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Co-Robotic Harvest-aid Platforms: Real-time Control of Worker Lift Heights 1 

to Maximize Harvesting Efficiency 2 

 3 
 Zhenghao Fei (费铮豪)*, Stavros G. Vougioukas  4 

University of California, Davis, Department of Biological and Agricultural Engineering, One Shields Ave, Davis, 5 

CA 95616-5270, USA 6 

Abstract 7 

Harvest-aid platforms are used in modern orchards to improve manual harvesting efficiency, 8 

safety, and ergonomics. Typically, workers stand at pre-set heights on a platform’s multi-level 9 

deck, and each worker harvests fruits inside a canopy zone that is defined by the lowest and 10 

highest reach of the worker’s arms. However, fruit distributions are non-uniform, and worker 11 

picking speeds vary, thus generating a mismatch between labor demand (incoming fruit rates) 12 

and labor supply (fruit picking rates) in each zone; this mismatch limits platform-based 13 

harvesting efficiencies. To alleviate this problem, we transformed a conventional harvesting 14 

platform into a collaborative robot (co-robot) platform. As the co-robotic platform travels 15 

forward, it estimates the incoming fruit distribution using a vision system, it measures each 16 

worker’s picking speed using instrumented picking bags, and controls the heights of hydraulic 17 

lifts that move workers up and down. The model-based control algorithm maximizes the 18 

machine’s harvesting speed by changing the height at which each worker harvests as a response 19 

to incoming fruit load because it matches fruit-picking labor supply and demand. Simulation 20 

experiments with pre-recorded fruit distribution data validated the approach and provided 21 

efficiency gains under various conditions. Apple-harvesting experiments were also performed in 22 

a commercial orchard, where 2,307 kg of apples were picked: 1,045kg in variable-height zone 23 
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harvesting mode, and 1,262 kg in fixed zone harvesting mode, with workers at fixed heights that 24 

were set by the grower. Variable-height zone harvesting mode throughput was 327.6 kg/h vs. 25 

298.8 kg/h for fixed zone harvesting mode at human-controlled platform moving speed, resulting 26 

in an improvement of 9.5%. 27 

Keywords: 28 

Co-robotic harvesting, harvest platform, control, human-in-the-loop.  29 

Nomenclature table 

𝐴!          Valid action set for controlling nth worker’s height 

𝐴   Combined actions set for controlling all workers  

𝑎"!          Height control action for nth worker at timestep t 

𝑎"           Combined height control action for all workers at timestep t.  

C Sparse sampling plan width 

E Sparse sampling extra search depth 

f    System’s dynamic function 

𝑔  Reward function 

H Sparse sampling plan (look-ahead) horizon 

K Sparse sampling extra search sample size 

 "𝑘#!   nth worker’s picking rate (fruits per second) at time step t. (fruits s-1) 

 "𝒌#   All workers’ picking rate (fruits per second) at time step t 

𝑙$           Worker’s reachable windows width (m) 

𝑙%           Worker’s reachable windows height (m) 

 "𝑀	        Fruit distribution map at time step t 

N   The number of total workers on board 

𝑝!          The nth worker 

𝜋   Worker height control policy 

𝜋∗   Optimal height control policy 

𝜋(𝑠)       Action taken in state s under policy 𝜋 

𝑞'(𝑠, 𝑎)  Action value, the value of taking action a in state s under policy π 
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𝑟"           Reward - the number of picked fruits at time step t 

γ      Reward discount rate 

𝑠"           System state at time step t; it includes [ "𝑥(,  "𝑣(,  "𝒚# 	,  "𝒙# ,  "𝒌# ,  "𝑀] 

Δ𝑡  Timestep length (s) 

𝑣'(𝑠)    State value of state s under policy π 

𝑣∗(𝑠)    Optimal state value of state s under optimal policy 

𝑣)∗ (𝑠)    
Estimation of the optimal state value using H-step expected discounted 
reward 

 "𝑣(  The platform’s moving speed at time step t (m s-1) 

 "𝑤!      nth worker’s current picking window at time step t 

 "𝑥(  Platform’s horizontal position along the tree row at time step t (m) 

 "𝑥#!   nth worker’s horizontal position along the tree row at time step t 

 "𝒙#   All workers’ horizontal position along the tree row at time step t 

𝑥*!          nth worker’s horizontal offset from the platform’s horizontal position  "𝑥( 

 "𝑦#!  nth worker’s vertical position at time step t (m) 

 "𝒚#   All workers’ vertical position at time step t 

Note: the time step t is neglected when presenting a symbol in a time invariant context. 
 30 

1 Introduction 31 

Harvesting fruits for the fresh-market is a very labor-intensive and costly task (Zhang, 2017), 32 

because fruits must be picked carefully, to avoid damage, and selectively, based on marketing 33 

criteria. Growers in many countries face a great challenge, because they depend on a large 34 

seasonal semi-skilled immigrant workforce, which is becoming less available (Taylor and 35 

Charlton, 2018).  36 

During commercial harvesting, workers pick the lower-hanging fruit by walking through the 37 

orchard rows,  and use tall ladders to reach fruits located at higher parts of the canopies (Figure 38 
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1a). Then, they walk to bins that have been pre-positioned in appropriate locations in the orchard, 39 

to unload their fruit and resume picking (Figure 1b).  40 

a)  b)  41 

Figure 1 a) Workers use tall ladders to harvest fruit located at higher parts of the canopy. b) After harvesting a full bag, workers 42 

walk to bins and unload their fruit. 43 

There are three main approaches to mechanizing the harvesting of fresh-market fruits (Zhang et 44 

al., 2016; Zhang et al., 2020). The first is mechanical mass-harvesting. There are three categories 45 

of mass-harvesting approaches. One is trunk shaking, where the trunk is shaken and fruits are 46 

caught with catching surfaces. This approach causes large numbers of fruits to detach in a very 47 

short time interval by using trunk shaking and catching(Peterson et al., 1999, Ortiz et al., 2013, 48 

De et al., 2015, He et al., 2017),  The second category is the canopy shaking, where a number of 49 

rods enter the canopy and shake all together thus hitting the limbs and branches of the tree, and 50 

the fruits. (Peterson, 1982, Peterson and Kornecki, 1987, Peterson and Miller, 1989). The third 51 

category is the air jet method, where the air is blown to parts of the canopy or the entire canopy. 52 

(Thomas, 1964; Berlage, 1973). The mechanical mass-harvesting approach is efficient in fruit 53 

harvesting but also causing an unacceptable fruit damage rate from the apple-to-apple collision, 54 

apple-to-branch collision, and excessive apple movement (Zhang et al., 2016). In some cases 55 

may cause tree damage as well. Due to the high fruit damage rates, the mechanical mass-56 
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harvesting is used to harvest fruits for juice and other processed products, but not for fresh-57 

market fruits.  58 

 59 

The second approach is selective harvesting using a robotic system. Harvesting robots recognize, 60 

locate, and detach fruits individually (Zhang et al., 2016). Some harvesting robots that handle 61 

fruits gently, without impacting fruit quality have been demonstrated (e.g., Bac et al., 2014, 62 

Silwal et al., 2017, Bogue, 2020), but are still at a pre-commercial stage, mainly because of low 63 

cost-effectiveness (high harvest cost), low picking speed compared to the manual harvesting, and 64 

inability to harvest a wide range of tree architectures (Vougioukas, 2019).  65 

 66 

The third approach - an intermediate, partial-mechanization approach between manual harvesting 67 

and fully mechanized harvesting - is machine-aided harvesting using harvest-aid platforms. 68 

These are self-propelled machines that are deployed in high-density orchards to reduce the 69 

amount of labor by increasing workers’ harvest efficiencies (Berlage et al., 1972; Peterson, 2005, 70 

Lesser, 2008). Many platform variants have been developed and used in practice over the past 71 

decades; however, experimental results from their use are not that numerous. Peterson, Miller 72 

and Wolford (1996) reported 36 to 44% increase in picker productivity for a two-person platform 73 

designed for narrow inclined trellised apple trees. Peterson (2005) tested another harvest-aid 74 

platform with two elevated workers and two ground workers, who used two fruit conveyors to 75 

transfer the fruit into a collection bin. The harvest productivity increased by up to 22%, but the 76 

fruit conveyance system introduced unacceptably high damage rates. Such damage can be 77 

partially eliminated by improving the conveyor or the bin filler (Zhang et al., 2018). Besides 78 

harvesting, harvest-aid platforms can be used for many other orchard management tasks that 79 
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involve using ladders, such as pruning and thinning (Sazo et al., 2010). Harvest-aid platforms 80 

with vacuum-based conveyance systems have also been introduced and shown to increase 81 

workers’ efficiencies (Schupp et al., 2011, Zhang et al. 2014). The workers on such platforms 82 

insert picked fruits directly in vacuum tubes, and don’t spend unproductive time filling and 83 

unloading bags. 84 

 85 

Workers on modern commercial harvest-aid platform (see for example, Figure 2a) stand on the 86 

deck and pick, without having to climb on ladders or walk to bins, thus spending most of their 87 

time productively, picking fruit. Typically, the heights of a platform’s decks are adjusted prior to 88 

harvest at different heights from the ground, thus resulting in each worker picking fruit from a 89 

canopy “zone” at a certain height (Figure 2b); the zones may overlap, depending on deck 90 

heights, and worker picking styles and reaching abilities. 91 

a) b)  92 

Figure 2 a) Example of harvest-aid platform (Bandit Xpress by Automated Ag, Moses Lake, WA); photo courtesy of Automated 93 

Ag. b) Zone-harvesting, from a platform with decks at multiple, pre-configured heights; each worker picks fruit from a zone of 94 

reachable fruit. 95 

The performance of multi-worker platforms has been evaluated formally by several researchers. 96 

Results were mixed, as the machines’ picking efficiencies, were found to be better, similar or 97 

worse than that of ladder-based picking, depending on the platform design, tree architecture and 98 

Zone 1

Zone 2
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fruit load distribution. Berlage et al. (1972) reported that in a two-worker apple harvesting 99 

platform without a fruit-conveyance system, one of the workers’ picking efficiency decreased 100 

21.9% due to the imbalance of fruit load between the upper and lower region of the canopy. 101 

Peterson (2005) also reported that the overall harvest rate of the platform was limited by the 102 

slowest worker who caused the faster worker to be idle.  103 

The main reason behind the inefficiency of fixed-height “zone harvesting” is that, as the platform 104 

moves forward, the rate of incoming fruit inside a zone may not match the picking rate of the 105 

worker(s) picking in that zone. In general, each worker will pick at a different speed, which may 106 

vary during the workday; also, fruits are distributed with non-uniform distributions (Figure 3).  107 

 108 

Figure 3 Example of a two-dimensional apple distribution in a high-density V-trellised orchard; data was collected using the 109 

method described in Arikapudi et al. (2016). The vertical axis corresponds to height from the ground, and the horizontal axis to 110 

distance along the row.  111 

In the worst case, a slow worker harvesting a high-yield zone will act as a bottleneck that 112 

restricts the platform from moving forward faster, and will cause other (faster) workers to be 113 

idle. In general, fixed-height zone-harvesting will result in various degrees of imbalance between 114 

“labor supply” (picking rate) and “labor demand” (incoming fruit rate). The goal of this work is 115 

to reduce or eliminate such imbalances that lower the harvest throughput of multi-crew platforms 116 

and hinder their wider adoption.  117 
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1.1 Related work 118 

Let us consider a number of “jobs” that must be performed by a group of “machines”, and that 119 

each job must run continuously on only one machine, and that each machine can perform at most 120 

one job at a time.  If a subset of the jobs is assigned to a certain machine, the processing time of 121 

all the jobs on this machine is known as the load of the machine. To maximize the throughput or 122 

equivalently minimize the overall processing time of all the jobs requires an appropriate 123 

assignment of jobs to machines. Load-balancing algorithms are designed to equally spread the 124 

load on machines and maximize their utilization while minimizing the overall job processing 125 

time (Zomaya and Teh, 2001). When it is possible to make a priori estimate of work distribution 126 

the problem is called static load balancing. When jobs arrive continuously, and the amount of 127 

job is only known during actual program execution, the computation evolves different machines 128 

being responsible for the differing amount of job is called dynamic load balancing (Cybenko, 129 

1989). Dynamic load-balancing is essential for the efficient use of highly parallel systems when 130 

solving non-uniform problems with unpredictable load estimates (Willebeek-LeMair and Reeves, 131 

1993).  132 

Load-balancing problems arise – and have been studied - in various scenarios. The most studied 133 

area of the load-balancing problem is in parallel and distributed computing systems. (Cybenko, 134 

1989, Willebeek-LeMair and Reeves, 1993, Zomaya and Teh, 2001). Also, load-balancing was 135 

studied in other areas such as job shop scheduling to improve machine utilization and reduce the 136 

makespan (Ramasesh, 1990). In telecommunication networks, load-balancing construct call-137 

routing schemes that distribute the changing load over the system and minimize lost calls. 138 

(Schoonderwoerd et al., 1997).  139 
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In agricultural robotics, load-balancing has received some attention, in the context of fruit 140 

harvesting with multi-arm robots. In particular, the assignment of individual fruits to arms has 141 

been studied for a simulated robotic melon harvester with multiple Cartesian arms (Zion et al., 142 

2014, Mann et al., 2016). Fruit harvesting was modeled as a task of coloring an interval graph, 143 

and a greedy algorithm was used to compute optimal assignments; a heuristic algorithm was also 144 

developed to compute near-optimal solutions, in real-time, as the robot base moves forward. The 145 

same problem was addressed by Barnett et al. (2020) for multiple Cartesian robot arms 146 

harvesting kiwifruit, while the robot base is stationary. Fruits (jobs) were partitioned in groups 147 

with equal numbers of fruits, and each arm was assigned to a partition, for load-balancing 148 

purposes; fruits were picked according to the ascending order of their coordinate along the axis 149 

of harvester motion. A similar approach was pursued by Xiong et al. (2020) to load-balance the 150 

operation of two robot arms on a strawberry-harvesting robot.   151 

However, load-balancing the work of human workers differs drastically from the applications 152 

described above, because we can neither control the workers’ picking motions nor assign 153 

individual fruits to workers. Hence, the load-balancing scenarios and approaches that were 154 

studied previously are not applicable to co-robotic platform-aided harvesting. 155 

1.2 Proposed approach 156 

This paper presents a novel human-robot collaborative approach that addresses the load-157 

imbalance problem of multi-crew harvest-aid platforms by implementing variable-height zone 158 

harvesting.  159 

Toward our goal, a commercial harvest-aid platform was retrofitted with: a) sensing systems that 160 

estimate the position and speed of the platform, the spatial distribution of the incoming fruit, and 161 
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each worker’s picking rate. b) two hydraulically-actuated lifts that control each worker’s 162 

elevation from the ground (i.e., the height of each worker’s picking zone) (Figure 4a).  A model-163 

based control system was developed to implement variable-height zone harvesting. The idea is 164 

that, as the platform moves forward in a row, instead of optimally assigning fruits to workers 165 

(which is impossible), the harvesting zone of each worker changes – in terms of its height from 166 

the ground – in a way that load-balances the canopy fruit load with the workers’ picking speeds. 167 

Hence, in our system, a controller adjusts the lift – and corresponding zone - heights 168 

automatically, in real-time, to match each workers’ picking rate with the incoming fruit load 169 

distribution (Figure 4b).  170 

a)  171 

b)  172 

Figure 4 a) The co-robotic platform system: an RTK-GNSS provides position and speed; a stereo-camera based vision system 173 

estimates a “heat map” of the incoming fruit distribution; instrumented picking bags measure each worker’s picking rate; two 174 

hydraulic cylinders on one side of the platform move workers up and down. b) The concept of variable-height zone harvesting: A 175 
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model-based control system adjusts the lift – and corresponding zone - heights  in real-time to match each workers’ picking rate 176 

with the incoming fruit load distribution, and maximize the machine’s picking throughput. 177 

The stochastic nature of the fruit distributions and worker picking rates led us to model co-178 

robotic platform-aided harvesting as a Markov Decision Process (MDP) (Bellman, 1957), and 179 

utilize discrete stochastic optimal control to design a controller that maximizes fruit-picking 180 

throughput, a measure of the system’s performance over time (Sutton and Barto, 1998). As it will 181 

be discussed in Section II, the state space of the MDP is very large, thus prohibiting exact 182 

solution approaches such as dynamic programming. Real-time optimization was made possible 183 

by computing a near-optimal solution based on a sparse-sampling control approach (Kearns et 184 

al., 2002), by randomly sampling a look-ahead tree with candidate actions within a time horizon.  185 

The major contributions of this work are:  186 

1) Modeling of the platform-based fruit-picking process, and development of a simulator to 187 

enable design, optimization, and evaluation of lift height control policies.  188 

2) Development of a model-based optimal worker/lift height controller that achieves near-189 

maximum picking efficiency.   190 

3) Robotization of a commercial harvest-aid platform that features closed-loop feedback control 191 

of worker elevations. (Only two lifts were installed due to budgetary constraints, but the 192 

methodology for more lifts would be the same.) 193 

4) Evaluation of the co-robotic platform in simulation, and in commercial harvesting, in an apple 194 

orchard. 195 

The rest of the paper is organized as follows. In section II, harvesting with a co-robotic platform 196 

is modeled as a Markov Decision Process, and an approach called sparse sampling is adopted 197 

from the literature - and adapted to our problem instance - to compute in real-time, near-optimal 198 

height control actions. Section III presents the hardware and software system of the co-robotic 199 
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harvest-aid platform. In section IV, we present simulation and real picking experimental results, 200 

in an apple orchard. Finally, section V summarizes the work, and discusses conclusions and 201 

future work. 202 

2 Methodology  203 

2.1 Problem definition 204 

Our objective is to compute an optimal lift height control policy that maximizes the number of 205 

fruits picked by the workers on the machine per unit of time (throughput). To achieve the 206 

objective, we needed to develop an optimizing controller that dynamically adjusts the elevation 207 

of each worker’s lift to match the spatial distribution of incoming fruits (labor demand) with the 208 

workers’ picking rates (labor supply). The first step is to model the harvesting process, i.e., the 209 

process where two workers pick fruit while standing on the decks of two variable-height lifts, on 210 

a forward-moving platform. A CAD model of the co-robotic platform system is shown in Figure 211 

5. 212 
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 213 

Figure 5 CAD model of the robotized platform system with variables definition; two hydraulic lift can move workers up and 214 

down; an RTK-GNSS installed on the top of the platform provides position and speed; a stereo-camera based vision system 215 

estimates a fruit distribution map of the incoming fruit distribution (colored heatmap). 216 

The platform moves forward, inside the orchard row, at speed 𝑣(. The camera system in front of 217 

the platform detects the incoming fruits – that are inside the camera’s field of view - calculates 218 

their georeferenced coordinates, and generates a “fruit map”, i.e., a heat map of fruit density 219 

(number of fruits in the canopy per unit of canopy surface area). The fruit map is represented as a 220 

regular two-dimensional grid, M. At any given lift elevation/height, the worker standing on the 221 

lift deck can reach fruits inside a rectangular picking window that has width  𝑙$ and height 𝑙%, 222 

and is centered at the worker’s current position (𝑥# , 𝑦# ).  The fruits within a worker’s picking 223 

window are picked at the worker’s picking rate 𝑘# . If there is no fruit inside the picking 224 

window, the worker is idle.  225 
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2.2 System modeling - Markov Decision Process Model 226 

Markov Decision Processes (MDPs) offer a popular framework for modeling decision-making 227 

problems (Bellman 1957). In an MDP, at every time step t, the next state can be computed given 228 

the current system state 𝑠" and the current action. A controller observes 𝑠" and selects an action 229 

𝑎"	 ∈ 𝐴(𝑠"), where 𝐴(𝑠") is the set of valid actions in 𝑠". Then, the system transitions to a new 230 

state 𝑠",- according to a state transition function (system’s dynamic function) 𝑓 :	𝑠" × 𝑎" →231 

	𝑠",- and receives a reward 𝑟" based on a reward function  𝑔: 𝑠" × 𝑎" →	𝑟". An optimal control 232 

policy is one that results in the maximum expected cumulative reward.  233 

2.2.1 Co-robotic platform system states 234 

The state of the co-robotic platform is 𝑠" = D "𝑥(,  "𝑣(,  "𝒚# ,  "𝒙# ,  "𝒌# ,  "𝑀E, as defined in the 235 

nomenclature table. The fruit distribution map M is an important and relatively complex part of 236 

the state. Each cell of the map represents a physical area of 0.3 m × 0.3 m on the surface of the 237 

fruiting wall; the value of each grid represents the number of fruits in its area. The values of the 238 

grid cells inside the camera’s field of view are updated by the vision system. As the platform 239 

moves forward, a cell’s value decreases, if a worker harvests/removes fruit from the canopy area 240 

corresponding to that cell. A state transition function will be presented to model the update of the 241 

cell values. An example M is shown in Figure 6. 242 
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 243 

Figure 6 An example of a fruit map M. The width of the grid map is from the end of platform (the rear worker’s reaching limit) to 244 

the camera’s sensing range in front of the platform. The height of the grid map is the valid vertical picking range (from the 245 

lowest worker reaching limit when the lift is at lowest height to the highest worker reaching limit when the lift is at highest 246 

height). The purple box is the camera field of view. Green and blue boxes are workers’ picking windows. 247 

2.2.2 Model parameters  248 

There are some MDP model parameters that are assumed to be constants. A worker’s current 249 

horizontal position 𝑥#!  is at a constant offset 𝑥*! (values for the offsets are listed in Table 1) 250 

relative to the platform’s current position 𝑥(. The assumption implies that each worker stands on 251 

their respective lift at a fixed position: 252 

 𝑥#! = 𝑥( + 𝑥*! (1) 

In reality, workers can reach the fruits left and right, each worker’s picking window 𝑤! is 253 

centered at the worker’s current position (𝑥#! , 𝑦#!) and its size is assumed to be fixed. 254 

 
𝑤! = G𝑥#! −

𝑙$
2 : 𝑥#

! +
𝑙$
2 , 𝑦#

! −
𝑙%
2 : 𝑦#

! +
𝑙%
2J 

(2) 

The ascending (𝑣.() and descending (𝑣/0#!) speeds of the hydraulic cylinders are also constants 255 

(values are listed in Table 1).  256 
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2.2.3 Actions 257 

For the nth worker, the valid action set 𝐴! is {0, +1, -1}, where “0” encodes the “keep_still” 258 

action, “+1” the “move_up” action, and “-1” the “move_down action for all 𝑠", except when that 259 

worker is already at the top or bottom. If the worker is already at the top or bottom, the effect of 260 

the move_up or move_down action, respectively, will be the same as that of the keep_still action. 261 

The controller’s full action set includes all the combinations of actions for two workers 𝐴 =262 

𝐴- × 𝐴1. 263 

2.2.4 State transition function - system dynamics 264 

The system’s state transition function 𝑓 :	𝑠" × 𝑎" →	𝑠",- defines how the state change after a 265 

time step, given an action a. The fruit map constitutes part of the state, and human picking 266 

patterns are unknown and unpredictable. Therefore, it is impossible to represent the state 267 

transition function with a closed-form equation. Next, we describe the transition/update 268 

equations for each component of the state. If each time step is Δ𝑡, the platform’s horizontal 269 

position 𝑥( is updated as:  270 

  ",-𝑥(  =  "𝑥(+"𝑣( × Δ𝑡 (3) 

The nth worker’s vertical position 𝑦#! follows 271 

  ",-𝑦#! =  "𝑦#! + 𝑣234"! × Δ𝑡 (4) 

𝑣234"! = 𝑣.( , if  "𝑎! 	= +1 272 

𝑣234"! = 𝑣/0#! , if  "𝑎! 	= -1 273 

𝑣234"! = 0 , if  "𝑎! 	= 0 274 
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The platform’s moving speed 𝑣( and each worker’s picking rate 𝑘#!  are measured by sensors.  275 

Based on our observations, these values do not change during the time period used in our work 276 

(Δ𝑡 = 5 s), so, they are assumed to be constant during each step of the state transition function. 277 

The fruit distribution map M updated as follows. For each worker 𝑝!, we refer to the maximum 278 

number of fruits the worker can pick during a time step Δ𝑡 as the picking capacity "𝑜!:   279 

  "𝑜! =  "𝑘#! × Δ𝑡 (5) 

Given that a worker’s fruit-picking sequence/strategy is not known, the assumption is made that 280 

the fruits in the nth worker’s current picking window  "𝑤! will be picked randomly within the 281 

timestep Δ𝑡. If there are enough (more than  "𝑜!) apples in this window, we subtract  "𝑜! fruits 282 

randomly from M’s corresponding picking window area. If the number of apples in the 283 

corresponding picking window area is less than  "𝑜!, we remove all the fruits. 284 

  ",-𝑀[ "𝑤!] = 𝐫𝐚𝐧𝐝𝐨𝐦𝐏𝐢𝐜𝐤( "𝑀[ "𝑤!],  "𝑜!) (6) 

Function randomPick will try to remove up to  "𝑜! fruits from  "𝑀 ’s corresponding picking 285 

window area randomly. 286 

2.2.5 Reward function   287 

The reward function 𝑔: 𝑠" × 𝑎" →	𝑟" defines the reward signal 𝑟" when action 𝑎" is executed at 288 

state 𝑠". The way the reward is computed is explained next. When there are fewer than 𝑜! fruits 289 

inside a worker’s picking area, the worker will pick all the fruits and remain idle, until the 290 

platform takes her/him to a position where there is more fruit. Therefore, the number of picked 291 

fruits 𝑟"! by worker n, is always less or equal to the fruit picking capacity (𝑟"! ≤  "𝑜!).  292 



 

17 

𝑟"! =  "𝑜! , if  𝐬𝐮𝐦("𝑀[ "𝑤!]) 	≥  "𝑜! 

𝑟"! =  𝐬𝐮𝐦("𝑀[ "𝑤!])	 , if  𝐬𝐮𝐦("𝑀[ "𝑤!]) 	<  "𝑜! 

 

 

(7) 

The reward signal 𝑟", is the sum of all workers' picked fruits at time step t. 293 

𝑟" = Σ!56!57𝑟"! (8) 

2.2.6 Optimization objective 294 

Our overall objective is to find an optimal height control policy 𝜋∗  that maximizes the total 295 

number of picked fruits by all workers, from the time the platform enters the row (𝑡 = 𝑡6) to the 296 

time it exits the row (𝑡 = 𝑡3). 297 

 𝜋∗ = argmax
																											'

	Σ"5"!
"5"" 𝑟" 

 

 

(9) 

2.3 Optimization Algorithm 298 

Following the definition in Sutton & Barto, (1998), we defined a policy π(𝑠) as a mapping from 299 

the current state, s, to an action a. A state-value 𝑣'(𝑠) estimates “how good” it is to be in state s 300 

and follow policy π, in terms of future expected returns with a discount factor γ: 301 

 𝑣'(𝑠) = 𝐄DΣ8569 γ8𝑟8d𝑠, πE				 (10) 

Similarly, we defined the state-value for a state-action pair (s, a) under the policy π as an action-302 

value, denoted 𝑞'(𝑠,  𝑎); the action value estimates the future expected returns starting from the 303 

state, s, taking action a, and following the policy π thereafter.  304 

 𝑞'(𝑠, 𝑎) = 𝐄[𝑟" + γ𝑣'(𝑠",-)|𝑠, 𝑎, π]				 (11) 

In an MDP, there is always at least one policy that is better or equal to all other policies. Its 305 

expected return is greater or equal to all other policies’ at all states (π(𝑠) ≥ π:(𝑠) if and only if 306 
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𝑣'(𝑠) ≥ 𝑣'#(𝑠)   for all 𝑠 ∈ 𝑆 ). This policy is called the optimal policy π∗, and the state-value 307 

of 𝜋∗ is called the optimal state-value 𝑣∗(𝑠). 308 

 𝑣∗(𝑠) = max
'
𝑣'(𝑠) 	for	all	𝑠 ∈ 𝑆				 (12) 

The action-value of 𝜋∗ is called optimal action-value 𝑞∗(𝑠, 𝑎). 309 

 𝑞∗(𝑠, 𝑎) = max
'
𝑞'(𝑠, 𝑎) 		for	all	𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑆)				 (13) 

We can also rewrite the optimal action-value as the expected return for taking action a in state s 310 

and follow the optimal policy π∗ afterwards. 311 

 𝑞∗(𝑠, 𝑎) = 𝐄[𝑟" + 𝛾𝑣∗(𝑠",-)|𝑠, 𝑎]			 (14) 

In a reverse way, once we have an optimal action-value 𝑞∗(𝑠, 𝑎) we can obtain an optimal 312 

policy: 313 

 π∗ = argmax
;
𝑞∗ (𝑠, 𝑎)			 (15) 

The MDP that models co-robotic platform-based harvesting has a huge state space. Although the 314 

state variables are discrete, the number of possible states is huge because of the large number of 315 

cells in the fruit map and the randomness in the fruit-picking sequence. Hence, the “curse of 316 

dimensionality” renders exact optimization methods, such as dynamic programming, impractical. 317 

One approach that deals with MDPs with a finite discrete action space and a huge state space is 318 

the sparse sampling algorithm proposed by Kearns et al. (2002). We used this algorithm to solve 319 

the proposed MDP. This approach is a model-based online planning approach that uses an 320 

existing generative model, i.e., a model that returns a randomly-sampled next state 𝑠",- and 321 

corresponding reward 𝑟", given as input any state-action pair (𝑠" , 𝑎"). Our system’s state-322 

transition function 𝑓 and reward function 𝑔 can serve as a generative model. Given any state, 323 

instead of computing all the possible next states and rewards, this algorithm draws samples using 324 
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a generative model for state-action pairs, step by step. Thus the running time required to compute 325 

a near-optimal action is not related to the size of the state space, and depends only on the size of 326 

the action space 𝐴(𝑆), the planning horizon H, and the width C. Specifically, the planning 327 

horizon H is the look-ahead depth of the state expansion tree, and the width C is the number of 328 

next-state samples that are generated for each state-action pair, as shown in Figure 7. 329 

The main idea of the sparse sampling algorithm is to estimate the optimal q-values of the current 330 

state 𝑠" for all the possible actions and determine a policy using  𝜋 ∗ = argmax
;$

𝑞∗ (𝑠" , 𝑎"). 331 

Because of the duality between the state-value and action-value, estimating the action-value can 332 

be done through estimating the state-value. Furthermore, 𝑣∗(𝑠) can be approximated by the H-333 

step value 𝑣)∗ (𝑠): 334 

 𝑣)∗ (𝑠") = 𝑬D∑ γ8)
856 𝑟8d𝑠" , π∗E = 𝑬[𝑟(𝑠" , 𝑎∗) + γ𝑣)<-∗ (𝑠",-)]			 (16) 

Kearns et al. (2002) proved that the error of this approximation can be made controllably small 335 

by choosing H sufficiently large. The optimal value of the current state for H horizons can be 336 

approximated as: 337 

 𝑣m )∗ (𝑠") 	≈ max
;$
(𝑬[𝑟(𝑠" , 𝑎") + γ𝑣m)<-∗ (𝑠",-)])				 (17) 

The expectation in Eq. 17 will be approximated by a sample mean using C samples. Now, we 338 

can recursively obtain an estimate of 𝑣m =∗ (𝑠")  by using the estimate of 𝑣m )<-∗ (𝑠",-). For 339 

mathematical simplicity, the original paper uses 𝑣m 6∗(𝑠) 	= 	0 for all s; however, doing so, ignores 340 

the policy’s effect beyond H steps, and effectively limits the planning horizon. Instead, in this 341 

work, we modify the algorithm by using a random policy to rollout E extra steps from state s, 342 

and record the cumulative discounted return. We repeat this random E-step rollout K times, and 343 

use the average cumulative discounted return as an approximation of 𝑣m 6∗(𝑠).  344 
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𝑣m 6∗(𝑠") =

1
𝐾qrqsγ8𝑟8d𝑠" , π4;!/0>t

?

85-

u
@

A5-

 (18) 

 345 

In practice, the planning horizon is chosen according to the available computational resources. 346 

We will analyze the effect of different planning horizons in later experiments. An example of a 347 

planning tree of this algorithm is shown in Figure 7, and the pseudo-code is given in Algorithm 348 

1-4. 349 

 350 

Figure 7 Planning tree with action number A(s)=2, sample size C=2 and planning horizon H=2 351 

Algorithm 1 EstimateQ 

Input: 𝑠" , 𝐶, 𝐻, 𝐸, 𝐾, 𝛾, 𝑓, 𝑔 
Output: estimation of optimal action-value for all actions at 𝑠": 𝑞m)∗ (𝑠" , 𝑎8) 
for each 𝑎8 ∈ 𝐴(𝑠") do 

Use state transition function f  to generate C next state samples and get their corresponding 
rewards using reward function 𝑔. Let 𝑆",- be the set of the generated next states and 𝑅" be the 
set of corresponding rewards . 

𝑞m)∗ (𝑠" , 𝑎8) =
1
𝐶 zq 𝑟"

4$∈C$

+ 𝛾 q 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐕(𝑠",-, 𝐶, 𝐻 − 1, 𝐸, 𝐾, 𝛾, 𝑓)
D$%&∈E$%&

~ 

end for 
return [𝑞m)∗ (𝑠" , 𝑎8)	𝑓𝑜𝑟	𝑎8 ∈ 𝐴(𝑠")	] 

 352 
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Algorithm 2 EstimateV 

Input: 𝑠" , 𝐶, 𝐻, 𝐸, 𝐾, 𝛾, 𝑓, 𝑔 
Output: estimation of optimal H-step value function at 𝑠": 𝑣m)∗ (𝑠") 
if H = 0 and 𝐸 > 0 then 

return RandomPolicyValue(𝑠" , 𝐸, 𝐾, 𝛾, 𝑓, 𝑔) 
else if H = 0 and 𝐸 = 0 then 

return 0 
else 
𝑞m)∗ (𝑠" , 𝑎8)	for	𝑎8 ∈ 𝐴(𝑠") = 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐐(𝑠" , 𝐶, 𝐻, 𝐸, 𝐾, 𝛾, 𝑓, 𝑔)  
 
return 𝑚𝑎𝑥;'∈F(D$)𝑞m)

∗ (𝑠" , 𝑎8) 
 353 

 354 

Algorithm 3 RandomPolicyValue 

Input: 𝑠" , 𝐸, 𝐾, 𝛾, 𝑓, 𝑔 
Output: 𝑣m 6∗(𝑠")  
Use random policy π 4;!/0> to control the system from  𝑠"	for 𝐸 steps. Repeat this procedure 
K times. 
𝒗 = 0 
for k = 0 to K-1 do 
𝒔 = 𝒔𝒕  
𝑣J = 0  

for m  = 0 to 𝐸 -1 do 
    𝒂	 = 𝜋K4;!/0>(𝑠) 
    𝒓, 𝒔 = 𝒈(𝒔, 𝒂), 𝒇(𝒔, 𝒂) 
    𝒗𝒌+= 𝛾> ∗ 𝒓 
end for 

𝒗+= 𝒗𝒌  
end for  
𝑣m 6∗(𝑠") =

2
@

  
return 𝑣m 6∗(𝑠") 

 355 

Algorithm 4 SelectAction 

Input: 𝑠" , 𝐶, 𝐻, 𝐸, 𝐾, 𝛾, 𝑓, 𝑔 
Output: optimal action 𝑎 
 
𝑞m)∗ (𝑠" , 𝑎8)	for	𝑎8 ∈ 𝐴(𝑠") = 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐐(𝑠" , 𝐶, 𝐻, 𝐸, 𝐾, 𝛾, 𝑓, 𝑔)  
 
return 𝑎𝑟𝑔𝑚𝑎𝑥;'∈F(D$)𝑞m)

∗ (𝑠" , 𝑎8) 
 356 
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3 Materials 357 

3.1 Robotized co-robotic platform 358 

A commercial harvest-aid platform (Bandit Xpress by Automated Ag Systems, Moses Lake, 359 

WA) was “robotized” to work in variable-height zone harvesting mode. Hydraulic cylinders 360 

were installed to move workers up and down, based on commands from the central control 361 

computer. Guard rails and hooks for safety harnesses were installed to ensure worker safety. 362 

Workers were equipped with instrumented picking bags (Fei et al., 2017), which measure the 363 

worker’s picking rate in real-time and transmit the data to the central computer wirelessly, via a 364 

Digi Xbeeâ RF module. The picking bags measure the picking rate in kg s-1. The picking rate 365 

numbers were converted into fruits s-1 using the average fruit weight, which was estimated prior 366 

to the experiments by measuring the weight of one hundred random fruits from a bin. An RTK-367 

GNSS (Real Time Kinematic - Global Navigation Satellite System) with cm-level localization 368 

accuracy was installed on the top of the platform to estimate the platform moving speed and the 369 

relative position between workers and incoming fruits. A stereo camera system was mounted in 370 

the front of the platform, and vision software was used to detect and localize the incoming fruits 371 

(Pothen and Nuske, 2016). The robotized platform is shown in Figure 8. Parameter values of the 372 

system are listed in Table 1.  373 
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 374 

Figure 8 Sensors (Instrumented picking bag, RTK-GNSS, Camera) and actuators (Hydraulic cylinders) on the robotized platform 375 

with workers.  376 

System parameters: 

Number of workers: N = 2 

Lowest lift deck height from the ground: 1.1 m 

Highest lift deck height from the ground: 2.0 m 

Worker’s vertical position to standing deck offset: 0.95 m 

Worker’s lowest reaching height, at lowest lift height: 1.6 m 

Worker’s highest reaching height, at highest lift height: 3.4 m 

Hydraulic lift ascending speed: 𝑣.( 	= 	0.037	𝑚/𝑠 

Hydraulic lift descending speed: 𝑣/0#! 	= 	0.074	𝑚/𝑠 

Worker horizontal offset from the rear end of platform: 𝑥*- = 0.45𝑚, 𝑥*1 = 2.55𝑚   

Camera horizontal offset from the rear end of platform: 4.05 m 

Worker’s reachable windows size: 𝑙$ 	= 0.9	𝑚, 𝑙% = 0.9	𝑚 
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Camera horizontal field of view: 0.9 m 

Time step: Δ𝑡	 = 	5𝑠 

Reward discount rate: γ = 	0.99 

Table 1 Robotized platform system parameters 377 

3.2 Software system overview 378 

The software is implemented using the Robot Operating System (ROS) (Quigley et al., 2009). 379 

Each functional module constitutes a node in the ROS network. The nodes are listed as follows:  380 

a) Lift-control node: This node executes on an Arduino microcontroller, which interfaces to the 381 

hydraulic cylinders of the platform that controls the worker heights. The microcontroller is 382 

connected to a central computer through a USB serial.  383 

b) Instrumented picking bag nodes: Each instrumented bag has an Arduino microcontroller, and 384 

a node executes on it. The node calculates picking rates and sends the data to the central 385 

computer via Digi Xbeeâ. When the worker fills a bag and wants to unload, an unloading button 386 

on the bag is pressed, and a command is sent to the lift control node to lower the worker’s lift to 387 

the elevation of the bin’s lift height.  388 

c) Camera node: The node executes on a laptop computer connected to the stereo camera. The 389 

node estimates the incoming fruit density from the image stream in real-time using an algorithm 390 

developed by Pothen and Nuske (2016), and sends the incoming fruit density map to the central 391 

computer through an Ethernet connection. The performance metrics of the vision system’s fruit 392 

detection in the specific orchard were: precision 0.923, and recall 0.91. 393 

d) Worker height optimization node: This node implements the model and optimizing control 394 

algorithm (sections 2.2 and 2,3) and runs on the central computer. It uses all the sensor 395 
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information to compute optimal heights for the worker in real-time – using the sparse sampling 396 

algorithm - and sends the commands to the lift-control node.  397 

e) RTK-GNSS node: This node publishes the current location and speed of the platform. The 398 

overall co-robotic platform software structure is shown in Figure 9.  399 

 400 

Figure 9 Computational system architecture for the co-robotic harvest-aid platform  401 

4 Experimental design 402 

4.1 Simulation experiments 403 

Simulation experiments were performed using digitized fruit distribution data. In these 404 

experiments, we analyzed the efficiency gains of the optimized height control policy under 405 

different platform moving speeds 𝑣(, picking rates 𝑘(, and fruit distributions.  406 
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4.1.1 Evaluation metric for simulation experiments 407 

We use PP (Picking Percentage) as our evaluation metric to evaluate the performance of a 408 

policy. The metric is defined as: 409 

 
𝑃𝑃 =

Number	of	picked	apples
Total	number	of	apples  (19) 

We compare the PP of different policies on the same fruit distribution, so the total number of 410 

apples is constant for a specific fruit distribution. Hence, maximizing PP is equivalent to 411 

maximizing the number of picked apples, which is the same as the optimizing objective of the 412 

sparse sampling algorithm. 413 

In all simulations, the experiment starts when the front worker reaches the evaluation area and 414 

ends when the rear worker leaves the evaluation area. The PP is calculated using the number of 415 

apples inside the evaluation area before and after picking. For example, in Figure 10, this area 416 

has x-coordinate between [3m, 14m].  417 

 418 

Figure 10 An example evaluation grid map, each grid represents a 0.3m*0.3m physical area. The darkness indicates fruit 419 

density. The x-coordinate between [3m, 14m] is the evaluation area which PP is calculated. 420 
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4.1.2 Baseline height control policies 421 

4.1.2.1 Fixed height policy – fixed-height zone harvesting 422 

In fixed-height zone-harvesting, worker elevations are pre-configured and fixed. One worker is 423 

assigned to pick the bottom half of the fruit, and the other worker is assigned to pick the top half. 424 

We call this policy the fixed height policy and use it as a baseline in our experiments. 425 

4.1.2.2 Random Policy 426 

The second baseline policy we use for comparison is random policy. A random policy selects an 427 

action from the valid action set {0, -1, +1} randomly, with a uniform distribution, for each 428 

worker in every time step. This baseline is used to compare the performance of a random, 429 

uninformed height policy, against the proposed near-optimal policy. 430 

4.1.3 Digitized – real fruit distributions for simulation experiments 431 

In order to evaluate the improvement of the sparse sampling policy over the other policies, we 432 

collected real apple distribution data in a commercial apple orchard by logging every fruit’s 3D 433 

location. The apple coordinates in two rows were measured manually using the method proposed 434 

by Arikapudi et al. (2016); the first row is 11.43 m long, and the second row is 12.61 m long; the 435 

fruit coordinates were digitized into a grid map using the parameters described in Table 1. The 436 

digitized fruit distributions are shown in Figure 11. 437 

 438 
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 439 

Figure 11 The top fruit grid map is real fruit distributions 1, the density of apples along the x-axis is 58.5 fruits per meter.  The 440 

bottom grid map is real fruit distributions 2, the density of fruit along the x-axis is 109.2 apples per meter. 441 

4.1.4 Experiments with varying platform moving speed  442 

The optimization algorithm does not control the platform’s moving speed; it tries to achieve 443 

maximum PP under any platform moving speed. Increasing the platform speed can decrease the 444 

worker’s idle time and shorten the time needed to traverse a row, but it is expected to result in 445 

more unpicked fruits (lower PP). Also, the potential efficiency gain of using a good height 446 

control policy over a bad one varies with the changing of the platform moving speed (if the 447 

platform moved extremely slowly, workers could easily pick all the fruits on the tree and achieve 448 

100% PP; if the platform moved extremely fast, all workers would pick at full capacity and leave 449 

no room for optimization). 450 

To study the potential efficiency gain of using the sparse sampling policy over the baseline 451 

policies, and the tradeoff between the PP and the platform moving speed, we varied the platform 452 

moving speed from 0.003 m s-1 to 0.03m s-1 (by 0.003m s-1 increments) and compared the 453 

performance of all the height control policies on the digitized fruit distributions. We tested three 454 

picking speed combinations: 1) equal picking speed for each worker, at 0.5 fruits s-1; 2) the top 455 

worker picking at 0.4 fruits s-1 and the bottom worker at 0.6 fruits s-1.; 3) the top worker picking 456 

at 0.6 fruits s-1 and the bottom worker at 0.4 fruits s-1. All picking speed combinations had the 457 

same total picking rate of 1.0 fruit s-1. 458 
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4.1.5 Planning horizon study 459 

The sparse sampling algorithm is designed to provide a near-optimal policy and is only 460 

guaranteed to converge to optimal when the planning (look-ahead) horizon H and width C are 461 

large enough (Kearns et al. 2002).  However, in practice, the computational resources are 462 

limited, and we need to compute an action within one timestep (5 s); hence, H and C cannot be 463 

arbitrarily large. The algorithm searches over the entire action space up to horizon H, for C 464 

samples at each action, so the computational complexity of the sparse sampling method is 465 

𝑂((𝐿𝐶))) which is exponential to the planning horizon (L is the number of possible actions, and 466 

is equal to 9, in our case). A larger H means the algorithm plans further in the future, and a large 467 

C can approximate a better expectation value with the sample mean. The effect of using an extra 468 

search depth 𝐸 is that after expanding the full state-action for H steps, the algorithm will 469 

continue to search for an extra 𝐸 depth for K times, using a random policy. So, 𝐸 can be 470 

considered as a computationally low-cost way to enlarge the planning horizon; We refer to H+	𝐸 471 

as the effective planning horizon. In this planning horizon study, we varied H from 1 to 5 and 472 

varied extra 𝐸 from 0 to 5 to study the effects of the H and 𝐸 to the optimization results (PP) to 473 

help us understand how to select them. The planning horizon study experiments were done in the 474 

digitized fruit distributions row1. In all these experiments, simulated workers had the same 475 

picking rate of 0.6 fruits s-1, and the simulated platform moved at a constant speed of 0.01 m s-1. 476 

The planning width C and the extra search sample size K were set equal to 5. 477 

4.2 Field experiments 478 

The performance of the algorithm, and of the overall co-robotic harvesting system was evaluated 479 

in apple harvesting experiments that were conducted in a commercial Fuji apple orchard with V-480 
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trellised trees in Lodi, CA, in September 2018. A total of 2307 kg of apples were picked during 481 

the experiments. Among them, 1045kg were picked in variable-height zone harvesting mode 482 

(using sparse sampling height control policy), and 1262 kg were picked in fixed-height zone 483 

harvesting mode. Two experienced workers worked on the platform during all experiments 484 

(Figure 12). The optimizer parameters used in the field experiment were H=2, E=5, K=5, and 485 

C=2. 486 

 487 

Figure 12 Harvesting experiments were conducted in a commercial Fuji apple orchard, with V-trellised trees in Lodi, CA, in 488 

September 2018. 489 

Unlike simulation experiments, harvesting the exact same fruit row multiple times with different 490 

parameters is not possible in real orchards. Thus, one cannot generate -and compare - platform 491 

speed vs. PP plots for the different height control policies. Also, the limited time window for 492 

harvesting limited the amount of data we could collect. We compared the variable-height zone 493 

harvesting mode against the fixed-height zone harvesting mode, using two different platform 494 

speed control modes: fixed speed, and variable/adaptive speed, controlled by an operator. The 495 

details of the speed control policies are explained in section 4.2.3. 496 
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4.2.1 Evaluation metric 497 

Unlike the simulation experiments, accurate estimates of the numbers of apples on the trees 498 

before and after picking were not available. So, PP could not be used as a metric in real apple 499 

picking experiments. Instead, we used throughput (kg s-1) as the evaluation metric.  500 

 
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡	 = 	

𝑠𝑢𝑚	𝑜𝑓	𝑝𝑖𝑐𝑘𝑒𝑑	𝑎𝑝𝑝𝑙𝑒	𝑤𝑒𝑖𝑔ℎ𝑡	(𝑘𝑔)
𝑠𝑢𝑚	𝑜𝑓	𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑝𝑖𝑐𝑘𝑖𝑛𝑔	𝑡𝑖𝑚𝑒	(𝑠) 

 

(20) 

 501 

The platform’s moving speed affects the throughput, so only the throughputs achieved under the 502 

same platform speed control mode can be compared against each other. The optimizer’s 503 

objective, which maximizes the total picked fruit, is equivalent to maximizing the throughput at 504 

constant moving speed. The total weight of picked apple was calculated by segmenting each 505 

bag’s signal (to identify individual bag-fill cycles) and adding the weights of each individual 506 

bag. Outliers in the data (caused by bag or other system temporary failures) were discarded, i.e., 507 

only the weights of “valid bag loads“ were used. The effective picking time was the sum of the 508 

time used to fill the valid bag loads; the time spent on unloading apples into the collection bin 509 

was not included. 510 

4.2.2 Height control modes 511 

4.2.2.1 Fixed-height zone harvesting  512 

The baseline fixed height mode used in the field experiment was same as the fixed height policy 513 

described in section 4.1.2.1. Worker lift elevations were pre-set by the grower, based on his 514 

experience. 515 
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4.2.2.2 Variable-height zone harvesting  516 

The variable-height zone harvesting in the field experiment was implemented by using the sparse 517 

sampling policy proposed in this work. 518 

4.2.3 Speed control modes for the platform 519 

In commercial harvesting, the platform’s travel speed is controlled by a worker in the front. The 520 

goal is to move the platform as fast as possible, while not leaving any – or many - apples 521 

unpicked. We refer to this speed-control mode as adaptive speed mode and used it to compare 522 

the picking performances of variable-height zone harvesting mode and fixed-height zone 523 

harvesting mode. In addition to the adaptive speed control, we used two fixed moving speeds 524 

(𝑣( = 0.015	𝑚	𝑠<-, and 𝑣( = 0.03	𝑚	𝑠<-	), to evaluate the improvement of the optimized height 525 

control policy. These two speeds were selected based on the simulation results and the actual 526 

platform moving speeds observed in the orchard. 527 

4.2.4 Experiment settings 528 

We compared the sparse sampling optimized policy against the fixed height policy under fixed 529 

and adaptive platform speed policies.  Table 2 shows all possible combinations for speed policy 530 

and height control policy. The entry of the adaptive speed and fixed height control policy (set #1) 531 

corresponds to the conventional picking process during commercial harvesting. 532 

Parameter 

set 
0 1 2 3 4 5 

Speed 

policy 
Adaptive Adaptive 

Fixed 

 0.03 m s-1 

Fixed  

0.03 m s-1 

Fixed  

0.015 m s-1 

Fixed  

0.015 m s-1 

Height 

control 

policy 

Fixed-height zone 

harvesting 

Variable-height 

zone harvesting 

Fixed-height zone 

harvesting 

Variable-height 

zone harvesting 

Fixed-height zone 

harvesting 

Variable-height 

zone harvesting 
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Table 2 Apple harvesting experiment settings: combinations of speed policy and height control policy. 533 

5 Experimental results 534 

5.1.1 Simulation results 535 

5.1.1.1 Experiments with varying platform moving speed 536 

The experiment results for three picking-rate settings on two digitized real fruit distributions with 537 

varying platform moving speeds are shown in Figure 13.   538 

a  b  539 

c d  540 
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e  f  541 

Figure 13 The picking percentage with respect to the platform moving speed for three height control policies. a, c, e show the 542 

results of experiments on the real fruit distributions 1 and b, d, f show the results of experiments on the real fruit distributions 2; 543 

a, b show the experiment results under picking rate setting 1); c, d show the experiment results under  picking rate setting 2);  e, f 544 

show the experiment results under  picking rate setting 3). 545 

The results show that in the low-speed range, all policies achieve almost 100% PP; in the high-546 

speed range, all policies were limited by the workers' picking speeds. In the middle-speed range, 547 

where there is room for optimization, the sparse sampling method was always better than the 548 

other policies. If the initial distribution of the picking rate does not match the distribution of 549 

fruits well, the sparse sampling policy can be very beneficial as the cases in Figure 13 e, f under 550 

picking rate setting #3. In Figure 13f, when the platform is moving at 0.01m s-1 using the sparse 551 

sampling policy, workers can pick 95% of the fruits; the same workers can only pick 62% of the 552 

fruits, under the fixed height policy. The PP is improved by more than 30% in this specific case 553 

using the sparse sampling policy. In other words, if a grower decides to accept 95% PP to pick 554 

row 2, using the sparse sampling policy, the platform can move at 0.01m s-1, whereas the 555 

platform can only move at 0.005 m s-1 using the fixed height policy; equivalently, 50% of the 556 

working time can be saved using the sparse sampling policy. However, the improvement was not 557 

always so large. In particular, when the vertical distribution of picking rate matched the vertical 558 

distribution of fruits better, such as in Figure 13 c, d under picking rate setting #2, the difference 559 
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between the sparse sampling policy and the fixed height policy became small. In practice, if the 560 

fruit distribution were known before picking and did not change along rows (not realistic), one 561 

could simply use the fixed height policy and assign the slower worker to the zone with less fruit 562 

and the fast worker to the zone with more fruit.  However, if the order were reversed, the 563 

consequence of using the fixed height policy would be cause the PP to decrease significantly, as 564 

in Figure 13 e, f. With the sparse sampling policy, the initial position of the two workers makes 565 

no big difference. The sparse sampling policy can always assign the workers to the optimal 566 

position and achieve optimal picking efficiency. 567 

5.1.1.2 Planning horizon study 568 

Figure 14 shows the effect of the planning horizon H and extra search depth 𝐸 on harvesting the 569 

digitized fruit row #1. When the effective planning horizon (H + 𝐸) was equal to 1, the workers 570 

picked only 88% percent of the fruits; when the effective planning horizon increased to more 571 

than 2, the same two workers could pick more than 96% of the fruits. For the same effective 572 

planning horizon value, using a higher H can be slightly better than using a higher 𝐸, because the 573 

planning horizon contributed by H considers all possible actions, whereas 𝐸 corresponds to 574 

Monte Carlo (non-exhaustive) estimation. However, in practice, setting H > 3 takes too much 575 

time to get a solution in real-time. So, it is preferable to use both H and 𝐸 to extend the effective 576 

planning horizon. To conclude, we need to use both H and 𝐸 to extend the effective planning 577 

horizon, and choose an effective planning horizon larger than 3, to allow the sparse sampling 578 

policy achieve near-optimal results in real-time. 579 
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  580 
  581 

Figure 14  The 3D plot (left) and its  2D projection (right) show the dependance of PP on the look-ahead horizon H, and the 582 

extra search horizon 𝐸; the digitized fruit distribution from row #1 was used. 583 

5.1.2 Field experiment results 584 

The GNSS traces of the platform’s location as it moved inside rows during the orchard 585 

experiment are shown in Figure 15. The trace is superimposed on a satellite image of that part of 586 

the orchard. 587 

 588 
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Figure 15 GNSS trace of the platform’s location as it moved inside rows during the orchard experiment. The trace is 589 

superimposed on a satellite image of part of the orchard. 590 

Because the adaptive speed mode is used in commercial harvesting, more data was collected 591 

using this mode than with the fixed-speed mode. Table 3 shows the weights of the picked apples, 592 

the corresponding effective picking times, the throughputs under all the settings, and the 593 

improvements of the variable-height zone harvesting vs. the fixed-height zone harvesting. 594 

Speed policy Adaptive Adaptive 
Fixed  

0.03 m s-1 

Fixed  

0.03 m s-1 

Fixed  

0.015 m s-1 

Fixed  

0.015 m s-1 

Height Control Mode 

fixed-height 

zone 

harvesting 

variable-

height zone 

harvesting  

fixed-height 

zone 

harvesting 

variable-

height zone 

harvesting 

fixed-height 

zone 

harvesting 

variable-

height zone 

harvesting 

Total Weight (kg) 788.28 648.04 251.32 161.60 222.36 235.52 

Total Time (h) 2.64 1.98 0.94 0.57 0.91 0.88 

Throughput (kg h-1) 298.80 327.60 266.40 280.80 244.80 266.40 

Variable-height zone 

Harvesting 

Improvement 

9.50% 5.47% 9.52% 

Table 3 Harvesting throughput results from apple-harvesting field experiments. Harvesting was done using fixed-height and 595 

variable-height zone harvesting under adaptive and fixed speed control.  596 

The results show that for both the platform speed control modes, the optimized policy achieved 597 

higher throughput than the (conventional) fixed height policy. The improvement was 9.50% 598 

when adaptive speed control was applied, and 9.52% when the platform travel speed was 599 

constant at 0.015m/s. The throughput improvement decreased as the platform’s moving speed 600 

increased: the improvement in throughput was smaller at 0.015 m s-1 compared to 0.03 m s-1; this 601 

trend was the same as in the simulation results.  602 

6 Summary, conclusions and future work603 

In this study, we developed an optimized variable lift height control policy, to implement 604 

variable-height zone harvesting for multi-crew harvesting platforms. The policy uses a sparse 605 
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sampling algorithm to solve the “labor supply and demand” mismatch problem that limits 606 

platforms’ harvesting efficiencies. To evaluate our approach, we converted a commercial picking 607 

platform into a “co-robotic” system. Simulations and commercial apple harvesting experiments 608 

showed that the proposed lift height control policy improved the overall picking throughput by 609 

up to 9.52%. The potential gain in picking efficiency depended on the platform’s speed, the 610 

workers' picking rates, and the fruit distribution. The efficiency gain was significant when the 611 

platform speed was neither too fast nor too slow, and when the workers' picking rates were 612 

unequal.   613 

Our method can be directly applied to harvest-aid platforms that use vacuum tubes to transport 614 

picked fruits from each worker into the bin, without using picking bags. The only difference is 615 

that each worker’s picking rate would be measured by counting the fruits going through the 616 

worker’s tube.  617 

Extensions of our work are discussed next. The co-robotic platform did not control its own travel 618 

speed. Future work will extend our approach to include an adaptive speed controller that matches 619 

the platform speed with the fruit load and workers' picking speeds. Speed control is expected to 620 

result in higher picking rate for the front worker (who has to adjust speed) and increased 621 

throughput. One limitation of our method is that the optimization model assumes that fruit 622 

detection is perfect. In reality, fruit detection is not perfect, and the detection errors presumably 623 

result in non-optimal lift height assignments. Future research can investigate optimization 624 

algorithms that take into account the error statistics (e.g. by using a fruit distribution probability 625 

map instead of a fruit-count map) to compute the optimal policy. Another limitation is that the 626 

picking rate estimated using the worker’s picking bag is affected by the number of fruits the 627 

worker has in front of them (local fruit density), so it does not directly measure the worker’s 628 
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“intrinsic” picking capacity. One way to estimate this capacity is to use the camera-sensed fruit 629 

distribution and the platform travel speed to remove the effect of variable fruit density. Finally, 630 

fruit quality was not assessed in our experiments. In our work, the workers on the platform 631 

picked in the same way when the platform operated in conventional mode, and when it operated 632 

in co-robotic mode; hence, no changes in fruit damage rates were expected. However, it is 633 

conceivable that when a worker picks fruits while her/his lift is being raised or lowered, the 634 

vertical motion could affect the fruit-detachment action, and potentially, fruit quality. Further 635 

harvesting experiments followed by post-harvest comparison studies are needed to evaluate this 636 

aspect of the system. 637 
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