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Developing a novel parameter‑free 
optimization framework for flood 
routing
Omid Bozorg‑Haddad1*, Parisa Sarzaeim1 & Hugo A. Loáiciga2

The Muskingum model is a popular hydrologic flood routing technique; however, the accurate 
estimation of model parameters challenges the effective, precise, and rapid‑response operation of 
flood routing. Evolutionary and metaheuristic optimization algorithms (EMOAs) are well suited for 
parameter estimation task associated with a wide range of complex models including the nonlinear 
Muskingum model. However, more proficient frameworks requiring less computational effort are 
substantially advantageous. Among the EMOAs teaching–learning‑based optimization (TLBO) is a 
relatively new, parameter‑free, and efficient metaheuristic optimization algorithm, inspired by the 
teacher‑student interactions in a classroom to upgrade the overall knowledge of a topic through a 
teaching–learning procedure. The novelty of this study originates from (1) coupling TLBO and the 
nonlinear Muskingum routing model to estimate the Muskingum parameters by outflow predictability 
enhancement, and (2) evaluating a parameter‑free algorithm’s functionality and accuracy involving 
complex Muskingum model’s parameter determination. TLBO, unlike previous EMOAs linked 
to the Muskingum model, is free of algorithmic parameters which makes it ideal for prediction 
without optimizing EMOAs parameters. The hypothesis herein entertained is that TLBO is effective 
in estimating the nonlinear Muskingum parameters efficiently and accurately. This hypothesis is 
evaluated with two popular benchmark examples, the Wilson and Wye River case studies. The results 
show the excellent performance of the “TLBO‑Muskingum” for estimating accurately the Muskingum 
parameters based on the Nash–Sutcliffe Efficiency (NSE) to evaluate the TLBO’s predictive skill 
using benchmark problems. The NSE index is calculated 0.99 and 0.94 for the Wilson and Wye River 
benchmarks, respectively.

The complex nature of flood events may challenge the straightforward, rapid, and accurate hydrological analysis. 
On the other hand, accurate and rapid-response modeling and simulation are necessary for flood routing in 
terms of minimization of damages and economic  costs1. Hydrograph routing is a technique employed to simulate 
the changes in the shape of a flood hydrograph as inflow charges through a river channel or a  reservoir2,3. These 
methods can be generally classified into two categories: hydraulic and hydrologic  models4. The former models, 
such as Hydrologic Engineering Center River Analysis System (HEC-RAS) and MIKE11, are relatively complex 
compared to hydrologic routing models due to their dependency on solving the continuity, the energy, and/or 
the momentum  equations5,6. What’s more, hydraulic routing models require detailed data and information river 
geometry and Manning’s roughness coefficient, whose determination is time consuming and expensive and 
challengeable for calibration  purposes4. On the other hand, hydrologic routing models, such as the Muskingum 
method, are more popular because of their simplicity, even though hydraulic routing methods are more accurate 
and have a more physically-based foundation. Yet, the robust calibration of hydrologic models has improved 
their accuracy to acceptable  levels7. The three-parameter nonlinear Muskingum model features storage-time 
parameter ( K  ), dimensionless river reach weighting factor ( χ ), and dimensionless nonlinear flood wave (m) 
parameters, which must be estimated by traditional mathematical techniques or evolutionary and metaheuristic 
optimization algorithms (EMOAs)8.

Among the mathematical techniques one can cite the segmented least-squares method (S-LSM) by  Gill9, 
univariate least squares (ULS) by  Heggen10, least squares (LS) by  Aldama11, the nonlinear least-squares method 
(N-LSM) by Yoon and  Padmanabhan12, feasible sequential quadratic  programming13, the Lagrange multi-
plier (LM) method by  Das14, the Broyden–Fletcher–Goldfarb–Shannon (BFGS) technique by  Geem15, and the 
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Newton-type trust region algorithm (NTRA) by Sheng et al.16, among others. These mentioned techniques are 
relatively straightforward; yet, they are computationally burdensome and are commonly trapped into local 
optima. Moreover, the performance of the mathematical techniques is highly dependent on the quality of an 
initial search point, which means that the search for a solution is likely to converge to a local optimum, instead 
of a global optimum if the initial search point is not selected near the unknown global  solution17.

Among the EMOAs are the genetic algorithm (GA) by  Mohan18, harmony search (HS) by Kim et al.17 and by 
Geem et al.19, the ant colony algorithm (ACA) by Zhan and  Xu20, the gray-encoded accelerating genetic algorithm 
(GEAGA) by Chen and  Yang21, particle swarm optimization (PSO) by Chu and  Chang22, the immune clonal 
selection algorithm (ICSA) by Luo and  Xie23, the parameter setting free harmony search (PSF-HS) algorithm 
by  Geem8, the imperialist competitive algorithm (ICA) by Tahershamsi and  Sheikholeslami24, multi-objective 
particle swarm optimization (MOPSO) by Azadnia and  Zahraie25, differential evolution (DE) by Xu et al.26, 
a combination of the simulated annealing (SA) algorithm and hybrid harmony search algorithm (HHSA) by 
Karahan et al.27, modified honey-bee mating optimization (MHBMO) algorithm by Niazkar and  Afzali28, the 
backtracking search algorithm (BSA) by Yuan et al.29, Weed Optimization Algorithm (WOA) for extended non-
linear Muskingum model by Hamedi et al.30, PSO for a new form of Muskingum (four-parameter Muskingum 
model proposed by  Easa31) by Moghaddam et al.32, modified PSO by Norouzi and  Bazargan33, hybrid modified 
honey-bee mating (HMHBM) algorithm by Niazkar and  Afzali34, bat algorithm (BA) by Farzin et al.35, wolf 
pack algorithm (WPA) by Bai et al.36, shark algorithm (SA) by Farahani et al.37. These and other algorithms have 
been previously applied to estimate the three parameters of the nonlinear form of the Muskingum parameters 
( K , χ , and m). These EMOAs achieve an acceptable accuracy in the estimation of Muskingum parameters that 
are near global optima; yet, they must be pre-calibrated to assure their computational efficiency and accuracy. 
Sarzaeim et al.38 reported that all EMOAs involve controlling parameters including (1) general parameters, and 
(2) specific parameters. The group (1) parameters are required for all optimization algorithms (e.g., population 
size and number of iterations), whereas the group (2) parameters are specified by the optimization algorithms. In 
contrast, the relatively new teaching–learning-based optimization (TLBO) proposed by Rao et al.39 is a param-
eter-less method, i.e., TLBO does not involve controlling parameters. For purpose of illustration in comparison 
with other well-known EMOAs the GA features at least two specific parameters (the mutation and cross-over 
rates), and PSO involves at least three algorithmic parameters (learning factors, the variation of weight, and 
maximum velocity parameters)39. The recently-developed Cat Swarm Optimization (CSO) algorithm features 
four algorithmic parameters (seeking memory pool, seeking the range of selected dimension, counts of dimen-
sion to change, and self-position consideration)40. The Flower Pollination Algorithm (FPA) features four specific 
control parameters (the size of initial population, the scale factor for controlling step size, the levy distribution 
parameter, and the switch probability)41. Therefore, the calibration of the three-parameter nonlinear Muskingum 
model with each of the above EMOAs turns into a calibration of two sets of parameters, three for the routing 
model and those specific to the optimizing algorithm. The important advantage that distinguishes a parameter-
free algorithm from other optimization algorithms stems from the fact that the output solutions of EMOAs are 
highly sensitive to the values of specific algorithmic parameters. Garousi-Nejad42 discussed how the quality 
performance of EMOAs are highly dependent on the tuning of algorithmic parameters. The main issue is that 
the optimization search may be stopped at local optima rather than achieving convergence to the global, best, 
solution. Optimization performance is highly sensitive to the specific algorithmic parameters pre-calibration, 
and sensitivity analysis is necessary to assign suitable values of the algorithmic  parameters5. Moreover, Okkan 
and  Kirdemir43 demonstrated less computational effort and faster convergence for optimization algorithms like 
PSO by developing modified algorithms with fewer control parameters. The cited studies seek to apply EMOAs 
with minimum controlling parameters.

This study proposes the TLBO algorithm coupled with nonlinear Muskingum routing to estimate the param-
eters of the flood routing model to overcome the limitations of the search techniques and the calibration of 
evolutionary algorithmic parameters. TLBO is a metaheuristic search algorithm with a significant merit that 
distinguishes it from other cited optimization algorithms because it does not involve algorithmic  parameters39. 
In other words, its application does not require a pre-calibration process which leads to faster and more efficient 
estimation of Muskingum’s parameters. Proper calibration of the algorithmic parameters implies time-consuming 
computations and  effort44. The novelty of this study is the application of a parameter-free TLBO, which consti-
tutes a significant advantage in estimating the three parameters of the nonlinear Muskingum model. This work 
evaluates the “TLBO-Muskingum” framework’s performance The successful TLBO application in this work may 
encourage its use in other hydrologic problems.

This study couples the parameter-free TLBO and the nonlinear Muskingum model to estimate the model’s 
parameters by optimizing outflow predictions (Fig. 1). The hypothesis herein entertained is that “TLBO-Musk-
ingum” can accurately predict outflow with less computational effort because it does not involve algorithm 
calibration. The TLBO’s performance is assessed by applying it to two well-known flood routing benchmark 
problems, relying on the Nash–Sutcliffe Efficiency (NSE) index as a hydrological performance criterion to evalu-
ate the TLBO’s accuracy in outflow prediction.

Methods
This study is structured as follow: the nonlinear Muskingum model is briefly presented in “The nonlinear 
Muskingum flood-routing model”. The TLBO algorithm, its functionality, and flowchart are described in “The 
teaching-learning-based optimization (TLBO) algorithm”. in detail. Next, the “TLBO-Muskingum” framework 
is introduced in “Linking TLBO to the Muskingum model”. The results from two flood routing benchmarks 
are discussed in “Results and discussion”, and the concluding remarks are presented in “Concluding remarks”.
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The nonlinear Muskingum flood‑routing model. The relation between stream flow and reach storage 
is nonlinear; therefore, the original linear form of the Muskingum flood-routing model has been superseded by 
the following continuity and nonlinear Muskingum model,  respectively8,9,45:

where St , I , and Ot denote the channel storage (with dimension of L3) of a river reach, rate of inflow with dimen-
sion of L3/T to a river reach, and rate of outflow (with dimension of L3/T) to a river reach, respectively, at time 
t; K , χ , and m = storage-time constant parameter, dimensionless weighting factor, and dimensionless parameter 
related to the nonlinearity of the flood wave, respectively. The following Eq. (3) is derived from Eq. (2):

Substituting Eq. (3) in Eq. (1) and taking the derivate of St with respect to time produces:

Equation (4) is an ordinary first-order, nonlinear (when m  = 1) , differential equation that does not have an 
analytical solution. Instead, Eq. (4) is routinely solved numerically. The following conditions are applied in the 
numerical solution of equation: (1) the inflow hydrograph It is known, and (2) the initial inflow equals the initial 
outflow O1(= I1) Assumption (2) and Eq. (2) imply that S1(= KOm

1 ) . Given values of the Muskingum parameters 
( K,χ , and m) and applying the numerical discretization of the time derivative in Eq. (4) generates a recursive 
equation for reach storage St+1 written in Eq. (5):

in which Δt denotes the time step of hydrograph simulation. Therefore, the outflow Ot is calculated with Eq. (6) 
as follows:

The values of the parameters K ,χ , and m must be calibrated to achieve accurate outflow predictions with 
Eq. (6). Parameter calibration and hydraulic prediction can be achieved efficiently and accurately with EMOAs. 
The next section describes TLBO for the estimation of the Muskingum parameters with this parameter-free 
metaheuristic optimization algorithm in detail.

The teaching–learning‑based optimization (TLBO) algorithm. Teaching–learning-based optimi-
zation (TLBO) is a population-based, meta-heuristic, optimization algorithm inspired by the swarm intelli-
gence of a population seeking to change from a current situation to an optimal situation by overall knowledge 
improvement (i.e. grades) of students in a  classroom39. The peculiar feature of TLBO is that it does not require 
algorithmic parameters for its implementation other than general parameters ubiquitous to all evolutionary 
optimization algorithms such as population size and the number of iterations. Recall the GA features crossover 
and mutation rates, whose values affect the optimization performance and the accuracy of  results38.

TLBO starts searching for the optimal solution of a well-posed problem with an initial population whose 
members’ scores are the values of the decision variables, such as grades earned by students. TLBO strives to 
improve the population’s quality by means of a “Teacher Phase” and a “Learner Phase” to achieve a solution 
that is very near to the globally optimal solution. In the following the “Teacher Phase” and “Learner Phase” are 
discussed.

(1)
dSt

dt
= It − Ot ,

(2)St = K[χIt + (1− χ)Ot ]
m,

(3)Ot =
(St/K)

1/m − χIt

1− χ
.

(4)
dSt

dt
= It −

(St/K)
1/m − χIt

1− χ
=

It − (St/K)
1/m

1− χ
.

(5)St+1 = St +�t

(

�St

�t

)

t = 1, 2, 3, . . .

(6)Ot+1 =
(St+1/K)

1/m − χIt+1

1− χ
t = 1, 2, 3, . . .

Figure 1.  Graphical abstract.
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In a classroom the teacher has the highest-level knowledge of a particular topic and endeavors to teach the 
students to advance their overall knowledge, and, consequently, raise their individual and average grades in 
exams. In the “Teacher Phase” the person with the best grade is considered as a teacher making efforts to transfer 
knowledge to the other learners (i.e. students) in a class. I Suppose there are n students in a class and that they 
have an average grade Mi in exam i. The most successful student with the best grade XT ,i in exam i among the 
n students plays the teacher’s role. The difference between the teacher’s level and the average level of knowledge 
( Diff i ) in exam i is expressed as follows:

in which, ri = random number in [0, 1] , and TF = a random number that accounts for the teacher factor that 
depends on teaching quality, and equals either 1 or 2.

By teaching and transferring knowledge to students their new, improved, grades in the next exam are defined 
by Eq. (9):

where, X ′
j,i and Xj,i = new and old grades of student j in exam i, respectively.Xj,i is transferred to the “Learner 

Phase” if the old grade is better than the new one, otherwise X ′
j,i is transferred.

In the “Learner Phase” the top students help their peers to improve their knowledge through, for example, 
team work in assignments, leading to new grade improvement ( X ′′ ). This helping interaction between two stu-
dents A and B in each exam i is defined as follow:

This teacher-students interaction is the fundamental inspiration for TLBO, in which the number of students 
in the class is the algorithm population size and the number of exams is the number of iterations. The TLBO 
steps are defined as follow:

(1) Define the population size, the number of iterations, and the objective function.
(2) Randomly initialize the grades ( Xi,j ) of n students (j = 1, 2, …, n) in exam i = 1.
(3) Evaluate the objective function for n students in exam i.
(4) Select the student with the best grade as teacher and calculate Diff i for exam i.
(5) To calculate X ′

j,i for n students in exam i.
(6) Compare Xj,i and X ′

j,i and select the better one for transferring to the next step.
(7) Select randomly each pair of students and calculate X ′′

j,i.
(8) Compare X ′

j,i and X ′′

j,i and select the better one for transferring to the next step.
(9) Evaluate the objective function for all students, check whether the stop criterion is satisfied (the optimal 

solution is achieved), otherwise the algorithm will iterate from step (4).

A more in-depth description of TLBO can be found in Refs.38,39,46.

Linking TLBO to the Muskingum model. Figure 2 depicts the flowchart of the algorithmic “TLBO-
Muskingum” method to estimate the Muskingum model parameters (i.e. K,χ , and m). The algorithm starts by 
defining the population size (number of students), number of iterations (number of exams), and the objective 
function. Next, the initial population of Muskingum’s parameters is generated randomly. The flood hydrograph 
is then simulated with Eqs. (5) and (6). The values of the objective function for each sequence of scores earned 
by the students are calculated following the Muskingum simulation. The next step improves the current popula-
tion of decision variables (i.e., the estimates of K,χ , and m) by calculating the mean value of the objective func-
tion and selecting the best solution as the teacher of the population. Afterward, the population of parameters is 
updated in the teaching phase (i.e. moving the population toward the teachers’ sequence of simulated outflows) 
and the learning phase (i.e. updating the population based on the interaction between the students). In other 
words, the new population of parameters is generated with the modifier operator such that each student (or 
parameter estimate) starts moving towards the best solution in the population by means of the linear and ran-
dom base equation (this is the Teacher Phase). Furthermore, the improvement of the population is guided by 
the interactions between students using a linear equation based on the difference between their positions (this 
is the so-called Learner Phase). The Muskingum simulation is repeated with the improved or updated popula-
tion and the objective function is re-evaluated. The optimal solution is reported whenever the user-specified 
termination criterion is satisfied. Otherwise, the iterations involving improvement of the current population, 
Muskingum simulation, evaluation of objective functions, and assessment of the termination criterion proceed 
until convergence is achieved.

The population size is set equal to 100, the number of iterations is 500, and the objective function is expressed 
as below:

(7)Diffi = ri
(

XT ,i − TF ×Mi

)

,

(8)TF = round[1+ rand(0, 1){1, 2}],

(9)X ′
j,i = Xj,i + Diffi ,

(10)X
′′

A,i =

{

X ′
A,i + ri(X

′
A,i − X ′

B,i) if (X ′
A,i > X ′

B,i)

X ′
A,i + ri(X

′
B,i − X ′

A,i) if (X ′
B,i > X ′

A,i).
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where, SSD is the sum of the squared deviation between the observed and simulated outflows at time interval t, 
Oi is the observed outflow at time interval i, and ̂Oi is the simulated outflow at time interval i.

(11)Min SSD =

T
∑

i=1

(

Oi − Ôi

)2

i = 1, 2, 3, . . .

Start

Set the population size, 
maximum number of 

iterations and objective 
function

Initialize randomly the 
population of Muskingum 

parameters

Set Ii and Oi and calculate 
Si

Calculate Si+1 and Oi+1

Muskingum Simulation

Evaluate the Objective 
Function for each 

sequence of simulated 
outflows

Calculate the mean of 
Objective Functions

Select the best sequence 
as Teacher

Move the population 
toward the teacher 

sequence

Update the population 
based on interactions 
between sequences

TLBO Learner Phase

Teacher Phase

Set Ii and Oi and calculate 
Si

Calculate Si+1 and Oi+1

Muskingum Simulation

Evaluate the Objective 
Function for each of the 

updated sequences of 
simulated outflows

Is the stop 
criterion 
satisfied?

The optimal 
solution is achieved

No

Yes

Figure 2.  The flowchart of the “TLBO-Muskingum” model.
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Results and discussion
The performance of the “TLBO-Muskingum” in estimating the three-parameters of nonlinear Muskingum model 
is evaluated with two well-known benchmark problems: (1) the Wilson cased  study47, and (2) the River Wye in 
the United  Kingdom48, both with one single peak flood event. The former one is a popular benchmark problem 
based on the data provided by Wilson (1974) and has been employed commonly in several  studies9,14,22,50–53 to 
be linked to EMOAs for estimation of nonlinear Muskingum model’s parameters. The minor lateral nature of 
the flow makes this case study ideal for flood routing  studies48.

The second case study is based on flood event of the River Wye in Dec 1960 in the United  Kingdom49. The 
69–75 km riverbed characteristics (without tributaries and small lateral inflow) make it ideal for flood-routing 
calibration purposes.

Figure 3.  The objective function for 500 iterations in all 10 runs for (a) Wilson, and (b) Wye River benchmarks.
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Along with objective function evaluation (SSD), the Nash–Sutcliffe Efficiency (NSE) is herein calculated for 
more precise evaluation of flood routing and optimization performance in hydrological point of view. The NSE 
is a normalized index of error  variance53 that measures the predictive skill of hydrologic models. It takes value 
in the range of (− ∞, 1]. The closer NSE is to 1, the more accurately the hydrological model  performs54. The NSE 
is defined as follows:

where NSE is the Nash–Sutcliffe Efficiency index, Oi is the observed outflow at time interval i, ̂Oi is the simulated 
outflow at time interval i, and O is the average of observed outflow.

The “TLBO-Muskingum” has been implemented for 10 runs for each of the benchmark problems. The objec-
tive function values in all 500 iterations have been plotted in Fig. 3. It is shown in Fig. 3 that in both case studies 
the converges was achieved by iteration 500, the best objective function is 169.3 and 102,511.9 for the Wilson 
and Wye River benchmarks, respectively. For more precise insight, the zoom-in objective function values have 
been extracted up to iteration 50 in Fig. 3, which depicts the fast convergence of TLBO in reaching the optimal 
solution.

Figure 3 also illustrates how all 10 runs reached the same objective function, which results in negligible dif-
ference between the 10 runs for each benchmark problem. The calculated average, minimum (min), maximum 
(max), and standard deviation (SD) statistics of all the runs are listed in Tables 1 and 2 for the Wilson and Wye 
River benchmarks, respectively. These statistics are not significantly different at each time step and the SD val-
ues are small (the average standard deviation between the simulated outflows in all time steps for all 10 runs is 
6× 10−6 and 7× 10−5 for the Wilson and Wye River examples, respectively). The small SD values stem from 
the high convergence capability of the TLBO in outflow simulations, which confirms the high reliability and 
robustness of “random-based” TLBO method in flow prediction. The average values of the simulated outflow 
were used for further analysis. It is important to notice that the results from the 10 runs were calculated without 
calibration of any algorithmic parameters. The observed and average simulated outflows timeseries calculated 
with the optimal values of the Muskingum parameters are listed in Tables 3 and 4 for the Wilson and Wye River 
case studies, respectively. The SSD as objective function from calculated outflows along with the NSE index as 
a standard hydrological performance metric are listed in Tables 3 and 4, as well. The calculated SSD is shown as 
function of the iteration number in Fig. 3. The NSE values clearly show how accurately the “TLBO-Muskingum” 
simulates the outflows, and consequently how the three parameters of Muskingum are estimated precisely. The 
NSE value for the Wilson case study is 0.99, demonstrating the excellent performance of the optimization process. 
The NSE equals 0.94 regarding the Wye River, also showing high algorithmic accuracy. Recall that the closer the 
NSE to 1, the more accurate the model prediction is.

(12)NSE = 1−

∑T
i=1

(

Oi − Ôi

)2

∑T
i=1

(

Oi − O
)2

i = 1, 2, 3, . . .

Table 1.  Outflows  (m3/s) calculated in 10 runs of “TLBO-Muskingum” for the Wilson benchmark problem.

Time (h) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average Min Max SD

0 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 –

6 21.77 21.77 21.77 21.77 21.77 21.77 21.77 21.77 21.77 21.77 21.77 21.77 21.77 1.211E−07

12 19.91 19.91 19.91 19.91 19.91 19.91 19.91 19.91 19.91 19.91 19.91 19.91 19.91 1.825E−06

18 20.74 20.74 20.74 20.74 20.74 20.74 20.74 20.74 20.74 20.74 20.74 20.74 20.74 7.422E−06

24 32.41 32.41 32.41 32.41 32.41 32.41 32.41 32.41 32.41 32.41 32.41 32.41 32.41 7.48E−06

30 48.02 48.02 48.02 48.02 48.02 48.02 48.02 48.02 48.02 48.02 48.02 48.02 48.02 2.888E−06

36 60.43 60.43 60.43 60.43 60.43 60.43 60.43 60.43 60.43 60.43 60.43 60.43 60.43 4.517E−06

42 70.44 70.44 70.44 70.44 70.44 70.44 70.44 70.44 70.44 70.44 70.44 70.44 70.44 8.133E−06

48 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 78.12 1.052E−05

54 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 82.76 1.112E−05

60 84.57 84.57 84.57 84.57 84.57 84.57 84.57 84.57 84.57 84.57 84.57 84.57 84.57 1.013E−05

66 82.39 82.39 82.39 82.39 82.39 82.39 82.39 82.39 82.39 82.39 82.39 82.39 82.39 7.277E−06

72 78.55 78.55 78.55 78.55 78.55 78.55 78.55 78.55 78.55 78.55 78.55 78.55 78.55 4.455E−06

78 73.18 73.18 73.18 73.18 73.18 73.18 73.18 73.18 73.18 73.18 73.18 73.18 73.18 3.575E−06

84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 65.84 5.8E−06

90 57.88 57.88 57.88 57.88 57.88 57.88 57.88 57.88 57.88 57.88 57.88 57.88 57.88 8.214E−06

96 48.70 48.70 48.70 48.70 48.70 48.70 48.70 48.70 48.70 48.70 48.70 48.70 48.70 9.694E−06

102 39.31 39.31 39.31 39.31 39.31 39.31 39.31 39.31 39.31 39.31 39.31 39.31 39.31 9.308E−06

108 30.89 30.89 30.89 30.89 30.89 30.89 30.89 30.89 30.89 30.89 30.89 30.89 30.89 7.257E−06

114 24.29 24.29 24.29 24.29 24.29 24.29 24.29 24.29 24.29 24.29 24.29 24.29 24.29 6.128E−06

120 20.03 20.03 20.03 20.03 20.03 20.03 20.03 20.03 20.03 20.03 20.03 20.03 20.03 5.204E−06

126 19.31 19.31 19.31 19.31 19.31 19.31 19.31 19.31 19.31 19.31 19.31 19.31 19.31 1.428E−06
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Figure 4 depicts the timeseries of the observed and simulated hydrographs for case studies 1 and 2, along 
with the inflows. The simulated outflow hydrographs correspond to the average estimates of the Muskingum 
parameters. It is seen in Fig. 4 the overall good fit between observations and predictions. The accuracy of the 
“TLBO-Muskingum” algorithm’s predictions is relatively higher for the first benchmark problem (NSE = 0.99 and 
R2 = 0.99, see Table 5). The accuracy is nevertheless high in the second case study (NSE = 0.94 and R2 = 0.97, see 
Table 5), except for the peak outflow: which is underestimated. This is evident in Fig. 5 illustrating the scatterplots 
of the observed and simulated outflows. Clearly in the case of the Wilson example the accuracy is high for the 
entire range of the outflows (R2 = 0.99), while as discussed earlier, the predictive skill of the TLBO-Muskingum 
method for estimating lower outflows is superior to that associated with the peak outflows. The prediction of 
high flows may be improved by using a longer time series in the training phase of the Muskingum model. Fur-
thermore, applying TLBO to the four-parameter Muskingum model may lead to better performance of the flood 
routing model with respect to peak flows, which may be addressed in future work.

Table 5 lists the optimal values of the Muskingum’s parameters calculated by TLBO ( K,χ , and m), the NSE, 
and the average run time obtained with 10 runs. The average run time for the Wilson and Wye examples equal 
2.531 and 3.488 s, respectively. This shows the rapid convergence of the TLBO-Muskingum method.

For comparison purposes, the results from coupling  GA18 and  PSO22 to three-parameter Muskingum flood 
routing for Wilson example with the same objective function have been extracted and presented in Fig. 6. The 
sensitivity analysis has been implemented in the application of both GA and PSO to increase the accuracy of 
optimization-simulation Muskingum flood  routing18,22 which is computationally expensive and time-consuming, 
additionally the optimization perform sensitive to the algorithmic parameters to reach the global optima. The 
SSD value for fine-tuned GA and PSO are 23.0 and 36.9, respectively. In addition, deviation of peak flood (DPO) 

Table 2.  Outflows  (m3/s) calculated in 10 runs of “TLBO-Muskingum” for the Wye River benchmark 
problem.

Time (h) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average Min Max SD

0 102.00 102.00 102.00 102.00 102.00 102.00 102.00 102.00 102.00 102.00 102.00 102.00 102.00 –

6 171.37 171.37 171.37 171.37 171.37 171.37 171.37 171.37 171.37 171.37 171.37 171.37445 171.37459 4.421E−05

12 129.60 129.60 129.60 129.61 129.60 129.60 129.60 129.60 129.60 129.60 129.60 129.60491 129.60504 3.521E−05

18 219.44 219.44 219.44 219.44 219.44 219.44 219.44 219.44 219.44 219.44 219.44 219.44392 219.44404 3.686E−05

24 189.89 189.89 189.89 189.89 189.89 189.89 189.89 189.89 189.89 189.89 189.89 189.88594 189.88596 3.827E−06

30 180.26 180.26 180.26 180.26 180.26 180.26 180.26 180.26 180.26 180.26 180.26 180.25707 180.2571 6.035E−06

36 197.97 197.97 197.97 197.97 197.97 197.97 197.97 197.97 197.97 197.97 197.97 197.97446 197.97451 1.255E−05

42 172.79 172.79 172.79 172.79 172.79 172.79 172.79 172.79 172.79 172.79 172.79 172.78686 172.7869 1.236E−05

48 155.64 155.64 155.64 155.64 155.64 155.64 155.64 155.64 155.64 155.64 155.64 155.63766 155.6377 1.225E−05

54 110.41 110.41 110.41 110.41 110.41 110.41 110.41 110.41 110.41 110.41 110.41 110.41004 110.41017 3.507E−05

60 148.17 148.17 148.17 148.17 148.17 148.17 148.17 148.17 148.17 148.17 148.17 148.16797 148.1681 3.558E−05

66 172.98 172.98 172.98 172.98 172.98 172.98 172.98 172.98 172.98 172.98 172.98 172.97914 172.97943 8.922E−05

72 251.59 251.59 251.59 251.59 251.59 251.59 251.59 251.59 251.59 251.59 251.59 251.58505 251.58558 0.0001552

78 302.30 302.30 302.30 302.30 302.30 302.30 302.30 302.30 302.30 302.30 302.30 302.2999 302.30091 0.0002829

84 480.43 480.43 480.43 480.43 480.43 480.43 480.43 480.43 480.43 480.43 480.43 480.42843 480.42946 0.0002876

90 764.70 764.70 764.70 764.70 764.70 764.70 764.70 764.70 764.70 764.70 764.70 764.70416 764.70439 7.868E−05

96 801.86 801.86 801.86 801.86 801.86 801.86 801.86 801.86 801.86 801.86 801.86 801.86123 801.86152 8.264E−05

102 741.45 741.45 741.45 741.45 741.45 741.45 741.45 741.45 741.45 741.45 741.45 741.45154 741.452 0.0001242

108 637.53 637.53 637.53 637.53 637.53 637.53 637.53 637.53 637.53 637.53 637.53 637.52539 637.52589 0.0001346

114 568.66 568.66 568.66 568.66 568.66 568.66 568.66 568.66 568.66 568.66 568.66 568.65752 568.65816 0.0001731

120 453.41 453.41 453.41 453.41 453.41 453.41 453.41 453.41 453.41 453.41 453.41 453.40569 453.40632 0.0001762

126 333.33 333.33 333.33 333.33 333.33 333.33 333.33 333.33 333.33 333.33 333.33 333.33322 333.33375 0.0001557

132 219.50 219.50 219.50 219.50 219.50 219.50 219.50 219.50 219.50 219.50 219.50 219.50007 219.50043 0.0001115

138 129.19 129.19 129.19 129.19 129.19 129.19 129.19 129.19 129.19 129.19 129.19 129.18819 129.18842 7.404E−05

144 112.42 112.42 112.42 112.42 112.42 112.42 112.42 112.42 112.42 112.42 112.42 112.41943 112.41949 1.761E−05

150 97.45 97.45 97.45 97.45 97.45 97.45 97.45 97.45 97.45 97.45 97.45 97.448267 97.448341 2.304E−05

156 90.45 90.45 90.45 90.45 90.45 90.45 90.45 90.45 90.45 90.45 90.45 90.446248 90.446295 1.457E−05

162 87.21 87.21 87.21 87.21 87.21 87.21 87.21 87.21 87.21 87.21 87.21 87.206914 87.206973 1.83E−05

168 77.42 77.42 77.42 77.42 77.42 77.42 77.42 77.42 77.42 77.42 77.42 77.424034 77.424084 1.435E−05

174 74.86 74.86 74.86 74.86 74.86 74.86 74.86 74.86 74.86 74.86 74.86 74.857992 74.858069 2.236E−05

180 71.03 71.03 71.03 71.03 71.03 71.03 71.03 71.03 71.03 71.03 71.03 71.025309 71.025419 3.153E−05

186 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.17 69.1709 69.171087 5.39E−05

192 64.23 64.23 64.23 64.23 64.23 64.23 64.23 64.23 64.23 64.23 64.23 64.231879 64.232212 9.517E−05

198 61.68 61.68 61.68 61.68 61.68 61.68 61.68 61.68 61.68 61.68 61.68 61.680446 61.681126 0.0001951
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and deviation of peak time (DPOT) have been considered for comparison. The results show that all three opti-
mization algorithms are equally efficient in terms of DPOT (DPOTTLBO = DPOTGA = DPOTPSO = 0), while TLBO 
outperforms the GA and PSO in terms of DPO; DPOTLBO = 0.42, DPOGA = 0.70, and DPOPSO = 0.60. This demon-
strates the TLBO’s capability to estimate the peak flood value which is a critical value in flood routing accuracy. 
It should be noted that the performances of the GA and PSO were obtained after parameter calibration, while 
TLBO reached the solutions without algorithmic parameter tuning.

Concluding remarks
There are many evolutionary optimization algorithms such as the Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO) among well-known ones, and Cat Swarm Optimization (CSO) and Flower Pollination 
Algorithm (FPA) among recently developed ones. These algorithms calculate near global optimal solutions for 
complex problems. Yet, their performance relies on the pre-calibration of algorithmic parameters, for there is 
no deterministic method for their assignment. The specification of evolutionary algorithmic parameters is com-
monly guided by experienced gained with similar optimization problems, if available. This paper implemented 
TLBO to estimate the three parameters of the nonlinear Muskingum models. TLBO was coupled with a nonlinear 
Muskingum flood routing model to make optimal predictions of outflow hydrographs by means of K,χ , and m 
calibration, which is the major challenge in Muskingum application for flood routing purposes. The coupling 
of TLBO with Muskingum routing bypassed the need for specific algorithmic optimization parameters, which 
are not required in TLBO. The results of NSE index (0.99 and 0.94 for the Wilson and Wye River examples, 
respectively) demonstrate the excellent performance of TLBO for estimating the parameter values rapidly with-
out requiring fine-tuning of optimizing algorithmic parameters. The excellent performance of TLBO with the 
3-parameter Muskingum model makes the TLBO a suitable candidate to tackle the 4-parameter Muskingum 
routing problem in future works, which may lead to even better accuracy of Muskingum flood routing.

Table 3.  Observed and average simulated outflow timeseries for the Wilson benchmark problem.

I Time (h) Oi (m
3/s) Ôi (m

3/s) (Oi − Ôi)
2 (Oi − O)2

0 0 22.00 22.00 0.00 690.26

1 6 21.00 21.77 0.59 743.80

2 12 21.00 19.91 1.20 743.80

3 18 26.00 20.74 27.67 469.07

4 24 34.00 32.41 2.52 203.71

5 30 44.00 48.02 16.15 18.26

6 36 55.00 60.43 29.53 45.26

7 42 66.00 70.44 19.72 314.26

8 48 75.00 78.12 9.76 714.35

9 54 82.00 82.76 0.58 1137.53

10 60 85.00 84.57 0.18 1348.89

11 66 84.00 82.39 2.60 1276.44

12 72 80.00 78.55 2.09 1006.62

13 78 73.00 73.18 0.03 611.44

14 84 64.00 65.84 3.37 247.35

15 90 54.00 57.88 15.06 32.80

16 96 44.00 48.70 22.06 18.26

17 102 36.00 39.31 10.92 150.62

18 108 30.00 30.89 0.78 333.89

19 114 25.00 24.29 0.51 541.62

20 120 22.00 20.03 3.89 690.26

21 126 19.00 19.31 0.10 856.89

Sum – – – 169.31 12,222.36

SSD = 169.31 NSE = 0.99
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Table 4.  Observed and simulated outflows for the Wye River Benchmark problem.

i Time (h) Oi (m
3/s) Ôi (m

3/s) (Oi − Ôi)
2 (Oi − O)2

0 0 102.00 102.00 0.00 26,110.76

1 6 140.00 171.37 984.36 15,274.05

2 12 169.00 129.60 1551.97 8946.93

3 18 190.00 219.44 866.95 5415.23

4 24 209.00 189.89 365.35 2979.88

5 30 218.00 180.26 1424.53 2078.29

6 36 210.00 197.97 144.61 2871.70

7 42 194.00 172.79 450.00 4842.52

8 48 172.00 155.64 267.73 8388.40

9 54 149.00 110.41 1489.18 13,130.46

10 60 136.00 148.17 148.06 16,278.76

11 66 228.00 172.98 3027.29 1266.52

12 72 303.00 251.59 2643.48 1553.29

13 78 366.00 302.30 4057.67 10,488.17

14 84 456.00 480.43 596.76 37,022.29

15 90 615.00 764.70 22,411.35 123,490.23

16 96 830.00 801.86 791.78 320,822.29

17 102 969.00 741.45 51,778.15 497,605.76

18 108 665.00 637.53 754.83 161,131.40

19 114 519.00 568.66 2465.92 65,235.17

20 120 444.00 453.41 88.48 32,548.40

21 126 321.00 333.33 152.12 3296.11

22 132 208.00 219.50 132.26 3090.05

23 138 176.00 129.19 2191.33 7671.70

24 144 148.00 112.42 1265.98 13,360.64

25 150 125.00 97.45 759.10 19,206.70

26 156 114.00 90.45 554.78 22,376.64

27 162 106.00 87.21 353.18 24,834.05

28 168 97.00 77.42 383.22 27,751.64

29 174 89.00 74.86 200.00 30,481.05

30 180 81.00 71.03 99.49 33,338.46

31 186 76.00 69.17 46.64 35,189.35

32 192 71.00 64.23 45.81 37,090.23

33 198 66.00 61.68 18.65 39,041.11

Sum – – – 102,510.99 1,654,208.24

SSD = 102,510.99 NSE = 0.94
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Figure 4.  Inflow, observed, and average simulated outflow hydrographs in (a) Wilson, and (b) Wye River 
benchmarks.

Table 5.  Muskingum model parameters with performance metrics and run time.

Case study

Muskingum model 
parameters

Performance 
metric

Run time (s)K χ m R2 NSE

Wilson 0.0703 0.1895 2.1339 0.99 0.99 2.531

Wye River 0.0103 0.2221 2.1493 0.97 0.94 3.488
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 9 February 2021; Accepted: 19 July 2021

References
 1. Giordano, R. et al. Modelling the complexity of the network of interactions in flood emergency management: The Lorca flash flood 

case. J. Environ. Model. Softw. 95, 180–195 (2017).
 2. McCarthy, G. T. The unit hydrograph and flood routing. In Proc., Conf. of the North Atlantic Division, U.S. Army Corps of Engineers, 

New London, Conn. (1938).
 3. Tewolde, M. H. & Smithers, J. C. Flood routing in ungauged catchments using Muskingum methods. Water SA 32(3), 379–388 

(2006).
 4. Song, X., Kong, F. & Zhu, Z. Application of Muskingum routing method with variable parameters in ungauged basin. Water Sci. 

Eng. 4(1), 1–12 (2011).
 5. Aboutalebi, M., Bozorg Haddad, O. & Loaiciga, H. A. Application of the SVR-NSGAII to hydrograph routing in open channels. 

J. Irrig. Drain. Eng. https:// doi. org/ 10. 1061/ (ASCE) IR. 1943- 4774. 00009 69 (2016).
 6. Niazkar, M. & Afzali, S. Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method. Hydrol. 

Res. 48(5), 1253–1267 (2017).
 7. Chow, V. T., Maidment, D. & Mays, L. Applied Hydrology (McGraw-Hill, 1988).

Figure 5.  The scatter plots of the observed and simulated outflows corresponding to (a) the Wilson, and (b) the 
Wye River benchmarks.

Figure 6.  Comparison of TLBO,  GA18, and  PSO22 performance accuracy simulating the observed outflow 
timeseries in the Wilson benchmark.

https://doi.org/10.1061/(ASCE)IR.1943-4774.0000969


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16183  | https://doi.org/10.1038/s41598-021-95721-0

www.nature.com/scientificreports/

 8. Geem, Z. W. Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search algorithm. 
J. Hydrol. Eng. 16(8), 684–688 (2011).

 9. Gill, M. A. Flood routing by Muskingum method. J. Hydrol. 36(3–4), 353–363 (1978).
 10. Heggen, R. J. Univariate least squares Muskingum flood routing. Water Resour. Bull. 20(1), 103–107 (1984).
 11. Aldama, A. Least-squaresparameter estimation for Muskingum flood routing. J. Hydraul. Eng. 4(580), 580–586 (1990).
 12. Yoon, J. & Padmanabhan, G. Parameter estimation of linear and nonlinear Muskingum models. J. Water Resour. Plan. Manag. 

119(5), 600–610 (1993).
 13. Kshirsagar, M. M., Rajagopalan, B. & Lal, U. Optimal parameter estimation for Muskingum routing with ungauged lateral inflow. 

J. Hydrol. 169(1–4), 25–35. https:// doi. org/ 10. 1016/ 0022- 1694(94) 02670-7 (1995).
 14. Das, A. Parameter estimation for Muskingum models. J. Irrig. Drain. Eng. 130(2), 140–147 (2004).
 15. Geem, Z. Parameter estimation for the nonlinear Muskingum model using the BFGS technique. J. Irrig. Drain. Eng. 5(474), 474–478 

(2006).
 16. Sheng, Z., Ouyang, A., Liu, L. & Yuan, G. A novel parameter estimation method for Muskingum model using new Newton-type 

trust region algorithm. Math. Probl. Eng. https:// doi. org/ 10. 1155/ 2014/ 634852 (2014).
 17. Kim, J. H., Geem, Z. W. & Kim, E. S. Parameter estimation of the nonlinear Muskingum model using harmony search. J. Am. Water 

Resour. Assoc. 37(5), 1131–1138 (2001).
 18. Mohan, S. Parameter estimation of nonlinear Muskingum models using genetic algorithm. J. Hydraul. Eng. 2(137), 137–142 (1997).
 19. Geem, Z. W., Kim, J. H. & Yoon, Y. N. Parameter calibration of the nonlinear Muskingum model using harmony search. J. Korea 

Water Resour. Assoc. 33(S1), 3–10 (2000).
 20. Zhan, S. C. & Xu, J. Application of ant colony algorithm to parameter estimation of Muskingum Routing Model. J. Nat. Disasters 

14(5), 20–24 (2005).
 21. Chen, J. & Yang, X. Optimal parameter estimation for Muskingum model based on Gray-Encoded Accelerating Genetic algorithm. 

Commun. Nonlinear Sci. Numer. Simul. 12(5), 849–858 (2007).
 22. Chu, H. & Chang, L. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J. Hydraul. 

Eng. 14(9), 1024–1027 (2009).
 23. Luo, J. & Xie, J. Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J. Hydrol. 

Eng. 15(10), 844–851 (2010).
 24. Tahershamsi, A. & Sheikholeslami, R. Optimization to identify Muskingum model parameters using imperialist competitive 

algorithm. Int. J. Optim. Civ. Eng. 1(3), 475–484 (2011).
 25. Azadnia, A. & Zahraie, B. Optimization of nonlinear Muskingum method with variable parameters using multi-objective particle 

swarm optimization. In Proceeding of World Environmental and Water Resources Congress, Rhode Island, USA, 16–20 May (2010).
 26. Xu, D., Qiu, L. & Chen, S. Estimation of nonlinear Muskingum model parameter using differential evolution. J. Hydrol. Eng. 17(2), 

348–353 (2012).
 27. Karahan, H., Gurarslan, G. & Geem, Z. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid 

harmony search algorithm. J. Hydrol. Eng. 18(3), 352–360 (2013).
 28. Niazkar, M. & Afzali, S. Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum 

models. J. Hydrol. Eng. https:// doi. org/ 10. 1061/ (ASCE) HE. 1943- 5584. 00010 28 (2014).
 29. Yuan, X., Wu, X., Tian, H., Yuan, Y. & Adnan, R. Parameter identification of nonlinear Muskingum model with backtracking search 

algorithm. Water Resour. Manag. 30(8), 2767–2783 (2016).
 30. Hamedi, F. et al. Parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm. J. Irrig. 

Drain. Eng. 142(12), 04016059 (2016).
 31. Easa, S. M. New and improved four-parameter non-linear Muskingum model. Proc. Inst. Civ. Eng. Water Manag. 167(5), 288–298 

(2014).
 32. Moghaddam, A., Behmanesh, J. & Farsijani, A. Parameters estimation for the new four-parameter nonlinear Muskingum model 

using the Particle Swarm Optimization. Water Resour. Manag. 30(7), 2143–2160 (2016).
 33. Norouzi, H. & Bazargan, J. Flood routing by linear Muskingum method using two basic floods data using Particle Swarm Opti-

mization (PSO) algorithm. Water Sci. Technol. Water Supply 20(5), 1897–1908 (2020).
 34. Niazkar, M. & Hosein Afzali, S. New nonlinear variable-parameter Muskingum models. KSCE J. Civ. Eng. 21(7), 2958–2967 (2017).
 35. Farzin, S. et al. Flood routing in river reaches using a three-parameter Muskingum model coupled with an improved bat algorithm. 

Water 10(9), 1130 (2018).
 36. Bai, T., Wei, J., Yang, W. & Huang, Q. Multi-objective parameter estimation of improved Muskingum model by wolf pack algorithm 

and its application in Upper Hanjiang River, China. Water 10(10), 1415 (2018).
 37. Farahani, N.,et al. A new method for flood routing utilizing four-parameter nonlinear Muskingum and shark algorithm. Water 

Resour. Manag. 33, 1–15 (2019).
 38. Sarzaeim, P., Bozorg-Haddad, O. & Chu, X. Teaching-learning-based optimization (TLBO) algorithm. In Advanced Optimization 

by Nature-Inspired Algorithms. Studies in Computational Intelligence Vol. 720 (ed. Bozorg-Haddad, O.) (Springer, 2018). https:// 
doi. org/ 10. 1007/ 978- 981- 10- 5221-7_6.

 39. Rao, R. V., Savsani, V. J. & Vakharia, D. P. Teaching-learning-based optimization: A novel method for constrained mechanical 
design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011).

 40. Bahrami, M., Bozorg-Haddad, O., & Chu, X. Cat Swarm Optimization (CSO) algorithm. In Advanced Optimization by Nature-
Inspired Algorithms, Studies in Computational Intelligence, (ed. Omid Bozorg-Haddad) vol. 720, 9–18, (Springer, 2018).

 41. Azad, M., Bozorg-Haddad, O., & Chu, X. Flower pollination algorithm (FPA). In Advanced Optimization by Nature-Inspired 
Algorithms, Studies in Computational Intelligence, vol. 720, 59–67 (Springer, 2018).

 42. Garousi-Nejad, I., Bozorg-Haddad, O. & Loáiciga, H. Modified firefly algorithm for solving multireservoir operation in continuous 
and discrete domains. J. Water Resour. Plan. Manag. https:// doi. org/ 10. 1061/ (ASCE) WR. 1943- 5452. 00006 44 (2016).

 43. Okkan, U. & Kirdemir, U. Locally tuned hybridized particle swarm optimization for the calibration of the nonlinear Muskingum 
flood routing model. J. Water Clim. Change 11(1S), 343–358 (2020).

 44. Rao, R. V. Introduction to optimization. In Teaching Learning Based Optimization Algorithm. (ed. Rao, R. Venkata.) 1–8 (Springer 
International Publishing, 2016).

 45. Tung, Y. K. River flood routing by nonlinear Muskingum method. J. Hydraul. Eng. 111(12), 1447–1460 (1985).
 46. Rao, R. V. & Kalyankar, V. D. Parameters optimization of modern machining processes using teaching-learning-based optimization 

algorithm. Eng. Appl. Artif. Intell. 26(1), 524–531 (2013).
 47. Wilson, E. M. Engineering Hydrology (MacMillan Education Ltd., 1974).
 48. Karahan, H., Gurarslan, G. & Geem, Z. W. A new nonlinear Muskingum flood routing model incorporating lateral flow. Eng. 

Optim. 47(6), 737–749 (2015).
 49. Natural Environment Research Council (NERC). Flood Studies Report, Vol. 3: Flood Routing Studies. (NERC, 1975).
 50. Barati, R. Application of Excel Solver for parameter estimation of the nonlinear Muskingum models. KSCE J. Civ. Eng. 17(5), 

1139–1148 (2013).
 51. Vatankhah, A. R. Discussion of parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid Harmony 

Search algorithm by HalilKarahan, GurhanGurarslan, and Zong Woo Geem. J. Hydrol. Eng. 19(4), 839–842 (2014).

https://doi.org/10.1016/0022-1694(94)02670-7
https://doi.org/10.1155/2014/634852
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001028
https://doi.org/10.1007/978-981-10-5221-7_6
https://doi.org/10.1007/978-981-10-5221-7_6
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000644


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16183  | https://doi.org/10.1038/s41598-021-95721-0

www.nature.com/scientificreports/

 52. Easa, S. M. Evaluation of nonlinear Muskingum model with continuous and discontinuous exponent parameters. KSCE J. Civ. 
Eng. 19(7), 2281–2290 (2015).

 53. Bozorg-Haddad, O., Hamedi, F., Fallah-Mehdipour, E., Orouji, H. & Marino, M. A. Application of a hybrid optimization method 
in Muskingum parameter estimation. J. Irrig. Drain. Eng. https:// doi. org/ 10. 1061/ (ASCE) IR. 1943- 4774. 00009 29,04015 026 (2015).

 54. Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 10(3), 
282–290 (1970).

Acknowledgements
The corresponding author thanks Iran’s National Science Foundation (INSF) for its support of this research.

Author contributions
O.B.-H.; First author, corresponding author, conceptualization; funding acquisition; methodology; project 
administration; supervision; validation; visualization; roles/writing—original draft. P.S.; Second author, data 
curation; investigation; formal analysis; resources; roles/writing—original draft. H.A.L.; Third author, validation; 
visualization; writing—review & editing.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to O.B.-H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1061/(ASCE)IR.1943-4774.0000929,04015026
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Developing a novel parameter-free optimization framework for flood routing
	Methods
	The nonlinear Muskingum flood-routing model. 
	The teaching–learning-based optimization (TLBO) algorithm. 
	Linking TLBO to the Muskingum model. 

	Results and discussion
	Concluding remarks
	References
	Acknowledgements




