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Abstract

Human genome-wide association studies (GWAS) of longevity attempt to identify alleles at different frequencies in the extremely

old, relative to a younger control sample. Here, we apply a GWAS approach to “synthetic” populations of Drosophila melanogaster

derived from a small number of inbred founders. We used next-generation DNA sequencing to estimate allele and haplotype

frequencies in the oldest surviving individuals of an age cohort and compared these frequencies with those of randomly sampled

individuals from the same cohort. We used this case–control strategy in four independent cohorts and identified eight significantly

differentiated regions of the genome potentially harboring genes with relevance for longevity. By modeling the effects of local

haplotypes, we have more power to detect regions enriched for longevity genes than marker-based GWAS. Most significant regions

occur near chromosome ends or centromeres where recombination is infrequent, consistent with these regions harboring uncon-

ditionallydeleteriousalleles impacting longevity.Genes in regionsofnormal recombinationareenriched for those relevant to immune

function and a gene family involved in oxidative stress response. Genetic differentiation between our experimental cohorts is com-

parable to that between human populations, suggesting in turn that our results may help explain heterogeneous signals in human

association studies of extreme longevity when panels have diverse ancestry.

Key words: GWAS, synthetic populations, ageing.

Introduction

Average human life expectancy in developed nations ranges

from about 80 to 85 years, and human twin studies suggest

that only 20–30% of the variation in survival within this range

is determined by genetic variation (Herskind et al. 1996).

Extreme longevity, often defined as surviving beyond 100

years, may be a distinct subphenotype with a larger genetic

component (Perls and Terry 2003). Survival to extreme ages is

rare but clusters in families (Perls et al. 2000), and relatives of

centenarians have a marked delay in age-related diseases

(Perls et al. 2007). In light of these observations, candidate

gene studies (Ewbank 2007; Flachsbart et al. 2009) and

genome-wide scans (Puca et al. 2001; Newman et al. 2010;

Sebastiani et al. 2012) have been carried out on panels of

extremely long-lived individuals. Association studies of survival

to very old age tend to be underpowered, because sample

sizes are small, typically fewer than 500 individuals, and also

because panels of long-lived individuals tend to be made up

of both nonagenarians and centenarians (Tan et al. 2008).

These studies do not usually implicate the same loci in

panels with different ancestral backgrounds, with two excep-

tions: 1) APOE, a known risk factor for cardiovascular and

Alzheimer’s disease (Schächter et al. 1994; Ewbank 2007;

Sebastiani et al. 2012); and 2) FOXO3a, which encodes a reg-

ulator of the insulin-IGF1 signaling pathway (Anselmi et al.

2009; Flachsbart et al. 2009; Pawlikowska et al. 2009).

According to recent US census data, about 0.9% of males

and 2.8% females survive to age 100 (U.S. Social Security

Administration, 2009 Census [http://www.ssa.gov/oact/

STATS/table4c6.html, last accessed November 30, 2013]).

Here, we conduct a genome-wide case–control study in

Drosophila melanogaster that compares the oldest 2% of

female flies with a similar number of adult females from the

same cohort sampled at a younger age. This experiment

mimics human centenarian studies, providing a well-defined

model for evaluating the prospects of the study of aging using
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relative enrichment or deficit of alleles in extremely old co-

horts. We used “synthetic” recombinant populations of

Drosophila for which extensive haplotype information is avail-

able (King, Macdonald et al. 2012; King, Merkes et al. 2012)

(fig. 1a) to establish large cohorts (fig. 1b) from which we

collected pools of young control adult females and extremely

old female flies. We replicated the experiment four times, with

replicates initiated from two pairs of synthetic populations,

each pair derived from an independent set of founders (the

“A” and “B” populations), with the individual populations

within a pair initiated from the same founders but maintained

apart for ~100 generations (A1 vs. A2 or B1 vs. B2). We then

used next-generation deep resequencing of these control and

old panels to compare genetic differentiation between them.

Materials and Methods

Experimental Populations

We used the synthetic recombinant populations of

the Drosophila Synthetic Population Resource (DSPR)

(King, Macdonald et al. 2012; King, Merkes et al. 2012) as

FIG. 1.—Overview of sampled flies. (a) Schematic depicting the establishment of synthetic recombinant populations used in this study (cf. King,

Macdonald et al. 2012; King, Merkes et al. 2012). A1, A2, B1, and B2 were sampled for this work after approximately 100 generations of random

mating. (b) Mortality data from females in the four “census” cages. Dead flies were sexed, counted, and removed from each population cage every other

day. When only ~10 surviving females remained, these were collected alive and used for DNA extraction (thus the survivorship curve does not reach zero at

the end of the assay).
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four aging populations from which to gather genomic data.

Two independent sets of seven inbred Drosophila lines (the

“founders”) were crossed to initiate two synthetic recombi-

nant populations A and B; and an additional inbred line was

used in the founding of both (fig. 1a). Both A and B have been

then maintained as two independent large populations

(A1/A2, B1/B2) and, for this experiment, were sampled after

approximately 100 generations. The founder strains were

sampled from various geographic locations and are represen-

tative of genetic variation present in natural Drosophila pop-

ulations worldwide. All genetic material for each synthetic

recombinant population is thus derived from just eight foun-

der haplotypes, and each of the 15 inbred founder strains

have been resequenced to ~50� coverage. After 100 gener-

ations of maintenance, the genome of any given recombinant

individual used to initiate the current experiment is a mosaic of

the founder chromosomes. As part of the DSPR project, given

medium-density genome-wide single-nucleotide polymor-

phism (SNP) genotypes for a collection of recombinant

inbred lines (RILs) (or individuals) obtained from the synthetic

populations, hidden Markov models have been developed

which can determine at any given chromosomal position

which of the eight founder haplotypes define that segment

of the genome. By virtue of the founder haplotypes being

completely resequenced, we thus have the ability to accurately

infer the complete genome sequence of that line/individual;

such in silico genome sequences are available for ~1,700

inbred lines derived from generation 50 of the synthetic

population.

Longevity Assay

The four synthetic recombinant populations, which normally

are kept in large milk bottles (1.89 l), were expanded and

standardized using 8-dram culture vials for three generations

prior to the assay. During the standardization generations,

flies spent the first 14 days of life developing in vials with

cornmeal–dextrose medium. On day 14, adult flies were

moved into plexiglass cages and fed media supplemented

with live yeast paste to stimulate oviposition. Eggs were col-

lected within 12-h oviposition windows to ensure that individ-

uals in the subsequent generation were as close to the same

age as possible. During the cohort assay, 120 14-day-old

females (from egg) were collected from each cohort and

their DNA extracted in bulk for later genomic library prepara-

tion (“control” libraries). Approximately 12,000 14-day-old

individuals were then transferred from vials and equally di-

vided into 12 plexiglass cages in which to age. Previous

work has shown that at densities of 1,000 flies/cage, fly den-

sity itself has negligible impacts on mortality (Shahrestani P,

unpublished data). Flies were fed fresh media every other day,

and before feeding, dead flies were removed and counted.

For 1 of the 12 cages per population, flies were removed,

counted, and sexed every day, for the purpose of generating

detailed population survivorship curves (fig. 1b). For the

remaining 11 of the 12 cages per population, flies were re-

moved and counted every other day; this was to ensure that

excess dead flies did not accumulate in each cage and also to

verify the total number of flies allocated to each cage. The last

surviving ~2% of females in each cage were retained (supple-

mentary table S1, Supplementary Material online) for genomic

DNA (gDNA) library preparation (“old” libraries). We chose to

ignore the oldest living male flies for the purposes of this

experiment, so downstream results should be interpreted as

female-specific.

Genome Sequencing and SNP Identification

gDNA was extracted from both control and old female pools

from each population using the Qiagen/Gentra Puregene kit,

following the manufacturer’s protocol for bulk DNA purifica-

tion. The resulting eight gDNA pools were prepared as stan-

dard paired-end adapter libraries and each run as single PE75

lanes on an Illumina HiSEQ 2000. Raw reads were aligned to

the reference genome sequence of D. melanogaster using

bwa (Li and Durbin 2010). We then used samtools mpileup

and the open-source code PoPoolation (version 2) to generate

an allele count for each population and site (Kofler et al.

2011). All subsequent SNP-level analysis using these data

tables was carried out in R (www.r-project.org, last accessed

November 27, 2013).

To identify informative SNPs, we first generated a list of

positions at which we expect bi-allelic SNPs to be segregating

among the eight founder haplotypes contributing to a given

population; all other sites were ignored. We further excluded

sites in the observed data where there was some evidence of

the third allele (frequency of a third allele >0.05 given cover-

age >10), where coverage was very high (>2,000 in control

and old samples combined in A or B), or where we obtained

zero coverage in either the control or old sample. Ultimately,

we ended up with ~1.2 M SNPs in the A populations and

~1.1 M SNPs in the B populations. We note that as we

know all the SNPs potentially segregating in the populations

by virtue of their founders being known and sequenced, SNP

ascertainment is straightforward.

Quantifying Differences

SNP-Level Analysis

To quantify SNP frequency differences in the data, we first

calculated the absolute differences in minor allele frequencies

at all of our identified SNPs. We define the minor allele as the

least common allele across our eight founder haplotypes, so

the minor allele is not necessarily the least common allele per

position in the observed data. To take linkage into ac-

count, we calculated sliding-window averages of the abso-

lute differences (SWAD) with a window size of 200

consecutive SNPs and a step size of 50 SNPs. As average

coverage per population is high (supplementary fig. S1,

GWAS of Extreme Longevity in D. melanogaster GBE
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Supplementary Material online), we did not weigh the allele

frequency difference by coverage.

Haplotype-Level Analysis

We used our SNP data and the consensus sequences of the

founders to estimate the most likely set of founder haplotype

frequencies in the control and old populations across the

genome. We estimated these frequencies using a 201 SNP

sliding window with a step of 50 SNPs. At a given genomic

position, we used the set of 100 SNPs on either side of that

position to determine the most likely set of founder haplotype

frequencies that would produce the observed set of SNP fre-

quencies. We considered the set of founder haplotype fre-

quencies that minimized the following quantity to be the

most likely set of founder haplotype frequencies at the focal

position:

X201

i¼1

ffiffiffiffiffi
Ci

p
� MAFi �

X8

j¼1

ðfi, j � hi, jÞ

 !2
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@

1
A

+ 100 � 201 �
X8

j¼1

hi, j

 !
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 !2
0
@
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where Ci is the sequence coverage at the ith SNP in the

window, MAFi is the minor allele frequency at the ith SNP,

fi,j is the allelic state (1¼minor allele, 0¼major allele) of the

jth founder at the ith SNP, and hi,j is the haplotype frequency

of the jth founder at the ith SNP. The set of eight haplotype

frequencies (h) for the window are the quantities being opti-

mized. Optimization was achieved using the optim function in

R. The second part of the above equation serves to constrain

the set of haplotype frequencies such that the sum of the

eight founder haplotype frequencies cannot exceed 1 and it

reduces to near zero when the founder haplotype frequencies

sum to 1. Individual haplotype frequencies were bounded by 0

and 0.95. Individual haplotype frequencies were bounded by

0.95 rather than 1 because bounding by 1 occasionally led

to local convergence with a single haplotype frequency equal-

ing 1. The term preventing the sum of the haplotype frequen-

cies exceeding 1 severely limits the search space when

one haplotype frequency is equal to 1, leading to these local

convergences. This phenomenon is completely prevented by

bounding the individual haplotype frequencies at 0.95.

We found that the haplotype estimator was not able to

accurately estimate the haplotype frequencies if two or more

founder haplotypes are highly correlated (i.e., cannot be dis-

tinguished from one another over the 201 SNP window). In

this case, the haplotype estimator can produce large isolated

differences in D between control and old pools, as for the two

indistinguishable haplotypes only their sum is constrained. To

prevent these spurious differences from arising, when two or

more haplotypes were highly correlated with one another

(>0.9), we instead estimated a single combined frequency

of the correlated haplotypes using the average allelic states

of the correlated haplotypes in our haplotype estimator as fi
for that set of haplotypes. At these positions, our haplotype

estimator produces fewer than eight founder frequencies

depending on the number of correlated haplotypes.

To identify positions with overall divergent haplotype fre-

quencies in the control versus old pools, we calculated the

squared difference in haplotype frequencies between them.

This measure of Euclidean distance between two vectors is a

general approach but widely used in distance-based inference

in biology; for example, to analyze gene expression data from

microarrays (Shannon et al. 2003). Our test statistic, hereafter

D, is essentially the average percent distance between haplo-

types at a given position:

100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 ðhO, j � hY , jÞ

2

n

s
ð2Þ

where hO,j is the haplotype frequency of the jth founder in the

old population, hY,j is the haplotype frequency of the jth foun-

der in the younger control pool, and n is the number of hap-

lotypes estimated at that position. Typically n is 8, but as noted

earlier, when haplotypes are correlated, they are combined

and fewer than eight frequencies are estimated. We then

used the loess smoothing function in R with a span of 0.01

to smooth across genetic distance. This process tempers any

highly localized fluctuations, which are not expected based on

our expected size distribution of nonrecombined haplotypes

at generation 100. Autosomal segment sizes are expected to

follow an exponential distribution with an expected median

size of 1.4 cM at generation 100, although segment sizes

at generation 50 were slightly larger than the theoretical

expectation.

Determining Statistical Significance

A large set of RILs generated from the synthetic populations

allowed us to generate a null distribution of both D and the

SWAD for the purpose of determining statistical significance.

Briefly, ~500 RILs were created from each synthetic subpop-

ulation at generation 50 via 25 generations of full-sib mating

(for details on the creation of these RILs, see King, Merkes

et al. 2012). The complete underlying founder haplotype

structure of these RILs is known. King, Macdonald et al.

(2012) describe the implementation of a hidden Markov

model incorporating dense genotype data for the RILs and

the founder genome sequences to infer the founder haplo-

type at each position in each RIL. Because the haplotype struc-

ture is known, we can infer the genotype of each RIL at each

SNP by using the haplotype assignments and the founder

consensus sequences. For a given RIL and position, the

hidden Markov model results in a probability assignment for

each founder haplotype indicating the likelihood of the ge-

netic material at that position is derived from that founder

Burke et al. GBE
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haplotype. The probability a given RIL harbors the minor allele

(mz) at a given position is

mz ¼
X

fj � pj ð3Þ

where fj is the allelic state (1¼minor allele, 0¼major allele) of

the jth founder and pj is the probability the ancestry of the RIL

is the jth founder at that position. The estimated minor allele

frequency in a given population of RILs at a given position is

the mean of mz across RILs. Therefore, for any given set of

RILs, we can estimate the SNP frequency at every position and

then use these SNP frequencies to calculate SWAD or D as

described earlier.

To generate null distributions of SWAD and D, we per-

formed 5,000 iterations of a Monte Carlo simulation by sam-

pling with replacement two sets of 200 RILs (corresponding

to the young and old pools, with 200 haploid genomes the

minimum number of copies in each sample, cf. supplementary

table S1, Supplementary Material online) for each subpopula-

tion. Then, we calculated the SNP frequencies in each set and

ran the haplotype estimator on both sets and calculated our

SWAD and D statistics. Generally, the idea is to create null

distributions of SWAD and D that result from random sam-

pling of two sets of 100 individuals alone (i.e., no true differ-

ence in frequency). Supplementary figure S2, Supplementary

Material online, provides a visual overview of this strategy. The

vectors of coverages observed in the real data were also used

to estimate frequencies in the simulated data for consistency;

in other words, we drew Ci (the observed coverage at the ith

SNP, in either the old or young pool) alleles with replacement

from the corresponding old or young simulated pool in each

Monte Carlo iteration. Thus, we model stochasticity in the

random draws of genome-wide haplotypes from each syn-

thetic population, as well as the variation in sequence cover-

age commonly observed in Next-Gen data sets.

Although this strategy of using Monte Carlo-based sam-

pling of in silico sequenced RILs may not appear intuitive, we

find it the most appropriate method generating appropriate

null sampling distributions. For example, tests based on per-

muting reads between old and young pools are overly liberal

when individuals are not barcoded. A test designed to detect

differences between two finite pools drawn from a large pop-

ulation must detect differences in haplotype (or SNP) frequen-

cies above and beyond that generated purely by the sampling

process, and permuting reads between samples loses this

sampling information. In addition, permuting reads between

pools can potentially destroy longer range information about

linkage disequilibrium, and this information is important in a

study such as this one where the long-range haplotype infor-

mation can be important. By contrast, the Monte Carlo

RIL-based approach allows the sampling of entire haplotypes

(i.e., entire RILs) and thus controls for the finite sample of

individuals used to make the pools and retains important as-

sociations that should be factored into the generation of a null

distribution of a test statistic. Had pooled gDNA libraries had

been constructed of barcoded individuals whose genomes

could be parsed out, the sequences of these entire individuals

could be permuted between control and old pools. This would

likely be the most appropriate strategy for determining signif-

icance, although it presents a considerable practical challenge,

specifically the costs involved in making the ~1,000 libraries

implied by the ~1,000 individuals examined in this study. As

the technology for highly multiplexed Next-Gen sequencing

projects continues to improve, this could become a viable

approach in the near future.

SNP-Level Analysis (SWAD)

The mean SWAD of the Monte Carlo iterations varied sub-

stantially across the genome, suggesting that the use of a

genome-wide significance threshold would be overly conser-

vative for much of the genome. Instead, we used the 5,000

SWAD values generated at each position to calculate position-

specific P values for each subpopulation as follows:

ki+1

N+1
ð4Þ

where ki is the number of iterations exceeding the observed

SWAD value at position i and N is the total number of itera-

tions (5,000). Computation time limited the number of itera-

tions we were able to perform and the number of iterations

places a limit on our P values. The lowest P value we can

obtain is when ki equals zero, producing a P value of

0.0002. This P value is greater than what would be obtained

as a 5% significance threshold after correcting for multiple

tests, preventing us from obtaining individually genome-wide

significant positions. Because we could not use individual

P values to determine significance, we identified regions en-

riched for low P values (<0.005). To do this, we broke the

genome into 0.5-cM intervals and determined the proportion

of P values below 0.005 within each interval (fig. 2).

Haplotype-Level Analysis

We were able to determine genome-wide significance thresh-

olds for the haplotype level analysis. First, we smoothed each

Monte Carlo iteration in the same way as the observed data,

using the loess smoothing function in R with a span of 0.01,

smoothing across genetic distance. The resulting mean of the

Monte Carlo iterations is quite stable across the genome, as is

the per position 0.995 quantile. We then used the peak finder

function msPeakSimple from the msProcess library in R with a

span of 50 and a signal-to-noise threshold of 2 to identify

distinct peaks across the genome. For a wide range of

D values, we quantified the number of distinct peaks per

genome scan for each Monte Carlo iteration that exceeded

that D. We could then calculate the number of observed

peaks exceeding a given D threshold per Monte Carlo

genome scan. The D that corresponds to 0.05 peaks per

GWAS of Extreme Longevity in D. melanogaster GBE
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genome scan is our threshold corresponding to a 5% false-

positive rate (FPR). We also present a more liberal 50% thresh-

old (i.e., one peak every other genome scan). To localize a

region of interest for each identified peak, we used a standard

genetic distance of 1 cM on either side of the highest D value

(interval spanning 2.5 cM on either side also shown; supple-

mentary figs. S3a–h and S4a–h, Supplementary Material

online).

Results and Discussion

Longevity Assay

The synthetic recombinant populations (fig. 1) were synchro-

nized and used to establish cohorts of 12,000 individuals per

mortality. Approximately 98% of the females in each cohort

died within 62–66 days posteclosion (fig. 1b and supplemen-

tary table S1, Supplementary Material online), and the remain-

ing 2% of surviving females were sacrificed alive and used to

create four pooled old gDNA libraries. These pools were

sequenced alongside four control gDNA libraries consisting

of the same number of females sacrificed young, within

24 h of eclosion. We obtained an average coverage of approx-

imately 80� at the positions we considered SNPs per each of

the four populations and two time-points examined (supple-

mentary fig. S1, Supplementary Material online). The synthetic

populations were founded from a total of 15 highly inbred

and completely resequenced founder strains; the SNPs of this

study thus correspond to those SNPs known to be segregating

in the populations based on their being identified in the foun-

ders. Although many SNPs are shared between populations,

alleles private to the A or B populations are common as the

A and B populations are derived from different founders.

As the choice to retain the oldest 2% of surviving females

was based on human population data, and not informed by

Drosophila biology, a cursory analysis of aging trajectories in

the assay populations is merited. Evolutionary theory predicts

that mortality should increase in an approximately exponen-

tial fashion through the first part of adult life and then pla-

teau at some advanced age (Mueller and Rose 1996). This

plateau is called the “late-life” phase of adulthood, and it is a

feature of all aging populations. The age at which this pla-

teau starts is considered the transition between aging and

late-life and is termed the “breakday” (Mueller and Rauser

2011). In human populations in developed nations, estimates

of breakday range from 90 to 110, suggesting that cente-

narian individuals in genome-wide association studies

(GWAS) panels are near the transition from aging to late-life

FIG. 2.—Empirical P values from the SNP-level analysis. Black points are the observed empirical �log10(P values) plotted with some transparency such

that multiple points plotted in the same location appear darker. Pink points are the empirical�log10(P values) obtained from a single Monte Carlo iteration to

show the variation obtained by chance alone. The blue line is the proportion of P values below 0.005 in 0.5-cM intervals across the genome. Green lines at

the base of the plot denote the region of interest for any peaks exceeding the 50% threshold, as determined by the haplotype analysis (for comparison with

fig. 3). Light green lines denote peaks exceeding the 50% threshold, whereas dark green lines denote peaks exceeding the 5% threshold. The thick portion

of the line denotes a 2-cM interval and the thin portion denotes a 5-cM interval.
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(Greenwood and Irwin 1939; Mueller et al. 2011). We esti-

mate that all four of our populations were in late-life at the

end of the mortality assay when individuals were sampled for

sequencing and thus old enough to merit their use in an

association study of extreme old age. We fit our mortality

data to the evolutionary model of late-life using maximum-

likelihood estimates (Shahrestani et al. 2012). We found that

for all four of our populations, the estimated breakday

occurred just before the time of “centenarian” sampling

(supplementary fig. S5, Supplementary Material online).

Genomic Regions of Differentiation

We identify 10–30 genomic regions, per population, of local-

ized high SNP frequency differentiation between the control

and old pools (fig. 2). Patterns of allele frequency differentia-

tion in each population are evidently unique, although we do

observe generally high SNP frequency differentiation near cen-

tromeres and at the ends of chromosomes. We used observed

SNP frequencies in the pools to estimate the frequencies of the

each founder haplotype at different locations across the

genome (fig. 3). We developed a statistic, D (the Euclidean

distance between the two haplotype frequency vectors), that

summarizes total haplotypic divergence between control and

old flies within each population. At a genome-wide alpha of

5% (D>7.9), we find one significant peak in A1, six in A2,

zero in B1, and one in B2 (table 1). At a more liberal genome-

wide alpha of 50% (D> 6.6), we find two additional peaks

per population (supplementary table S2, Supplementary

Material online). Peaks in D are local and isolated, with

elevated D values spanning <2 cM from each peak’s center

(table 1 and supplementary table S2, Supplementary Material

online). Alternatively, analyzing SNP frequency differences

alone leads to narrower peaks roughly half this size.

Although this is potentially valuable in terms of localizing

putatively causative variants, we frequently observe large

SNP differentiation in regions without apparent high values

of D (most notably in population B1). We regard these peaks

as likely false positives, consistent with comparisons of SNP

versus haplotype divergence in the context of “collaborative

cross” genetic mapping studies (Valdar et al. 2005; Aylor et al.

2011). As haplotype peaks should therefore be more reliable

than the peaks generated by individual SNP frequencies, we

chose to only identify genes/functional groups under the more

inclusive haplotype peaks.

We find a total of 1,654 genes occurring under the eight

peaks significant at a 5% FPR (table 1). Five of these haplotype

peaks occur in regions of suppressed recombination, near cen-

tromeres or chromosome ends (cf. Fiston-Lavier et al. 2010,

fig. 1). Population genetics theory predicts that genomic re-

gions of suppressed recombination should harbor a greater

number of unconditionally deleterious alleles at higher
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FIG. 3.—D across the genome. Different chromosome arms are denoted by different background shades (white/gray). The solid black line is the D for the

observed data, the dotted blue line is the 99.5% per position quantile, and the dashed black lines are the genome-wide threshold for an alpha of 0.05 and

0.5 (noted as 5% and 50% on the right axis). The pink line is the D for a single Monte Carlo iteration to show the variation obtained by chance alone. Dark

green lines at the base of the plot denote the region of interest for any peaks exceeding the 5% threshold, and light green lines denote the region of interest

for any peaks exceeding the 50% threshold only. The thick portion of the line denotes a 2-cM interval and the thin portion denotes a 5-cM interval.
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equilibrium frequencies, because purifying selection operates

less effectively in such regions due to Muller’s ratchet (Muller

1964). Thus, our observation of elevated D values occurring in

low-recombination regions of the genome is perhaps intuitive.

This observation is also notable in the context of the mutation

accumulation evolutionary theory of ageing, which posits that

unconditionally deleterious alleles can accumulate if their

fitness effects are confined to postreproductive periods of

life when selection against them is weak (Medawar 1952;

Charlesworth 1994). Investigators have garnered substantial

empirical evidence in support of mutation accumulation, in

Drosophila as well as other taxa (Hughes 2010). Genomic

regions exhibiting high D, but low recombination rates, are

therefore good candidates for harboring variants impli-

cated under the mutation accumulation theory of ageing.

Unfortunately, as these regions also implicate a huge

number of genes, they are not amenable to singling out

individual candidates. For this reason, we restrict further

discussion to the three peaks located in regions of relatively

high rates of recombination, >2 cM/MB (table 1, shaded

region).

Notably, half of our observed significant regions occur in a

single population (A2), although it is difficult to imagine a

biological reason for this observation. We examined the raw

genotype data from A2 for evidence of contamination from

feral flies that accidentally became incorporated to the

A2 sample during the assay preparation or DNA extraction.

At least two lines of evidence suggest that there is no such

contamination. All synthetic populations were assayed for the

presence of P elements in the generation preceding the ex-

periment; all were confirmed to be P-element free, suggesting

no contamination by feral, P-element harboring flies. Also, less

than 0.1% of the observed polymorphic positions in the A2

genome were predicted to be monomorphic from the foun-

der consensus sequence data (i.e., site at which all founders

share the same allele at that locus), and this percentage

was similarly low across the four synthetic populations.

This suggests that all four synthetic populations remain uncon-

taminated by flies of different founder ancestry.

Genes under Significant Peaks

We find 270 genes total in the three 2-cM windows corre-

sponding to the 5% FPR peaks in regions of normal recombi-

nation (supplementary fig. S3a–c, Supplementary Material

online). Among the half of these 270 genes that have been

annotated with Gene Ontology (GO) terms based on experi-

mental evidence, the most common GO Biological Process

term is “defense response,” shared by ten genes. This term

appears to be modestly enriched in the data set (10/270 gen-

es¼3.7% vs. a genome-wide instance of 206/16,085 gen-

es¼1.2%). The second most common term among our 270

genes is “glutathione metabolic process,” but this is a special

consequence of the nine genes of the glutathione transferase

family that are clustered together on chromosome 2R.

Although we do not think it appropriate to rely on GO term

enrichment as a conclusive approach for the identification of

candidate genes, we do find it useful in a general descriptive

sense. Both defense response genes and the glutathione

transferase family could have relevance for longevity. Most

of the identified defense response genes have specific

known immune functions following exposure to pathogenic

bacteria. As insects age, they accumulate injuries (Burkhard

et al. 2002) and are therefore more susceptible to opportu-

nistic infection by pathogens. Variation in immune response

genes could therefore causally affect longevity. Glutathione

transferases inactivate damaging secondary metabolites,

such as hydroperoxides, formed during oxidative stress

(Hayes and Flanagan 2005). Free radical-scavenging enzymes

such as superoxide dismutase (Sod) and catalase have long

been implicated in aging (Harman 1956). Experimentally,

these enzymes have been shown to increase lifespan

when overexpressed in Drosophila (Orr and Sohal 1994),

and laboratory-selected populations of flies with different

evolved longevity phenotypes exhibit different frequencies of

Table 1

Summary of “Peaks” Exceeding Our 5% FPR or Genomic Regions with Values of D> 7.9

Pop Chr Peak Position

(Physical)

Peak Position

(cum. cM)

cM/MB 2 cM Centered

on Peak Position

D PropP at

Nearest 0.5 cM

No. of Genes

under Peak

Supp. Figure

A2 2R 2R:11,845,275 142.997 4.24 11,606,503–12,082,950 8.99 0.543 53 3a and 6a

A2 2R 2R:14,325,000 151.864 3.01 13,980,492–14,681,997 9.49 0.477 90 3b and 6b

A2 2L 2L:2,053,196 70.916 2.95 1,695,797–2,384,371 8.55 0.255 98 3c and 6c

A1 2R 2R:20,757,872 173.280 2.00 20,297,228–21,100,988 10.71 0.000 100 3d and 6d

A2 2R 2R:6,016,304 127.894 1.94 5,501,046–6,534,300 9.29 0.898 110 3e and 6e

A2 2L-2R 2R:228,561 121.116 1.84 19,958,857–2,789,898a 14.61 0.648 723 3f and 6f

A2 2L 2L:15,038,696 116.880 1.17 14,257,961–16,026,513 9.12 0.406 137 3g and 6g

B2 3L 3L:16,750,434 218.032 0.79 15,623,323–18,194,769 7.92 0.190 343 3h and 6h

NOTE.—The peak locations in this table correspond to supplementary figs. S3a–h and S6a–h, Supplementary Material online (in order listed here). Shaded peaks are in
regions of normal recombination, and nonshaded peaks are in regions of reduced combinations near centromeres or chromosome ends.

aPeak spans centromere.
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allozymic variants with different levels of activity at such loci

(Deckert-Cruz et al. 1997). Glutathione transferases fall into

this category of antioxidant enzymes, and thus the genes that

encode them could have consequences for lifespan.

Although our gene list is ripe for the validation of candidate

longevity genes, perhaps the list’s most interesting feature is

an absence of genes previously described in the literature.

There are 130 D. melanogaster genes with a priori GO

terms associated with aging (www.flybase.org), and only

one of these, Atg7, occurs in our gene list. Atg7 is an autop-

hagy gene known to decrease in expression with age, leading

to an accumulation of damaged proteins in tissues (Demontis

and Perrimon 2010). Notably, oft-cited “longevity” genes,

such as mth (Lin et al. 1998) and indy (Rogina et al. 2000),

shown to increase lifespan when mutated, are not associated

with regions of haplotype or SNP divergence in control versus

old flies. It is possible that naturally occurring variants in these

genes contribute to longevity in a subtle manner and cannot

be detected via our approach, or that natural variation in the

expression of these genes is largely due to trans-regulatory

genes. It is also possible that longevity-increasing mutations

of large effect in these genes have pleiotropic consequences

for early-life fitness components such as fecundity, preventing

them from contributing to segregating variation in our test

populations.

Replication

The three regions of high differentiation in regions of normal

recombination all occur in population A2. Thus, none of our

candidate genes are implicated in other synthetic populations,

a pattern analogous to that seen in human centenarian stud-

ies, where associations seem to be limited to single popula-

tions. However, it is fair to note that when considering regions

identified at lower levels of statistical stringency (FPR> 50%),

we frequently observed regions of high differentiation within

2–5 cM of each other in two different populations (table 1 and

supplementary table S2, Supplementary Material online). This

is the case for two of the three highly significant regions iden-

tified in A2: one hit on chromosome 2R (supplementary

fig. S3b, Supplementary Material online) is located 0.5 cM

away from a less significant peak in the B2 population (sup-

plementary fig. S4d, Supplementary Material online), and an-

other hit on chromosome 2L (supplementary fig. S3c,

Supplementary Material online) is located less than 3 cM

away from a less significant peak in the A1 population (sup-

plementary fig. S4e, Supplementary Material online). On one

hand, this replication can be considered additional evidence

for alleles affecting longevity in these genomic regions. On the

other hand, the observation that regions are not implicated at

the same high levels of significance in replicate populations

suggests a limit to this study’s ability to detect such alleles. The

degree to which associations are limited to single populations

due to truly independent causative variants versus a lack of

power therefore remains unclear.

To address the issue of exactly how differentiated our rep-

licate populations are in general, we calculated Fst values for

pairwise comparisons between each of our four synthetic pop-

ulations using our SNP data in a standard Fst equation (Hartl

and Clark 2007). We find the pairwise comparisons between

the “pure” replicates from the same original cross to be smal-

ler than the comparisons between populations from different

ancestral crosses: A1/A2¼0.09; B1/B2¼ 0.07; average

A/B¼0.14 (supplementary table S2, Supplementary Material

online). Although this is expected, it is notable that the Fst

values between some human populations exceed those mea-

sured in our pure replicates (Nelis et al. 2009) (supplementary

table S3, Supplementary Material online). This provides some

context for the general failure to replicate “extreme longev-

ity” loci in human association studies. If we cannot implicate

the same regions between Drosophila populations that have

diverged for approximately 100 generations, it similarly may

not be reasonable to expect human centenarian studies of

populations with comparable degrees of shared ancestry to

produce replicable results.

The degree to which we expect to see replicable differences

among populations remains unclear. There are two salient

considerations: 1) replication is also rare among human

genome-wide association study panels of sizes comparable

to those used here; and 2) the populations used in this

study are not true replicates. To address the first issue, in as-

sociation studies where power is low (e.g., with sample sizes

of <500 individuals), simulation studies have shown that rep-

lication is often difficult to achieve, even when attempting to

replicate associations in the same population (Long and

Langley 1999). It is generally acknowledged that genome-

wide associations typically only become replicable in panels

of ~2,000 cases versus controls (Wellcome Trust Case

Control Consortium 2007), and of course this sample size is

difficult to achieve in studies of the extremely old.

The second issue to consider is the appropriateness of our

populations as biological replicates. Although our population

pairs do share ancestry, this is no guarantee that they are

currently segregating the same causative alleles. To illustrate

this idea, we queried a locus (chr3L:11105723) at which a

nonsynonymous SNP affects the activity of Sod, an enzyme

with known effects on aging from both transgenic experi-

ments (Orr and Sohal 1994) and studies of selectively bred

populations (Deckert-Cruz et al. 1997). This position is poly-

morphic in both founder populations, with a minor allele

count of two of eight in the A founders and one of eight

in the B founders. Despite this nonsynonymous SNP initially

segregating in all four populations, we only detect this posi-

tion as polymorphic in the single A2 synthetic population

examined in our experiment after 100 generations of selec-

tion and drift. That is, the minor allele of Sod has been sto-

chastically lost in the other three replicate populations, not
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an uncommon occurrence in the DSPR (cf. King, Merkes

et al. 2012, fig. 2). Although we do not observe this nonsyn-

onymous SNP to be significantly differentiated in the A2

cohort (15% in the control vs. 23% in the old pool), it nev-

ertheless prompts the question of how many potentially

functional alleles have been lost from one of our two popu-

lation pairs. To visualize this, we went through the most

significant peaks (from table 1) and looked at individual

founder haplotype frequencies contributing to change be-

tween the young and old pools (supplementary fig. S6a–h,

Supplementary Material online). In most of these peak re-

gions, it is very clear that certain haplotypes are estimated at

near-zero frequencies in one of the control pools versus the

control pool of the corresponding replicate population. For

example, the peak centered on chr2R:11,845,275 is signifi-

cant in A2 but not in A1. Supplementary figure S6a,

Supplementary Material online, shows that founder haplo-

type 5 occurs at intermediate frequency in the control A2

pool and at a somewhat higher frequency in the A2 old pool,

suggesting that this haplotype likely contributes to the sig-

nificant D value in the A2 population. However, this haplo-

type is virtually not present in the A1 control pool. As

haplotype 5 has been lost (or is rare) in the A1 pool, it

cannot increase as the pool ages, which is perhaps why we

do not estimate a significant D value in this replicate popu-

lation. This phenomenon appears to be occurring in the ma-

jority of cases (supplementary fig. S6a–g, Supplementary

Material online; for a possible counterexample, see supple-

mentary fig. S6h, Supplementary Material online).

SNP Differentiation at a Finer Scale Than
Haplotype Differentiation

Although regions of high SNP differentiation are more nu-

merous than regions with high D values, they tend to span

smaller physical distances along the chromosome. These

peaks could thus potentially be informative, when used

alongside D peaks, for localizing putative causative regions.

To evaluate this, we looked at our three major regions of

interest and evaluated them for evidence of smaller SWAD

peaks contained within the haplotype peak that might fur-

ther localize candidate regions. For two of these peaks (sup-

plementary fig. S3a and c, Supplementary Material online),

the region implicated by SNP frequency difference is nearly

identical to that implicated by D. However, for the third peak

(supplementary fig. S3b, Supplementary Material online), the

SNP frequency differences implicate a 1-cM region, rather

than the entire 2-cM region spanned by the haplotype peak.

To evaluate how this localization impacts our previous con-

clusions vis-à-vis our candidate genes, we removed the 1-cM

region of relatively low SNP frequency differences from our

analysis. This region resolves to 60 genes, and omitting these

genes from our list of 270 does not change the most

common GO terms observed. However, the single a priori

longevity gene we observed, Atg7, is one of the 60 genes

removed. This weakens the case for this gene being impor-

tant in our study and perhaps lends more credence to the

idea that so-called “aging” genes, which traditionally have

been identified on the basis of mutant screens, are not reli-

able candidates for studies of longevity in outbred flies.

Conclusions

So what is the relevance of this work for human association

studies of centenarians? The number of our cases, ~120 ex-

tremely old individuals per population, is not as large as what

we see in the best human studies. That being said, the

strengths of this study are 1) four cohorts handled identically,

2) a controlled environment in which to measure the pheno-

type, and 3) appropriate controls collected from within the

same cohort. These experimental design features are unachie-

vable in human studies. In addition, the synthetic population

resource used here provides haplotype information that al-

lowed us to identify putative candidate regions that SNP-

level analysis alone may not have identified. In our data set,

the SNP-level analyses appeared to result in many more dif-

ferentiated regions than the haplotype-level analysis. Previous

studies contrasting haplotype-level analyses with marker-level

analyses have shown that marker-level analyses can lead to

spurious results through simple random sampling (Aylor et al.

2011) and that marker-level analyses are prone to larger map-

ping location errors (Valdar et al. 2005). Thus, there is value in

applying the GWAS approach to populations derived from a

limited number of founders and mapping effects back to

founder haplotypes as opposed to SNPs. By focusing on a

limited pool of founder haplotypes, it is apparent that different

haplotypes have different effects that SNPs alone cannot enu-

merate. This observation may explain some of the population

heterogeneity seen in human longevity GWAS panels.

Our observation that five out of eight regions with signifi-

cant effects on longevity are in regions of suppressed recom-

bination, which are much more likely to harbor unconditionally

deleterious alleles of large effect with elevated minor allele

frequencies than regions of normal recombination, lends sup-

port to the mutation accumulation hypothesis for variation in

longevity. This observation furthermore suggests that telo-

meric and centromeric regions may be fruitful places to look

for genes that impact longevity in humans. Finally, we associ-

ate bacterial defense and glutathione transferase genes with

extreme longevity, suggesting that standing variation impact-

ing longevity in outbred populations may have a different

genetic basis than genes identified via forward screens for

mutants of large effect, perhaps due to early-life trade-offs.

Supplementary Material

Supplementary figures S1–S6 and tables S1–S3 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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