

which ρD(r) −→
√
π

(2πl20)
D
2

1
Γ(D−1

2
)

(
r
l0

)D−2

, as r → +∞.

5.7 Summary

We have generalized the LL problem of 2D Dirac fermions to arbitrary

higher dimensional flat spaces with spherical symmetry. This problem is essentially

the square root problem of its non-relativistic LL problem with spherical symmetry

in high dimensions in Chapter 2. The zero energy LLs is a branch of 1
2
-fermion

modes. On the open boundary, each LL contributes one branch of helical surface

modes. This series of LL problems can be viewed as the generalization of parity

anomaly in 2D to arbitrary dimensions in a spherical way. An open question is

that how to experimentally realize the case of the 3D systems.
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Chapter 6

The J-triplet Cooper pairing with

magnetic dipolar interactions

6.1 Introduction

Ultracold atomic and molecular systems with electric and magnetic dipolar

interactions have become the research focus in cold atom physics [121, 122, 123,

124, 125, 126, 127]. When dipole moments are aligned by external fields, dipolar

interactions exhibit the dr2−3z2-type anisotropy. The anisotropic Bose-Einstein

condensations of dipolar bosons (e.g. 52Cr) have been observed [128, 129, 130, 131].

For the fermionic electric dipolar systems, 40K-87Rb has been cooled down to nearly

quantum-degeneracy [121]. Effects of the anisotropic electric dipolar interaction on

the fermion many-body physics have been extensively investigated. In the Fermi

liquid theory, both the single particle properties and collective excitations exhibit

the dr2−3z2 anisotropy [132, 133, 134, 135, 136, 137]. In the single-component Fermi

systems, the leading order Cooper pairing instability lies in the p-wave channel,

which is the simplest one allowed by Pauli’s exclusion principle. The anisotropy

of the electric dipolar interaction selects the instability in the pz-channel, which

is slightly hybridized with other odd partial wave channels [138, 139, 140, 141,

142, 143, 144, 145]. For two-component cases, the dipolar interaction leads to

anisotropic spin-triplet pairing, and its orbital partial wave is again in the pz-

channel [146, 147, 148, 149]. The triplet pairing competes with the singlet pairing

74
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in the hybridized s + dr2−3z2-channel. The mixing between the singlet and triplet

pairings has a relative phase ±π
2
, which leads to a novel time-reversal symmetry

breaking Cooper pairing state [147].

An important recent experimental progress is the laser cooling and trapping

of magnetic dipolar fermions of 161Dy and 163Dy with large atomic magnetic mo-

ments (10μB) [125, 126]. There are important differences between magnetic and

electric dipolar interactions. Electric dipole moments are essentially non-quantized

classic vectors from the mixing between different rotational eigenstates, which are

induced by external electric fields [121, 122], thus electric dipoles are frozen. In

the absence of external fields, even though at each instant of time there is a dipole

moment of the heteronuclear molecule, it is averaged to zero at a long time scale.

In contrast, magnetic dipole moments of atoms are intrinsic, proportional to their

hyper-fine spins with a Lande factor. Unpolarized magnetic dipolar Fermi systems

are available, in which dipoles are defrozen as non-commutative quantum mechan-

ical operators, thus lead to richer quantum spin physics of dipolar interactions.

Furthermore, the magnetic dipolar interaction is actually isotropic in the unpo-

larized systems. It is invariant under simultaneous spin-orbit rotations but not

separate spin or orbit rotations. This spin-orbit coupling is different from usual

single particle one, but an interaction effect. It plays an important role in the Fer-

mi liquid properties such as the unconventional magnetic states and ferro-nematic

states predicted by Fregoso et al [150, 151].

It is natural to expect that magnetic dipolar interaction brings novel pairing

symmetries not studied in condensed matter systems before. The systems of 161Dy

and 163Dy are with a very large hyperfine spin of F = 21
2
, thus their Cooper pairing

problem is expected to be very challenging. As a first step, we study the simplest

case of spin-1
2
, and find that the magnetic dipolar interaction provides a novel and

robust mechanism to the p-wave (L = 1) spin triplet (S = 1) Cooper pairing to

the first order of interaction strength, which comes from the attractive part of the

magnetic dipolar interaction. In comparison, the p-wave triplet pairing in usual

condensed matter systems, such as 3He [152, 153, 154], is due to the spin-fluctuation

mechanism, which is at the second order of interaction strength (see Refs. [155, 2]

for reviews). This mechanism is based on strong ferromagnetic tendency from
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the repulsive part of the 3He-3He interactions. Furthermore, the p-wave triplet

Cooper pairing symmetry patterns in magnetic dipolar systems are novel, which

do not appear in 3He. The orbital and spin angular momenta of the Cooper pair

are entangled into the total angular momentum J = 1, which is denoted as the J-

triplet channel below. In contrast, in the 3He-B phase [153], L and S are combined

into J = 0; and in the 3He-A phase, L and S are decoupled and J is not well-

defined [154, 152]. There are two competing pairing possibilities in this J-triplet

channel with different values of Jz: the helical polar state (Jz = 0) preserving time

reversal (TR) symmetry, and the axial state (Jz = ±1) breaking TR symmetry.

The helical polar state has point nodes and gapless Dirac spectra, which is a

time-reversal invariant generalization of the 3He-A phase with entangled spin and

orbital degrees of freedom. In addition to usual phonon modes, its Goldstone

modes contain the total angular momentum wave as entangled spin-orbital modes.

6.2 The magnetic dipolar interaction and spin-

orbit couplings

We begin with the magnetic dipolar interaction between spin-1
2
fermions

Vαβ,β′α′(�r) =
μ2

r3
{
�Sαα′ · �Sββ′ − 3(�Sαα′ · r̂)(�Sββ′ · r̂)}, (6.1)

where �r is the relative displacement vector between two fermions; μ is the magni-

tude of the magnetic moment. Such an interaction is invariant under the combined

SU(2) spin rotation and SO(3) space rotation. In other words, orbital angular

momentum �L and spin �S are not separately conserved, but the total angular mo-

mentum �J = �L+ �S remains conserved. Its Fourier transformation reads [151]

Vαβ;β′α′(�q) =
4π

3
μ2
{
3(�Sαα′ · q̂)(�Sββ′ · q̂)− �Sαα′ · �Sββ′

}
. (6.2)

The Hamiltonian in the second quantization form is written as

H =
∑
�k,α

[
ε(�k)− μc

]
c†α(�k)cα(�k) +

1

2V
×

∑
�k,�k′,�q

Vαβ;β′α′(�k − �k′)P †
αβ(
�k; �q)Pβ′α′(�k′; �q), (6.3)
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where ε(�k) = �k2/(2m); μc is the chemical potential; Pβ′α′(�k; �q) = cβ′(−�k +
�q)cα′(�k+ �q) is the pairing operator; the Greek indices α, β, α′ and β′ refer to ↑ and
↓; V is the volume of the system. We define a dimensionless parameter charac-

terizing the interaction strength as the ratio between the characteristic interaction

energy and the Fermi energy: λ ≡ Eint/EF = 2
3

μ2mkf
π2�2

.

6.3 Unconventional Cooper pairing in magnetic

dipolar interactions

We next study the symmetry of the Cooper pairing in the presence of Fermi

surface, i.e., in the weak coupling theory. An important feature of the magnetic

dipolar interaction in Eq. (6.1) is that it vanishes in the total spin singlet channel.

Thus, we only need to study the triplet pairing in odd orbital partial wave channels.

Considering uniform pairing states at the mean-field level, we set �q = 0 in Eq.

(6.3), and define triplet pairing operators Ps(�k), which are eigen-operators of �S1z+

�S2z with eigenvalues sz = 0,±1, respectively. More explicitly, they are P0(�k) =

1√
2
[P↑↓(�k) + P↓↑(�k)], P1(�k) = P↑↑(�k), P−1(�k) = P↓↓(�k). The pairing interaction of

Eq. (6.3) reduces to

Hpair =
1

2V

∑
�k,�k′,szs′z

{
V T
szs′z(

�k;�k′)P †
sz(
�k)Ps′z(

�k′)
}
, (6.4)

where

V T
szs′z(

�k;�k′) =
1

2

∑
αββ′α′

〈1sz|1
2
α
1

2
β〉〈1s′z|

1

2
α′1
2
β′〉∗

{
Vαβ,β′α′(�k − �k′)− Vαβ,β′α′(�k + �k′)

}
. (6.5)

〈1sz|12α 1
2
β〉 is the Clebsch-Gordan coefficient for two spin-1

2
states to form the spin

triplet; and Vszs′z(
�k;�k′) is an odd function of both �k and �k′.

The decoupled mean-field Hamiltonian reads

Hmf =
1

2V

∑
�k

′ Ψ†(�k)

(
ξ(�k)I Δαβ(�k)

Δ∗
βα(
�k) −ξ(�k)I

)
Ψ(�k), (6.6)
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where we only sum over half of the momentum space; ξ(�k) = ε(�k) − μch and μch

is the chemical potential; Ψ(�k) = (c↑(�k), c↓(�k), c
†
↑(−�k), c†↓(−�k))T ; Δαβ is defined as

Δαβ =
∑

sz
〈1sz|12α 1

2
β〉∗Δsz . Δsz satisfies the mean-field gap function as

Δsz(�k) =
1

V

∑
�k′,s′z

V T
szs′z(

�k;�k′)〈|Ps′z(
�k′)|〉

= −
∫

d3k′

(2π)3
V T
szs′z(

�k;�k′)[K(�k′)− 1

2εk
]Δs′z(

�k′), (6.7)

whereK(�k′) = tanh[β
2
Ei(�k

′)]/[2Ei(�k
′)]. The integral in Eq. (6.7) is already normal-

ized following the standard procedure [138]. For simplicity, we use the Born approx-

imation in Eq. (6.7) by employing the bare interaction potential rather than the

fully renormalized T -matrix, which applies in the dilute limit of weak interactions.

The pairing symmetry, on which we are interested below, does not depend on the

details that how the integral of Eq. (6.7) is regularized in momentum space. The

Bogoliubov quasiparticle spectra become E1,2(�k) =
√
ξ2k + λ21,2(

�k), where λ21,2(
�k)

are the eigenvalues of the positive-definite Hermitian matrix Δ†(�k)Δ(�k). The free

energy can be calculated as

F = − 2

β

∑
�k,i=1,2

ln
[
2 cosh

βE�k,i

2

]

− 1

2V

∑
�k,�k′,sz ,s′z

{
Δ∗

sz(
�k)V T,−1

szs′z
(�k;�k′)Δs′z(

�k)
}
, (6.8)

where V T,−1
szs′z

(�k;�k′) is the inverse of the interaction matrix defined as

1

V

∑
�k′,s′z

V T
sz ,s′z(

�k;�k′)V T,−1
s′z ,s′′z

(�k′;�k′′) = δ�k,�k′′δsz ,s′′z . (6.9)

We next linearize Eq. (6.7) around Tc and perform the partial wave analysis

to determine the dominant pairing channel. Since the total angular momentum is

conserved, we can use J to classify the eigen-gap functions denoted as φa,JJz
sz (�k).

The index a is used to distinguish different channels sharing the same value of J .

φa,JJz
sz (�k) satisfies

N0

∫
dΩk′

4π
V T
szs′z(

�k;�k′)φa;JJz
s′z

(�k′) = wa
Jφ

a;JJz
sz (�k), (6.10)
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where N0 =
mkf
π2�2

is the density of state at the Fermi surface; wa
j are dimensionless

eigenvalues; �k,�k′ are at the Fermi surface. Then Eq. (6.7) is linearized into a set

of decoupled equations

φa;JJz{1 + wa
J [ln(2e

γω̄)/(πkBT )]} = 0, (6.11)

where ω̄ is an energy scale at the order of the Fermi energy playing the role of

energy cut-off from the Fermi surface.

The decomposition of V T
szs′z(

�k;�k′) into spherical harmonics can be formulat-

ed as

N0

4π
V T
szs′z(

�k;�k′)

=
∑

Lm,L′m′
VLmsz ;L′m′s′zY

∗
Lm(Ωk)YL′m′(Ω�k′), (6.12)

where L = L′ or L = L′ ± 2, and L,L′ are odd numbers. The expressions of

the dimensionless matrix elements VLmsz ;L′m′s′z are lengthy and will be presented

elsewhere. By diagonalizing this matrix, we find that the most negative eigenvalue

is wJ=1 = −3πλ/4 lying in the channel with J = L = 1. All other negative

eigenvalues are significantly smaller. Therefore, dominate pairing symmetry is

identified as the J-triplet channel with L = S = 1 in the weak coupling theory.

Following the standard method in Ref. [138], the transition temperature Tc is

expressed as Tc ≈ 2eγ ω̄
π
e
− 1

|wJ=1| . For a rough estimation of the order of magnitude

of Tc, we set the prefactor in the expression of Tc as Ef .

In order to understand why the J-triplet channel is selected by the mag-

netic dipolar interaction, we present a heuristic picture based on a two-body pair-

ing problem in real space. Dipolar interaction has a characteristic length scale

adp = mμ2/�2 at which the kinetic energy scale equals the interaction energy scale.

We are not interested in solving the radial equation but focus on the symmetry

properties of the angular solution, thus, the distance between two spins is taken

fixed at adp. We consider the lowest partial-wave, p-wave, channel with L = 1.

The 3 × 3 = 9 states (L = S = 1) are classified into three sectors of J = 0, 1 and

2. In each channel of J , the interaction energies are diagonalized as

E0 = Edp, E1 = −1
2
Edp, E2 =

1

10
Edp, (6.13)
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(a)

+

(b)

Figure 6.1: The spin configurations of the two-body states with a) J = 1 and
jz = 0 and b) J = jz = 0. The interactions are attractive in a) but repulsive in b).

respectively, where Edp = μ2/a3dp. Only the total angular momentum triplet sector

with J = 1 supports bound states, thus is the dominant pairing channel and is

consistent with the pairing symmetry in the weak-coupling theory.

This two-body picture applies in the strong coupling limit. Although a

complete study of the strong coupling problem is beyond the scope of this thesis,

this result provides an intuitive picture to understand pairing symmetry in the J-

triplet sector from spin configurations. We define that χμ and pμ(Ω̂) are eigenstates

with eigenvalues zero for operators êμ · (�S1+ �S2) and êμ · �L (μ = x, y, z), which are

the total spin and orbital angular momenta projected along the eμ-direction. The

J-triplet sector states are φμ(Ω) =
1√
2
εμνλχνpλ(Ω) with φμ satisfying (êμ · �J)φμ = 0.

For example,

φz(Ω̂) =
1√
2
[χxpy(Ω̂)− χypx(Ω̂)]

=

√
3

2
sin θ

{|αêρ〉1|αêρ〉2 + |βêρ〉1|βêρ〉2
}
, (6.14)

where êρ = x̂ cosφ + ŷ sinφ and |αeρ〉 and |βeρ〉 are eigenstates of êρ · �σ with

eigenvalues of ±1. As depicted in Fig. 6.1 (a), along the equator where φz has the

largest weight, two spins are parallel and along r̂, thus the interaction is dominated
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by attraction. On the other hand, the eigenstate of J = 0 reads

φ0(Ω) = χμpμ(Ω) =
1√
2

{|αΩ〉1|βΩ〉2 + |βΩ〉1|αΩ〉2
}
, (6.15)

where |αΩ〉 and |βΩ〉 are eigenstates of Ω̂ ·�σ with eigenvalues ±1. As shown in Fig.
6.1 (b), along any direction of Ω̂, two spins are anti-parallel and longitudinal, thus

the interaction is repulsive.

6.4 Ginzburg-Landau analysis of the competition

in Cooper pairings

Let us come back to momentum space and study the competition between

three paring branches in the J-triplet channel under the Ginzburg-Landau (GL)

framework. We define

Δx(�k) =
1√
2
[−Δ1(�k) + Δ−1(�k)],

Δy(�k) =
i√
2
[Δ1(�k) + Δ−1(�k)],

Δz(�k) = Δ0(�k). (6.16)

The bulk pairing order parameters are defined as Δμ =
1
V

∑
k k̂μΔμ(�k), where no

summation over μ is assumed. We define pairing parameters and their real and

imaginary parts as the following 3-vectors �Δ = (Δx,Δy,Δz). The GL free energy

is constructed to maintain the U(1) and SO(3) rotational symmetry as

F = α�Δ∗ · �Δ+ γ1|�Δ∗ · �Δ|2 + γ2|�Δ∗ × �Δ|2, (6.17)

where

α = N0 ln(
T

Tc
). (6.18)

The sign of γ2 determines two different pairing structures: Re�Δ ‖ Im�Δ at γ2 >

0, and Re�Δ ⊥ Im�Δ at γ2 < 0, respectively. Using the analogy of the spinor

condensation of spin-1 bosons, the former is the polar pairing state and the latter

is the axial pairing state [156, 157, 158, 159].
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Figure 6.2: The angular distribution of the gap function |Δ(�k)|2 v.s. cos θk in
the helical polar pairing state (the red line) and the axial pairing state (the black
line).

For the polar pairing state, the order parameter configuration can be con-

veniently denoted as �Δ = eiφ|Δ|ẑ up to a U(1) phase and SO(3)-rotation. This

pairing carries the quantum number Jz = 0. The pairing matrix Δpl
αβ =

1
2
|Δ|[kyσ1−

kxσ2)iσ2]αβ reads

Δpl
αβ =

1

2
|Δ|
[
−(k̂y + ik̂x) 0

0 k̂y − ik̂x

]
. (6.19)

It equivalents to a superposition of px ∓ ipy orbital configurations for spin-↑↑
(↓↓) pairs, respectively. Thus, this pairing state is helical. It is a unitary pair-

ing state because Δ̂†Δ̂ is proportional to a 2 × 2 identity matrix. The Bogoli-

ubov quasiparticle spectra are degenerate for two different spin configurations as

Epl
k,α =

√
ξ2k + |Δpl(�k)|2 with the anisotropic gap function |Δpl(�k)|2 = 1

4
|Δ|2 sin2 θk

depicted in Fig. 6.2. They exhibit Dirac cones at north and south poles with

opposite chiralities for two spin configurations.

Similarly, the order parameter configuration in the axial pairing state can

be chosen as �Δ = 1√
2
eiφ|Δ|(êx+iêy) up to the symmetry transformation. This state

carries the quantum number of Jz = 1. The pairing matrix Δax
αβ =

1
2
√
2
|Δ|{[k̂z(σ1+
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Figure 6.3: The ratio of the angular integrals of the free energy kernels
y( 1

β|Δ| ,
1

β|ξ|), which is always larger than 1. This means that the polar pairing

is favored at the mean-field level.

iσ2) + σz(k̂x + ik̂y]iσ2}αβ takes the form

Δax
αβ =

√
2

2
|Δ|
[

k̂z
1
2
(k̂x + ik̂y)

1
2
(k̂x − ik̂y) 0

]
. (6.20)

This is a non-unitary pairing state since Δ†Δ = |Δ|2[1
2
(1+ k̂2z)+ k̂z(k̂ ·�σ)]. The Bo-

goliubov quasiparticle spectra have two non-degenerate branches with anisotropic

dispersion relations as Eax
1,2(

�k) =
√
ξ2k + |Δax± (�k)|2. The angular gap distribution

|Δax
± (�k)|2 = 1

8
|Δ|2(1 ± cos θk)

2 is depicted in Fig. 6.2. Each of branch 1 and 2

exhibits one node at north pole and south pole, respectively. Around the nodal

region, the dispersion simplifies into E1,2(�k) =
√
v2f (kz ∓ kf )2 +

1
32
|Δ|2(k‖/kf )4,

which is quadratic in the transverse momentum k‖ =
√
k2x + k2y.

At the mean-field level, the helical polar pairing state is more stable than

the axial state. Actually, this conclusion is not so obvious as in the case of 3He-B

phase, where the isotropic gap function is the most stable among all the possible

gap functions [153]. Here, the gap functions are anisotropic in both the polar and

helical pairing phases. We need to compare them by calculating their free energies

in Eq. (6.8). The second term contributes the same to both pairing phases. Thus,
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the first term determines the difference in free energies. Let us define the ratio

between angular integrals of the free energy kernels in Eq. (6.8) of the two phases

as

y(λ1, λ2) =

∫
dΩk 2 ln

[
2 cosh β

2

√
ξ2k + |Δpl(�k)|2

]
∫
dΩk

∑
± ln
[
2 cosh β

2

√
ξ2k + |Δax± (�k)|2

] , (6.21)

where λ1 =
1

β|Δ| , λ2 =
1

β|ξk| . y(λ1, λ2) is numerically plotted in Fig. 6.3. For arbi-

trary values of β, ξk, and |Δ|, y is always larger than 1. Therefore, the polar state
is favored more than the axial state. This can be understood from the convexity

of the nonlinear term in Eq. (6.8), which favors isotropic angular distributions

of |Δ(�k)|2 [160]. Although neither gap function of these two states is absolutely

isotropic as in the 3He-B phase, the polar gap function is more isotropic from Fig.

6.2 and thus is favored. However, we need to bear in mind that we cannot rule out

the possibility that certain strong coupling effects can stabilize the axial state. In

fact, the 3He-A phase can be stabilized under the spin feedback mechanism [155],

which is a higher order effect in terms of interaction strength.

Next we discuss the classification of Goldstone modes and vortices in these

two states. In the helical polar state, the remaining symmetries are SOJ(2) × Z2

as well as parity and time-reversal (TR), where Z2 means the combined operation

of rotation π around any axis in the xy-plane and a flip of the pairing phase by π.

The Goldstone manifold is

[SOJ(3)× Uc(1)]/[SOJ(2)⊗ Z2] = [S2
J × Uc(1)]/Z2. (6.22)

The Goldstone modes include the phase phonon mode and two branches of spin-

orbital modes. Vortices in this phase can be classified into the usual integer vortices

in the phase sector and half-quantum vortices combined with π-disclination of the

orientation of �Δ. In the axial state, the rotation around z-axis generates a shift

of the pairing phase, which can be canceled by a Uc(1) transformation, thus, the

remaining symmetry is SOJz−φ(2). The Goldstone manifold is S
2 × Uc(1). Only

integer vortices exist.
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6.5 Summary and Discussions

In summary, we have found that the magnetic dipolar interaction provides

a robust mechanism at first order in the interaction strength for a novel p-wave

(L = 1) spin triplet (S = 1) Cooper pairing state, in which the total angular

momentum of the Cooper pair is J = 1. This is a novel pairing pattern which

does not appear in 3He, and, to our knowledge, neither in any other condensed

matter systems. These pairing states include the TR invariant helical polar pairing

state and the TR breaking axial pairing state, both of which are distinct from the

familiar 3He-A and B phases.

Many interesting questions are open for further exploration, including the

topological properties of these pairing states, vortices, spin textures, and spectra

of collective excitations. The above theory only applies for spin-1
2
systems, in

which the magnetic dipolar interaction is too small. For the pairing symmetry in

a magnetic dipolar system with a large spin S, our preliminary results show that

the basic features of the J-triplet pairing remains. The spins of two fermions are

parallel forming Stot = 2S with orbital partial-wave L = 1, and the total J = 2S.

In the current experiments in Ref. [161], the highest attainable density reaches

4 × 1013cm−1 for 161Dy atoms with S = 21
2
. The corresponding dipolar energy is

Eint ≈ 2nK and the Fermi energy for unpolarized gases Ef ≈ 13.6nK, and thus

λ = Eint/Ef ≈ 0.15. If we use the same formula of wJ=1 above for an estimation

of the most negative eigenvalue, we arrive at Tc/Tf ≈ 0.06, which means that

Tc ≈ 0.8nK. Although it is still slightly below the lower limit of the accessible

temperature in current experiments, we expect that further increase of fermions

density, say, in optical lattices will greatly increase Tc.

Acknowledgements: This chapter is in part a reprint of the paper “The

J-triplet Cooper pairing with magnetic dipolar interactions” authored by Yi Li

and Congjun Wu, Scientific Report, 2, 392 (2012).



Chapter 7

Spin-orbit coupled Fermi liquid

theory of ultra-cold magnetic

dipolar fermions

7.1 Introduction

Recent experimental progress of ultracold electric dipolar heteronuclear

molecules has become a major focus of ultracold atom physics [121, 122, 162].

Electric dipole moments are essentially classic polarization vectors induced by the

external electric field. When they are aligned along the z axis, the electric dipolar

interaction becomes anisotropic exhibiting the dr2−3z2-type anisotropy. In Fermi

systems, this anisotropy has important effects on many-body physics including

both single-particle and collective properties [132, 133, 134, 135, 136, 163, 164,

165, 166, 167, 168]. Fermi surfaces of polarized electric dipolar fermions exhibit

quadrupolar distortion elongated along the z axis [132, 133, 167, 136]. Various

Fermi surface instabilities have been investigated including the Pomeranchuk type

nematic distortions [134, 136] and stripelike orderings [163, 164]. The collective

excitations of the zero sound mode exhibit anisotropic dispersions: The sound ve-

locity is largest if the propagation wavevector �q is along the z axis, and the sound is

damped if �q lies in the xy plane [136, 135]. Under the dipolar anisotropy, the phe-

nomenological Landau interaction parameters become tridiagonal matrices, which

86
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are calculated at the Hartree-Fock level [136, 134], and the anisotropic Fermi liquid

theory for such systems has been systematically studied [136].

The magnetic dipolar gases are another type of dipolar system. Compared

to the extensive research on electric dipolar Fermi systems, the study on magnetic

dipolar ones is a new direction of research. On the experimental side, laser cool-

ing and trapping Fermi atoms with large magnetic dipole moments (e.g., 161Dy

and 163Dy with μ = 10μB)[125, 126, 169] have been achieved, which provides a

new opportunity to study exotic many-body physics with magnetic dipolar inter-

actions. There has also been a great amount of progress for realizing Bose-Einstein

condensations of magnetic dipolar atoms [128, 129, 130, 131, 169].

Although the energy scale of the magnetic dipolar interaction is much weak-

er than that of the electric one, it is conceptually more interesting if magnetic

dipoles are not aligned by external fields. Magnetic dipole moments are proportion-

al to the hyperfine spin up to a Lande factor, thus, they are quantum-mechanical

operators rather than the nonquantized classic vectors as electric dipole moments

are. Furthermore, there is no need to use external fields to induce magnetic dipole

moments. In fact, the unpolarized magnetic dipolar systems are isotropic. The

dipolar interaction does not conserve spin nor orbit angular momentum, but is

invariant under simultaneous spin-orbit (SO) rotation. This is essentially a spin-

orbit coupled interaction. Different from the usual spin-orbit coupling of electrons

in solids, this coupling appears at the interaction level but not at the kinetic-energy

level.

The study of many-body physics of magnetic dipolar Fermi gases is just at

the beginning. For the Fermi liquid properties, although magnetic dipolar Fermi

gases were studied early in Refs. [170] and [134], the magnetic dipoles are frozen,

thus, their behavior is not much different from the electric ones. It is the spin-orbit

coupled nature that distinguishes non-polarized magnetic dipolar Fermi gases from

polarized electric ones. The study along this line was was pioneered by Fregoso

and Fradkin [150, 151]. They studied the coupling between ferromagnetic and

ferronematic orders, thus, spin polarization distorts the spherical Fermi surfaces

and leads to a spin-orbit coupling in the single-particle spectrum.

Since Cooper pairing superfluidity is another important aspect of the many-
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body phase, we also briefly summarize the current progress in electric and magnetic

dipolar systems. For the single-component electric dipolar gases, the simplest

possible pairing lies in the p-wave channel because s-wave pairing is not allowed by

the Pauli exclusion principle. The dipolar anisotropy selects the pz-channel pairing

[138, 139, 140, 141, 142, 143, 144, 145]. Interestingly, for the two-component case,

the dipolar interaction still favors the triplet pairing in the pz channel even though

the s wave is also allowed. It provides a robust mechanism for the triplet pairing to

the first order in the interaction strength [146, 147, 148, 149]. The mixing between

the singlet and the triplet pairings is with a relative phase ±π
2
, which leads to

a novel time-reversal symmetry-breaking pairing state [147]. The unconventional

Cooper pairing symmetry in magnetic dipolar systems [165] was studied in Chapter

7. We have found that it provides a robust mechanism for a novel p-wave (L = 1)

spin triplet (S = 1) Cooper pairing to the first order in interaction strength. It

comes directly from the attractive part of the magnetic dipolar interaction. In

comparison, the triplet Cooper pairings in 3He and solid-state systems come from

spin fluctuations, which is a second-order effect in interaction strength [155, 2].

Furthermore, that pairing symmetry was not studied in 3He systems before in

which orbital and spin angular momenta of the Cooper pair are entangled into the

total angular momentum J = 1. In contrast, in the 3He-B phase [153], L and S

are combined as J = 0, and in the 3He-A phase, L and S are decoupled and J is

not well-defined [154, 152].

Fermi liquid theory is one of the most important paradigms in condensed

matter physics on interacting fermions [171, 155]. Despite the pioneering papers

[170, 134, 150, 151], a systematic study of the Fermi liquid properties of magnetic

dipolar fermions is still lacking in the literature. In particular, Landau interaction

matrices have not been calculated, and a systematic analysis of the renormaliza-

tions from magnetic dipolar interactions to thermodynamic quantities has not been

performed. Moreover, collective excitations in magnetic dipolar ultracold fermions

have not been studied before. All these are essential parts of Fermi liquid theory.

The experimental systems of 161Dy and 163Dy are with a very large hyperfine spin

of F = 21
2
, thus the Fermi liquid theory taking into account of all the complicated

spin structure should be very challenging. We take the first step by considering
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the simplest case of spin-1
2
magnetic dipolar fermions which preserve the essential

features of spin-orbit physics and address the above questions.

In this chapter, we systematically investigate the Fermi liquid theory of

the magnetic dipolar systems including both the thermodynamic properties and

the collective excitations, focusing on the spin-orbit coupled effect. The Landau

interaction functions are calculated and are diagonalized in the spin-orbit coupled

basis. Renormalizations for thermodynamic quantities and the Pomeranchuk-type

Fermi surface instabilities are studied. Furthermore, the collective modes are also

spin-orbit coupled with a topologically non-trivial configuration of the spin dis-

tribution in momentum space. Their dispersion relation and configurations are

analyzed.

Upon the completion of this work, we became aware of the nice work by

Sogo et al. [172]. Reference [172] constructed the Landau interaction matrix for

dipolar fermions with a general value of spin. The Pomeranchuk instabilities were

analyzed for the special case of spin 1
2
, and collective excitations were discussed.

This chapter has some overlaps on the above topics with Ref. [172] but with a

significant difference, including the physical interpretation of the Pomeranchuk

instability in the J = 1− channel and our discovery of an exotic propagating spin-

orbit sound mode.

The remaining part of this chapter is organized as follows. The magnet-

ic dipolar interaction is introduced in Sec. 7.2. The Landau interaction matrix

is constructed at the Hartree-Fock level and is diagonalized in Sec. 7.3. In Sec.

7.4, we present the study of the Fermi liquid renormalization to thermodynamic

properties from the magnetic dipolar interaction. The leading Pomeranchuk in-

stabilities are analyzed. In Sec. 7.5, the spin-orbit coupled Boltzmann equation is

constructed. We further perform the calculation of propagating spin-orbit coupled

collective modes. We summarize this chapter in Sec. 7.6.

7.2 Magnetic Dipolar Hamiltonian

We introduce the magnetic dipolar interaction and the subtlety of its Fourier

transform in this section.
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The magnetic dipolar interaction between two spin-1
2
particles located at

�r1,2 reads

Vαβ;β′α′(�r) =
μ2

r3

[
�Sαα′ · �Sββ′ − 3(�Sαα′ · r̂)(�Sββ′ · r̂)

]
, (7.1)

where �S = 1
2
�σ; α, α′, β, β′ take values of ↑ and ↓; �r = �r1 − �r2 and r̂ = �r/r is the

unit vector along �r.

The Fourier transform of Eq. (7.1) is

Vαβ;β′α′(�q) =
4πμ2

3

[
3(�Sαα′ · q̂)(�Sββ′ · q̂)− �Sαα′ · �Sββ′

]
, (7.2)

which depends on the direction along the momentum transfer but not its mag-

nitude. It is singular as �q → 0. More rigorously, Vαβ,β′α′(�q) should be further

multiplied by a numeric factor [136] as

g(q) = 3
(j1(qε)

qε
− j1(qL)

qL

)
, (7.3)

where ε is a short range scale cut off, and L is the long distance cut off at the scale

of sample size. The spherical Bessel function j1(x) shows the asymptotic behavior

j1(x) → x
3
at x → 0, and j1(x) → 1

x
sin(x− π

2
) as x → ∞. In the long wavelength

limit satisfying qε → 0 and qL → ∞, g(q) → 1 and we recover Eq. (7.2). If

�q is exactly zero, Vαβ;β′α′ = 0, because the dipolar interaction is neither purely

repulsive nor attractive, and its spatial average is zero.

The second quantization form for the magnetic dipolar interaction is ex-

pressed as

Hint =
1

2V

∑
�k,�k′,�q

ψ†
α(
�k + �q)ψ†

β(
�k′)Vαβ;β′α′(�q)

× ψβ′(�k′ + �q)ψα′(�k), (7.4)

where V is the volume of the system. The density of states of two-component Fermi

gases at the Fermi energy is N0 =
mkf
π2�2

, and we define a dimensionless parameter

λ = N0μ
2. λ describes the interaction strength, which equals the ratio between

the average interaction energy and the Fermi energy up to a factor on the order of

1.
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7.3 Spin-orbit coupled Landau interaction

In this section, we present the Landau interaction functions of the magnetic

dipolar Fermi liquid, and perform the spin-orbit coupled partial wave decomposi-

tion.

7.3.1 The Landau interaction function

Interaction effects in the Fermi liquid theory are captured by the Landau

interaction function. It describes the particle-hole channel forward-scattering am-

plitudes among quasiparticles on the Fermi surface. At the Hartree-Fock level, the

Landau function is expressed as

fαα′,ββ′(k̂, k̂′) = fH
αα′,ββ′(q̂) + fF

αα′,ββ′(k̂, k̂′), (7.5)

where �k and �k′ are at the Fermi surface with the magnitude of kf and �q is the small

momentum transfer in the forward scattering process in the particle-hole chan-

nel. fH
αα′,ββ′(�q) = Vαβ,β′α′(q̂) is the direct Hartree interaction, and fF

αα′,ββ′(�k;�k′) =

−Vαβ,α′β′(�k − �k′) is the exchange Fock interaction. As �q → 0, fH is singular, thus

we need to keep its dependence on the direction of q̂. More explicitly,

fH
αα′,ββ′(q̂) =

πμ2

3
Mαα′,ββ′(q̂), (7.6)

fF
αα′,ββ′(k̂; k̂′) = −πμ

2

3
Mαα′,ββ′(m̂), (7.7)

where the tensor is defined as Mαα′,ββ′(q̂) = 3(�σαα′ · q̂)(�σββ′ · q̂)− �σαα′ · �σββ′ and m̂

is the unit vector along the direction of the momentum transfer m̂ =
�k−�k′

|�k−�k′| . We

have used the following identity:

3(�σαβ′ · m̂)(�σβα′ · m̂)− �σαβ′ · �σβα′

= 3(�σαα′ · m̂)(�σββ′ · m̂)− �σαα′ · �σββ′ (7.8)

to obtain Eq. (7.7).

7.3.2 The spin-orbit coupled basis

Due to the spin-orbit nature of the magnetic dipolar interaction, we intro-

duce the spin-orbit coupled partial-wave basis for the quasiparticle distribution
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over the Fermi surface following the steps below.

The δnαα′(�k) is defined as

δnαα′(�k) = nαα′(�k)− δαα′n0(�k), (7.9)

where nαα′(�k) = 〈ψ†
α(
�k)ψα′(�k)〉 is the Hermitian single-particle density matrix

with momentum �k and satisfies nαα′ = n∗
α′α and n0(�k) is the zero-temperature

equilibrium Fermi distribution function n0(�k) = 1−θ(k−kf ). δnαα′(�k) is expanded

in terms of the particle-hole angular momentum basis as

δnαα′(�k) =
∑
Ssz

δnSsz(�k)χSsz ,αα′

=
∑
Ssz

δn∗
Ssz(

�k)χ†
Ssz ,αα′ , (7.10)

where χSsz ,αα′ are the bases for the particle-hole singlet (density) channel with

S = 0 and triplet (spin) channel with S = 1, respectively. They are defined as

χ00,αα′ = δαα′ ,

χ10,αα′ = σz,αα′ , χ1±1,αα′ =
∓1√
2
(σx,αα′ ± iσy,αα′),

(7.11)

which satisfy the orthonormal condition tr(χ†
Ssz
χS′s′z) = 2δSS′δszs′z .

Since quasiparticles are only well defined around the Fermi surface, we

integrate out the radial direction and arrive at the angular distribution,

δnαα′(k̂) =

∫
k2dk

(2π)3
δnαα′(�k). (7.12)

Please note that angular integration is not performed in Eq. (7.12). We expand

δnαα′(k̂) in the spin-orbit decoupled bases as

δnαα′(k̂) =
∑

LmSsz

δnLmSszYLm(k̂)χSsz ,αα′ ,

=
∑

LmSsz

δn∗
LmSszY

∗
Lm(k̂)χ

†
Ssz ,αα′ , (7.13)

where YLm(k̂) is the spherical harmonics satisfying the normalization condition∫
dk̂Y ∗

Lm(k̂)YLm(k̂) = 1.
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We can also define the spin-orbit coupled basis as

YJJz;LS(k̂, αα
′) =

∑
msz

〈LmSsz|JJz〉YLm(k̂)χSsz ,αα′ ,

Y†
JJz;LS(k̂, αα

′) =
∑
msz

〈LmSsz|JJz〉Y ∗
Lm(k̂)χ

†
Ssz ,αα′ ,

(7.14)

where 〈LmSsz|JJz〉 is the Clebsch-Gordon coefficient and YJJz;LS satisfies the

orthonormal condition of∫
dk̂ tr[Y†

JJz ;LS
(k̂)YJ ′J ′

z ;L
′S′(k̂)] = 2δJJ ′δJzJ ′

z
δLL′δSS′ .

(7.15)

Using the spin-orbit coupled basis, δnαα′(k̂) is expanded as

δnαα′(k̂) =
∑

JJz ;LS

δnJJz ;LS YJJz ;LS(k̂, αα
′)

=
∑

JJz ;LS

δn∗
JJz ;LSY†

JJz ;LS
(k̂, αα′), (7.16)

where δnJJz;LS =
∑

msz
〈LmSsz|JJz〉δnLmSsz .

7.3.3 Partial-wave decomposition of the Landau function

We are ready to perform the partial-wave decomposition for Landau inter-

action functions. The tensor structures in Eqs. (7.6) and (7.7) only depend on

�σαα′ and �σββ′ , thus the magnetic dipolar interaction only contributes to the spin-

channel Landau parameters, i.e., S = 1. In the spin-orbit decoupled basis, the

Landau functions of the Hartree and Fock channels are expanded, respectively, as

N0

4π
fH,F
αα′;ββ′(k̂, k̂

′) =
∑

Lmsz ;L′m′s′z

YLm(k̂)χ1sz(αα
′)

× TH,F
Lm1sz ;L′m′1s′z

Y ∗
L′m′(k̂′)χ†

1s′z
(ββ′).

(7.17)

For later convenience, we have multiplied the density of states N0 and the factor

of 1/4π such that TH,F are dimensionless matrices. Without loss of generality, in

the Hartree channel, we choose q̂ = ẑ.
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The matrix elements in Eq. (7.17) are presented below. In the Hartree

channel,

TH
Lm1sz ;L′m′1s′z =

πλ

3
(2δsz ,0 − δsz ,±1)δL,0δL′,0δm,0δm′,0δszs′z ; (7.18)

and in the Fock channel,

T F
Lm1sz ;L′m′1s′z = −πλ

2

( δLL′

L(L+ 1)
− δL+2,L′

3(L+ 1)(L+ 2)
− δL−2,L′

3(L− 1)L

)
×
∫
dΩr[δszs′z − 4πY1sz(Ωr)Y

∗
1s′z(Ωr)]YLm(Ωr)Y

∗
L′m′(Ωr). (7.19)

The magnetic dipolar interaction is isotropic, thus the spin-orbit coupled basis are

the most convenient. In these basis, the Landau matrix is diagonal with respect

to the total angular momentum J and its z-component Jz as

N0

4π
fαα′;ββ′(k̂, k̂′) =

∑
JJzLL′

YJJz;L1(k̂, αα
′)FJJzL1;JJzL′1 Y†

JJz;L′1(k̂, ββ
′). (7.20)

The matrix kernel FJJzL1;JJzL′1 reads as

FJJzL1;JJzL′1 =
πλ

3
δJ,1δL,0δL′,0(2δJz ,0 − δJz ,±1)

+
∑

msz ;m′s′z

〈Lm1sz|JJz〉〈L′m′1s′z|JJz〉T F
Lm1sz ;L′m′1s′z . (7.21)

We found that up to a positive numeric factor, the second term in Eq. (7.21) is the

same as the partial-wave matrices in the particle-particle pairing channel, which

was derived for the analysis of the Cooper pairing instability in magnetic dipolar

systems presented in Chapter 7.

However, the above matrix kernel FJJzL1;JJzL′1 is not diagonal for channels

with the same values of JJz but different orbital angular momentum indices L and

L′. Moreover, the conservation of parity requires that even and odd values of L

do not mix. Consequently, FJJzL1;JJzL′1 is either diagonalized or reduced into a

small size of just 2 × 2. For later convenience of studying collective modes and

thermodynamic instabilities, we present below the prominent Landau parameters

in some low partial-wave channels. Below, we use (J±JzLS) to represent these

channels in which ± represents even and odd parities, respectively.
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The parity odd channel of J = 0− only has one possibility of (0−011) in

which

F0−011;0−011 =
π

2
λ. (7.22)

There is another even parity density channel with J = 0+, i.e., (0+000), which

receives contribution from short range s-wave interaction but no contribution from

the magnetic dipolar interaction at the Hartree-Fock level. The parity odd channel

of J = 1− only comes from (1−Jz11) in which

F1−Jz11;1−Jz11 = −π
4
λ. (7.23)

Another channel of J = 1−, i.e., (1−Jz10), channel from the p-wave channel density

interactions, which again receives no contribution from magnetic dipolar interac-

tion at the Hartree-Fock level. These two J = 1− modes are spin- and charge-

current modes, respectively, and thus, do not mix due to their opposite symmetry

properties under time-reversal transformation.

We next consider the even parity channels. The J = 1+ channels include

two possibilities of (JJzLS) = (1+Jz01), (1
+Jz21). The former is the ferromag-

netism channel, and the latter is denoted as the ferronematic channel in Refs.

[[134]] and [[150]]. Due to the spin-orbit nature of the magnetic dipolar interac-

tion, these two channels are no longer independent but are coupled to each other.

Because the Hartree term breaks the rotational symmetry, the hybridization ma-

trices for Jz = 0,±1 are different. For the case of Jz = 0, it is

F1+0 =

(
F1001;1001 F1001;1021

F1021;1001 F1021;1021

)
=
πλ

12

(
8

√
2√

2 1

)
,

(7.24)

whose two eigenvalues and their associated eigenvectors are

w1+0
1 = 0.69πλ, ψ1+0

1 = (0.98, 0.19)T ,

w1+0
2 = 0.06πλ, ψ1+0

2 = (−0.19, 0.98)T . (7.25)

The hybridization is small. For the case of Jz = ±1, the Landau matrices are the
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same as

F1+1 =

(
F1101;1101 F1101;1121

F1121;1101 F1121;1121

)
=
πλ

12

(
−4 √

2√
2 1

)
.

(7.26)

Again the hybridization is small as shown in the eigenvalues and their associated

eigenvectors

w1+1
1 = −0.37πλ, ψ1+1

1 = (0.97,−0.25)T ,
w1+1

2 = 0.12πλ, ψ1+1
2 = (0.25, 0.97)T . (7.27)

Landau parameters, or, matrices, in other high partial-wave channels are neglected,

because their magnitudes are significantly smaller than those above.

We need to be cautious on using Eqs. (7.24) and (7.26) in which the Hartree

contribution of Eq. 7.6 is taken. However, Eq. (7.6) is valid in the limit q �
kf but should be much larger than the inverse of sample size 1/L. It is valid

to use Eqs. (7.24) and (7.26) when studying the collective spin excitations in

Sec. 7.5 below. However, when studying thermodynamic properties, say, magnetic

susceptibility, under the external magnetic-field uniform at the scale of L, the

induced magnetization is also uniform. In this case, the Hartree contribution is

suppressed to zero, thus the Landau matrices in the J = 1+ channel are the same

for all the values of Jz as

F1+,thm(λ) =

(
F1Jz01;1Jz01 F1Jz01;1Jz21

F1Jz21;1Jz01 F1Jz21;1Jz21

)
thm

=
πλ

12

(
0

√
2√

2 1

)
. (7.28)

In this case, the hybridization between these two channels is quite significant. The

two eigenvalues and their associated eigenvectors are

w1+

1 = − π

12
λ, ψ1+

1 = (

√
2

3
,−
√
1

3
)T ,

w1+

2 =
π

6
λ, ψ1+

2 = (

√
1

3
,

√
2

3
)T . (7.29)
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7.4 Thermodynamic quantities

In this section, we study the renormalizations for thermodynamic properties

by the magnetic dipolar interaction and investigate the Pomeranchuk-type Fermi

surface instabilities.

7.4.1 Thermodynamics susceptibilities

The change in the ground-state energy with respect to the variation in the

Fermi distribution density matrix include the kinetic and interaction parts as

δE

V
=
δEkin

V
+
δEint

V
. (7.30)

The kinetic-energy variation is expressed in terms of the angular distribution of

δnαα′(k̂) as

δEkin

V
=

4π

N0

∑
αα′

∫
dk̂δnαα′(k̂)δnα′α(k̂)

=
8π

N0

∑
LmSSz

δn∗
LmSszδnLmSsz , (7.31)

where the units of δnSsz(k̂) and δnLmSsz are the same as the inverse of the volume.

The variation in the interaction energy is

δEint

V
=

1

2

∑
αα′ββ′

∫∫
dk̂dk̂′fαα′,ββ′(k̂, k̂′)δnα′α(k̂)δnβ′β(k̂

′)

= 2
∑

LmszL′m′s′z ;S

δn∗
LmSszfLmSsz ,L′m′Ss′zδn

∗
L′m′Ss′z .

(7.32)

Adding them together and changing to the spin-orbit coupled basis, we arrive at

δE

V
=
8π

N0

∑
JJz ;LL′;S

δn∗
JJz ;LSMJJzLS;JJzL′SδnJJz ;L′S, (7.33)

where the matrix elements are

MJJzLS;JJzL′S = δLL′ + FJJzLS;JJzL′S. (7.34)
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In the presence of the external field hJJzLS, the ground state energy becomes

δE

V
= 16π

{ 1

2χ0

∑
JJzLL′S

δn∗
JJz ;LSMJJzLS;JJzL′SδnJJz ;L′S

−
∑

JJzLS

hJJzLSδnJJz ;LS

}
, (7.35)

where χ0 = N0 is the Fermi liquid density of states. At the Hartree-Fock level, N0

receives no renormalization from the magnetic dipolar interaction. The expectation

value of δnJJzLS is calculated as

δnJJzLS = χ0

∑
L′
(M)−1

JJzLS;JJzL′ShJJzL′S. (7.36)

For the J = 1+ channel, M−1 ≈ I − F1+,thm(λ) up to first order of λ in the

case of λ� 1. As a result, the external magnetic field �h along the z axis not only

induces the z-component spin polarization, but also induces a spin-nematic order

in the channel of (J+JzLS) = (1+021), which is an effective spin-orbit coupling

term as

δH =

√
2

12
πλh

∑
k

ψ†
α(
�k)
{[
(k2 − 3k2z)σz

− 3kz(kxσx + kyσy)
]}
ψβ(�k). (7.37)

Apparently, this term breaks time-reversal symmetry, and thus cannot be induced

by the relativistic spin-orbit coupling in solid states. This magnetic field induced

spin-orbit coupling in magnetic dipolar systems was studied by Fregoso et al. [134,

150]

7.4.2 Pomeranchuk instabilities

Even in the absence of external fields, Fermi surfaces can be distorted spon-

taneously known as Pomeranchuk instabilities [173]. Intuitively, we can imagine

the Fermi surface as the elastic membrane in momentum space. The instabilities

occur if the surface tension in any of its partial-wave channels becomes negative.

In the magnetic dipolar Fermi liquid, the thermodynamic stability condition is

equivalent to the fact that all the eigenvalues of the matrix MJJzLS;JJzL′S are pos-

itive.
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We next check the negative eigenvalues of the Landau matrix in each partial-

wave channel. Due to the absence of external fields, the Pomeranchuk instabilities

are allowed to occur as a density wave state with a long wave length q → 0. For

the case of J = 1+, it is clear that in the channel of Jz = ±1, the eigenvalue
w1+1

1 in Eq. (7.27) is negative and the largest among all the channels. Thus the

leading channel instability is in the (JJz) = (1+ ± 1) channel, which occurs at

w1+1
1 < −1, or, equivalently, λ > λc1+1 = 0.86. The corresponding eigenvector

shows that it is mostly a ferromagnetism order parameter with small hybridization

with the ferronematic channel. A repulsive short-range s wave scattering, which

we neglected above will enhance ferromagnetism and, thus, will drive λc1+1 to a

smaller value. The wavevector �q of the spin polarization should be on the order

of 1/L to minimize the energy cost of twisting spin, thus, essentially exhibiting

a domain structure. The spatial configuration of the spin distribution should be

complicated by actual boundary conditions. In particular, the three-vector nature

of spins implies the rich configurations of spin textures. An interesting result is

that the external magnetic field actually weakens the ferromagnetism instability. If

the spin polarization is aligned by the external field, the Landau interaction matrix

changes to Eq. (7.28). The magnitude of the negative eigenvalue is significantly

smaller than that of Eq. (7.26). As a result, an infinitesimal external field cannot

align the spin polarization to be uniform but a finite amplitude is needed.

For simplicity, we only consider ferromagnetism with a single plane wave

vector �q along the z axis, then the spin polarization spirals in the xy-plane. S-

ince q ∼ 1/L, we can still treat a uniform spin polarization over a distance large

comparable to the microscopic length scale. Without loss of generality, we set

the spin polarization along the x axis. As shown in Ref. [150], ferromagnetism

induces ferronematic ordering. The induced ferronematic ordering is also along

the x axis, whose spin-orbit coupling can be obtained based on Eq. (7.37) by a

permutation among components of �k as H ′
so(
�k) ∝ (k2− 3k2x)σx− 3kx(kyσy+ kzσz).

According to Eq. (7.27), ferromagnetism and ferronematic orders are not strong-

ly hybridized, the energy scale of the ferronematic SO coupling is about 1 order

smaller than that of ferromagnetism. An interesting point of this ferromagnetism

is that it distorts the spherical shape of the Fermi surface as pointed by Fregoso
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and Fradkin [150]. This anisotropy will also affect the propagation of Goldstone

modes. Furthermore, spin waves couple to the oscillation of the shape of Fermi

surfaces bringing Landau damping to spin waves. This may result in non-Fermi

liquid behavior for fermion excitations, and will be studied in a future work. This

effect in the nematic symmetry-breaking Fermi liquid state has been extensively

studied before in the literature [174, 175, 176, 177, 178, 179].

The next subleading instability is in the J = 1− channel with L = 1 and

S = 1 as shown in Eq. (7.23), which is a spin-current channel. The generated

order parameters are spin-orbit coupled. For the channel of Jz = 0, the generated

SO coupling at the single-particle level exhibits the three-dimensional (3D) Rashba

type as

Hso,1− = |nz|
∑
k

ψ†
α(
�k)(kxσy − kyσx)αβψβ(�k), (7.38)

where |nz| is the magnitude of the order parameter. The same result was also ob-
tained recently in Ref. [172]. In the absence of spin-orbit coupling, the L = S = 1

channel Pomeranchuk instability was studied in Refs. [[180]] and [[181]], which ex-

hibits the unconventional magnetism with both isotropic and anisotropic versions.

They are particle-hole channel analogies of the p-wave triplet Cooper pairings of

3He isotropic B and anisotropic A phases, respectively. In the isotropic uncon-

ventional magnetic state, the total angular momentum of the order parameter is

J = 0, which exhibits the �k · �σ-type spin-orbit coupling. This spin-orbit coupling
is generated from interactions through a phase transition and, thus, was denoted

as the spontaneous generation of spin-orbit coupling. In Eq. (7.38), the spin-orbit

coupling that appears at the mean-field single-particle level cannot be denoted as

spontaneous because the magnetic dipolar interaction possesses the spin-orbit na-

ture. Interestingly, in the particle-particle channel, the dominant Cooper pairing

channel has the same partial-wave property of L = S = J = 1 [165].

The instability in the J = 1− (spin current) channel is weaker than that

in the 1+ (ferromagnetism) channel because the magnitude of Landau parameters

is larger in the former case. The 1− channel instability should occur after the

appearance of ferromagnetism. Since spin-current instability breaks parity, where-

as, ferromagnetism does not, this transition is a genuine phase transition. For
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simplicity, we consider applying an external magnetic field along the z axis in the

ferromagnetic state to remove the spin texture structure. Even though the J = 1+

and 1− channels share the same property under rotation transformation, they do

not couple at the quadratic level because of their different parity properties. The

leading-order coupling occurs at the quartic order as

δF = β1(�n · �n)(�S · �S) + β2|�n× �S|2, (7.39)

where �n and �S represent the order parameters in the J = 1− and 1+ channels,

respectively. β1 needs to be positive to keep the system stable. The sign of β2

determines the relative orientation between �n and �S. It cannot be determined

purely from the symmetry analysis but depends on microscopic energetics. If

β2 > 0, it favors �n ‖ �S, and �n ⊥ �S is favored at β2 < 0.

7.5 The spin-orbit coupled collective modes

In this section, we investigate another important feature of the Fermi liquid,

the collective modes, which again exhibit the spin-orbit coupled nature.

7.5.1 Spin-orbit coupled Boltzmann equation

We employ the Boltzmann equation to investigate the collective modes in

the Fermi liquid state[171]

∂

∂t
n(�r,�k, t)− i

�
[ε(�r,�k, t), n(�r,�k, t)] +

1

2

∑
i

{∂ε(�r,�k, t)
∂ki

,
∂n(�r,�k, t)

∂ri

}

−1
2

∑
i

{∂ε(�r,�k, t)
∂ri

,
∂n(�r,�k, t)

∂ki

}
= 0, (7.40)

where nαα′(�r,�k, t) and εαα′(�r,�k, t) are the density and energy matrices for the

coordinate (�r,�k) in the phase space and [, ] and {, } mean the commutator and an-
ticommutator, respectively. Under small variations in nαα′(�r,�k, t) and εαα′(�r,�k, t),

nαα′(�r,�k, t) = n0(k)δαα′ + δnαα′(�r,�k, t),

εαα′(�r,�k, t) = ε(k)δαα′ +

∫
d3k′

(2π)3
fαα′,ββ′(k̂, k̂′)

× δnββ′(k̂′). (7.41)
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the above Boltzmann equation can be linearized. Plugging the plane-wave solution

of

δnαα′(�r,�k, t) =
∑
q

δnαα′(�k)ei(�q·�r−ωt), (7.42)

we arrive at

δnαα′(k̂) − 1

2

cos θk
s− cos θk

∑
ββ′

∫
dΩk′

N0

4π
fαα′,ββ′(k̂, k̂′)

× δnββ′(k̂′) = 0, (7.43)

where s is the dimensionless parameter ω/(vfq). The propagation direction of the

wavevector �q is defined along the z-direction.

In the spin-orbit decoupled basis defined as δnLmSsz in Sec. 7.3.2, the

linearized Boltzmann equation becomes

δnLmSsz + ΩLL′;m(s)FL′m′Ssz ;L′′m′′Ss′′z δnL′′m′′Ss′′z = 0,

(7.44)

where ΩLL′(s) is equivalent to the particle-hole channel Fermi bubble in the dia-

grammatic method as

ΩLL′;m(s) = −
∫
dΩk̂Y

∗
Lm(k̂)YL′m(k̂)

cos θk
s− cos θk

. (7.45)

For later convenience, we present ΩLL′;m in several channels of LL′ andm as follows

Ω00;0(s) = 1− s

2
ln |1 + s

1− s
|+ i

π

2
sΘ(s < 1),

Ω10;0(s) = Ω01;0 =
√
3sΩ00;0(s),

Ω11;0(s) = 1 + 3s2Ω00;0(s),

Ω11;1(s) = Ω11;−1(s) = −1
2

[
1− 3(1− s2)Ω00;0(s)

]
.

(7.46)

Equation (7.44) can be further simplified by using the spin-orbit coupled

basis δnJJz ;LS defined in Sec. 7.3.2,

δnJJz ;LS +
∑
J ′;LL′

KJJzLS;J ′JzL′S(s)FJ ′JzL′S;J ′JzL′′S

× δnJ ′JzL′′S = 0, (7.47)
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where the matrix kernel KJJzLS;J ′JzL′S reads

KJJzLS;J ′JzL′S(s) =
∑
msz

〈LmSsz|JJz〉〈L′mSsz|J ′Jz〉

× ΩLL′;m(s). (7.48)

7.5.2 The spin-orbit coupled sound modes

Propagating collective modes exist if Landau parameters are positive. In

these collective modes, interactions among quasiparticles rather than the hydrody-

namic collisions provide the restoring force. Because only the spin channel receives

renormalization from the magnetic dipolar interaction, we only consider spin chan-

nel collective modes. The largest Landau parameter is in the (1+001) channel in

which the spin oscillates along the direction of �q. The mode in this channel is

the longitudinal spin zero sound. On the other hand, due to the spin-orbit cou-

pled nature, the Landau parameters are negative in the transverse spin channels of

(1+ ± 1 0 ± 1), and thus no propagating collective modes exist in these channels.

The hybridization between (1+001) and (1+021) is small as shown in Eq. (7.25),

and the Landau parameter in the (1+021) channel is small, thus, this channel also

is neglected below for simplicity.

Because the propagation wave vector �q breaks the parity and 3D rotation

symmetries, the (1+001) channel couples to other channels with the same Jz. As

shown in Eq. (7.47), the coupling strengths depend on the magnitudes of Landau

parameters. We truncate Eq. (7.47) by keeping the orbital partial-wave channels

of L = 0 and L = 1 because Landau parameters with orbital-partial waves L ≥ 2

are negligible. There are three channels with L = S = 1 as (0−011), (1−011), and

(2−011). We further check the symmetry properties of these four modes under the

reflection with respect to any plane containing �q. The mode of (1−011) is even and

the other three are odd, thus it does not mix with them. The Landau parameter

in the (2−011) channel is calculated as π
20
λ, which is 1 order smaller than those in

(1+001) and (1−001), thus this channel is also neglected. We only keep these two

coupled channels (1+001) and (1−001) in the study of collective spin excitations.

The solution of the two coupled modes reduces to a 2 × 2 matrix linear
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Figure 7.1: The sound velocity s in the unit of vf v.s. the dipolar coupling
strength λ. At 0 < λ � 1, s(λ) ≈ 1 + 0+. On the order of λ � 1, s(λ) becomes
linear with the slope indicated in Eq. (7.56).

equation as(
1 + Ω00;0(s)F1001;1001 sΩ00;0(s)F0011;0011

sΩ00;0(s)F1001;1001 1 + Ω00;0(s)F0011;0011

)(
δn1001

δn0011

)
= 0, (7.49)

where the following relations are used

K1001;1001(s) = Ω00;0(s)

K1001;0011(s) = K0011;1001(s) = 〈0010|10〉〈1010|00〉Ω01;0(s) = sΩ00;0(s)

K0011,0011(s) =
∑
m

|〈1m1−m|00〉|2Ω11;m(s) =
1

3
Ω11;0(s) +

2

3
Ω11;1(s) = Ω00;0(s).

(7.50)

The condition of the existence of nonzero solutions of Eq. (7.49) becomes

(1− s2)Ω2
00;0(s) + 2Ω00;0(s)

F+

F 2×
+

1

F 2×
= 0, (7.51)

where F+ = (F1001:1001 + F0011;0011)/2 and F× =
√
F1001:1001F0011;0011.

Let us discuss several important analytical properties of its solutions. In

order for collective modes to propagate in Fermi liquids, its sound velocity must
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satisfy s > 1, otherwise it enters the particle-hole continuum and is damped, a

mechanism called Landau damping. We can solve Eq. (7.51) as

Ω±
00;0(s) =

F+ ±√F 2
+ + (s2 − 1)F 2×

(s2 − 1)F 2×
. (7.52)

Only the expression of the Ω−
00;0(s) is consistent with s > 1 and is kept. The other

branch has no solution of the propagating collective modes.

Let us analytically check two limits with large and small values of λ, re-

spectively. In the case of 0 < λ � 1 such that s → 1 + 0+, Eq. (7.51) reduces

to

Ω00;0(sλ�1) ≈ 1− 1

2
ln 2 +

1

2
ln(s− 1) = − 1

2F+

. (7.53)

Its sound velocity solution is

sλ�1 ≈ 1 + 2e
−2
(
1+ 1

2F+

)
= 1 + 2e−2− 12

7πλ . (7.54)

The eigenvector can be easily obtained as 1√
2
(1, 1)T , which is an equal mixing

between these two modes. On the other hand, in the case of λ� 1, we also expect

s� 1, and thus Eq. (7.51) reduces to

Ω00;0(sλ�1) ≈ − 1

sF×
= − 1

3s2
, (7.55)

whose solution becomes

sλ�1 ≈ F×
3

=
π

3
√
3
λ. (7.56)

In our case, F1001 is larger than F0011 but is on the same order. The eigenvector

can be solved as 1√
2F+

(
√
F0011,

√
F1001)

T in which the weight of the (0011) channel

is larger.

The dispersion of the sound velocity s with respect to the dipolar interac-

tion strength λ is solved numerically as presented in Fig. 7.1. Collective sound

excitations exist for all the interaction strengths with s > 1. In both limits of

0 � λ � 1 and λ � 1, the numerical solutions agree with the above asymptotic

analysis of Eqs. (7.54) and (7.56). In fact, the linear behavior of s(λ) already

appears at λ ∼ 1, and the slope is around 0.6. For all the interaction strengths,

the (1+001) and (0−011) modes are strongly hybridized.
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Figure 7.2: The spin configuration [Eq. (7.57)] of the zero-sound mode over the
Fermi surface shows hedgehog-type topology at λ = 10. The common sign of
u1 and u2 is chosen to be positive, which gives rise to the Pontryagin index +1.
Although the hedgehog configuration is distorted in the z component, its topology
does not change for any values of λ describing the interaction strength.

This mode is an oscillation of spin-orbit coupled Fermi surface distortions.

The configuration of the (0−011) mode exhibits an oscillating spin-orbit coupling

of the �k ·�σ type. This is the counterpart of the isotropic unconventional magnetism,
which spontaneously generates the �k · �σ-type coupling [180, 181]. The difference
is that, here, it is a collective excitation rather than an instability. It strongly

hybridizes with the longitudinal spin mode. The spin configuration over the Fermi

surface can be represented as

�s(�r,�k, t) =

⎛
⎜⎜⎝

u2 sin θ�k cosφ�k

u2 sin θ�k sinφ�k

u2 cosφ�k + u1

⎞
⎟⎟⎠ ei(�q·�r−sqvf t), (7.57)

where (u1, u2)
T is the eigenvector for the collective mode. We have checked that

for all the values of λ, |u2| > |u1| is satisfied with no change in their relative sign,
thus the spin configuration as shown in Fig. 7.2 is topologically non-trivial with

the Pontryagin index ±1 which periodically flips the sign with time and the spatial
coordinate along the propagating direction. It can be considered as a topological
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zero sound.

7.6 Summary

We have presented a systematic study on the Fermi liquid theory with the

magnetic dipolar interaction, emphasizing its intrinsic spin-orbit coupled nature.

Although this spin-orbit coupling does not exhibit at the single-particle level, it

manifests in various interaction properties. The Landau interaction function is

calculated at the Hartree-Fock level and is diagonalized by the total angular mo-

mentum and parity quantum numbers. The Pomeranchuk instabilities occur at

the strong magnetic dipolar interaction strength generating effective spin-orbit

coupling in the single-particle spectrum.

We have also investigated novel collective excitations in the magnetic dipo-

lar Fermi liquid theory. The Boltzmann transport equations are decoupled in the

spin-orbit coupled channels. We have found an exotic collective excitation, which

exhibits spin-orbit coupled Fermi surface oscillations with a topologically nontriv-

ial spin configuration, which can be considered as a topological zero-sound-like

mode.

Acknowledgements: This chapter is in part a reprint of the paper “Spin-

orbit coupled Fermi liquid theory with magnetic dipolar interaction”, Yi Li and

Congjun Wu, Phys. Rev. B, 85, 205126 (2012).



Chapter 8

Concluding remarks and outlook

We have already presented several studies on novel states of matter with

non-trivial topological properties in both condensed matter and ultra-cold atom

systems. Below we summarize the main results in this thesis and discuss open

problems for further research.

First, we have constructed Landau levels for both Schrödinger and Dirac

fermions in three and four dimensions. This provides a new mechanism for high di-

mensional topological insulators, which is independent from the well-studied band

inversion mechanism. Furthermore, the flat energy spectra of Landau levels are

an advantage in which interaction effects are non-perturbative. High dimensional

Landau level Hamiltonians and eigen wavefunctions are based on harmonic oscil-

lators, and thus are simple and explicit. The lowest Landau level wavefunctions

further exhibit elegant quaternionic analyticity which is a natural extension of the

complex analyticity to high dimensions. Generalizations of Landau levels to the

Landau-type gauges, Dirac fermions, and parity breaking systems are also system-

atically performed. Below we present some open questions.

1. The elegant quaternionic analyticity of the three and four dimensional lowest

Landau level wavefunctions provides a promising platform for the numeric

and analytic studies of fractional topological states. Since the complex ana-

lyticity plays an important role in studying fractional quantum Hall effects

in 2D, we plan to explicitly construct Laughlin-type wavefunction for frac-

tional topological states based on the quaternionic analytic wavefunctions,
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and further study novel fractional excitations and their exotic statistics.

2. Unlike the two-dimensional Landau level systems in which there exists the

magnetic translation symmetry, such a symmetry does not exist in our cas-

es in three and four dimensions. The usual calculation method for the Z2

topological index is based on Bloch-wave band structures associated with

translation symmetry, and thus does not apply in our systems. So far, we

have used the explicit calculations of surface spectra, whose helical and chiral

properties infer their non-trivial bulk topology. Since topological properties

should not rely on translational symmetry, an open question is how to de-

fine the topological index in an inhomogeneous system. In particular, the

harmonic potential is the simplest inhomogeneity, we are interested in con-

structing a rigorous mathematical formulation in such a system.

3. An important question is experimental realizations of three dimensional Lan-

dau level Hamiltonians, including both non-relativistic and relativistic ones

in both symmetric and Landau-type gauges. We will seek collaborations with

experimentalists in both condensed matter and ultra-cold atom physics for

realizations and detections.

Second, we have studied the spin-orbit coupling effects in ultra-cold magnet-

ic dipolar fermion atoms. Magnetic dipolar interactions are rotationally invariant

only under simultaneous spin-orbit rotations. Thus different from the conventional

spin-orbit coupling which is at the single-particle level, magnetic dipolar interac-

tions generate spin-orbit coupling effects at the interaction level. They exhibit in

various aspects in many-body physics with novel topological properties. In par-

ticular, it leads to a robust pairing mechanism for the Weyl pairing state in the

p-wave spin triplet channel. It is a novel pairing symmetry in which the total spin

and orbital angular momentum of the Cooper pair are entangled into the total an-

gular momentum J = 1. Such a state is different from both 3He-A and B phases.

We are interested in further exploring these systems with following open questions.

1. So far, we have considered a toy model of spin-1
2
fermions interacting with

magnetic dipolar interactions. However, the energy scale of magnetic dipolar
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interactions are usually very week. Thus, in real experimental systems, the

magnetic dipole moments are very large in order to enhance the interaction

energy scale. We need to generalize our previous study of Cooper pairing

to dipolar fermions with large spins. Even richer patterns of unconventional

and topological Cooper pairings are expected.

2. We are interested in further exploring non-trivial topological properties of our

novel spin triplet Weyl pairing, including the surface modes and topological

defects. In particular, we expect a variety of rich topological spin textures,

superfluid vortices, and their combined defects. Novel fermion zero modes,

such as Majorana fermions, can exhibit around these defects. Such systems

will exhibit novel topological properties that do not appear in the superfluid

3He systems.

3. We will actively explore the collaboration opportunity with experimental

groups of ultra-cold fermions. The study of dipolar fermions has become

a hot research topic in ultra-cold community. Extensive studies have been

performed in electric dipolar systems. The research on magnetic dipolar

systems is just beginning which provides a large opportunity for exploring

novel states.
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