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ABSTRACT OF THE DISSERTATION

Link Adaptation Schemes for MIMO Wireless Systems

by

Yan Zhang

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California San Diego, 2005

Professor Paul H. Siegel, Co-Chair

Professor Laurence B. Milstein, Co-Chair

Multiple input multiple output (MIMO) systems can significantly increase channel capacity,

especially in power, bandwidth, or complexity limited systems. Link adaptation techniques,

where signal transmission parameters such as the modulation and coding rate are dynamically

adapted to the changing channel states, also are powerful tools for increasing the system spectral

efficiency. Hence, adaptive MIMO systems are emerging as one of the key techniques for easing

the bottleneck of traffic capacity in future Internet-intensive wireless networks.

We first examine the traditional role of multiple antennas in a CDMA uplink, com-

bating fading and reducing multiple access interference. Specifically, we assume the fades of

the antennas in the receive array are correlated, which reduces the diversity gain against fading

without affecting the array’s capability for interference suppression. Assuming perfect chan-

nel knowledge available at the transmitter, Maximal Ratio Transmission (MRT) is employed to

weight the transmitted signal optimally in terms of combating signal fading. At the receiver,

adaptive beamforming reception is adopted to both suppress MAI and combat the fading. We

evaluate the antenna array performance with joint fading reduction and MAI suppression.

Among numerous space-time coding techniques, the Vertical Bell-Laboratories Lay-

ered Space-Time (V-BLAST) scheme has been adopted for 4G systems since it exhibits the best

tradeoff between performance and complexity. Here we present a practical implementation of

a V-BLAST type system, in which the MIMO open-loop capacity can be closely approached

xii



by using adaptive modulation with appropriate channel codes and optimum successive detection

(OSD). First, the constellation is selected based on the instantaneous capacity of each channel

realization. Then the density evolution technique is employed to determine the maximal achiev-

able rate of an LDPC code for each transmit antenna for each channel realization, at a given

SNR. If the fading process is non-ergodic, the outage capacity corresponding to a given outage

probability is used to measure the channel performance. As an example, we design the LDPC

codes for an adaptively modulated2× 2 V-BLAST system to approach its outage capacity for a

given outage probability.

Since the constellation size and channel code rate have to match each channel realiza-

tion, codes of different rates and block lengths are required for different transmissions. Flexible-

length rate-compatible punctured irregular repeat-accumulate (IRA) codes are introduced to ac-

complish this goal. We propose a two-step shortening and puncturing process to obtain codes

of different rates and block lengths from one underlying IRA mother code while satisfying con-

straint imposed by the chosen modulation alphabet, fixed frame length (in symbols) and the

target code rate. A key advantage of this approach is that the optimality of the degree distribu-

tion is maintained in the shortening process. Further, good performance of codes with different

rates is guaranteed by optimizing the shortening and puncturing distributions. The shortening

step has to preserve the code rate and information node degree distribution while reducing the

mother code to the target block length. Higher rate codes can be obtained by puncturing the

shortened mother code according to the optimal puncturing distributions of the information bits

and the parity bits.

xiii



Chapter 1

Introduction

1.1 Background

The continued increase in demand for all types of wireless services, including voice,

data and multimedia is fueling the need for higher capacity. This goal is particularly challenging

for systems that are power, bandwidth, and complexity limited. However, wireless communica-

tion using multi-input multi-output (MIMO) has recently emerged as one of the most significant

breakthroughs to improve system spectral efficiency [1, 2].

Pioneering work by Winters [3], Foschini [4], and Telatar [5] predicted remarkable

spectral efficiencies for wireless MIMO systems when a rich scattering environment is present

and channel state information can be accurately tracked. Many MIMO techniques have been de-

veloped to capitalize on the theoretical capacity gains [6] predicted by Shannon theory. Practical

design of MIMO systems involves the development of finite-complexity transmission/reception

signal processing algorithms such as space-time processing [7, 8, 9], space-time coding [10, 11,

12] and spatial multiplexing [13, 14, 15].

Smart antenna systems have been employed to get array gain and/or reduce cochannel

interference for several decades [16]. In the conventional smart antenna system [17], only the

transmitter or the receiver is actually equipped with multiple antenna elements, typically the

base station [18]. The signals are processed at the transmitter and/or the receiver, resulting in

an increase in average receiver SNR due to a coherent combining effect [19]. Transmit/receive

array gain requires channel knowledge at the transmitter and receiver, respectively, and depends

on the number of transmit and receive antennas.

1
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Cochannel interference is inevitable in multi-user wireless communication systems.

If the channel knowledge of the desired signal, and possibly that of the interference signals, is

available, the received signal can be optimally combined such that the average SNIR is maxi-

mized. When multiple antennas are used, the differentiation between the spatial signatures of the

desired signal and cochannel signals can be exploited to reduce interference. This idea is rep-

resented in transmitter/receiver beamforming [20]. Essentially, beamforming is used to increase

the average SNR (SNIR) through focusing energy in a desired direction, in either the transmitter

or the receiver [21].

Multiple antennas have also been used to achieve spatial diversity [22, 23], thus com-

bating channel fading. Each pair of transmit and receive antennas provides a signal path from the

transmitter to the receiver. By sending signals that carry the same information through different

paths, a maximal diversity gain ofNtNr can be achieved if the paths between theNt transmit

antennas andNr receive antennas are modeled as i.i.d flat Rayleigh fading. Space-time coding

[24, 25] is one of the most prominent techniques to achieve the diversity gain in the absence of

channel knowledge at the transmitter.

However, an alternative approach suggests that fading can be beneficial in a MIMO

system [5]. Essentially, if the paths between individual transmit-receive antenna pairs are i.i.d

Rayleigh fading channels, significant spatial multiplexing gain can be obtained by transmitting

independent information on those parallel spatial channels [26, 27, 28]. Foschini has shown that

in the high SNR regime, the capacity of a system withNt transmit antennas,Nr receive antennas

and i.i.d Rayleigh fading path between each antenna pair grows linearly with the minimum of

Nt andNr [29].

1.2 Outline of the Dissertation

In Chapter 2, the uplink of an asynchronous Multi-Carrier Direct Sequence Code Divi-

sion Multiple Access (MC-DS-CDMA) [30] system with multiple antennas at both the transmit-

ter and the receiver is considered. We analyze the system performance over a spatially correlated

Rayleigh fading channel [31] with multiple access interference (MAI), and evaluate the antenna

array performance with joint fading reduction and MAI suppression. Assuming perfect channel

knowledge available at the transmitter, Maximal Ratio Transmission (MRT) [32] is employed

to weight the transmitted signal optimally in terms of combating signal fading. At the receiver,
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adaptive beamforming reception is adopted to both suppress MAI and combat fading. Note that

while the correlation among the fades of the antennas in the receive array reduce the diversity

gain against fading, the array still has the capability for interference suppression. We examine

the effect of varying the number of transmit and receive antennas on both the diversity gain and

the interference suppression.

The Vertical Bell-Laboratories Layered Space-Time (V-BLAST) [33] system has been

actively investigated in recent years since it appears to be a robust, low-complexity and cost-

effective solution for future wireless networks [13]. In Chapter 3, we present a practical im-

plementation of the V-BLAST type system, in which the MIMO open-loop capacity [34] can be

approached with conventional scalar coding, using adaptive modulation with appropriate channel

codes [35], e.g., LDPC codes, and optimum successive detection (OSD) [36]. Depending upon

the relation between the channel coherence time and the codeword length, the latter being deter-

mined by system transmission delay constraint, we use either ergodic capacity or outage capacity

[37] as the performance measure. A block fading model is assumed for each channel realization

to calculate the instantaneous capacity, which is used to select the signal constellation. Then,

the density evolution technique [38] is employed to determine the maximal achievable rate of an

LDPC code for each transmit antenna for a given channel realization, at a given SNR. Numerical

results show that the average sum rate of our adaptively modulated LDPC encoded system is

quite close to the V-BLAST capacity with both rate and power adaptations [39]. Considering

the performance degradation caused by error propagation due to the imperfect feedback and rel-

atively long decoding delay in the OSD detection, we use parallel soft interference cancellation

(PIC) followed by MMSE filtering [40] in the BER performance simulation. If the system trans-

mission delay is shorter than the channel coherence time, the outage capacity [41] corresponding

to a given outage probability is used to measure the channel performance. As an example, we

design the LDPC codes for an adaptively modulated2 × 2 V-BLAST system to approach its

outage capacity for a given outage probability.

Since the constellation size and channel code rate have to match each channel realiza-

tion, codes of distinct rates and block lengths are required for different transmissions. Although

it is feasible to implement rate-compatible punctured LDPC codes having different block lengths

from one underlying mother code, an intensive computer search is required to design the par-

ity check matrix for the mother code [42]. We choose irregular repeat-accumulate (IRA) code

[43] for the flexible-length rate-compatible punctured code design due to its unique code struc-
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ture. A two-step shortening and puncturing process is proposed to obtain codes of different rates

and block lengths from one underlying IRA mother code, while satisfying constraint imposed

by the chosen modulation alphabet, fixed frame length (in symbols) and the target code rate in

Chapter 4. An key advantage of this approach is that the optimality of the degree distribution is

maintained in the shortening process. Further, good performances of codes with different rates

is guaranteed by optimizing the shortening and puncturing distributions. The shortening step

preserves the code rate and the information node degree distribution, while reducing the mother

code to a shorter block length. To maintain the code rate, the number of information bits and

the number of parity bits are expunged proportionally. Meanwhile, the number of expunged

information bits in different degree groups are also proportional to their respective cardinali-

ties to preserve the information node degree distribution. Higher rate codes can be obtained by

puncturing the shortened mother code. A standard Gaussian approximation (GA) [44] is used

to optimize the shortening distribution of the parity bits and the puncturing distributions of the

information and parity bits so that the performance of the punctured codes can approach the

performance of the optimal codes very closely.



Chapter 2

The Tradeoff between Diversity Gain

and Interference Suppression in a

MIMO MC-CDMA System

2.1 Introduction

For systems with power, bandwidth, and delay limits, the use of multiple antennas has

become an effective technique to improve the system capacity. However, when omni-directional

antennas are used at the base station, the transmission/reception of each user’s signal becomes

a source of interference to other users located in the same cell, making the overall system inter-

ference limited. Beamforming is an effective way to reduce the interference, thus improving the

system capacity. With this technology, each user’s signal is transmitted and received by the base

station only in the direction of that particular user, which can significantly reduce the overall

interference in the system. Essentially, an array of antennas at the base station can direct dif-

ferent transmission/reception beams toward each user in the system, which is realized by signal

processing at the baseband.

In beamforming, each user’s signal is multiplied with complex weights that adjust the

magnitude and phase of the signal to and from each antenna. This causes the output from the

array of antennas to form a transmit/receive beam in the desired direction and minimize the

output in other directions. Through adaptive beamforming, the base station can form narrow

5
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Figure 2.1: Transceiver with adaptive beamforming in a MC-CDMA system
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beams toward the desired user and nulls towards interfering users, considerably improving the

signal-to-interference-plus-noise ratio (SINR). Thus, beamforming can be used to improve the

performance of wireless systems when there is a dominant direction-of-arrival (DOA) for the

signal-of-interest [21].

Compared with spatial multiplexing [45, 13], beamforming is preferred in terms of

complexity. On the other hand, beamforming, in general, has a much lower data rate compared

to spatial-multiplexing in a single user multiple antenna system. However, in a multiple access

channel, whereK users, each withLT transmit antennas, try to communicate with a common

receiver withLR receive antennas, beamforming is not only sufficient but also necessary for

achieving the so-called sum capacity of multiple access channels if the number of users is much

larger than the number of receive antennas [46]. This latter condition generally holds in a CDMA

system.

It is natural to user multiple antennas at the receiver to achieve the diversity gain

through maximal ratio combining (MRC). When multiple antennas are available at the trans-

mitter, transmit diversity can be realized by sending symbols and their linear combinations from

different antennas, i.e., space-time coding. With two transmit antennas, the Alamouti scheme [7]

is the simplest, and yet one of the most elegant space time codes, and achieves full diversity gain

without rate loss. Due to the orthogonal design, the two different symbols sent from different

antennas can be separated after simple linear combinations of the received signal, which makes

Alamouti scheme attractive enough to have been adopted in 3G cellular standards. Alamouti

scheme can be extended to more than two antennas, and is also called space-time block coding

(STBC) [23]. However, STBC cannot provide any coding gain that can be achieved by space-

time trellis code (STTC) [47, 24] at the expense of much more detection complexity. Both STBC

and STTC are appropriate for an open-loop MIMO system.

Compared with the gain achieved by the receive antenna array using MRC, the Alam-

outi scheme has a 3dB array gain loss resulting from allocating equal transmit power to each

transmit antenna. If channel state information is known at the transmitter, the 3dB loss can be

recovered by weighting the transmit symbol to match the channel state, and this is also known

as maximal ratio transmission (MRT) [32].

In this chapter, an asynchronous Multi-Carrier Direct Sequence (MC-DS) CDMA sys-

tem with multiple antennas at both the transmitter and the receiver is considered. We analyze

the system performance over a spatially correlated Rayleigh fading channel with multiple access
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interference (MAI), and evaluate the antenna array performance with joint fading reduction and

MAI suppression. The outline of the remaining part is as follows. The system model and fading

channel model used in the study are described in Section 2.2. Section 2.3 presents the analysis

of system performance, and is followed by some numerical results and discussions in Section

2.4. Finally, conclusions are drawn in Section 2.5.

2.2 System Model

We describe a system model exploiting multiple antennas in a single cell MC-CDMA

system. Assume that both the mobiles and the base station use an antenna array to transmit

and receive signals, where each mobile has an antenna array of sizeLT , and the base station

has an antenna array of sizeLR, as shown in Fig. 2.1. Assuming perfect channel knowledge

available at the transmitter, MRT is employed to weight the transmitted signal optimally in terms

of combating signal fading. Adaptive beamforming reception is adopted to suppress MAI and

combat the fading.

2.2.1 Transmitter

For the block diagram shown in Fig. 2.1, the transmitted signal vector, of dimension

(LT × 1), in them-th subband for userk, is given by

s(k)
m (t) =

√
Pkck(t)d(k)

m exp
[
j(ωmt+ θ(k)

m )
]

=
√
Pk

∞∑
n=−∞

c(k)
n h(t− nTc)u

(k)
bn/Nsc

·v(k)
m exp

[
j(ωmt+ θ(k)

m )
]
, (2.1)

whereu(k)
i is the i-th data symbol of userk, v(k)

m is a transmission weight vector for userk

in them-th subband,ωm is the subcarrier frequency,θ(k)
m is a random carrier phase associated

with userk in them-th subcarrier band and is uniformly distributed over[0, 2π), the spreading

sequence of the interfering users,c(k)
n ’s, k = 2, · · · ,K, are assumed to be i.i.d. random vari-

ables taking values±1 with equal probability, while that of the desired user,c
(1)
n , is taken to be

deterministic,h(t) is the impulse response of the baseband chip wave-shaping filter, and1/Tc

is the chip rate of a band-limited MC-DS-CDMA system. We assume the chip wave-shaping
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filter H(f) is bandlimited so that the spectra in each subband do not overlap. We also define

x(t) = F−1 |H(f)|2 and assume thatx(t) satisfies the Nyquist criterion, i.e.,x(nTc) = δ(n).

The processing gain is defined asNs = Ts/Tc, and is taken to be much smaller than the period

of the spreading sequence, whereTs is the symbol duration. Then we can write the transmitted

signal vector from thekth user as

s(k)(t) =
√
Pk

∞∑
n=−∞

u
(k)
bn/Nscc

(k)
n h(t− nTc)

·
M∑

m=1

v(k)
m exp

[
j(ωmt+ θ(k)

m )
]
. (2.2)

2.2.2 Channel Model

The channel model is taken to be a slowly varying Rayleigh fading channel for each

subcarrier, with transfer functionξ(k)
m,r,l = α

(k)
m,r,l exp(jβ(k)

m,r,l), for r = 1, · · · , LR and l =

1, · · · , LT , wherel is the index for the transmit antennas andr is the index for the receive

antennas. We assume that
{
α

(k)
m,r,l

}
and

{
β

(k)
m,r,l

}
are statistically independent for different

users, and that
{
α

(k)
m,r,l

}
and

{
β

(k)
m,r,l

}
are, respectively, i.i.d Rayleigh random variables with a

unit second moment, and uniform random variables over[0, 2π) for different transmit antennas.

However, the array gain and the phase of the different elements in the receive antenna array are

correlated, where the correlation is determined by parameters such as direction of arrivalφ
(k)
l ,

angular spread∆(k)
l , spacing between neighboring receive antennasDr, and the wavelength of

the carrier signalλ.

Specifically, using the model in [31], the composite channel gains for all the antennas

in the array are represented as

ζ
(k)
m,i+1,l = ζ

(k)
m,1,l exp(−j2πi sin

φ
(k)
l

λ
)

= α
(k)
m,l exp

[
j
(
β

(k)
m,1,l

)′
− j2πi sin

φ
(k)
l

λ

]
, (2.3)

where
(
β

(k)
m,r,l

)′
= β

(k)
m,r,l + θ

(k)
m is uniformly distributed over[0, 2π). If we make the additional,

physically-reasonable, assumption that the angles of arrival,φ
(k)
l,n ’s, are uniformly distributed

over
[
φ

(k)
l −∆(k)

l , φ
(k)
l + ∆(k)

l

]
, a closed-form spatial correlation formula can be obtained [31].
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That is,

E
[
ζ
(k)
m,i,l

(
ζ
(k)
m,j,l

)∗]
= Rs(∆(k)

l , φ
(k)
l , Dr, λ)

= RsI
l (i, j) + jRsQ

l (i, j), (2.4)

whereRsI
l (i, j) andRsQ

l (i, j) are given by

RsI
l (i, j) = J0

(
2πDr|i− j|

λ

)
+ 2

∞∑
n=1

J2n

(
2πDr|i− j|

λ

)
· cos(2nφ(k)

l )sinc(2n∆(k)
l ) (2.5)

and

RsQ
l (i, j) = 2

∞∑
n=0

J2n+1

(
2πDr|i− j|

λ

)
· sin

(
(2n+ 1)φ(k)

l

)
sinc

(
(2n+ 1)∆(k)

l

)
(2.6)

respectively, forl = 1, · · · , LT , and where theJn’s are Bessel functions of integer order. When

this correlation is high, the signals at the antennas tend to fade at the same time, and the di-

versity benefit of antenna arrays against fading is significantly reduced. On the other hand,

because independent fading is not required for interference suppression, antenna arrays can sup-

press interference even with complete correlation. Thus, we need to evaluate the antenna array

performance with joint fading reduction and interference suppression.

We define a channel matrixH(k)
m by putting the channel gain of each transmit and

receive antenna pair in them-th subband into a matrix of sizeLR × LT . That is to say, the

(i, j)th entry inH(k)
m is ξ(k)

m,i,j .

2.3 Performance Analysis

2.3.1 Output of themth Correlator

The received signal vector in the antenna array is obtained as

r(t) =
K∑

k=1

M∑
m=1

H(k)
m s(k)

m (t− τk) + nw(t) (2.7)
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whereτk is an arbitrary time delay uniformly distributed over[0, Ts], andnw(t) is the AWGN

vector added to the receive antenna array and each of its elements is a zero-mean complex Gaus-

sian random process with two-sided spectral densityη0. An asynchronous MC-DS-CDMA is

assumed, but the receiver is synchronized to the desired transmission, say that of user1; thus,

we assume that the power and delay of the desired signal are, respectively,P1 = 1 andτ1 = 0,

without loss of generality.

We evaluate the performance of the first user with the assumption of perfect carrier,

code, and bit synchronization. After down-converting to baseband, we can write the complex

baseband received signal vector at the antenna array in them-th subband as

y
m

(t) =
K∑

k=1

√
Pk

∞∑
n=−∞

c(k)
n h(t− nTc − τk)

·u(k)
bn/NscH

(k)
m v(k)

m exp(jθ(k)
m ) + nm(t)

=
∞∑

n=−∞
u

(1)
bn/Nscc

(1)
n h(t− nTc)G(1)

m v(1)
m + i(1)m (t) + nm(t), (2.8)

where

i(1)
m (t) =

K∑
k=2

√
Pk

∞∑
n=−∞

u
(k)
bn/Nscc

(k)
n · h(t− nTc − τk)G(k)

m v(k)
m (2.9)

is the composite of multiple access interference (MAI), and(G(k)
m ) = H

(k)
m exp(jθ(k)

m ), for

m = 1, · · · ,M andk = 1, · · · ,K. The noise is given by

nm(t) = nw(t) exp(−jwmt), (2.10)

and is a complex AWGN process.

The output of the correlator during thei-th symbol interval, obtained by summing the

corresponding despreadNs chip-matched filter output samples in them-th branch,z(1)
m (i), is

given by

z(1)
m (i) =

1
Ns

iNs−1∑
n′=(i−1)Ns

c
(1)
n′

[
y

m
(t) ? h(−t)

]
t=n′Tc

=
1
Ns

G(1)
m v(1)

m

iNs−1∑
n′=(i−1)Ns

c
(1)
n′

∞∑
n=−∞

c(1)
n

·u(1)
bn/Nsc

∫ ∞

−∞
h((n′ − n)Tc + τ)h(τ)dτ + I(1)

m (i) +N (1)
m (i)

= u
(1)
i G(1)

m v(1)
m + I(1)

m (i) +N (1)
m (i), (2.11)



12

where? represents convolution.u(1)
i G

(1)
m v

(1)
m is the signal component for the desired user,

N (1)
m (i) =

1
Ns

iNs−1∑
n=(i−1)Ns

c(1)
n {nm(t) ? h(−t)}|t=nTc

(2.12)

is the component due to thermal noise, and

I(1)
m (i) =

K∑
k=2

√
Pk

Ns

iNs−1∑
n′=(i−1)Ns

c
(1)
n′

∞∑
n=−∞

u
(k)
bn/Nscc

(k)
n x((n′ − n)Tc − τk)G(k)

m v(k)
m

=
K∑

k=2

√
Pk

Ns

iNs−1∑
n′=(i−1)Ns

c
(1)
n′

∞∑
n=−∞

µ(k)
n x((n′ − n)Tc − τk)G(k)

m v(k)
m

=
K∑

k=2

√
Pk

Ns
Rk,1(i)G(k)

m v(k)
m (2.13)

is the multiple access interference. In(2.13), µ(k)
n = u

(k)
bn/Nscc

(k)
n and

Rk,1(i) =
iNs−1∑

n′=(i−1)Ns

c
(1)
n′

∞∑
n=−∞

µ(k)
n x((n′ − n)Tc − τk) (2.14)

is the cross-correlation function of the spreading signal between userk and user1 during thei-th

symbol interval. Here we absorbu(k)
bn/Nsc into c(k)

n , since both are random variables taking values

of ±1 with equal probability. By the Liapounoff version of the central limit theorem,I
(1)
m (i) can

be modeled as an asymptotically complex Gaussian vector as long as the following condition is

satisfied [30]:

∞∑
n=−∞

|x(nTc − τ)| <∞

for all τ , where0 ≤ τ < Tc.

2.3.2 Output of the Adaptive Beamformer

The correlator outputs from each receive antenna in each subband are combined with

the beamforming vectorw1 =
[
(w(1)

1 )T , · · · (w(1)
M )T

]T
to produce an estimate of the transmit-

ted symbol of the desired user, wherew(1)
m is the beamforming vector for them-th subband,

m = 1, · · · ,M . Define the correlator output vectorz1(i) =
[
(z(1)

1 (i))T , · · · (z(1)
M (i))T

]T
. Then



13

the estimated data symbol can be represented as

û1,i = w†
1z1(i)

= S1,i + I1,i +N1,i, (2.15)

where† denotes complex conjugate,

S1,i =
M∑

m=1

(w(1)
m )†S(1)

m (i)

= u
(1)
i

M∑
m=1

(w(1)
m )†G(1)

m v(1)
m

= u
(1)
i w†

1G1v1, (2.16)

I1,i =
M∑

m=1

(w(1)
m )†I(1)

m (i)

=
K∑

k=2

√
Pk

Ns
Rk,1(i)

M∑
m=1

(w(1)
m )†G(k)

m v(k)
m

=
K∑

k=2

√
Pk

Ns
Rk,1(i)w

†
1Gkvk, (2.17)

Gk = diag
[
G

(k)
1 · · · G

(k)
M

]
for k = 1, 2, · · · ,K, vk =

[
(v(k)

1 )T , · · · (v(k)
M )T

]T
, and

N1,i =
M∑

m=1

(w(1)
m )†N (1)

m (i), (2.18)

N1(i) =
[
(N (1)

1 (i))T , · · · (N (1)
M (i))T

]T
.

Now we proceed to determine the optimum transmit and receive weight vectorsv1

andw1, respectively, for the desired user. Since the MAII1(i) can be modeled as an asymptot-

ically zero-mean complex Gaussian vector, and is independent of the AWGN vectorN1(i), the

conditional SINRγi of the estimated datâu1,i, conditioned onG1, is given by
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γi =
|S1,i|2

V ar(I1,i) + V ar(N1,i)

=
w†

1G1v1v
†
1G

†
1w1

w†
1E
{

1
2

[
I1(i)I

†
1(i) +N1(i)N

†
1(i)
]}

w1

'

∣∣∣w†
1G1v1

∣∣∣2
w†

1

[∑K
k=2

Pk
2Ns

RI(0)Γ†kR
(k)
MIΓk + η0

Ns
IMLR

]
w1

, (2.19)

where

V ar(I1,i) =
1
2
E
[
I1(i)I

†
1(i)
]

=
K∑

k=2

Pk

2Ns

[
R

(k)
I (0) + 2

Ns−1∑
m=1

R
(k)
I (mTc) ·

Ns−1∑
n=m

c(1)n c
(1)
n−m

]
Γ†kR

(k)
MIΓk

'
K∑

k=2

Pk

2Ns
RI(0)Γ†kR

(k)
MIΓk. (2.20)

RI(τ) is the autocorrelation ofRk,1(i) (see Eq.(2.14)), Γk is a matrix given by

Γk =


V

(k)
1 · · · 0
... V

(k)
m 0

0 · · · V
(k)
M



V (k)
m =


v

(k)
m · · · 0
... v

(k)
m 0

0 · · · v
(k)
m


︸ ︷︷ ︸

LRLT×LR

andR(k)
MI is a matrix whose elements are the cross-correlations of the channel gains of userk.

2.3.3 Maximal Ratio Transmission and Adaptive Beamforming Reception

In statistically optimum beamforming, the weights are chosen based on the statistics

of the data received at the array. Loosely speaking, the goal is to “optimize” the beamformer

response so that the output contains minimal contributions due to noise and signals arriving

from directions other than the desired signal direction. There are several different criteria for
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choosing statistically optimum beamformer weights, with perhaps the most obvious one being

the maximization of SNR.

By using MRT, we setvk = ckG
†
kwk, whereck is a constant used for normalization.

Subject to the transmit power constraint‖vk‖
2 = 1, we have|ck| = 1‚‚‚G†

kwk

‚‚‚ . Then the transmit

weight vector is given by

vk =
G†

kwk∥∥∥G†
kwk

∥∥∥ . (2.21)

After using(2.21) in (2.16), and consideringk = 1 as the desired user, we obtain

|S1,i|2 =
∣∣∣w†

1G1v1

∣∣∣2
= w†

1G1G
†
1w1. (2.22)

Now the goal is to choose beamforming weight vectorw1 which maximizes the SNRγi of

(2.19). Subject to the normalization constraint, we have

ŵ1 = arg max
‖w1‖

2=1

w†
1G1G

†
1w1

w†
1

(∑K
j=2

Pk
2Ns

RI(0)Γ†jR
(j)
MIΓj + η0

Ns
IMLR

)
w1

. (2.23)

Then the optimum weight vector ŵ1 is the principle eigenvector of

(
∑K

j=2
Pk
2Ns

RI(0)Γ†jR
(j)
MIΓj + η0

Ns
IMLR

)−1G1G
†
1 , andγi is the corresponding eigenvalue [48],

i.e., the maximum eigenvalue of(
∑K

j=2
Pk
2Ns

RI(0)Γ†jR
(j)
MIΓj + η0

Ns
IMLR

)−1G1G
†
1.

To computeŵ1, we need matrixΓk of userk, consisting of the transmit weight vector

vk. However, this is not available, since it depends on receive weight vectorwk (see Eq.(2.21)),

which in turn cannot be computed without the knowledge ofvj for j 6= k (see Eq.(2.23)). So

we cannot apply Eq.(2.23) directly to get the optimum weight vector̂w1. As a consequence,

one alternative is to use an iterative algorithm to solve the problem. Initially, we assume thatvk

is an equal weight vector, i.e., we weight each branch equally. Now it is possible to compute

the beamforming weight vector̂wk for each user using Eq.(2.23). In turn, we can compute the

corresponding transmit weight vectorvk for each user using Eq.(2.21). By using these updated

vk’s, we further update thêw1 iteratively until no improvement of SNR can be observed. This

algorithm is quite complicated, in that the receiver has to recalculate the receive weight vector

and feed it back to the corresponding transmitter. Note that this has to be done for all users

anytime there is a noticeable change of state for any one of them. As just one example, this is

has to be done whenever the number of active users changes in the system.
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Considering the complexity of adjusting the receive and transmit weight vectors based

upon the corresponding channel state information for all the active users, and the computational

complexity that this involves, as an alternative, we can replace the optimum criterion which

maximizes SINR with an ad hoc criterion which only maximizes the received power for the

desired user. Following the steps described above, we obtain the optimum receive weight vector

w
(1)
m for each subband as

ŵ(1)
m = arg max

‖w1‖
2=1

{∣∣∣(w(1)
m )†G(1)

m (G(1)
m )†w(1)

m

∣∣∣2} . (2.24)

Therefore, the receive weight vectorŵ(1)
m is the scaled principal eigenvector ofG(1)

m (G(1)
m )†,

and the received power in each subbandP
(1)
r,m is the corresponding eigenvalue, i.e., the maxi-

mum eigenvaluêλm of G(1)
m (G(1)

m )†. Although it is difficult to find the pdfpbλm
(λ) of λ̂m for

the ensemble of matricesG(1)
m (G(1)

m )†, bounds on thêλm can be easily found. The fact that

G
(1)
m (G(1)

m )† is a Hermitian and positive semi-definite matrix guarantees its eigenvalues to be

nonnegative. Hence, thêλm are bounded by∑LR
l=1 λl

LR
≤

∑LR
l=1 λl

rank
(
G

(1)
m (G(1)

m )†
) ≤ λ̂m ≤

LR∑
l=1

λl = Tr
(
G(1)

m (G(1)
m )†

)
,

whererank
(
G

(1)
m (G(1)

m )†
)
≤ min(LT , LR), andTr(·) is the trace of the matrix. Therefore

Tr
(
G

(1)
m (G(1)

m )†
)

LR
≤ P (1)

r,m

≤ Tr
(
G(1)

m (G(1)
m )†

)
=

LT∑
l=1

LR∑
r=1

∣∣∣ζ(1)
m,r,l

∣∣∣2
= LR

LT∑
l=1

∣∣∣α(1)
m,l

∣∣∣2

The last equality holds, sinceζ(1)
m,r+1,l = α

(1)
m,l exp

(
j(β(1)

m,1,l)
′ − j2πr sin φ

(1)
l
λ

)
is assumed.

Thus,

P (1)
r =

M∑
m=1

P (1)
r,m ≤ LR

M∑
m=1

LT∑
l=1

∣∣∣α(1)
m,l

∣∣∣2 , (2.25)
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Figure 2.2: Performance comparison of optimum algorithm and suboptimum algorithm for a
M = 2, LT = 2 andLR = 4 system with varying number of interfering users

and we see that this scheme achieves a diversity of the orderMLT , since theα(1)
m,l’s are assumed

uncorrelated.

This scheme overcomes the disadvantages of the iterative algorithm, although it may

suffer performance degradation. To quantify the performance loss, we resorted to simulation.

We compared the performance of using the optimum algorithm and the suboptimum one, and

the results are shown in Fig. 2.2, Fig. 2.3 and Fig. 2.4. Note that, in the low SNR region, the

additive noise is typically larger than the MAI (especially when the number of interfering users is

small), and
∑K

j=2
Pk
2Ns

RI(0)Γ†jR
(j)
MIΓj + η0

Ns
IMLR

is dominated by the covariance matrix of the

noise, which is a scaled identity matrix. Thus, optimizing the numerator termPr is equivalent to

optimizing the SINR,γi. As expected, the results in these figures show that the gain achieved by

using the iterative algorithm is not significant in the low SNR region. As the SNR increases, the

additive noise is no longer the dominant element. In the medium-to-high SNR region, the gain

becomes more obvious by using the iterative algorithm.

We further observe that the improvement is smaller when there are more interfering

users in the system. It seems that when the number of interfering users is large, the covariance

matrix of the MAI,
∑K

k=2
Pk
2Ns

RI(0)Γ†kR
(k)
MIΓk, is close to a scaled identity matrix. Although
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Figure 2.3: Performance comparison of optimum algorithm and suboptimum algorithm for a
M = 2, LT = 1 andLR = 8 system with varying number of interfering users
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we cannot give a rigorous mathematical proof, an intuitive explanation based on the numerical

results is as follows: The elements along the main diagonal of eachR
(k)
MI are unity, while the

off-diagonal elements are complex numbers whose norms are smaller than unity (this condition

holds as long as the antennas in the array are not fully correlated and the signals of different users

arrive from directions uniformly distributed over[−π
2 ,

π
2 ]). Also, it can be shown that all the

diagonal elements in the matrixPk
2Ns

RI(0)Γ†kR
(k)
MIΓk are positive real numbers. The off-diagonal

elements are still complex numbers, whose real and imaginary parts could be either positive or

negative. So the more the terms are in the summation, the more likely the polarities of those off-

diagonal elements are averaged out, and the more accurate is the approximation of the covariance

matrix of the MAI,
∑K

k=2
Pk
2Ns

RI(0)Γ†kR
(k)
MIΓk, looking like a scaled identity matrix. Thus, as

the number of interfering users increases, the improvement by using the optimum criterion with

the iterative algorithm diminishes.

When the correlations among the antennas in the receive array become smaller, so

does the improvement from using the iterative algorithm, as observed in Fig. 2.4. As we know,

when the antennas become less correlated, the off-diagonal elements inR
(k)
MI are much smaller

than unity, while the diagonal elements are unity. Thus, the approximation ofR
(k)
MI by an identity

matrix is more appropriate, and there is less gain to be achieved by using the optimum algorithm.

2.4 Numerical Results and Discussions

Given a fixed information rate and total bandwidth allocation, the product

MNs = N sc must be held constant, whereN sc is the processing gain of a single carrier CDMA

system andNs is the corresponding value for each subcarrier in the MC-CDMA system. We

assume that the fading seen by each of the transmit antennas is independent. At the receiver,

LR receive antennas are deployed for adaptive beamforming reception, whereLR can be a large

enough number so that the fading experienced by each receive antenna might be correlated.M

independent subcarriers can provideM -th order frequency diversity gain, whileLT independent

transmit antennas andLR independent receive antennas result in an extraLTLR order of spatial

diversity gain. So fixing the value ofMLTLR fixes the maximal diversity gain achievable by the

system. When the fading is, in fact, correlated, the diversity gain from the receive antenna array

is reduced. However, independent fading is not required for interference suppression, so corre-

lated receive antennas can still be used for MAI suppression. If we fix the product ofLTLR, just
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Figure 2.5: BER versusEb/η0 for K = 30
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for the sake of having a frame of reference for the performance tradeoff, then increasingLT will

increase the diversity gain against fading while sacrificing the receive antenna array’s capability

of MAI suppression.

We assume the use of a raised-cosine filter characteristic, with rolloff factorα = 0.5,

for pulse shaping. We further assume the processing gain for a single carrier system to be fixed

at N sc = 32 unless it is explicitly stated. Since it is difficult to analytically derive the pdf

of the instantaneous SNR,fγ(γ), we cannot obtain a closed-form expression for the BER. To

circumvent this problem, a Monte-Carlo simulation is carried out. After one million trials, the

SINR distribution of the combined outputs at the receiver is accumulated andfγ(γ) is numeri-

cally determined. The SINR valueγ for each combined output is applied to the conditional bit

error probability for a BPSK system,φ(
√

2γ), and the average BER is calculated by integrating

Pe =
∫∞
0 φ(

√
2γ)fγ(γ)dγ.

We consider an MC-DS-CDMA system with30 users, where the interference power

is log-normally distributed with either a3dB or a10dB standard deviation. The average BER

versusEb/η0, for different sets of parameters, is shown in the figure 2.5. With the frequency

diversity order fixed atM = 2, andLTLR fixed to be16, we find that the system employing8

transmit antennas and2 receive antennas is much better than one employing4 transmit antennas

and4 receive antennas. This is primarily due to the eight-fold diversity gain from the eight

transmit antennas with independent fading. Note that since the total length of the receive array is

fixed at a value such that the multiple receive antennas experience correlated fading, the resulting

effective diversity order achieved by the4-antenna array is less than twice that achieved by the2-

antenna array, although the MAI suppression capability is enhanced with more receive antennas.

We also compare in Fig. 2.5 the performance of other systems with the value ofMLTLR held

constant. The worst case isM = 2, LT = 1, andLR = 16, since there is no transmit diversity

gain and most of the receive diversity gain is lost due to the high correlations among the antennas

in the receive array. We further evaluate the system performance with a more severe near-far

problem, i.e, interference power is log-normally distributed with a10dB standard deviation.

Compared to the system with better power control, the BER performance of all of the above

systems degrades by at least one order of magnitude. It is further observed that the degradations

are more significant for the systems withLR = 2 receive antennas than they are for the systems

with more receive antennas. This phenomenon can be explained as follows. The system’s ability

to suppress MAI is augmented by using more receive antennas, while sacrificing some diversity
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Figure 2.7: BER versusEb/η0 for K = 30 andLT = 2, LR = 4 with varying correlations
between receive antennas

gain. Since MAI becomes more dominant in a system with a severe near-far problem, we find

that the performance gap between theLR = 2 and theLR = 4, LR = 8 or LR = 16 systems

decreases dramatically.

In Fig. 2.6, we plot BER performance curves for some of the systems in Fig. 2.5

whenK is increased to50 . Compared with the curves plotted in Fig. 2.5 for systems with

K = 30, there is smaller degradation whenLR = 16 receive antennas are employed. However,

the degradation is much more conspicuous whenLR = 2 rather thanLR = 16 receive antennas

are used. These observations indicate that systems with a larger number of receive antennas

are more robust to various changes in the wireless environment, say, when the number of active

users is constantly varying and/or the power control cannot be accurately implemented. Thus,

it is beneficial to deploy more receive antennas in a dynamic wireless system to keep relatively

stable service quality.

In Fig. 2.7 and Fig. 2.8, the BER performance when the correlations among receive

antennas are varied by changing the spacing between neighboring antennas is shown. The fades

become more correlated as we narrow the spacing. As we know, correlation results in loss of

diversity gain against fading. However, the beamforming gain for MAI suppression is enhanced.
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Figure 2.8: BER versusEb/η0 for K = 30 andLT = 1, LR = 8 with varying correlations
between receive antennas

This fact can be seen from the curves plotted in those two figures. When MAI is dominant,

e.g., interference power distributed with10dB standard deviation, the performance degradation

is much less than that in a system with better power control, where fading is the more dominant

source of degradation. It is seen from the figures that the relative performance gap of the system

with LT = 1, LR = 8 is larger than that of the system withLT = 2, LR = 4 when the

correlations among the array increase due to a decrease in the spacing of neighboring antennas.

Note that while most of our results correspond to the product ofMLTLR being held

constant, in Fig. 2.9 and Fig. 2.10 we show the effect of doubling and tripling the number of

receive antennas while keeping bothM andLT constant, for both the optimum and the sub-

optimum algorithms. The resulting performance improvement is not as significant as might be

expected. The reason is that we cannot double or triple the order of the diversity by doubling

or tripling the number of receive antennas, since once again fades on the antennas become more

correlated due to the decreasing distance between antenna elements. It is obvious from Figs.

2.9 and 2.10 that the performance improvement using the optimum algorithm is more significant

than using the suboptimum algorithm when the number of receive antennas is increased. How-

ever, this performance gain is obtained at the expense of additional complexity, especially when
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Figure 2.9: BER versusEb/η0 for K = 30 andNs = 32 per subcarrier with varying number of
receive antennas
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the number of receive antennas is large. Furthermore, the performance gap between the opti-

mum algorithm and the suboptimum algorithm will decrease if we consider using noisy channel

estimates instead of the perfect channel state information. This is because the optimum algo-

rithm needs the channel state information of all the users to calculate the weight vector for each

user, whereas each receiver using the suboptimum algorithm only needs its own channel state

estimate. Lastly, from Appendix A, it is obvious that the number of calculations involved in the

optimum algorithm is greater than that involved in the suboptimum algorithm.

2.5 Conclusion

We proposed an MC-DS-CDMA system employing multiple antennas at both the mo-

bile and the base station. Maximal ratio transmission and adaptive beamforming reception are

used to achieve the maximum received SNR for the desired user in a multiple access channel

with correlated Rayleigh fading. The conditional SNR is analytically derived and the average

BER is investigated via simulation. By varying the number of transmit antennas, receive anten-

nas and subcarriers, we find a tradeoff between obtaining diversity gain against fading and MAI

suppression. In a spatially correlated Rayleigh fading channel, as long as the interferers arrive

from directions uniformly distributed over
[
−π

2 ,
π
2

]
, using more receive antennas is preferred

in a dynamic wireless system, since the effect of wireless environment changes (e.g., when the

number of active users is varying and/or the accuracy of power control is varying) on the perfor-

mance is smaller with more rather than less receive antennas. The benefit of using only a single

transmit antenna is easier implementation in a small mobile unit. However, when the number of

active users is stable and/or accurate power control is always maintained, using two independent

transmit antennas with a smaller number of receive antennas is preferred.
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Appendix 2.A The Computational Complexity Analysis for the Op-

timum and Suboptimum Algorithms

1. The computation complexity of suboptimum algorithm

(a) the number of multiplications:K
(
ML2

RLT +M2LRLT

)
;

(b) the number of divisions:K (MLR +MLT );

(c) the number of other operations:KM eigenvalue decomposition of a square matrix

of sizeLR.

2. The computation complexity of optimum algorithm depends on the number of iterations

for convergence. In each iteration,

(a) the number of multiplications:K
(
M3L3

RLT +M3L3
RL

2
T + 2M3L2

RLT +M2LRLT

)
;

(b) the number of divisions:K (MLR +MLT );

(c) the number of other operations:K eigenvalue decomposition and inversion of a

square matrix ofMLR.

Outside the loop, number of multiplications:M3L2
RLT .

According to the simulation results, empirically, the number of iterations ranges from3 to

11, which depends on the specific value for each parameter,K,M ,LT andLR. Generally,

the number of iterations increases asK orLR increases.



Chapter 3

Approaching V-BLAST Capacity with

Adaptive Modulation and LDPC

Encoding

3.1 Introduction

In order to attain the MIMO capacity, it is necessary to signal through the channel’s

eigenmodes [5] with optimal power and rate allocations across those modes. Thus, a specialized

transmit structure is required to perform the eigenmode signaling. It is very challenging to

incorporate the MIMO capacity-achieving transceiver structures into existing systems. Instead,

a V-BLAST type system is more likely to be adopted in the next generation of wireless systems,

since it uses a much simpler transceiver structure with conventional scalar coding.

In a V-BLAST [33] system, a single data stream is encoded and demultiplexed into

multiple substreams determined by the number of transmit antennas. Each substream is then

modulated into symbols and fed to its respective antenna. TheNt transmit antennas operate

at the same symbol rate with synchronized symbol timing. At the receiver side, each of the

Nr receive antennas receives the signals radiated from allNt transmit antennas. A successive

detection technique is used to separate the signal from each transmit antenna.

Since it allocates equal power and equal rate to every transmit antenna, the open-loop

V-BLAST can only attain a fraction of the MIMO capacity [29]. To overcome this problem, rate

27
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and power adaptations at each antenna are introduced in [39, 49, 50]. It has been theoretically

proven in [39] that V-BLAST with Per-Antenna Rate Control (PARC) achieves the performance

of an open-loop scheme with space-time trellis codes [47]. In [39], the authors proposed several

schemes with rate and/or power adaptations, and obtained the corresponding capacity results

based on the assumption that capacity-achieving channel codes are employed. However, for an

uncoded system, there is a coding penaltyΓ equal to3.333 at a BER of10−3. The problem left

open is how to design channel codes to compensate the coding penalty in a practical system.

A general channel coding and decoding strategy is presented in [51] to achieve the capacity of

fading channel when the channel information is available at both the transmitter and the receiver.

Here, we explore the use of adaptive coded-modulation techniques, specifically using LDPC

codes mapped to Gray-labelled modulation constellations, to approach the MIMO capacity.

In [52], the density evolution technique is used to analyze the performance of message-

passing decoders on a binary-input symmetric AWGN channel, enabling the accurate determi-

nation of the noise thresholds of LDPC code ensembles. The application of the concentration

theorem and the density evolution technique to determine the noise threshold of LDPC code en-

sembles is simplified by the symmetry of the channel and the decoding algorithm. Specifically,

under appropriate symmetry conditions, it suffices to consider the performance of the all-zeroes

codeword [52].

Our objective is to develop a similar algorithmic approach for the analysis of LDPC

component codes for this V-BLAST type system with adaptive modulation. However, we cannot

apply the density evolution technique and the concentration theorem to this scheme directly be-

cause, in general, the equivalent binary-input component channels are not symmetric. However,

as shown in [53], by introducing i.i.d channel adapters, we can force the symmetry of the equiv-

alent binary-input component channels. Thus, the analysis and design of binary LDPC codes are

greatly simplified.

An optimum successive detection (OSD) [36], parametrized by feedforward and feed-

back equalization vectors, is employed to detect the transmitted vector on a per-substream basis

in our V-BLAST type system. In the OSD algorithm, the feedforward vectors and feedback vec-

tors are obtained under the assumption that the detected symbols are error-free. However, this

condition is not realistic, and error propagation causes system performance degradation. Fur-

ther, if channel codes are used, the decoding delay incurred by the successive detection could be

intolerable, even in a system with a small number of antennas and channel codes with moderate
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block lengths. To overcome these problems, we choose a more practical demodulation method

based on parallel soft interference cancellation (PIC) followed by MMSE linear filtering [40].

For the non-ergodic fading channel, the outage capacity, which reflects the tradeoff

between outage probability and supportable rate, is used as an information theoretic measure.

Outage capacity is appropriate if the system delay constraint is shorter than the channel coher-

ence time, meaning that one cannot average over the fades. This condition is true for most of

the practical communication systems. In this chapter, we calculate the outage capacity within

the prescribed constraints on outage and power, and design optimal LDPC codes with adaptive

modulation to approach the outage capacity for a2× 2 V-BLAST type system.

The outline of this chapter is as follows. In Section 3.2, we illustrate the successive

detection used in this V-BLAST type system and show the ergodic capacity using OSD. In Sec-

tion 3.3, we present the channel code design for this adaptive modulation system, i.e., the LDPC

codes designed with the density evolution technique, which generates the maximal achievable

rate code and the corresponding degree distribution pair for a target BER of10−5. We introduce

parallel interference cancellation (PIC) followed by MMSE filtering to reduce the decoding de-

lay and the effect of error propagation in Section 3.4. We adopt rate-compatible punctured LDPC

codes to simplify the code design, and compare numerical and simulation performance results

of the system using optimally designed codes with those of the system using punctured codes

in Section 3.5. In Section 3.6, we extend the discussion to a non-ergodic fading process, and

design the optimal LDPC codes with the adaptive modulation to approach the outage capacity

of the system with a specific outage constraint. Finally, we draw the conclusions in Section 3.7.

Notation: underscore denotes column vectors,(·)T and(·)† denote transpose and con-

jugate transpose, respectively,|·|2 denotes vector norm while|·| denotes cardinality andIN de-

notes anN ×N identity matrix. The subscripts and superscripts of vectors are to be interpreted

as follows:xn
m = (xm, · · · , xn) for m ≤ n. Throughout the chapter, we use symbolsTx and

Rx for transmit antenna and receive antenna, respectively.
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Figure 3.1: Adaptively modulated LDPC encoded V-BLAST type system

3.2 System Model

3.2.1 Per-antenna-coded V-BLAST

To facilitate rate adaptation for each transmit antenna, we extend the original V-BLAST

structure [33] with per-antenna-coded, i.e., we use a distinct encoder for each transmit an-

tenna. As shown in Fig. 3.1, each substream consists of independent coded symbolsxm,

m = 1, 2, · · · , Nt, each with transmit powerpm = E |xm|2, under a total power constraint∑Nt
m=1 pm ≤ PT . Here, we allocate equal power to each transmit antenna, since power adapta-

tion only improves the capacity slightly, at the expense of an exhaustive computer search if rate

adaptation is already employed [39]. Furthermore, we assume that each transmitted symbol is

drawn from anM -QAM constellation and that different constellations can be used for different

substreams.

3.2.2 Channel Model

We letH be a random channel matrix corresponding to a block fading channel. Fur-

thermore, flat fading is assumed, thus the channel gain matrix is written as

H =


h1,1 · · · h1,Nt

...
...

...

hNr,1 · · · hNr,Nt
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Figure 3.2: MMSE decision feedback detector

wherehn,m is the channel gain from transmit antennam to receive antennan, n ∈ [1, Nr] and

m ∈ [1, Nt]. For a rich scattering environment, the entries ofH are i.i.d. zero-mean complex

Gaussian random variables, each with unit variance.

We use a discrete-time baseband representation of the detection process for a single

transmitted symbol vector, assuming symbol-synchronous receiver sampling and ideal timing.

Letting x = (x1, · · · , xNt)
T denote the vector of transmit symbols, we get the corresponding

received vector

y =
Nt∑

m=1

hmxm + n, (3.1)

wheren is a noise vector with i.i.d components each having zero-mean and varianceη0, and

hm = [h1,m, · · · , hNr,m]T is the channel gain vector associated with transmit antennam.

3.2.3 Optimum Successive Detection

A successive detector, parametrized by feedforward and feedback equalization vec-

tors, detects the transmitted vector on a per-substream basis in an arbitrary but fixed order [36].

The feedforward equalizers are denoted by the set of length-Nr vectors{Fm}
Nt
m=1, whereas the

feedback equalizers are denoted by the sets of length-Nr vectors
{
Bm1, · · · , Bm,m−1

}Nt

m=2
, as

shown in Fig. 3.2.

In particular, the first symbolx1 is detected based onz1 = F †
1y, while them-th symbol
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xm,m > 1, is detected based onzm = F †
m

(
y −

∑m−1
j=1 Bmj x̂j

)
, wherex̂j denotes the estimate

of xj . If we assume all the detected symbols are error-free, thenzm can be represented as

zm = F †
mhmxm +

Nt∑
j=m+1

F †
mhjxj +

m−1∑
j=1

F †
m

(
hj −Bmj

)
xj + F †

mn. (3.2)

Optimum successive detection (OSD) [36] maximizes the conditional mutual informa-

tion betweenxm andzm, conditioned on the detected symbolsx1, · · · , xm−1, I
(
xm, zm

∣∣xm−1
1

)
.

DefineH (k) ,
[
hk, · · · , hNt

]
andP (k) , diag [pk, · · · pNt ] as the partial matrix ofH and

P = diag [p1, · · · pNt ], respectively. For themth substream, the optimal feedback vectors are

given by

Bopt
mj = hj (3.3)

for 1 ≤ j ≤ m− 1 and the optimal feedforward vector is obtained as

F opt
m =

(
H(m+ 1)P (m+ 1)HH(m+ 1) + η0IN

)−1
hm (3.4)

Using OSD, the instantaneous capacity of them-th antenna is given by [36]

Cosd
m = log2

(
1 + pmh

†
m

(
H(m+ 1)P (m+ 1)H†(m+ 1) + η0INr

)−1
hm

)
(3.5)

and the corresponding ergodic capacity can be obtained by taking the expectation overH.

3.2.4 Adaptive Modulation

Note that the idealized capacity results assume an infinite-length code to achieve in-

finitesimally small bit error rates, whereas in an actual system, only finite-length coding with

non-zero error rates are feasible. Further, the idealized results assume a continuous rate set, but

in an actual system, only rates from a discrete rate set are feasible.

For a practical coding scheme with a nonzero target BER, the rate of them-th antenna,

Rm, is determined by the specific coding method, modulation constellation and the target BER.

LDPC codes are used in our scheme, in conjunction withM -QAM constellations. Specifically,

once we obtainCosd
m from Eq. 3.3, we use a2dCosd

m e+1-QAM constellation for them-th sub-

stream, wheredxe is the smallest integer greater than or equal tox. Then, for a fixed SNR level,

the density evolution technique is used to obtain the LDPC code with the maximal achievable

rate, rm,c, such that the BER of the system is below the target BER. Therefore, the rate for
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them-th substream isRm =
(⌈
Cosd

m

⌉
+ 1
)
rm,c. The ergodic capacity for them-th substream

can be obtained by averagingRm over a large number of channel realizations. The results for

different SNR levels are listed in Table 3.5.

3.3 LDPC Code Design

3.3.1 Identically Independent Distributed (i.i.d) Channel Adapters

We now describe the way in which we extend the density evolution technique to this

adaptively modulated LDPC-encoded V-BLAST type system. We cannot apply the density evo-

lution technique to this scheme directly because, for the specific Gray mapping we are using, it

is easy to see that the equivalent channels are not symmetric. Therefore, the decoding analysis

of the all-zeroes codeword alone may not suffice to predict the average decoder behavior.

Here we force the symmetry of the equivalent binary-input component channels by

using i.i.d channel adapters. As shown in Fig. 3.1, each i.i.d channel adapter has three modules.

The first one is a source which generates the binary symbol vectortm,m ∈ [1, Nt], according to

an i.i.d equiprobable distribution. The second one is amod−2 adder:dm = cm⊕ tm, wherecm

is the LDPC coded bits vector. The last module is a sign adjuster:vm = um · (1− 2tm), where

um is the aposteriori probability (APP) module output andvm is the LDPC decoder input. It is

obvious that the last module undoes the effect of the second module. Therefore, each equivalent

binary-input channelm,m ∈ [1, Nt], is transformed into a new binary-input symmetric channel

with corresponding inputcm and outputvm .

3.3.2 Density Evolution

The conditional pdf ofzm, conditioned on the channel gain matrixH, and the trans-

mitted symbolsqj , qj ∈ Qj with |Qj | = 2sj , form ≤ j ≤ Nt, is given by

p
(
Zm = zm

∣∣∣Xm = qm, X
Nt
j=m+1 =

[
qm+1, · · · , qNt

]
,H
)

=
1

2πσ2
m

exp

(
−|zm − µm|2

2σ2
m

)
,

(3.6)

wherezm = F †
mhmqm +

∑Nt
j=m+1 F

†
mhjqj + F †

mn, assuming the previously detected symbols

are error-free. Here,µm = F †
mhmqm +

∑Nt
j=m+1 F

†
mhjqj , andσ2

m, due to the Gaussian noise,
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is obtained as

σ2
m =

1
2
V ar

(
F †

mn
)

(3.7)

=
1
2
F †

mE
{
nn†

}
Fm

= η0F
†
mFm.

By averaging overXNt
j=m+1 =

[
qm+1, · · · , qNt

]
, where

[
qm+1, · · · , qNt

]
∈ Qm+1×· · ·×QNt ,

we get the conditional pdf

p (Zm = zm |T )
(a)
= Σ

X
Nt
j=m+1∈Q

Nt
m+1

p
(
Zm = zm, X

Nt
j=m+1 |T

)
(3.8)

(b)
= Σ

X
Nt
j=m+1∈Q

Nt
m+1

p (Zm = zm |S ) p
(
XNt

j=m+1

∣∣∣T)
(c)
= Σ

X
Nt
j=m+1∈Q

Nt
m+1

Nt∏
j=m+1

p (Xj |H) p (Zm = zm |S )

(d)
=

1

2Σ
Nt
j=m+1sj

Σ
X

Nt
j=m+1∈Q

Nt
m+1

p (Zm = zm |S )

whereT andS denote the events{Xm = qm,H} and
{
Xm = qm, X

Nt
j=m+1,H

}
, respectively.

QNt
m+1 denotes the subspaceQm+1×· · ·×QNt . To arrive at(a) and(b), the theorem of total prob-

ability and the definition of conditional probability are applied; respectively. Equation(c) holds

because, conditioned on the channel gain matrixH, the transmitted symbols from distinct anten-

nas are independent of each other. Therefore the joint probabilityp
(
XNt

j=m+1

∣∣∣Xm = qm,H
)

is independent ofXm, andp
(
XNt

j=m+1

∣∣∣H) can be further factored into the product of the

individual probabilities
∏Nt

j=m+1 p (Xj |H). The last equation(d) is obtained by the fact that

p (Xj |H) = 1
2sj , since we assume that the symbols in the chosen constellation are equiprobably

transmitted.

We have observed from our numerical calculations thatp (Zm = zm |Xm = qm,H )

can be approximated as a Gaussian probability density function (pdf) as long as the constellation

size is no greater than16-QAM. Fig. 3.3 shows the actual pdf and the approximated pdf, which

validates our approximation. We can explain the phenomenon as follows. In our scheme,M

turns out to be less than or equal to16 for most of the channel realizations, if the SNR is no

greater than10dB. Since the feedforward vectorFm is designed to suppress the interference,

F †
mhjxj , j ∈ [m+ 1, Nt], is much smaller thanF †

mhmxm. Thus, the mean values forzm, for

all m = 1, · · · , Nt, conditioned on
{
Xm = qm, X

Nt
j=m+1 ∈ Qm+1 × · · · ×QNt ,H

}
, are all
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Figure 3.3: Comparisons of the actual pdf to the approximated Gaussian pdf

close toF †
mhmxm, so the mixture of those Gaussian probability density functions can be ap-

proximated as another Gaussian probability density function with mean valueµ
′
m = F †

mhmxm

and variance slightly larger thanσ2
m. For theNt-th substream,p (ZNt = zNt |XNt = qNt ,H ) is

precisely a Gaussian probability density function, since no interference exists.

Note thatdm = [dm,0, · · · , dm,sm−1]
T , as shown in Fig. 3.1, is the input to the

mapping device. Thel-th componentum,l of um, for 0 ≤ l < sm, is the log-likelihood

aposteriori probability ratio (LAPPR) of the corresponding input of them-th mapper,dm,l.

From the relation betweenzm andum, conditioned onzm andH, we can calculate the con-

ditional pdf p (Um,l = um,l |Xm = qm,H ). Using the mapping relationship betweenqm and

dm, qm = Φm (dm), whereΦm (·) is the mapping function for them-th antenna, we have

um,l = log
p (dm,l = 0 |Zm = zm,H )
p (dm,l = 1 |Zm = zm,H )

(3.9)

= log
p (Zm = zm |dm,l = 0,H )
p (Zm = zm |dm,l = 1,H )

= log
Eqm∈⊗0

m,l
p (Zm = zm |Xm = qm,H )

Eqm∈⊗1
m,l
p (Zm = zm |Xm = qm,H )

whereΩi
m,l denotes the set of symbols ofΦm (dm), for whichdm,l = i , for i = 0, 1.

To apply the density evolution technique, we needvm, the LAPPR value ofcm, to be
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used as the decoder input of them-th component code. Denotef0
m,l (vm,l) as the initial density

of vm,l, and definef0
m (vm) ,

(∑
l f

0
m,l

)
/sm as the initial density ofvm. We also define the

following events:E(i)
1 , {dm,l = i,H} andE(i)

2 ,
{
dm,l = i, (dm,k)

sm−1
k=0,k 6=l ,H

}
. Noting that

vm,l = um,l(1− 2dm,l) (see Fig. 3.1), we obtain

f0
m,l (vm,l)

(a)
= p (Vm,l = vm,l |H ) (3.10)

(b)
=

1
2

[
p
(
Um,l = vm,l

∣∣∣E(0)
1

)
+ p

(
Um,l = −vm,l

∣∣∣E(1)
1

)]
(c)
=

1
2

∑
Dm(l)

[
p
(
Um,l = vm,l, (dm,k)

sm−1
k=0,k 6=l

∣∣∣E(0)
1

)
+ p

(
Um,l = −vm,l, (dm,k)

sm−1
k=0,k 6=l

∣∣∣E(1)
1

)]
(d)
=

1
2

∑
Dm(l)

[
p
(
Um,l = vm,l

∣∣∣E(0)
2

)
· Pr

(
(dm,k)

sm−1
k=0,k 6=l

∣∣∣E(0)
1

)
+p
(
Um,l = −vm,l

∣∣∣E(1)
2

)
· Pr

(
(dm,k)

sm−1
k=0,k 6=l

∣∣∣E(0)
1

)]
(e)
=

1
2

∑
Dm(l)

[
p
(
Um,l = vm,l

∣∣∣E(0)
2

)
· Pr

(
(dm,k)

sm−1
k=0,k 6=l

∣∣∣H)
+p
(
Um,l = −vm,l

∣∣∣E(1)
2

)
· Pr

(
(dm,k)

sm−1
k=0,k 6=l

∣∣∣H)]
(f)
=

1
2

sm−1∏
k=0,k 6=l

Pr (dm,k)

·
∑

Dm(l)

[
p
(
Um,l = vm,l

∣∣∣E(0)
2

)
+ p

(
Um,l = −vm,l

∣∣∣E(1)
2

)]
(g)
=

1
2sm

∑
Dm(l)

[
p
(
Um,l = vm,l

∣∣∣E(0)
2

)
+ p

(
Um,l = −vm,l

∣∣∣E(1)
2

)]
where

∑
Dm(l)

denotes the multiple summations over binary variables

dm,0, · · · , dm,l−1, dm,l+1, · · · , dm,sm−1,
∑

dm,0
· · ·
∑

dm,l−1

∑
dm,l+1

· · ·
∑

dm,sm−1
. Equations

(b) and(c) are derived from the definition ofE(i)
1 and the theorem of total probability. Equation

(d) is result of the definition ofE(i)
2 and the definition of conditional probability. Equations(e) -

(g) hold based on the assumptions that the coded bits in a symbol are independent and each sym-

bol is equiprobably chosen from the constellation. Generally, unlike in the BPSK case,Vm,l is no

longer a Gaussian random variable. Note that the numerator and the denominator in Equation 3.7

are a mixture of a group of Gaussian pdfs. However, the mean value ofzm, conditioned on differ-

entqm ∈ Ω0
m,l or qm ∈ Ω1

m,l, is no longer approximately independent of the value ofqm, and the
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Figure 3.4: Parallel interference cancellation and MMSE filtering demapper

difference is determined by the specific mapping method and labelling. Simulation results show

thatEqm∈Ω0
m,l
p (Zm = zm |Xm = qm,H ) andEqm∈Ω1

m,l
p (Zm = zm |Xm = qm,H ), regarded

as functions of the random variableZm, may have multiple maximal values, and therefore they

are certainly non-Gaussian, so a Monte Carlo method has to be used. We first obtained the nu-

merical distribution ofUm,l, conditioned onH, and used it as the initial density of the LAPPRs

of the augmented binary-input component channel. The density evolution technique was then

employed to derive the maximal achievable raterm,c and the corresponding degree distribution

pair (λm (x) , ρm (x)) for them-th LDPC component code.

3.4 PIC-MMSE Demodulation

In a practical system, feedback errors cause significant system performance degrada-

tion, since{F i}
Nt
i=1 and

{[
Bj,i

]j−1

i=1

}Nt

i=2
are no longer the optimal vectors for maximizing the

conditional mutual information,I
(
xm, zm

∣∣xm−1
1

)
, when perfect feedback does not hold. An-

other prominent disadvantage of the OSD algorithm is the impractical decoding delay if channel

codes are used, since the feedback symbol estimates are generated by re-encoding the decoded

information bits and re-modulating the re-encoded bits. Even in a system with a small number

of antennas and channel codes with moderate block lengths, this delay could be intolerable.
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3.4.1 Parallel Soft Interference Cancellation

A more practical demodulation method based on parallel soft interference cancella-

tion and MMSE linear filtering [40] is selected to mitigate those problems. The PIC-MMSE

demapper is illustrated in Fig. 3.4. First, based on thea priori information of the coded bits,

LM,a (ci), i = 1, · · · , Nt, we compute the soft estimatesx̂ = [x̂1, · · · , x̂Nt ]
T of the transmitted

vectorx = [x1, · · · , xNt ]
T , i.e.,

x̂m = E [xm] =
2sm−1∑
m=0

qm Pr (xm = qm) (3.11)

=
2sm−1∑
m=0

qm

sm−1∏
n=0

Pr(cm,n = bm,n),

whereqm = Φm (cm). Since we assume the coded bits are independent, the symbol error proba-

bility can be factored into the product of the bit error probabilities, where

Pr(cm,n = bm,n) = exp ((1− bm,n) · LM,a (cm,n)) / (1 + exp (LM,a (cm,n))), bm,n = 0, 1

[53].

Definex̂m , [x̂1, · · · , x̂m−1, 0, x̂m+1, · · · , x̂Nt ]. To estimate transmitted symbolxm,

a soft interference cancellation is performed on the received vectory, and we obtain

y
m

= y −Hx̂m. (3.12)

3.4.2 MMSE Linear Filtering

To further suppress the residual interference plus noise, we feed eachy
m

to an MMSE

filter and get

zm = w†
m · y

m
. (3.13)

Here,wm is chosen to minimize the mean square error between the symbolxm and the filter

outputzm, and, as in [40], we have

wm = E
[
y

m
y†

m

]−1
E
[
y

m
z∗m

]
(3.14)

=

hmh
†
m +

Nt∑
j=1,j 6=m

E |xj |2 − |x̂j |2

E |xm|2
hjh

†
j +

2σ2

E |xm|2
INr

−1

hm,
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Figure 3.5: Comparisons of the decoding convergence rate of Tx1 using modified PIC algorithm
to that using the original PIC algorithm

whereE |xm|2 =
∑2sm−1

k=0 |qk|2 Pr (xm = qk). Using an approximation introduced in [40], we

regardzm as the output of an equivalent AWGN channel with inputxm, i.e.,

zm = βmxm + ξm, (3.15)

whereβm = E [zmx∗m] /E |xm|2 = w†
mhm, andξm is a zero-mean Gaussian random variable

with varianceν2
m = E |zm − βmxm|2 = E |xm|2 ·

(
βm − |βm|2

)
.

So the extrinsic information of each coded bit is given by [53]

LM,e (cm,n) = ln

∑
qm∈Ω1

m,n
p (zm|qm) · exp

(∑
j∈Jn(Qm) LM,a (cm,j)

)
∑

qm∈Ω1
m,n

p (zm|qm) · exp
(∑

j∈Jn(Qm) LM,a (cm,j)
) (3.16)

whereΩb
m,n is the set of symbols withcm,n = b, andJn (Qm) is the set of indices within symbol

qm such thatcm,j = 0, j = 0, · · · , sm−1, j 6= n. LM,e (cm) is used by them-th LDPC decoder

as thea priori informationLD,a (cm). For the LDPC decoder, we use the standard sum-product

algorithm to generate the extrinsic informationLD,e (cm). In this way, the soft symbol estimates

can be improved by further iterations between the demodulator and the LDPC decoder.
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Finally, to speed up the convergence rate, we modified the algorithm above as follows.

In the first iteration, since no symbol estimates are available if we demodulate theNt branches

simultaneously, them-th demapper cannot get anya priori information,LD,a (cm), from the

LDPC decoders, so no cancellation is done. Hence, we delay the demodulation of them-th

antenna form − 1 time slots, so that the symbol estimates,x̂1, · · · , x̂m−1, of the tentatively

demodulated symbolsx1, · · · , xm−1 can be used as the feedback for interference cancellation.

In the simulations, we find that this modification enhances the convergence significantly, as

shown in Fig 3.5. We can explain this phenomenon by noting that the extrinsic information from

them-th demodulator,LM,e(cm), is improved due to the interference cancellation, which in turn

accelerates the convergence of the LDPC decoding. As a consequence, the extrinsic information

from the LDPC decoder,LD,e(cm), is better and thus helps the demodulation during the next

iteration. We found that only3-4 iterations between the demapper and the LDPC decoder suffice

to achieve the target BER10−5, when we use the delayed demodulation at the first iteration, as

shown in Fig. 3.5 and 3.6.
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3.5 Rate-compatible Puncturing of LDPC Codes

To implement this adaptive scheme, we have to design for each antenna, distinct LDPC

codes optimal for the corresponding channel realizations. Since these optimal LDPC codes

may have different degree distributions, the transmitter (receiver) has to adjust the encoder (de-

coder) structure for each channel realization. This requirement increases the complexity of the

transceiver. To reduce the transceiver complexity, we use the idea of rate-compatible punc-

tured LDPC codes proposed in [54] so that only one code, with a given degree distribution

(λ (x) , ρ (x)) and rater (λ, ρ), is used for all the channel realizations.

The basic idea of puncturing is summarized as follows: For the puncturing problem,

variable nodes having the same edge degree are put into a group denoted asGj , j ∈ [2, dl]. We

randomly puncture a proportionπ(0)
j ∈ [0, 1] of symbols inGj , whereπ(0)

j is optimized accord-

ing to the desired puncturing fraction. Theπ(0)
j ’s specify a puncturing distribution,π(0) (x) =∑dl

j=2 π
(0)
j xj−1. The puncturing fractionp(0) is defined as the ratio of the number of punctured

variable nodes to the number of variable nodes, and is expressed as

p(0) =

∑dl
j=2 π

(0)
j nj

n
, (3.17)

wherenj = |Gj | is the number of variable nodes with degreej. Hence, the code rate of a

punctured LDPC code is determined by a three-tuple distribution
(
λ (x) , ρ (x) , π(0) (x)

)
, i.e.,

r
(
λ, ρ, π(0)

)
=

r (λ, ρ)
1− p(0)

. (3.18)

Based on the convergence condition using theGaussian Approximation(GA) [44], the

puncturing coefficientsπ(0)
j ’s are optimized to achieve the target puncturing fractionp(0) at a

fixed SNR threshold. We choose the code with the lowest non-zero rate, i.e., the code designed

for the poorest channel realization, as the base code for each transmit antenna, and puncture the

left degree distributionλ (x) to get the higher rate punctured codes.

The maximal achievable rates with the punctured LDPC codes at different SNR levels

for each antenna are listed in Table 3.6. The results of puncturing patterns to get the higher rates

codes from a base code are also listed in Table 3.1 – Table 3.4. Comparing the numerical results

in Fig. 4.5, we find that the maximal rates achieved by rate-compatible punctured LDPC codes

are slightly worse than the maximal rates achieved by optimizing the LDPC codes for each SNR

level.
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Table 3.1: Degree distribution of a rate = 0.25 LDPC code

dl 2 3 6 10 19 50

λj 0.2816 0.1869 0.1813 0.0719 0.1427 0.1356

dr 5 6

ρj 0.6415 0.3585

Table 3.2: Puncturing proportions of rate-compatible punctured LDPC codes

rate\π(0)
j 2 3 6 10 19 50

0.30 0.2376 0.1206 0.0005 0.0358 0.0260 0.1332

0.35 0.2778 0.2881 0.3764 0.0667 0.1930 0.4702

0.40 0.3934 0.3131 0.4018 0.3103 0.4569 0.4903

0.45 0.4642 0.3966 0.4239 0.4809 0.4987 0.4981

0.50 0.4875 0.4825 0.5439 0.5717 0.5994 0.5998

Table 3.3: Degree distribution of a rate = 0.20 LDPC code

dl 2 3 6 10 19 50

λj 0.3411 0.2027 0.1950 0.0589 0.1523 0.05

dr 4 5
ρj 0.5685 0.4315

Table 3.4: Puncturing proportions of rate-compatible punctured LDPC codes

rate\π(0)
j 2 3 6 10 19 50

0.25 0.3070 0.2027 0.1950 0.0589 0.1523 0.0

0.30 0.3392 0.3008 0.3494 0.3008 0.4836 0.0

0.35 0.4427 0.3808 0.4422 0.4745 0.4953 0.0

0.40 0.5017 0.4826 0.5233 0.5398 0.5499 0.0

0.45 0.5521 0.5441 0.5967 0.5960 0.5988 0.0

0.50 0.6152 0.5486 0.6252 0.6454 0.6485 0.0



43

Table 3.5: Ergodic capacities and maximal achievable rates of a2 × 2 V-BLAST system using
optimally designed LDPC codes

SNR R1 R2 R Cosd

0 0.6451 0.8662 1.5113 1.6982
2 0.8390 1.1561 1.9951 2.2688
4 1.0893 1.4061 2.4954 2.9287
6 1.3335 1.8497 3.1832 3.7092
8 1.6388 2.3294 3.9682 4.5846
10 2.0819 2.8133 4.8952 5.5513

Table 3.6: Ergodic capacities and maximal achievable rates of a2 × 2 V-BLAST system using
punctured LDPC codes

SNR R1 R2 R Cosd

0 0.6006 0.8118 1.4124 1.6982

2 0.7911 1.0937 1.8848 2.2688

4 1.0308 1.3412 2.3720 2.9287

6 1.2747 1.7365 3.0112 3.7092

8 1.5726 2.2125 3.7851 4.5846

10 1.9970 2.6952 4.7292 5.5513
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BLAST system with optimally designed LDPC codes and to that with rate-compatible punctured
LDPC codes
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In the BER performance simulations, we fix the number of symbols transmitted from

each antenna in each frame to be2, 500, since symbol synchronization is required to implement

the parallel interference cancellation. Thus the block length of the LDPC code corresponding

to each channel realization has to be adjusted due to the distinct constellation. For example, if

QPSK is the chosen constellation, then the block length of the LDPC code is5, 000.

The same rule applies to the rate-compatible punctured LDPC codes. In the latter case,

the block length of the base code has to be adjusted by the puncturing portionp(0) corresponding

to each channel realization. Specifically, ifQPSK is the chosen constellation and the desirable

punctured code rate is0.4, then the block length of the base code of rate0.25, Nu, is calcu-

lated asNu =
Np×r(λ,ρ,π(0))

r(λ,ρ) = 5000×0.4
0.25 = 8, 000, whereNp is the code block length after

puncturing. To realize the symbol synchronization in the punctured code case, the block length

of the base code has to vary from frame to frame to accommodate the chosen constellation and

puncturing fraction for each frame. Details of designing codes with different rates and different

block lengths from one underlying mother code will be discussed in next chapter.

The BER performance of the system with the optimal LDPC codes and rate-compatible

punctured LDPC codes for each SNR level are shown in Fig. 3.8. Generally, the system with

the optimal LDPC codes outperforms the system with the punctured LDPC codes. It is observed

that the BER performances of both systems appear to degrade in the high SNR region. We offer

the following as a possible explanation. The BER performance obtained by the DE technique

reflects the average performance of the code ensemble. However, the performance of a bad code

construction deviates from the average. As the SNR increases, the channel code rate tends to be

high, which makes the performance more sensitive to the specific code construction since it is

harder to design the loop-free graph structure.

3.6 Outage Capacity of V-BLAST

3.6.1 Outage Capacity

The outage capacity is defined as the maximum rate below which arbitrarily reliable

transmission is possible for a given percentage of channel realizations. In the context of the

V-BLAST setup, the transmission rate on each of the subchannels has to be no greater than the

respective capacities of those subchannels, so that the assumption of perfect feedback can be
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justified.

As in the ergodic fading channel case, the outage capacity of V-BLAST can be achieved

by Gaussian distributed input symbols [29]. This means that them-th subchannel capacity is a

random variable of the formlog [1 + γm], whereγm is the received SNR of them-th subchannel.

If the subchannels are transmitting at rates{rm}Nt
m=1, the outage probability of the V-BLAST is

defined as [55]

P V B
out (r1, · · · , rNt) , P

[
log (1 + γ1) ≤ r1

⋃
· · ·
⋃

log (1 + γNt) ≤ rNt

]
. (3.19)

The outage capacityCV B
ε for ε ∈ [0, 1] is the maximum sum rate at which arbitrarily reliable

transmissions are possible for all the subchannels for(1− ε)×100% of the channel realizations.

It is given by [55]

CV B
ε = max

{rm}Nt
m=1

{
Nt∑

m=1

rm : P V B
out (r1, · · · , rNt) ≤ ε

}
. (3.20)

To obtain the outage capacity within the prescribed constraints on outage and power,

and to design the optimal LDPC codes with adaptive modulation to approach the outage capacity,

we use a2 × 2 MIMO system to illustrate the process. The achievable outage region for V-

BLAST for a specific channel realizationHt is

CV B (Ht) = {(r1, r2) : r1 ≤ log (1 + γ1 (Ht)) , r2 ≤ log (1 + γ2 (Ht))} . (3.21)

For the designated rate pair(r1, r2), an outage event occurs if eitherr1 > log (1 + γ1 (Ht)) or

r2 > log (1 + γ2 (Ht)). Define an indicator functionI (Ht) by

I (Ht) =

 1 an outage event occurs

0 otherwise
. (3.22)

For the prescribed outage constraintP V B
out (r1, r2) ≤ ε, we get the outage regionCV B

out by trans-

mitting onN independent channel realizations. Specifically, we compute the achievable outage

region for each of theN instances, and record the total number of outages
∑N

t=1 I (Ht) for a

given rate pair(r1, r2). According to the definitions of outage capacity and outage probability,

all the rate pairs(r1, r2) in the outage region satisfy the following condition:

N∑
t=1

I (Ht) /N ≤ ε, (3.23)

and the outage capacity is the rate pair with the largest sum rate.
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Table 3.7: Outage capacities and maximal achievable rates of a2 × 2 V-BLAST system with
quasi-static fading

SNR R1 R2 R Cosd

5 0.2663 0.5920 0.8583 1.0622

10 0.6622 1.2813 1.9435 2.2159

15 0.9872 1.9685 2.9557 3.9542

20 1.3685 3.6198 4.9883 6.4482

3.6.2 LDPC Code Design for Non-ergodic Fading Channels

Once we have the supportable rate distribution based onN instantaneous capacity

pairs,(log (1 + γ1 (Ht)) , log (1 + γ2 (Ht))), we can calculate the outage capacities for different

outage constraints. Specifically, ifN = 100 and ε = 10%, then10 out of theN channel

realizations with the lowest sum capacity could be experiencing an outage. The lowest sum

capacity corresponding to the remaining channel realizations is regarded as the outage capacity

for this specific outage constraint.

Here we use the same methodology as before to determine the modulation size and

obtain the LDPC code with maximal achievable rate to approach the outage capacity. For each

channel realizationHt, the constellation is chosen by the corresponding capacity,Cosd
m (Ht), for

each antenna. Then the density evolution technique is used to obtain the maximal achievable

rate, rm,c(Ht), for a target BER of10−5, wherem = 1, 2 is the index of transmit antenna.

Once we get those rate pairs for all the channel realizations, we calculate the supportable sum

rate
∑

mRm,f (Ht) =
∑

m (Rm,M (Ht)× rm,c(Ht)), and sort them in an non-decreasing order,

whereRm,M (Ht) is the modulated symbol rate of them-th antenna for thet-th channel real-

ization. Then we approximate theNε + 1 smallest supportable rate as the maximal achievable

sum rate for the2 × 2 V-BLAST type system using OSD detection. The outage capacities and

maximal achievable sum rates for a given outage probability at different SNR levels are listed in

Table 3.7.

3.7 Conclusion

In this chapter, we propose a practical scheme for a V-BLAST type system, in which

the MIMO open-loop capacity is approached closely by means of adaptive modulation using
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Figure 3.8: BER performance of a2×2 V-BLAST system with optimally designed LDPC codes
and that with rate-compatible punctured LDPC codes

LDPC codes. For each transmit antenna, the constellation is chosen based upon its instantaneous

capacity using OSD , and the density evolution technique is employed to determine the maximal

achievable rate of the LDPC code in each channel realization.

Numerical results show that the spectral efficiency of the designed system for achiev-

ing the target BER is quite close to the capacity of the V-BLAST system with per-antenna rate

and power adaptations. To simplify the channel code design, we replace the optimal LDPC codes

with rate-compatible punctured LDPC codes for each antenna, at the expense of slightly reduced

spectral efficiency.

In performance simulations, we use PIC followed by MMSE filtering to overcome the

problems caused by error propagation and the decoding delay in the OSD algorithm. Again, the

results show that the system using the optimal codes slightly outperforms the system using the

punctured codes. Further, we calculate outage capacities of this adaptively modulated V-BLAST

type system with a given outage probability for the non-ergodic fading channels, which is more

meaningful for most practical systems. Then to approach the outage capacities, we employ

similar methodology to design the LDPC codes and choose the modulation alphabet for each
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antenna.
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Chapter 4

Flexible-length Rate-compatible

Punctured Irregular

Repeat-accumulate Code Design

4.1 Introduction

The Vector-LDPC architecture proposed in [56] allows for the implementation of mul-

tiple codes of different rates and block lengths in one device, which is very important for channel

adaptation. In [42], Wesel et al. applied information nulling and row-combining to the parity

check matrix of the mother LDPC code so that codes of different rates and block lengths can be

realized from one fundamental code structure. This scheme has an advantage over the Vector-

LDPC architecture in that the connections between variable nodes and check nodes are main-

tained while encoding/decoding codes with different rates and block lengths. However, to avoid

a performance degradation due to cycles which may result from combining the rows of the parity

check matrix, extra constraints and computations are required to generate the appropriate parity

check matrix for the mother code. Moreover, codes of certain rates have worse performance if

the rows in the parity check matrices of the higher rate codes are obtained by combining different

numbers of rows from the original parity check matrices.

In this chapter, we explore an alternative way to simplify the design and implemen-

tation of codes of different rates and block lengths by using irregular repeat-accumulate (IRA)

49
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codes. These codes were proposed by Jin, Khandekar and McEliece proposed IRA codes in [43]

[57], who were inspired by the markedly better performance of irregular LDPC codes relative to

that of regular LDPC codes.

On binary-input output-symmetric channels, IRA codes have performance competitive

with that of optimized irregular LDPC codes, but with much simpler encoder structures. In fact,

they can be encoded and decoded with linear complexity in the block length. Thus, IRA codes

are an appealing choice for a practical system.

Instead of modifying parity check matrices to generate a family of codes with different

rates and block lengths as in [42], we introduce a two-step design process that first shortens

a mother IRA code, and then punctures the shortened code. We use the design procedure to

generate a family of flexible-length, rate-compatible codes with degree distributions that ensure

good performance.

An ensemble of irregular LDPC codes is represented by a Tanner graph consisting

of variable nodes and check nodes, with connections between variable nodes and check nodes

specified by the degree distribution pair(λ (x) , ρ (x)). Similarly, a Tanner graph of an ensem-

ble of IRA codes consists of variable nodes and check nodes, but with the variable nodes further

subdivided into information nodes and parity nodes. In this chapter, we show how this character-

istic makes it possible to use one encoder and decoder structures for multiple codes of different

rates and block lengths. To demonstrate the practicality of our approach, we apply the proposed

code design technique to an adaptively modulated V-BLAST type system that approaches the

V-BLAST capacity with a relatively low implementation complexity.

The outline of this chapter is as follows. The motivation for using rate-compatible

punctured IRA codes is presented in Section 4.2. We summarize the basics of IRA codes in

Section 4.3. The design of flexible-length rate-compatible punctured IRA codes is discussed in

Section 4.4. Numerical results are shown in Section 4.5. Conclusions are drawn in Section 4.6.

Notation: dxc denotes the closest integer to a real numberx, with the exception that

the closest integer greater thanx is chosen if there are two closest integers tox.

4.2 Motivation

We use adaptive modulation and capacity-approaching channel codes to increase the

system sum rate for a per-antenna-coded V-BLAST type system, as shown in Fig. 4.1. Thus,
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Figure 4.1: Adaptively modulated per-antenna-coded V-BLAST type system

codes with variable rates and variable block lengths should be designed to match different chan-

nel realizations. To reduce the implementation complexity and make the scheme appropriate for

a practical system, a family of codes derived from one underlying mother code is more desirable

than a collection of codes designed individually for different channel realizations.

4.2.1 Limitations of Conventional Punctured LDPC Codes

If the transmitted frame contains a fixed number of symbols, and if the modulation

alphabet is adapted to the channel state, then different frames may represent different numbers

of coded bits. The approach to designing rate-compatible punctured LDPC codes introduced in

[54] optimizes the puncturing distribution based on the mother code degree distribution, and the

punctured code length is determined by the mother code length and both code rates. However,

in our scheme, the resulting punctured code length is predetermined by the chosen modulation

alphabet and the number of symbols in the frame.

Consider the following example, in which we fix the frame length to be2500 symbols.

Now, suppose that for the first channel realization, the designed code rate is0.25 with 8AMPM

modulation. Then, the number of coded bits to be transmitted in this frame is2500× 3 = 7500.

If QPSK is chosen for the second channel realization and the designed code rate is0.35, the

number of coded bits to be transmitted is2500× 2 = 5000. Due to the relationship between the

code rates and code lengths of the mother code and punctured codes, the mother code length has

to be adjusted according to the predetermined punctured code lengths.

Specifically, with a rate0.2 mother code, the puncturing fractions for these two real-
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izations are given byp(0)
1 = 1 − rb

rd,1
= 0.2 andp(0)

2 = 1 − rb
rd,2

= 3
7 , whererb is the mother

code rate, andrd,1, rd,2 are the target code rates, respectively. The puncturing fraction is also

defined as the ratio of the number of punctured variable nodes to the total number of variable

nodes. For the first channel realization, we see that the lengthnb of the mother code must satisfy(
1− p

(0)
1

)
nb = 7500 bits long, implying thatnb = 9375. On the other hand, for the second

channel realization, the lengthnb of the mother code must satisfy
(
1− p

(0)
1

)
nb = 5000, im-

plying thatnb = 8750. Hence, it is required that the mother code length be adjusted for each

specific channel realization according to the chosen modulation alphabet and the target code rate.

This also means that the transmitter (resp., receiver) has to be equipped with different encoder

(resp., decoder) structures for different channel realizations, since the connections between vari-

able nodes and check nodes in the parity check matrices are different due to the variable code

lengths.

4.2.2 Motivation for Using IRA Codes

It is highly desirable in an actual system to encode ( resp., decode) multiple codes with

different rates and block lengths using one fundamental encoder (resp., decoder). To accomplish

this, we use IRA codes, which explicitly distinguish between information bits and parity bits,

and a two-phase construction incorporating code shortening and puncturing. Specifically, we

use a mother code with the largest block length anticipated, say10000, and adapt it to different

block lengths and code rates required for different channel realizations.

The approach can be illustrated by application to the scenario described above. Rather

than directly puncturing the mother code to a higher rate code, we first shorten the code, reducing

the number of information bits and the number of parity bits proportionally so that the resulting

code length satisfies the constraint imposed by the chosen modulation size, the frame length

(in symbols) and the target code rate, while preserving the mother code rate. Furthermore, the

number of information bits in each node degree group is reduced in proportion to the respective

cardinality so that the optimized degree distribution for the mother code is preserved (at least

approximately). This is a key advantage of our approach.

Then we puncture this shortened mother code to a higher rate code. More specifically,

first we shorten the rate0.2 mother code from10000 bits to9375 bits, preserving the code rate

0.2. This means that125 information bits and500 parity bits are expunged from the original
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codeword. We next puncture this shortened rate0.2 code of length9375 bits to a rate0.25 code

of length7500 bits.

At the encoder, where1875 data bits are to be transmitted,125 zeros are padded,

so that we can get a codeword of10000 bits. At the decoder, we insert zeros bits (absolutely

reliable estimates with log-likelihood ratio (LLR) messages set to∞) at positions corresponding

to the125 expunged information bits, and insert erasures (LLR messages set to0) at positions

corresponding to the expunged parity bits and all the punctured bits. The received7500 coded

bits plus the125 zeros and the2375 erasures are fed to the decoder for the length10000 mother

code. Among the2000 decoded information bits, we select the1875 desired bits. Of course, the

shortening and puncturing distributions of the information bits and parity bits must be known to

both the transmitter and the receiver.

4.3 Background on IRA Codes

4.3.1 Definition of IRA Codes

Before going into the details of rate-compatible punctured IRA code design, we will

summarize the basic properties of IRA codes. A Tanner graph describing an ensemble of

IRA codes is shown in Fig. 4.2. The ensemble of IRA codes is specified by parameters

(f2, · · · , fdl
; a), where a fractionfi of information bits is repeatedi times and connected toi

check nodes, fori = 2, · · · , dl, anddl is the maximal information node degree. The distribution{
fi ≥ 0, i = 2, · · · , dl :

∑dl
i=2 fi = 1

}
is referred to as the repetition profile, and is used as a

degree of freedom in the optimization of the IRA ensemble [57]. For(k + r, k) codes, there are

k information nodes on the left,r = (k
∑

i ifi) /a check nodes in the middle, andr parity nodes

on the right. Each check node is connected toa information nodes, and two parity nodes. The

connections between check nodes and information nodes are determined by the interleaver and

are random while the connections between check nodes and parity nodes are in a simple zigzag

pattern. The code rate is easily shown to beRs = k
k+r = a

a+
P

i ifi
.

If the interleaver in the Tanner graph is fixed, a systematic IRA code can be obtained

with k information bitsb = (b1, · · · , bk) andr parity bitsx2 = (x2,1, · · · , x2,r). The value

of a parity bit is determined uniquely by the condition that the mod-2 sum of the values of the

variable nodes connected to each check node is zero. If the values of the bits on thera edges



54

f2

f3

Check nodes
(all have left degree a)

i(f  = fraction of  nodes 
        of degree i )

  

fdl

x1,0

x1,a−1 x2,1

x2,2

x2,rx
Information nodes

Parity nodes

2,0x     = 0

1,ra−1

in
te

rl
ea

ve
r

Figure 4.2: Tanner graph for IRA codes with parameters(f1, · · · , fdl
; a)



55

coming out of the interleaver are(x1,0, · · · , x1,ra−1), we have the recursion

x2,j+1 = x2,j +
a−1∑
i=0

x1,aj+i, (4.1)

for j = 0, · · · , r − 1, with the initial conditionx2,0 = 0.

4.3.2 Density Evolution

Although density evolution (DE) for IRA codes is analogous to that for irregular LDPC

codes [58], there are aspects of code optimization using density evolution that are unique to IRA

codes. Specifically, one message-passing cycle in a standard LDPC code optimization only

involves updating check-to-variable messages and variable-to-check messages, while for IRA

codes, it involves updating information-to-check messages, check-to-parity messages, parity-to-

check messages and check-to-information messages.

Using the density evolution technique, we describe the optimization of the IRA codes

with respect to achieving the maximum rate while satisfying the target BER at a given SNR

level. Letpl and p̃l denote the probability density functions(pdfs) of an information-to-check

node message and a parity-to-check node message, respectively, at thel-th iteration. Letql and

q̃l denote the pdfs of a check-to-information node message and a check-to-parity node message,

respectively, at thel-th iteration. Under the cycle-free condition,pl, p̃l, ql and q̃l satisfy the

following recursion [58]:

pl = fu ⊗ λ (ql) (4.2)

p̃l = fu ⊗ q̃l (4.3)

ql = Γ−1
(
Γ (p̃l−1)

⊗2 ⊗ Γ (pl−1)
⊗a−1

)
(4.4)

q̃l = Γ−1
(
Γ (p̃l−1)⊗ Γ (pl−1)

⊗a) (4.5)

for l = 1, 2, · · · , with initial conditionp0 = p̃0 = ∆0 (∆x is a Dirac function with a shift ofx),

wherefu denotes the density of the channel output message,⊗ denotes convolution of densities,

andf⊗m denotesm-fold convolution. In (4.2),

λ (f)
4
=

dl∑
i=2

λif
⊗(i−1), (4.6)
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In (4.4) and (4.5),Γ (fx) is the density ofy = γ (x) when the density ofx is fx , where the

mappingγ: R → F2 × R+ is defined by [38]

γ (x) =
(
sign (x) ,−log tanh

|x|
2

)
, (4.7)

and

sign (x) =


0 if x > 0

0 with probability 1/2 if x = 0

1 with probability 1/2 if x = 0

1 if x < 0.

(4.8)

Also, Γ−1 denotes the inverse mapping ofΓ, i.e.,Γ−1 (gy) is the density ofx = γ−1 (y) when

the density ofy is gy.

It is obvious that(∆∞,∆∞) is a fixed point of the above recursion. It is also shown in

[58] that the fixed point(∆∞,∆∞) for the density evolution is locally stable if and only if

λ2 <
exp (s) (exp (s)− 1)
a+ 1 + exp (s) (a− 1)

, (4.9)

wheres = −log
(∫

exp (−z/2) fu(z)dz
)
. Following an argument similar to that used in [38], it

can be shown that if the stability condition holds, then there exists anξ > 0 such that if for some

l ∈ N

Pe (Rspl (p0, p̃0) + (1−Rs) p̃l (p0, p̃0)) < ξ, (4.10)

thenPe (Rsp (p0, p̃0) + (1−Rs) p̃ (p0, p̃0)) converges to zero asl → ∞. Otherwise, there

exists anξ > 0 such that for alll ∈ N

Pe (Rspl (p0, p̃0) + (1−Rs) p̃l (p0, p̃0)) > ξ. (4.11)

For the binary-input output-symmetric channels, the IRA code ensemble design can

be summarized as the solution of the following optimization problem [58]:
maximize a

∑dl
i=2 λi/i

subject to
∑dl

i=2 λi = 1, λi ≥ 0

and to BER < target BER.

(4.12)

Due to the intensive computation involved in the full density evolution, Gaussian ap-

proximation (GA) [44] is usually used for code ensemble optimization, with negligible loss of
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accuracy. However, the result in [58] shows that the code ensemble optimized by GA may have a

higher noise threshold than the actual channel parameter for a given capacity.Therefore, we use

the full density evolution to optimize the mother code ensemble to make sure that BER of the de-

signed code ensemble achieves the target BER. Nonetheless, we apply GA to get the shortening

and puncturing distributions for the rate-compatible punctured IRA codes to make the analysis

of the shortening/puncturing process more tractable.

4.4 Flexible-length Rate-compatible Punctured IRA Code Design

4.4.1 Analysis of Shortening IRA Codes

As we illustrated in Section4.2, two steps are used to adapt the low rate mother code to

a higher code rate. The first step maintains the code rate and information node degree distribution

f(x) =
∑dl

j=2 fjx
j , while reducing the number of coded bits to the target codeword length

before the puncturing step.

4.4.1.1 Grouping Check Nodes and Parity Nodes

Information bits having the same node degree are put into a group denoted byIGj ,

j ∈ [2, dl], and the number of expunged information bits in each group is in proportion to its

cardinality. Specifically, suppose the raterb mother code has codeword lengthnb, consisting of

kj information bits inIGj , j ∈ [2, dl], andmp =
Pdl

j=2 j·kj

a parity bits. If the target codeword

length before the puncturing step isnsb, we randomly expungeli information bits, consisting of

li,j =
⌈(

1− nsb
nb

)
kj

⌋
bits in IGj , j ∈ [2, dl], andlp =

⌈(
1− nsb

nb

)
mp

⌋
parity bits.

In the following, we develop a criterion for expunginglp parity bits for a particular

IRA code structure so that the system has guaranteed good performance. To facilitate the anal-

ysis, we consider the two check nodes connected to each parity bit as a check node paircpi,

for i = 1, · · · ,mp. Each pair has2a edges connecting to the information nodes on its left

side. The check nodes can be grouped according to the number of incident edges connected to

the information nodes which are associated with the expunged bits. The corresponding check

node groups are denoted byCGj , for j ∈ [1, a]. Two check node edge degree distributions,

ρ (x) =
∑a

j=1 ρjx
j−1 andζ (x) =

∑a
j=1 ζjx

j−1, are used to describe the connections to the

information nodes and parity nodes, whereρj andζj are the fractions of edges connecting the
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Figure 4.3: Message flows between information (parity) and check nodes

check nodes inCGj to the information nodes and to the parity nodes, respectively. The deriva-

tions ofρj andζj are shown in Appendix A.

Accordingly, we have2a + 1 groups of check node pairsCPGj , j = 0, · · · , 2a,

whereCPGj consists of check node pairs connecting toj information nodes associated with

the transmitted information bits. Also, we have2a + 1 corresponding groups of parity nodes,

PGj , with edge degree distributionν (x) =
∑2a

j=1 νjx
j−1, whereνj is the fraction of edges

connecting the parity nodes to the check node pairs inCPGj . If the proportion of the number of

parity nodes inPGj is αj , and the shortening proportion of each group isδ
(0)
j , j = 0, · · · , 2a,

then the total number of expunged parity nodes is
∑2a

j=0 δ
(0)
j αjmp. The δ(0)

j ’s are optimized

to satisfy the convergence condition discussed below. Note that the parity nodes connected to

check node pairs inCPG0 should be expunged since all the connected information nodes are

associated with the expunged information bits, i.e.,δ
(0)
0 = 1. The derivations ofνj andαj are in

Appendix A.



59

4.4.1.2 Probability Density Functions of Messages from Information/Parity Nodes to Check

Nodes

The message flow between a check node and information (resp., parity) nodes, and

between an information (resp., a parity) node and check nodes are drawn in Fig. 4.3. In the

sum-product decoding algorithm, if at least one of the information or parity nodes sends a zero

message connected to a check node, the check node sends zero messages to the incident infor-

mation nodes and parity nodes (excluding the information nodes associated with the expunged

bits).

Let ε(k)
i ande(k)

p denote the probabilities of a check-to-information-node message and

a parity-to-check-node message being zero, respectively. It is obvious that

ε
(k)
i = 1−

(
1− e(k)

p

)2
, (4.13)

since no information nodes send zero messages.

The probability of a check-to-parity-node message being zero at thek-th iteration,

ε
(k)
p , can be written as

ε(k)
p =

a∑
j=1

ζjε
(k)
p,j , (4.14)

whereε(k)
p,j is the probability of a message from a check node inCGj to a parity node being

zero. Since each check node connects to two parity nodes, and no information nodes send zero

messages, the message from a check node will not be zero unless the message from one of the

incident parity nodes is zero.

Further, if the check node belongs toCGj , it indicates that the parity nodes con-

nected to it belong to one of the groupsPGl, for l ∈ [j, j + a]. Thus,ε(k)
p,j depends one(k)

p,l ,

l ∈ [j, j + a], the probability of a message from a parity node inPGl to a check node being

zero. It is straightforward to see that

ε
(k)
p,j =

j+a∑
l=j

νj,le
(k)
p,l , (4.15)

whereνj,l = νlPj+a
l=j vl

. Therefore,ε(k)
p =

∑a
j=1 ζj

(∑j+a
l=j νj,le

(k)
p,l

)
.

As shown in Fig. 4.3, an information-to-check-node message and a parity-to-check-

node message are determined by the linear sum of the incident check node messages and the
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associated channel output messages. The message from a parity node inPGl to a check node

is zero if this parity node is associated with an expunged parity bit and the message received

from the other incident check node is zero. Therefore, the probability of zero message is simply

expressed as

e
(k)
p,l = δ

(0)
l ψ

(k−1)
p,l , (4.16)

whereψ(k−1)
p,l is the probability of a message from a check node to a parity node inPGl being

zero at the(k − 1)-th iteration. After some mathematical manipulations, we get

ψ
(k−1)
p,l =



∑(l−1)/2
j=1 Ω(k−1)

l,j + ζl,lε
(k−1)
p,l l is odd and l ≤ a∑l/2−1

j=1 Ω(k−1)
l,j + ζl/2,l/2ε

(k−1)
p,l/2 + ζl,lε

(k−1)
p,l l is even and l ≤ a∑(l−1)/2

j=l−a Ω(k−1)
l,j l is odd and l > a∑l/2−1

j=l−a Ω(k−1)
l,j + ζl/2,l/2ε

(k−1)
p,l/2 l is even and l > a.

(4.17)

where we useΩ(k−1)
l,j to denote

(
ζl,jε

(k−1)
p,j + ζl,l−jε

(k−1)
p,l−j

)
, andζl,j = ζjPl

j=min(1,l−a) ζj
is nor-

malized fraction of edges connecting the check nodes to the parity bits inPGl. Note that

ε
(0)
p,j = 1, for j ∈ [1, a]. The derivation ofψ(k−1)

p,l is shown in Appendix B.

If none of the parity nodes connected to a check node is expunged, the statistical prop-

erties of a check-to-information-node message and a check-to-parity-node message can be ap-

proximated as Gaussian and are uniquely determined by their mean values [44]. In this way, we

can track the mean values instead of the density functions to determine if the decoding process

converges or not. We use random variablesui, up, vi andv̂p,j to denote a check-to-information-

node message, a check-to-parity-node message, an information-to-check-node message and a

message from a parity node to a check node inCGj , respectively.

Using the functionφ(x) defined in [44], the mean values ofui andup are updated by

the following relations:

φ (x) =

 1− 1√
4πx

∫
R tanh u

2 exp
(
− (u−x)2

4x

)
du x > 0

1 x = 0,
(4.18)

the mean value ofui at thek-th iteration is represented as

m(k)
ui

= φ−1

(
1− E

[
tanh

(
u

(k)
i /2

)∣∣u(k)
i 6= 0

])
(4.19)

=
a∑

j=1

ρjφ
−1

(
1− E

[
tanh

(
v

(k)
i /2

)]j−1
E
[
tanh

(
v̂

(k)
p,j /2

)∣∣v̂(k)
p,j 6= 0

]2)
,
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since the message from a check node inCGj to one incident information node is a function of

thej−1 incoming messages from all the other incident information nodes and the two incoming

messages from the incident parity nodes. Similarly, the mean value ofup at thek-th iteration is

represented as

m(k)
up

= φ−1

(
1− E

[
tanh

(
u(k)

p /2
)∣∣u(k)

p 6= 0
])

(4.20)

=
a∑

j=1

ζjφ
−1

(
1− E

[
tanh

(
v

(k)
i /2

)]j
E
[
tanh

(
v̂

(k)
p,j /2

)∣∣v̂(k)
p,j 6= 0

])
.

Obviously, in order to track the updated mean values, we need the probability density func-

tions(pdfs) ofv(k)
i andv̂(k)

p,j to calculateE
[
tanh

(
v

(k)
i /2

)]
andE

[
tanh

(
v̂

(k)
p,j /2

)∣∣v̂(k)
p,j 6= 0

]
.

Using Gaussian approximation, the pdf of an information node messagev
(k)
i at the

k-th iteration,g(k)(vi), is approximated as a mixture of Gaussian probability densities [54]

g(k)(vi) =
dl∑

j=2

λj

j−1∑
l=0

χ
(k)
j−1,lN

(
m

(k)
vi,l

+mv0 , 2m
(k)
vi,l

+ 2mv0

)
, (4.21)

whereλj = j·fjP
j·fj

is the fraction of edges connected to the information nodes of degreej. For

each information node of degreej, χ(k)
j−1,l , Cj−1

l

(
ε
(k−1)
i

)j−1−l(1 − ε
(k−1)
i

)l
is defined as the

probability that(j − 1− l) out of(j − 1) incoming messages from the incident check nodes are

zeros, whereCj−1
l is the binomial coefficient. We useN (m, 2m) to denote the Gaussian pdf

with meanm and variance2m.

The pdf of messages from parity nodes to check nodes inCGj at thek-th itera-

tion, f (k)(v̂p,j), can be decomposed into four terms:A(k)
1 , ê

(k)
p,j ∆0(v̂p,j) corresponds to the

a zero message, wherêe(k)
p,j is the probability of the message from a parity node to a check

node inCGj at thek-th iteration being zero, which turns out to be equal toε(k)
p,j after some

calculations, as shown in Appendix B;A(k)
2 ,

∑j+a
l=j νj,lδ

(0)
l N

(
m

(k−1)
up , 2m(k−1)

up

)
corresponds

to the message obtained from the incident check nodes, given that the parity bit is expunged;

A
(k)
3 ,

∑j+a
l=j νj,l

(
1−δ(0)

l

)
ψ

(k−1)
p,l N (mv0 , 2mv0) corresponds to the message from the channel,

given that the messages from the incident check nodes are zeros; and

A
(k)
4 ,

∑j+a
l=j νj,l

(
1 − δ

(0)
l

)(
1 − ψ

(k−1)
p,l

)
N
(
m

(k−1)
up + mv0 , 2m

(k−1)
up + 2mv0

)
corresponds to

the message obtained from the combination of the messages from the incident check nodes and

the message from the channel. Hencef (k)(v̂p,j) =
∑4

i=1A
(k)
i , and the continuous part of it is
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denoted byf (k)
c (v̂p,j) =

∑4
i=2A

(k)
i . Parametersνj,l = νlPj+a

l=j vl
, l ∈ [j, j + a], are normalized

so that the integral off (k)(v̂p,j) equals1.

4.4.1.3 Derivations of the Recursive Equations for the Updated Mean Values

First we substituteg(k)(vi) intoE
[
tanh

(
v

(k)
i /2

)]
and denote it byM (k)

1 ,

M
(k)
1 =

∫
tanh

(
v

(k)
i /2

)
g(k)(vi)dvi (4.22)

= 1−
dl∑

j=2

λj

j−1∑
l=0

χ
(k)
j−1,lφ

(
lm(k−1)

ui
+mv0

)
.

Next we substitutef (k)
c (v̂p,j) intoE

[
tanh

(
v̂

(k)
p,j /2

)∣∣v̂(k)
p,j 6= 0

]
and denote it byM (k)

2,j ,

M
(k)
2,j =

∫
tanh

(
v̂

(k)
p,j /2

)
f (k)

c (v̂p,j)dv̂p,j (4.23)

= 1−
j+a∑
l=j

νj,lδ
(0)
l φ

(
m(k−1)

up

)
−

j+a∑
l=j

νj,l

(
1− δ

(0)
l

)
·
(
ψ

(k−1)
p,l φ

(
mv0

)
+
(
1− ψ

(k−1)
p,l

)
φ
(
m(k−1)

up
+mv0

))
.

Then we substituteM (k)
1 andM (k)

2,j into Eq. (4.19 ) and Eq. (4.20 ) and get

m(k)
ui

=
a∑

s=1

ρsφ
−1

1−
(
M

(k)
1

)s−1
(

M
(k)
2,s

1− ê
(k)
p,s

)2
 , (4.24)

and

m(k)
up

=
a∑

s=1

ζsφ
−1

(
1−

(
M

(k)
1

)s
(

M
(k)
2,s

1− ê
(k)
p,s

))
. (4.25)

With the expression ofg(k)(vi) in hand, we can calculate the bit error probability at

thek-th iteration,P (k)
e , as a weighted sum ofQ functions,

P (k)
e =

dl∑
j=2

fj

j∑
l=0

χ
(k−1)
j,l Q


√
mv0 + lm

(k−1)
ui

2

 . (4.26)

For error-free decoding , it is required thatε(k)
i and ê(k)

p,s , s ∈ [1, a], should converge to zero,

which implies thatχ(k)
j,l converges to the Kronecker Delta functionδj,l, ask goes to infinity.
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Then the mean values are simplified to

m(k)
ui

= F1

(
m(k−1)

ui
,m(k−1)

up

)
(4.27)

=
a∑

s=1

ρsφ
−1

(
1−

(
M

(k)
1

)s−1 (
M

(k)
2,s

)2
)

and

m(k)
up

= F2

(
m(k−1)

ui
,m(k−1)

up

)
(4.28)

=
a∑

s=1

ζsφ
−1

(
1−

(
M

(k)
1

)s
M

(k)
2,s

)
,

which for error-free decoding should grow to infinity ask goes to infinity.

4.4.1.4 Optimization of Shortening Proportions
{
δ
(0)
l

}2a

l=1

We denote a fixed-point solution ofmui = F1

(
mui ,m

(k−1)
up

)
bymui

(
m

(k−1)
up

)
. To

avoid having any fixed-point solution other than(∞,∞), it is required that

m(k−1)
up

<
a∑

s=1

ζsφ
−1

(
1−

[
1−

dl∑
j=2

λjφ
(

(j − 1)mui

(
m(k−1)

up

)
+mv0

)]s

(4.29)

·
(

1−
s+a∑
l=s

νs,l

[
δ
(0)
l φ

(
m(k−1)

up

)
+
(
1− δ

(0)
l

)
φ
(
m(k−1)

up
+mv0

)]))
.

It is inconvenient to get the shortening proportionsδ
(0)
l , l ∈ [1, 2a], directly from the inequality

above, so we adopt the approach used in [44] and define

r
(k)
i =

dl∑
j=2

λjφ
(
(j − 1)m(k−1)

ui
+mv0

)
, (4.30)

and

r(k)
p,s =

s+a∑
l=s

νs,l

[
δ
(0)
l φ

(
m(k−1)

up

)
+
(
1− δ

(0)
l

)
φ
(
m(k−1)

up
+mv0

)]
, (4.31)

for s ∈ [1, a], to help solve for theδ(0)
l , l ∈ [1, 2a]. After substituting them into Eq. (4.27) and

Eq. (4.28) we have the following equivalent recursive equations:

r
(k+1)
i =

dl∑
j=2

λjhj

(
mv0 , r

(k)
i , R(k)

p

)
, (4.32)
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and

r(k+1)
p,s = g

(
mv0 , r

(k)
i , R(k)

p

)
+

s+a∑
l=s

νs,lδ
(0)
l

[
g
(
0, r(k)

i , R(k)
p

)
− g
(
mv0 , r

(k)
i , R(k)

p

)]
, (4.33)

whereR(k)
p denotes

{
r
(k)
p,1 , · · · , r

(k)
p,a

}
. Theh (·) andg (·) functions are expressed as

hj (m, ri, rp) = φ

(
m+ (j − 1)

a∑
s=1

ρsφ
−1
(
1− (1− ri)

s−1 (1− rp,s)
2
))

, (4.34)

and

g (m, ri, Rp) = φ

(
m+

a∑
t=1

ζtφ
−1
(
1− (1− ri)

t (1− rp,t)
))

. (4.35)

We denote the solution of the equation

ri =
dl∑

j=2

λjhj (mv0 , ri, Rp) (4.36)

by ri (Rp), for all rp,s ∈ (0, φ (mv0)] ands ∈ [1, a], whereRp denotes{rp,1, · · · , rp,a}. Now

the parity node updated mean inequality can be expressed as

rp,s > g (mv0 , ri (Rp) , Rp) +
s+a∑
l=s

δ
(0)
l νs,l

[
g (0, ri (Rp) , Rp)− g (mv0 , ri (Rp) , Rp)

]
, (4.37)

for rp,s ∈ (0, φ (mv0)] and s ∈ [1, a]. In summingνs,l, s ∈ [1, a], l ∈ [s, s+ a], we use

δ
(0)
l to weight them to satisfy the inequality above while maximizing

∑2a
l=1 αlδ

(0)
l subject to the

constraint thatδ(0)
l ∈ [0, 1]. Here, linear programming is employed to solve for the shortening

proportionsδ(0)
l , for l ∈ [1, 2a].

4.4.2 Analysis of Puncturing IRA Codes

After the shortening step, we get a shortened mother code(nsb, ksb) with the same rate

rb as the original mother code. Note that the left repetition profile(f1, · · · , fdl
) is preserved (at

least approximately) because we expunge the information nodes in each groupIGj , j ∈ [1, a],

in proportion to its cardinality. Each parity node still connects to two check nodes. However, a

check node may connect to either one or two parity nodes. We useϕj,1 andϕj,2 to denote the

fraction of edges incident to the check nodes inCGj which are connected to one and two parity

nodes, respectively, forj ∈ [1, a].
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In the puncturing step, we use the same methodology introduced in [54]. Specifically,

we randomly puncture a proportionπ(0)
i,j of information nodes inIGj , j ∈ [2, dl], and a propor-

tionπ(0)
p,l of parity nodes inPGl, l ∈ [1, 2a]. The puncturing proportions

{
π

(0)
i,j

}dl

j=2
,
{
π

(0)
p,l

}2a

l=1
,

π
(0)
i,j , π

(0)
p,l ∈ [0, 1], are optimized to approach the desired puncturing fractionp(0) while satisfy-

ing the convergence condition given below. The puncturing fraction is defined as the ratio of the

number of punctured information and parity bits to the shortened mother code lengthnsb, which

is thus expressed as

p(0) =
dl∑

j=2

π
(0)
i,j fj +

2a∑
l=1

π
(0)
p,l α̃l, (4.38)

whereα̃l, l ∈ [1, 2a], is the proportion of parity nodes inPGl after the shortening step. The

code rate of the punctured IRA code isrp = rb

1−p(0) .

4.4.2.1 Probability Density Functions of Messages from Information/Parity Nodes to Check

Nodes

Following a similar approach to that described in the shortening step, letε̃
(k)
i , ẽ(k)

i and

˜̂e(k)
p,j denote the probabilities of a check-to-information-node message, an information-to-check-

node message and a message from a parity node to a check node inCGj being zero, respectively.

We can easily obtaiñε(k)
i as

ε̃
(k)
i = 1−

a∑
j=1

ρj

(
1− ẽ

(k)
i

)j−1
( 2∑

l=1

ϕj,l

(
1− ˜̂e(k)

p,j

)l
)
, (4.39)

since a check node inCGj sends a zero message to an incident information node if the message

from at least one of the otherj − 1 incident information nodes or one of the two incident parity

nodes is zero, according to the sum-product decoding algorithm.

Let ε̃(k)
p and ε̃(k)

p,j denote the probabilities of a check-to-parity-node message and a

message from a check node inCGj to a parity node being zeros at thek-th iteration, respectively.

It is straightforward to show that

ε̃(k)
p =

a∑
j=1

ζ̃j ε̃
(k)
p,j (4.40)

= 1−
a∑

j=1

ζ̃j
(
1− ẽ

(k)
i

)j( 2∑
l=1

ϕj,l

(
1− ê

(k)
p,j

)l−1
)
,
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whereζ̃j is the fraction of edges connecting the check nodes inCGj to the parity nodes after the

shortening step.

According to the sum-product decoding algorithm, the information node message is

determined by the linear sum of the incident check node messages(excluding the one from the

check node to which this message is sent) , and the channel output message. Thus, a message

from an information node of degreej is zero if the(j − 1) incoming messages from the incident

check nodes are zeros and the associated bit is punctured. Therefore, the probability of an

information-to-check-node message being zero at thek-th iteration,ẽ(k)
i , can be expressed as

ẽ
(k)
i =

dl∑
j=2

λj ẽ
(k)
i,j (4.41)

=
dl∑

j=2

λjπ
(0)
i,j

(
ε̃
(k−1)
i

)j−1
,

whereẽ(k)
i,j is the probability of a message from an information node of degreej being zero at

thek-th iteration.

Similarly, the parity node message is determined by the linear sum of one of the inci-

dent check node messages, and the channel output message. Thus, the probability of a parity-to-

check message being zero at thek-th iteration can be expressed as

ẽ(k)
p =

2a∑
l=1

ν̃lẽ
(k)
p,l (4.42)

=
2a∑
l=1

ν̃lπ
(0)
p,l ψ̃

(k−1)
p,l ,

whereν̃l is the fraction of edges connecting parity nodes inPGl to the check nodes after the

shortening step, and̃e(k)
p,l and ψ̃(k−1)

p,l are the probabilities of a message from a parity node in

PGl to a check node at thek-th iteration and a message from a check node to a parity node in

PGl being zeros at the(k − 1)-th iteration, respectively. Analogous to the derivation ofψ
(k−1)
p,l ,

it can be shown that

ψ̃
(k−1)
p,l =



∑(l−1)/2
j=1 Ω̃(k−1)

l,j + ζ̃l,lε̃
(k−1)
p,l l is odd and l ≤ a∑l/2−1

j=1 Ω̃(k−1)
l,j + ζ̃l/2,l/2ε̃

(k−1)
p,l/2 + ζ̃l,lε̃

(k−1)
p,l l is even and l ≤ a∑(l−1)/2

j=l−a Ω̃(k−1)
l,j l is odd and l > a∑l/2−1

j=l−a Ω̃(k−1)
l,j + ζ̃l/2,l/2ε̃

(k−1)
p,l/2 l is even and l > a.

(4.43)
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whereΩ̃(k−1)
l,j is used to denote

(
ζ̃l,j ε̃

(k−1)
p,j + ζ̃l,l−j ε̃

(k−1)
p,l−j

)
, andζ̃l,j = ζ̃jPl

j=min(1,l−a) ζ̃j
is nor-

malized fraction of edges connecting the check nodes to the parity bits inPGl.

As we mentioned in the shortening step, parity nodes connected to a check node in

CGj must belong to one of the groupsPGl, l ∈ [j, j + a]. Thus, whether a message from a

parity node to a check node inCGj is zero depends on the messages from parity nodes inPGl,

which implies that

˜̂e(k)
p,j =

j+a∑
l=j

ν̃j,lẽ
(k)
p,l , (4.44)

whereν̃j,l = ν̃lPj+a
l=j ṽl

, l ∈ [1, 2a].

If none of the information and parity nodes connected to a check node is punctured,

the probabilistic characteristics of the check node messages can be approximated as Gaussian

[44], and they are uniquely determined by the updated mean values

m(k)
ui

= φ−1

(
1− E

[
tanh

(
u

(k)
i /2

)∣∣u(k)
i 6= 0

])
(4.45)

=
a∑

j=1

ρjφ
−1

(
1− E

[
tanh

(
v

(k)
i /2

)∣∣v(k)
i 6= 0

]j−1

·
2∑

l=1

ϕj,lE
[
tanh

(
v̂

(k)
p,j /2

)∣∣v̂(k)
p,j 6= 0

]l)
,

and

m(k)
up

= φ−1

(
1− E

[
tanh

(
u(k)

p /2
)∣∣u(k)

p 6= 0
])

(4.46)

=
a∑

j=1

ζ̃jφ
−1

(
1− E

[
tanh

(
v

(k)
i /2

)∣∣v(k)
i 6= 0

]j
·

2∑
l=1

ϕj,l · E
[
tanh

(
v̂

(k)
p,j /2

)∣∣v̂(k)
p,j 6= 0

]l−1
)
.

To calculateE
[
tanh

(
v

(k)
i /2

)∣∣v(k)
i 6= 0

]
andE

[
tanh

(
v̂

(k)
p,j /2

)∣∣v̂(k)
p,j 6= 0

]
, we need to track the

pdfs ofv(k)
i andv̂(k)

p,j as we did in the shortening step.

The pdf of an information node messageg(k)(vi) can be factored into four terms: The

first term B
(k)
1 , ẽ

(k)
i ∆0(vi) corresponds to a zero message; the second term

B
(k)
2 ,

∑dl
j=2 λjπ

(0)
i,j

∑j−1
l=1 χ̃

(k)
j−1,lN

(
lm

(k−1)
ui , 2lm(k−1)

ui

)
corresponds to the message obtained
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from the incident check nodes, given that the information bit is punctured; the third term

B
(k)
3 ,

∑dl
j=2 λj

(
1− π

(0)
i,j

)
N
(
mv0 , 2mv0

)
corresponds to the message from the channel, given

that the messages from the incident check node are zeros; and the last term

B
(k)
4 ,

∑dl
j=2 λj

(
1 − π

(0)
i,j

)∑j−1
l=1 χ̃

(k)
j−1,lN

(
lm

(k−1)
ui + mv0 , 2lm

(k−1)
ui + 2mv0

)
corresponds

to the message obtained from the combination of the messages from the incident check nodes

and the message obtained from the channel. Here,χ̃
(k)
j,l is analogous toχ(k)

j,l defined in the

shortening step. Therefore,g(k)(vi) =
∑4

i=1B
(k)
i and the continuous part of it is denoted by

g
(k)
c (vi) =

∑4
i=2B

(k)
i .

Similarly, the pdf of a message from a parity node to a check node inCGj , f (k)(v̂p,j),

can also be factored into the following four terms:

C
(k)
1 , ˜̂e(k)

p,j 40 (v̂p,j),

C
(k)
2 ,

j+a∑
l=j

ν̃j,lπ
(0)
p,l N

(
m(k−1)

up
, 2m(k−1)

up

)
,

C
(k)
3 ,

j+a∑
l=j

ν̃j,l

(
1− π

(0)
p,l

)
ψ̃

(k−1)
p,l N

(
mv0 , 2mv0

)
,

C
(k)
4 ,

j+a∑
l=j

ν̃j,l

(
1− π

(0)
p,l

)(
1− ψ̃

(k−1)
p,l

)
N
(
m(k−1)

up
+mv0 , 2m

(k−1)
up

+ 2mv0

)
.

Andf (k)(v̂p,j) =
∑4

i=1C
(k)
i , with the continuous part being denoted byf (k)

c (v̂p,j) =
∑4

i=2C
(k)
i .

4.4.2.2 Derivations of the Recursive Equations for the Updated Mean Values

With the expression ofg(k)
c (vi), we are ready to calculateE

[
tanh

(
v

(k)
i /2

)∣∣v(k)
i 6= 0

]
and denote it byL(k)

1 ,

L
(k)
1 =

∫
tanh

(
v

(k)
i /2

)
g(k)
c (vi)dvi (4.47)

= 1−
dl∑

j=2

(
λjπ

(0)
i,j

j−1∑
l=1

χ̃k−1
j−1,lφ(lm(k−1)

ui
)

+ λj(1− π
(0)
i,j )

j−1∑
l=0

χ̃
(k−1)
j−1,l φ(lm(k−1)

ui
+mv0)

)
.
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Next we substitutef (k)
c (v̂p,j) intoE

[
tanh

(
v̂

(k)
p,j /2

)∣∣v̂(k)
p,j 6= 0

]
and denote it byL(k)

2,j ,

L
(k)
2,j =

∫
tanh

(
v̂

(k)
p,j /2

)
f (k)

c (v̂p,j)dv̂p,j (4.48)

= 1−
j+a∑
n=j

ν̃j,n

(
π(0)

p,nφ
(
m(k−1)

up

)
+
(
1− π(0)

p,n

)
·
(
ψ̃(k−1)

p,n φ
(
mv0

)
+
(
1− ψ̃(k−1)

p,n

)
φ
(
mv0 +m(k−1)

up

)))
.

Then we substituteL(k)
1 andL(k)

2,j into Eq. (4.45) and Eq. (4.46) and get

m(k)
ui

=
a∑

j=1

ρjφ
−1

(
1−

(
L

(k)
1

1− ẽ
(k)
i

)j−1( 2∑
l=1

ϕj,l

( L
(k)
2,j

1− ˜̂e(k)
p,j

)l
))

(4.49)

and

m(k)
up

=
a∑

j=1

ζ̃jφ
−1

(
1−

(
L

(k)
1

1− ẽ
(k)
i

)j( 2∑
l=1

ϕj,l

( L
(k)
2,j

1− ˜̂e(k)
p,j

)l−1
))

(4.50)

Using the approach introduced in [54], we calculated the bit error probability at the

k-th iterationP (k)
e ,

P (k)
e =

∑dl
j=2 fjπ

(0)
i,j

(
ε̃
(k−1)
i

)j

2
(4.51)

+
dl∑

j=2

fjπ
(0)
i,j

j∑
l=1

χ̃
(k)
j,l Q


√
lm

(k−1)
ui

2


+

dl∑
j=2

fj

(
1− π

(0)
i,j

)(
ε̃
(k−1)
i

)j
Q

(√
mv0

2

)

+
dl∑

j=2

fj

(
1− π

(0)
i,j

) j∑
l=1

χ̃
(k)
j,l Q


√
lm

(k−1)
ui +mv0

2

 ,

with each term corresponding toB(k)
i , i ∈ [1, 4]. If the transmitted coded bits converge to the

correct coded bits, the last two terms in the BER expression will converge to0 ask →∞, i.e.,∑dl
j=2 fj

(
1− π

(0)
i,j

)(
ε̃
(k−1)
i

)j
Q

(√
mv0

2

)
→ 0

∑dl
j=2 fj

(
1− π

(0)
i,j

)∑j
l=1 χ̃

(k)
j,l Q

(√
l·m(k−1)

ui
+mv0

2

)
→ 0.

(4.52)
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This is true if and only ifm(k)
ui → ∞ and ε̃(k)

i → 0 ask → ∞ [54]. If these conditions are

satisfied, the first and second terms also converge to0, i.e., punctured bits converge to correct

coded bits, too.

For error-free decoding, it is required thatε̃(k)
i andê(k)

p,j converge to zero indicating that

χ̃
(k)
j,l converges to a distribution functionδj,l. Thus, the recursive equations of the updated mean

values are simplified as follows:

m(k)
ui

= F1

(
m(k−1)

ui
,m(k−1)

up

)
(4.53)

=
a∑

s=1

ρsφ
−1

(
1−

(
L

(k)
1

)s−1
( 2∑

l=1

ϕs,l

(
L

(k)
2,s

)l
))

,

and

m(k)
up

= F2

(
m(k−1)

ui
,m(k−1)

up

)
(4.54)

=
a∑

s=1

ζ̃sφ
−1

(
1−

(
L

(k)
1

)s
( 2∑

l=1

ϕs,l

(
L

(k)
2,s

)l−1
))

,

which for error-free decoding should grow to infinity ask goes to infinity.

4.4.2.3 Optimization of Puncturing Proportions
{
π

(0)
i,j

}dl

j=2
and

{
π

(0)
p,l

}2a

l=1

Again, we denote a fixed-point solution ofmui = F1

(
mui ,m

(k−1)
up

)
bymui

(
m

(k−1)
up

)
.

To avoid having any fixed-point solution other than(∞,∞), it is required that

m(k−1)
up

< F2

(
mui

(
m(k−1)

up

)
,m(k−1)

up

)
. (4.55)

Following a similar approach to that described in the shortening step, we define two functions of

m
(k−1)
ui ,m(k−1)

up ,
{
π

(0)
i,j

}dl

j=2
and

{
π

(0)
p,l

}2a

l=1
as follows:

r̃
(k)
i =

dl∑
j=2

λj

(
π

(0)
i,j φ

((
j − 1

)
m(k−1)

ui

)
+
(
1− π

(0)
i,j

)
φ
((
j − 1

)
m(k−1)

ui
+mv0

))
, (4.56)

and

r̃(k)
p,s =

s+a∑
n=s

ν̃s,n

(
π(0)

p,nφ
(
m(k−1)

up

)
+
(
1− π(0)

p,n

)
φ
(
mv0 +m(k−1)

up

))
. (4.57)
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Now we substituter(k)
i andr(k)

p,s into Eq. (4.53) and Eq. (4.54) to solve for the
{
π

(0)
i,j

}dl

j=2
and{

π
(0)
p,l

}2a

l=1
. And we have the following equivalent recursive equations forr

(k)
i andr(k)

p,s :

r̃
(k+1)
i =

dl∑
j=2

λπi
j hj

(
0, r̃(k)

i , R̃(k)
p

)
+

dl∑
j=2

λ
(1−πi)
j hj

(
mv0 , r̃

(k)
i , R̃(k)

p

)
(4.58)

and

r̃(k+1)
p,s = g

(
mv0 , r̃

(k)
i , R̃(k)

p

)
(4.59)

+
s+a∑
n=s

ν̃s,nπ
(0)
p,n

(
g
(
0, r̃(k)

i , R̃(k)
p

)
− g
(
mv0 , r̃

(k)
i , R̃(k)

p

))
,

whereR̃(k)
p is used to denote

{
r̃
(k)
p,1 , · · · , r̃

(k)
p,a

}
. Theh (·) andg (·) functions are expressed as

hj

(
m, r̃i, R̃p

)
= φ

(
m+(j − 1)

a∑
s=1

ρsφ
−1

(
1−
(
1− r̃i

)s−1
( 2∑

l=1

ϕs,l

(
1− r̃p,s

)l)))
, (4.60)

and

g
(
m, r̃i, R̃p

)
= φ

(
m+

a∑
t=1

ζ̃tφ
−1

(
1−

(
1− r̃i

)t( 2∑
l=1

ϕt,l

(
1− r̃p,t

)l−1
)))

. (4.61)

We denote the solution of the equation

r̃i =
dl∑

j=2

λjπ
(0)
i,j hj

(
0, r̃i, R̃p

)
+

dl∑
j=2

λj(1− π
(0)
i,j )hj

(
mv0 , r̃i, R̃p

)
(4.62)

by ri
(
R̃p

)
, for all rp,s ∈ (0, φ (mv0)], s ∈ [1, a]. To solve the equation forri, we use

π
(0)
i,j , j ∈ [2, dl], to weight the functionshj (·). Onceri in the equation above is obtained, the

π
(0)
i,j , j ∈ [2, dl], are fixed as the corresponding weights for the functionshj (·).

Now the updated mean inequality for a parity node can be expressed as

r̃p,s > g
(
mv0 , r̃i, R̃p

)
+

s+a∑
n=s

ν̃s,nπ
(0)
p,n

(
g
(
0, r̃i, R̃p

)
− g
(
mv0 , r̃i, R̃p

))
, (4.63)

for rp,s ∈ (0, φ (mv0)], s ∈ [1, a]. In summingν̃s,n, s ∈ [1, a], n ∈ [s, s+ a], we use

π
(0)
p,n, n ∈ [1, 2a], to weight them to satisfy the inequality above. Again, linear programming

is employed to get the solution forπ(0)
p,l , l ∈ [1, 2a]. Specifically,

∑2a
l=1 π

(0)
p,l α̃l are maximized to

approach the desired puncturing fractionp(0) subject to the constraintπ(0)
p,l ∈ [0, 1].
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Table 4.1: Distribution of expunged information bits for codes of rate 0.25 and 0.35 using rate
0.2 mother code

degreej 2 3 6 7 10 19 50
fj 0.1696 0.3092 0.0752 0.1267 0.1088 0.0722 0.1382

li,j(rate=0.25) 21 39 9 16 14 9 17
li,j(rate=0.35) 44 77 19 32 27 18 35

Table 4.2: Shortening proportion of parity bits for codes of rate 0.25 and 0.35 using rate 0.2
mother code

degreel 0 1 2 3 4 5 6

δ
(0)
l (rate=0.25) 1 0.4015 0.0726 0.0652 0.0296 0.0566 0.0656

δ
(0)
l (rate=0.35) 1 0.7838 0.0401 0.0351 0.0301 0.0251 0.1751

4.5 Numerical Results

We show the details of the shortening of the rate0.2, length-10000 mother code to

length9375 and length8750 in Tables 4.1 and 4.2, respectively. Table 4.1 shows the number

of expunged information bits of each node degree, which is proportional to the cardinality of

each group. Table 4.2 shows the shortening proportion of parity bits in groupPGl, l ∈ [0, 2a].

The results indicate that parity bits connected to the least number of transmitted information bits

are more likely to be expunged. The reason is that the messages are only exchanged among

the information bits and the parity bits through the mutually incident check node pair. The

reliabilities of the parity nodes connected to the least number of transmitted information bits can

hardly be improved by using the extrinsic information provided by the information bits after the

first few iterations in the message-passing decoding process.

The results in Table 4.3 and Table 4.4 are the puncturing proportions of the informa-

tion bits in groupIGj , π
(0)
i,j , j ∈ [2, dl], and the puncturing proportions of the parity bits in

groupPGl, π
(0)
p,l , l ∈ [1, 2a], required to produce rate0.25 and0.35 punctured IRA codes using

a rate0.2 mother code. Examining the results, we find that the parity bits are more likely to

be punctured than the information bits. We also notice that the puncturing fraction of the infor-

mation bits
∑dl

j=2 π
(0)
i,j fj hardly increases, even when the overall puncturing fraction increases

significantly. The increase of the overall puncturing fraction is mainly reflected in the punctur-
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Table 4.3: Puncturing proportion of information bits for codes of rate 0.25 and 0.35 using rate
0.2 mother code

degreej 2 3 6 7 10 19 50

π
(0)
i,j (rate=0.25) 0.0810 0.0383 0.0105 0.0326 0.0363 0.0418 0.0536

π
(0)
i,j (rate=0.35) 0.0892 0.0473 0.0908 0.0951 0.0755 0.0656 0.0583

Table 4.4: Puncturing proportion of parity bits for codes of rate 0.25 and 0.35 using rate 0.2
mother code

degreel 1 2 3 4 5 6

π
(0)
p,l (rate=0.25) 0.3949 0.0905 0.0989 0.0816 0.1664 0.1640

π
(0)
p,l (rate=0.35) 0.9955 0.3304 0.4225 0.4081 0.3686 0.3239

ing fraction of the parity bits
∑2a

l=1 π
(0)
p,l α̃l. For example, the puncturing fraction increases from

0.1997 to 0.4234 for rate0.2 and0.35 punctured codes, respectively. The puncturing fraction of

the information bits only increases from0.0449 to 0.0696, while the puncturing fraction of the

parity bits increases from0.1548 to 0.3538.

The results in Table 4.5 are obtained by averaging the maximal achievable rate (resp.,

instantaneous capacity) over a large number of independent channel realizations for an adap-

tively modulated V-BLAST type system. Block fading is assumed for each realization. The

superscriptosd denotes optimal successive detection. The results in Table 4.5 are also shown

in Fig. 4.4. It is obvious that the average sum rate of our adaptively modulated, IRA-encoded

system closely approaches the V-BLAST capacity using rate/power adaptation and optimal suc-

Table 4.5: Capacities and maximal achievable rates of a2 × 2 V-BLAST system using rate-
compatible punctured IRA codes

SNR Rp1 Rp2 Rp Cosd

0 0.5732 0.7844 1.3576 1.6982

2 0.7499 1.0524 1.8023 2.2688

4 1.0120 1.3224 2.3345 2.9287

6 1.2496 1.7365 3.0112 3.7092

8 1.5426 2.1825 3.7251 4.5846

10 1.9380 2.6361 4.5741 5.5513
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Figure 4.4: Sum rate of an adaptively modulated2 × 2 V-BLAST system with rate-compatible
punctured IRA codes

cessive detection.

In the BER performance simulation, parallel interference cancellation (PIC) followed

by MMSE filtering is adopted to mitigate the effects of error propagation, since in an actual sys-

tem the perfect feedback assumed in the optimal successive detection is not achieved. Here, we

fix the symbol length in each frame to be2500, and use a rate0.2 length-10, 000 IRA code as

the mother code, which has an optimal degree distribution obtained from DE. For each channel

realization, the codeword length is determined by the chosen constellation and the target code

rate. Then we follow the two-step shortening/puncturing process described in Section4.4 to get

the punctured IRA codes for different realizations. Specifically, in practice, we precalculate the

codeword lengths for all the possible combinations among a set of constellations and a set of

quantized code rates which are matched to the channel variations. Then we design the short-

ening and puncturing distributions for these codeword lengths and rates and store them at the

transmitter. When the transmitter receives the feedback of the quantized channel state informa-

tion, it chooses the shortening and puncturing distributions required to produce the code with

the appropriate length and rate. The curves in Fig. 4.5 show that the BER of our adaptively
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Figure 4.5: BER performance of an adaptively modulated2 × 2 V-BLAST system with rate-
compatible punctured IRA codes

modulated V-BLAST system using the rate-compatible punctured IRA codes achieves the target

BER,10−5.

4.6 Conclusion

A novel method using both shortening and puncturing of a mother IRA code is pro-

posed to generate a family of codes of different rates and block lengths, with the latter subject to

the constraint imposed by the fixed frame length (in symbols), an adaptive modulation alphabet

and a target code rate. Good performance of all the derived codes is guaranteed by the design

criterion. The key advantage of this method is that one underlying decoder structure for the

mother IRA code suffices to decode punctured IRA codes with different rates and block lengths,

which is desirable in scenarios using adaptive modulation.

Specifically, a two-step shortening/puncturing process is used to produce a code with

the target length and rate from the mother code. In the shortening step, the block length of the

mother code is adapted to satisfy the constraint imposed by the chosen modulation alphabet,

the length of the frame (in symbols) and the target code rate for each channel realization. The



76

mother code rate is (at least approximately) preserved by proportionally expunging information

bits and parity bits. Furthermore, the optimal degree distribution of the mother code is (at least

approximately) preserved by expunging the number of information bits of each node degree in

proportion to the cardinality of the corresponding group. Then Gaussian approximation analysis

is used to derive the shortening distribution for the parity bits and the puncturing distributions

for the information bits and the parity bits. Since the channel code rate is maximized for each

channel realization at a given SNR, the target puncturing fraction is accordingly maximized.

Therefore, the puncturing distribution is optimized to approach the target puncturing fraction

for a higher code rate while satisfying the convergence condition, which guarantees good per-

formance of the code. Finally, we apply our punctured IRA codes to an adaptively modulated

V-BLAST system to demonstrate the practicality of our approach.
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Appendix 4.A Derivation of ρj, ζj, νj and αj

For the(nb, kb) IRA mother code with repetition profile(f2, · · · , fdl
; a) and raterb,

the total number of check nodes isr = kb
Pdl

i=2 ifi

a , which also equals the total number of parity

bitsmp. Amongkb information bits, some are the data bits to be transmitted, and others are the

padded zeros to be expunged in the shortening step. First, we divide the information bits into

groupsGj , j ∈ [2, dl], according to their node degrees. Similarly, we divide the check nodes

into groupsCGj , j ∈ [1, a], according to the number of incident information nodes which are

associated with the transmitted information bits. We also divide the parity nodes into groups

PGj , j ∈ [1, 2a], according to the total number of connections through the two incident check

nodes to the information nodes associated with the transmitted bits.

Suppose thatns coded bits have to be expunged in the shortening step. It is obvi-

ous that the number of expunged information bits in groupGj is li,j = dnsrbfjc, so that the

left degree distribution is preserved (at least approximately), whereli =
∑dl

j=2 li,j is the to-

tal number of expunged information bits. The total number of expunged parity bits should be

lp = dns (1− rb)c in order to maintain the code rate. The total number of edges of the inter-

leaver isne = kb
∑dl

j=2 jfj , andne,i =
∑dl

j=2 jli,j edges are connected to the expunged bits.

If a uniform interleaver is assumed, the probability of each fixed interleaver will be
1

Nr
. Suppose that we connectne edges of a fixed interleaver to the check nodes in a fixed order,

say, fromc1 to cr. Forc1, the total number of connections is

N1,l =

 ne,i

a− l

 ne − ne,i

l

 , (4.64)

wherec1 is connected tol edges incident to the information nodes associated with the transmitted

bits anda− l edges incident to the information nodes associated with the expunged bits.

If we continue the process, it is straightforward to show that the total number of com-

binations of0 ≤ l ≤ 2a edges connected to(c1, c2) is

N2,l =
min(l,a)∑

k=max(0,l−a)

 ne,i

a− k

 ne − ne,i

k

 ne,i − a+ k

a− l + k

 ne − ne,i − k

l − k

 ,

(4.65)

wherec1 is connected tok edges incident to the information nodes associated with the transmit-

ted bits anda − k edges incident to the information nodes associated with the expunged bits,
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while c2 is connected tol− k edges incident to the information nodes associated with the trans-

mitted bits anda− l + k edges incident to the information nodes associated with the expunged

bits.

Generalizing the results above, we get the total number of connections for ther check

nodes

Nr =
∑
k1

· · ·
∑
kr︸ ︷︷ ︸Pr

i=1 ki=ne−ne,i,ki∈[0,a]

 ne,i

a− k1

 ne − ne,i

k1

 · · · (4.66)

 ne,i − (r − 1)a+
∑r−1

i=1 ki

a− kr

 ne − ne,i −
∑r−1

i=1 ki

kr

 ,

wherecm is connected tokm edges incident to the information nodes associated with the trans-

mitted bits anda − km edges incident to the information nodes associated with the expunged

bits,m ∈ [1, r].

For thei-th interleaver, we count the number of edges connecting check nodes inCGj

to the information nodes associated with the transmitted bits,n
(i)
I,j , and the number of edges con-

necting check nodes inCGj to the parity nodes,n(i)
P,j , for i = 1, · · · , Nr and

j = 1, · · · , a. Note that the total number of edges connecting check nodes and parity nodes

is twice the number of parity bits minus one, because the last parity bit only connects to one

check node. In Section 4.4,ρj is defined as the fraction of edges connecting information nodes

to the check nodes inCGj , andζj is defined as the fraction of edges connecting parity nodes to

the check nodes inCGj in the shortening step, respectively. Hence,ρj andζj are expressed as

ρj = 1
Nr(ne−ne,pi)

∑Nr
i=1 n

(i)
I,j andζj = 1

Nr(2mp−1)

∑Nr
i=1 n

(i)
P,j .

In Section 4.4,αj is defined as the fraction of parity nodes inPGj in the shortening

step, andνj is defined as the fraction of edges connecting check nodes to the parity nodes in

PGj . Thus, for thei-th interleaver, we count the number of edges connecting parity nodes in

PGj to the check nodes,p(i)
e,j , for i = 1, · · · , Nr andj = 1, · · · , 2a. At the same time, we get

the number of parity bits inPGj , that isp(i)
n,j , j = 0, · · · , 2a. Hence,νj andαj are expressed as

νj = 1
Nr(2mp−1)

∑Nr
i=1 p

(i)
e,j andαj = 1

Nrmp

∑Nr
i=1 p

(i)
n,j , for j = 0, · · · , 2a.



79

1 a1 a 1 a

solid line edges connected to transmitted bits

dotted line edges connected to expunged bits

cpi−1

ci

cpi

pi pi+1

ci+1ci−1

Figure 4.6: Grouping check nodes and parity nodes

Appendix 4.B Derivation of ψ(k−1)
p,l and Proof of ê(k)

p,j = ε
(k)
p,j

4.B.1 Derivation ofψ(k−1)
p,l

In sub-subsection 4.4.2.1, we useψ(k−1)
p,l andε(k−1)

p,j to denote the probabilities of a

message from a check node to a parity node inPGl and a message from a check node inCGj

to a parity node being zero at the(k − 1)-th iteration, respectively.

In Figure 4.6, each check node connects toa information nodes, where the solid-line-

edge is incident to an information node associated with a transmitted bit and the dotted-line-edge

is incident to an information node associated to an expunged bit. Thus, each parity node connects

to at most2a information nodes which are associated with transmitted bits through a check node

pair.

For example, ifci−1 belongs toCGj andci belongs toCGl−j , thenpi belongs toPGl.

It is obvious thatψ(k−1)
p,l is a linear combination ofε(k−1)

p,j andε(k−1)
p,l−j , and the linear parameters

depend on the fractions of the edges connecting the check nodes inCGj andCGl−j to the parity

bits inPGl. Note thatj andl − j have to satisfyj ∈ [1, a] and(l − j) ∈ [1, a].

If we average all the possible combinations ofj andl − j, we get

ψ
(k−1)
p,l =



∑(l−1)/2
j=1 Ω(k−1)

l,j + ζl,lε
(k−1)
p,l l is odd and l ≤ a∑l/2−1

j=1 Ω(k−1)
l,j + ζl/2,l/2ε

(k−1)
p,l/2 + ζl,lε

(k−1)
p,l l is even and l ≤ a∑(l−1)/2

j=l−a Ω(k−1)
l,j l is odd and l > a∑l/2−1

j=l−a Ω(k−1)
l,j + ζl/2,l/2ε

(k−1)
p,l/2 l is even and l > a.

(4.67)



80

where we useΩ(k−1)
l,j to denote

(
ζl,jε

(k−1)
p,j + ζl,l−jε

(k−1)
p,l−j

)
, andζl,j = ζjPl

j=min(1,l−a) ζj
is nor-

malized fraction of edges connecting the check nodes to the parity bits inPGl.

4.B.2 Proof of ê(k)
p,j = ε

(k)
p,j

In sub-subsection 4.4.2.1, we show that the probability of a message from a check

node inCGj to a parity bit being zero at thek-th iteration

ε
(k)
p,j =

j+a∑
l=j

νj,le
(k)
p,l ,

wheree(k)
p,l is the probability of a message from a parity bit inPGl to a check node being zero

at thek-th iteration, andνj,l is the normalized fraction of edges connecting the parity bits to the

check nodes inCGj .

We useê(k)
p,j to denote the probability of a message from a parity bit to a check node

in CGj being zero at thek-th iteration. Since a parity bit incident to a check node inCGj must

belong to one of the groupPGl, l ∈ [j, j + a], therefore

ê
(k)
p,j =

j+a∑
l=j

νj,le
(k)
p,l

= ε
(k)
p,j .
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Appendix 4.C Notation List

• IGj : a group consisting of information nodes of degreej ∈ [2, dl];

• dl: maximum degree of information nodes;

• CGj : a group consisting of check nodes connected toj ∈ [1, a] information nodes which

are associated with the transmitted bits;

• PGl: a group consisting of parity nodes which connect to check node pairs incident to

l ∈ [0, 2a] information nodes associated with the transmitted bits;

• ρj : the fraction of edges connecting the check nodes inCGj to the information nodes;

• ζj : the fraction of edges connecting the check nodes inCGj to the parity nodes;

• νl: the fraction of edges connecting the parity nodes inPGl;

• αl: the proportion of parity nodes inPGl;

• δ
(0)
l : the puncturing proportion of parity nodes inPGl;

• g(k)(vi): the pdf of an information-to-check-node message at thek-th iteration;

• m
(k)
ui : the mean value of a check-to-information-node message;

• m
(k)
up : the mean value of a check-to-parity-node message;

• f (k)(v̂p,j): the pdf of the message from a parity node to a check node in groupCGj at the

k-th iteration;

• ε
(k)
i : the probability of a check-to-information-node message being zero at thek-th itera-

tion;

• ε
(k)
p : the probability of a check-to-parity-node message being zero at thek-th iteration;

• ε
(k)
p,j : the probability of a message from a check node inCGj to a parity node being zero

at thek-th iteration;

• e
(k)
p : the probability of a parity-to-check-node message being zero at thek-th iteration;
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• e
(k)
p,l : the probability of a message from a parity node inPGl to a check node being zero

at thek-th iteration;

• ê
(k)
p,j : the probability of a message from a parity node to a check node inCGj being zero

at thek-th iteration;

• ψ
(k)
p,l : the probability of a message from a check node to a parity node inPGl being zero

at thek-th iteration;

• ζ̃j : the fraction of edges connecting the check nodes inCGj to the parity nodes after the

shortening step;

• ν̃l: the fraction of edges connecting the parity nodes inPGl after the shortening step;

• α̃l: the proportion of parity nodes inPGl after the shortening step;

• π
(0)
i,j : the puncturing proportion of information bits inIGj ;

• π
(0)
p,j : the puncturing proportion of parity bits inPGj ;

• ε̃
(k)
i : the probability of a check-to-information-node message being zero in thek-th itera-

tion after the shortening step;

• ε̃
(k)
p : the probability of a check-to-parity-node message being zero at thek-th iteration

after the shortening step;

• ε̃
(k)
p,j : the probability of a message from a check node inCGj to a parity node being zero

at thek-th iteration after the shortening step;

• ẽ
(k)
p : the probability of a parity-to-check-node message being zero at thek-th iteration

after the shortening step;

• ẽ
(k)
p,l : the probability of a message from a parity node inPGl to a check node being zero

at thek-th iteration after the shortening step;

• ˜̂e(k)
p,j : the probability of a message from a parity node to a check node inCGj being zero

at thek-th iteration after the shortening step;

• ψ̃
(k)
p,l : the probability of a message from a check node to a parity node inPGl being zero

at thek-th iteration after the shortening step.



Chapter 5

Conclusion

In this dissertation, we investigated different space-time processing schemes using

multiple antennas at both the transmitter and the receiver. Multiple antennas were employed

to achieve diversity gain, reduce multiple access interference, or significantly increase spectral

efficiency, depending on the specific scheme.

We first examined a MC-DS-CDMA system employing multiple antennas at both the

mobile and the base station. Assuming perfect channel state information at the transmitter,

maximal ratio transmission was used to achieve the diversity for combating fading. The receive

antenna array was assumed to be correlated, and adaptive beamforming reception was used to

achieve the maximum received SINR for the desired user, optimally in terms of joint fading

reduction and MAI suppression. The conditional SINR was analytically derived and the average

BER was investigated via simulation. By varying the number of transmit antennas, receive

antennas and subcarriers, we found a tradeoff between obtaining diversity gain against fading

and MAI suppression. Considering the intensive computation involved in optimizing SINR, we

designed the adaptive beamformer maximizing the received SNR instead of SINR. To validate

this simplification, we compared the performance obtained by using the two criteria in different

scenarios and conjectured scenarios to which this simplification was appropriate.

Next, we designed a per-antenna-coded V-BLAST type system with adaptive modula-

tion and powerful channel codes, specifically, LDPC codes, to approach the V-BLAST capacity

with rate and/or power adaptations. The data stream corresponding to each transmit antenna

was independently encoded and mapped to an M-ary QAM symbol. The received signal was

the superposition of the signals from all the transmit antennas and the noise. Optimal succes-
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sive detection (OSD) was used to detect individual signals, followed by LDPC decoding. The

constellation size of each transmission was selected according to the channel state, i.e., the in-

stantaneous capacity based on OSD. Then the density evolution was used to design the LDPC

code with the maximal achievable rate for each antenna in each channel realization. Finally,

we calculated the average sum rate of this adaptively modulated LDPC-encoded V-BLAST type

system by averaging the instantaneous sum rate over a large number of channel realizations.

Comparing the average sum rate to the ergodic capacity, we demonstrated that the proposed sys-

tem is a practical implementation to approach the V-BLAST capacity with rate and/or power

adaptations. For systems with delay constraints, outage capacity instead of ergodic capacity is

the appropriate theoretical measure. Using the methodology introduced above, we also designed

LDPC codes to approach the outage capacity of a2× 2 V-BLAST system for a specified outage

probability.

In the coded-V-BLAST scheme, the optimally designed LDPC codes may have distinct

degree distributions, meaning that distinct parity check matrices and Tanner graph structures may

be needed, leading to significant implementation complexity for encoding and decoding. To al-

leviate this problem, we used rate-compatible punctured LDPC codes instead of the individually

designed optimal LDPC codes. The code with the lowest rate was chosen as the mother code and

all the other higher rate codes were obtained by puncturing the mother code. Linear program-

ming was used to derive the puncturing distributions of the variable nodes so that the optimal

puncturing fraction, determined by the relation between the mother code rate and the optimal

code rate for a given channel realization, was approached.

We simulated the BER performance for the designed system using optimal LDPC

codes as well as punctured LDPC codes. Since the assumption of perfect feedback in OSD does

not hold in a real system, error propagation can significantly degrade the system performance.

Decoding delay is another drawback of the OSD algorithm in a real setting. Thus, we chose PIC

followed by MMSE filtering to suppress the interference. Simulation results showed that the

BERs of both systems using the optimal LDPC codes and punctured LDPC codes are very close

to the target BER.

We explored the possibility of designing rate-compatible punctured codes for a practi-

cal system with physical constraints, such as fixed symbol frame length. Since the constellation

size and channel code rate have to be adapted to match the channel state, the lengths of the trans-

mitted frames measured in bits can be different. Thus, the parity check matrices for encoding
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and decoding the punctured codes are different, which makes using punctured codes from one

mother code highly impractical. However, irregular repeat accumulate (IRA) codes, make it pos-

sible to design punctured codes of different rates and different block lengths from one underlying

mother code. In IRA codes, the information nodes and parity nodes are explicitly designated.

Exploiting this property, we proposed a two-step shortening/puncturing process that makes it

possible to get all the necessary rate-compatible punctured IRA codes of different lengths from

a single mother code.

First we expunged the information bits and parity bits proportionally so that the code

rate was (at least approximately) preserved and the length of the shortened code satisfies the

constraint imposed by the target modulation alphabet, code rate and frame length (in symbols)

for each channel realization. Specifically, we expunged the information bits of each degree in

proportion to the respective cardinality to (at least approximately) maintain the optimal informa-

tion node degree distribution. Then, we used Gaussian approximation (GA) analysis to obtain

the shortening distribution of the parity bits to approach the desired shortening fraction while

satisfying the convergence condition. The resulting distributions showed that it is preferable to

expunge parity bits connected to the least number of information nodes which are associated

with the transmitted bits.

After obtaining the shortened mother code, we once again used GA analysis to derive

the optimal puncturing distributions of the information bits and the parity bits. Examining the

puncturing distributions, we found that the puncturing proportion of the parity bits is much

greater than that of the information bits for a given puncturing fraction. We also noticed that the

puncturing fraction of the information bits hardly increased even when the overall puncturing

fraction increased significantly. Actually the increase of the overall puncturing fraction was

mainly reflected in that of the puncturing fraction of the parity bits.

Finally, we calculated the average sum rate of the adaptively modulated IRA-encoded

V-BLAST systems using rate-compatible punctured IRA codes, which was very close to the

ergodic capacity of the V-BLAST system using OSD. Performance simulation result confirmed

that the designed system achieved the target BER.
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