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Abstract It is well known that reconstruction problems, as the interdisciplinary subject,
have been studied in numerous contexts including statistical physics, information theory and
computational biology, to name a few. We consider a 2q-state symmetric model, with two
categories of q states in each category, and 3 transition probabilities: the probability to remain
in the same state, the probability to change states but remain in the same category, and the
probability to change categories. We construct a nonlinear second-order dynamical system
based on this model and show that the Kesten–Stigum reconstruction bound is not tight when
q ≥ 4.

Keywords Kesten–Stigum reconstruction bound · Markov random fields on trees ·
Distributional recursion · Dynamical system

Mathematics Subject Classification 60K35 · 82B26 · 82B20

1 Introduction

1.1 Preliminaries

We start with the following broadcasting process that stands as a discrete, irreducible, ape-
riodic, and reversible Markov chain. Let T = (V,E, ρ) be a tree with nodes V, edges E and
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root ρ ∈ V. Each edge of the tree acts as a channel on a finite characters set C, whose elements
are configurations on T, denoted by σ . We set a probability transition matrix M = (Mi j ) as
the noisy communication channel on each edge. The state of the root ρ, denoted by σρ , is
chosen according to an initial distribution π on C, and then propagated in the tree as follows:
for each vertex v having u as its parent , the spin at v is defined according to the probabilities

P(σv = j | σu = i) = Mi j

with i, j ∈ C. Roughly speaking, reconstruction is to answer the question that considering
all the symbols received at the vertices of the nth generation, does this configuration contain
non-vanishing information transmitted by the root, as n goes to ∞?

In this paper, we will restrict our attention to d-ary trees, i.e. the infinite rooted tree where
every vertex has exactly d offspring (every vertex has degree d +1 except the root which has
degree d). Let σ(n) denote the spins at distance n from the root and let σ i (n) denote σ(n)

conditioned on σρ = i . Consider a characters set C = C1 ∪ C2, consisting of two categories
C1 = {1, . . . , q} and C2 = {q + 1, . . . , 2q} with q ≥ 2, and the state of the root ρ is chosen
according to the uniform distribution on C. Moreover, a 2q×2q probability transition matrix
M = (Mi j )2q×2q is defined as follows:

Mi j =
⎧
⎨

⎩

p0 if i = j,
p1 if i �= j and i, j are in the same category,
p2 if i �= j and i, j are in different categories,

where p0, p1 and p2 are all nonnegative, such that p0 + (q − 1)p1 + qp2 = 1. It can
be verified that the eigenvalues of M are λ1 = p0 − p1, λ2 = p0 + (q − 1)p1 − qp2, and
λ3 = p0+(q−1)p1+qp2 = 1. Therefore, there are two candidates λ1 and λ2 for the second
largest eigenvalue in absolute value, say, λ, which plays a crucial role in the reconstruction
problem.

Definition 1 The reconstruction problem for the infinite tree T is solvable if for some
i, j ∈ C,

lim sup
n→∞

dTV (σ i (n), σ j (n)) > 0

where dTV is the total variation distance. When the lim sup is 0, we say the model has
non-reconstruction on T.

1.2 Background

Beyond the basic interest in determining the reconstruction threshold of a Markov random
field in probability, this problem is relevant to statistical physics, biology (Daskalakis et al.
[12],Mossel [33]), and information theory (Bhamidi et. al. [5], Evans et al. [15]), where one is
interested in computing the information capacity of the tree network. Most closely related to
the origins of this work, for spin systems in statistical physics, the threshold for reconstruction
is equivalent to the threshold for extremality of the infinite-volume Gibbs measure induced
by free-boundary conditions, see Georgh [17]. The reconstruction threshold also has an
important effect in the efficiency of the Glauber dynamics on trees and random graphs. It is
well known that when the model is reconstructible, the mixing time for the Glauber dynamics
on trees is n1+Ω(1), while it is slower than at higher temperature when the mixing time is
O(n log n). The corresponding bound is tight for the Ising model, namely, the mixing time is
O(n log n) when dλ2 < 1. In Martinelli et al. [30], this result is extended to the log Sobolev
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constant and it is also shown that for measures on trees, a super-linear decay of point-to-
set correlations implies an Ω(1) spectral gap for the Glauber dynamics with free boundary
conditions. A similar transition takes place in the colouring model as shown in Tetali et
al. [46]. Sharp bounds of this type are not known for the hardcore model, although it is
conjectured that the Glauber dynamics should again be O(n log n) in the non-reconstruction
regime.

For any channel M, it is well known that the reconstruction problem is connected closely
to λ, the second largest eigenvalue in absolute value of M. An important general bound was
obtained by Kesten and Stigum [21,22]: the reconstruction problem is solvable if d|λ|2 > 1
(λ may be a complex number), which is known as the Kesten–Stigum bound. On the other
hand, for larger noise (d|λ|2 < 1) one may wonder whether reconstruction is possible, by
exploiting the whole set of symbols received at the nth generation, through a clever use of
the correlations between the symbols received on the leaves. The answer depends on the
channel.

For the binary symmetric channel, it was shown in Bleher et al. [7] that the reconstruc-
tion problem is solvable if and only if dλ2 > 1. For all other channels, however, it would
be a little challenging to prove the non-reconstructibility. Mossel [32,34] showed that the
Kesten–Stigum bound is not the bound for reconstruction in the binary asymmetric model
with sufficiently large asymmetry or in the Potts model with sufficiently many characters,
which sheds the light on exploring the tightness of the Kesten–Stigum bound. The first exact
reconstruction threshold in roughly a decade, was obtained by Borgs et al. [8], in which the
authors displayed a delicate analysis of the moment recursion on a weighted version of the
magnetization, and thus achieved a breakthrough result.

A particularly important example is provided by q-state symmetric channels, i.e. Potts
models in the terminology of statistical mechanics, with the transition matrix

M =

⎛

⎜
⎜
⎜
⎝

p0 p1 · · · p1
p1 p0 · · · p1
...

...
. . .

...

p1 p1 · · · p0

⎞

⎟
⎟
⎟
⎠

and λ = p0 − p1. This model was completely investigated by Sly [43] by means of the
recursive structure of the tree, and more importantly, Sly showed that non-reconstruction is
equivalent to limn→∞ xn = 0, where xn = EP(σρ = 1 | σ 1(n)) − 1

q . Thus the key idea was
to analyze the recursion relationship between xn and xn+1. This work then went on to engage
the refined recursive equations of vector-valued distributions and concentration analyses, to
confirm much of the picture conjectured earlier by Mézard and Montanari [31].

Inspired by the popularK80model proposed byKimura [23], which distinguishes between
transitions and transversions, we analyze the case that transition matrix has two mutation
classes with q states in each class. Improved flexibility comes along with increased com-
plexity, which is mainly due to the fact that the additional class of mutation complicates
the discussion of the second largest eigenvalue in absolute value. However, by introduc-
ing additional auxiliary quantities yn and zn besides xn defined in Sect. 2.1, we succeed in
investigating the tightness of the Kesten–Stigum bound.

1.3 Applications

The reconstruction problemarises naturally inmanyfields including statistical physics,where
the Ising model and the Potts model are popular and have been studied extensively from
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620 W. Liu et al.

different angles, see [2,10,13,14,16,19,20,27–29,36,38,40,41,44,45,47,48]. In this article,
we focus on the reconstruction threshold on trees, which plays an important role in the
dynamic phase transitions in certain glassy systems subject to randomconstraints. For random
colorings on the Erdös–Rényi random graph with average connectivity d , Achlioptas and
Coja-Oghlan [1] proved that there is a phase transition, from the situation that most of the
mass is contained in one giant component, to the case that the space of solutions breaks into
exponentially many smaller clusters. This phase transition has been proved corresponding to
known bounds on the reconstruction threshold for proper colorings on trees, see e.g. Mossel
and Peres [35], Semerjian [39] and Sly [42].

In computational biology, the broadcast model is the main model for the evolution of base
pairs of DNA. Phylogenetic reconstruction is a major task of systematic biology, which is to
construct the ancestry tree of a collection of species, given the information of present species.
The corresponding reconstruction threshold answers the question whether the ancestral DNA
information can be reconstructed from a known phylogenetic tree. This threshold is also cru-
cial to determine the number of samples required, in the sense that, only enumerations of each
type of spin at the leaves are collected, regardless of their positions on the leaves. Interested
readers on Phylogenetic tree reconstruction are referred to Roch [37] and Daskalakis et al.
[12].

ThepopularK80model [23], has someobvious advantages over othermodels inPhylogeny
reconstruction, which is favored by both Akaike Information Criterion and Bayesian Infor-
mation Criterion (see Sect. 2.2.2 in Cadotte and Davies [9]). The K80 model distinguishes
between transitions (A ↔ G, i.e. from purine to purine, or C ↔ T , i.e. from pyrimidine to
pyrimidine) and transversions (from purine to pyrimidine or vice versa). Inspired by this and
related literatures, we analyze the case that the transition matrix has twomutation classes and
q states in each class. We believe that the q-state symmetric Potts model as a generalization
of 2-state symmetric Ising model, cannot fully represent the spirit of the classical 2-state
symmetric Ising model in terms of dichotomy, and this is one of the areas this work can
contribute to.

A tree is a connected undirected graph with no simple circuits. In other words, an undi-
rected graph is a tree if and only if there is a unique simple path between any two of its
vertices. The theory that the reconstruction threshold on trees corresponds to the reconstruc-
tion threshold on locally treelike graphs, is verified in Gerschenfeld and Montanari [18]. The
strong and increasing interest in the study of the properties of social networks, is a result of
the rapid and global emergence of online social networks and their meteoric adoption by mil-
lions of Internet users. When it comes to Socio–psychological mechanisms of generation and
dissemination of network, our model’s advantage in providing more flexibility to mimic psy-
chological behaviors is obvious. For example, our model and the construction threshold can
be used to effectively identify community effect in social networks and customer loyalty in
marketing research, especially for different firms or organizations who want to promote their
products or philosophies. In this sense, many possible extensions can be made on research
on graph structures with psychological factors involved, such as the work by Liu, Ying and
Shakkottai [24] on analyzing the formation and propagation of opinions across networks by
an Ising model based approach, the work by Bisconti et al. [6] on reconstruction of a real
world social network using the Potts model and Loopy Belief Propagation, etc.

1.4 Main Results and Proof Sketch

Because non-reconstruction happens at most d|λ|2 = 1, without loss of generality, it would
be convenient to presume 1/2 ≤ d|λ|2 ≤ 1 in the following context.
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Main Theorem Assume 0 < |λ2| ≤ |λ1|. When q ≥ 4, for every d the Kesten–Stigum bound
is not tight, i.e. the reconstruction is solvable for some λ1 even if dλ21 < 1.

The ideas and techniques used to prove the Main Theorem can be seen as the following.
One standard to classify reconstruction and nonreconstruction is to analyze the quantity
xn : the probability of giving a correct guess of the root given the spins σ(n) at distance
n from the root, minus the probability of guessing the root randomly which is 1

2q in this
case. Nonreconstruction means that the mutual information between the root and the spins
at distance n goes to 0 as n tends to infinity. It can be established that the nonreconstruction
is equivalent to

lim
n→∞ xn = 0.

Our analysis is similar to Borgs et al. [8], Chayes et al. [11] in the context of spin–glasses,
and Sly [43]. However, the two classes ofmutation complicates the discussion ofλ, the second
largest eigenvalue in absolute value of the transition matrix, which makes the problem much
more challenging. In this case, it is necessary to consider the corresponding quantities similar
to xn , viz. wrong guess but right group yn , and wrong guess and evenwrong group zn . In Sect.
2.2, we investigate the properties and relations between xn , yn and zn . By these preliminary
results, we focus on the analysis of xn and zn in the sequel.

In order to research the reconstruction, according to the Markov random field property,
we establish the distributional recursion and moment recursion, by analyzing the recursive
relation between the nth and the (n + 1)th generations’ structure of the tree. Furthermore,
we display that the interactions between spins become very weak, if they are sufficiently
far away from each other. Therefore, we can obtain a nonlinear dynamical system. If xn is
small, we are able to develop the concentration analysis and achieve the approximation to
the dynamical system:

⎧
⎨

⎩

xn+1 ≈ dλ21xn + (dλ21 − dλ22)zn + d(d−1)
2

(
q(2q−5)
q−1 λ41(xn + zn)2 − 4qλ21λ

2
2(xn + zn)zn

−4qλ42z
2
n

)

zn+1 ≈ dλ22zn − d(d−1)
2

(
q

q−1λ
4
1(xn + zn)2 − 4qλ42z

2
n

)
.

Finally, we investigate the stability of the system and then establish the threshold of q
relevant to the reconstruction. When q ≥ 4, even if dλ21 < 1 for some λ1, xn will not
converge to 0 and hence there is reconstruction beyond the Kesten–Stigum bound. More
detailed definitions and interpretations can be seen in the next section.

2 Second Order Recursion Relation

2.1 Notations

Let u1, . . . , ud be the children of ρ and Tv be the subtree of descendants of v ∈ T. Further-
more, if we set d(·, ·) as the graph-metric distance on T, denote the nth level of the tree by
Ln = {v ∈ V : d(ρ, v) = n} and then let σ j (n) be the spins on Ln ∩Tu j . For a configuration
A on Ln , define the posterior function

fn(i, A) = P(σρ = i | σ(n) = A). (2.1)
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622 W. Liu et al.

By the recursive nature of the tree for a configuration A on L(n + 1) ∩ Tu j , there is an
equivalent form

fn(i, A) = P(σu j = i | σ j (n + 1) = A).

Now for any 1 ≤ i ≤ 2q , define a collection of random variables

Xi (n) = fn(i, σ (n))

to describe the posterior probability of state i at the root given the random configuration σ(n)

of the leaves, and analogously,

X (1)(n) = fn(1, σ
1(n)), X (2)(n) = fn(2, σ

1(n)), X (3)(n) = fn(q + 1, σ 1(n)).

By symmetry, the collections { fn(i, σ 1(n)) : 2 ≤ i ≤ q} and { fn(i, σ 1(n)) : q+1 ≤ i ≤ 2q}
are exchangeable respectively; in addition, fn( j, σ i (n)) is distributed as

fn( j, σ
i (n))

D∼
⎧
⎨

⎩

X (1)(n) if i = j,
X (2)(n) if i �= j are in the same category,
X (3)(n) if i �= j are in different categories.

Finally, denote the first and second central moments of X (1)(n), X (2)(n) and X (3)(n), which
would be the principal quantities in our analysis, as

xn = E
(

X (1)(n) − 1

2q

)

, yn = E
(

X (2)(n) − 1

2q

)

, zn = E
(

X (3)(n) − 1

2q

)

,

and

un = E
(

X (1)(n) − 1

2q

)2

, vn = E
(

X (2)(n) − 1

2q

)2

, wn = E
(

X (3)(n) − 1

2q

)2

.

2.2 Preliminaries

For any i = 1, · · · , 2q and nonnegative n ∈ Z, it is concluded from the symmetric property
of the tree that

EXi (n) = 1

2q

is always true.

Lemma 1 For any n ∈ N ∪ {0}, we have

xn = E
2q∑

i=1

(

Xi (n) − 1

2q

)2

≥ 0, zn ≤ 0, and xn + zn ≥ 0.

Proof First, by Bayes’ rule, we have

xn + 1

2q
=

∑

A

fn(1, A)P(σ (n) = A | σρ = 1) = 2q
∑

A

P(σ (n) = A) f 2n (1, A)

= 2qEX2
1(n)

and

0 ≤ E
2q∑

i=1

(

Xi (n) − 1

2q

)2

=
2q∑

i=1

EX2
i (n) − 2

2q

2q∑

i=1

EXi (n) + 1

2q
= xn . (2.2)
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Next, we consider the covariancematrix of random variables
{
Xi (n) − 1

2q

}2q

1
and express

covariances in terms of xn , yn and zn . Similarly, we obtain

yn + 1

2q
= 2q

∑

A

P(σ (n) = A) fn(1, A) fn(2, A) = 2qEX1(n)X2(n),

so for any i1 < i2 in the same category, it is concluded from the symmetric property of the
tree that

E
(

Xi1(n) − 1

2q

)(

Xi2(n) − 1

2q

)

= E
(

X1 − 1

2q

)(

X2 − 1

2q

)

= yn
2q

.

Similarly, if i1 and i2 are from different categories, we have

E
(

Xi1(n) − 1

2q

)(

Xi2(n) − 1

2q

)

= zn
2q

.

Therefore, the covariance matrix is given by

ΣX (n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xn
2q

yn
2q · · · yn

2q
zn
2q

zn
2q · · · zn

2q
yn
2q

xn
2q · · · yn

2q
zn
2q

zn
2q · · · zn

2q

...
...

. . .
...

...
...

. . .
...

yn
2q

yn
2q · · · xn

2q
zn
2q

zn
2q · · · zn

2q
zn
2q

zn
2q · · · zn

2q
xn
2q

yn
2q · · · yn

2q
zn
2q

zn
2q · · · zn

2q
yn
2q

xn
2q · · · yn

2q

...
...

. . .
...

...
...

. . .
...

zn
2q

zn
2q · · · zn

2q
yn
2q

yn
2q · · · xn

2q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2q×2q

whose eigenvalues are 0, xn+(q−1)yn−qzn
2q and xn−yn

2q . It is well known that the covariance
matrix of a multivariate probability distribution is always positive semi-definite, which
implies that all eigenvalues are nonnegative, say, xn + (q −1)yn −qzn ≥ 0 and xn − yn ≥ 0.
It suffices to complete the proof, by these results and the fact of xn + (q − 1)yn + qzn = 0.

Lemma 2 For any n ∈ N ∪ {0}, the following hold:

(i) xn = un + (q − 1)vn + qwn;

(ii) E
(
X (1)(n) − 1

2q

) (
X (2)(n) − 1

2q

)
= vn + yn−xn

2q ;

(iii) E
(
X (1)(n) − 1

2q

) (
X (3)(n) − 1

2q

)
= wn + zn−xn

2q ;

(iv) E
(
X (2)(n) − 1

2q

) (
X (3)(n) − 1

2q

)
= − wn

q−1 − zn
2q(q−1) − yn

2q ;

(v) E
(
fn(q + 1, σ 1(n)) − 1

2q

) (
fn(2q, σ 1(n)) − 1

2q

)
= − wn

q−1 − zn
2(q−1) ;

(vi) E
(
fn(2, σ 1(n)) − 1

2q

) (
fn(q, σ 1(n)) − 1

2q

)
= − 2vn

q−2 − zn
2(q−1) + qwn

(q−1)(q−2) .

123
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Proof By the total probability formula and using Lemma 1, we can prove (i) as follows:

xn = E
2q∑

i=1

(

Xi (n) − 1

2q

)2

=
2q∑

j=1

E

⎛

⎝
2q∑

i=1

(

Xi (n) − 1

2q

)2

| σρ = j

⎞

⎠ P(σρ = j)

=
2q∑

j=1

1

2q

[

E
(

X (1)(n) − 1

2q

)2

+ (q − 1)E
(

X (2)(n) − 1

2q

)2

+ qE
(

X (3)(n) − 1

2q

)2
]

= E
(

X (1)(n) − 1

2q

)2

+ (q − 1)E
(

X (2)(n) − 1

2q

)2

+qE
(

X (3)(n) − 1

2q

)2

= un + (q − 1)vn + qwn .

Applying the same technique, we obtain

EX (1)(n)X (2)(n) =
∑

A

P(σρ = 1 | σ(n) = A)P(σρ = 2 | σ(n) = A)P(σ (n)

= A | σρ = 1
)

=
∑

A

[P(σρ = 1 | σ(n) = A)]2P(σ (n) = A | σρ = 2)

= E
(
X (2)(n)

)2

and hence (ii) follows:

E
(

X (1)(n) − 1

2q

)(

X (2)(n) − 1

2q

)

= E
(

X (2) − 1

2q

)2

+ yn − xn
2q

= vn + yn − xn
2q

.

Similarly, (iii) turns out to be true due to

EX (1)(n)X (3)(n) = E
(
X (3)(n)

)2
.

The statement (iv), (v) and (vi) can be handled in the same way, using the symmetry,

EX (2)(n)X (3)(n) =
∑

A

P(σρ = 2 | σ(n) = A)P(σρ = q + 1 | σ(n) = A)P (σ (n)

= A | σρ = 1
)

=
∑

A

P(σρ = 1 | σ(n) = A)P(σρ = 2 | σ(n) = A)P (σ (n)

= A | σρ = q + 1
)

=
∑

A

P(σρ = q + 1 | σ(n) = A)P(σρ = 2q | σ(n) = A)P (σ (n)
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= A | σρ = 1
)

= E fn(q + 1, σ 1(n)) fn(2q, σ 1(n)). (2.3)

To obtain EX (2)(n)X (3)(n), recall that

zn + 1

2q
= EX (3)(n)

= E fn(q + 1, σ 1(n))

2q∑

i=1

fn(i, σ
1(n))

= EX (1)(n)X (3)(n) + (q − 1)EX (2)(n)X (3)(n)

+E(X (3))2 + (q − 1)E fn(q + 1, σ 1(n)) fn(2q, σ 1(n))

= EX (1)(n)X (3)(n) + 2(q − 1)EX (2)(n)X (3)(n)

+E(X (3))2,

which implies that

E
(

X (2)(n) − 1

2q

)(

X (3)(n) − 1

2q

)

= − wn

q − 1
− zn

2q(q − 1)
− yn

2q
. (2.4)

Thus, (2.3) together with (2.4) gives

E
(

fn(q + 1, σ 1(n)) − 1

2q

)(

fn(2q, σ 1(n)) − 1

2q

)

= − wn

q − 1
− zn

2(q − 1)
.

As the preceding discussion, consider

yn + 1

2q
= E fn(2, σ

1(n))

2q∑

i=1

f (i, σ 1(n))

= 2E(X (2)(n))2 + (q − 2)E fn(2, σ
1(n)) fn(q, σ 1(n))

+qEX (2)(n)X (3)(n),

and thus

E
(

fn(2, σ
1(n)) − 1

2q

)(

fn(q, σ 1(n)) − 1

2q

)

= 1

q − 2

(

yn + 1

2q
− 2E(X (2)(n))2 − qEX (2)(n)X (3)(n)

)

− 2

2q

(

yn + 1

2q

)

+ 1

4q2

= − 2vn
q − 2

− zn
2(q − 1)

+ qwn

(q − 1)(q − 2)
.

2.3 Means and Covariances of Yi j

Define

Yi j (n) = fn
(
i, σ 1

j (n + 1)
)

,

and it is apparent that the random vectors (Yi j )
2q
i=1 are independent, for j = 1, . . . , d , by

the symmetries of the model. The central moments of Yi j would play a key role in further
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analysis, and therefore it is necessary to figure them out in the first place. For each 1 ≤ j ≤ d ,
we rely on the total probability formula to conclude:

(i) when i = 1,

E
(

Y1 j (n) − 1

2q

)

= p0E
(

X (1)(n) − 1

2q

)

+ (q − 1)p1E
(

X (2)(n) − 1

2q

)

+ qp2E
(

X (3)(n) − 1

2q

)

= λ1xn + (λ1 − λ2)zn;
(ii) for 2 ≤ i ≤ q ,

E
(

Yi j (n) − 1

2q

)

= p1E
(

X (1)(n) − 1

2q

)

+ [p0 + (q − 2)p1]E
(

X (2)(n) − 1

2q

)

+ qp2E
(

X (3)(n) − 1

2q

)

= − λ1

q − 1
xn − λ1 + (q − 1)λ2

q − 1
zn;

(iii) for q +1 ≤ i ≤ 2q , by means of the identity
∑2q

i=1 Yi j (n) ≡ 1, it follows immediately
that

E
(

Yi j (n) − 1

2q

)

= − 1

q

q∑

i=1

E
(

Yi j (n) − 1

2q

)

= λ2zn;

(iv) resembling the discussion of (i), (ii) and (iii), it is further concluded that when i = 1,

E
(

Y1 j (n) − 1

2q

)2

= 1 + λ2 − 2λ1
2q

xn + λ1un + (λ1 − λ2)wn;

(v) for 2 ≤ i ≤ q ,

E
(

Yi j (n) − 1

2q

)2

=
(

1

2q
+ λ2

2q
+ λ1

q(q − 1)

)

xn − λ1

q − 1
un − λ1 + (q − 1)λ2

q − 1
wn;

(vi) for q + 1 ≤ i ≤ 2q ,

E
(

Yi j (n) − 1

2q

)2

= 1 − λ2

2q
xn + λ2wn;

(vii) for 2 ≤ i ≤ q ,

E
(

Y1 j (n) − 1

2q

)(

Yi j (n) − 1

2q

)

= (q + 2)λ1 − λ2 − 1

2q(q − 1)
xn − zn

2(q − 1)

− λ1

q − 1
un − (q + 1)λ1 − λ2

q − 1
wn;
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(viii) for q + 1 ≤ i ≤ 2q ,

E
(

Y1 j (n) − 1

2q

)(

Yi j (n) − 1

2q

)

= − λ1

2q
xn + zn

2q
+ λ1wn;

(ix) for 1 < i1 < i2 ≤ q ,

E
(

Yi1 j (n) − 1

2q

)(

Yi2 j (n) − 1

2q

)

=
[

−2(q + 2)λ1 + (q − 2)λ2
2q(q − 1)(q − 2)

− 1

2q(q − 1)

]

xn − zn
2(q − 1)

+ 2λ1
(q − 1)(q − 2)

un + 2(q + 1)λ1 + (q − 2)λ2
(q − 1)(q − 2)

wn;

(x) for 1 < i1 ≤ q < i2 ≤ 2q ,

E
(

Yi1 j (n) − 1

2q

)(

Yi2 j (n) − 1

2q

)

= λ1

2q(q − 1)
xn + zn

2q
− λ1

q − 1
wn;

(xi) for q + 1 ≤ i1 < i2 ≤ 2q ,

E
(

Yi1 j (n) − 1

2q

)(

Yi2 j (n) − 1

2q

)

= λ2 − 1

2q(q − 1)
xn − zn

2(q − 1)
− λ2

q − 1
wn .

2.4 Distributional Recursion

The keymethod of this paper is to analyze the relation between X (1)(n), X (3)(n) and X (1)(n+
1), X (3)(n + 1) using the recursive structure of the tree. Take A = σ 1(n + 1) and then the
following relations follow from the Markov random field property:

X (1)(n + 1) = fn+1(1, σ
1(n + 1)) = Z1

∑2q
i=1 Zi

and

X (3)(n + 1) = fn+1(q + 1, σ 1(n + 1)) = Zq+1
∑2q

i=1 Zi

,

where

(A) for 1 ≤ i ≤ q ,

Zi = Zi (n) =
d∏

j=1

[

1 + 2q(p0 − p2)

(

Yi j − 1

2q

)

+ 2q(p1 − p2)
∑

1≤��=i≤q

(

Y�j − 1

2q

)
⎤

⎦

=
d∏

j=1

[

1 + 2q(p0 − p1)

(

Yi j − 1

2q

)
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− 2q(p1 − p2)
∑

q+1≤�≤2q

(

Y�j − 1

2q

)
⎤

⎦

=
d∏

j=1

[

1 + 2qλ1

(

Yi j − 1

2q

)

+ 2(λ1 − λ2)
∑

q+1≤�≤2q

(

Y�j − 1

2q

)
⎤

⎦ ,

(B) for q + 1 ≤ i ≤ 2q ,

Zi = Zi (n) =
d∏

j=1

[

1 + 2q(p0 − p2)

(

Yi j − 1

2q

)

+ 2q(p1 − p2)
∑

q+1≤��=i≤2q

(

Y�j − 1

2q

)
⎤

⎦

=
d∏

j=1

[

1 + 2q(p0 − p1)

(

Yi j − 1

2q

)

− 2q(p1 − p2)
∑

1≤�≤q

(

Y�j − 1

2q

)
⎤

⎦

=
d∏

j=1

[

1 + 2qλ1

(

Yi j − 1

2q

)

+ 2(λ1 − λ2)
∑

1≤�≤q

(

Y�j − 1

2q

)
⎤

⎦ .

To continue the proof, it is necessary to firstly reveal some identities concerning Zi (n).

Lemma 3 For any nonnegative n ∈ Z and 1 ≤ i ≤ 2q, we have

EZ1(n)Zi (n) = EZi (n)2,

and given any 2 ≤ i1 ≤ q < q + 1 ≤ i2 ≤ 2q, we have

EZi1(n)Zi2(n) = EZq+1(n)Z2q(n).

Proof When i = 1, the result is trivial. If 2 ≤ i ≤ 2q , for any configurations A =
(A1, . . . , Ad) on the (n + 1)th level, where A j denote the spins on Ln+1 ∩ Tu j ,we have

Zi (A) = 2q
P(σ (n + 1) = A)

∏d
j=1 P(σ j (n + 1) = A j )

P(σρ = i | σ(n + 1) = A).

123



The Tightness of the Kesten–Stigum Reconstruction Bound… 629

By the symmetry of the tree, we have

EZ1Zi = (2q)2
∑

A

(
P(σ (n + 1) = A)

∏d
j=1 P(σ j (n + 1) = A j )

)2

P(σρ = 1 | σ(n + 1) = A)

× P(σρ = i | σ(n + 1) = A)P(σ (n + 1) = A | σρ = 1)

= (2q)2
∑

A

(
P(σ (n + 1) = A)

∏d
j=1 P(σ j (n + 1) = A j )

)2

P2 (
σρ = 1 | σ(n + 1)

= A) × P(σ (n + 1) = A | σρ = i)

= (2q)2
∑

A

(
P(σ (n + 1) = A)

∏d
j=1 P(σ j (n + 1) = A j )

)2

P2 (
σρ = i | σ(n + 1)

= A) P(σ (n + 1) = A | σρ = 1)

= EZ2
i .

Similarly, given arbitrary 2 ≤ i1 ≤ q < i2 ≤ 2q ,

EZi1 Zi2 = (2q)2
∑

A

(
P(σ (n + 1) = A)

∏d
j=1 P(σ j (n + 1) = A j )

)2

P(σρ = 1 | σ(n + 1) = A)

× P(σρ = i1 | σ(n + 1) = A)P(σ (n + 1) = A | σρ = i2)

= (2q)2
∑

A

(
P(σ (n + 1) = A)

∏d
j=1 P(σ j (n + 1) = A j )

)2

P(σρ = q + 1 | σ(n + 1) = A)

× P(σρ = 2q | σ(n + 1) = A)P(σ (n + 1) = A | σρ = 1)

= EZq+1Z2q .

Next approximate the means and variances of monomials of Zi by expanding them using
Taylor series. The following relations hold, where the symbol Oq emphasizes that the corre-
sponding constant depends only on q .

(i) When i = 1,

EZ1 = 1 + d
[
2qλ21xn + 2q(λ21 − λ22)zn

]

+d(d − 1)

2

[
2qλ21xn + 2q(λ21 − λ22)zn

]2 + Oq(x
3
n );

(ii) For 2 ≤ i ≤ q ,

EZi = 1 + d

[

− 2qλ21

q − 1
xn −

(
2qλ21

q − 1
+ 2qλ22

)

zn

]

+d(d − 1)

2

[

− 2qλ21

q − 1
xn −

(
2qλ21

q − 1
+ 2qλ22

)

zn

]2

+ Oq(x
3
n );

(iii) For q + 1 ≤ i ≤ 2q ,

EZi = 1 + d(2qλ22zn) + d(d − 1)

2
(2qλ22zn)

2 + Oq(x
3
n ).
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Consider covariances of (Zi ). By Lemma 3, it is known that EZ1Zi = EZ2
i , therefore we

obtain the following results:

(a) when i = 1,

EZ2
1 = 1 + dΠ1 + d(d − 1)

2
Π2

1 + Oq(x
3
n ),

where

Π1 = E

⎡

⎣1 + 2qλ1

(

Y1 j − 1

2q

)

+ 2(λ1 − λ2)
∑

q+1≤�≤2q

(

Y�j − 1

2q

)
⎤

⎦

2

− 1

= 6qλ21xn + 6q(λ21 − λ22)zn + 4q2λ31

(

un − xn
2q

)

+12q2λ21(λ1 − λ2)

(

wn − xn
2q

)

;

(b) for 2 ≤ i ≤ q ,

EZ2
i = 1 + dΠ2 + d(d − 1)

2
Π2

2 + Oq(x
3
n ),

where

Π2 = E

⎡

⎣1 + 2qλ1

(

Yi j − 1

2q

)

+ 2(λ1 − λ2)
∑

q+1≤�≤2q

(

Y�j − 1

2q

)
⎤

⎦

2

− 1

= 2q(q − 3)

q − 1
λ21xn +

(
2q(q − 3)

q − 1
λ21 − 6qλ22

)

zn − 4q2

q − 1
λ31

(

un − xn
2q

)

−4q2
3λ1 + (q − 3)λ2

q − 1
λ21

(

wn − xn
2q

)

;

(c) for q + 1 ≤ i ≤ 2q ,

EZ2
i = 1 + dΠ3 + d(d − 1)

2
Π2

3 + Oq(x
3
n ),

where

Π3 = E

⎡

⎣1 + 2qλ1

(

Yi j − 1

2q

)

+ 2(λ2 − λ1)
∑

q+1≤�≤2q

(

Y�j − 1

2q

)
⎤

⎦

2

− 1

= 2qλ21xn + 2q(λ21 + λ22)zn + 4q2λ21λ2

(

wn − xn
2q

)

;

(d) for 2 ≤ i1 < i2 ≤ q ,

EZi1 Zi2 = EZ2Zq = 1 + dΠ4 + d(d − 1)

2
Π2

4 + Oq(x
3
n ),
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where

Π4 = E

⎡

⎣1 + 2qλ1

(

Y2 j − 1

2q

)

+ 2(λ1 − λ2)
∑

q+1≤�≤2q

(

Y�j − 1

2q

)
⎤

⎦

×
⎡

⎣1 + 2qλ1

(

Yq j − 1

2q

)

+ 2(λ1 − λ2)
∑

q+1≤�≤2q

(

Y�j − 1

2q

)
⎤

⎦ − 1

= − 6qλ21

q − 1
xn −

(
6qλ21

q − 1
+ 6qλ22

)

zn + 8q2λ31
(q − 1)(q − 2)

(

un − xn
2q

)

+4q2
6λ1 + (3q − 6)λ2
(q − 1)(q − 2)

λ21

(

wn − xn
2q

)

;

(e) for q + 1 ≤ i ≤ 2q ,

EZ2Zi = EZ2Zq+1 = 1 + dΠ5 + d(d − 1)

2
Π2

5 + Oq(x
3
n ),

where

Π5 = E

⎡

⎣1 + 2qλ1

(

Y2 j − 1

2q

)

+ 2(λ1 − λ2)
∑

q+1≤�≤2q

(

Y�j − 1

2q

)
⎤

⎦

×
⎡

⎣1 + 2qλ1

(

Y(q+1) j − 1

2q

)

+ 2(λ1 − λ2)
∑

1≤�≤q

(

Y�j − 1

2q

)
⎤

⎦ − 1

= − 2qλ21

q − 1
xn +

(

− 2qλ21

q − 1
+ 2qλ22

)

zn − 4q2

q − 1
λ21λ2

(

wn − xn
2q

)

.

2.5 Main Expansion of xn+1 and zn+1

In this section, we aim to figure out the second order recursive relation between xn+1 and
zn+1, by virtue of the following identity

a

s + r
= a

s
− ar

s2
+ r2

s2
a

s + r
. (2.5)

Specifically, taking a = Z1, s = 2q and r = ∑2q
i=1 Zi − 2q , (2.5) yields

xn+1 + 1

2q
= E

Z1
∑2q

i=1 Zi

= E
Z1

2q
− E

Z1(
∑2q

i=1 Zi − 2q)

(2q)2

+E
Z1

∑2q
i=1 Zi

(
∑2q

i=1 Zi − 2q)2

(2q)2
; (2.6)

zn+1 + 1

2q
= E

Zq+1
∑2q

i=1 Zi

= E
Zq+1

2q
− E

Zq+1(
∑2q

i=1 Zi − 2q)

(2q)2

+E
Zq+1

∑2q
i=1 Zi

(
∑2q

i=1 Zi − 2q)2

(2q)2
. (2.7)
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Finally, plugging the results of Sect. 2.4 into (2.6) and (2.7) and taking substitutions of
Xn = xn + zn and Zn = −zn , we obtain a two dimensional recursive formula of the linear
diagonal canonical form:

⎧
⎨

⎩

Xn+1 = dλ21Xn + d(d−1)
2

(
2q(q−3)
q−1 λ41X 2

n + 4qλ21λ
2
2XnZn

)
+ Rx + Rz + Vx

Zn+1 = dλ22Zn + d(d−1)
2

(
q

q−1λ
4
1X 2

n − 4qλ42Z2
n

)
− Rz + Vz

(2.8)

where

Rx = E

(
Z1

∑2q
i=1 Zi

− 1

2q

)
(
∑2q

i=1 Zi − 2q)2

(2q)2
,

Rz = E

(
Zq+1

∑2q
i=1 Zi

− 1

2q

)
(
∑2q

i=1 Zi − 2q)2

(2q)2
,

and

|Vx |, |Vz | ≤ CV x
2
n

(∣
∣
∣
∣
un
xn

− 1

2q

∣
∣
∣
∣ +

∣
∣
∣
∣
wn

xn
− 1

2q

∣
∣
∣
∣ + xn

)

with CV a constant depending on q only.

3 Proof of the Main Theorem

If the reconstruction problem is solvable, then σ(n) contains significant information on the
root variable. This may be expressed in several equivalent ways (Mossel [32], Proposition
14).

Lemma 4 The nonreconstruction is equivalent to

lim
n→∞ xn = 0.

In order to study the stability of dynamical system (2.8), we expect Rx , Rz and Vx , Vz
to be just small perturbations, for example, of the order o(x2n ). It is known that fixed finite
different vertices far away from the root can affect the root little, based onwhich, it is possible
to explore further the concentration analysis. We can verify that Z1

∑2q
i=1 Zi

and Zq+1
∑2q

i=1 Zi
are both

sufficiently around 1
2q , and thus are able to bound Rx and Rz in (2.8).

Lemma 5 Assume min{|λ1|, |λ2|} > 
, for some 
 > 0. For any ε > 0, there exist N =
N (q, ε) and δ = δ(q, ε, 
) > 0, such that if n ≥ N and xn ≤ δ, then

|Rx | ≤ εx2n and |Rz | ≤ εx2n .

Proof For any η > 0 and 1 ≤ i ≤ 2q , applying Cauchy-Schwartz inequality,
∣
∣
∣
∣
∣
E

Z1
∑2q

i=1 Zi

(
∑2q

i=1 Zi − 2q)2

(2q)2
− E

1

2q

(
∑2q

i=1 Zi − 2q)2

(2q)2

∣
∣
∣
∣
∣

≤ E
(
∑2q

i=1 Zi − 2q)2

(2q)2

∣
∣
∣
∣
∣

Z1
∑2q

i=1 Zi

− 1

2q

∣
∣
∣
∣
∣
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≤ ηE

(
(
∑2q

i=1 Zi − 2q)2

(2q)2
;
∣
∣
∣
∣
∣

Z1
∑2q

i=1 Zi

− 1

2q

∣
∣
∣
∣
∣
≤ η

)

+E

(
(
∑2q

i=1 Zi − 2q)2

(2q)2
I

(∣
∣
∣
∣
∣

Z1
∑2q

i=1 Zi

− 1

2q

∣
∣
∣
∣
∣
> η

))

≤ ηE

(
(
∑2q

i=1 Zi − 2q)2

(2q)2

)

+
(

E
(
∑2q

i=1 Zi − 2q)4

(2q)4

)1/2 (

P

(∣
∣
∣
∣
∣

Z1
∑2q

i=1 Zi

− 1

2q

∣
∣
∣
∣
∣
> η

))1/2

.

We can derive from the calculation for distributional recursion that

E

(
(
∑2q

i=1 Zi − 2q)2

(2q)2

)

≤ C1(q)x2n and E
(
∑2q

i=1 Zi − 2q)4

(2q)4
≤ C2(q).

Similar to Lemma 2.11 of Sly [43] and Lemma 4.3 of Liu and Ning [25], there exist C3 =
C3(q, η, 
) and N = N (q, η), such that when n ≥ N ,

P

(∣
∣
∣
∣
∣

Z1
∑2q

i=1 Zi

− 1

2q

∣
∣
∣
∣
∣
> η

)

≤ C3x
6
n .

Thus there exists C4 = C4(q, η, 
), such that

|Rx | =
∣
∣
∣
∣
∣
E

(
Z1

∑2q
i=1 Zi

− 1

2q

)
(
∑2q

i=1 Zi − 2q)2

(2q)2

∣
∣
∣
∣
∣
≤ ηC1x

2
n .

Finally, it suffices to takeC1η = ε/2, and then if xn ≤ δ, we have Rx ≤ εx2n . Similar analysis
gives Rz ≤ εx2n .

Prior to establishing the concentration results involving Vx and Vz , we need to firstly show
that the value of xn does not drop too fast to be non-reconstruction.

Lemma 6 For any 
 > 0, there exists a constant γ = γ (q, 
) > 0, such that

xn+1 ≥ γ xn,

for all n, if min{|λ1|, |λ2|} > 
.

Proof Similarly to (2.1), for a configuration A onTu1∩L(n+1), define the posterior function

gn+1(1, A) = P(σρ = 1 | σ1(n + 1) = A)

= 1

2q
+ p0

(

fn(1, A) − 1

2q

)

+p1

q∑

i=2

(

fn(i, A) − 1

2q

)

+p2

2q∑

i=q+1

(

fn(i, A) − 1

2q

)
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= 1

2q
+ λ1

(

fn(1, A) − 1

2q

)

+λ1 − λ2

q

2q∑

i=q+1

(

fn(i, A) − 1

2q

)

and then

Egn+1(1, σ
1
1 (n + 1)) = 1

2q
+ λ1E

(

Y11(n) − 1

2q

)

+λ1 − λ2

q
qE

(

Y(q+1)1(n) − 1

2q

)

= 1

2q
+ λ21xn + (λ21 − λ22)zn .

The estimator that chooses a statewith probability fn+1(i, σ1(n+1)) correctly reconstructs
the rootwith probability 1

2q +λ21xn+(λ21−λ22)zn . Apparently this probabilitymust be less than
the maximum-likelihood estimator (Mézard and Montanari [31]). Therefore, the following
inequalities hold:

1

2q
+ λ21xn + (λ21 − λ22)zn ≤ E max

1≤i≤2q
Xi (n + 1)

≤ 1

2q
+

(

Emax
i

(

Xi (n + 1) − 1

2q

)2
)1/2

≤ 1

2q
+

⎛

⎝E
2q∑

i=1

(

Xi (n + 1) − 1

2q

)2
⎞

⎠

1/2

= 1

2q
+ x1/2n+1.

On one hand, if λ21 ≥ λ22, then it is concluded from xn + zn ≥ 0 in Lemma 2.2 that

λ22xn ≤ λ22xn + (
λ21 − λ22

)
(xn + zn) = λ21xn + (

λ21 − λ22
)
zn ≤ x1/2n+1.

On the other hand, if λ21 ≤ λ22 then λ21xn ≤ x1/2n+1, since zn ≤ 0. To sum up, we always have

min{λ21, λ22}xn ≤ x1/2n+1.

Next choose ε = 
2. It can be concluded from (2.8), Lemma 5, as well as the inequalities
∣
∣
∣
∣
un
xn

− 1

2q

∣
∣
∣
∣ ≤ 1,

∣
∣
∣
∣
wn

xn
− 1

2q

∣
∣
∣
∣ ≤ 1, (3.1)

that there exists a δ = δ(q, ε) > 0, such that, when xn < δ, one has

xn+1 ≥ (d min{λ21, λ22} − ε)xn ≥ (d − 1)
2xn ≥ 
2xn .

On the contrary, if xn ≥ δ, one has xn+1 ≥ (min{λ21, λ22}xn)2 ≥ 
4δxn . Finally, taking
γ = min{
2, 
4δ} completes the proof.

The following lemma improves the result of Lemma 1 by establishing the strict positivity
of the sum of xn and zn .
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Lemma 7 Assume λ1 �= 0. For any nonnegative n ∈ Z, we always have

xn + zn > 0.

Proof In Lemma 2.2 we have proved that xn + zn ≥ 0, so here it suffices to exclude the
equality. Now let us apply reductio ad absurdum and assume xn + zn = 0 for some n ∈ N.
It follows that for i �= j in the same configuration set, one has

E(Xi (n) − X j (n))2 = 2EX2
i (n) − 2EXi (n)X j (n) = xn + zn

q − 1
= 0.

Therefore, X1(n) = X2(n) = · · · = Xq(n) and Xq+1(n) = Xq+2(n) = · · · = X2q(n) a.s.,
that is, for any configuration combination A on the nth level, we always have

P(σρ = 1 | σ(n) = A) = P(σρ = 2 | σ(n) = A).

Denote the leftmost vertex on the nth level by vn(1), and it follows

P(σρ = 1 | σvn(1) = 1) = P(σρ = 2 | σvn(1) = 1).

Define the transition matrices at distance s by

Us = Ms
1,1, Vs = Ms

1,2, and Ws = Ms
1,q+1,

and then it is convenient to figure out the iterative formulae for them
⎧
⎨

⎩

Us = p0Us−1 + (q − 1)p1Vs−1 + qp2Ws−1

Vs = p1Us−1 + [p0 + (q − 2)p1]Vs−1 + qp2Ws−1

Ws = p2Us−1 + (q − 1)p2Vs−1 + [p0 + (q − 1)p1]Ws−1.

To evaluate this three order recursive system, starting with the difference of the first two
equation

Us − Vs = λ1(Us−1 − Vs−1),

and then in light of the initial conditions U0 = 1 and V0 = W0 = 0, it follows that

Us − Vs = λs1. (3.2)

Finally, from the reversible property of the channel, we can conclude that

λn1 = Un − Vn = P(σρ = 1 | σvn(1) = 1) − P(σρ = 2 | σvn(1) = 1) = 0,

i.e., λ1 = 0, a contradiction to the assumption of λ1 �= 0.

The following result provides the crucial concentration estimates of un − xn
2q andwn − xn

2q ,
when xn is small.

Lemma 8 Assume |λ2| > 
, and |λ1| = |λ2| or |λ1|/|λ2| ≥ κ for some κ > 1. For any
ε > 0, there exist N = N (q, κ, ε) and δ = δ(q, κ, 
, ε) > 0, such that if n ≥ N and xn ≤ δ,
one has

∣
∣
∣
∣
un
xn

− 1

2q

∣
∣
∣
∣ < ε and

∣
∣
∣
∣
wn

xn
− 1

2q

∣
∣
∣
∣ < ε.
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Proof Applying the identity (2.5), we have

un+1 = E

(
Z1 − 1

2q

∑2q
i=1 Zi

)2

(∑2q
i=1 Zi

)2

= 1

4q2
E

⎛

⎝Z1 − 1

2q

2q∑

i=1

Zi

⎞

⎠

2

− 1

16q4
E

⎛

⎝Z1 − 1

2q

2q∑

i=1

Zi

⎞

⎠

2
⎛

⎜
⎝

⎛

⎝
2q∑

i=1

Zi

⎞

⎠

2

− 4q2

⎞

⎟
⎠

+ 1

16q4
E

(
Z1 − 1

2q

∑2q
i=1 Zi

)2

(∑2q
i=1 Zi

)2

⎛

⎜
⎝

⎛

⎝
2q∑

i=1

Zi

⎞

⎠

2

− 4q2

⎞

⎟
⎠ .

(3.3)

The first expectation of (3.3) will contribute the major terms of the expansion:

E

⎛

⎝Z1 − 1

2q

2q∑

i=1

Zi

⎞

⎠

2

= E(Z1 − 1)2 − 2

2q
E(Z1 − 1)

⎛

⎝
2q∑

i=1

Zi − 2q

⎞

⎠

+ 1

4q2
E

⎛

⎝
2q∑

i=1

Zi − 2q

⎞

⎠

2

= 2dqλ21xn + 2dq(λ21 − λ22)zn + 4dq2λ31

(

un − xn
2q

)

+ 12dq2λ21(λ1 − λ2)

(

wn − xn
2q

)

+ Oq(x
2
n ).

Similarly, we can bound both the second and third terms of (3.3) by Oq(x2n ):

E

⎛

⎝Z1 − 1

2q

2q∑

i=1

Zi

⎞

⎠

2
⎛

⎜
⎝

⎛

⎝
2q∑

i=1

Zi

⎞

⎠

2

− 4q2

⎞

⎟
⎠ = Oq(x

2
n ),

and

E

⎛

⎜
⎝

⎛

⎝
2q∑

i=1

Zi

⎞

⎠

2

− 4q2

⎞

⎟
⎠

2

= Oq(x
2
n ).

Note that all the Oq terms in the context only depend on q . Substituting these bounds into (3.3)
gives

un+1 = xn+1

2q
+ dλ31

(

un − xn
2q

)

+ 3dλ21(λ1 − λ2)

(

wn − xn
2q

)

+ Oq(x
2
n ), (3.4)
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by means of xn+1 = dλ21xn + d(λ21 − λ22)zn + Oq(x2n ). Moreover, the similar expansion of
wn+1 would be

wn+1 = 1

4q2
E(Zq+1 − 1)2 + Oq(x

2
n ) = xn+1

2q
+ dλ21λ2

(

wn − xn
2q

)

+ Oq(x
2
n ),

and thus

wn+1

xn+1
− 1

2q
= dλ21λ2

xn
xn+1

(
wn

xn
− 1

2q

)

+ Oq

(
x2n
xn+1

)

. (3.5)

Next display the discussion in theXOZ plane. First consider the case of |λ1|/|λ2| ≥ κ for
κ > 1. In a small neighborhood of (0, 0), since dλ22 < κ2d|λ22| ≤ dλ21 < 1 and Xn > 0, the
discrete trajectories approach to the origin point “tangentially” to the X -axis, if xn is small
enough for some n (see Bernussou [4] for reference). Besides, the conclusion of Lemma 7
excludes the trajectory along Z-axis. Then for some M > 1, there exist absolute constants
N1 = N1(q, κ, M) and δ1 = δ1(q, κ, M), such that if n ≥ N1 and xn ≤ δ1, we have

Xn ≥ MZn and
1

M(M + 1)
dλ21xn + Oq(x

2
n ) > 0,

where the remainder termOq(x2n ) comes from the expansion of xn+1. Consequently, it follows
xn + zn = Xn ≥ M

M+1 xn , which yields, in connection with zn ≤ 0 in Lemma 2.2,

xn
xn+1

= xn
dλ21xn + d(λ21 − λ22)zn + Oq(x2n )

≤ xn
M

M+1dλ21xn + Oq(x2n )
≤ xn

(
1 − 1

M

)
dλ21xn

= M

M − 1

1

dλ21
. (3.6)

The second case taken into account is |λ1| = |λ2|. In view of 1/2 ≤ dλ2 = dλ21 ≤ 1,
there also exist absolute constants N2 = N2(q, M) and δ2 = δ2(q, M), such that if n ≥ N2

and xn ≤ δ2, one has

xn
xn+1

= xn
dλ21xn + Oq(x2n )

≤ xn
(
1 − 1

M

)
dλ21xn

= M

M − 1

1

dλ21
.

For fixed k, it is known from (2.8) that

|xn+1 − (dλ21Xn + dλ22Zn)| ≤ C(q)x2n ,

and then there exists δ3 = δ3(q, κ, M, k) < min{δ1, δ2}, such that if xn < δ3 then one has
xn+� < 2δ3, for any 1 ≤ � ≤ k. Therefore, for any positive integer k, (3.5) yields

wn+k

xn+k
− 1

2q
= dλ21λ2

xn+k−1

xn+k

(
wn+k−1

xn+k−1
− 1

2q

)

+ Oq

(

xn+k−1
xn+k−1

xn+k

)

= (dλ21λ2)
k

(
k∏

�=1

xn+�−1

xn+�

)(
wn

xn
− 1

2q

)

+ R,

where

(dλ21λ2)
k

(
k∏

�=1

xn+�−1

xn+�

)

≤ (dλ21|λ2|)k
(

M

M − 1

1

dλ21

)k

=
(

M

M − 1
|λ2|

)k
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and

|R| ≤ 2Cδ3

⎛

⎝
k∑

i=1

(
M

M − 1

1

dλ21

)i

(dλ21|λ2|)i−1

⎞

⎠ ≤ δ3

1 −
(

M
M−1 |λ2|

)k

1 −
(

M
M−1 |λ2|

)
M

M − 1

1

dλ21
,

with C denoting the Oq constant in (3.5). From the identity (i) in Lemma 2, we obtain
0 ≤ wn

xn
≤ 1

q , which implies

∣
∣
∣
∣
wn

xn
− 1

2q

∣
∣
∣
∣ ≤ 1

2q
.

Noting that |λ2| ≤ |λ1| ≤ d−1/2 ≤ 1/
√
2, it is possible to achieve M

M−1 |λ2| < 1 by choosing
M = 4. Therefore, it is feasible to take k = k(ε) sufficiently large and δ4 = δ4(q, κ, k, ε) =
δ4(q, κ, ε) < δ3 sufficiently small to guarantee

∣
∣
∣
∣
wn+k

xn+k
− 1

2q

∣
∣
∣
∣ < ε.

Finally, in view of |λ2| > 
, there exists γ = γ (q, 
) by Lemma 6 satisfying xn−k ≤ γ −k xn .
Thus choose N = N (q, κ, ε, k) = N (q, κ, ε) > max{N1 + k, N2 + k} and δ = γ kδ4, such
that, if xn ≤ δ and n ≥ N , one has

∣
∣
∣
∣
wn

xn
− 1

2q

∣
∣
∣
∣ < ε. (3.7)

Finally, the second part of the lemma follows by plugging (3.7) into (3.4) and proceeding
similarly as above.

Proof of the Main Theorem First, consider 
 < |λ2| < |λ1|, for any fixed 
 > 0. By
Lemma 4, it suffices to show that when dλ21 is close enough to 1, Xn does not converge to 0.
Therefore, it implies that xn does not converge to 0 either, considering 0 ≤ Xn = xn+zn ≤ xn .
It is convenient to make |λ2| > 
 fixed and just λ1 varying, and then without loss of general-

ity, assume dλ21 >
1+dλ22

2 . Consequently choose κ = κ(d, λ2) =
(

1+dλ22
2dλ22

)1/2

> 1 and thus

|λ1|/|λ2| ≥ κ .
As in Lemma 8, display our proof in the XOZ plane. Under the condition of q ≥ 4

and (2.8), it is apparent that

Xn+1 = dλ21Xn + d(d − 1)

2

(
2q(q − 3)

q − 1
λ41X 2

n + 4qλ21λ
2
2XnZn

)

+Rx + Rz + Vx

≥ dλ21Xn + d(d − 1)

2

2q(q − 3)

q − 1
λ41X 2

n − |Rx | − |Rz |

−CV x
2
n

(∣
∣
∣
∣
un
xn

− 1

2q

∣
∣
∣
∣ +

∣
∣
∣
∣
wn

xn
− 1

2q

∣
∣
∣
∣ + xn

)

,

where the last inequality comes from |λ1| ≤ d−1/2 < 1. Then by Lemma 8 and Lemma 5,
there exist N = N (q, κ, 
) and δ = δ(q, d, κ, 
) > 0, such that if n ≥ N and xn ≤ δ,
then in the small neighborhood of the origin point (0, 0), we have Xn ≥ Zn and Xn ≥ xn

2 .
Meanwhile, the following estimates hold:
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xn ≤ 1

48CV

d(d − 1)

2

2q(q − 3)

q − 1
λ41;

∣
∣
∣
∣
un
xn

− 1

2q

∣
∣
∣
∣ ,

∣
∣
∣
∣
wn

xn
− 1

2q

∣
∣
∣
∣ ≤ 1

48CV

d(d − 1)

2

2q(q − 3)

q − 1
λ41;

|Rx |, |Rz | ≤ 1

32

d(d − 1)

2

2q(q − 3)

q − 1
λ41x

2
n ≤ 1

8

d(d − 1)

2

2q(q − 3)

q − 1
λ41X 2

n .

Therefore, the quadratic term of X 2
n is “large” enough to control the remainder terms:

Xn+1 ≥ dλ21Xn + 1

2

d(d − 1)

2

2q(q − 3)

q − 1
λ41X 2

n

= Xn

[

dλ21 + 1

2

d(d − 1)

2

2q(q − 3)

q − 1
λ41Xn

]

.

(3.8)

Take ε = min{ 14γ N , γ δ} > 0, where γ = γ (q, 
) > 0 is the constant in Lemma 6. Because
q ≥ 4 and ε is independent of λ1, we can choose |λ1| < d−1/2 to make

dλ21 + 1

2

d(d − 1)

2

2q(q − 3)

q − 1
λ41ε > 1. (3.9)

Since x0 = 1 − 1
2q > 1

2 , it is concluded that xn > 1
2γ

n ≥ 2ε when n ≤ N , in addition,

XN ≥ XN+ZN
2 = xN

2 ≥ ε. Now suppose Xn ≥ ε for some n ≥ N . Then display our
discussion of Xn as follows:

(a) If Xn ≥ 2γ −1ε, then

Xn+1 ≥ xn+1

2
≥ γ xn

2
≥ γXn

2
≥ ε;

(b) If ε ≤ Xn ≤ 2γ −1ε, then xn ≤ Xn
2 ≤ γ −1ε ≤ δ, and thus it follows from (3.8) and (3.9)

that

xn+1 ≥ Xn+1 ≥ Xn

[

dλ21 + 1

2

d(d − 1)

2

2q(q − 3)

q − 1
λ41Xn

]

≥ Xn ≥ ε.

Finally, we have xn ≥ Xn ≥ ε for all n, by induction. Consequently, it is established that the
Kesten–Stigum bound is not tight.

The second case to be considered is |λ1| = |λ2|, under which there are two equal multi-
pliers in this nonlinear second order point mapping and the origin point must be a star node.
Although the principal axis is undetermined, just by the comparison of the quadratic terms
and for q ≥ 4, it is concluded that

d(d − 1)

2

(
2q(q − 3)

q − 1
λ41X 2

n + 4qλ41XnZn

)

− d(d − 1)

2

(
q

q − 1
λ41X 2

n − 4qλ41Z2
n

)

= d(d − 1)

2

(
2q2 − 7q

q − 1
λ41X 2

n + 4qλ41XnZn + 4qλ41Z2
n

)

≥ d(d − 1)

2
λ41x

2
n ,

and thus the decay rate of Xn is much slower than Zn if xn is sufficiently small. Therefore, in
light of the preceding discussion, there still exist N = N (q) and δ = δ(q), such that if n ≥ N
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and xn ≤ δ, we have Xn ≥ Zn and thus xn = Xn + Zn ≤ 2Xn . Then the rest discussion
would be similar as the first part. ��
Acknowledgements We would like to thank two anonymous reviewers who provided us with many con-
structive and helpful comments.

References

1. Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In IEEE 49th Annual IEEE
Symposium on Foundations of Computer Science, FOCS’08, pp. 793-802. IEEE (2008)

2. Baxter, R.J.: The Riemann surface of the chiral Potts model free energy function. J. Stat. Phys. 112(1–2),
1–26 (2003)

3. Berger, N., Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyperbolic graphs. Probab.
Theory Related Fields 131, 311–340 (2005)

4. Bernussou, J.: Point Mapping Stability. Pergamon Press, New York (1977)
5. Bhamidi, S., Rajagopal, R., Roch, S.: Network delay inference from additive metrics. Random Struct.

Algorithms 37, 176–203 (2010)
6. Bisconti, C., Corallo, A., Fortunato, L., Gentile, A. A., Massafra, A., Pell, P.: Reconstruction of a real

world social network using the Potts model and Loopy belief propagation. Front. Psychol. (2015). https://
doi.org/10.3389/fpsyg.2015.01698

7. Bleher, P.M., Ruiz, J., Zagrebnov, V.A.: On the purity of the limiting Gibbs state for the Ising model on
the Bethe lattice. J. Statist. Phys. 79, 473–482 (1995)

8. Borgs, C., Chayes, J. T.,Mossel, E., Roch, S.: TheKesten-Stigum reconstruction bound is tight for roughly
symmetric binary channels. In: IEEE Comput. Soc. FOCS, Berkeley, CA, pp. 518–530 (2006)

9. Cadotte, M.W., Davies, T.J.: Phylogenies in Ecology: A Guide to Concepts and Methods. Princeton
University Press, Princeton (2016)

10. Cassandro, M., Ferrari, P.A., Merola, I., Presutti, E.: Geometry of contours and Peierls estimates in d= 1
Ising models with long range interactions. J. Math. Phy. 46(5), 053305 (2005)

11. Chayes, J.T., Chayes, L., Sethna, J.P., Thouless, D.J.: Amean field spin glasswith short-range interactions.
Commun. Math. Phys. 106(1), 41–89 (1986)

12. Daskalakis, C., Mossel, E., Roch, S.: Optimal phylogenetic reconstruction. In: STOC’06: Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, pp. 159-168. ACM, New York (2006)

13. Derrida, B., Bray, A.J., Godreche, C.: Non-trivial exponents in the zero temperature dynamics of the 1D
Ising and Potts models. J. Phys. A 27(11), L357 (1994)

14. Dhar, D.: The relaxation to equilibrium in one-dimensional Potts models. J. Indian Inst. Sci. 75(3), 297
(2013)

15. Evans, W., Kenyon, C., Peres, Y., Schulman, L.J.: Broadcasting on trees and the Ising model. Ann. Appl.
Probab. 10, 410–433 (2000)

16. Ferrari, P.A., Fernndez, R., Garcia, N.L.: Perfect simulation for interacting point processes, loss networks
and Ising models. Stoch. Process. Appl. 102(1), 63–88 (2002)

17. Georgii, H.O.: Gibbs Measures and Phase Transition. de Gruyter, Berlin (1988)
18. Gerschenfeld, A., andMontanari, A.: Reconstruction for models on random graphs. In: 48th Annual IEEE

Symposium on Foundations of Computer Science, FOCS’07. IEEE (2007)
19. Giuliani, A., Mastropietro, V.: Universal finite size corrections and the central charge in non-solvable

Ising models. Commun. Math. Phys. 324(1), 179–214 (2013)
20. Giuliani, A., Seiringer, R.: Periodic striped ground states in Ising models with competing interactions.

Commun. Math. Phys. 347(3), 983–1007 (2016)
21. Kesten, H., Stigum, B.P.: Additional limit theorems for indecomposablemultidimensional Galton-Watson

processes. Ann. Math. Statist. 37, 1463–1481 (1966)
22. Kesten, H., Stigum, B.P.: Limit theorems for decomposable multi-dimesional Galton-Watson processes.

J. Math. Anal. Appl. 17, 309–338 (1966)
23. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative

studies of nucleotide sequences. J. Mole. Evol. 16(2), 111–120 (1980)
24. Liu, S., Ying, L., Shakkottai, S.: Influence maximization in social networks: an ising-model-based

approach. In 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pp. 570–576. IEEE (2010)

123

https://doi.org/10.3389/fpsyg.2015.01698
https://doi.org/10.3389/fpsyg.2015.01698


The Tightness of the Kesten–Stigum Reconstruction Bound… 641

25. Liu, W., and Ning, N.: Reconstruction for the asymmetric Ising model on regular trees. In: Proceed-
ings of 3rd International Conference on Electrical, Electronics, Engineering Trends, Communication,
Optimization and Sciences (EEECOS) (IET-IEEE), pp. 458–465 (2016)

26. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infinite sites model of genome
evolution. Proc. Natl. Acad. Sci. USA 105, 14254–14261 (2008)

27. Maes, C., Redig, F., Van Moffaert, A.: The restriction of the Ising model to a layer. J. Stat. Phys. 96(1),
69–107 (1999)

28. Maes, C., Velde, K.V.: The fuzzy Potts model. J. Phys. A. 28(15), 4261 (1995)
29. Majumdar, S.N., Dhar, D.: Equivalence between the Abelian sandpile model and the q 0 limit of the Potts

model. Physica A 185(1–4), 129–145 (1992)
30. Martinelli, F., Sinclair, A., Weitz, D.: Fast mixing for independent sets, colorings, and other models on

trees. Random Struct. Algorithms 31, 134–172 (2007)
31. Mézard, M., Montanari, A.: Reconstruction on trees and spin glass transition. J. Stat. Phys. 124, 1317–

1350 (2006)
32. Mossel, E.: Reconstruction on trees: beating the second eigenvalue. Ann. Appl. Probab. 11, 285–300

(2001)
33. Mossel, E.: Phase transitions in phylogeny. Trans. Am. Math. Soc. 356, 2379–2404 (2004)
34. Mossel, E.: Survey: information flow on trees. In: Graphs, Morphisms and Statistical Physics. DIMACS

Ser. Discrete Math. Theoret. Comput. Sci. vol. 63, pp. 155–170. American. Math. Soc., Providence, RI
(2004)

35. Mossel, E., Yuval, P.: Information flow on trees. Ann. Appl. Probab. 13(3), 817–844 (2003)
36. Olejarz, J., Krapivsky, P.L., Redner, S.: Zero-temperature coarsening in the 2d Potts model. J. Stat. Mech.

2013(06), P06018 (2013)
37. Roch, S.: A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE/ACM

Trans. Comput. Biol. Bioinform. 3(1), 92 (2006)
38. Saul, L., Kardar, M.: Exact integer algorithm for the two-dimensionalJ Ising spin glass. Phys. Rev. E

48(5), R3221 (1993)
39. Semerjian, G.: On the freezing of variables in random constraint satisfaction problems. J. Stat. Phys.

130(2), 251–293 (2008)
40. Sire, C., Majumdar, S.N.: Coarsening in the q-state Potts model and the Ising model with globally

conserved magnetization. Phys. Rev. E. 52(1), 244 (1995)
41. Sire, C., Majumdar, S.N.: Correlations and coarsening in the q-state Potts model. Phys. Rev. Lett. 74(21),

4321 (1995)
42. Sly, A.: Reconstruction of random colourings. Commun. Math. Phys. 288(3), 943–961 (2009)
43. Sly, A.: Reconstruction for the Potts model. Ann. Probab. 39, 1365–1406 (2011)
44. Spirin, V., Krapivsky, P.L., Redner, S.: Fate of zero-temperature Ising ferromagnets. Phys. Rev. E 63(3),

036118 (2001)
45. Spohn, H., Dmcke, R.: Quantum tunneling with dissipation and the Ising model over. J. Stat. Phys.

41(3–4), 389–423 (1985)
46. Tetali, P., Vera, J.C., Vigoda, E., Yang, L.: Phase transition for the mixing time of the Glauber dynamics

for coloring regular trees. Ann. Appl. Probab. 22, 2210–2239 (2012)
47. Tracy, C.A.: Universality class of a Fibonacci Ising model. J. Stat. Phys. 51(3), 481–490 (1988)
48. Weeks, J.D., Gilmer, G.H., Leamy, H.J.: Structural transition in the Ising-model interface. Phys. Rev.

Lett. 31(8), 549 (1973)

123


	cover page Tightness ofKS Reconstruct bound_J.Stat.Phys
	2018-TightKestenbounds_Jour.Statist.Physics
	The Tightness of the Kesten–Stigum Reconstruction Bound of Symmetric Model with Multiple Mutations
	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Background
	1.3 Applications
	1.4 Main Results and Proof Sketch

	2 Second Order Recursion Relation
	2.1 Notations
	2.2 Preliminaries
	2.3 Means and Covariances of Yij
	2.4 Distributional Recursion
	2.5 Main Expansion of xn+1 and zn+1

	3 Proof of the Main Theorem
	Acknowledgements
	References





