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Originality-Significance Statement 
 
Microbial community analyses typically rely on delineating operational taxonomic units; 
however, a great deal of genomic and phenotypic diversity occurs within these taxonomic 
groupings. Previous work in closely-related marine bacteria demonstrates that fine-scale 
genetic variation is linked to variation in ecological niches. In this study, we present similar 
evidence for soil bacteria. We find that an abundant and widespread soil taxon encompasses 
distinct ecological populations, or ecotypes, as defined by their phenotypic traits. We further 
validated that differences in these soil ecotypes correspond to variation in their distribution 
across a regional climate gradient. Thus, there exists genomic and phenotypic diversity within 
this soil taxon that contributes to niche differentiation. The study further highlights the need to 
link fine-scale genomic diversity with trait variation to investigate the ecological and 
evolutionary processes governing bacterial diversity. 
 
Summary   
 
The high diversity of soil bacteria is attributed to the spatial complexity of soil systems, where 
habitat heterogeneity promotes niche partitioning among bacterial taxa. This premise remains 
challenging to test, however, as it requires quantifying the traits of closely-related soil bacteria 
and relating these traits to bacterial abundances and geographic distributions. Here, we sought 
to investigate whether the widespread soil taxon Curtobacterium consists of multiple coexisting 
ecotypes with differential geographic distributions. We isolated Curtobacterium strains from six 
sites along a climate gradient and assayed four functional traits that may contribute to niche 
partitioning in leaf litter, the top layer of soil. Our results revealed that cultured isolates 
separated into fine-scale genetic clusters that reflected distinct suites of phenotypic traits, 
denoting the existence of multiple ecotypes. We then quantified the distribution of 
Curtobacterium by analyzing metagenomic data collected across the gradient over 18 months. 
Six abundant ecotypes were observed with differential abundances along the gradient, 
suggesting fine-scale niche partitioning. However, we could not clearly explain observed 
geographic distributions of ecotypes by relating their traits to environmental variables. Thus, 
while we can resolve soil bacterial ecotypes, the traits delineating their distinct niches in the 
environment remains unclear. 
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Introduction 
 
A focus on traits can provide a mechanistic understanding of an organism’s geographic 
distribution (McGill et al., 2006; Litchman and Klausmeier, 2008; Allison, 2012; Edwards et al., 
2013) as traits underlie an organism’s response to abiotic and biotic conditions (Lavorel and 
Garnier, 2002). In microbial communities, the link between traits and the distribution of 
microbial taxa remains poorly understood (Green et al., 2008; Litchman et al., 2015). While 
whole-genome and metagenomic data provide a sense for the potential types of traits of the 
microorganisms within an environmental sample (Raes et al., 2011), it is unclear how well this 
potential translates to actual phenotypic differences (Chase and Martiny, 2018). However, as in 
macroorganisms, the functional assessment of an ecosystem’s abundant taxa is important to 
developing trait-based approaches to predict community and ecosystem dynamics (Lavorel and 
Garnier, 2002; Enquist et al., 2015). 
 
Soil systems harbor incredible microbial diversity where high habitat heterogeneity promotes 
niche partitioning among bacterial taxa (Ranjard and Richaume, 2001; Nannipieri et al., 2003). 
Indeed, the biogeographic distributions of soil bacterial communities are correlated with 
environmental variables (e.g. pH (Fierer and Jackson, 2006; Yao et al., 2011) and nutrients (Leff 
et al., 2015)) suggesting that traits related to the response of to these variables underlie 
bacterial distributions. However, most studies consider these patterns at a fairly broad genetic 
resolution, lumping taxa based on the sequence similarity of a highly conserved 16S rRNA 
region, and, subsequently, mask a high degree of trait variation among distinct bacterial taxa 
(Chase et al., 2017; Larkin and Martiny, 2017). Such variation may be important for explaining 
the distribution of bacterial diversity in soil. In particular, some ecologically relevant traits, 
including a response to drought conditions may be shared at broad taxonomic levels (Amend et 
al., 2016), while others, such as temperature preference (Martiny et al., 2015), might be more 
variable. Thus, the ability to resolve the degree of trait variation requires linking genetic 
information with relevant phenotypic variation (McLaren and Callahan, 2018) to distinguish 
fine-scale niche partitioning contributing to the distribution and diversity of soil bacteria.  
 
To illustrate the importance of trait variation among very closely related bacterial strains, we 
can consider the distribution of the abundant marine phototroph, Prochlorococcus. Strains of 
Prochlorococcus cluster into genetically distinct clades that share physiological traits, including 
light preference and nutrient utilization (Moore and Chisholm, 1999; Moore et al., 2002). 
Distinct fine-scale genetic clusters corresponding to ecologically relevant phenotypes have been 
defined as ecotypes (Rocap et al., 2003), where all strains within an ecotype occupy the same 
ecological niche (Cohan, 2001). Co-existing, but distinct Prochlorococcus ecotypes exhibit 
differential geographic distributions that are highly correlated with environmental variables, 
suggesting fine-scale niche partitioning (Moore et al., 1998; Johnson et al., 2006). Further, the 
traits that underlie these correlations are relatively clear; for instance, the optimal temperature 
of an ecotype’s growth in the laboratory corresponds to its distribution across oceanic 
temperature gradients (Johnson et al., 2006). Thus, coexisting individuals can be clustered 
based on genotypic and phenotypic information to provide a functional basis in driving ecotype 
differentiation and niche partitioning (Kent et al., 2016; Delmont and Eren, 2018). 
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Here, we sought to determine whether soil bacteria – like marine bacteria – form distinct 
ecotypes that are differentially distributed. To test this idea, we focused on the widespread soil 
taxon Curtobacterium (Chase et al., 2016). In a southern California grassland, Curtobacterium is 
highly abundant in leaf litter, the top layer of soil, suggesting a potential functional role in plant 
decomposition and, therefore, the carbon cycle (Matulich et al., 2015). In previous work, we 
identified the co-occurrence of multiple Curtobacterium clades in leaf litter, and we 
hypothesized that thermal adaptation might be contributing to ecological differences of co-
occurring clades (Chase et al., 2017). Indeed, a recent study found that northern and southern 
Streptomyces lineages differed in their thermal tolerance across a latitudinal gradient (Choudoir 
and Buckley, 2018). However, it remains unclear what traits differentiate Curtobacterium clades 
and if this diversity is associated with niche partitioning in the environment. Therefore, in this 
study, we isolated Curtobacterium strains from leaf litter across six locations spanning a climate 
gradient and assayed four functional traits (growth, biofilm formation, and depolymerization of 
xylan and cellulose). We further investigated the biogeographic distributions of Curtobacterium 
clades using metagenomic data collected from leaf litter across the gradient over 18 months. 
We hypothesized that (i) genetically-distinct Curtobacterium lineages share functional traits, 
forming distinct ecotypes; (ii) these ecotypes have differential geographic distributions across 
the gradient; and (iii) the distribution of ecotypes is correlated with environmental variation 
(e.g. soil temperature). 
 
Results 
 
Identification of Curtobacterium Ecotypes 
 
We established six sites along an elevation gradient that co-varied in precipitation and 
temperature (Supporting Information Table S1). We isolated Curtobacterium strains from leaf 
litter (decaying leaves that make up the topmost layer of soil) at all sites along this climate 
gradient except at the coldest and wettest Subalpine site. We sequenced 56 new 
Curtobacterium genomes with an average size of 3.6 Mbp and 70.7% GC content (Supporting 
Information Table S2). Incorporating all known Curtobacterium genomic diversity into a 
phylogenetic analysis, we established five major clades (I – V) delineating the genus (Fig. 1). 
These genomes were highly diverse, sharing as low as 79.2% average nucleotide identity (ANI) 
and 68.9% average amino acid identity (AAI). Most (93%) of the isolates from our sites fell 
within Clades I, IV, and V. The major clades further diverged into finer genomic clusters 
(assigned to subclade designation at ≥90% AAI; Fig. 1). Each site along the gradient exhibited 
vast genomic diversity, with most of the subclades including isolates from multiple sites. For 
instance, 25 of the isolates from 4 of the sites (excluding the higher elevation sites, Pine-Oak 
and Subalpine) fell into Subclade IB/C. In contrast, Subclade VA was only isolated from the 
Desert site.  
 
Our analyses revealed extensive genomic diversity that would otherwise be masked using 
traditional genetic characterizations (i.e. 16S rRNA gene similarity) of bacterial operational 
taxonomic units (OTUs). Analyzing the hypervariable V4/V5 region of the 16S rRNA region at 
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100% sequence similarity, we identified only four OTUs. All eight isolates from Subclade VA 
grouped together, while the majority of strains (45 of the 56 climate gradient strains), 
irrespective of phylogenetic relatedness, shared identical V4/V5 regions. An alignment of the 
full-length 16S rRNA gene region revealed some congruence between subclade diversity, but 
clustering into OTUs at 99% similarity (as recommended for full length sequences (Schloss, 
2010; Edgar, 2018)), still revealed only two OTUs (Supporting Information Fig. S1). 
 
We next asked whether this genomic variation corresponded to phenotypic diversity by 
assaying a subset of isolates for four functional traits (growth, biofilm formation, and 
depolymerization of xylan and cellulose). Given the stark gradient in temperature across our 
sites, we measured each trait at a range of temperatures to consider the response of traits to 
environmental variation (McGill et al., 2006). Indeed, across all assays, temperature explained 
15-20% of the trait variation observed in the lab assays (linear regressions; all p < 0.0001; 
reporting adjusted R2). Isolates depolymerized both cellulose and xylan at varying efficiencies 
but strains did not discriminate between carbon substrate utilization (linear regression; p > 
0.05). Additionally, the ability to depolymerize specific carbon substrates was not a simple 
product of increased growth across temperatures (Supporting Information Fig. S2), underlining 
the differences in carbon utilization ability across strains. Total carbon depolymerization 
(combining cellulose and xylan assays) varied significantly by subclade designation (analysis of 
covariance (ANCOVA); F5,195 = 175.7, p < 0.0001) with a significant interaction between 
temperature (F15,195 = 13.6, p < 0.0001; Fig. 2). Maximum growth rate (µmax) and biofilm 
formation followed similar statistical trends (Supporting Information Table S3) with subclade 
and temperature significantly explaining trait performance (Supporting Information Fig. S3A 
and S3B, respectively). However, temperature affected traits differently; for example, carbon 
depolymerization and maximum growth rate peaked at 28°C while biofilm formation decreased 
linearly with increasing temperature (Fig. 2). Across all assays, trait performance was strongly 
influenced by temperature amplifying the degree of phenotypic variation among 
Curtobacterium isolates. 
 
Together, the trait assays indicated that despite highly differential trait responses within 
Curtobacterium, isolates within the same subclade reflected similar phenotypic traits. By 
combining all observed trait variation, isolates clustered significantly by subclade, such that 
strains within the same genetic subclade shared more similar traits (analysis of similarities 
(ANOSIM); R = 0.69, p < 0.001; Fig. 3). Carbon depolymerization abilities and growth parameters 
(maximum absorbance (Amax), µmax, and lag phase) across temperatures best distinguish these 
strains while biofilm formation remained highly variable (Fig. 3). All isolates could depolymerize 
carbon, but the efficiency of carbon depolymerization, especially at higher temperatures, 
strongly differentiated subclades. For example, Subclade IVA was unable to degrade either 
cellulose or xylan at high temperatures, whereas Subclade IVB was generally the best degrader 
(Fig. 2). In contrast, the broader genetic clades (i.e. Clades I – V) were indistinguishable by the 
measured traits at varying temperatures (ANOSIM; R = 0.14, p > 0.05; Fig. 3). Thus, the degree 
of trait variation within subclades was highly correlated with fine-scale genetic clusters within 
Curtobacterium, denoting the existence of distinct Curtobacterium ecotypes. 
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To consider whether there was evidence for adaptation to the site from which the strains were 
isolated, we also tested whether the isolation site influenced trait performance. When we 
considered both subclade designation and the site of isolation along with the temperature of 
the assay, we accounted for 52% and 87% of the variation in maximum growth rate and carbon 
depolymerization, respectively (ANCOVA; all p < 0.01; reporting adjusted R2; Supporting 
Information Table S3). However, subclade designation explained more trait variation than site 
effects for both carbon depolymerization (ANCOVA; Ω2 = 0.50 vs. 0.02, respectively) and µmax 
(ANCOVA; Ω2 = 0.14 vs. 0.06, respectively) across the temperature gradient (Fig. 2; Supporting 
Information Table S3). Biofilm formation, conversely, was only related to subclade and 
temperature (ANCOVA; adjusted R2 = 0.29, p < 0.001) despite being highly variable across 
strains. For example, strains from both Subclades IA and IB/C were among the best biofilm 
producers at lower temperatures, while other strains from the same subclade and site of 
isolation produced minimal biofilms (Supporting Information Fig. S3B). Although site effects 
contributed to observed trait variation among isolates, site effects explained little additional 
variation beyond subclade designations to accurately distinguish ecotypes.  
 
Biogeography of Curtobacterium and its Ecotypes 
 
To evaluate the biogeographic distribution of Curtobacterium ecotypes, we characterized the 
litter bacterial community across the climate gradient using 91 metagenomic libraries collected 
over 18 months. Total bacterial composition varied across the climate gradient, with Desert, 
Grassland, and Scrubland communities more similar in composition to one another than to Pine 
and Subalpine communities (Supporting Information Fig. S4A). Notably, Acidobacteria were 
common in the colder, wetter sites (Pine-Oak and Subalpine), while Actinobacteria dominated 
in the hotter, drier sites (Supporting Information Fig. S4B). Salton Sea bacterial composition was 
distinct from all other sites being dominated by Proteobacteria and the genus Halomonas 
(Supporting Information Fig. S4C). Curtobacterium (phylum: Actinobacteria) was the 6th most 
abundant genus across all sites and time points with an average relative abundance of 1.6% 
(Supporting Information Fig. S4C). Total Curtobacterium abundance was highest in the 
Grassland and decreased towards the extreme ends of the climate gradient (top line in Fig. 4A). 
 
The geographic distribution of subclades within Curtobacterium – the genetic resolution at 
which we could distinguish ecotypes – also varied along the climate gradient (Fig. 4A). To 
identify subclade sequences in the metagenomic data, we extracted 830 orthologous protein 
groups belonging to Curtobacterium and Frigoribacterium (a sister genus) identified from the 
full genome sequences (see Experimental Procedures). The overall abundance of 
Curtobacterium was represented by multiple subclades, comprised primarily of six abundant 
ecotypes spanning the climate gradient (Fig. 4A). Nevertheless, subclade composition varied 
significantly by site (permutational multivariate analysis of variance (PERMANOVA; p < 0.001) 
such that some subclades were strongly correlated with site location (Fig. 4B). For example, 
Subclade IVB was the dominant Curtobacterium ecotype in the hot, dry Desert site and the cold, 
wet Pine-Oak and Subalpine sites; whereas, at the intermediate climate sites, Scrubland and 
Grassland, Subclade IB/C was the dominant ecotype (Fig. 4A). The less abundant ecotypes also 
exhibited differential distributions with Subclades IVB and IVC being more pronounced in the 
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Desert and Subclade IA peaking in the Grassland (Fig. 4A,B). Along the climate gradient, we 
identified six abundant ecotypes co-occurring at each site with each ecotype exhibiting 
preferential distributions. 
 
The relative abundance of the ecotypes remained relatively constant over the year and a half 
(Supporting Information Fig. S5A). Overall, the temporal effects were less pronounced than the 
site effects (PERMANOVA; p > 0.05), and accounted for only 0.8% of the observed variation in 
subclade composition across sites (as compared to 54.2% attributed to site effects). Therefore, 
Curtobacterium composition along the climate gradient was temporally stable over the course 
of the study. 
 
Ecotype – Environmental Relationships 
 
Since Curtobacterium ecotypes clearly differed in their geographic distributions, we next asked 
how their abundances were correlated with environmental variation. Ecotype composition 
varied over time, but this shift in composition was minimal relative to the site effects (Fig. 5). 
Indeed, the environmental factors measured at each site (leaf litter chemistry and abiotic 
parameters) largely explained the observed ecotype composition (distance based linear model 
(distLM); adjusted R2 = 0.91). In particular, the proportion of hemicelluloses (e.g., xylan) in the 
leaf litter explained 41.5% of the variation in ecotype composition (distLM; p < 0.05; Supporting 
Information Table S4). The measured abiotic factors (precipitation and soil surface day- and 
night-time temperatures; Supporting Information Fig. S5B,C) explained an additional 38% of 
ecotype variation between sites and across seasons.  
 
Despite identifying environmental factors related to ecotype composition, we were unable to 
link these patterns to the trait measurements. For instance, leaf litter from the Grassland and 
Scrubland sites contained the highest proportion of polymeric carbohydrates (cellulose and 
hemicelluloses; Supporting Information Fig. S5D). However, Subclade IVB, the most efficient 
degrader of cellulose and xylan (Fig. 2), was not the dominant ecotype at these sites; instead, 
Subclade IB/C was nearly twice as abundant as Subclade IVB (Fig. 4A). Further, subclades whose 
trait performance peaked at warmer temperatures in the lab assays (e.g., Subclade IA in carbon 
depolymerization and Subclade VA in growth parameters; Fig. 2) were more abundant at the 
Grassland site rather than the warmer Desert site. Thus, while the phenotypic trait 
measurements strongly differentiated strains into ecotypes, these traits did not explain ecotype 
distribution across the sites. 
 
Finally, given the variability in litter chemistry among sites (Supporting Information Fig. S4D), 
we considered whether the genetic potential to utilize a range of carbohydrates might be 
correlated with the distribution of Curtobacterium ecotypes. Specifically, we targeted the 
genomic diversity of glycoside hydrolase (GH) and carbohydrate binding module (CBM) proteins 
that potentially contribute to degradation of various carbon substrates in leaf litter. Overall, the 
composition of GH and CBM genes was correlated with phylogenetic distance between 

Curtobacterium strains (RELATE test;  = 0.43, p < 0.0001) such that more phylogenetically 
similar genomes encoded similar GH-CBM profiles. Further, the genomic potential to degrade 
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complex polymeric carbohydrates common in leaf litter (i.e. cellulose, chitin, and xylan) differed 
significantly between subclades (Kruskal-Wallis test, p < 0.0001; Supporting Information Fig. 
S6A). However, the total abundance of polymeric GH/CBM did not clearly predict ecotype 
distribution along the gradient. We predicted that ecotypes with higher numbers of polymeric 
GH-CBMs would be more abundant on leaf litter; however, two of the rarer ecotypes, 
Subclades IA and IVA, contained the highest total number of polymeric GH-CBMs (Supporting 
Information Fig. S6A). Similarly, total GH and CBM composition also varied significantly by 
subclade (PERMANOVA; p < 0.001; Supporting Information Fig. S6B), but ecotypes with highly 
similar GH-CBM compositions, such as Subclades IVA and IVB, differed strikingly in their 
association with different sites (Fig. 4B). Therefore, while the abundance and composition of 
GH-CBMs in Curtobacterium genomes supported our ecotype designations (Supporting 
Information Fig. S6B), variation in these functional genes did not elucidate ecotype distributions 
along the climate gradient. 
 
Discussion 
 
In this study, we applied a trait-based framework (Diaz et al., 1998; Dıaz and Cabido, 2001; 
Cadotte et al., 2015) to identify ecological populations, or ecotypes, in a terrestrial bacterium 
and investigated the drivers of their biogeographic distribution. By sampling across a climate 
gradient varying in temperature and precipitation, we identified highly similar genomic clusters 
within Curtobacterium that corresponded to distinct phenotypes denoting the existence of 
bacterial ecotypes. These results contribute to the growing understanding that traditional 
taxonomic assignments (i.e. OTUs) mask bacterial “microdiversity” that contributes to 
ecological differentiation (Jaspers and Overmann, 2004; Larkin and Martiny, 2017). More 
broadly, our study highlights the application of a trait-based approach to microbial systems to 
assess the ecological and evolutionary mechanisms contributing to community assembly 
(McGill et al., 2006; Nemergut et al., 2013; Enquist et al., 2015). 
 
A growing number of studies demonstrate that the fine-scale genomic structure of bacterial 
diversity reflects diverged populations (Polz et al., 2006; Connor et al., 2010) occupying 
separate ecological niches (Johnson et al., 2006; Hunt et al., 2008). Indeed, it appears that the 
total abundance of typically-defined taxa (i.e. OTUs based on 16S rRNA sequence similarity) 
may often be comprised of distinct ecological populations that vary over a range of 
environments (Moore et al., 1998; Thompson et al., 2005). This emerging pattern has 
implications for how we interpret biogeographic patterns of bacterial diversity. In particular, 
phenotypic differences among ecotypes can permit the coexistence of fine-scale genetic 
diversity within an environment. In this study, we identified and observed six abundant 
Curtobacterium ecotypes at all sites along our gradient, suggesting fine-scale niche partitioning 
of environmental resources. In addition, ecotypic diversity may allow a taxon to persist in a 
broader range of environments than would be expected based on the phenotype of a single 
representative (Moore et al., 1998; Partensky et al., 1999). Therefore, the biogeographic 
distribution of a typical OTU or a representative strain may be not be indicative of the range of 
genetic and phenotypic diversity encoded at finer taxonomic levels. 
 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



Whether an isolate is representative of its broader taxon will depend on the particular trait of 
interest (McLaren and Callahan, 2018), as different traits vary in the degree to which they are 
phylogenetically conserved (Martiny et al., 2013). Many traits are conserved across all 
Curtobacterium diversity including those contributing to its dominance as a leaf litter bacterium 
(Chase et al., 2016). For instance, all strains in this study shared the ability to degrade polymeric 
carbohydrates common in leaf litter, cellulose and xylan, and, relative to other genera in the 
Microbacteriaceae family, Curtobacterium has a high genomic potential for carbohydrate 
degradation (as assessed by the total number of GH-CBM genes) (Chase et al., 2016). 
Additionally, the taxon generally appears to prefer relatively dry surface soil conditions (Lennon 
et al., 2012) as the relative abundance of Curtobacterium as a whole tends to increase in drier 
seasons (Chase et al., 2017). In contrast, traits that vary within the genus will contribute to 
ecological differences amongst ecotypes. Such fine scale trait variation may often result in 
quantitative rather that qualitative differences. For example, Curtobacterium ecotypes varied in 
their growth rates at different temperatures. And while all Curtobacterium ecotypes could 
degrade cellulose and xylan, the degree to which they degraded these compounds in the lab 
varied significantly.  
 
Although we were able to identify correlations between ecotype composition and 
environmental factors across the sites, it was not clear which traits underlie Curtobacterium 
ecotype distributions as has been resolved for marine bacteria (Johnson et al., 2006; Martiny et 
al., 2009). There are several possible reasons for this disconnect. One possibility is that we did 
not measure the correct traits. For example, we hypothesized that the ability to form biofilms 
might be important because biofilms can protect bacteria from desiccation and fluctuations in 
water potential (Hartel and Alexander, 1986; Roberson and Firestone, 1992) and are correlated 
with soil moisture adaptation (Lennon et al., 2012). Thus, we expected biofilm formation to be 
prevalent across all Curtobacterium strains, especially with higher production in strains 
abundant at drier sites. However, biofilm formation was highly variable among strains, so much 
so that subclade differences explained little observed variation and there was no effect from 
the site of isolation. Of course, biofilm formation is just one trait that might contribute to 
moisture adaptation (Potts, 1994) and other traits related to moisture preference might be 
more predictive for assessing fine-scale niche partitioning. We also did not measure a variety of 
traits that known to be important to soil bacteria including nutrient uptake abilities and pH 
preferences (Fierer and Jackson, 2006; Leff et al., 2015). Environmental constraints clearly 
contribute to the distribution of soil bacterial taxon, however, the traits delineating these 
biogeographic patterns requires further investigation. 
 
A second reason that we may have missed ecotype-environment correlations is that we are not 
measuring the environment at the correct spatiotemporal scale. Soils are highly heterogeneous 
and differences in soil microhabitats are thought to contribute to the maintenance of soil 
diversity (Ranjard and Richaume, 2001; Nannipieri et al., 2003). Consequently, soil ecotypes are 
likely to respond to environmental variation at very small spatial scales. The existence of 
multiple Curtobacterium ecotypes co-occurring within a given site suggest that fine-scale 
environmental variation is contributing to niche partitioning in leaf litter. Indeed, even in the 
marine water column, which is thought to be more homogeneous than soil, strains of Vibrio 
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splendidus partition resources to differentiate between particle-associated or free-living 
habitats (Hunt et al., 2008). On a similar spatial scale, variation in hemicellulose availability or 
temperature within a decomposing leaf may explain the coexistence of multiple 
Curtobacterium ecotypes. Thus, by sampling across a regional climate gradient, we may have 
masked much of the within-site environmental variation that contributes to soil ecotype 
distributions. A further possibility is that Curtobacterium diversity is not at equilibrium in the 
sampled communities. Maladapted strains may be present and even abundant if environmental 
selection is weak and/or dispersal is high (Lenormand, 2002). Much more work is needed to 
understand the spatiotemporal scales of these mechanisms for soil bacterial diversity.  
 
In sum, our study presents evidence that the genomic diversity within an abundant terrestrial 
bacterial taxon can be classified into ecotypes that vary in their biogeographic distribution 
across a climate gradient. Especially for terrestrial soil communities, we lack an understanding 
of the ecological and evolutionary processes governing the distribution and functioning of 
bacterial diversity. The results presented here are consistent with the growing understanding 
that fine-scale genomic diversity, and the traits encoded by this variation, is key to microbial 
biogeography. However, identifying and measuring relevant traits remains a distinct challenge 
for the application of trait-based frameworks to microbial communities. 
 
Experimental Procedures 
 
Field Sites 
 
We characterized the microbial community on leaf litter by establishing four replicate plots (1 
m2) at six sites across a climate gradient in southern California from October 2015 to April 2017 
(Glassman et al. In prep.). The five sites (from lowest to highest elevation) include the Sonoran 
desert (33.652 N, 116.372 W), pinyon-juniper scrubland (33.605 N, 116.455 W), coastal 
grassland (33.737 N, 117.695 W), pine-oak forest (33.808 N, 116.772 W), and subalpine forest 
(33.824 N, 116.755 W) as previously described in (Baker and Allison, 2017). In addition, we 
sampled leaf litter near the highly-saline Salton Sea (33.518 N, 115.938 W) to extend the 
climate gradient further (Supporting Information Table S1). Sites are hereafter referred to as 
Desert, Scrubland, Grassland, Pine-Oak, Subalpine, and Salton Sea, respectively. All sites 
experience Mediterranean climate patterns with a hot, dry summer and a cool, wet winter. The 
sites range in mean annual air temperature (MAT) from 10.3-24.6°C and precipitation (MAP) 
from 80-400mm. To characterize climate at the sites during the experiment, we collated 
precipitation data from nearby weather stations and collected surface soil temperature at 90 
min intervals using two iButton temperature sensors (Maxim Integrated) from April 4th, 2016 to 
April 20th, 2017 at five of the sites (excluding Salton Sea) (Glassman et al. In prep.). In addition 
to changes in temperature and precipitation, the sites differed greatly in the plant communities 
present and, therefore, the litter chemistry. Leaf litter chemistry was determined from samples 
in both the dry (June) and wet (December) seasons in 2015 using near-IR spectroscopy, as 
previously described (Baker and Allison, 2017). 
 
Isolation and Genomic Characterization of Curtobacterium  
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To isolate Curtobacterium strains, we collected fresh leaf litter from the perimeter of the four 
plots at each site on June 14th, 2016 to create a homogenized batch of litter from each site. We 
ground the litter in a sterile coffee grinder and vortexed 0.2 g of homogenized litter in 5 mL of 
0.9% saline (NaCl) solution for 5 min. Samples were serially diluted and plated on grassland leaf 
litter leachate media (Chase et al., 2016). Colonies were visually screened for phenotypic 
characteristics ascribed to Curtobacterium (Evtushenko and Takeuchi, 2006), streaked on Luria 
Broth (LB) media agar plates, transferred three times, and stored in glycerol solution at -80°C. 
We identified each cultured isolate by PCR amplification and Sanger sequencing of a 1500 bp 
region of the 16S rRNA region. For each isolate, we used DNA extracted from a single colony 
that we added to a PCR cocktail containing 0.3 µL HotMaster Taq polymerase (5 units/µL), 15 µL 
2x Premix F (Epicentre; Madison, WI), and 0.2 µL of 50 µM of each primer, pA (5′-
AGAGTTTGATCCTGGCTCAG-3′) and pH’ (5′-AAGGAGGTGATCCAGCCGCA-3′), under identical PCR 
conditions (Chase et al., 2016). The 16S rRNA sequence of each isolate was used to identify 
taxonomy using the Ribosomal Database Project (RDP) database (Wang et al., 2007).  
 
Identified Curtobacterium isolates were selected for whole-genome sequencing and grown on 
LB plates for 48-72 hrs. A single colony from each plate was transferred to 10 mL liquid LB 
media to grow for an additional 48 hrs. Genomic DNA extraction was performed using the 
Wizard Genomic DNA Purification Kit (Promega; Madison, WI) with the additional step of 
adding lysozyme for Gram-positive bacteria. Extracted DNA was quantified on the Qubit 
(BioTek; Winooski, VT), quality assessed on the Nanodrop (Thermo Fisher; Waltham, MA), and 
diluted to 0.5 ng/µL for library preparation. Next, we followed the protocol for the Nextera XT 
Library Preparation kit (Illumina Inc., San Diego, CA, USA). Samples were pooled in equimolar 
portions and assessed using the High Sensitivity Bioanalyzer. The pooled library was sequenced 
using an Illumina HiSeq4000 instrument (Illumina Inc., San Diego, CA, USA) with 150 bp paired-
end reads. Demultiplexed sequence data were assembled using the SPAdes genome assembler 
(Bankevich et al., 2012) with a “careful” iterative k-step ranging from k=31 to 111. We assessed 
the quality of the assemblies by creating taxon-annotated-GC-coverage (TAGC) plots. 
Specifically, we calculated coverage for each contig by mapping back the raw sequence data to 
assembled contigs using Bowtie2 (Langmead and Salzberg, 2012) and taxonomic assignments 
were assigned using MegaBLAST against the NCBI nucleotide database (Federhen, 2012) with 
an E value of 1 x 10-5. Based on the results from the TAGC-plots, we discarded all contigs with 
coverage <30, length <500 bp, and GC% <55%. In total, we identified 56 high-quality 
Curtobacterium genomes to be included in this study, which are deposited at GenBank under 
BioProject PRJNA391502 with biosamples SAMN09009025 – SAMN09009080. 
 
We created a Curtobacterium phylogeny using a multi-locus sequence alignment (MLSA) of 21 
single-copy marker genes (Wu et al., 2013). For comparison of the climate gradient genomes 
(N=56), we downloaded all publicly available Curtobacterium genomes (N=30) and a 
Frigoribacterium genome (to serve as an outgroup), which included 14 previously identified 
Curtobacterium isolates from our previous work in leaf litter (Chase et al., 2016, 2017). Each of 
the 87 genomes were translated using Prodigal (Hyatt et al., 2010) and screened for the 
presence of the 21 marker genes using HMMER v3.1b2 (Finn et al., 2011) with an E value of 1 x 
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10-10. Each marker gene was independently aligned using ClustalO v1.2.0 (Sievers et al., 2011) 
to create a concatenated protein alignment consisting of 3947 amino acids for phylogenetic 
analysis using RAxML v8.0.0 (Stamatakis, 2014) under the PROTGAMMAWAG model for 100 
replicates. We designated the major branching points in the resulting phylogeny into five 
distinct clades. To identify finer taxonomic groupings, we calculated pairwise average amino 
acid identity (AAI) and nucleotide identity (ANI) across all 87 genomes using the enveomics 
package (Rodriguez-R and Konstantinidis, 2016). Genomes that clustered at ≥90% AAI at the 
whole genome level, the suggested boundaries for bacterial species groupings (Richter and 
Rosselló-Móra, 2009), were further designated into subclades. Subclade designations were also 
supported by the phylogeny. 
 
To cluster genomes into operational taxonomic units (OTUs), we extracted 16S rRNA gene 
sequences from the full genomes using Barrnap 
(http://www.vicbioinformatics.com/software.barrnap.shtml) and conducted two analyses 
recommended for optimal assessment of taxnomomic units (Edgar, 2018). First, we extracted 
the hypervariable V4/V5 region of the 16S rRNA gene and defined OTUs at 100% gene similarity 
with UCLUST (Edgar, 2010), also termed zero-radius OTUs (zOTUs) or exact sequence variants 
(ESVs). To include effects of alignment quality (Schloss, 2010), we aligned the full-length 16S 
rRNA gene region with SINA (Pruesse et al., 2012) then clustered at 99% gene similarity with 
mother (Schloss et al., 2009). We conducted a phylogenetic analysis of the full-length, aligned 
16S rRNA gene region using RAxML v8.0.0 (Stamatakis, 2014) under the GTRGAMMA model for 
100 replicates. 
 
We characterized the functional potential to degrade carbohydrates (glycoside hydrolase (GH) 
and carbohydrate binding module (CBM) proteins) within all Curtobacterium genomes. The 
predicted open reading frames generated from Prodigal were searched using HMMER against 
the Pfam-A v30.0 database (Finn et al., 2016). GH and CBM genes and their targeted substrate 
were identified according to the Pfam identifiers as stated in (Chase et al., 2016). Total GH and 
CBM gene composition profiles for each genome were normalized and used to construct a 
Euclidean distance matrix for producing an ordination plot.  
 
Characterization of Curtobacterium Traits 
 
In the laboratory, we characterized the traits of a subset of the Curtobacterium isolates 
spanning across the climate gradient and phylogenetic clades. Specifically, we sought to 
measure four functional traits (growth, biofilm formation, and depolymerization of cellulose 
and xylan) across a temperature range (15-42°C) experienced along the climate gradient. We 
selected these traits because we speculated that they would influence competitive dynamics in 
the leaf litter community. The ability to degrade polymeric carbohydrates and, specifically, an 
increased degradation efficiency should provide a competitive advantage as the primary carbon 
supply in leaf litter is in the form of celluloses and hemicelluloses (e.g. xylan) (Baker and Allison, 
2017). Our sites experience long periods without precipitation and, therefore, the ability to 
form biofilms may prevent desiccation from water stress (Lennon et al., 2012). Increased 
growth, both in response (lag phase) and rate (µmax), could allow for competitive exclusion of 
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other organisms. Traits were assayed along the temperature gradient to simulate abiotic 
conditions from the climate gradient. 
 
For all assays, a subset of Curtobacterium strains and one Escherichia coli strain (as a control) 
were grown from -80°C freezer stocks for 48 hrs in liquid LB media at 22°C. Isolates were 
pelleted by spinning down at 4500 RPM for 10 min, washed three times with 0.9% saline 
solution to remove residual media, and resuspended in 10 mL of M63 minimal media 
(supplemented with 0.1% peptone and 1 µg/mL thiamine) with 0.5% (wt/vol) dextrose as the 
sole carbon source. After 24 hrs, isolates were washed again under identical conditions and 
diluted to an optical density of 0.1 OD600 to ensure equal cell density across all isolates. 
 
For the growth rate and biofilm assays, we inoculated 10 µL of diluted isolates (N=29 
Curtobacterium isolates) into 96-well plates containing 190 µL of M63 media with 0.5% (wt/vol) 
dextrose. Each strain was grown in triplicate on each plate for each assay. The inoculated plates 
for the growth rate assays were shaken at 200 RPM at four temperatures (15, 25, 28, and 37°C) 
with OD600 being measured every 1-2 hrs for the first 48 hrs and every 4 hrs thereafter. 
Sampling was terminated if any of the six negative controls in any plate increased in OD600 
measurements over the course of the experiment. To estimate growth parameters (max 
absorbance (Amax), max growth rate (µmax), and lag phase), we fit OD600 measurements to either 
a logistic, gompertz, or a locally weighted scatterplot (LOESS) regression model using the 
“growthcurve” package in the R software environment (Pinheiro et al., 2011). For biofilm 
assays, inoculated plates were sealed and placed in incubators at six temperatures (15, 22, 25, 
28, 34, and 37°C) without shaking. After 4 days, we removed residual cells and media by 
submerging the microplates in deionized water. We then added 125 µL of 0.1% crystal violet 
solution to each well and incubated the plates for 15 min at room temperature. Plates were re-
submerged in water and vigorously shaken to remove residual liquid (repeated 4x). We dried 
each plate for 2 hrs and added 125 µL of 30% acetic acid to solubilize the crystal violet. Plates 
were incubated for 15 min and absorbance was measured at OD550 for biofilm production 
(O’Toole, 2011). 
 
We selected a subset of Curtobacterium isolates (N=18) from various sites along the climate 
gradient to assess their ability to depolymerize cellulose and xylan as previously described 
(Chase et al., 2017). Briefly, we inoculated 10 µL of washed 0.1 OD600 cultures, in triplicate, onto 
solid M63 media with 0.5% (wt/vol) of either carboxymethyl cellulose (CMC) (catalog no. 
150560; MP Biomedicals) or xylan (catalog no. X0502; Sigma) and placed inoculated plates in 
incubators at seven temperatures (15, 22, 25, 28, 34, 37, and 42°C). We classified the zones of 
depolymerization after 4 days using ImageJ (https://imagej.nih.gov/ij/) by subtracting the 
original colony area from the total area of carbohydrate degradation. An E. coli strain was 
included as a negative control and did not depolymerize either substrate at any temperature. 
No strains could depolymerize either substrate at 42°C and, therefore, were removed from 
statistical analyses. 
 
Metagenomic Sequencing and Analysis 
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Metagenomic Samples 
 
We sampled leaf litter from the 4 replicate plots at each site every 6 months until April 20th, 
2017 (6 sites x 4 time points x 4 replicate plots). We extracted DNA from 0.05 g of ground leaf 
litter using the FastDNA SPIN Kit for Soil (Mo Bio; Carlsbad, CA) and cleaned the DNA with the 
Genomic DNA Clean and Concentrator kit (Zymo Research; Irvine, CA). Cleaned samples were 
diluted to 0.5 ng/µL and 1 ng of DNA was used for input for the Nextera XT library Prep kit for 
sequencing on the Illumina HiSeq 4000 instrument with 150 bp paired end reads. Due to low 
quality sequence data, we excluded 5 libraries and, in total, analyzed 91 metagenomic libraries. 
The raw data is deposited on the metagenomics analysis server (MG-RAST) (Meyer et al., 2008) 
under the project ID mgp17355. 
 
Bacterial Community Analysis 
 
To characterize the bacterial litter community, we built upon our previous pipeline (Chase et 
al., 2017) using phylogenetic inference to characterize conserved single-copy marker genes (Wu 
et al., 2013) within the metagenomic data. To compensate for the lack of genomic 
representation of soil microbes, we downloaded 7,392 publicly available genomes that are 
designated as “representative” genomes by the PATRIC database (Wattam et al., 2014) and 
included representative Curtobacterium genomes from the climate gradient (see above). We 
translated all genomes using Prodigal (Hyatt et al., 2010) and searched for the presence of 21 
single-copy marker genes using HMMER v3.1b2 (Finn et al., 2011) with an E value of 1 x 10-10. 
Each protein was individually aligned with ClustalO v.1.2.0 (Sievers et al., 2011) and used to 
create a 12,271 amino acid concatenated alignment for phylogenetic analysis using FastTree2 
(Price et al., 2010). The reference tree was manually curated for the misplacement of genomes 
based on assigned nomenclature, and a genome was removed if it did not group within its 
assigned family designation. This highly curated tree served as a reference tree to guide 
construction of each individual marker gene tree using RAxML v.8.0.0 (Stamatakis, 2014) under 
the PROTGAMMAWAG model for 100 replicates. The remaining 5,433 genomes were used to 
construct BLASTp (Altschul et al., 1997) databases, HMMER profiles, and pplacer (Matsen et al., 
2010) reference packages (all databases available at https://github.com/alex-b-
chase/elevation-community). 
 
Metagenomic libraries were quality trimmed using BBMap (Bushnell, 2016) and filtered to 
remove eukaryotic DNA. Specifically, we mapped all reads to a reference genome using BWA (Li 
and Durbin, 2009) from both an abundant grass (Lolium perenne; Accession: MEHO01000000) 
and fungus (Pyrenophora teres; Accession: NZ_AEEY00000000) found at the grassland site. All 
filtered reads were then merged using BBMap (Bushnell, 2016) to form paired-end reads. If a 
read could not be merged with its counterpart, we included only the forward read in further 
analyses. Reads were then translated using Prodigal (Hyatt et al., 2010) with the metagenomic 
flag and searched against the reference marker gene databases, as previously described (Chase 
et al., 2017). Briefly, we imposed a primary filter against the reference BLASTp database with an 
E value of 1 x 10-5 and a secondary filter against the reference HMMER profiles with an E value 
ranging from 1 x 10-10 to 1 x 10-25 depending on the individual marker gene. Passed reads were 
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aligned using ClustalO v.1.2.0 (Sievers et al., 2011) to the corresponding reference package and 
placed onto the reference phylogenies using pplacer v.1.1.alpha17 (Matsen et al., 2010). 
Relative abundances were calculated by generating single branch abundance matrices and 
normalizing to the total number of marker genes present in each library. 
 
Curtobacterium Ecotype Abundances 
 
The above analyses provided an estimate of the total abundance of Curtobacterium and other 
taxa in the metagenomic libraries. However, to investigate the distribution of diversity within 
Curtobacterium, we first characterized Curtobacterium orthologous protein groups (orthologs) 
from the Curtobacterium genomes isolated from leaf litter. Publicly available Frigoribacterium 
genomes (N=5) were also included to serve as outgroups. Orthologs were identified using Roary 
(Page et al., 2015) with coding regions predicted by Prokka (Seemann, 2014). Due to the 
diversity of these genomes, we decreased the percentage sequence identity to 50% to 
encompass all possible orthologs. The resulting 1075 orthologs were used to create a core-
genome tree, using RAxML v8.0.0 (Stamatakis, 2014) under the PROTGAMMAWAG model for 
100 replicates, that was nearly identical to the reference tree derived from the genomic MLSA 
analysis. We built individual ortholog trees, using identical model parameters, with the core-
genome tree as the guiding reference tree, to generate a Curtobacterium reference database 
(reference database can be found here: https://github.com/alex-b-chase/elevation-curto). We 
then removed orthologs that lacked a robust phylogenetic signal yielding a final set of 830 
orthologs. We parsed the filtered metagenomic reads for the presence of each ortholog with a 
BLASTp E value of 1 x 10-20 and a secondary filter against the reference HMMER profiles with an 
E value of 1 x 10-40. Each filtered metagenomic read was then placed onto the corresponding 
ortholog tree with pplacer v.1.1.alpha17 (Matsen et al., 2010) and classified to each clade and 
subclade. Clade and subclade relative abundances were normalized by the total abundance of 
Curtobacterium calculated from the community analyses above. For the remainder of the 
subclade compositional analyses, subclades were treated as the proportion to all 
Curtobacterium, not the entire community, to limit compositional biases. 
 
Statistical Analyses 
 
Ecotype Identification – Linking Traits to Phylogeny 
 
To tease apart the relative importance of isolation source (where the Curtobacterium strain was 
isolated from along the climate gradient) and phylogenetic relatedness (subclade designation) 
for each of our physiological assays, we implemented a statistical model with site of isolation 
and subclade designation as dependent variables with temperature as a covariate. To start, we 
examined various regression models to test the best model fit using Bayesian information 
criterion (BIC) to confirm that temperature covaried with the other variables across all assays. 
For each assay, we then determined whether our regression models should be either linear or 
polynomial by comparing both BIC and residual values for each model. We constructed a linear 
regression model for biofilm formation and polynomial regression models for carbon 
degradation and growth rate. Finally, we used an analysis of covariance (ANCOVA) to test the 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



effects of our main fixed factors, site and subclade, while controlling for the effects of the 
covariate, temperature. Within each ANCOVA design, we implemented a backward selection 
process (Mac Nally, 2002) to eliminate spurious relationships (Harrell, 2015) for each assay. 
 
To further examine the physiological differences between Curtobacterium subclades, we 
constructed a nonmetric multidimensional scales (NMDS) ordination plot of each strain using 
the physiological measurements. Specifically, we included biofilm formation (at 6 
temperatures), cellulose degradation (6 temps.), xylan degradation (6 temps.), Amax (4 temps.), 
µmax (4 temps.), and lag phase (4 temps.). All variables were normalized by subtracting the 
mean from each measurement and dividing by the standard deviation. Before performing the 
NMDS analysis, we generated Spearman’s correlation coefficients (ρ2) for each physiological 
assay and clustered variables into groups when ρ2 > 0.6. We kept one representative trait for 
each Spearman-defined cluster and generated a Euclidean similarity matrix across strains. Next, 
we fitted each physiological variable onto the ordination plot and calculated the significance of 
each variable over 9,999 permutations. Finally, we removed nonsignificant variables to reduce 
spurious relationships (Harrell, 2015) and reran all analyses. We report only the ordination plot 
generated from the remaining significant variables for each strain. The significance of strain 
groupings was assessed using an analysis of similarities (ANOSIM) for subclade or clade 
designation and site of isolation for 9,999 permutations. All analyses were performed in the R 
software environment. 
 
Ecotype Distributions Along the Climate Gradient 
 
To test the effects of site on the distribution of Curtobacterium subclade composition, we used 
a permutational multivariate analysis of variance (PERMANOVA) (Clarke, 1993). The statistical 
model included the site along the climate gradient and season (wet or dry) as fixed effects. We 
generated a Bray-Curtis similarity matrix to run a type III partial sum of squares for 9,999 
permutations of residuals under a reduced PERMANOVA model. The Bray-Curtis matrix was 
also used to generate principal coordinates analysis (PCO) ordination plot. To assess the effects 
of the abiotic environment (surface soil day- and night-time temperature and total 
precipitation) and leaf litter chemistry (i.e. cellulose and hemicellulose) on subclade 
composition, we applied a distance based linear model (distLM). Again, the Bray-Curtis matrix 
for subclade composition was analyzed using a step-wise forward procedure with adjusted R2 as 
the model selection criterion. All multivariate statistical analyses were conducted using 
PRIMER6 with the PERMANOVA+ function (Primer-E Ltd., Ivybridge, UK). 
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Fig. 1. Phylogeny of Curtobacterium clades and subclades constructed from a multilocus 
phylogenetic analysis of 21 single-copy marker genes. Subclade designations are assigned if all 
genomes within subclade share ≥ 90% average amino acid identity. Strains with assigned 
nomenclature beginning with “Curtobacterium” are publicly available genomes, while the other 
labels designate the site of isolation along the climate gradient. 
 
Fig. 2. Physiological response curves plotting functional traits (carbon depolymerization, biofilm 
formation, and maximum growth rate, µmax) versus temperature. The colors distinguish clade or 
subclade designation. The symbols represent the isolation site of each strain. Smoothed 
averages (lines) were calculated from locally weighted smoothing (LOESS) using either a 
polynomial (carbon and µmax) or linear regression (biofilm). 
 
Fig. 3. Non-metric multidimensional scaling (NMDS) plot (Euclidean distance) depicting 
physiological variables correlated with variation in Curtobacterium isolates. Variables assigned 
as “carbon” are collapsed to include both cellulose and xylan degradation. Each point 
represents an individual strain colored by subclade. Insert is a cladogram of Curtobacterium 
clades and subclades. 
 
Fig. 4. The composition of Curtobacterium ecotypes along the climate gradient. (A) Log10 of the 
mean relative abundances of Curtobacterium and its subclades (± 1 SD) with respect to the 
entire bacterial community by site. (B) Principal coordinates (PCO) ordination plot depicting the 
ecotype composition in each metagenomic sample, colored by site. Spearman correlation 
vectors illustrate the contribution of each subclade to compositional differences along the two 
PCO axes.  
 
Fig. 5. Results of a distance based redundancy analysis (dbRDA) showing ecotype composition 
of a sample by site (symbols) and season (colors). Ecotype compositions were averaged across 
seasons with abiotic environmental variables averaged over the entire month of sampling. 
Vectors represent the direction and strength of correlations with environmental variables. 
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