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Pulsatile lipid vesicles under osmotic stress
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Abstract

The response of lipid bilayers to osmotic stress is an important part of cellular function. Previously,
in (Oglecka et al., 2014), we reported that cell-sized giant unilamellar vesicles (GUVs) exposed to hypo-
tonic media, respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting
events, coupled to the membrane’s compositional degrees of freedom. Here, we seek to deepen our
quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions, by
advancing a comprehensive theoretical model for vesicle dynamics. The model quantitatively captures
our experimentally measured swell-burst parameters for single-component GUVs, and reveals that ther-
mal fluctuations enable rate dependent pore nucleation, driving the dynamics of the swell-burst cycles.
We further identify new scaling relationships between the pulsatile dynamics and GUV properties. Our
findings provide a fundamental framework that has the potential to guide future investigations on the
non-equilibrium dynamics of vesicles under osmotic stress.

In their constant struggle with the environment, living cells of contemporary organisms employ a variety
of highly sophisticated molecular mechanisms to deal with sudden changes in their surroundings. One
often encountered environmental assault on cells is that of osmotic stress, where the amount of dissolved
molecules in the extracellular environment drops suddenly (Christensen, 1987; Hoffmann et al., 2009). If
unchecked, this perturbation will result in a rapid flow of water into the cell through osmosis, causing it to
swell, rupture, and die. To avoid this catastrophic outcome, even bacteria have evolved complex molecular
machineries, such as mechanosensitive channel proteins, which allow them to release excess water from
their interior (Berrier et al., 1996; Blount et al., 1997; Levina et al., 1999; Wood, 1999). This then raises an
intriguing question of how might primitive cells, or cell-like artificial constructs, that lack a sophisticated
protein machinery, respond to such environmental insults to preserve their structural integrity.

Using rudimentary cell-sized giant unilamellar vesicles (GUVs) devoid of proteins and consisting of am-
phiphilic lipids and cholesterol as models for simple protocells, we showed previously in (Oglecka et al.,
2014) that vesicular compartments respond to osmotic assault created by the exposure to hypotonic media,
by undergoing a cyclical sequence of swelling and poration. In each cycle, osmotic influx of water through
the semi-permeable boundary swells the vesicles and renders the bounding membrane tense, which in turn,
opens a microscopic transient pore, releasing some of the internal solutes before resealing. This swell-burst
process repeats multiple times producing a pulsating pattern in the size of the vesicle undergoing osmotic
relaxation. From a dynamical point of view, this autonomous osmotic response results from an initial, far-
from-equilibrium, thermodynamically unstable state generated by the sudden application of osmotic stress.

∗Correspondence: prangamani@ucsd.edu
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The subsequent evolution of the system, characterized by the swell-burst sequences described above, occurs
in the presence of a global constraint, namely the constant membrane area, during a dissipation-dominated
process (Peterlin and Arrigler, 2008; Ho et al., 2016). While we provided a qualitative interpretation of the
vesicles pulsatile behavior (see (Oglecka et al., 2014) Fig. 7h,i), a quantitative description of the long time
scale dynamics of swell-burst cycles is still needed to obtain insight into the underlying physics. Here, we
build directly on the qualitative findings we previously reported to propose such a quantitative and mecha-
nistic analysis of the dynamics of swell-burst cycles in lipid vesicles undergoing osmotic stress.

In analyzing the pulsatile dynamics of GUVs, a number of general questions naturally arise: (i) Is the
observed condition for membrane poration deterministic or stochastic? (ii) Is poration controlled by a unique
value of membrane tension (i.e. lytic tension) introduced by the area-volume changes, which occur during
osmotic influx, or does it involve coupling the membrane response to thermal fluctuations? (iii) Does the
critical lytic tension depend on the strain rate, and thus the strength of the osmotic gradient? Such questions
arise, beyond the present context of vesicle osmoregulation, in other important scenarios where the coupling
between the dissipation of osmotic energy and cellular compartmentalization have important biological
ramifications (Rand, 2004; Diz-Muñoz et al., 2013; Stroka et al., 2014; Porta et al., 2015).

Motivated by these considerations, we carried out a combined theoretical-experimental study integrating
membrane elasticity, continuum transport, and statistical thermodynamics. We gathered quantitative exper-
imental data to address the questions above and developed a theoretical model – introducing a stochastic
thermal fluctuation term in the energetics of membrane poration – which recapitulates the essential qual-
itative features of the experimental observations, emphasizes the importance of dynamics, and places the
heretofore neglected contribution of thermal fluctuations in driving osmotic response of stressed vesicular
compartments.

Results

Homogeneous GUVs display swell-burst cycles in hypotonic conditions

The experimental configuration is similar to that already described (Angelova et al., 1992; Oglecka et al.,
2014). Briefly, we prepared GUVs consisting essentially of a single amphiphile, namely 1-palmitoyl-2-
oleoyl-sn-1-glycero-3-phosphocholine (POPC), doped with a non-perturbative small concentration (1 mol%)
of a fluorescently labeled phospholipid (1,2-dipalmitoyl -sn-glycero-3-phosphoethanolamine-N-(lissamine
rhodamine B sulfonyl) or Rho-DPPE using standard electroformation technique (Angelova et al., 1992).
The obtained GUVs, (typically between 7 and 20 µm in diameter) encapsulated 200 mM sucrose and were
suspended in the isotonic glucose solution of identical osmolarity. Diluting the extra-vesicular dispersion
medium with deionized water produces a hypotonic bath depleted in osmolytes, subjecting the GUVs to
osmotic stress. Shortly (∼1 min delay) after subjecting the GUVs to the osmotic differential, GUVs were
monitored using time-lapse epifluorescence microscopy at a rate of 1 image per 150 ms, and images were
analyzed using a customized MATLAB code to extract the evolution of the GUVs radius with time, with
a precision of about 0.1 µm. A selection of snapshots, revealing different morphological states, and a de-
tailed trace showing the time-dependent changes of vesicle radius and corresponding area strain are shown
in Fig. 1b, c, and d, for a representative GUV. Swelling phases are characterized by a quasi-linear increase
of the GUV radius (R), while pore openings cause a sudden decrease of the vesicle radius.

We outline here three key observations about the dynamics of swell-burst cycles from these experiments.
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Figure 1: Homogeneous giant unilamellar vesicles (GUVs) made of POPC with 1 mol % Rho-DPPE exhibit
swell-burst cycles when subject to hypotonic conditions. a, Schematic of a swell-burst cycle of a homoge-
neous GUV under hypotonic conditions. Blue arrows represent the leak-out of the inner solution through
the transient pore. b, Micrographs of a swelling (left), ruptured (middle) and resealed (right) GUVs. Scale
bar represents 10 µm. Pictures extracted from Supplementary Movie 1. c, Typical evolution of a GUV
radius with time during swell-burst cycles in 200 mM sucrose hypotonic conditions. The GUV radius in-
creases continuously during swelling phases, and drops abruptly when bursting events occur. Pore opening
events are indicated by H. Dash line represents the estimated initial radius R0. See also Supplementary
Movie 2. More GUV radius measurements are shown in Supplementary Fig. 1.d, Computed area strain
(ε = (R2 −R2

0)/R2
0).

1. The period between two consecutive bursting events increases with each cycle, starting from a few
tenths of a second for the early cycles, to several hundreds of seconds after the tenth cycle.

2. The maximum radius and therefore the maximum strain at which a pore opens decreases with cycle
number, suggesting that lytic tension is a dynamic property of the membrane.

3. The observed transient pores are short lived, stay open for about hundred milliseconds, and reach a
maximum radius of up to 60 % of the GUV radius.

We seek to explain these observations through a quantitative understanding of the pulsatile GUVs in hypo-
tonic conditions. To do so, we first investigate the mechanics of pore nucleation and its relationship to the
GUV swell-burst dynamics.

Thermal fluctuations drive the dynamics of pore nucleation

In the framework of classical nucleation theory, the energy potential V (r, ε) of a pore in a tense lipid mem-
brane is the balance of two competitive terms, the stretch energy – induced by the membrane tension σ –
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Figure 2: Lytic tension is a dynamic quantity governed by thermodynamic fluctuations. a, The energy
required to open a pore of radius r in a GUV without fluctuations, for various membrane tensions. The
energetic cost to open a pore in a tense GUV shows a local maximum, which has to be overcome in order
for a pore to open. b, For a given strain ε, the energy barrier is located at a pore radius rb = γ/σ(ε).
c, d, Prescribing a linear strain rate (ε = ε̇t + ε0, with ε̇ = 10−2, 10−3, and 10−4 s−1, ε0 = 0.05),
in the deterministic approach, a pore is nucleated whenever the strain reaches a defined lytic strain (c)
corresponding to a constant rb (d), and therefore producing a constant lytic tension. e, f, In the stochastic
approach however, the nucleation threshold is replaced by a fluctuating pore, inducing a dependence of the
lytic strain on the strain rate (e). This is due to the fact that, for lower strain rates, the probability of a large
pore fluctuation to reach rb is higher (f), producing a lower lytic tension on average.

tends to favor the opening and enlargement of a pore, and the edge energy γ – originating from the exposure
of the hydrophobic lipid tails to the aqueous solution – tends to close the pore (Litster, 1975). The opposing
effects of these two quantities produces an energy barrier that the system has to overcome in order for a
pore to nucleate. The energy required to open a circular pore of radius r in a tensed GUV is represented in
Fig. 2a, and b, where the energy barrier is located at a critical pore radius of rb = γ/σ. When a linear rela-
tionship between the stress and the strain is assumed, the height of the energy barrier and the corresponding
pore radius are dependent on the membrane strain; the more the membrane is stretched, the lower the energy
barrier is, and the smaller the amount of energy required to nucleate a pore.

The amplitude of this barrier is strictly positive for finite stretch values, making nucleation impossible with-
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out the addition of external energy. This issue has been often resolved by assuming a predetermined and
constant lytic membrane tension, corresponding to a critical energy barrier under which the pore opens
(Fig. 2c, d). However, this approach is in contradiction with our experimental observations that the lytic
tension – proportional to the strain in the membrane – varies with each swell-burst cycle (Fig. 1d), due to a
dependence on the strain rate (Evans et al., 2003). In order to account for this variation, we include thermal
pore fluctuations associated with the nucleation barrier in our analysis. In this scenario, increasing the mem-
brane tension of the vesicle reduces the minimum pore radius rb at which a pore opens (Fig. 2a, b), lowering
the energy barrier down to the range of thermal fluctuations, eventually letting the free energy of the system
to overcome the nucleation barrier (Fig. 2e, f). The stochastic nature of the fluctuations can then explain a
distribution of pore opening tensions, eliminating the need to assume constant lytic tension.

A direct consequence of the fluctuation activated pore nucleation is that the membrane rupture properties
become dynamic. Indeed, fluctuations naturally cause the strain to rupture to be dependent on the strain
rate, as illustrated in Fig. 2e. In order to understand this dynamic nucleation process, consider stretching the
membrane at different strain rates ε̇. Doing so decreases the radius of the nucleation barrier at corresponding
speeds, as shown in Fig. 2f. For slow strain rates, as rb tends to zero, it spends more time in the accessible
range of the thermal pore fluctuations, increasing the probability of a fluctuation to overcome the energy
barrier. On the other hand, at faster strain rates, rb decreases quickly, reaching small values in less time,
lowering the probability for above average fluctuation to occur during this shorter time.

We use a Langevin equation to capture the stochastic nature of pore nucleation and the subsequent pore dy-
namics. This equation includes membrane viscous dissipation, a conservative force arising from the mem-
brane potential, friction with water, and thermal fluctuations for pore nucleation (see Material & Methods
for detailed derivation). This yields the stochastic differential equation for the pore radius r

viscous drag︷ ︸︸ ︷
(hηm + Cηsr)

d

dt
(2πr)︸ ︷︷ ︸

change of pore length

=

surface and
line tension︷ ︸︸ ︷

2π (σr − γ) + ξ(t)︸︷︷︸
thermodynamic
pore fluctuations

, (1)

where the noise source ξ(t) has zero mean and satisfies, 〈ξ(t)ξ(t′)〉 = 2 (hηm + Cηsr) kBTδ(t − t′) ac-
cording to the fluctuation dissipation theorem (Kubo, 1966). Here, ηm and ηs are the membrane and solute
viscosities respectively, h is the membrane thickness, C is a geometric coefficient (Ryham et al., 2011;
Aubin and Ryham, 2016), kB is the Boltzmann constant and T is the temperature. The values of the various
parameters are given in Supplementary Table 1.

Model captures experimentally observed pulsatile GUV behavior

In addition to pore dynamics (Eq. (1)), we need to consider mass conservation of the solute and the solvent.
We assume that the GUV remains spherical at all times and neglect spatial effects. The GUV volume
changes because of osmotic influx through the semi-permeable membrane and the leak-out of the solvent
through the pore. The osmotic influx is the result of two competitive pressures, the osmotic pressure driven
by the solute differential (∆posm = kBTNA∆c), and the Laplace pressure, arising from the membrane
tension (∆pL = 2σ/R), resulting in the following equation for the GUV radius R:

d

dt

(
4

3
πR3

)
︸ ︷︷ ︸

change of GUV volume

=

influx of solvent
through the membrane︷ ︸︸ ︷

Pνs
kBTNA

(∆posm −∆pL)A− vLπr2︸ ︷︷ ︸
leak-out

through the pore

. (2)
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Figure 3: Dynamics of swell-burst cycles from the model for a GUV of radius 14 µm in 200 mM hypotonic
stress. a, b, GUV radius and c, d, pore radius as a function of time. a, c, The model captures the dynamics
of multiple swell-burst cycles, in particular the decrease of maximum GUV radius and increase of cycle
period with cycle number. b, d, Looking closely at one pore opening event corresponding to the region
between the dashed lines, the model predicts a three stage pore dynamics (opening, closing, resealing),
with a characteristic time of few hundreds milliseconds. Numerical reconstruction of the GUV is shown in
Supplementary Movie 3 and 4. Results for R0 = 8 and 20 µm are shown in Supplementary Fig. 3.

Here A = 4πR2 is the membrane area, P is the membrane permeability to the solvent, νs is the solvent
molar volume, and NA is the Avogadro number. Assuming low Reynolds number regime, the leak-out
velocity is given by vL = ∆pLr/(3πηs) (Happel and Brenner, 1983; Aubin and Ryham, 2016).

Mass conservation of solute in the GUV is governed by the diffusion of sucrose and convection of the
solution through the pore, which gives the governing equation for the solute concentration differential ∆c:

d

dt

(
4

3
πR3∆c

)
︸ ︷︷ ︸

molar differential
of solute

= −πr2
(diffusion through

the pore︷ ︸︸ ︷
D

∆c

R
+ vL∆c︸ ︷︷ ︸

convection
through the pore

)
, (3)

where D is the solute diffusion coefficient. These three coupled equations (1)-(3) constitute our model.

In order to completely define the system, we need to specify the relationship between the membrane surface
tension σ and the area strain of the GUV. We note that the GUV has irregular contours during the pore
opening event and for a short time afterwards, when “nodules” are observed at the opposite end from the
pore, indicating accumulation of excess membrane generated by pore formation (Fig. 1b middle and right
panels). In the low tension regime, GUVs swell by unfolding these membrane nodules, and the stretching
is controlled by the membrane bending modulus κb and thermal energy, yielding an effective “unfolding
modulus” κu = 48πκ2b/(R

2
0kBT ) of the order of 10−5 N/m (Brochard et al., 1976). In contrast, in the high

tension regime, elastic stretching is dominant, and the elastic area expansion modulus κe is roughly equal
to 0.2 N/m. Since the maximum area strain plotted in Fig. 1d, is about 15 %, significantly larger than the
expected 5 % for a purely elastic membrane deformation, the experimental data suggests the occurrence
of two stretching regimes: an unfolding driven stretching, and an elasticity driven stretching (Ertel et al.,
1993; Hallett et al., 1993; Karatekin et al., 2003). Therefore, for simplicity, we propose a linear dependence
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between the membrane tension and the strain (σ = κeffε), where the effective stretching modulus κeff is the
only adjustable parameter of the model.

We solved the three coupled equations (1)-(3) for an initial inner solute concentration of c0 = 200 mM,
and different GUV radii of R0 = 8, 14 and 20 µm. All the results presented here are obtained for κeff =
2×10−3N/m, the value that best fits the experimental observations (see Supplemental Fig. 5 for the effect of
this parameter on the GUV dynamics). Dynamics of the GUV radius and the pore radius are shown in Fig. 3
for a typical simulation with R0 = 14 µm (see Supplemental Fig. 3 for simulations with different values
of R0). Our model qualitatively reproduces the dynamics of the GUV radius during the swell burst cycle
(compare Figs. 1c and 3a). Importantly, we recover the key features of the swell-burst cycle – namely an
increase of the cycle period with each bursting event (point 1), and a decrease of the maximum radius with
time (point 2). The stochastic nature of the thermodynamic fluctuations leads to variations and occasional
irregularities in the pore opening events, and therefore, the cycle period and maximum strain. The dynamics
of a single cycle is shown in Fig. 3b,d. Our numerical results show a abrupt drop in the GUV radius,
followed by a slower decrease, suggesting a sequence of two leak-out regimes: a fast-burst releasing most
of the membrane tension, and a low tension leak-out. This two-step tension release is confirmed by the pore
radius dynamics, which after suddenly opening (release of membrane tension), reseals quasi-linearly due
to dominance of line tension compared to membrane tension in Eq. (1). Furthermore, the computed pore
amplitude and lifetime are in agreement with experimental observations (point 3). Overall, our model is
able to reproduce the quantitative features of GUV response to hypotonic stress.

If thermal fluctuations are ignored, the strain to rupture needs to be adjusted to roughly 15% in order to
match the range of maximum GUV radius observed experimentally (Supplementary Fig. 4). However such
a deterministic model does not capture the pulsatile dynamics as well as the stochastic model, failing to
reproduce a strain rate dependent maximum stress (Supplementary Fig. 11).

Solute diffusion is dominant during the low tension regime of pore resealing

The concentration differential of sucrose decreases exponentially and drops from 200 mM to about 10 mM
in about 1000 seconds (Supplementary Fig. 3). Even after 2000 s when the concentration differential is as
low as 10 mM, the osmotic influx is still large enough to maintain the dynamics of swell-bursts (Fig. 1c,
Supplementary Fig. 3). We further observe that every pore opening event produces a sudden drop in inner
concentration (Fig. 4a, blue line). This suggests that diffusion of sucrose plays an important role in governing
the dynamics of solute. In the absence of diffusive effects, the model does not show the abrupt drops in
concentration but a rather smooth exponential decay (Fig. 4a, grey line).

To experimentally verify the model predictions of sucrose dynamics, we quantified the evolution of fluo-
rescence intensity in GUVs encapsulating 200 mM sucrose plus 58.4 µM 2-NBDG, a fluorescent glucose
analog (see Material and Methods). Fig. 4b presents the evolution of fluorescent intensity of sucrose in
time. GUVs in isotonic conditions (dashed lines) do not show a significant change in fluorescence intensity.
GUVs in hypotonic conditions (solid lines) exhibit an overall decrease of intensity due to permeation of wa-
ter through the membrane. Strikingly, consecutive drops of fluorescence intensity are observed coinciding
with the pore opening events (Fig. 4c,d middle panels), and point out the importance of sucrose diffusion
through the pore. While the quantitative dynamics of sucrose depends on the value of the diffusion constant
(Supplementary Fig. 6), the qualitative effect of diffusion on the dynamics remains unchanged. On the other
hand, leak-out induced convection does not influence the inner concentration of sucrose, as both solvent and
solute are convected, conserving their relative amount. These observations are in agreement with the exis-
tence of the low tension pore closure regime discussed above, where Laplace pressure produces negligible
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Figure 4: Solute dynamics. a, Normalized concentration differential (here t0 = 40 s) with diffusion (blue
line), without diffusion (grey line), and in the absence of osmotic differential (dashed line). The concen-
tration drops rapidly at each bursting event due to diffusion, while in the absence of diffusion, there are no
concentration drops over time and the profile is smooth (see Supplementary Fig. 6 for further analysis on
the effect of diffusion). b, Time evolution of the normalized fluorescence intensity of a GUV in hypotonic
condition, encapsulating fluorescent glucose analog. ∆I is the difference in mean intensity between the
inside of the GUV and the background. When in hypotonic conditions (solid lines) the normalized intensity
decreases with time due to the constant influx of water through the membrane, and shows sudden drops
in intensity at each pore opening (indicated by arrows), due to diffusion of sucrose through the pore (see
Supplementary Movie 5). In comparison, GUVs in isotonic condition (dashed lines) exhibit a rather con-
stant fluorescence intensity (see Supplementary Movie 6). c, Micrographs of a GUV in hypotonic condition,
encapsulating fluorescent glucose analog, just prior bursting (left panel), with an open pore (middle panel),
and just after pore resealing (right panel). The leak-out of fluorescent dye is observed in the middle frame,
coinciding with a drop of the GUV radius. Frames extracted from Supplementary Movie 7. d, Same as panel
(c), with the images processed to increase contrast and attenuate noise. The blue, red, and white lines are
the isocontours of the 90, 75 and 60 grey scale values respectively, highlighting the leak-out of fluorescent
dye.

convective transport compared to solute diffusion though the pore.

Cycle period and strain rate are explicit functions of the cycle number and GUV properties

Given that lytic tension is a dynamic quantity, we asked how cycle period and strain rate evolve along the
cycles. We studied the dynamics of GUVs with resting radii of 8, 14 and 20µm, each simulation data
point representing the mean and the standard deviation (because of the stochastic nature of the model, 10
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Figure 5: Cycle period and strain rate are exponential function of cycle number, and power-law functions
of solute concentration. a, c, e, g, Cycle period and b, d, f, h, strain rates as functions of cycle number
(n) a, b, e, f, and solute concentration c, d, g, h. e-h, are data from a-d, scaled by the characteristic time
associated with swelling defined as τ = R0/(Pνsc0). Insets show the same data in log scale. Each model
point is the mean of 10 numerical experiments, error bars represent ± standard deviations. e-h, The non-
dimensionalization by τ allows cycle periods and the strain rates to collapse onto a single curves. The analyt-
ical expressions for the cycle period Tn/τ = ε∗

(
2
√
ε∗ + 1∆c/c0

)−1, and strain rate τ ε̇ = 2
√
ε∗ + 1∆c/c0

with ε∗ = 0.15, are plotted for comparison (see Supplementary Material for their derivation).

simulations per GUV radius were run). Cycle periods and strain rates show a dependence on the GUV
radius, as depicted in Fig. 5a-d. Indeed, larger GUV have slower dynamics, resulting in smaller strain
rates and longer cycle period (Supplementary Fig. 3). To verify this experimentally, a total of eight GUVs
were analyzed with resting radii ranging from 7.02 to 18.76 µm (Supplementary Fig. 1). The measured
cycle period and strain rate as a function of the cycle number (corrected for the lag between the application
of the hypotonic stress and the beginning of the observations) are showed in Fig. 5a, and b, respectively.
Experimental and model results quantitatively agree, and show a exponential dependence of the cycle period
and strain rate on cycle number (Insets Fig. 5a,b).

Two further questions arise: How can we relate the cycle number to the driving force of the process, that
is to say the osmotic differential? And, is there a scaling law that governs the GUV dynamics? Hence we
computed the cycle solute concentration (defined as the solute concentration at the beginning of each cycle)
as a function of the cycle number (Supplementary Fig. 2). We found that the solute concentration follows
an exponential decay function of the cycle number , and is independent of the GUV radius. Additionally,
plotting the cycle period and strain rate against the cycle solute concentration (Fig. 5c,d), we observe that
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the cycle period decreases as the inverse of the concentration, while the strain rate is a linear function of ∆c.
The data presented in Fig. 5a-d suggest that the dynamics of GUVs swell-burst cycle can be scaled in some
way to their size. From the non-dimensional form of Eq. (2), we extracted a characteristic time associated
with swelling, defined by τ = R0/(Pνsc0), and scaled the cycle period and strain rates with this quantity.
As shown in Fig. 5e-h, all the scaled experimental and model data collapse onto the same curve, within
the range of the standard deviations. The scaled relationships can be justified analytically, by estimating
the strain rate and cycle period as τ ε̇ ' 2

√
ε∗ + 1∆c/c0, and Tn/τ = ε∗

(
2
√
ε∗ + 1∆c/c0

)−1 respectively
(see Supplementary Material for full derivation). These analytical expressions are plotted in Fig. 5c, d, g,
h for a characteristic critical strain of ε∗ = 0.15, showing good agreement with the numerical data. Taken
together, these results suggest that the GUV pulsatile dynamics is governed by the radius, the membrane
permeability, the solute concentration, and importantly the pore nucleation mechanism which determines
the strain to rupture.

Discussion

Explaining how membrane-enclosed compartments regulate osmotic stress is a first step towards understand-
ing how cells control volume homeostasis in response to environmental stressors. In this work, we have used
a combination of theory and experiments in a simple model system to study how swell-burst cycles control
the dynamics of GUV response to osmotic stress. Using this system, we show that the pulsatile dynamics of
GUVs under osmotic stress is controlled through thermal fluctuations that govern pore nucleation and lytic
tension.

The study of osmotic response of lipid vesicles has a rich history in biophysics, starting with the pioneer the-
oretical work by Koslov and Markin (1984). The central feature of GUV osmotic response is the nucleation
of a pore. Yet, while Evans and coworkers identified that rupture tension was not governed by an intrinsic
critical stress, but rather by the load rate, the idea of a constant lytic tension has persisted in the literature
(Idiart and Levin, 2004; Popescu and Popescu, 2008; Peterlin and Arrigler, 2008). By coupling fluctuations
to pore energy, we have now reconciled the dynamics of the GUV over several swell-burst cycles with pore
nucleation and dependence on strain rate. Our model is not only able to capture the experimentally observed
pulsatile dynamics of GUV radius and solute concentration (Figs. 3 and 4), but also predicts pore formation
events and pore dynamics (Fig. 3c,d). We also found that during the pore opening event, a low-tension
regime enables a diffusion dominated transport of solute through the pore (Fig. 4), a feature that has been
up to now neglected in the literature.

Specifically, we have identified a scaling relationship between (i) the cycle period and cycle number and
(ii) the strain rate and the cycle number, highlighting that swell-burst cycles of the GUVs in response to
hypotonic stress is a dynamic response (Fig. 5). One of the key features of the model is that we relate
the cycle number, an experimentally observable quantity, to the concentration difference of the solute, a
quantity that is hard to measure in experiments (Supplementary Fig. 2). This allows to interpret the scaling
relationships described above in terms of solute concentration differential. The cycle period shows an inverse
relationship with the solute concentration, while the strain rate is a linear function of the concentration
difference. Both relationships are derived theoretically in the Supplemental material. These features indicate
long time scale relationships of pulsatile vesicles in osmotic stress.

Thermal fluctuations and stochasticity are known to play diverse roles in cell biology. Now well recognized
examples include Brownian motors and pumps (Jülicher et al., 1997; Oster, 2002), noisy gene expression
(Elowitz et al., 2002), and red blood cell flickering (Turlier et al., 2016). The pulsatile vesicles system pre-
sented here provides yet another example of how fluctuations can be utilized by simple systems to produce
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dynamical adaptive behavior. Given the universality of fluctuations in biological processes, it appears en-
tirely reasonable that simple mechanisms similar to the pulsatile vesicle have been exploited by early cells,
conferring them with a thermodynamic advantage against the environmental osmotic assaults.

While we have been able to explain many fundamental features of the pulsatile GUVs in response to os-
motic stress, there are some obvious limitations of our approach and need for further experiments. We
have assumed a linear relationship between stress and strain. Although this assumption is reasonable and
appears to work well for the present experimental conditions, a more general expression should be consid-
ered to include both membrane (un)folding and elastic deformation (Helfrich and Servuss, 1984). Another
important aspect of biological relevance is membrane composition, where the abundance of proteins and
heterogeneous composition leading to in-plane ordering and asymmetry across leaflets influence the mem-
brane mechanics (Alberts et al., 2014; Rangamani et al., 2014). We have previously found experimentally
that the dynamics of swell-burst cycles is related to the compositional degrees of freedom of the membrane
(Oglecka et al., 2014). Future efforts will be oriented toward the development of theoretical framework and
quantitative experimental data that provide insight into how membrane’s compositional degrees of freedom
influences membrane mechanics.
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Material and Methods

Experimental Material and Methods

Swell-burst cycle experiments The experimental methods for the GUVs preparation has been described
in (Oglecka et al., 2014; Angelova et al., 1992). Briefly, GUVs (100% POPC + 1mol% Rho-DPPE) contain-
ing 200 mM of sucrose were prepared by electroformation, yielding vesicles with radii ranging from 7 to
20 µm. GUVs were then placed in a bath of deionized water at room temperature, inducing hypotonic stress
proportional to the inner sucrose concentration. The kinetics of eight GUVs were recorded by time-lapse
microscopy at 1/150 images/ms. In order to allow for the sedimentation of GUVs to the bottom of the well,
observations were started about one minute after the GUVs were subject to hypotonic conditions.

For each frame, the GUV radius was measured using a customized MATLAB (Mathworks, Natick, MA)
code to streamline the image analysis. This code uses a Circular Hough Transform method based on a
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phase-coding algorithm to detect circles (Davies, 2012), and measure their radii and centers. For our data,
this custom code gives the evolution of the GUV radius in time with a precision of about 0.1 µm. Due to
slow movement of the GUVs, in some cases the observation fields had to be adjusted to follow the GUVs,
and the recording was paused. These are indicated by black dashed lines in Supplementary Fig. 1. In order
to define a systematic experimental initial GUV radius, R0 was determined for each GUV as 0.995 times the
first measured local minimum GUV radius, in accordance with our numerical results. Furthermore, burst
events were identified by drops of GUV radius larger than 0.2 µm within a 1.5 s interval, and are plotted as
solid red triangle. Bursting events that were likely to happen during the video gaps were indicated by plain
red triangle (these “likely” bursting events were not taken into account in the data processing for Fig. 5).

Leak-out quantification To quantify the leak-out amount when a membrane pore is formed, giant unil-
amellar vesicles (GUVs) were electroformed in 200 mM sucrose, supplemented with 58.4 µM 2-NBDG
(2-(N- (7-Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino) -2-Deoxyglucose), a fluorescent glucose analog that has
an almost identical molecular weight as sucrose. Fluorescence imaging was performed on a deconvolution
microscope, equipped with a FITC filter. Time-lapse imaging of the vesicles was performed approximately
one minute after exposing the vesicles to either deionized water (hypotonic conditions n = 3) or glucose
(isotonic conditions n = 3) environment to ensure sedimentation of GUVs to the bottom of the well. All
acquisitions were performed using identical settings to facilitate comparison of vesicles submerged in water
or equi-osmotic glucose environment.

For Fig. 4c, the GUVs were detected with a MATLAB (Mathworks, Natick, MA) code adapted from the
one described above, where the mean gray intensity inside and outside of the GUV are measured. For every
time frame, the difference between the inner and outer mean intensity ∆I(t) was computed, and normalized
by the intensity difference of the first frame ∆I(t0). Bursting events were identified by visual inspection of
the videos, and reported by arrows on Fig. 4b.

In order to highlight the efflux of fluorescent dyes during a GUV bursting event, three frames (before,
during and after the event) were extracted form the video of a GUV containing 200 mM sucrose + 58.4 µM
2-NBDG in hypotonic conditions (Fig. 4c). These images were further processed with ImageJ software
(Schneider et al., 2012) to plot Fig. 4d. Briefly, the noise was attenuated by successively applying ImageJ
built-in routines (background suppression, contrast enhancing, median filter), and ploting the isovalues of
gray at 90, 75 and 60 with the pluggin Coutour Plotter1.

Burst cycle analysis A swell-burst cycle was defined between two successive minimum GUV radius that
immediately followed a bursting event. Cycle periods were computed as the time between two consecutive
minima in vesicular radii, when there was no video gaps (two successive solid triangles in Fig. 1c and
Supplementary Fig. 1). The strain rate was computed as the difference between the maximum and minimum
radii within these cycles, divided by the time between these two events. Because of the lag between the
beginning of the experiments and the beginning of the video recordings, the initial observed cycle number
was adjusted between n = 1 and n = 4, depending on R0.

Theoretical development

Here we derive a theoretical model to describe the swell-burst cycle of a GUV under hypotonic conditions.
In line with previous work (Koslov and Markin, 1984; Idiart and Levin, 2004; Popescu and Popescu, 2008;

1http://rsb.info.nih.gov/ij/plugins/contour-plotter.html
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Peterlin et al., 2012b), the model has three conservation equations, governing the dynamics of the solvent,
the solute, and the membrane pore.

Mass conservation of solvent Mass conservation of the solvent (water) within the vesicle is governed by
the flux through the membrane (jw), and the leak-out through the pore. For a spherical GUV, the general
form of the mass conservation equation for the solvent is

d

dt

(
4

3
πR3ρs

)
= jw − πr2ρsvL , (4)

whereR and r are the radius of the vesicle and the pore respectively, ρs is the mass density of the solvent, and
vL is the leak-out velocity of the solvent. The osmotic flux is influenced by the permeability of the membrane
to the solvent (P ), the osmotic pressure (∆posm), and the Laplace pressure (∆pL). A phenomenological
expression for the osmotic flux is (Koslov and Markin, 1984; Popescu and Popescu, 2008; Peterlin et al.,
2012a)

jw =
Pνsρs
kBTNA

A (∆posm −∆pL) , (5)

where νs is the solvent molar volume, and the membrane area is defined as A = 4πR2 − πr2. The two
pressures involved in Eq. (5) are defined as{

∆posm = kBTNA∆c

∆pL =
2σ

R

. (6)

The Laplace pressure originates from the surface tension in the membrane σ, which we assume to be pro-
portional to the membrane strain

σ = κeff
A−A0

A0
= κeffε . (7)

Here κeff is the effective area extension modulus (combining the effects of membrane unfolding and elastic
deformation), and A0 = 4πR2

0 is the surface of the vesicle in its unstretched state. The leak-out velocity
vL can be analytically approximated at low Reynolds number in order to relate it to the Laplace pressure
(Happel and Brenner, 1983)

vL =
∆pLr

3πηs
. (8)

Substituting these definitions into Eq. (4), the mass conservation equation for the solvent takes the form of
an ordinary differential equation (ODE) for the GUV radius

4πR2dR

dt
=

Pνs
kBTNA

A

(
kBTNA∆c− 2σ

R

)
− 2σ

3ηsR
r3 . (9)

Mass conservation of solute The permeability of lipid membranes to water is several orders of magnitude
larger than for most solutes (Fettiplace and Haydon, 1980; Deamer and Bramhall, 1986). Consequently the
lipid bilayer is supposed to be semi-permeable, neglecting sucrose transport through the membrane. Thus,
variation of solute in the vesicle is exclusively limited to diffusive and convective transport through the pore,
such that

d

dt

(
4

3
πR3∆c

)
= πr2

(
−D∆c

R
− vL∆c

)
. (10)
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While the diffusive flux through the pore is usually neglected over the convective efflux of solute, theoretical
analysis of long lived pores indicates that the Laplace pressure decreases rapidly after the pore opening, and
stays low for most of the pore life time (Brochard-Wyart et al., 2000). This suggests that the convective
efflux directed by the leak-out velocity may not always be the dominant solute transport mechanism, as
confirmed by our numerical and experimental results (see main text Fig. 4). Expanding Eq. (10) we obtain
a ODE for the concentration difference in solute

4

3
πR3d∆c

dt
= −Dπr2∆c

R
− 2σ

3ηsR
r3∆c− 4πR2∆c

dR

dt
. (11)

Pore force balance The pore in the lipid bilayer is modeled as an overdamped system, where the pore
radius is governed by the following Langevin equation (Seifert, 2008)

ζ
d

dt
(2πr) = F (r, t) + ξ(t) , (12)

where ζ is the membrane drag coefficient (inverse of the mobility), F (r, t) is a conservative force, and ξ is
a noise term accounting for independent thermally-induced pore fluctuations. The drag coefficient includes
two in-plane contributions ζ = ζm + ζs: one from membrane dissipation, proportional to the membrane
viscosity and thickness ζm = ηmh (Brochard-Wyart et al., 2000), and a second from the friction of the
solvent with the moving pore – proportional to the solvent viscosity ζs = Cηsr, where C = 2π is a
geometric coefficient (Ryham et al., 2011; Aubin and Ryham, 2016). The conservative force F (r, t) =
−∂V (r, t)/∂r arises from the membrane potential V (r, t), which is equal to the sum of the stretching
potential Vs, and the pore energy Vp. We assume the membrane stretching energy to take a Hookean form
Vs = κeff (A−A0)

2 /(2A0), where κeff is an effective stretching modulus approximating the combined
contributions of membrane unfolding and elastic stretching. The pore energy depends on the edge energy
and length as Vp = 2πrγ, where γ is the pore line tension, here assumed independent of the pore radius.
Using the definition σ = ∂Vs/∂A, we can therefore express the force as

F (r, t) = 2πσr − 2πγ . (13)

The fluctuation term has a zero mean, and a correlation function given by

〈ξ(t)ξ(t′)〉 = 2ζkBTδ(t− t′) , (14)

following the dissipation-fluctuation theorem, where δ is the Dirac delta function.

Rearranging Eq. (12) with these definitions, we obtain a stochastic differential equation for the pore radius

(ηmh+ Cηsr)
d

dt
(2πr) = 2π(σr − γ) + ξ(t) , (15)

with r ≥ 0. The last term in Eq. (15) is responsible for thermally driven pore nucleation.

Deterministic model In the absence of thermal fluctuations, a critical value for the membrane tension (or
strain) has to be defined, and an initial pore has to be set artificially in order for a large pore to open. In that
case, Eq. (15) is simply

(ηmh+ Cηsr)
dr

dt
= σr − γ . (16)

When the pore is closed (r = 0) and the strain overcomes the predetermined critical value (ε ≥ ε∗), an initial
pore large enough to overcome the nucleation barrier (r = γ/σ) is artificially created.
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Numerical implementation

All numerical computations have been carried out using custom codes in MATLAB (Mathworks, Natick,
MA). The stochastic model, composed by Eqs. (9), (11), and (15) was solved using an order-1 Runge-
Kutta scheme. Because a pore nucleation event occurs due to a single fluctuation overcoming the energy
barrier, the numerical implementation of the noise requires the definition of a fluctuation frequency fT that
is independent of the time step. The deterministic model (Eqs. (9), (11), and (16)) was solved using Euler
method. All parameters are shown in Supplementary Table 1. All time steps were taken as 0.1 ms, (smaller
time steps did not improve the accuracy of the results significantly). For the cycles analysis of the stochastic
model, Fig. 5, shows the average and standard deviations of 10 runs with same parameters.
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Supplementary Material

Theroretical derivation of the relation between cycle period, strain rate, and concentration
differential

First, we derive the linear dependence of the strain rate on the concentration difference shown in Fig. 5h.
For a closed vesicle (r = 0), the membrane area is A = 4πR2, and the strain rate is

ε̇ =
d

dt

(
A−A0

A0

)
=

2R

R0

dR

dt
. (17)

This allows us to write Eq. (9) in terms of the strain rate as

ε̇ =
Pνs

kBTNA

A

2πRR2
0

(
kBTNA∆c− 2σ

R

)
. (18)

When the osmotic pressure is the dominant process influencing GUV swelling, we can neglect the Laplace
pressure and obtain

τ ε̇ ' 2R

R0

∆c

c0
, (19)

where τ = R0/(Pνsc0). At maximum GUV radius amplitude,R/R0 can be expressed in term of the ctitical
strain as Rmax/R0 =

√
ε∗ + 1, allowing to write Eq. (19) as

τ ε̇ ' 2
√
ε∗ + 1

∆c

c0
. (20)

Plotting this relationship in Fig. 5d, h for a typical critical strain ε∗ = 0.15, we get a good agreement with
the numerical results from the stochastic model.

We now derive an approximate relation between the cycle period and the strain rate. During a cycle of period
Tn, the critical strain can be written

ε∗ ' Tnε̇ . (21)

Introducing Eq. (20), we get
Tn
τ
' ε∗

2
√
ε∗ + 1

(
∆c

c0

)−1
. (22)

Taking ε∗ = 0.15, this relationship fits well the simulation results, as shown in Fig. 5c, g.

It should be noted that, because the Laplace pressure is neglected in the derivation of Eq. (20), the analytical
expression slightly overestimates the strain rate as shown in Fig. 5d, h. Moreover the cycle period is also
overestimated for low solute concentrations due to the constant critical strain assumed in the analytical
expression (Fig. 5c, g).

Supplementary Movie 1 Membrane nodules appearance after membrane pore reseals. Movie assembled
from time-lapse fluorescence microscopy images (frame rate, 2 fps; total duration, 17 s; image size, 82.43
µm × 82.43 µm; scale bar, 10 µm) obtained for a population of electroformed GUVs consisting of POPC
doped with 1% Rhodamine-B labeled DPPE membrane in a hypotonic solution (Osmotic differential of 200
mM).
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Supplementary Movie 2 Multiple swell-burst cycles of GUVs subject to hypotonic stress. Movie assem-
bled from time-lapse fluorescence microscopy images (frame rate, 24 fps; total duration, 77 s; image size,
82.43 µm × 82.43 µm; scale bar, 10 µm) obtained for a population of electroformed GUVs consisting of
POPC doped with 1% Rhodamine-B labeled DPPE membrane in a hypotonic solution (Osmotic differential
of 200 mM).

Supplementary Movie 3 Model results showing multiple swell-burst cycles of a GUV subject to hypo-
tonic stress. GUV radius (top-left panel), pore radius (middle-left panel), and solute differential (bottom-left
panel) as a function of time. Right panel is a representation of the numerical GUV in time, where the grey
intensity is proportional to the inner sucrose concentration. GUV initial radius is R0 = 14 µm, initial solute
concentration is c0 = 200 mM. All parameters are shown in Supplementary Table 1.

Supplementary Movie 4 Model results showing a single pore opening dynamics of a GUV subject to hy-
potonic stress. GUV radius (top-left panel), pore radius (middle-left panel), and solute differential (bottom-
left panel) as a function of time. Right panel is a representation of the numerical GUV in time, where the
grey intensity is proportional to the inner sucrose concentration. GUV initial radius is R0 = 14 µm, initial
solute concentration is c0 = 200 mM. All parameters are shown in Supplementary Table 1.

Supplementary Movie 5 Solute leakage of a GUV in multiple swell-burst cycles under hypotonic condi-
tion. Movie assembled from time-lapse fluorescence microscopy images (frame rate, 24 fps; total duration,
11 s; image size, 119.14 µm × 125.58 µm; scale bar, 20 µm) obtained for a population of electroformed
GUVs consisting of POPC doped with 1% Rhodamine-B labeled DPPE membrane in a hypotonic solution
(Osmotic differential of 200 mM).

Supplementary Movie 6 GUV under isotonic condition. Movie assembled from time-lapse fluorescence
microscopy images (frame rate, 24 fps; total duration, 8 s; image size, 101.11 µm × 101.11 µm; scale bar,
10 µm) obtained for a population of electroformed GUVs consisting of POPC doped with 1% Rhodamine-B
labeled DPPE membrane in a isotonic solution (no osmotic differential).

Supplementary Movie 7 Solute efflux from GUV during one swell-burst cycle. Movie assembled from
time-lapse fluorescence microscopy images (frame rate, 12 fps; total duration, 8 s; image size, 164.86 µm×
164.86 µm; scale bar, 20 µm) obtained for a population of electroformed GUVs consisting of POPC doped
with 1% Rhodamine-B labeled DPPE membrane in a hypotonic solution (Osmotic differential of 200 mM).
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Supplementary Figure 1: Experimental measurements of GUV radius during swell-burst cycles in 200 mM
sucrose hypotonic solutions. Videos of GUV were recorded and analyzed with a contour detection software,
as described in the Material and Methods section. The radii of eight GUVs from different experiments are
plotted here as a function of time. The radii increase continuously during swelling phases, and drop abruptly
when bursting events occur. Each observed pore opening event is indicated by a H. Gaps in the videos due
to experimental constraints are shown by dashed lines, and pore opening events that likely occurred during
these gaps are indicated by O.
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Supplementary Table 1: Parameters used in the simulations

Parameter Typical value References

R0 8-20 µm this work

c0 200 mM this work
d 3.5 nm

ρs 1000 kg m−3

νs 18.04×10−6 m3 mol−1

P 20 µm/s (Olbrich et al., 2000)

T 294 K
γ 5 pN (Portet and Dimova, 2010)

κeff 2×10−3 N/m this work
ηm 5 Pa s (Hormel et al., 2014)

ηs 0.001 Pa s

D 5×10−10 m2/s (Linder et al., 1976)
C 2π (Aubin and Ryham, 2016)

fT 150 Hz this work

Supplementary Figure 2: Model results for the solute concentration as a function of the cycle number. Insets
shows the same data with a logarithmic y axis, highlighting the exponential dependence ln(∆c/c0) '=
−0.25n− 0.33.
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Supplementary Figure 3: Influence of resting radius on the GUV swell-burst dynamics. All parameters are
as shown in Table 1, except in panels a and c where R0 is set as indicated.

Supplementary Figure 4: Solution to the deterministic model. All parameters are as shown in Table 1 except
the pore opening strain set to 15%.

Supplementary Figure 5: Influence of the effective stretching modulus on the GUV swell-burst dynamics.
All parameters are as shown in Table 1, except in panels a and c where κeff is set as indicated, and R0 =
14 µm.
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Supplementary Figure 6: Influence of solute diffusion on the GUV swell-burst dynamics. All parameters
are as shown in Table 1, except in panels a and c where D is set as indicated, and R0 = 14 µm.

Supplementary Figure 7: Influence of membrane viscosity on the GUV swell-burst dynamics. All parame-
ters are as shown in Table 1, except in panels a and c where ηm is set as indicated, and R0 = 14 µm.

Supplementary Figure 8: Influence of fluctuation frequency on the GUV swell-burst dynamics. All param-
eters are as shown in Table 1, except in panels a and c where fT is set as indicated, and R0 = 14 µm.
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Supplementary Figure 9: Influence of membrane line tension on the GUV swell-burst dynamics. All param-
eters are as shown in Table 1, except in panels a and c where γ is set as indicated, and R0 = 14 µm.

Supplementary Figure 10: Influence of membrane solvent permeability on the GUV swell-burst dynamics.
All parameters are as shown in Table 1, except in panels a and c where P is set as indicated, and R0 =
14 µm.
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Supplementary Figure 11: The deterministic model (constant strain to rupture ε∗) fails to match the experi-
mental cycle period and strain rate. a, b, ε∗ = 10%, c, d, ε∗ = 15%, e, f, ε∗ = 20%.
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