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Tunable plasmonic reflection by bound 1D electron states in a 2D Dirac metal
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2Department of Physics, University of California Riverside, 900 University Avenue, Riverside, California 92521

3Department of Physics, Iowa State University, 2334 Pammel Drive, Ames, Iowa 50011
4Department of Physics, Columbia University, New York, New York 10027

(Dated: June 16, 2016)

We show that surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected
by line-like perturbations hosting one-dimensional electron states. The reflection originates from a strong
enhancement of the local optical conductivity caused by optical transitions involving these bound states. We
propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow
electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced
conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

Plasmon scattering and plasmon losses in Dirac materials,
such as graphene and topological insulators, are problems of
interest to both fundamental and applied research. It is an
outstanding challenge to understand various kinds of inter-
action (electron-electron, electron-phonon, electron-photon,
electron-disorder) responsible for these complex phenom-
ena1–5. At the same time, control of plasmon scattering is
critical if this class of materials is to become a new platform
for nanophotonics6–9.

One source of plasmon scattering is long-range inhomo-
geneity of the electron density, which causes local fluctua-
tions in the plasmon wavelength λp . If the inhomogeneities
are weak, those of size comparable to the average λp are ex-
pected to be the dominant scatterers10,11 Surprisingly, recent
experiments have revealed that one-dimensional (1D) defects
of nominally atomic width can act as effective reflectors for
plasmons with wavelengths as large as a few hundred nm.
Strong plasmon reflection was observed near grain bound-
aries12,13, topological stacking faults14, as well as nanometer-
scale wrinkles and cracks11,12 in graphene. If this anomalous
reflection is indeed an ubiquitous effect largely unrelated to
the specific nature of a defect, it calls for a universal ex-
planation. In this Letter we attribute its origin to electron
bound states commonly occurring near 1D defects. We show
that optical transitions involving the bound states can pro-
duce strong dissipation at small distances x from the de-
fect and therefore, alter plasmon dynamics. To support this
idea we present a theoretical analysis of an exactly solvable
model, which illustrates qualitative and quantitative charac-
teristics of the bound states and predicts how their optical
response depends on the tunable parameters of a 1D poten-
tial well. We also report an attempt to probe the predicted
effects experimentally. Our approach is to employ an ul-
tranarrow electric gate in the form of a carbon nanotube
(CNT) to create a precisely tunable 1D barrier in graphene.
This device enables a systematic investigation and control
of plasmon propagation, including, in principle, an imple-
mentation of a plasmon on-off switch (Fig. 1). What we find
is that the measured real-space profile of the plasmon am-
plitude (Fig. 4) cannot be accounted for by a local change in
λp alone. Instead, the data are consistent with the presence
of an enhanced dissipation in the region next to the CNT.

The amount of this dissipation agrees in the order of mag-
nitude with the power absorption due to 1D bound states in
our model.
Model.—We assume that the graphene quasiparticles

can be described by a 2D Dirac Hamiltonian H =
ħvF

(
σz kx +σy ky

)+ v(x), where σy , σz are the Pauli ma-
trices and v(x) is the total (screened) potential induced by
the 1D gate. For simplicity, we assume that v(x) is a square
well of width d and depth u although more realistic poten-
tials15–18 can also be considered. In the present case the
eigenfunctions Ψ are combinations of plane waves and/or
exponentials that have to be matched at x =±d/2, see Ap-
pendix A. The electron momentum ky along the perturba-
tion (in the y-direction) is conserved, so that the gapless 2D
Dirac spectrum is effectively replaced by a 1D one with a
gap ∆= |ħvF ky |. Within the gap electron states localized at
the well exist [Fig. 2(b)]. The energies εn(ky ) of these bound
states, where n = 1,2, . . ., are the solutions of the transcen-
dental equation20

tan
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(E +U )2 −K 2
y√

(E +U )2 −K 2
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E 2 −K 2
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K 2
y −E(E +U )

. (1)

Here E = εnd/(ħvF ) is the dimensionless energy and

Ky = ky d , U = ud/(ħvF ) , (2)

are, respectively, the dimensionless y-momentum and the
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FIG. 1. (Color online) Schematic of an ultranarrow plasmon re-
flector. The incident plasmon (blue) can propagate freely unless a
local perturbation hosting a 1D electron state (the dashed arrow)
causes it to be reflected (orange). The bound state parameters are
controlled by voltage Vg of a nanotube gate (green).
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FIG. 2. (Color online) (a) Dispersion of bound states for a sheet
(blue) or a ribbon of width 2d (the black dots) for U = 5. The light
gray are empty states in the continuum. The dark and medium
gray are occupied states in the continuum. The last of these, with
E between EF = µd/ħvF and Emin = EF −ωd/vF , enable optical
transitions (the arrows) of frequency ω. Transitions between bound
states (the dashed arrow) can occur for some EF , e.g., EF = 0 at
which the state i is filled and the state f is empty. (b) The density
distribution n̄ = |Ψ|2 of the two states i and f for the transition
indicated by the cyan arrow in (a). The state i (blue) is localized
in the well, while the state f (orange) is extended. Parameters:
Ky = 2.5, ωd/vF =π/2.

well depth. The dispersions of the three lowest bound states
for U = 5 are shown in Fig. 2(a).

The response of the system to an optical excitation of
frequency ω polarized in the x-direction is described by
an effective conductivity σ(x) given by the Kubo formula19,
which determines the local current density jx (x) = Exσ(x)
in the approximation that the total electric field Ex due to
the optical excitation is uniform. Below we focus on the
real part of σ(x), which determines local power dissipation.
We assume that graphene is doped and consider only fre-
quencies ħω < 2|εF |, for which the optical conductivity of
an infinite graphene sheet vanishes (if we neglect disorder,
many-body scattering, and thermal broadening3). This im-
plies that in the absence of the perturbation, U = 0, we must
have Reσ(x) = 0 at all x. On the other hand, when the
potential well is present, a finite Reσ(x) exists. There are
two types of relevant optical transitions: those that involve
the bound states [as either the initial i or the final f states,
Fig. 2(a)] and those that do not. The contribution of the
former to Reσ(x) is maximized near the potential well and
decays exponentially at |x| > d/2 due to the localized nature
of the bound states. The contribution of the latter is small,
oscillating, and decaying algebraically with x19. Resolving
the detailed real-space features of σ(x) in an optical experi-
ment is challenging (see below). A more practical observable
is the normalized integrated conductivity:

σ̄≡ 1

d

∞∫
−∞

d x Reσ(x) . (3)

According to our simulations, transitions that involve the
bound states give the dominant contribution to σ̄. In partic-
ular, bound-to-bound state transitions produce numerically
large values of σ̄ expressed in units of e2/h. Such transi-
tions are possible at discrete ky where the energy difference

between the states of the same momentum matches ħω pro-
vided the lower (higher) state is occupied (empty). If the
chemical potential µ is gradually increased, e.g., by electro-
static gating, the state occupations would change, leading to
either blocking or unblocking of these transitions. Accord-
ingly, σ̄ would either sharply drop or jump, see Fig. 3(a).
These changes persist, albeit blurred, at finite temperatures,
see the dashed curve in Fig. 3(a).

Sharp drops in σ̄ also occur when the bound states merge
with the continuum and get liquidated (become extended).
The drop is abrupt if the optical transitions probe a sin-
gle ky or a narrow range of ky . In principle, this situation
can be realized in a graphene ribbon running perpendicular
to the linelike perturbation. In such a ribbon the allowed
ky = mπ/W + const are discrete, as shown schematically
by the dots in Fig. 2(b). The coupling to a single bound
state can be achieved under the condition π/W > ω/vF ,
i.e., by using a ribbon of a narrow width W or the exci-
tation of a low frequency ω. In Fig. 3(b) we show three
numerically calculated traces of σ̄ as a function of the
well depth U for a fixed dimensionless chemical potential
EF = µd/(ħvF ) = −π/2. The first trace is computed for
a ribbon of width W = 2d probed at the excitation en-
ergy ħω = |µ|. It exhibits pronounced oscillations of σ̄.
In particular, σ̄ drops to zero when a bound state merges
with the continuum. The other two traces correspond to
a 2D graphene sheet. Although the sharp drops become
blurred, they remain pronounced at a low excitation energy
ħω1 = |µ|/10 and still evident at ħω2 = |µ|.

The enhanced local optical conductivity around the 1D
gates described above causes plasmons to be strongly re-
flected. According to the first-order perturbation the-
ory11,12,19, the reflection coefficient r of a normally incident
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FIG. 3. (Color online) (a) Integrated conductivity σ̄ of a graphene
sheet at ω = 830cm−1. The sharp changes are caused by block-
ing/unblocking of the transitions involving bound states as a re-
sult of changing occupations of the levels as a function of the
graphene chemical potential µ. For example, the plateau at
0.02 < µ(eV) < 0.12 is due to the (blue) dashed-line transition in
Fig. 2(a). (b) Integrated conductivity σ̄ of a sheet (s) and a ribbon
(r) at T = 0 and KF = −π/2. Sharp changes at U = 8 and 10 for
ω =ω2 arise from a transition between bound states. Parameters:
d = 10nm, ω1 = 83cm−1, ω2 = 830cm−1.
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FIG. 4. (Color online) Measurement of the conductivity σ̄ by the s-
SNOM. (a) A schematic showing graphene (variable intensity gray)
gated by a CNT (green) separated from it by a thin hBN layer. The
induced perturbation is parameterized by spatially varying kF and
γ. In the experiment, the AFM tip (triangle) is polarized by a fo-
cused infrared beam (not shown), which enables it to launch a plas-
mon (blue). The reflected plasmon (orange) causes an additional
tip polarization, resulting in a modified optical signal backscat-
tered by the tip and detected in the far field. (b) The s-SNOM
amplitude images of the region next to the CNT for Vg =+1...−2V

and ω = 890cm−1. The twin fringes (bright lines) intensify and
separate as |Vg | increases. (c) The AFM topography image of the
same region. Scale bar: 1µm. (d)-(e) The s-SNOM amplitude (s̄)
and phase (φ) along the line perpendicular to the CNT; s̄ is nor-
malized to x = −200nm point. The best theoretical fits (gray) for
Vg =−2V are included in (e).

plasmon wave is

r1 ' 2πi

λp

∞∫
−∞

d x

[
σ(x)

σ∞
−1

]
. (4)

For arbitrary perturbations, we can use the approximation
|r | ≈ min( |r1|,1). Using the results of Fig. 3(b) we estimate
|r | ≈ 0.3 at the chemical potential of 0.25eV where the pre-
dicted σ̄ ≈ 5e2/h. This roughly corresponds to the regime
probed by our experiments (see below). At the chemical
potential of 0.3eV where the calculated local conductivity
is much larger, σ̄≈ 40e2/h, the reflection coefficient should
approach unity, realizing the “reflector on” state in Fig. 1.
Experiment and analysis.—To investigate the described

above phenomena experimentally we fabricated a nanode-
vice that contained (bottom to top) a Si/SiO2 substrate, a
10nm-thick layer of hexagonal boron nitride (hBN), and a
mechanically exfoliated graphene flake. A metallic single-
wall CNT was placed between hBN and SiO2. The local
charge density of graphene was tunable by the voltage Vg

applied between the CNT and graphene. The average car-

rier density in graphene |n| ∼ 5× 1012 cm−2 was produced
by uncontrolled ambient dopants (acceptors)21. To infer
the local optical conductivity σ(x) we used scattering-type
scanning near-field optical microscopy (s-SNOM)3,22,23, see
Fig. 4(a). The s-SNOM utilizes a tip of an atomic force mi-
croscope (AFM) with a radus 25nm as an optical antenna
that couples incident infrared light to graphene plasmons.
The backscattered light is analyzed to extract the ampli-
tude s̄ and the phase φ of the genuine near-field signal,
Fig. 4(b,d,e). Crudely speaking, this signal is proportional
to the electric field inside the tip-sample nanogap. The
variation of this field with the tip position is caused by
the standing-wave patterns of surface plasmons24,25. These
standing waves are due to the interference of the plasmon
waves launched by the tip with the waves reflected by the
charge inhomogeneity induced by the CNT. The spacing
of the interference fringes is equal to one half of the plas-
mon wavelength λp . The latter is given by λp = Re(2π/qp ),
where qp (x) = iκω/2πσ(x) is the complex plasmon momen-
tum and κ is the average permittivity of the media surround-
ing graphene3. Therefore, s-SNOM images combined with
the formula for qp give a direct estimate of Imσ(x). The
extraction of Reσ(x) requires an electromagnetic simulation
of the coupled tip-graphene system, which was done using
the numerical algorithm developed previously12,19,24. To fa-
cilitate connection with that previous work, we parametrized
the conductivity via

σ(x) = e2vF

πħω
i kF (x)

1+ iγ(x)
, (5)

which was modelled after the long-wavelength Drude (intra-
band) conductivity of graphene3 with Fermi momentum kF

and dimensionless damping factor γ. The goal of the data
analysis was to determine the profiles of kF (x) and γ(x) that
yield the best fit to the s-SNOM data. In this parametriza-
tion, the presence of the bound states should increase the
local damping, so the signature we were looking for was the
enhanced value of γ(x).

Our experimental data are presented in Fig. 4. The AFM
topography image, Fig. 4(c), shows that the CNT does not
produce any visible topographic features. However, in the
near-field signal, up to two pairs of intereference fringes ap-
pear on each side of the CNT [the bright lines in Fig. 4(b)].
Similar twin fringes have been observed in prior s-SNOM
imaging12–14,21 of linear defects in graphene. Importantly, the
intensity and spacing of the fringes we observe here evolve
with the CNT voltage Vg , which attests to their electronic
(specifically, plasmonic) origin.

In addition to the controlled perturbation induced by the
CNT, graphene contains uncontrolled ones due to random
defects. To reduce the random noise caused by those, we
averaged the near-field signal over a large number of lin-
ear traces taken perpendicular to the CNT. Thus obtained
line profiles of both the amplitude s̄ and the phase φ are
plotted in Fig. 4(d) and (e). We focus on the Vg = −2V
trace, which shows the strongest modulation. The accu-
rate determination of functions kF (x) and γ(x) is impacted
by the s-SNOM resolution limit ∼ 20nm. In our fitting we
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FIG. 5. (Color online) The LDOS as a function of the dimension-
less energy E for the U = 5 square-well model at the three fixed
distances from the CNT: x/d = 0 (red), 0.6 (green), and 1.0 (violet).
The dashed line shows the LDOS of unperturbed graphene.

assumed that kF (x) is given by the perfect screening model,
k2

F (x) = [k2
F (0)d 2 + k2

F (∞)x2]/(d 2 + x2), which should be a
good approximation for high doping26. The adjustable pa-
rameters are kF (0) and kF (∞). For γ(x) we considered trial
functions in the form of a peak (dip) at x = 0, with adjustable
width and height (depth), as sketched in Fig. 4(a). The trial
kF (x) and γ(x) were fed as an input to the electromagnetic
solver described previously12,24. As detailed in Appendix D,
a good agreement with the observed form of the twin fringes
requires a strong peak in γ(x) near the CNT. The shape of
the fringes was found to depend primarily on the integral of
γ(x)−γ(∞), so in the end we modeled γ(x) by a box-like
discontinuity with a central region of a fixed width 13.5nm
and two adjustable parameters γ(0), γ(∞). The best fits [the
gray curves in Fig. 4(e)] to the Vg =−2V s-SNOM data were
obtained using γ(0) = 1.65.

To establish a rough correspondence between the pro-
files of Fig. 4(e) and the square-well model we take d to
be the thickness of the hBN spacer d = 10nm and U to
give the same integrated weight

∫
v(x)d x ≡ ud = ħvF U =

ħvF
∫

[kF (x)−kF (∞)]d x. This prescription implies EF = 4,
U = 13, and σ̄= 3.5e2/h for ω= 890cm−1 = 1.7vF /d 19. The
square-well model in Fig. 3 yields a comparable optical con-
ductivity σ̄ = 4.7e2/h although for a smaller U = 5. Given
a number of simplifying assumptions we have made in the
modelling, this level of agreement seems adequate.
Summary and future directions.—In this Letter, we pro-

posed a model for the anomalous plasmon reflection by ul-
tranarrow electron boundaries in graphene. We validated
this concept in experiments with electrostatically tunable
line-like perturbations. One broad implication of our work
is that nanoimaging of collective modes can reveal nontriv-
ial electron properties, in this case, 1D bound states. Recent
experiments have demonstrated that this technique is not
limited to plasmons or graphene or 2D systems27–30. We
hope that our work stimulates even wider use of this novel
spectroscopic tool.

A particularly intriguing future direction is to comple-

ment s-SNOM with scanned probe techniques other than
AFM topography. For example, scanning tunneling mi-
croscopy, which has a superior spatial resolution, can be
used to measure the local electron density of states (LDOS).
For the particular model system studied here, the features
exhibited by the LDOS should be quite striking, see Fig. 5
and Appendix B. The origin of these features can be un-
derstood by examining the dispersions in Fig. 2(a). Within
the selected energy interval there is the total of three bound
states. The topmost one has a monotonic dispersion; the
other two have energy minima at which the LDOS has van
Hove singularities (diverges), see Fig. 5. The strength of
these singularities decreases exponentially with x because
these bound states are localized near the well. At large x,
the LDOS displays the V-shaped energy dependence charac-
teristic of uniform graphene3. We anticipate that the combi-
nation of optical and tunneling nanoimaging and nanospec-
troscopy could provide a refined information about the local
electronic structure. One example of a possible applica-
tion of this knowledge is the design of optimized plasmon
switches (Fig. 1) for Dirac-material-based nanoplasmonics.

We acknowledge support by the ONR under Grant
N00014-13-0464 and by the NSF under Grant ECCS-
1509958 (M.B.).

Appendix A: Local optical conductivity of a nonuniform
graphene

In this section we describe the details of our 1D square
well model, including the analytical expressions for the
wavefunctions and the calculation of the optical conductiv-
ity in the vicinity the well. We start from the 2D Dirac
Hamiltonian for the quasiparticles,

H =ħvF (σz kx +σy ky )+ v(x) , (A1)

where σi are the Pauli matrices acting on the sublattice
pseudospin. The potential v(x) is taken to be a square well,

v(x) =
{
−u, |x| < d/2,

0, |x| > d/2.
(A2)

Without loss of generality, we take u to be positive. As the
system is invariant in the y-direction, ky is conserved, and
so our problem is effectively one-dimensional. We use the
following terminology: region I is the part of the system to
the left of the well (x <−d/2); region II is the strip contain-
ing the well (|x| < d/2); region III is to the right of the well
(x > d/2). For an eigenstate to have the same energy across
all three regions, the magnitude k of its momentum must
obey the following relations

kI = kIII = kII − u

ħvF
, k2

l = k2
xl +k2

y , (A3)

with l = I, II, or III. When kl > 0, the wavefunction belongs
in the conduction band and has the form

Ψc (r) ∝ψc (θl )e i kxl x+i ky y , ψc =
[

i cos(θl /2)
−sin(θl /2)

]
; (A4)
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when kl < 0, the wavefunction belongs to the valence band
and is given by

Ψv (r) ∝ψv (θl )e i kxl x+i ky y , ψv =
[

i sin(θl /2)
cos(θl /2)

]
. (A5)

The angle θl = arctan(ky /kxl ) defines the direction of the
momentum. In the following we use the notation k for kI

and k̄ for kII and similarly for all other quantities.
We find the complete expression for the wavefunction us-

ing the following device. We imagine that this wavefunction
is generated by a plane wave incident from region I, which is
then partially transmitted and reflected at each edge of the
well. This yields

Ψr (r) = e i ky y

p
N c

×


ψ j (θ)e i kx x + r j hψ j (π−θ)e−i kx x , I

t̄ j hψh(θ̄)e i k̄x x + r̄ j hψh
(
π− θ̄)

e−i k̄x x , II

t j hψ j (θ)e i kx x , III

(A6)

where N c = Lx Ly is normalization factor equal to the area of
the system and j and h can be either c or v . The coefficients
r , t̄ , r̄ and t are determined by requiring the wavefunction
to be continuous at the edges of the well, x = ±d/2. If the
wavefunction remains in the same band for all three regions,
the coefficients are

rcc = rv v = i
2

D
e i (ϕ̄−ϕ) sinϕ̄ (sinθ− sin θ̄) , (A7)

t̄cc = t̄v v = 2

D
e i ϕ̄−ϕ2 cosθcos

θ+ θ̄
2

, (A8)

r̄cc = r̄v v = 2

D
e i 3ϕ̄−ϕ

2 cosθ sin
θ− θ̄

2
, (A9)

tcc = tv v = 2

D
e i (ϕ̄−ϕ) cosθcos θ̄ , (A10)

where ϕ≡ kx d and ϕ̄≡ k̄x d , and

D(k, ky ) = 1+cos(θ+ θ̄)−e i 2ϕ̄[1−cos(θ− θ̄)] . (A11)

If the wavefunction switches band upon entering the well,
the coefficients are

rvc = rcv =−rcc (θ→ θ−π) , (A12)

t̄vc =−t̄cv = t̄cc (θ→ θ−π) , (A13)

r̄vc =−r̄cv = r̄cc (θ→ θ−π) , (A14)

tvc = tcv = tcc (θ→ θ−π) . (A15)

If kx is real, there is another wavefunction Ψl with the same
magnitude k of the momentum (same energy), which corre-
sponds to the wave incident from region III. A quick method
to obtain Ψl is by reflecting Ψr with respect to the y-axis:

Ψl (x) =σyΨ
r (−x) . (A16)

From Ψr and Ψl we construct the orthogonal eigenstates

Ψ± = Ψ
r ±Ψl

p
2

, (A17)

which are labeled by their parity P :

ΨP (x) = PσyΨ
P (−x) , P =±1. (A18)

From the above expression we deduce that states localized
within the potential well must also exist. Indeed, whenever
|k̄| > |k| there exist states with |k| < |ky |, so that kx is imag-
inary and the wavefunction is evanescent outside the well.
This happens when the denominators vanish, D = 0, so that
the eigenstate exists without an incident plane wave from
outside the well. The dispersion of these bound states is
found by solving

i (kk̄ −k2
y ) tanϕ̄= kx k̄x . (A19)

The wavefunction still has the form of Eq. (A6), but with a
normalization factor

N b = 2Ly d

[
|t̄ |2

(
1+P sin θ̄

sinϕ̄

ϕ̄

)
+|t |2 sinθ

e−qd

2qd

]
. (A20)

Note that kx is now imaginary, kx ≡ i q with q > 0. Each
branch of solution except the one terminating at k = ky = 0
is the continuation of Fabry–Pérot (FP) modes outside the
continuum. The FP modes correspond directly to the su-
percritical or quasi-bound states. They satisfy the resonance
condition ϕ̄ = πm with m = 1,2, . . ., so branches of smaller
m emerge at higher ky . This condition can be expanded to
find the expression for the critical point at which the mth
bound state emerges from the valence band,

u

ħvF
= |ky |+

√
k2

y + (mπ/d)2 . (A21)

All the bound state branches asymptotically approach the
line k = |ky |−u/ħvF as |ky |→∞. The wavefunction of each
branch is alternatively even (P = +1) or odd (P = −1) with
the lowest branch being even. An example of the normalized
density of a bound state n̄ ≡ |Ψ|2Ly d is shown in Fig. 6(a)
along with the normalized density of continuum states n̄ ≡
|Ψ|2Lx Ly for comparison.

Having found the expression for the eigenstate wavefunc-
tions, we use the Kubo formula to calculate the nonlocal
conductivity,

σ(r, r′) =− 1

iω

∑
i , f

ν f −νi

ε f −εi − (ω+ i 0+)
×

〈
Ψi (r)| ĵx |Ψ f (r)

〉〈
Ψ f (r′)| ĵx |Ψi (r′)

〉
,

(A22)

where i and f represent initial and final states, ν is the
Fermi-Dirac occupation factor of the state with νi = 1 and
ν f = 0, ε= ħvF k is the energy of the state, and ĵx = evFσz

is the current operator. Assuming that the total field E is
uniform and parallel to x̂, E= Ex x̂, the current-field relation
can be simplified to

jx (x) =
∞∫

−∞
dr′ Exσ(r, r′) ≡ Exσeff(x) . (A23)
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FIG. 6. (a) The normalized density distribution n̄ of the wave functions in a bound-to-continuum optical transition for U ≡ ud/ħvF = 5,
Ky ≡ ky d = 5 and ωd/vF = 1.7. The bound state density (blue) is localized at the well, while the continuum state densities (orange) are
extended. The bound state is on the m = 3 branch and has even parity, thus transition into the even parity final state (dashed curve) is
forbidden. The vertical dotted lines indicate the boundaries of the square well. (b) The real part of the effective conductivity calculated
with the same parameters as in (a) and EF = 4. The peak at the center is caused by bound-to-continuum state transitions, while the long
range oscillations with wavevector ω/vF come from the transitions between states in the continuum. (c) Density perturbation induced by a
square well of depth U = 5 at EF = 4. The step-like discontinuity in the potential leads to a 1/x divergence at the edges of the well, shown
by the dashed curves. For any realistic smooth potential the divergence is regularized, as shown schematically by the thin solid curves.

Note that the integral over y ′ enforces the conservation of
ky ,

∞∫
−∞

d y ′ e i kyi e−i ky f = 2πδ(kyi −ky f ) , (A24)

so that all y and y ′ dependences cancel out in Eq. (A23). We
are interested in the real part of the effective conductivity.
Transitions that contribute satisfy the relations

ky f = kyi , k f = ki + ω

vF
. (A25)

Additionally, the i / f states must have the opposite parity as
the matrix element

M(x) ≡ 〈
Ψi (x)|σz |Ψ f (x)

〉
(A26)

is odd in x when the i / f states have the same parity. To pro-
ceed, we impose periodic boundary conditions and extend
the system size to infinity, so that

∑
i , f

→ g ×


Ly

2π

∫
dky , (bound)

Lx Ly

(2π)2

∫
dkx dky , (continuum)

(A27)

where ky is taken to be positive and g = 8 is the total degen-
eracy, including spin, valley and contribution from negative
ky . Applying the Sokhotski–Plemelj formula

Im
1

x − i 0+
=πδ(x) (A28)

to Eqs. (A22) and (A23), we find for the bound-to-bound
state transitions,

Reσbb
eff (x) = gπ

e2

h

vF

ω
L2

y

×
∣∣∣∣ dki

dky
− dk f

dky

∣∣∣∣−1

k∗
y

M(x)

∞∫
−∞

d x ′ M∗(x ′) ,
(A29)

where k∗
y satisfies Eq. (A25). For bound-to-continuum tran-

sitions, we get

Reσbc
eff(x) = g

2

e2

h

vF

ω
Lx L2

y

×
kmax

y∫
kmin

y

dkyi

|cosθ f |
M(x)

∞∫
−∞

d x ′ M∗(x ′) .
(A30)

The limits of ky are determined from the dispersion, the fre-
quency ω and the doping level kF =µ/(ħvF ). Continuum-to-
bound state transitions result in the same expression except
that the labels i and f are interchanged. The resultant con-
ductivity has a peak around the well and decays quickly away
from the well [Fig. 6(b)]. Finally, continuum-to-continuum
transitions yield

Reσcc
eff(x) = g

4π

e2

h

vF

ω
L2

x L2
y

×
kF∫

0

dkxi

kmax
y∫

kmin
y

dkyi

|cosθ f |
M(x)

∞∫
−∞

d x ′ M∗(x ′) ,
(A31)
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where

kmin
y =

√
max

[
0,

(
kF − ω

vF

)2

−k2
xi

]
,

kmax
y =

√
k2

F −k2
xi .

(A32)

This results in an oscillating conductivity with a period of
2πvF /ω which can be negative, that is, the local current in
real space can go in the opposite direction as the field. This
is however no cause for alarm. Consider the case of uniform
undoped graphene where the conductivity as a function of
momentum at fixed ω is

σ0(q) =−i
e2

4ħ
ω√

v2
F q2 −ω2

. (A33)

The corresponding conductivity in the real-space is

σ0(x) =
∞∫

−∞

d qx

2π
σ0(qx )e i qx x = e2

8ħ
ω

vF
H (1)

0

(
ω

vF
x

)
, (A34)

so that Reσ0(x) ∝ J0
(
ω
vF

x
)
can be negative. Thus conductiv-

ity oscillations with period ∼ 2πvF /ω is a general property
in the presence of nonuniformity. For ω = 890cm−1 in our
s-SNOM experiment this period is 37nm and such oscil-
lations cannot be easily resolved. Therefore, we draw the
reader’s attention to another feature of the computed local
conductivity, which is the prominent peak near the origin,
see Fig. 6(b). We conclude that our simple model does pre-
dict a strong enhancement of dissipation near the nanotube,
in agreement with the experiment. The extra dissipation
is caused by the bound-to-bound state optical transitions.
Of course, these calculations are not meant to be quantita-
tively compared with the experiment because our model of
the square-well potential is not fully realistic. The quantity
more suitable for the purposes of a qualitative comparison
is the average value of the effective conductivity

σ̄≡ 1

W

∞∫
−∞

d x Reσeff(x) . (A35)

similar to Eq. (4) of the main text. As long as W is larger
than d but smaller than the spatial resolution, the near-field
profile is sensitive only to the product σ̄W not the precise
value of W , see Appendix D. The results of our calculations
of σ̄ are shown in Fig. 3 of the main text. For simplicity,
in these calculations we excluded the part of Reσeff result-
ing from continuum-to-continuum transitions because it is
relatively small at the potential well.

Appendix B: Local density and density of states

For better understanding of the effect of the potential
well on electronic properties it is instructive to consider two
other local observables: the carrier density and the local

density of states. We begin with the density perturbation
δn(x). To find this quantity we first find the square of the
absolute value of the wavefunctions |Ψ(x, y)|2 of the occu-
pied eigenstates under the potential well, integrated over ky

and k . The integration is done over the energies k bounded
from above by the Fermi energy and from below by a cut-
off energy km , a large negative number. The same proce-
dure is then repeated for the unperturbed eigenstates (with-
out the potential well). The difference of the two results
is δn. There is however a complication to this procedure
rooted in the “chiral anomaly” in the quantum field-theory
of free Dirac fermions. For x inside the well, the lower cut-
off km for the unperturbed eigenstates must be changed to
k̄m = km−u/ħvF . Without this redefinition, δn(x) would di-
verge as km is decreased. Once this proper background sub-
traction is done, the integration converges to a finite value
δn(x) everywhere except at the edges of the well, x →±d/2.
The remaining divergence can be traced to the discontinu-
ity in the potential v(x). To arrive at this conclusion we
reasoned that the divergence is produced by large negative
energies, and so it could be investigated using the pertur-
bation theory. Therefore, we considered the linear-response
theory expression for the density perturbation:

δn(x) =
∫

d q

2π
e i qxΠ(q)v(q) , (B1)

where

v(q) =−2U0

q
sin

(
qd

2

)
(B2)

is the Fourier transform of the potential v(x) and Π(q) is
the static polarization function of graphene. At large q this
function behaves as

Π(q) =− |q |
4ħvF

(B3)

regardless of the doping level.31 Evaluation of the integral
for δn using this asymptotic form yields

u

4πħvF

(
1

x + d
2

− 1

x − d
2

)
, (B4)

which matches the numerical results calculated as described
above for undoped graphene [Fig. 6(c)]. In reality, i) the lin-
ear dispersion of Dirac fermions does not extend to infinite
momenta and ii) the potential must be smooth. Either way
the divergence is regularized and the perturbed density is
smooth as well, see Fig. 6(c). Not surprisingly, this box-like
density profile is different from the more realistic Lorentzian
function [Eq. (D3)] we used to fit the experimental data in
the main text and in Appendix D below. However, as we ar-
gued in Appendix A, a qualitative comparison between the
present model and the experiment is still meaningful.

Let us now turn to the local density of states (LDOS) ν.
Previously, the LDOS of graphene around clusters of point-
like charged impurities has been measured by scanning tun-
neling spectroscopy.32 These experiments discovered peaks
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FIG. 7. The local density of states ν in the vicinity of a square well potential. (a) The dispersion of the bound states for well depth U = 1.
(b) A false color plot of the LDOS as a function of the dimensionless energy E = kd and distance x/d . (c) Cross sections of (b) taken
at several distances from x = 0 to x = d . The dashed black lines represent the LDOS of unperturbed graphene, ν0 = 2|k|/πħvF . Similar
quantities are shown in (d)-(f) for U = 3 and in (g)-(i) for U = 5.

in LDOS, which were attributed to the emergence of the
supercritical quasi-bound states.33 We find that for a 1D per-
turbation the bound states, instead of the quasi-bound ones,
produce the dominant features in the LDOS.

The contribution of the bound states to the LDOS is given

by

ν(k, x) = g

2π

Ly

ħvF

∑
i

∣∣∣∣∣dk̃yi

dk

∣∣∣∣∣ ∣∣Ψ(k̃yi , x)
∣∣2

, (B5)

where k̃yi are positive solutions of Eq. (A19) at a given k .
The contribution of the delocalized states in the continuum
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is

ν(k, x) = g

4π2

Lx Ly

ħvF
|k| ∑

P=±

π/2∫
0

dθ
∣∣ΨP (k,θ, x)

∣∣2
. (B6)

We show in Fig. 7(a) the dispersion of bound states and in
Fig. 7(b) the false color plot of the LDOS for the case of
U = 1. The bound states contribute to the significant in-
crease in ν at positive energies and for distances x inside
the well. This is seen more clearly in Fig. 7(c), where vertical
cross sections of the false color plot is taken at several dis-
tances inside and outside the well. The contribution of the
bound states drops quickly outside the well and approaches
the unperturbed LDOS ν0 = 2|k|/(πħvF ) shown in dashed
lines. Similar plots for cases U = 3 and U = 5 are shown
in Fig. 7(d)-(f) and in (g)-(i), respectively. In these two cases
the LDOS inside the well are similarly increased due to the
bound states. However, the most prominent features of the
LDOS are the van Hove singularities that are caused by the
extrema in the bound state dispersions. For U = 3 the sin-
gularity occurs at dimensionless energy E = kd = 0.45, while
for U = 5 they occur at E = −0.05 and E = −1.59. A quasi-
bound state is present for the case of U = 5, whose contri-
bution is manifest as the increase of the LDOS inside the
well just before the van Hove singularity at E = −1.59, as
shown in Fig. 7(i). The former is a relatively weak feature in
comparison to the latter.

We think that these properties of the LDOS should be
quite generic for hypercritical potentials in graphene. There-
fore, despite the oversimplification of the square-well poten-
tial model, our analysis may provide a useful reference for
future scanning tunneling experiments with such potentials.

Appendix C: Plasmon reflection from a linelike charge
perturbation

In this section we summarize the theory of plasmon re-
flections from a linelike charge perturbation.12 At this stage
we are not yet discussing how the incident plasmon wave is
created or how the reflected wave can be measured. Those

x

𝜇𝜇/𝜇𝜇∞

ti

r

𝑔𝑔(x)

FIG. 8. Schematic of an incident, reflected, and transmitted plas-
mon wave near the electronic inhomogeneity g (x) caused by the
linelike charge perturbation (green).

questions are addressed in Appendix D devoted to realistic
simulations of s-SNOM experiment. Here our purpose is to
specify the model assumptions and to present the analytical
results.

Our main assumption is that we can describe the response
of graphene by a local conductivity σ(x). This assumption
is readily justified if the density n(x) and the chemical po-
tential µ(x) of graphene are smoothly varying, see Fig. 8.
Thus, if the plasmon energy ħω is much smaller than µ
everywhere, σ(x) is given by [Eq. (5) of the main text],

σ(x) = i

πω

D(x)

1+ iγ(x)
, D(x) = e2

ħ2 |µ(x)| . (C1)

Here D is the Drude weight and the dimensionless func-
tion γ is the phenomenological damping rate. We assume
that the system remains uniform in the y-direction at all x.
The legitimacy of the local conductivity approximation is
less obvious if the carrier density varies sharply, e.g., in a
box-like fashion depicted in Fig. 6(c). However, it should
be indeed valid in the context of the plasmon propagation
if the plasmon wavelength is longer than the characteristic
length scale of nonlocality (the Fermi wavelength or the char-
acteristic width of the inhomogeneity, whichever is larger).
The effective local conductivity can then be defined by av-
eraging the nonlocal one over a suitable interval W , see
Eq. (A35). In this case, Eq. (C1) should be considered a for-
mal parametrization of function σ(x). In particular, γ(x)
should be understood as damping averaged over the length-
scale W .

Let us suppose that at x →±∞, n(x) and µ(x) approach
constant values n∞ and µ∞, respectively and let us define
the dimensionless function

g (x) = σ(x)

σ∞
−1, σ∞ ≡σ(∞) . (C2)

If γ were constant, this function would be equal to g =
|µ/µ∞|−1, see Fig. 8.

We want to study how an incident plasmon plane wave
with momentum (qx , qy ) is scattered by the inhomogeneity.
We will show that the corresponding reflection coefficient is
given by the formula

r ' i
q2

x −q2
y

qx
g̃ (−2qx ) , (C3)

where

g̃ (k) =
∞∫

−∞
d x g (x)e−i kx . (C4)

In particular, for normal incidence, qx = q∞, qy = 0, the
reflection coefficient is

r ' i q∞ g̃ (−2q∞) , (C5)

similar to the usual first Born approximation. Note that
because of the translational invariance in y , the momentum
qy is conserved.
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Let us outline the derivation. Assuming q Àω/c , which is
satisfied in our experiment, we can neglect retardation and
treat the problem in the quasistatic approximation. As our
main dependent variable we choose the electric potential
Φ = Φ(r). In general, Φ is the sum of the external poten-
tial Φext and the potential induced by charge density ρ in
graphene,

Φ(r) =Φext(r)+ (V ∗ρ)(r) , (C6)

where V (r) = 1/κr is the Coulomb kernel and the asterisk
denotes convolution,

(A∗B)(r) ≡
∫

d 2r ′ A(r− r′)B(r′) . (C7)

Combining together these equations plus the continuity
equation for current and charge density, we obtain

Φ(r) =Φext(r)−V (r)∗∇
(
σ(r)

iω
∇Φ(r)

)
. (C8)

For an ideal uniform sample the solution of this equation
has the form of a Fourier integral:

Φ(r) =
∫

d 2q

(2π)2 e iqr Φ̃ext(q)

ε(q)
, ε(q) = 1− q

qp
. (C9)

The zero of the dielectric function ε(q) defines the plasmon
momentum

qp = iκω

2πσ
(C10)

introduced in the main text. The momentum qp is com-
plex for any finite damping, γ > 0, with Im qp > 0 having
the physical meaning of the inverse propagation length. In-
deed, in the absence of the external potential, one can find
(unbounded) solutions Φ= e i qx x+i qy y with real qy and com-

plex qx =
√

q2
p −q2

y , Im qx > 0, which can be thought of as
decaying plane waves that are incident from the far left at
some oblique angle. In the problem we study graphene is
inhomogeneous, qp is x-dependent,

1

qp (x)
= 1+ g (x)

q∞
, q∞ ≡ qp (∞) , (C11)

and so the solution would contain the incident and the scat-
tered (reflected plus transmitted) waves, see Fig. 8.

Setting Φext(r) → 0 and Φ(r) →Φ(x)e i qy y in Eq. (C8), we
obtain the equation for Φ(x):

Φ(x) =V1 ∗
(

1+ g (x)

q∞
q2

yΦ(x)−∂x
1+ g (x)

q∞
∂xΦ(x)

)
. (C12)

Here V1(x) = K0(|qy x|)/π is the 1D Coulomb kernel and
K0(z) is the modified Bessel function of the second kind.
Using the Green’s function

G(x, qy ) =
∞∫

−∞

dk

2π
e i kxε−1

(√
k2 +q2

y

)
, (C13)

we find the equation for the scattered wave ψ≡Φ(x)−e i qx x :

ψ(x) = q−1
∞ (G ∗V1)∗

(
g (x)q2

yΦ(x)−∂x g (x)∂xΦ(x)
)

. (C14)

We expect ψ(x) ' r e−i qx x at large negative x, which implies

r =− i

qx

∞∫
−∞

d x e i qx x
{

q2
y g (x)Φ(x)−∂x

[
g (x)∂xΦ(x)

]}
.

(C15)
To the first order in the small parameter g (x) we can replace
Φ(x) with e i qx x in the integral, which leads to Eqs. (C3). A
particularly simple result is obtained if the plasmon wave-
length

λ∞ = 2π/q∞ (C16)

is much larger than the characteristic width d of the inho-
mogeneity, in which case g̃ (−2qx ) ' g̃ (0). Using Eqs. (C1)
and (C5), we find the reflection coefficient

r ' i q∞

∞∫
−∞

d x

[
σ(x)

σ∞
−1

]
(C17)

for the normal incidence. This simple equation gives a basic
idea how r may depend on d and the local change in σ.

Appendix D: Fitting the near-field profiles

As described in the main text, the near-field amplitude
s̄(x) and phase φ(x) measured in our imaging experiments
reveals the presence of interference fringes, i.e., spatial mod-
ulations near the nanotube. For example, ∼ 20% variations
of s̄(x) are seen in Fig. 4(e) of the main text. Assuming these
relative modulations should be of the order of the plasmon
reflection coefficient r , we can use Eq. (C17) to estimate the
perturbation of the conductivity caused by the nanotube.
Using the representative value of λ∞ ∼ 200nm at frequency
ω= 890cm−1 at which the effective permittivity is equal to

κ(ω) = εvacuum(ω)+εSiO2 (ω)

2
= 2.2, (D1)

we find σ∞ ≈ 5i e2/h from Eq. (C10). Hence, we can repro-
duce |r | ∼ 0.2 if we assume, for example, that the reactive
part of the conductivity Imσ is constant, while the dissipa-
tive part is enhanced to about Reσ∼ 3e2/h over an interval
of width d = 10nm near the origin. These numbers are
generally consistent with the estimates in the main text.

To go beyond such rough estimates, additional modeling
is required. For it to be more realistic, several important
issues need to be accounted for. First, the plasmon waves
launched and detected by the s-SNOM tip are not simple
plane waves because the tip is positioned very close to the
nanotube. Second, the intensity of such waves depends in a
nontrivial way on the electric field concentration that occurs
inside the tip-sample nanogap. Third, in the experiment the
tip-sample distance is varying periodically with the tapping
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FIG. 9. Simulated near-field amplitude (s̄) and phase (φ) profiles
for varying width W of the box-like discontinuity in the damping
rate γ. The height of the box is chosen so that the resultant near-
field profiles are as close as possible to the one used in the actual
fitting (red). The detailed shape of the box affects only small-
distance features in the signal.

frequency Ω. The complex near-field amplitude s3e iφ3 cor-
responds to the signal demodulated at the third harmonic
3Ω. The normalized signal s̄(x) is the ratio s3(x)/s3(L),
where L is a coordinate point giving a fair approximation
of the x →∞ limit. [L = 200nm in Fig. 4(d)-(e) of the main
text.] Because of these complications, the quantitative mod-
eling of s̄(x) and φ(x) is possible only through numerical
simulations.

Previously, an electromagnetic solver was developed,12,24

which takes these issues into account. The algorithm imple-
mented in the solver12 finds a numerical solution of Eq. (C8)
discretized on a double grid of qy and x. The external
field is taken to be the sum of two terms. The first one, a
constant, represents the incident infrared beam. The sec-
ond one approximates the field created by the tip, modeled
as an elongated metallic spheroid. The charge density dis-
tribution on the spheroid surface is found self-consistently
from the condition that this surface is an equipotential. The
total dipole moment of the tip, which represents the instan-
taneous amplitude s of the scattered electromagnetic field

is computed. Finally, s3e iφ3 is calculated by taking the ap-
propriate Fourier transform and normalized to the reference
point x = L in order to yield s̄ and φ. The calculation is
repeated for each tip position along the x-axis.

Using this solver we were able to produce simulated near-
field profiles that matched well the measured ones using a set
of adjustable parameters. We will now describe this fitting
procedure and the results, Figs. 9 and 10. As explained in
Appendix C, these fitting results should be considered an
estimate of the nonlocal conductivity of graphene averaged
over the lengthscale d .

We took the trial damping function to be

γ(x) = γ∞+ [γ(0)−γ∞]Θ

(
W

2
−|x|

)
, (D2)

where Θ(z) is the step-function, see the colored boxes in
Fig. 9(c). For the carrier density profile we assumed the
Lorentzian form [Fig. 9(c), black curve]

n(x) = n∞+ C

π

Vg

e

d

x2 +d 2 , (D3)

where d = 10nm is the graphene-nanotube distance and C
is the capacitance (per unit length) between them,

C = 1

2

κ0

ln(2d/l )
. (D4)

The effective static permittivity κ0 of the dielectric environ-
ment around the nanotube is

κ0 =
εhBN(0)+εSiO2 (0)

2
= 3.7. (D5)

Equation (D3) for n(x) is appropriate for our relatively highly
doped (n > 1012 cm−2) graphene which screens the electric
field of the nanotube like a good metal.26 We have not mea-
sured the radius l ∼ 1nm of the nanotube directly, so there
is an uncertainty in C . This uncertainty is however small
due to the logarithmic form of C . On the other hand, the
voltage difference Vg between the nanotube and graphene
is measured. Hence, our model contains four adjustable pa-
rameters: γ(0), γ∞, W , and n∞. Instead of the last of these
we can use the asymptotic plasmon wavelength λ∞ because
they are directly related via Eqs. (C1), (C10), (C16), and one
more equation,

µ(n) =ħvF (π|n|)1/2 . (D6)

A brief comment on the trial form of γ and n may be in
order. The discontinuous box-like profile of the dimension-
less damping rate γ(x) may seem artificial; however, since
the plasmon wavelength is much larger than the width of the
box W ∼ d , the near-field amplitude is largely insensitive to
the precise functional form of γ(x). In principle, we could
also choose a box-like profile for n(x). However, Eq. (D3) is
just as convenient and is better physically motivated.

In Fig. 9(a, b) we show the simulated profiles of the near-
field amplitude s̄ and phase φ for several W ’s for fixed
Vg = −2V, λ∞ = 180nm, and γ(∞) = 0.15. The profiles for
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FIG. 10. Simulated near-field amplitude (s̄) and phase (φ) profiles along with the density (n) and damping profiles (γ) for (a)-(c) varying
height γ(0) of the box-like discontinuity in the damping rate, (d)-(f) gate voltage Vg , or (g)-(i) background plasmon wavelength λ∞. The
red and black curves correspond to the profiles used to produce the fits in Fig. 4(e) of the main text.

W = 13.5nm and γ(0) = 1.65 match those measured in the
experiment rather well. This fitting suggests that the electri-
fied nanotube causes the density change by almost a factor
of three and the damping enhancement by more than an or-
der of magnitude. The former conclusion should be robust
as it is a consequence of the simple electrostatics. On the
other hand, the latter should be considered the experimen-
tal discovery. An explanation for this surprisingly high local
damping was presented in the main text and the technical
details were given in Appendix A.

A rough correspondence between the numbers obtained
above and the parameters of the square-well model can be
established as follows. The depth u of the well is taken
as the integrated potential divided by the width d of the
well, u = 1

d

∫
v(x)d x. The potential v(x) can be found

through v(x) = µ(x)−µ∞ and Eq. (D6). This results in the
dimensionless well depth U = ud/ħvF = 13. The estima-
tion of the integrated conductivity σ̄ is more complicated.
Due to the presence of a nonzero background γ∞, density
variations will also contribute to the real part of the op-
tical conductivity. To isolate the contribution of the opti-
cal transitions, the integrated conductivity is calculated as

σ̄ = 1
d Re

∫
[σ(x)−σ′(x)]d x, where σ′(x) is the conductivity

of a comparison system, which has the same density profile
n(x) but the constant damping rate γ= γ∞. This prescrip-
tion yields σ̄= 3.5e2/h.

The dependence of s̄ and φ profiles on the other ad-
justable parameters, such as γ(0), λ∞, and also on the gate
voltage Vg is illustrated in Fig. 10(a, b), (g, h), and (d, e), re-
spectively. The profiles vary dramatically with the changes
in these parameters, and so the determination of the best-
fitting values of the adjustable parameters has very little un-
certainty. This analysis is yet another illustration of how the
s-SNOM nanoimaging can be a powerful and sensitive tech-
nique for probing the local surface conductivity of graphene
and perhaps many other 2D materials as well.

Appendix E: Device Fabrication

Our device consists of (from top to bottom) a graphene
monolayer, a 10nm-thick hBN flake, a metallic single-wall
CNT, and a SiO2/Si substrate. The CNT was grown by
chemical vapor deposition, located using a scanning elec-
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FIG. 11. (Top) Fabrication process of the graphene/hBN/CNT het-
erostructure on a SiO2/Si substrate. (Bottom left) AFM image of
the device before addition of the contacts. (Bottom right) Optical
image of the completed device.

tron microscope, and transferred onto a SiO2/Si substrate.
Monolayer graphene was mechanically exfoliated. Using a
PPC/PDMS stamp, the graphene/hBN stack was transferred
onto a separate SiO2/Si substrate. The stack was then picked
up with an acrylic resin Elvacite34. It was subject to buffered
oxide etch (BOE), aligned, and transferred to cover the CNT.
The Elvacite was cleaned away with acetone. The final step
of the fabrication was adding metallic contacts to the CNT
and graphene. These steps are summarized in Fig. 11 (top).
The AFM and optical images of the device are shown in
Fig. 11 (bottom left and right).

Appendix F: Supercritical transitions

Our problem has an intriguing parallel to the collapse of
superheavy atoms in nuclear physics, which is as follows.
For a very large nuclear charge Z > Zc ∼ 1/α, the extrapo-
lated values of the first few atomic levels sink below the top
of the positron energy band,35 −∆ = −m0c2, see Fig. 12(a).
(Here α= e2/ħc is the fine-structure constant and m0 is the
electron mass.) Such supercritical states can no longer be
bound to the nucleus but should be quasi-bound, being hy-
bridized with the extended states in the positron band. In

graphene where the role of c is played by the Fermi velocity
vF ∼ c/300, the critical charge is rather small, Zc ∼ 136,37.
This has made it possible to observe the long-sought super-
criticality experimentally by measuring the tunneling den-
sity of states near charged impurities32. Analogous transi-
tions15 are possible for the bound states studied in this Let-
ter, Fig. 12(b). Compared to prior studies of a single36–38 or
a few pointlike charges32,37,39,40, the 1D geometry examined
in this work has several advantages. The gapless 2D Dirac
spectrum is replaced by a gapped one with ∆ = |ħky vF |
[Fig. 12(b)], making the analogy to the atomic collapse prob-
lem35 closer. Alternatively, it prompts an analogy to a hy-
pothetical cosmic string41, previously used in graphene liter-
ature42,43 in a different context. More importantly, our “1D
atom” permits continuous in situ tunability in terms of at
least two parameters: the gate voltage and the optical exci-
tation frequency. Experimental verification of these super-
critical transitions can be attempted via two complementary
approaches. One is to examine the changes in the LDOS. In
fact, the detailed calculations of the LDOS presented in Ap-
pendix B were done exactly with such experiments in mind.
The other approach is to look for abrupt drops in the local
optical conductivity σ̄ caused by the liquidation of the opti-
cal transitions, see Fig. 3(b) of the main text. Unfortunately,
in either the conductivity or the LDOS, the supercritical sig-
natures are very subtle compared to those of, say, van Hove
singularities. Also, pinpointing these transitions requires an
exhaustive search of the parameter space, which, for tech-
nical reasons, has not been possible in the devices we fab-
ricated so far. Nevertheless, this can be an interesting and
challenging problem for future work.
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FIG. 12. (Color online) Bound-states energies (blue) of Dirac
fermions in strong external potentials. The orange lines represent
the boundaries of continuum states. The insets depict classical tra-
jectories (solid) and the potential profiles (dashed). (a) Low-lying
states of large-Z atoms. [Adopted from Ref. 35.] (b) Fixed-ky
states in a 1D potential well in graphene. The solid red arrow
shows an optical transition of frequency ω from the valence band
to a bound state. This transition disappears at some critical well
depth u (dashed arrow).
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