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Abstract of the Dissertation

Piezoceramic Sensors/Actuators

with Interdigitated Electrode Patterns

by

David McIntyre Pisani

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Los Angeles, 2014

Professor Christopher S. Lynch, Chair

Monolithic piezoelectric ceramic devices are well understood and employed in a wide

variety of structural actuation and sensing applications. Over the last twenty years piezo-

ceramic fiber composites with interdigitated electrodes (IDE) have fallen into favor. These

piezocomposite devices with IDE have been shown to be more conformal, durable and respon-

sive than conventional monolithic devices. One of the more prevalent piezocomposite devices

with IDE is the Macro Fiber Composite (MFC) developed at the NASA-Langley Research

Center. The MFC shows superior free strain actuation performance, manufacturability and

reliability over conventional devices.

While the MFC boasts some improved characteristics over conventional devices, the use of

IDE also introduces added complexity. Simple in design, the IDE causes nonuniform electric

fields, large electric field gradients and increased hysteresis in the device. Characterization

and modeling efforts of the MFC beyond a linear approximation have been limited. The

majority of published work relies on experimental quantification and a heavy reliance on

linear finite element analysis. The MFC has significant time dependent effects, conduction

issues, creep, and other nonlinear effects that have not been explored.

This study serves as an attempt to rectify some of the previously overlooked issues of non-

linearity in piezocomposite actuators with IDE. As a baseline of comparison, the capability

of a MFC to serve as a strain sensing/actuating rosette was compared to single crystal PMN-

ii



PT. It was found that increased hysteresis and creep caused the MFC to perform poorly by

comparison. This spurred the process of seeking improved IDE designs. A twenty actuator

study was performed using actuators with different electrode line widths and spacings. It

was found that the hysteresis of an actuator with IDE could be reduced, but with the

sacrifice of some of the free strain actuation. For accurate strain sensing/actuation, devices

with large electrode line widths were found to show less hysteresis. For maximal free strain

actuation, devices with small electrode line widths and large electrode spacing were found

to have larger free strain actuation. The free strain frequency response was explored for the

MFC, and custom devices were designed to mitigate some of the frequency dependence. The

IDE devices were characterized using a dielectric finite element model and using a nonlinear

ferroelectric finite element model. A phase field model was also developed to explore domain

formation along electrode edges.
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CHAPTER 1

Introduction

1.1 Motivation

Active materials are a material class in which their mechanical properties can be controlled

by external stimuli such as electric field, magnetic field, or temperature. There exists many

useful active materials ranging from piezoelectric, shape-memory, magnetostrictive, and mag-

netorheological. Some of the most widely studied active materials are piezoelectric ceramics.

In piezoceramics, the application of electric field creates a mechanical deformation in the

crystal structure and vice versa. Their scope of application includes sonar, ultrasonic trans-

ducers, accelerometers, and high precision actuators [1, 2].

While piezoceramic devices are widely used, many have been packaged as monolithic

wafers. The monolithic wafer device traditionally depended on d31 modes of sensing/ac-

tuation. The d31 mode of actuation is the deformation of the wafer perpendicular to the

polarization axis in response to applied electric field parallel with the polarization axis.

Conversely, the d31 mode of sensing is the generation of electric field along the polarization

direction in response to deformations perpendicular to the polarization axis. This d31 effect is

weaker than the d33 effect in which the material deformation / electric field generation along

the polarization axis is in response to electric fields / deformations along the polarization

axis.

In order to take advantage of the d33 mode of actuation in monolithic wafers, interdigi-

tated electrode designs have been used. The interdigitated electrode (IDE) consists of two

interlocking electrode combs. The IDE structure on a piezoceramic wafer can be seen in

figure 1.1. With this device design, the electric field / polarization in the piezoceramic is
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directed along the plane of the wafer. In this configuration, d33 modes of sensing/actuation

can be exploited.

Figure 1.1: Interdigitated Electrodes on a Piezoceramic Wafer

While IDE are used in many types of sensors/actuators, a lot of simplifying assumptions

have been made when characterizing them. Most research has assumed the IDE device to

be linear piezoelectric. In this dissertation it will be shown that increased hysteresis, strain

creep, and frequency dependency due to ferroelectric domain wall motion can dominate the

sensor/actuator response. It was found that the IDE geometry can be tailored to partially

mitigate some of these issues.

1.1.1 History of IDE on Piezoceramic Fiber Composites

One of the first uses of interdigitated electrodes on a piezoelectric substrate was by Cutchen

in the development of flash goggles [3]. The flash goggles consisted of PLZT sandwiched

between two cross polarizers. The PLZT wafer with interdigitated electrodes electrically

controlled the plane of polarization of the light waves traveling through it. Thus, when the

device was placed between crossed polarizers it could control transmitted light using applied

voltage. The device was used for aircraft pilot goggles to mitigate flash blindness from a

nuclear blast.

Piezoelectric fiber composites (PFC) were first introduced by Hagood and Bent in 1993
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[4]. The piezoelectric fiber composite consisted of a built-up active structure of piezoelectric

fibers embedded in an epoxy matrix sandwiched between etched interlaminar electrodes.

The electric field was delivered from the interlaminar electrodes through thickness to the

active sub-ply. While more robust, the PFC suffered from dielectric mismatch between the

fibers and the epoxy matrix resulting in diminished electric field values in the fiber and poor

actuation. Figure 1.2 shows a layout of the piezoelectric fiber composite structure.

While the initial designs of the piezoelectric fiber composite were more robust and con-

forming to curved surfaces than monolithic piezoelectric wafers, they only took advantage of

d31 mode actuation in the plane of the piezocomposite. Hagood et al used the interdigitated

electrode design to increase planar actuation in a monolithic wafer [5]. The electric field was

transmitted along the plane of the wafer allowing for d33 mode actuation in the plane of the

wafer. By combining the larger strain outputs of the interdigitated electrode design with the

flexibility of the piezoelectric fiber composite, a more robust actuator was designed. This

led to the design of active fiber composites.

Figure 1.2: Piezoelectric Fiber Composite Structure

1.1.1.1 Active Fiber Composites

Bent et al combined the PFC design with interdigitated electrodes in 1997 [6]. The de-

sign was first coined Interdigitated Electrode Piezoelectric Fiber Composites (IDEPFC).

The structure of the IDEPFC can be seen in figure 1.3. An immediate improvement of the
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IDEPFC over the PFC was apparent with increased strain output while maintaining direc-

tional actuation, flexibility and durability. It was found that the effective piezoelectric tensor

d33 increased from 30 pm/V to 150 pm/V. This corresponded to a free strain actuation of

the IDEPFC five times greater than the PFC with uniform interlaminar electrodes.

In Bent’s doctoral dissertation, a reference was made in describing IDEPFC as an active

fiber composites or AFC [7]. The AFC, which is more well known today, is synonymous with

the IDEPFC. In the dissertation, Bent advanced characterization techniques of AFC using

a uniform field method and a finite element approach. The models were used to explore

different design parameters of the AFC. Dielectric fillers with high dielectric permittivity

were used in an attempt to alleviate the problems of the dielectric mismatch between the

fibers and the epoxy matrix. It was found that adding high permittivity PZT particles to

the epoxy matrix provided little improvement in actuator performance.

Manufacturing techniques were also explored by Bent. Key concepts from the manu-

facturing of graphite/epoxy composites were borrowed for the manufacturing techniques of

AFC. This manufacturing process helped with electrode alignment and uniformity of fiber

distributions in the epoxy matrix. Utilizing this technique resulted in an improvement in

actuator reliability and repeatability of performance between actuators.

Figure 1.3: Interdigitated Electrode Piezoelectric Fiber Composite Structure

In a short period of time several modeling and experimental efforts had advanced the

study of AFC to address some of their inherent problems. In 2000, Bent released a manuscript

describing these recent advances [8]. It was found that AFC immediately impacted actuator
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strength and conformability, actuation performance and directional sensitivity. Also the use

of the graphite/epoxy manufacturing techniques allowed for low complexity manufacturing

in turn leading to lower cost.

While many improvements were made with AFC, they introduced some problems too.

The piezoceramic fibers were difficult to handle during manufacture. Processing of piezoce-

ramic fibers yielded varying fiber diameter impacting performance consistency. Also, poor

contact area between the electrode and the fiber decreased actuator performance. Sugges-

tions were made that the use of non-circular fibers could prevent some of these issues. By

using square or ribbon fibers with rounded edges, the problems could be alleviated.

1.1.1.2 Macro Fiber Composites

Tasked to solve the AFC performance problems, Wilkie et al at the NASA-Langley Re-

search Center developed the macro fiber composite actuator (MFC) [9]. The macro fiber

composite’s structure is shown in figure 1.4. The MFC consists of a sheet of rectangular

piezoceramic fibers sandwiched between two interdigitated electrode patterns on polymide

film and structural epoxy.

Figure 1.4: Macro Fiber Composite Structure

Constructing a square cross section fiber composite using individually handled fibers had

previously been attempted by others, but the sharp corners of the fibers tended to sever

5



the electrodes. The MFC design solved this by using a polymer carrier film during the

manufacturing process. A piezoceramic wafer is placed on a polymer carrier film. A dicing

saw is used to cut the wafer in place into fibers. With the wafer cut into fibers, the polymer

carrier film allows for the handling of a whole sheet of fibers instead of individual ones. The

preparation and assembly of the MFC can be found in the detailed instruction manual by

High and Wilkie [10].

The MFC immediately solved some problems inherent in the AFC. The fiber sheet with a

polymer carrier alleviated the need to handle individual fibers in the manufacturing process.

This lowered device costs along with time to manufacture. The square fibers increased the

contact area between the electrodes and the fibers. This mitigated some dielectric mismatch

problems and allowed for more electric field to reach the fibers for increased actuation per-

formance. Also, the precision dicing and manufacturing allowed for more consistent device

performance from actuator to actuator.

Experimental characterizations of the MFC were performed by Williams. Williams et al

measured the four independent linear elastic orthotropic engineering constants of the MFC

under short circuit electrical conditions [11]. Three sets of tensile experiments were per-

formed. The first set measured the stress/strain behavior along the fiber’s longitudinal axis.

The second set measured the stress/strain behavior transverse to the fiber’s longitudinal

axis. And, the third set measured in-plane shear stress/strain components. The engineer-

ing constants were then used to characterize nonlinear stress/strain behavior using plastic

deformation models.

Williams et al set out to measure the thermoelastic properties of the MFC [12]. Consid-

ering the MFC is a symmetric cross-ply laminate, it was determined that only two distinct

coefficients of thermal expansion (parallel and transverse to the fibers longitudinal axis)

were needed. The temperature dependent behavior of the MFC was then determined by

finding the individual layer material properties and combining them with a classical lamina-

tion model. Continuing on evaluating temperature effects, Williams et al investigated cure

kinetics when manufacturing MFC [13]. While the MFC was being produced with consistent

properties the cure time was time consuming. Thus, a cure kinetics model was developed
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to produce time/temperature profiles that result in a fully cured actuator in the shortest

amount of time.

1.1.2 Computational Modeling of Piezocomposites

The finite element method (FEM) has been used to model linear piezoelectrics and sub-

sequently to model the non-linearity and hysteresis that occur in ferroelectrics. Allik and

Hughes introduced linear piezoelectric finite elements in 1970 [14]. Their model used a scalar

electric potential with tetrahedral elements. Piezoelectric elements are now available in com-

mercial codes with numerous plate, shell, beam, and volumetric elements [15]. Non-linearity

associated with polarization reorientation in ferroelectric materials in a finite element code

tends to only be found in specialized codes used by researchers in this area. Hom imple-

mented a quadratic electrostrictive constitutive law with no hysteresis [16] and addressed

field concentration effects at electrode edges in multilayer actuators. Chen developed a code

with triangular elements that called a micromechanics based subroutine to obtain ferroelec-

tric/ferroelastic switching behavior and used this code to simulate the effects of crack tip field

concentrations in ferroelectrics [17]. Fang and Soh used FEA with a ferroelectric material

model to address effects of defects in ferroelectrics [18]. Kamlah implemented a phenomeno-

logical model to account for ferroelectric hysteresis [19]. Landis addressed an instability

that can occur when using the method of Allik and Hughes with a ferroelectric/ferroelastic

material model by introducing a vector potential function for the electric displacement as a

nodal degree of freedom [20].

Multiaxial ferroelectric/ferroelastic constitutive laws are required for finite element cal-

culations. These material models fall into two categories: phenomenological and microme-

chanical. The phenomenological internal state variable based laws are computationally faster

but have many adjustable parameters and can be difficult to calibrate. The micromechani-

cal based laws are based on volume averaging a model of the microscale material behavior

(the underlying mechanism responsible for non-linearity and hysteresis). A mechanics based

phenomenological model was introduced by Chen in 1980 [21]. This model represented the
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electrical properties using dipoles. The dipole behavior was partitioned into instantaneous

and transient responses. Lynch introduced a phenomenological model based on an energy

function with polarization and strain as state variables [22]. This model was used to describe

uniaxial loading with 180◦ and 90◦ switching. A fully multiaxial phenomenological consti-

tutive law was introduced in 1999 by Kamlah and Tsakmakis [23]. Kamlah implemented

their 3D model within a finite element code [19]. Landis introduced a 3D phenomenological

model by using Helmholtz free energy with switching surfaces and a flow rule [20, 24]. Sev-

eral other models have been developed using plasticity as a basis for ferroelectric switching.

Ferroelectric analogues to kinematic hardening, plastic yielding, and radial return mapping

have been modeled [25–28].

Micromechanical models express the macroscale material behavior as a volume average

of the microscale behavior. Hwang et al introduced a micromechanical hysteresis model

composed of a set of randomly oriented grains [29]. The remnant polarization, remnant

strain, and constitutive tensors were determined from the volume average behavior of the

grains. Ferroelectric and ferroelastic evolution of the remnant strain and remnant polar-

ization were governed by a work/energy criterion. This early micromechanical model has

undergone multiple refinements such as the introduction of single crystal behavior, satura-

tion, and phase transformations [30–32]. The early micromechanical models lacked interac-

tion between grains. Inclusion models were introduced to simulate the interactions between

grains [33, 34]. Huber combined micromechanics with plasticity analogues and used an in-

cremental switching model to simulate the evolution of different domain volume fractions

within a grain [35,36]. Kamlah introduced a finite element method with a micromechanical

model that used a single grain in an element with a multidomain switching model [37]. More

recent micromechanical models have been formulated using constrained domain switching,

free charge screening, and coupled finite elements [38, 39].

While phenomenological and micromechanical models with ferroelectric/ferroelastic po-

larization reorientation have been implemented in finite element methods, few simulations

have addressed the effect of IDE on the polarization process and the resulting properties.

Bent and Hagood modeled piezofiber composites using representative volume elements with
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a uniform field approximation [6]. Azzouz et al used enhanced three-noded Mindlin plate

elements [40]. The plate elements were sandwiched with piezoelectric and structural layers

forming a MFC. Extending Bents approach to MFCs, Deraemaeker et al used representative

volume elements to model both d33 and d31 composites [41].

1.1.3 Applications

The flexibility, low cost, anisotropic actuation, and high strain output of piezocomposite

actuators have led to several publications tailored to application of the devices. A large

focus has been on aerospace and naval device applications. The applications have ranged

from twin tail aeroelastic buffet alleviation [42], helicopter rotorblade harmonic control [43],

to torpedo silencing [44].

A helicopter suffers from premature wear and failure in the rotating assemblies due to

excessive vibration levels. Blade chord profile variances, component mass differences, and

variable aerodynamic loads all contribute to increased vibration and a decrease in perfor-

mance and stability. Active rotor control using piezoelectric actuators can modify the vi-

bratory loads and partially mitigate these problems. A method to achieve this is with an

active twist rotor blade (ATR). The ATR blade uses piezocomposite actuators embedded in

the blade structure.

Several simulations and experiments have been performed using ATR blades. Wilkie et

al performed an aeroelastic analysis on an ATR blade in one-g hovering flight conditions, and

found interdigitated electrode actuators could twist the blade up to 1◦ [45]. The ATR blade

system was tested with active fiber composite (AFC) [46] actuators using a 1/6th scaled

CH-47D rotor blade [47]. A model four blade rotor system was designed and significant load

reductions were found while only using 1% of the available operating power [43, 48]. Booth

and Wilbur showed that not only was vibration reduction of the rotor components possible,

rotor noise could be also be reduced [49]. An advanced active twist rotor (AATR) blade was

designed that utilized single crystal MFC resulting in lower input voltage and higher blade

twist [50].
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Piezocomposites and MFC have been use extensively for actuation of aerostructures. Park

and Kim analyzed single crystal MFC for use in active twist helicopter rotors [51]. Mudupu

used two MFC in a piezoelectric bimorph configuration to control the fin of a projectile [52].

Paradies and Ciresa computationally analyzed and tested surface mounted MFC on a wing

with integrated roll control [53]. Bilgen utilized MFC to actively control airfoil camber in

flight [54] and roll control in a swept wing aircraft [55].

Piezocomposites with IDE have also been used as sensor/actuator rosettes [56]. Due

to the anisotropic properties of IDE piezocomposites, a rosette can be oriented to enable

resolving two principle strain components and the corresponding principle directions. This

concept enables not only directional sensing, important for structural health monitoring, it

also enables directional actuation, important for structural vibration and acoustic control

[57–59].

The in-plane anisotropy of ferroelectric with IDE enables their use as directional sen-

sor/actuators. Piezorosettes have been used as lamb wave detectors to locate a wave source.

Kawiecki and Jesse first used monolithic piezoelectric plates to sense damage on an aluminum

plate [57]. Matt and di Scalea used MFC as piezorosettes [58]. Salamone et al induced high

velocity impact and used piezoelectric rosettes for damage detection [59]. Zhao et al [56]

used anisotropic single crystals to develop a piezoelectric rosette.

1.2 Contributions

The following describes the contributions of this dissertation in advancing the technology of

piezocomposite actuators.

• An expression was developed to relate longitudinal and transverse strains in a substrate

to the charge output of a MFC. A strain rosette equation for piezoelectric materials

was developed and applied to the MFC charge output model. This allowed for the

relation to the charge output of a MFC rosette to strains in a substrate.

• A method was developed to polarize small electrode line width piezocomposites. The
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method resulted in the discovery of an actuator with 3657 µε longitudinal free strain

output.

• A ferroelectric finite element method was developed using a micromechanical model.

The ferroelectric FEA was used to investigate the polarization process of MFC and

improve prediction of MFC behavior.

• A study on electrode line width sizes discovered that larger electrode line widths pro-

duce less hysteresis and creep than smaller electrode line width devices. It was also

discovered that by shrinking electrode line widths, the inherent material property of

the MFC can change from that of a “soft” ferroelectric to be like that of a “hard”

ferroelectric.

• A free strain frequency response analysis of MFC was performed from 0.1 Hz to 15

Hz. It was discovered that electrically driving a commercially available MFC from 0.1

Hz to 15 Hz degrades the piezoelectric coefficient by over 30%. A custom electrode

geometry piezocomposite was developed to mitigate this degradation.

• A finite element phase field model with a Landau-Devonshire multi-well potential ma-

terial subroutine was created. The model could prove useful for use in predicting

domain evolution along an electrode edge to mitigate fatigue and failure.

1.3 Dissertation Overview

The following describes each chapter and serves as a overview of the dissertation.

Chapter 2: The equations for a 0 ◦, 45 ◦, 90 ◦ rosette were developed using the conditions

of coupling between the in-plane strain of the crystal and a substrate, and zero out-of-plane

stress on the crystal (plane stress conditions in the crystals). The crystals were bonded to a

substrate aluminum plate that was instrumented with strain gages next to the crystals. The

plate was subjected to bending about different axes and the resulting electric displacement

change of the crystals was monitored. The strain components calculated using the change
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of electric displacement were compared with the strain components measured using strain

gages. This sensor/actuator rosette approach was demonstrated to enable both sensing

principal strain components and actuating principal strains in an electronically controllable

direction.

Chapter 3: Electrode line widths were found to play a key role in the poling process

and time dependent behavior of an interdigitated electrode piezocomposite actuator. When

the electrode line widths were smaller than the substrates thickness, the device typically

had poor performance due to Gauss’s law limiting polarization. It was found that when

a high DC voltage was applied to an actuator with small relative electrode line widths,

the net polarization increased and the strain output increased over time. In some cases an

hour of applied DC voltage was required to saturate the strain in the actuator. Subsequent

actuation under normal operating procedures / time scales was able to sustain the improved

performance. It was found that the free strain actuation of a small electrode line width

actuator increased from 500 µε to 3657 µε using this procedure.

Interdigitated electrodes on piezocomposites produce nonuniform electric fields and stress

concentrations in the vicinity of the electrode causing nonlinearities. This complicates defin-

ing the electric field. A methodology of using a dielectric finite element analysis was used

to find an average electric field at the midplane between two electrodes when comparing

actuators. A meshing methodology was also developed to automatically generate meshes

with a higher concentration of elements along an electrode edge to account for high electric

field gradients.

Chapter 4: A commercial macro fiber composite actuator was explored for use as a shape

memory piezoelectric actuator. It was found that it was suitable, but several custom piezo-

composite actuators were also explored. As the electrode line widths decreased in the actua-

tor, the material behavior changed from a “soft” ferroelectric to be like a “hard” ferroelectric.

This changed the behavior of the actuator when used as a shape memory piezocomposite

immensely. For small line widths, the piezocomposite actuator was able to provide power

off set and hold capability across a larger range of strains than the commercially available

MFC.
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A ferroelectric finite element code was developed to improve on linear piezoelectric models

used when characterizing piezocomposites with IDE. The ferroelectric model was used to

explain polarization switching within the actuator when running a unipolar electric field. The

increased domain wall motion due to polarization switching leading to increased hysteresis

was explored.

Chapter 5: A commercial MFC was used to test its free strain frequency response from

0.1 to 15 Hz. A methodology to find the piezoelectric coefficients of the MFC as a function

of frequency was employed. It was found that the piezoelectric coefficients of the MFC were

dependent on frequencies in this range. Increasing the actuation frequency to 15 Hz caused

the low field d33 coefficient to be 51% of the reported value. A custom made interdigitated

electrode actuator was manufactured with larger relative electrode line widths than the

commercial MFC. It was found that the custom actuator was able to mitigate the decay of

the piezoelectric coefficient. The decay of the piezoelectric coefficients was fit to a exponential

decay model.

Chapter 6: Two different ferroelectric ceramic material compositions were synthesized us-

ing a mixed oxide method. The compositions synthesized were phase transforming 55/33/12

PLSnZT and quadratic electrostrictive 9.5/65/35 PLZT. The material compositions were

packaged in a standard size commercial MFC configuration with the same electrode geome-

tries. The free strain actuation of each of the actuators was explored and compared to a

commercial MFC.

Chapter 7: Finite element based phase field modeling was applied using a finite element

framework with a Landau-Devonshire type multi-well potential as a material subroutine to

model domain evolution in ferroelectrics. In this approach, the domain wall width is con-

trolled by a balance between mechanical, structure, electrostatic, and local gradient contri-

butions to the free energy density. The effect of this energy balance on the resulting domain

wall width of 90 ◦ and 180 ◦ tetragonal domain walls was discussed as an example of its use.

The domain evolution phase field model could potentially be used to explore the domain

patterns along an electrode edge in an attempt to mitigate electric field concentrations.
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CHAPTER 2

Piezocomposite Actuator Applications

2.1 Piezoelectric Strain Rosettes

Strain rosettes are commonly used to measure strain components on a surface when the

principal directions are not known. Three longitudinal strain measurements are made in

three different directions and the orthogonal transformation equations are used to determine

the two principal strain components and their orientation relative to the rosette orientation.

Typical strain rosettes have gages at angles of 0 ◦, 45 ◦, 90 ◦ and at 0 ◦, 60 ◦, 120 ◦.

Piezoelectric materials are used as both sensors and actuators. If the piezoelectric ma-

terials are in the form of thin plates that can be bonded to a surface and the plates have

anisotropic properties in-plane, they can be used as a piezoelectric rosette [57–60]. The con-

verse piezoelectric effect can be used to actuate desired principal strain components through

application of appropriate voltage signals to the three piezoelectric elements.

There are several ways to achieve in-plane piezoelectric anisotropy. This can be accom-

plished using interdigitated electrodes to produce an electric field in-plane of a piezoelectric

plate to produce d33 coupling along the electric field direction, and d31\d32 coupling orthogo-

nal to the field. Combining interdigitated electrodes with macro fiber composite technology

in which the piezoelectric plate is sliced into rectangular fibers, the strain component trans-

verse to the fibers is decoupled furthering in-plane anisotropy [11, 46, 58–63]. Preliminary

work with macro fiber composites has shown that hysteresis inherent in the sensor design

leads to large inaccuracies when using these composites for strain sensing, but if this can be

tolerated in exchange for their ability to actuate principal strains in electronically control-

lable directions, they can be used as sensor/actuator rosettes.
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Previous work with [011]c cut and poled PZN-4.5%PT [64,65] and with PMN-xPT [66,67]

with x ranging from 28 to 32% has demonstrated that these materials display highly linear

material behavior as long as the material is operated in a regime where field driven phase

transformations do not take place. It is important to not reverse bias the crystals, because the

crystals are easily depolarized with a negative electric field. Although the linear piezoelectric

properties are temperature dependent, the thermal changes in properties can be compensated

in sensor/actuator applications. The following sections describe the single crystal material

and the anisotropic constitutive behavior of the [011]c cut, the development of the equations

for the single crystal strain rosette, and a set of experiments designed to demonstrate the

technique and assess its accuracy and precision.

2.1.1 Modeling Scheme

PZN-xPT and PMN-xPT and more recently developed ternary compounds of PIN-PMN-

PT single crystals have a perovskite type crystal structure. The compositions of interest

undergo a phase transformation from cubic to rhombohedral as they are cooled through

the Curie temperature. The rhombohedral, tetragonal, and orthorhombic phases in PZN-

PT,PMN-PT and PIN-PMN-PT single crystals can coexist in certain ranges of temperature

and composition [68–80].

Prior work has shown that the properties of different crystal cuts of the rhombohedral

compositions can be determined using crystal variant models based on volume averaging.

The rhombohedral crystal can be polarized toward one of eight corners of the unit cell.

A crystal can therefore have different volume fractions of eight possible crystal variants. If

plates are cut in a given orientation, the plate can be poled in a way that results in controlled

volume fractions of the different variants. For example, the crystal cut and poled in the [001]c

direction shown in figure 2.1a will have roughly equal volume fractions of four variants and a

tetragonal symmetry (4mm), the crystal cut and poled in the [011]c direction shown in figure

2.1b will have roughly equal volume fractions of the two crystal variants and an orthorhombic

symmetry (mm2), and the crystal cut and poled in the [111]c orientation shown in figure 2.1c
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will have a single variant present (single domain single crystal) and rhombohedral symmetry

(3m). Determining the properties of the crystals with different volume fractions of crystal

variants is discussed in several articles [81–85].

(a) (b) (c)

Figure 2.1: Rhombohedral crystal variants. a) Four variants with electric field E in [001]c

direction; b) Two variants with E in [011]c direction; c) Single variant with E in [111]c

direction.

It has been shown that [001]c oriented and [011]c oriented rhombohedral PZN-PT and

PMN-PT single crystals have larger piezoelectric coefficients, are highly linear, and have

lower loss than [111]c oriented crystals [81,86,87]. The [001]c cut and poled crystals provide

high longitudinal piezoelectric coefficients d33, while [011]c cut and poled crystals provide

high transverse piezoelectric coefficients d31 and d32 [64, 65,83,84].

The [011]c cut single crystals have orthorhombic symmetry and thus the piezoelectric

coefficients d31 and d32 are not equal. In the local coordinates shown in figure 2.2a, the

x3 direction is parallel to the orientation of remnant polarization. Figure 2.2b shows the

orientation on a [011]c cut and poled single crystal plate.
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(a) (b)

Figure 2.2: a) Coordinate system used to describe [011]c cut and poled single crystal. b) A

[011]c and poled crystal plate.

The development for the rosette equations requires the definition of crystal properties

in a crystal coordinate system relative to strain components in a rosette coordinate system.

Using Voigt notation, the orthorhombic symmetry [011]c poled crystal cut has five nonzero

coefficients of the piezoelectric tensor e31, e32, e33, e15 and e24 in a local coordinate system

aligned with each crystal as shown in figure 2.2b. The coefficients are written in matrix form

as equation 2.1.

e011 =


0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

 (2.1)

The single crystal piezoelectric rosette layout is shown in figure 2.3. Three single crystals

are assigned rosette angles of 0 ◦, 45 ◦ and 90 ◦. The piezoelectric properties of each crystal

are expressed in local coordinates (x0
1, x

0
2, x

0
3), (x45

1 , x
45
2 , x

45
3 ) and (x90

1 , x
90
2 , x

90
3 ). Electric dis-

placement that is produced when each crystal is deformed by straining the substrate material

is given by D0
3, D

45
3 and D90

3 .
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Figure 2.3: Schematic of rosette with piezoelectric elements at 0 ◦, 45 ◦ and 90 ◦ angles.

A derivation of the rosette equations is provided in Appendix A using the conditions

of continuous in-plane displacement components from the substrate to the crystals and a

traction free boundary on the crystal surface giving zero normal stress and shear components

ouf of plane.

The resulting piezoelectric rosette equations are given by equation 2.2. The piezoelectric

coefficients eijk from the Appendix A are written in Voigt notation. For example, e311 =

e31, e322 = e32 and e333 = e33

D = Mε+

(
κε33 +

e2
33

CE
33

)
E (2.2)

where,

D =


D0

3

D45
3

D90
3

 ε =


ε11

ε12

ε22

 E =


E0

3

E45
3

E90
3

 ,
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and

M =



e32 − e33
CE

32

CE
33

0

1

2

(
e31 + e32 −

(
CE

32 + CE
31

CE
33

)
e33

)
e32 − e31 −

(
CE

31 − CE
32

CE
33

)
e33

e31 − e33
CE

31

CE
33

0

e31 − e33
CE

31

CE
33

e31 + e32 −
(
CE

32 + CE
31

CE
33

)
e33

e32 − e33
CE

32

CE
33


.

This is solved for the strain component of the substrate in equation 2.3

ε = M−1D −
(
κε33 +

e2
33

CE
33

)
M−1E (2.3)

The rosette can be used as a sensor or an actuator. As a sensor, the applied electric

field E is zero and the electric displacement change is measured. By measuring the electric

displacement of each element D, the strains in the substrate are obtained. As an actuator,

an electric field is applied to each element of the rosette and principal directions of induced

strain can be controlled.

2.1.2 Experimental Results

Several 4mm×6mm×0.2mm plates of [011]c oriented and poled PMN-0.29PT single crystal

plates were provided by Ceracomp. The orientation and dimension of the crystals are shown

in figure 2.4a. Figure 2.4b shows the sketch of the experimental setup. Three crystals aligned

at 0 ◦, 45 ◦ and 90 ◦ were mounted on an aluminum plate using resin epoxy. A modified

Sawyer-Tower circuit shown in figure 2.4 was used to measure the electric displacement from

the piezoelectric crystals. By measuring the voltage on the sensing capacitor, the electric

displacement D of each piezoelectric element was obtained using the equation D = CV/A.

Where C is the sensing capacitor’s capacitance, V is the voltage on the capacitor, A is the
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area of the piezoelectric element’s electrode. Three strain gages were mounted near the

crystal plates aligned at 0 ◦, 45 ◦ and 90 ◦. While bending the plate along the direction of

angle θ, three independent electric displacement measurements were obtained. The output

of the strain gages connected to a Wheatstone bridge circuits were recorded.

(a) (b)

Figure 2.4: Rosette experimental setup. a) Dimension and orientation of [011]c oriented and

poled PMN-0.29PT single crystal, b) Sketch of the experimental setup

The three obtained strains from the strain gages with 0 ◦, 45 ◦, and 90 ◦ orientations are

defined as εa, εb and εc as shown in figure 2.4b. The strain transformation equations are

given by,


εa

εb

εc

 = T


ε11

2ε12

ε22

 , (2.4)

where,

T =


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Taking the inverse, the principal strains in the substrate can be found as,


ε11

2ε12

ε22

 = T−1


εa

εb

εc

 . (2.5)

Liu and Lynch [64,65] conducted experiments to obtain elastic, dielectric and piezoelec-

tric coefficients of PZN-4.5%PT single crystals. Zhang [88] carried out the measurements

on [011]c cut PMN-0.29PT single crystals. Wang [89] measured a complete set of elastic,

dielectric, and piezoelectric constants of [011]c cut PMN-0.29PT single crystals. The data

for the PMN-0.29PT crystals are shown in table 2.1.

Constants [011]c cut PMN-0.29PT

e31 = 14.66C/m2

Piezoelectric constants e32 = −9.53C/m2

e33 = 5.70C/m2

C31 = 13.03× 1010N/m2

Elastic constants C32 = 11.30× 1010N/m2

C31 = 13.90× 1010N/m2

Table 2.1: Properties of PMN-0.29PT

The parameters in table 2.1 were used with equation 2.3. As a strain sensor, the electric

field E is near zero in the piezoelectric elements, thus equation 2.3 can be simplified to,

ε = M−1D.

With this simplified expression, the in-plane strain components ε11, ε22 and ε12 are calculated.

2.1.3 Results, Comparison, and Discussion

An aluminum plate was first bent about an angle θ = 0 ◦ as shown in figure 2.4b. The

strain component εa obtained from the strain gage at 0 ◦ was close to zero and the strain
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component εb at 45 ◦ was about half of the value of the strain component εc at 90 ◦. In

this case, the principal strain components align with the strain gages. Figure 2.5 shows the

comparison of the piezoelectric rosette with the strain gage rosette. The plot represents a

slight nonlinearity at very low strains, possibly due to the circuit at low signal levels. A

linear trend line was fit using linear least squares. The trend line has a slope of 1.0935, for

perfect agreement the slope should be unity. The error was calculated using the relative

error’s average deviation from the mean,

1

N

N∑
j=1

∣∣∣∣∣εPMN-PT
j − εGage

j

εGage
j

∣∣∣∣∣, (2.6)

where N is the number of data points collected, εPMN-PT
j is the jth strain data point for the

PMN-PT elements, and εGage
j is the jth strain data point for the strain gages. The average

relative error was found to be 6.21%.

Figure 2.5: Comparison of Strain Gage / Piezoelectric Rosettes at θ = 0 ◦ Bending.

For a second case, an aluminum plate was bent about an angle θ = 90 ◦. The results are

similar to those of the case for θ = 0 ◦. The strain component εc at 90 ◦ was almost zero and

the strain component εb at 45 ◦ was about half of the value of strain εa at 0 ◦. Figure 2.6

shows the comparison of the two measurements of strain ε11. A linear trend line was fit, and

the slope was found to be 1.0075. The calculated average relative error is 14.74%.
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Figure 2.6: Comparison of Strain Gage / Piezoelectric Rosettes at θ = 90 ◦ Bending.

A third bending case involved off axis bending about an angle θ = 30 ◦. The in-plane

strains ε11, ε22 and ε12 were obtained using equations 2.3 and 2.5. Figure 2.7 shows the

comparison between the strain gage and the PMN-PT strain measurements. Figure 2.7a

and b present normal strain ε11 and ε22 measurements. The plots are fitted with linear trend

lines and their slopes are 0.9791 and 1.0213 respectively. The mean relative error from the

PMN-0.29PT single crystals are 14.86% and 6.92% respectively. Also calculated was the

average relative error for the shear strain component ε12. For that case, the trend line had

a slope of 1.0515 and the average relative error was 9.32%.

23



(a)

(b)

Figure 2.7: Comparison of strain gage / piezoelectric rosettes for off axis bending. a) Strain

component ε11 comparison. b) Strain component ε22 comparison.

In the three cases, the results from [011]c oriented PMN-0.29PT single crystals match the

results from strain gages aligned at 0 ◦, 45 ◦, and 90 ◦ angles. The worst case scenario showed

average relative errors of 14.74%, but in the best case an average relative error of 6.21% was

obtained. While the relative errors are large, more can be done to calibrate the PMN-PT

rosettes. The absolute error between the strain gages and the PMN-PT rosette was fairly
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uniform. This caused very large errors when the strain was small, but when strains were

large the relative error drops off. By measuring the three independent electric displacements

from the piezoelectric rosettes, the in-plane strains were able to be found.

2.2 Macro Fiber Composites as Sensors/Actuators

The use of piezoelectric strain rosettes was explored for single crystal piezoceramics in section

2.1. The in-plane strain components were obtained by utilizing the anisotropic properties of

the crystal and the direct piezoelectric effect. IDE piezocomposite actuators have the same

anisotropic properties of the single crystal PMN-PT tested. In this section, the use of the

MFC in a piezoelectric strain rosette is explored.

2.2.1 Introduction

This work develops the technology that enables exploiting the properties of piezoelectric ma-

terials to develop compact and inherently directional dynamic sensing and actuation devices.

Such devices will provide the means to determine the principle components of vibration in-

duced strain on a structure, as well as to actuate with essentially arbitrarily controllable

components of strain. Simultaneous sensing of orthogonal strain components as well as

controlled actuation of these components provides information not only as to magnitude,

but also propagation direction for structural vibrations. Kawiecki [57] first demonstrated a

piezoelectric rosette using PZT bars mounted on a plate. Matt et al [58] recently demon-

strated that this approach is suitable for sensing Lamb waves and the ability to use this

information for acoustic source location. The conceptual device is termed a piezoelectric

rosette, in analogy with the more traditional strain gage rosette. The motivation for this

line of investigation includes applications in structural health monitoring and active noise

and vibration control.

The use of piezoelectric materials for structural health monitoring and active vibration

control is reasonably well developed, yet continues to receive research attention due to the

importance of monitoring our aging infrastructure and controlling noise and vibration. In

25



these applications, the piezoelectric element is often a ceramic plate poled through the thick-

ness. This results in transverse isotropic symmetry about the poling axis with d31 = d32. In

this mode, when laminated to a structure subjected to bending, the Poisson’s ratio effect

can cause much of the signal to be canceled since the portion of the signal produced by the

negative transverse strain cancels part of the positive signal generated by the longitudinal

strain. This can be improved upon by manipulating the piezoelectric symmetry in the sensor.

Several techniques are available to do this.

Interdigitated electrode configurations [4] have been used to produce a poling axis along

the plate as shown in figure 2.8. This rotates the symmetry axis of the piezoelectric tensor to

an in-plane orientation, enabling use of the larger d33 coefficient. It also greatly enhances the

coupling for bending applications when only a single bending mode and direction are present,

because d33 couples to the stretching and d31 to the Poisson’s ratio lateral contraction. If

the plate is rotated 90 degrees relative to the bending axis, the sensitivity is greatly reduced

since now d33 couples to the Poisson’s ratio induced strain. Also, the smaller d32 coefficient

with opposite sign couples to the longitudinal strain, canceling most of the signal. This is an

example of the ability to design the material symmetry to enable sensing of different strain

components.
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(a) (b)

Figure 2.8: A poled piezoelectric ceramic displays transverse isotropic symmetry about the

poling axis x3. (a) With interdigitated electrodes the symmetry axis lies in-plane, and (b) a

fiber composite with a compliant fill material decouples the strain component perpendicular

to the fibers and breaks the effective transverse isotropic symmetry of the sensor/actuator.

The development of sensor/actuator piezoelectric rosettes requires the design of piezoelec-

tric elements with anisotropic in-plane piezoelectric coefficients. This can be accomplished

through a combination of controlling the polarization direction, through selection of crystal

cut (e.g. [001] vs. [011]PMN-28PT single crystals) [64,83,84,90], through uniaxial stretching

of PVDF films, and mechanically through design of composite microstructures [91–96].

2.2.2 Approach

The goal of this work is to characterize the longitudinal and transverse strain sensitivity of

the MFCs and to determine the degree of shear strain sensitivity.

Equation 2.7 gives the isothermal strain-polarization form of the linear piezoelectric con-

stitutive laws,

εij = sEijklσkl + dmijEm

Dm = dmklσkl + κσmnEn,
(2.7)

where the components of the various vectors and tensors are εij-strain, sEijkl-compliance at
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constant electric field, σkl-stress, dmkl-piezoelectric, Em-electric field, Dm-electric displace-

ment, and κσmn dielectric permittivity at constant stress. When a coordinate system is aligned

with symmetry axes of the piezoelectric tensor, relations between various components can

be determined and other components can be shown to be zero. MFC are typically described

in terms of effective coefficients. Matt et al [58] solved equations 2.7 to obtain expressions

that relate charge to voltage and strain. This is a reasonable first approximation, but one

has to make the assumption that the fiber is in a state of either plane stress or uniaxial

stress and that it is uniformly poled. In this work the plane stress assumption is made, but

no assumption is made regarding the coupling between the fiber and the plate in the trans-

verse direction. Rather, an expression is developed for the charge in terms of the normal

stress(which is zero), the longitudinal strain of the substrate, the transverse strain of the

substrate, and the voltage.

The necessary equation is arrived at as follows. The internal energy density U is a function

of strain, electric displacement, and entropy; from which a set of piezoelectric constitutive

equations can be developed with these quantities as independent variables. If constitutive

laws are needed with temperature as an independent variable, one subtracts the terms Ts

from U . This Legendre transformation leads to a new energy function and a new constitutive

law. To interchange stress and strain as the independent variables, one subtracts σijεij. To

obtain an equation for the composite MFC at constant temperature we introduce a partial

Legendre transformation and subtract only σ33ε33, i.e. U − Ts − σ33ε33. This leads to a

constitutive law in terms of the two in-plane strains and the out of plane stress (which is

zero since there is no traction on the out of plane free surface). This results in a constitutive

law of the form given in equation 2.8,

Q = C311ε11 + C3333ε33 + k33V, (2.8)

where C111, C333, and k33 are effective coefficients for the composite. Note that the area and

the spacing between electrodes are folded into the coefficients. This makes the coefficients de-

pendent on the specific geometry (electrode area, spacing between interdigitated electrodes,

fiber thickness, fiber width, spacing between fibers, and polymer packaging thickness).
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A 200 nF capacitor was placed in parallel with the approximately 1nF MFC to make

the voltage contribution to the charge negligible in equation 2.8. The strain components

used in equation 2.8 are the average strain of the substrate transverse and parallel to the

MFC fibers, not the strain in the fibers themselves. Determining the strain in the fibers is

a complex mechanics problem that involves shear lag in the transverse direction and at the

PZT fiber ends.

Figure 2.9 shows the configuration used for characterizing the MFC. The MFC was

bonded to a circular 6061 aluminum plate using Loctite E120 HP Epoxy. The center of the

active area was aligned with the center of the circular plate. The disc was vacuum bagged

while the epoxy cured. Three strain gages were placed parallel to the MFC’s longitudinal axis

(fiber direction). Vishay Micro-Measurements 062LT series tee-rosettes were used to measure

the strain along the MFC’s longitudinal and transverse axes. Strain gages were connected to

Wheatstone bridge based Vishay 2120A signal conditioning modules. Dimensions are given

in table 2.2.

Figure 2.9: Schematic of MFC and strain gage arrangement on the aluminum plate
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Voltage output from the MFC was measured across the 200nF capacitor using a Keithley

6512 electrometer. The input impedance of the electrometer is approximately 1014 ohms.

This effectively enables the reading of charge without draining it. The electrometer and

strain gage amplifier were connected to a National Instruments 2110 ADC module. All the

data were recorded using LabVIEW Signal Express.

Application Dimension Value

Aluminum Plate Y1 15 mm

X1 17 mm

Test Setup D1 280 mm

D2 305 mm

D3 200 mm

D4 30 mm

t 1 mm

MFC* d33 460 pC/N

Y3 30.34 GPa

Y1 15.86 GPa

Table 2.2: Dimensions and Published MFC Properties

The disc was loaded in four point bending using the arrangement shown in figure 2.10.

The coordinate system that indicates the disc’s orientation is noted in figure 2.9. Axis

X corresponds to the longitudinal axis of the MFC and Y its transverse axis, X′ and Y′

correspond to the loading orientation. The disc was centered on the inner span. Force was

applied to the outer span points labeled D1. The disc was rotated in 15 degree increments

and the loading repeated.
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Figure 2.10: Schematic of experimental arrangement used to bend the plate.

2.2.3 Results

In each case gages 1 and 3 (outer gages) gave the same response and gage 2 (center gage) was

different. This is due to the inhomogeneity of the plate bending. The curvature increased

from the center of the plate to the inner spans of the loading apparatus. Output from gages

1 and 2 are presented in the following figures and used in the discussion.

Figure 2.11 shows the results of the longitudinal and transverse strain measurements

vs. time with loading at 0 degrees through 90 degrees. At 0 degrees, the circular plate

arrangement initially follows a beam theory type bending wherein the transverse strain

differs from the longitudinal strain by Poisson’s ratio. As the loading increases, the plate

undergoes a transition from a potato chip shape to a bell shape. This appears as an inversion

of the transverse strain from negative to positive values. The effect reverses upon unloading.
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The longitudinal and transverse strain are the same for gage 1 (outer) when the loading is

at 45 degrees, but the stiffening effect of the PZT fibers is apparent on gage 2 (center). The

potato chip effect is not symmetric. It is affected by the reinforcing behavior of the MFC on

the Al plate in the fiber direction as is apparent when 0 and 90 degree loading are compared.

The difference between S1T and S2T at 90 degrees was sufficiently large that the system

was set back up, additional calibrations were run, and the tests repeated multiple times with

the same results. The strain gages were also checked under a microscope for any signs of

delamination. This difference does not appear to be an experimental error or a bad strain

gage. It appears to be the result of the reinforcing effect of the MFC.

(a) 0 ◦ (b) 15 ◦ (c) 30 ◦

(d) 45 ◦ (e) 60 ◦ (f) 90 ◦

Figure 2.11: Longitudinal and transverse strain vs. time with the loading at 0 through 90

degrees relative to the fiber direction.
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The asymmetry of the plate bending induced by the addition of the PZT fibers is also

apparent when the transverse strain is plotted as a function of longitudinal strain in figure

2.12. Differences between the gages at the edge (S1) and at the center (S2) of the MFC

are readily apparent. The applied force was not the same for each loading, so no additional

information can be obtained from the maximum strain values.

(a) (b)

Figure 2.12: Longitudinal vs. Transverse Strain for Gages 1 (Outer) and 2 (Center)

Figure 2.13 shows the charge produced on the MFC as a function of strain. Significant

hysteresis is evident when the longitudinal strain exceeds 150 µε.

(a) S1 Longitudinal (b) S1 Transverse

Figure 2.13: Charge output versus (a) longitudinal strain and (b) transverse strain
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2.2.4 Analysis

In the linear regime, the strain sensitivity of the MFC is governed by equation 2.8. The

approach taken is to identify the coefficients through the entire range using a least squares

fit to obtain an average response. Note that a very different response would be obtained if

only the measurements below 150 µε were used. Equation 2.9 relates the charge output of

the MFC at each angle to the measured strain at that angle.
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(2.9)

To find the strain sensitivity factors, a least squares solution method was employed. The least

square method was setup as follows; A unique solution Cn ∈ R which minimizes ‖εC −Q‖

is found by equation 2.10,

C =
(
εTε

)−1
εTQ, (2.10)

where each of the strain and charge measurements include the full 2000 digitally collected

data points associated with the measurements.

The resulting effective strain sensitivities were determined to be,

Ceff
311 = −0.00049

Ceff
333 = 0.00265,

each in microcoulombs per microstrain.

These effective coefficients were then used to predict the charge output based on the

experimental strain. The results are shown in figure 2.14, a comparison plot of the experi-

mental charge and predicted charge output. Each spike corresponds to an experiment at a
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different angle. The first spike corresponds to 0 degrees and the last 90 degrees. The time

doesn’t correspond to the whole experiment, but can be used to find the relative time for

each individual experiment at different angles.

(a) Experiment

(b) Predicted

Figure 2.14: Measured MFC charge output (a) charge comparison and (b) absolute charge

error
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Hysteresis is definitely a problem if this type of sensor is to be used as a strain sensor.

Referring back to figure 2.14, the hysteresis when loaded to 200 µε is considerably larger

than would be expected from a uniformly poled PZT specimen. The MFC specimen also

had some charge creep after the loading was finished which affected the predictions. Further

analysis in chapter 4 gives insight into the source of this hysteresis and charge creep.

The results of this preliminary study have given insight into some of the parameters that

will be important to producing a MFC rosette. This includes the effect of the MFC locally

adding stiffness to a plate or shell, the contribution of transverse strain to the MFC output,

the various geometric factors that contribute to the MFC output, and the significantly larger

amount of hysteresis produced in the MFC arrangement relative to a homogeneously loaded

parallel plate PZT specimen. The increased hysteresis is a significant trade off for the

increased strain that can be achieved using the interdigitated electrode arrangement to place

the polarization direction in-plane.

In their current configuration, MFCs have been optimized for the production of strain and

force when a voltage is applied. It appears that some improvement can be made for sensor

applications. Work in chapters 4 and 5 include manufacturing MFC so that predictions of

optimized patterns can be tested, thus improving the devices.
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CHAPTER 3

Polarization of Piezoceramics with IDE

The motivation of this chapter was the development of a self-latching shape memory piezo-

composite actuator [97]. By improving actuator performance, the self-latching piezocompos-

ite can be used to create more efficient morphing aerodynamic control surfaces with power-off

set-and-hold capabilities. Piezocomposite actuators can be implemented into homogeneous

composite control and trim tab surfaces along with variable camber airfoils [98]. Supple-

menting the controllable surfaces with the self-latching actuator, deflections can be adjusted

in-flight and maintained without constant applied electrical power.

While there have been many analytical and computational studies of MFC, few have

addressed the effects of time dependent creep behavior inherent in the device. Schröck et al

analyzed the control of a flexible beam using MFC patches accounting for hysteresis and creep

[99,100]. To exemplify the need for models to account for time dependent behavior in MFC,

a set of plates with 20 different IDE geometries was fabricated, poled and characterized. The

results led to the discovery that, as anticipated from Gausss law, specimens with very thin

electrode line widths relative to plate thickness did not produce good electric displacement

vs. electric field or strain vs. electric field hysteresis loops. It also led to the unexpected

result that this issue with the poling process could be overcome by taking advantage of

the time dependence of the material behavior. The following work addresses the effect of

reducing the electrode line width of IDE on the performance of piezoelectric plates.
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3.1 Experimental Arrangement

3.1.1 Materials and Specimen Preparation

The actuator material was PZT-5A plate. The desired electrode pattern was etched from

copper clad polyimide film. Unlike traditional MFCs where the piezoelectric material is

diced into fibers, the IDE experiments performed in this work were on monolithic plate. The

dimensions of the actuators were 85 mm× 25 mm× 0.6 mm. The laminated actuators were

produced by Smart Material Corp.

The dimensions and coordinate directions used to describe the electrode geometric pa-

rameters are shown in figure 3.1. The three different geometric parameters considered were

electrode spacing L, electrode line width L2, and plate height H. Table 3.1 lists the geometric

parameters used. While 20 custom actuators were fabricated and tested, only three distinct

custom actuators will be discussed in this chapter. The full set of 20 custom actuators will be

discussed in chapter 4. The first two actuators investigated were used to compare the effect

of the DC bias field on actuator performance. They were designed such that the relative

electrode line width L2/H would vary while the relative electrode gap (L− L2) /H would

remain constant. Figure 3.2 shows an optical micrograph of the electrode pattern of these

two actuators. The third actuator examined was found to have superior free strain actuation

performance of over 3500 µε. This actuator was compared against a commercially available

macro fiber composite actuator, model M8528-P1.

The actuators were instrumented with longitudinal (x3) and transverse (x1) oriented

strain gages (tee rosettes). The longitudinal gages were chosen such that they spanned

six electrode spacings. Two gages were mounted on the top and two on the bottom of

the actuator to monitor the bending and extension of the specimen. The strain gages were

powered by a Wheatstone bridge strain gage amplifier and recorded using a digital acquisition

system. The actuators were electrically driven with a 10 kV amplifier. Both applied voltage

and strain were recorded.
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Figure 3.1: Layout of an interdigitated electrode on a ferroelectric substrate

Table 3.1: Actuator Geometry Values for Polarization Study

Actuator L2(mm) L(mm) H(mm) L2/H (L− L2) /H

1 0.48 1.06 0.60 0.80 0.96

2 0.12 0.68 0.60 0.20 0.93

3 0.11 1.29 0.60 0.18 1.97

MFC 0.09 0.45 0.23 0.40 1.60

(a) (b)

Figure 3.2: Micrograph image of electrode geometries (a) Actuator 1 (L2/H = 0.8) and (b)

Actuator 2 (L2/H = 0.2). Darker areas indicate electrode lines, while lighter areas indicate

areas only covered by polyimide film.

3.1.2 Experimental Procedure

Actuators 1 and 2 each started in an unpoled state. A unipolar sinusoidal nominal elec-

tric field of 5 MV/m at 0.1 Hz was applied to each specimen. The nominal electric field
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ENom ≡ V/ (L− L2) is defined as the applied voltage V divided by the gap distance between

electrodes L− L2.

After the initial polarization cycle, a DC voltage was held on both actuators. The DC

voltage was chosen such that a nominal electric field of 5 MV/m was achieved. The strain of

each actuator was observed to creep. The voltage was held until the creep process stopped.

A DC voltage of reverse polarity was held on both actuators until the strain again saturated.

The actuators were again subjected to a unipolar sinusoidal nominal electric field of 5 MV/m

at 0.1 Hz and the strain responses were compared.

A dielectric study was run on each actuator geometry to determine the average electric

field at the midsection of the fiber/plate between two adjacent electrodes. This electric

field is denoted as a midplane electric field EMid. Actuators 1 and 2 were subjected to a

unipolar sinusoidal midplane electric field of 3.5 MV/m at 0.1 Hz and the strain responses

were compared.

The DC voltage polarization process was applied to actuator 3 and a commercial MFC.

Actuator 3 was subjected to a unipolar sinusoidal midplane electric field from -1.0 MV/m

to 3.0 MV/m. The MFC was subjected to a unipolar sinusoidal midplane electric field from

-1.4 MV/m to 4.0 MV/m. The MFC and actuator 3 were then compared.

3.2 Experimental Results and Discussion

The results of the initial unipolar polarization cycle for actuators 1 and 2 are shown in

figure 3.3. Figure 3.3a shows the longitudinal strain for both actuators during the unipolar

polarization cycle. Actuator 1 with the larger electrode line widths had a peak longitudinal

strain of 2039 µε and a remnant longitudinal strain of 1321 µε. Actuator 2 with the smaller

electrode line widths had a peak longitudinal strain of 536 µε and a remnant longitudinal

strain of 363 µε. Figure 3.3b shows the transverse strain for both actuators during the

unipolar polarization cycle. Actuator 1 had a peak transverse strain of -1950 µε and a

remnant transverse strain of -1356 µε. Actuator 2 had a peak transverse strain of -550 µε

and a remnant transverse strain of -400 µε.
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(a)

(b)

Figure 3.3: Initial Polarization cycle of actuators 1 and 2 for (a) longitudinal strain and (b)

transverse strain.

While both specimens were run to the same nominal electric field, the explanation for

the smaller strain of actuator 2 can be explained with Gauss’s Law. Consider Gauss’s

Law integrated over two different volumes for the IDE geometry: the first surrounds the

electrode but extends just below the electrode as shown in Figure 3.4a; the second surrounds

the electrode and extends out to the midsection of the fiber/plate between two electrodes

as shown in Figure 3.4b. In each case the free charge on the electrode is equal to the area
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integral of the normal component of electric displacement, or

Q =

∫
Γ1

D1 · dA =

∫
Γ2

D2 · dA, (3.1)

where Γ is the boundary, D is electric displacement and Q is the total free charge. Assuming

a uniform electric displacement D1 and D2, equation 3.1 can be rewritten in terms of its

magnitudes as

Q ≈ ‖D1‖A1 = ‖D2‖A2, (3.2)

where A is the area encompassing the respective electric displacements. Relating the encom-

passing areas to geometric parameters, equation 3.2 can be rearranged such that,

‖D2‖ = ‖D1‖
L2

H
. (3.3)

The maximum electric displacement D is limited to the saturation polarization of the ferro-

electric material. For L2/H < 1, the maximum electric displacement in the fiber D2 is thus

limited proportionally to L2/H. Actuator 2 with an L2/H ratio of 0.2 could not be fully

polarized and by equation 3.3 was limited to 20% of the saturation value. Similarly, actuator

1 should have only reached 80% saturation. These ratios are similar to the observed strain

ratios and applying them to figure 3.3 causes the strains to coalesce.

(a) (b)

Figure 3.4: Gauss’ law applied to the same material under the the same boundary conditions

to demonstrate limitations of substrate polarization. The integration contours are shown for

(a) the electric displacement just under the electrode and (b) the electric displacement in

the middle of the plate between two electrodes.
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The results of the DC polarization after the unipolar polarization cycle is shown in figure

3.5. The actuators were quickly ramped to a negative nominal electric field of 5 MV/m.

The nominal electric field was held steady until the strain saturated. Actuator 1 only took

5 seconds to saturate its strain and thus only actuator 2 is discussed regarding the DC

polarization process. The saturation process took 40 minutes for actuator 2, and it produced

a saturation strain of 2366 µε. The DC polarization experiment was repeated with a positive

nominal electric field. The actuator took only 25 minutes to saturate and achieved a similar

saturation strain of 2465 µε.

Figure 3.5: DC Polarization after initial unipolar polarization cycle for L2/H = 0.2 actuator.

Strain indicated is longitudinal strain.

Again unipolar cycling was applied to the actuators. The result of a unipolar electric

field cycle in the same direction as the actuator’s polarization direction is shown in figure 3.6.

The strains used for actuators 1 and 2 for the rest of the manuscript are about a reference

strain state after the material was fully polarized. Figure 3.6a shows the longitudinal strain

for actuators 1 and 2. At a nominal electric field of 5 MV/m actuator 2 achieved a peak

longitudinal strain of 1129 µε. Upon removal of the field, the actuator initially held a

remnant longitudinal strain of 275.5 µε. Over the course of 90 seconds, the actuator’s strain

diminished back to 0 µε in a creep like process. This contrasts with actuator number 1 which

over the course of only 20 seconds had longitudinal strain creep of 166 µε when the electric
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field was removed. A similar process was noted in the transverse strains shown in figure

3.6b.

(a)

(b)

Figure 3.6: A comparison of actuators 1 and 2 with unipolar sinusoidal nominal electric

field of 5 MV/m at 0.1 Hz applied after DC polarization for (a) longitudinal strain and (b)

transverse strain. Electric field was applied in same direction as actuator polarization.

With the atypical DC polarization response of actuator 2, a unipolar electric field cycle

was ran against the polarization direction of actuators 1 and 2. The results are shown in

figure 3.7. The response of actuator 1 is shown in figure 3.7a. Upon the first cycle the
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actuator exhibits butterfly loop behavior in which the strain initially dips negative, but once

the coercive field is reached the polarization reorients and the strain jumps positive. Further

cycling exhibits a unipolar response similar to figure 3.6. The response of actuator 2 is shown

in figure 3.7b. During the first cycle, the actuator achieved peak strain of -1733 µε. This

strain magnitude is 53% greater than the case in which the electric field and polarizations

were positively aligned. The actuator resisted polarization reorientation and no jump in

strain was observed. Continued cycling causes the peak strain to ratchet until eventually

the polarization fully switches and the strain responds similarly to that of figure 3.6.
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(a)

(b)

Figure 3.7: A unipolar sinusoidal nominal electric field of 5 MV/m at 0.1 Hz applied to

actuator after DC polarization for (a) actuator 1 and (b) actuator 2. Electric field was

applied opposite to actuator polarization.

3.3 Computational Model

A nominal electric field was used in comparison plots shown in figures 3.3 and 3.6. The actual

electric field varies in amplitude and direction within the actuator, and as seen electrode

geometry has significant affect on actuator response. In some cases the nominal electric field

may not be a good estimate of the electric field in the piezoelectric plate/fiber.
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Far enough away from the electrode edges in the x3 direction, the electric field is nearly

uniform in the x3 direction. Actuators with a large electrode gap to electrode line width ratio

(L− L2) /L2 will have a high percentage of a uniform electric field in the x3 direction. The

electric field magnitude in this region does not necessarily equal to the nominal electric field

defined above. An electric field was obtained from a dielectric finite element analysis and

denoted the midplane electric field. An attempt was made to identify whether the midplane

electric field was needed when comparing actuator responses, or if a nominal electric field

suffices.

3.3.1 Dielectric Model

The equations describing an electrostatic dielectric material follow directly from Maxwell’s

equations. Under quasi-static conditions, Maxwell’s equations reduce to,

∇×E = 0,

∇ ·D = ρ.
(3.4)

According to equation 3.4, the electric field is irrotational and is conservative. A conservative

field can be represented with a scalar potential, φ, such that,

E = −∇φ. (3.5)

The relations between the electric field E and electric displacement D in the linear regime,

can be represented as,

D = κE, (3.6)

where κ is a symmetric 2nd order permittivity tensor.

The validity of the field equations 3.4 are only for ordinary points in space in which their

properties vary continuously. For any surface which separates two regions, a sharp change

in κ occurs leading to discontinuities in the field vectors. Using the integral form of Gauss’s

law, the change in the normal component of D between two mediums (1) and (2) are,

(D2 −D1) · n = ω, (3.7)
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where the subscripts represent the respective medium, n is the unit normal drawn from

medium (1) to (2), and ω is a surface charge density.

With the electrostatic field vectors defined for ordinary points in space and across bound-

aries, the strong form boundary-value problem for dielectric materials is as follows:

∇ ·D = ρ in Ω

E = −∇φ in Ω

D = κE in Ω

φ = φ̄ on Γφ

−D · n = ω on Γω

, (3.8)

where φ̄ is a defined scalar potential, Γφ is the boundary in which φ is defined, Γω is the

boundary in which ω is defined and Ω is the problem domain.

Multiplying the first relation in equation 3.8 with a weighting function w and integrating

by parts yields the weak formulation of the problem,∫
Ω

−∇w ·D dΩ =

∫
Ω

wρ dΩ +

∫
Γω

wω dΓ. (3.9)

Replacing the weighting function by a virtual potential δφ and using the relations in equations

3.8 reformulates the weak form in a virtual work framework,∫
Ω

D · δE dΩ =

∫
Ω

ρδφ dΩ +

∫
Γω

ωδφ dΓ. (3.10)

3.3.2 Finite Element Formulation

Introducing the finite element approximation, the unknown scalar potential φ can be ap-

proximated by,

φ ≈ φ̂ = Naφ̃
a, (3.11)

where �̂ denotes an approximation of a function, Na is a shape function for a specific elements

node a, and �̃a denotes a functions nodal value for an element’s node a. In equation 3.11 and
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all following, the shape function with its nodal value counterpart Na�̃a denotes a summation

across all the nodes of the element,

Na�̃
a =

∑
a

Na�̃
a. (3.12)

The remainder of the finite element formulation will be denoted in indicial notation. Einstein

summation convention and comma differentiation are used. Similar to the scalar potential

formulation, the electric field approximation can be written as,

E ≈ Ê = −Na,iφ̃
a. (3.13)

Integrating over an elements domain Ωe and applying the approximations of equations

3.11 and 3.13, the weak form can be approximated over an element as,

δφ̃a
(∫

Ωe

κijNa,iNb,jdΩφ̃b −
∫

Γe
ω

ωNadΓ

)
= 0. (3.14)

Noting that δφ̃a is arbitrary, equation 3.14 can be represented as the compact equilibrium

equations,

Kabφ̃b = F a, (3.15)

where Kab is a stiffness matrix for the nodal pair a, b and F a is a force vector. The stiffness

matrix and the force vector are represented by the following,

Kab =

∫
Ωe

κijNa,iNb,jdΩ

F a =

∫
Γe
ω

ωNa.
(3.16)

3.3.3 Mesh Generation

The domain to be meshed is shown in the highlighted region of figure 3.1. Due to symmetry

conditions, only 1/8th of the substrate between two electrode line widths needs to be meshed.

The electrode creates a singularity along its edge. To remedy this, control of element size

near the singularity is needed. To control element sizes, node generation was chosen such
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that along an edge, the ratio of successive element sizes is a constant growth factor. The 1D

representation of this is defined with the sequence element lengths Li as,

Li+1

Li
= C = B1/(N−1), (3.17)

where C is the element growth factor, N is the total number of elements, B is a growth

factor denoted by B = LMax

LMin
, LMax is the maximum element length, and LMin is the minimum

element length. Figure 3.8 represents the visualization of this element growth method.

Figure 3.8: One dimensional representation of nodal spacing with constant element length

growth factor

The meshing was defined by denoting number of elements N , the length of the edge LTot

and the smallest element size needed LMin to determine the growth factor C from them. To

formulate, first consider LTot is just the sum of the individual element lengths,

LTot =
N∑
k=1

Lk

=
N−1∑
k=0

LMinC
k.

(3.18)

A series of the form 3.18 is a geometric series. Provided, C 6= 1 (no growth), the sum is

given by

N−1∑
k=0

LMinC
k = LMin

CN − 1

C − 1
(3.19)

Combining equations 3.18 and 3.19, yields the following polynomial.

CN − LTot

LMin

C +
LTot

LMin

− 1 = 0 (3.20)
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Using Descartes’ Rule of Signs and considering LTot/LMin > 1, there can only be 2 or 0

positive real roots. But, with 1 being a root of equation 3.20, there must be one other real

root. This other real root is the growth factor needed and was found numerically.

The previous formulation was for 1D generation of elements across an edge. This for-

mulation was extended into multi-dimensions by generating nodes across multiple edges and

connecting neighboring nodes together. Figure 3.9 shows this process of generating nodes

and tying the elements together into quadrilateral elements. A series of meshes were gen-

erated for various L2, L and H values. The mesh was deemed dense enough by a series of

successive denser meshes and monitoring average electric field along the positive x3 face until

there was only a 0.1% change.

(a) (b)

Figure 3.9: Mesh generation using constant element length growth factor across multiple

edges. (a) represents the nodal generation, and (b) represents the formed 2D elements

With the mesh generated, boundary conditions were applied such that a test electric

potential was applied underneath the electrode and at the substrates midsection or positive

x3 face. Across the rest of the boundary, zero free charge was set. The average electric

field along the positive x3 face was found and compared to the nominal electric field defined

earlier.

3.4 Results and Discussion

The results of dielectric model comparing the nominal electric field to the midplane electric

field can be seen in figure 3.10. The electric field ratio EMid/ENom equal to unity indicates the
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nominal and midplane electric field are in agreement. As the electrode gap to plate height

ratio (L− L2) /H increases this electric field ratio tends towards unity. As the electrode

line width ratio to plate height L2/H decreases, there is no electric field ratio drop off until

L2/H = 1. If the electrode line width to plate height ratio dips below L2/H = 1, the electric

field ratio starts to sharply dip. This is in conjunction with the predictions from Gauss’s

law which showed polarization problems when L2/H is less than one. In regions where the

electric field ratio EMid/ENom gradient is small, it would be permissible to use a nominal

electric field.

Figure 3.10: Surface plot comparing the midplane electric field from the dielectric model

EMid to the nominal electric field ENom when both use the same electric potential. Black

dots indicate the geometries of actuators 1 and 2 being analyzed

The geometries of actuators 1 and 2 are indicted in figure 3.10 by black dots. Actuator

1 had an electric field ratio EMid/ENom of 0.6814 and actuator 2 had an electric field drop

off of 0.5287. The nominal electric field and the dielectric midplane electric field are not

in agreement in this electrode geometry space. Also, the electric field ratios differ between

actuators which creates discrepancies in the actuator comparison. Ideally, one would just run

the actuators until just before dielectric breakdown and compare their performance based

on maximum operating voltage. Preliminary tests on these actuators and other electrode

52



geometries have indicated that dielectric breakdown occurs around a midplane electric field

from 3.5 MV/m to 4.0 MV/m.

While the midplane electric field is a logical choice of an electric field parameter, it was

investigated when its use could break down. Figure 3.11 shows three separate dielectric

midplane electric fields: maximum, average, and minimum. The maximum, average and

minimum electric field correspond to the top, middle and bottom surfaces respectively. When

the relative electrode gap is large the three surfaces coalesce and there is not much variance

between the three. When the relative electrode gap is less than 2.0, the surfaces begin to

diverge. The diverged surfaces indicate a region in which the electric field is varying within

the midplane of the actuator and is no longer uniform. In this region, comparison using

electric field becomes more arbitrary.

To better understand the reasoning behind the electric field discrepancies, a plot of the

midplane electric field and electric potential distributions were made as shown in figure

3.12. The dielectric IDE model had a relative electrode line width L2/H equal to one and

a relative electrode gap (L− L2) /H equal to 0.5. Figure 3.12a shows the midplane electric

field distribution. The x3 component of electric field is plotted such that x3 is perpendicular

to the midplane. The x3 component of electric field varies from a maximum of 0.664 MV/m

to a minimum 0.444 MV/m. The minimum electric field corresponds to a 33% difference

from the maximum electric field. The maximum electric field is at the top and bottom of

the substrate, while the minimum electric field is in the center of the midplane.

The reasoning for this distribution can be seen in the electric potential contour plot in

figure 3.12b. In this figure, the electrodes are the top and bottom white surfaces. The

midplane is the surface on the right hand side of the figure. The distance from the electrode

edges to the top/bottom of the midplane is a much shorter distance than to the middle

of the midplane. This causes higher electric fields at the top and bottom. Also, the large

electric field concentrations at the electrode edges do not have time to properly adjust and

become uniform across the midplane. Equipotential lines were plotted to help show this

phenomenon.
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When the relative electrode gap is increased, the electric field has more space for a

uniform electric field to develop. The distances from the electrode edges to the top/bottom

and middle of the midplane assypmptote to the same value. Thus, the reasoning behind the

discrepancies between maximum, average and minimum electric field explain their divergence

as seen in figure 3.11.

Figure 3.11: Surface plot comparing the average midplane electric field, maximum midplane

electric field, and minimum midplane electric field from the dielectric model. The top, middle

and bottom surface correspond to the maximum, average and minimum midplane electric

field respectively.
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(a)

(b)

Figure 3.12: Electric field/potential distribution in IDE substrate (a) electric field in the x3

direction and (b) electric potential distribution.

Unipolar cycling was run on the actuators again, but each actuator was run to the same

maximum midplane electric field of 3.5 MV/m. The result is shown in figure 3.13. Figure

3.13a shows the longitudinal strain for both actuators during the unipolar polarization cycle.

At a midplane electric field of 3.5 MV/m, actuator 1 achieved a peak longitudinal strain of

1098 µε. Upon removal of the field, the actuator initially held a remnant longitudinal strain

of 173.3 µε which then diminished to zero from creep. Applying a midplane electric field

of 3.5 MV/m to actuator 2, the achieved peak longitudinal strain was 1352 µε or 23%

greater than actuator 1. Upon removal of the field, the actuator initially held a remnant
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longitudinal strain of 407 µε which then diminished to zero from creep. Figure 3.13b shows

the transverse strain for both actuators during the unipolar polarization cycle. Actuator

1 had a peak transverse strain of -760 µε and a remnant transverse strain of -109.5 µε.

Actuator 2 had a peak transverse strain of -810 µε and a remnant transverse strain of -200

µε.

(a)

(b)

Figure 3.13: A comparison of actuators 1 and 2 with a unipolar sinusoidal midplane electric

field of 3.5 MV/m at 0.1 Hz applied after DC polarization for (a) longitudinal strain and (b)

transverse strain. Electric field was applied in same direction as actuator polarization.
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Actuator 3 was an actuator with electrode geometries that produced large free strain

outputs. Actuator 3 was compared to a commercial MFC in figure 3.14. Considering there

was a negative electric field bias for both actuators, the strains were reported such that at

the minimum electric field strain is zero. From the dielectric analysis, actuator 3 had an

electric field ratio EMid/ENom of 0.69 and the MFC had an electric field ratio of 0.72.

(a)

(b)

Figure 3.14: A comparison of actuator 3 and a commercial MFC with a unipolar sinusoidal

midplane electric field at 0.1 Hz applied after DC polarization for (a) longitudinal strain and

(b) transverse strain. Electric field was applied in same direction as actuator polarization.
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Figure 3.14a shows the longitudinal strain for actuator 3 and the commercial MFC. At

a midplane electric field of 3.0 MV/m, actuator 3 achieved a peak longitudinal strain of

3657 µε. Applying n midplane electric field of 4.0 MV/m to the commercial MFC, a peak

longitudinal strain of 2828 µε was achieved. Comparing the two peak strains, actuator 3

achieved a 29% increase in free strain actuation over the commercial MFC. Figure 3.14b

shows the transverse strain for actuator 3 and the commercial MFC. Actuator 3 had a peak

transverse strain of -1847 µε and the custom actuator had a peak transverse strain of -1193.

3.5 Conclusions

A comparison of two ferroelectric plate actuators with interdigitated electrodes was made.

Initially it was found that the smaller electrode line width to plate height actuator had

significantly less polarization. Using Gauss’s law it was found that actuators with electric line

width to plate height ratios less than one would have polarization problems. A DC voltage

was applied to both actuators for a length of time until the creep type strain saturated.

Surprisingly the actuator which initially could not be polarized was found to have a higher

strain output than the other actuator after the DC polarization cycle.

Applying a unipolar electric field opposite to the polarization direction in the actuators

yielded differing results. Actuator 1 with the larger electrode line width to plate height ratio

did not resist polarization reorientation and fully switched its polarization direction in one

cycle. Actuator 2 with the smaller electrode line width to plate height ratio resisted polar-

ization reorientation. The polarization direction in the actuator resisted change, and only

after many cycles it was polarized opposite to the original polarization direction. Changing

only electrode geometry, the material behavior can thus be changed.

The effect of the inhomogenous electric field that is present when interdigitated elec-

trodes are used was assessed. It was found that comparing actuators using electric potential

divided by electrode gap spacing had discrepancies with dielectric analysis. A dielectric com-

putational analysis found significant differences between the nominal electric field and the

midplane electric field when the electrode gap to plate height ratio (L− L2) was small and
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when the electrode line width to plate height ratio L2/H was less than one. A comparison

of the actuators was performed again using the midplane electric field. The initially poor

performing actuator 2 was shown to outperform actuator 1 by having 23% greater peak

strain.

Other electrode geometries were explored and compared after applying a DC polarization

cycle. One such actuator, actuator 3, was found to have a large free strain output of 3657

µε. Actuator 3 was compared to a commercial MFC. Actuator 3 achieved 29% greater

longitudinal free strain actuation than the commercial MFC.
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CHAPTER 4

Ferroelectric IDE

4.1 Introduction

The motivation of this work is to improve device performance of IDE piezocomposites for use

as sensor/actuator rosettes in chapter 2.1 and self-latching shape memory piezocomposite

actuators [97]. Due to the anisotropic properties of IDE piezocomposites, a rosette can be

oriented to enable resolving two principle strain components and the corresponding principle

directions. This concept enables not only directional sensing, important for structural health

monitoring, it also enables directional actuation, important for structural vibration and

acoustic control [57–59]. The design of IDE piezocomposites is also critical for self-latching

actuators for efficient actuation of aerodynamic control surfaces [53, 98]. By using a shape

memory actuators, deflections of control surfaces can be adjusted in-flight and maintained

without constant power.

In chapter 3 it was found that IDE devices with small relative electrode line widths

would not polarize unless a DC poling field was applied for an extended amount of time. This

allowed for some devices to have superior actuation performance than previously expected. In

order to fully characterize the custom actuators and discover other unforseen phenomenon,

a full parametric study on 20 custom plate actuator was performed to fully characterize

the sensor/actuator behavior. The parametric study was also supplemented with a 3D

ferroelectric finite element code to gain any other insight on the actuator behavior.

A construction with IDE on rectangular fibers as shown in figure 4.1. Several key features

are shown on the inset. The electric field lines between the electrodes result in polarization

along the length of the fibers, with d33 in this direction (along the fibers) and d31 perpendic-
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ular to this direction (perpendicular to the fibers). There is an electric field concentration at

the electrode edges indicated in figure 4.1 where the electric potential lines converge. There

is a region beneath the electrodes where the field lines are not along the length of the fiber,

labeled the dead zone. In the dead zone, the longitudinal strain is actually of the opposite

sign than in the uniform field region due to contraction from the d31 effect.

Figure 4.1: Interdigitated electrodes on a macro fiber composite and the resulting field

gradient within the fibers.

4.2 Experimental Arrangement

4.2.1 Materials and Specimen Preparation

Three actuator types were initially tested. The first type of actuator tested was a commer-

cially available macro fiber composite, model number M8528-P1. Overall active dimensions

of the commercial actuators are 85 mm×28 mm×0.2 mm. The second type actuators tested

were custom PZT-5A plate with copper cladded interdigitated electrodes on polymide film.

Unlike the commercial MFC which has a piezoelectric substrate diced into fibers, the custom

actuators substrate was kept as monolithic plate. Overall active dimensions of the custom
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actuators are 85 mm × 25 mm × 0.6 mm. The custom actuators were provided by Smart

Material Corp. The third type of actuator was a monolithic plate actuator with uniform

electrodes.

Actuator dimensions and coordinate directions used are defined in figure 4.2. The four

geometric parameters of interest defined for IDE actuators are electrode spacing L, elec-

trode line width L2, plate/fiber height H, and fiber depth D for MFC. Twenty separate

custom actuators were tested. Two key ratios for the custom actuators were identified as the

electrode line width to plate height ratio L2/H and the electrode gap to plate height ratio

(L− L2) /H. The custom actuators were designed such that in every set of five actuators,

L2/H was varied and (L− L2) /H was held constant. The table of values for the custom

actuator and commercial MFC dimensions are given in table 4.1.

Figure 4.2: Layout of an interdigitated electrode on a ferroelectric substrate. Highlighted

region indicates meshed region for computation.

The commercial actuators were instrumented with longitudinal (x3) and transverse (x1)

oriented tee rosette strain gages; pattern number 250UT from Vishay Precision Group.

The custom actuators were instrumented with separate linear strain gages oriented in the

longitudinal (x3) and transverse (x1) direction. The custom actuators longitudinal gages

were model number SGD-7/350-LY43 and the transverse gages were model number SGD-

7/350-LY43 from Omega. The longitudinal gages were chosen such that they would span
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Table 4.1: Actuator Geometry Values for Parametric Study

Actuator L2(mm) L(mm) L2/H (L− L2) /H EMid/ENom

MFC 0.09 0.45 0.40 1.60 0.725

1 0.94 1.51 1.56 0.95 0.70

2 0.48 1.06 0.79 0.97 0.68

3 0.30 0.89 0.51 0.97 0.65

4 0.18 0.75 0.30 0.95 0.58

5 0.12 0.68 0.19 0.94 0.53

6 0.92 2.10 1.54 1.97 0.83

7 0.48 1.65 0.80 1.96 0.81

8 0.33 1.50 0.55 1.96 0.79

9 0.18 1.36 0.30 1.97 0.74

10 0.11 1.29 0.18 1.97 0.69

11 0.92 2.40 1.52 2.47 0.86

12 0.49 1.96 0.81 2.46 0.85

13 0.35 1.81 0.58 2.44 0.83

14 0.18 1.66 0.30 2.47 0.78

15 0.12 1.60 0.21 2.46 0.75

16 0.92 3.00 1.53 3.48 0.89

17 0.49 2.55 0.81 3.44 0.88

18 0.33 2.41 0.55 3.47 0.87

19 0.18 2.26 0.30 3.47 0.84

20 0.12 2.20 0.21 3.45 0.81

at least 6 interdigitated electrode spacings L. The gages were mounted on top and bottom

of both commercial and custom actuators to monitor for bending and extension. A strain

gage amplifier and high voltage amplifier were fed to digital acquisition hardware. Applied

voltage and strain were recorded.
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4.2.2 Experimental Procedure

In order to investigate the self latching of piezoceramics, a test was performed on commercial

macro fiber composites as a base point for feasibility. The voltage applied to the MFC follows

the voltage profile as seen in figure 4.3. The test was composed of several cycles in which

the actuator was fully poled to 2.5 kV and subjected to various back voltages. The back

voltages ranged from 0 kV to -2.5 kV with -100V back voltage increments per cycle. Each

cycle was a single period sinusoidal waveform performed at 0.25 Hz.

Figure 4.3: Voltage vs time for shape memory MFC actuator

The performance of the custom actuators was then investigated. In order to compare the

twenty custom actuators, a dielectric finite element analysis was performed to determine the

electric field within the actuators. A dielectric analysis was used to find the average electric

field EMid at the midplane between interdigitated electrodes on a plane perpendicular to the

(x3) direction. Many authors choose to use a electric field defined as the applied voltage V

divided by the electrode spacing L2 as a basis for reporting values. Considering actuator

geometries are being compared against one another, it was found using the electric field

found in the dielectric analysis was more appropriate.

The electric field computation can be seen in a surface plot in figure 4.4. The dielectric

electric field EMid was normalized by a nominal electric field ENom ≡ (V/ (L− L2)) in which
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the applied voltage V is divided by the electrode gap distance L − L2. Black dots on the

surface plot indicate the twenty custom actuators geometries investigated. The dielectric

electric field to nominal electric field ratios EMid/ENom for actuators 1 through 20 can be

found in table 4.1. The electric field found from the dielectric analysis will be referred to as

a midplane electric, or just electric field unless otherwise stated, in the rest of the chapter.

Figure 4.4: Surface plot comparing the average electric field in the midsection between

electrodes using a dielectric model EMid to the nominal electric field ENom. Black dots

indicate the twenty geometries of the actuators being analyzed.

Each custom actuator started in an unpoled state. A unipolar sinusoidal electric field

of 2.5 MV/m at 0.1 Hz was applied to each actuator. After the initial polarization cycle,

a DC electric field of 2.5 MV/m was applied to each actuator. The strain was monitored

while the electric field was held. When the strain was saturated the DC electric field was

removed. The actuators were again subjected to a unipolar sinusoidal electric field of 2.5

MV/m at 0.1 Hz. The actuators were then subjected to a bipolar sinusoidal electric field

from -2.5 MV/m to 2.5 MV/m at 0.1 Hz. The custom actuator’s bipolar sinusoidal electric

field response were then compared to the monolithic actuator with uniform electrodes.

Actuator 10 with its small electrode line widths was found to have high strain outputs

with minimum voltage inputs. Actuator number 10 was thus chosen to compare to the MFC

self-latching shape memory tests. The test was composed of six cycles in which the actuator
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was poled to 2.5 MV/m and subjected to various back electric fields. The back electric

fields ranged from 0 MV/m to -1.25 MV/m in -0.25 MV/m increments. Each cycle was

performed at 0.1 Hz. Actuator number 10 was then subjected to various frequencies with a

sinusoidal electric field cycle from 2.5 MV/m to -1.0 MV/m. The frequencies investigated

were 0.025 Hz, 0.5 Hz, and 2 Hz.

4.3 Experimental Results

The first experiment investigated the feasibility of a MFC as a shape memory self latching

actuator. The strain outputs for the voltage profile of figure 4.3 are indicated in figure 4.5.

The longitudinal strains are indicated in the figure on the left and transverse strains are

indicated in the figure on the right. It can be seen that upon applying negative bias voltages

from 0 kV to -1 kV the remnant longitudinal strain decreases from its maximal value of 200

µε to its minimal value of -1000 µε. Upon further increasing the backfield from -1 kV to -2.5

kV, the remnant strain begins to increase back again towards 200 µε. This increase is due

to the polarization reorientation of the material as the back voltages go beyond the coercive

field.

Electrode geometry was modified in an attempt to increase the remnant strain range or

reduce remnant strain creep. Actuators 6 through 10 all have the same relative electrode gap

but differing relative electrode line widths. Thus, actuators 6 through 10 are discussed first

to illustrate the device performance of the custom actuators while varying relative electrode

line widths. The discussion will then be supplemented by surface plots showing the results

for all 20 actuators.
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(a)

(b)

Figure 4.5: Strain versus voltage behavior on MFC actuator for strain locking tests. Sub-

figure (a) indicates longitudinal strain output while subfigure (b) indicates transverse strain

output.

The results of the initial polarization cycle are shown in figure 4.6. It is shown that

as the relative electrode line width L2/H increases from 0.17 to 0.80, the remnant strain

and peak strain increases. When L2/H increases even further, the remnant strain and peak

strain drop begin to decrease. Using the dielectric considerations of Gauss’s law, it has been

shown that the ideal relative electrode line width L2/H should be unity. This corresponds
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with what is seen in the initial polarization plots.

Figure 4.6: Initial polarization cycle of custom actuators

The initial polarization plots again correspond to the dielectric considerations of Gauss’s

law used in chapter 3. Again applying a DC voltage to the actuators caused the strain

magnitudes to steadily increase in time. In actuator number 10, applying a DC voltage for

7 minutes caused the longitudinal strain to increase by 3670 µε until it saturated. Actuator

number 5 contrasts this by saturating in seconds, but only to 2700 µε. The time to saturate

the strain induced by the poling process was found to be inversely proportionally to the

relative electrode line width.

Unipolar cycling was run on the actuators after the strain had been saturated during

the DC poling process. The results of the unipolar actuation cycles are shown in figure 4.7.

Strains are reported relative to the poled state. It is shown that as the relative electrode

line width L2/H increases from 0.17 to 1.50, the peak strain decreases from 1916 µε to 1290

µε. Similarly the remnant strain decreases from 500.2 µε to 125.9 µε. The remnant strain

for each actuator was fully recovered back to the zero over time in a creep like process. The

time required for the strain to creep back to zero was found be inversely proportionally to

the relative electrode line width. The DC polarization cycle caused any performance peaks

at L2/H = 1.0 to disappear.
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(a) (b)

(c) (d)

Figure 4.7: A comparison of custom actuators with unipolar sinusoidal electric field of 2.5

MV/m at 0.1 Hz applied after DC polarization.

Next a bipolar electric field cycle was run on the custom actuators. The results of the

bipolar actuation cycle is shown in figure 4.8. The strains are reported relative to the

unpoled actuator state. For actuators with larger relative electrode line widths L2/H, the

bipolar response resembles a strain-electric field butterfly loop. As the electrode line width

begins to decrease, the symmetry of the butterfly loop degrades. When the electric field is

positive (aligned with the polarization direction), the peak strain compared to unipolar peak

strain degrades from a 3.2% difference to a 14.8% difference as relative electrode line widths

decrease. When the electric field is negative (antiparallel with the polarization direction),

the peak strain compared to unipolar peak strain degrades from a 23.9% difference to a

82.6% difference as relative electrode line widths decrease. There is less strain drop when

the electric field is parallel to polarization rather than antiparallel.
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(a) (b)

(c) (d)

Figure 4.8: A comparison of custom actuators with bipolar sinusoidal electric field from -2.5

MV/m to 2.5 MV/m at 0.1 Hz applied after DC polarization.

Considering that the electrode geometry greatly affects the qualitative behavior of the

actuator when run with a bipolar electric field cycle, a comparison was made to the bulk

material. The results of the bipolar actuation cycle for the monolithic wafer with uniform

electrodes is shown in figure 4.9. The bulk response showed very little dependence on electric

field direction and had a near symmetric response. Also, the actuator needed very few cycles

for its free strain output to train into a single closed loop curve.
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Figure 4.9: Monolithic wafer with uniform electrodes response to bipolar electric field from

-2.5 MV/m to 2.5 MV/m.

Actuator 10 was used to test its abilities as a shape memory self-latching actuator. Figure

4.10 shows the results of the self-latching tests at various back electric fields. At zero back

electric field the remnant longitudinal strain was 1392 µε and the remnant transverse strain

was -639 µε. As the back electric field increased to -1.25 MV/m the remnant longitudinal

strain was -466.1 µε and the remnant transverse strain was 290.4 µε. The remnant longitu-

dinal strain range for custom actuator 10 was 1857 µε, while the remnant longitudinal strain

range for the MFC actuator was 1290 µε.
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(a)

(b)

Figure 4.10: Strain versus voltage behavior on custom actuator 10 for strain locking tests.

Subfigure (a) indicates longitudinal strain output while subfigure (b) indicates transverse

strain output.

Considering the custom actuators with smaller relative electrode line widths L2/H, re-

orient their polarization under larger time scales, the frequency response of actuator 10 was

investigated. Figure 4.11 shows the results of the frequency tests. Strain differences are

reported as the difference in strain from -1 MV/m to 2.5 MV/m At the lowest frequency,

0.025 Hz, the longitudinal strain difference was 3448 µε and the transverse strain difference
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was 1710 µε. As the frequency increased, the strain differences dropped. At the highest

frequency, 2.0 Hz, the longitudinal strain difference was 2554 µε and the transverse strain

difference was 1307 µε. The strain difference drops corresponds to a 25% decrease.

(a)

(b)

Figure 4.11: Strain versus voltage behavior on custom actuator 10 for frequency response

tests. Subfigure (a) indicates longitudinal strain output while subfigure (b) indicates trans-

verse strain output.
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4.4 Computational Model

The analysis in this section addresses the interaction of IDE with the polarization process

and the resulting effects on the piezoelectric properties of the device. Interactions between

electrode geometry, ferroelectric plate geometry and the polarization process are addressed.

4.4.1 Linear FEM

The finite element approach initially developed by Chen and Lynch [17], outlined below, was

extended to 3-D elements for this work. Equating the variation of the electric Gibbs energy

density of the system to the virtual work of the external loads yields,∫
Ω

(σijδεij −DiδEi)dΩ =

∫
Ω

(biδui − ρδφ) dΩ +

∫
Γt

tiδui dΓt −
∫

Γω

ωδφ dΓω, (4.1)

where σij is the Cauchy stress tensor, εij is infinitesimal strain, Di is electric displacement,

Ei is electric field, bi are body forces, ui are displacements, ti are surface tractions, ω is free

surface charge density, φ is electric potential, δ denotes a virtual variable, Ω denotes the

body volume, Γω denotes the body surface in which ω is defined, and Γt denotes the body

surface in which t is defined. Repeated subscripts imply a summation. Variables i, j, k, l are

spatial indices. The constitutive laws given by:

σij = cEijkl (εkl − εrkl)− ekijEk

Di − P r
i = eikl (εkl − εrkl) + κεijEj,

(4.2)

are used in this formulation, where cEijkl are the elastic stiffness tensor coefficients, ekij are

the piezoelectric tensor coefficients, κεij are the permittivity tensor coefficients, εrkl are the

remnant strain components, and P r
i are the remnant polarization components. Substituting

the constitutive relations, strain-displacement equations and electric field-potential equa-

tions into the energy functional of equation 4.1 simplifies the functional into terms in the

independent variables. Interpolation of the independent variables using shape functions gives

the fields within the elements in terms of nodal values.

Eight-noded linear isoparametric brick elements were used. Isoparametric functions were

utilized for calculating global derivatives. While an eight-noded brick element has spurious
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energy modes, and higher order shape functions remedy this problem, it has the advantage of

simplicity and speed of calculation when incorporating a micromechanical model. To address

the problem of spurious modes, reduced quadrature was used in element integrations.

Using the symmetry of the constitutive tensors and noting that the virtual displacements

and potentials are arbitrary gives,∫
Ω

(
cEijklN

u
b,lN

u
a,jũ

b
k − cEijklεrklNu

a,j + ekijN
φ
b,kN

u
a,jφ̃

b
)
dΩ =

∫
Ω

(biN
u
a ) dΩ +

∫
Γ

(tiN
u
a ) dΓ∫

Ω

(
eiklN

u
b,lN

φ
a,iũ

b
k − eiklεrklN

φ
a,i − κεijN

φ
a,iN

φ
b,jφ̃

b + P r
i N

φ
a,i

)
dΩ = −

∫
Γ

(
ωNφ

a

)
dΓ,

(4.3)

where, a, b are nodal indices, Na is a shape function for a specific elements node a, and �̃a

denotes a functions nodal value for an element’s node a.

This is a system of linear equations that can be simplified by grouping terms into stiffness

matrices as given by

[Kuu]
ab
ik ũ

b
k + [Kuφ]abi φ̃

b =

∫
Ω

(
ceijklε

r
klN

u
a,j

)
dΩ +

∫
Ω

(biN
u
a ) dΩ +

∫
Γ

(tiN
u
a ) dΓ

[Kφu]
ab
k ũ

b
k − [Kφφ]ab φ̃b =

∫
Ω

(
(eiklε

r
kl − P r

i )Nφ
a,i

)
dΩ−

∫
Γ

(
ωNφ

a

)
dΓ,

(4.4)

where Kuu is an elastic stiffness matrix, Kuφ and Kφu are piezoelectric stiffness matrices,

and Kφφ is a dielectric stiffness matrix. At each loading step the micromechanical model is

used to update the constitutive tensors, remnant strain, and remnant polarizations.

4.4.2 Micromechanical Model

In the micromechanical material model, each element is represented as a set of randomly

oriented single crystal grains using the approach of Hwang et al [29] and modified by Chen

et al [17]. A work-energy criterion governs switching of the polarization between six equiv-

alent crystal variants. The remnant polarization and remnant strain are found by volume

averaging the spontaneous polarization and spontaneous strain of each grain. The remnant

polarization, remnant strain, and constitutive tensors are returned to the finite element code

and the applied loads are incremented. Each gauss point on an element is coupled with
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a number of grains with randomized crystallographic orientation and different polarization

directions as shown in figure 4.12a. Applying stress or electric field above a work-energy

threshold causes the polarization directions to switch into more favorable orientations as

seen in the rest of the subfigures of figure 4.12.

(a) (b)

(c) (d)

Figure 4.12: Representation of a set of grains with switchable polarization constrained by the

orientation of the grains. The polarization direction of each grain is represented by a dot on

the sphere. Subfigure (a) represents an initial random distribution of grains, (b) represents

polarization orientation with applied electric field, (c) represents polarization orientation

with applied compressive stress, (d) represents polarization orientation with applied tensile

stress
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Remnant strain, remnant polarization, and constitutive tensors are calculated for each

gauss point by performing a volume average of the grain behavior. They are found using the

following relations

P r =
1

n

n∑
g=1

P 0
g

εr =
1

n

n∑
g=1

ε0
g

cE =
1

n

n∑
g=1

cE0
g

e =
1

n

n∑
g=1

e0
g

κε =
1

n

n∑
g=1

κε0g

, (4.5)

where the super script 0 denotes a spontaneous value and n is the number of grains per gauss

point.

The switching criterion used in the micromechanical model is given by

Ei∆P
0
i + σkl∆ε

0
kl ≥ W cd

s , (4.6)

where ∆ represents a change in polarization/strain from one state to another, W cd
s is the

switching work required to change the polarization from orientation c to d. The energy

barrier is defined by

W cd
s = 2E0P r, (4.7)

where E0 is the coercive field.

4.4.3 Geometry and Boundary Conditions

Interdigitated electrodes on a ferroelectric fiber were modeled as shown in figure 4.2. The

model incorporated the ferroelectric substrate between two interdigitated electrodes. By

symmetry, only one-eighth of the fiber was required to be meshed. The highlighted region

in figure 4.2, indicates the meshed region required for computation. A series of relative

electrode line widths,

L2/H = {0.25, 0.50, 1.00, 2.50, 5.00, 8.33, 9.17} , (4.8)
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were varied. The relative electrode gap distance (L− L2) /H was kept constant at 2.0. The

relative substrate depth D/H was kept constant at 1.5.

The mesh was generated with smaller element sizes biased along the electrode edge to

account for large electric field gradients. Element sizes were chosen such that the ratio of

successive element sizes away from the electrode edge grew at a constant growth factor. A

convergence study was performed on each mesh such that the electric field on the positive

x3 face of the meshed region only varied by 0.1%.

The boundary conditions were applied to simulate a free straining actuator under applied

voltage. An electric potential, φ, was applied on the electrode surface. Due to symmetry

an electric potential φ/2 was applied on the positive x3 face. The electric potentials were

linearly ramped until the average electric field on the x3 face was 2.5 MV/m. Where electric

potential was not applied, zero free charge was applied. Displacement symmetries were

applied on the positive x1 face, negative x2 face and positive x3 face. Where displacement

boundary conditions were not applied, zero tractions were applied.

The material properties of PZT-5A were used for the constitutive tensors and remnant

strains and polarizations. The micromechanical model for PZT-5A was tuned by comparing

a modeled linear plate actuator with experimental results.

4.5 Discussion and FEM Analysis

4.5.1 Discussion

The commercial MFC underwent tests for feasibility as a shape memory piezocomposite.

The controllability of remnant strain versus back voltage due to the self latching tests can

be seen in figure 4.13. The longitudinal remnant strain decreased near linearly with the back

voltage from 0 kV to -0.8 kV. Decreasing the back voltage further caused the longitudinal

strain to increase again. It may prove advantageous to set the remnant strain of the actuator

using the voltage range from -1 kV to -2.5 kV due to the decreased sensitivity of the remnant

strain to back voltage (i.e. smaller remnant strain difference per change in back voltage).
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While the test proved successful, there was some remnant strain creep when the back voltage

was removed.

Figure 4.13: Remnant strain versus back voltage from self latching tests for MFC actuator.

The maximum free strain during the initial polarization cycle can be seen in figure 4.14.

The same trends can be seen for each set of five actuators in which the relative electrode gap

(L− L2) /H was held constant. As the relative electrode line width L2/H increases towards

1.0, the maximum longitudinal strain increases. Increasing the relative electrode line width

beyond 1.0, the maximum longitudinal strain slowly rolls off. While the trends are the same

for each set of actuators with the same relative electrode gap, the peak strain values all

increased with an increase of the relative electrode gap. Thus, during the initial polarization

cycle, the actuator with the best performance was with a relative electrode line width of 1.0

and with the largest possible relative electrode line gap. The largest relative electrode line

gap would be dictated by the desired amount of voltage to be applied to the actuator.
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Figure 4.14: Surface plot comparing the maximum free strain during the initial polarization

cycle. Black dots indicate experimentally found values. Surface plot generated through

interpolation.

After DC polarization such that the free strain of each actuator had been saturated,

the free strain response of the actuators to a unipolar electric field vastly changed. A DC

polarization cycle changed the actuators strain response, and negated the boundary integral

assumptions that were utilized with Gauss’s Law. The actuators when monitoring for free

charge on the electrodes, showed charge leakage when a voltage was applied. The charge

leakage is indicative of conduction within the actuator. It is surmised that the charge leakage

is breaking the boundary line integral assumptions used in equation 3.1 and causing the

effective size of the electrodes to change. This is allowing for the polarization of actuators

with small relative electrode line widths.

The maximum free strain response of the actuators due to a unipolar electric field after

saturation can be seen in figure 4.15. Again the same trends can be seen for each set of

five actuators in which the relative electrode gap (L− L2) /H was held constant. Instead

of a peak free strain at a relative electrode line width L2/H of 1.0, the peak free strain

now occurs at the smallest relative electrode line width. Increasing the relative electrode

line width causes the maximum free strain to decrease. While the trends are the same for

each set of actuators with the same relative electrode gap, again the peak strain values
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all increased with an increase of the relative electrode gap. The actuator with the best

performance had the smallest possible relative electrode line width with the largest possible

relative electrode gap. The largest relative electrode line gap again would be dictated by the

desired amount of voltage to be applied to the actuator.

Figure 4.15: Surface plot comparing the maximum free strain response to a unipolar electric

field after DC polarization saturation. Black dots indicate experimentally found values.

Surface plot generated through interpolation.

While the peak performing actuator after DC polarization was determined to have the

smallest relative electrode line width and the largest relative electrode gap, it is not without

negative impact on other performance issues. As shown in figure 4.16, reducing the relative

electrode line width has a significant impact on the amount of creep strain. Increasing the

relative electrode gap cause a slight decrease in the creep, which does mitigate some of the

issues. While not plotted, it was also found that the amount of time for the creep strain to

relax and to DC polarize the actuators is proportional to the values on this figure. Thus the

best performing actuator from figure 4.15 has significant creep strain and relaxation time

issues. To mitigate these issues, the relative electrode line width can be increased, but at

the sacrifice of free strain output. A piezoelectric strain rosette would benefit from using

the actuators with less hysteresis and time dependence. When used for this application,

actuators with larger relative electrode line widths would be best.
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Figure 4.16: Surface plot comparing the creep strain response after an applied unipolar

electric field and DC polarization saturation. Black dots indicate experimentally found

values. Surface plot generated through interpolation.

The bipolar custom actuator response shown in 4.8 show responses that are both “soft”

ferroelectric and “hard” ferroelectric like. A piezoelectric ceramic is characterized depending

on its composition whereas “soft” ceramics contain donor dopants and hard ceramics contain

acceptor dopants. One of the differing characteristics of these materials is “soft” ceramics

are easier to polarization reorient while “hard” ceramics are harder to polarization reorient.

With respect to this characteristic, actuators with small relative electrode line widths were

shown to act more like a “hard” ferroelectric during bipolar actuation. This contrasts with

the actuators with large relative electrode line widths that act like a “soft” ferroelectric.

The PZT-5A material used in the actuators is a “soft” ferroelectric and was easily able to

reorient its polarization as shown in figure 4.9. Using only geometry, the intrinsic material

response was vastly affected.

Using the bipolar actuator response, a midplane coercive field EMid
C was found for each

custom actuator. The midplane coercive field values were compared to the coercive field of

the bulk material EBulk
C in figure 4.17. The coercive field ratio EMid

C /EBulk
C equal to unity

indicates that the midplane coercive field and the bulk coercive field are in agreement. When

the relative electrode gap (L− L2) /H was greater than 2.0, the coercive field ratio did not
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vary with the relative electrode line width L2/H. When the relative electrode gap was below

2.0, there were larger gradients on the surface indicating that the coercive field ratio was

no longer uniform. This trend follows the observations of the average midplane, maximum

midplane and minimum midplane electric fields from figure 3.11.

Figure 4.17: Surface plot comparing the midplane coercive field EMid
C to the bulk material

coercive field EBulk
C . Black dots indicate experimentally found values. Surface plot generated

through interpolation.

For its large free strain response, actuator 10 was tested for its feasibility as a shape

memory piezocomposite actuator. The remnant longitudinal strain versus back electric field

for custom actuator 10 can be seen in figure 4.18. The figure shows that as the back elec-

tric field decreases from 0 MV/m to -0.8 MV/m the remnant longitudinal strain steadily

decreases. Further decreasing the back electric field, the remnant longitudinal strain asymp-

totes to -466.1 µε. The “hard” ferroelectric behavior of actuator 10 prevents polarization

reorientation contrasting the MFCs response to back field in figure 4.13.
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Figure 4.18: Remnant strain versus back electric field for custom actuator 10

4.5.2 FEM Analysis

The computed results of the polarization of the actuator with the relative electrode line

width ratio L2/H of 1.0 is shown in figure 4.19. The electric potential distribution within the

actuator is shown in figure 4.19a. Electric potential is indicated in volts. The equipotential

lines coalesce around the electrode edge. This indicates that the electric field is larger

relative to the rest of the actuator in this area. In the areas to the right of the electrode

the equipotential lines are uniformly spaced and vertical. This indicates that the electric

field is uniform and pointed along the x3 direction. Directly underneath the electrode the

equipotential lines are more spaced out relative to the rest of the actuator and rotate from

horizontal to vertical. This indicates that the electric field is lower in this region and rotates

from being normal to the electrode (in the x2 direction) to aligning in the x3 direction. The

computed results confirm and reiterate the designated regions of the dead zone, uniform field

and field concentration region.
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(a)

(b)

Figure 4.19: Computed results of actuator with maximum applied voltage. Subfigure (a)

represents the electric potential distribution within the actuator. White lines indicate equipo-

tential lines. Subfigure (b) represents the x3 component of remnant polarization within the

actuator. The electrode is located on the top left face.

The remnant polarization component in the x3 direction is shown in figure 4.19b. Rem-

nant polarization is indicated in C/m2 The maximal remnant polarization magnitude was

set for the material to be 0.33 C/m2. To the right of the electrode the material is uniformly

polarized to its maximal value in the −x3 direction. Underneath the electrode, there is little

polarization along the x3 direction. The polarization rotates from pointing in the x2 direc-

tion to the x3 direction. The portion of polarization pointing in the x2 direction actually

can hinder the actuation in the uniform field region due to d31 mode actuation in the dead

zone.

The computed relative remnant strain versus relative electrode line width is shown in
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figure 4.20. Relative remnant strain is defined by the normal remnant strain in the x3

direction εr divided by the remnant strain in a bulk material in the polarization direction

εrBulk. For the actuator with the smallest relative electrode line width, the relative strain

was 31.43%. The relative strain then increases fairly linearly with the relative electrode line

width. At a relative electrode line width of 1.0, the relative electrode line width is maximal

at 77.4%. Continued increase in the relative electrode line width causes the relative strain

to decrease. The trend matches with the initial polarization cycle of the custom actuators

shown in figure 4.6.

Figure 4.20: Computed results for normal remnant strain in the x3 direction versus relative

electrode length L2/H. Strain values were normalized by the remnant strain of a linear plate

actuator.

The computational model was able to predict the trends of the custom actuators only

for the initial polarization cycle. There is a phenomenon from the geometry of interdigiated

electrodes on a ferroelectric substrate that can not be captured by a micromechanical fi-

nite element model with a work-energy switching criterion. More sophisticated models are

required that can capture the mechanism causing creep, frequency dependency, and time

dependent polarization from a DC voltage.

For relative electrode line widths greater than or equal to one, there is very little strain

creep and the time to creep is on much smaller time scales. Actuators with this configuration
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still have increased hysteresis compared to monolithic actuators with uniform electrodes. The

finite element model can be used to explain this phenomenon.

Figure 4.21 shows the computed polarization state of a fiber. The longitudinal (hori-

zontal) electric field away from the electrodes results in uniform polarization along the fiber

axis. In this region the fiber extends along its length and shrinks in the vertical direction.

The horizontal uniform field between alternating electrodes causes lateral extension along

the fiber axes corresponding to d33 and transverse contraction corresponding to d31. The

longitudinal component of electric field is zero beneath the electrodes and the material is

polarized vertically. This results in a shape mismatch between the electroded area and the

region away from the electrodes. This shape mismatch results in stress. Larger stress occurs

when the transition in polarization is more abrupt. The field concentration at the edges of

the electrodes corresponds to a very large strain mismatch while diffuse regions have a lower

strain mismatch.

Figure 4.21: Polarization state at maximum applied voltage. The arrows are scaled with

the polarization magnitude, where the maximum polarization was 0.31 C/m2. The electrode

edge is on the top left face.

These strain mismatches yield corresponding stresses in the material after poling as shown

in figure 4.22. The largest stress occurs when the field gradient is greatest beneath the

electrode. The uniform field region away from the electrode experiences no polarization

induced stress. The stress state changes under application of electric field. When a large

field is applied, the strain mismatch between the region under the electrode and the region

away from the electrode increases. This results in ferroelastic polarization changes in the

regions near the electrode. When the field is removed, the shape mismatch is reduced. This

induces a reverse ferroelastic polarization change.
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Figure 4.22: Model of the residual stress state when the voltage is removed from the fiber

after poling. The electrode is located on the top left face.

The ferroelastic induced polarization changes can be seen in figure 4.23. Figure 4.23

shows the difference in remanant polarization states between the fully applied voltage and

when the voltage is removed. When the voltage is applied the ferroelastic switching causes

more remanant polarization to be pulled upwards towards the electrode. Upon release, the

remanant polarization states return as reflected in figure 4.23. This results in the experi-

mentally observed increased hysteresis in the MFC over that of the uniformly poled plate of

the same material.
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(a)

(b)

Figure 4.23: Difference in the remanant polarization when the voltage is removed and when

the maximum voltage is applied. (a) Shows a a vector plot of the polarization difference. The

arrows are scaled such that the maximum arrow size corresponds to 0.03 C/m2 (b) Shows a

contour plot of the polarization difference.

4.6 Conclusions

A commercial MFC was tested for its abilities as a self-latching shape memory piezocomposite

actuator. It was found that by applying various back voltages, the remnant strain of the

actuator could be controlled. The remnant strain could be controlled over a range of 1290

µε.

Twenty custom actuators were made and tested to determine their actuation performance

relative to the commercial MFC actuator. Every set of five actuators had had different

relative electrode line widths and the same relative electrode gap distance. After an initial
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polarization cycle, the actuator with the highest peak strain had the largest relative electrode

gap and a relative electrode line width equal to 1.0.

After a DC electric field was applied to each actuator until their strains saturated, the

actuator responses changed. The actuator with the highest peak strain had the largest

relative electrode gap and smallest relative electrode line width. For unipolar actuation,

creep strain magnitude, creep strain time, and hysteresis were all found to be inversely

proportional to the relative electrode line width and relative electrode gap. For bipolar

actuation, the strain-electric field loop of the actuator with the largest relative electrode line

width resembled a typical butterfly loop. As the relative electrode line width was decreased,

the butterfly loop became more asymmetrical with little strain when the electric field was

antiparallel to the polarization direction.

Actuator 10 was chosen to test as a self-latching shape memory actuator. While actuator

20 had the highest peak strain, actuator 10 was chosen such that it resisted polarization

reorientation when the electric field was negative. Compared to a commercial MFC, it was

found that the remnant strain could be controlled over a larger range of 1857 µε. The

remnant strain asymptotes as the back electric field increased due to the resistance of the

actuator to change polarization. While the larger strain range might be more favorable for

a self-latching actuator, there is significantly increased strain creep. At the detriment of

strain actuation, a large relative electrode line width could be used to mitigate strain creep.

A large relative electrode line width would also be useful for a strain/actuator rosettes by

reducing frequency dependency and other time dependent effects.

A micromechanical computational model was incorporated to consider its ability to pre-

dict actuator performance. While, the computational model could predict actuator perfor-

mance for the initial polarization cycle, it could not compensate for the time dependent

effects of the actuators. There is some mechanism due to the geometry of the interdigitated

electrodes that increases time dependency of the actuators as the relative electrode line width

shrinks. More sophisticated models must be developed in order to handle time dependent

effects before they can be used to predict IDE sensor/actuator performance.
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CHAPTER 5

Piezocomposite Actuator Frequency Dependency

5.1 Introduction

The motivation of this chapter is to address the frequency response of piezocomposite ac-

tuators. Piezocomposite actuators are commonly used in vibration control of aeroelastic

structures. Knowledge of precise actuator output is thus important over a wide array of

frequencies. The piezocomposite actuator explored in this manuscript was the macro fiber

composite or MFC [9]. It was found that there was a sharp decrease in MFC performance as

it was electrically driven from 0.1 Hz to 15 Hz. Specifically, there was nearly 50% degrada-

tion of the low-field, unbiased-operation d33 coefficient from published values when operating

at 15 Hz.

The focus on this chapter is on the actuation performance of a MFC over a range of

frequencies from 0.1 Hz to 15 Hz. A schematic of the MFC is shown in figure 5.1. The

interdigitated electrode configuration allows a significant portion of the electric field to point

along the direction of the fiber’s longitudinal axis. The region of the fiber where this is

true is denoted as the uniform field region. Electric field lines along the longitudinal fiber

axis allow for d33 actuation in plane with the actuator. While this is preferential, the IDE

configuration can lead to increased hystersis and nonlinear responses [101]. In chapter 4, it

was found that actuators with small relative electrode line widths and large relative electrode

gaps had significantly less creep strain and relaxation times than other actuators.
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Figure 5.1: Layout of interdigitated electrodes on a macro fiber composite.

Experimentally and computationally, few have addressed the time dependent creep be-

havior inherent in interdigitated electrode devices. Schröck et al used MFC patches on a

flexible beam to characterize hysteresis and strain creep [99, 100]. The creep behavior has

a significant affect on the piezocomposite performance when actuating at low frequencies.

The performance of the MFC in the frequency range of 0.1 Hz to 15 Hz was investigated.

An alternative design using larger electrode line widths was shown to mitigate some strain

creep/frequency dependence.

5.2 Experimental Arrangement

5.2.1 Materials and Specimen Preparation

Two actuator types are used in this study. The first actuator tested was a commercially

available macro fiber composite from Smart Material Corp. The model number used was

M8528-P1 with overall active dimensions of 85 mm × 28 mm × 0.23 mm. Smart Material

Corp. reports a MFC thickness of 0.3 mm which includes the substrate and polymide film.

The aforementioned thickness dimension of 0.23 mm is for the ferroelectric substrate only.

The second actuator tested was custom ordered from Smart Material Corp. The custom

actuator type tested was comprised of a PZT-5A plate laminated with copper cladded in-

terdigitated electrodes on polymide film. The custom actuator’s substrate was not diced
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into fibers like the commercial MFC. The active dimensions of the custom actuator were

85 mm× 25 mm× 0.6 mm.

The geometric definitions and actuator micrographs are shown in figure 5.2. Figure 5.2a

is a micrograph of the MFC actuator and figure 5.2b is a micrograph of the custom actuator.

The vertical dark lines are the electrode lines. The electrode geometry is characterized by the

electrode line widths L2 and electrode spacing L. Another important geometric parameter

which is out of plane of the figure is the plate/fiber height, H. The plate/fiber height is

defined as the length of the plate/fiber in the x2 direction. The horizontal bright lines

perpendicular to the electrodes in figure 5.2a are epoxy filled gaps between the MFC fibers.

The epoxy filled gaps are absent in figure 5.2b due to being a plate actuator.

(a) (b)

Figure 5.2: Micrograph image of electrode geometries (a) MFC and (b) Custom actuator.

Darker areas indicate electrode lines. Bright areas in subfigure (a) are epoxy filled gaps due

to fiber structure.

The geometric parameter values for the actuators are indicated in table 5.1. The relative

electrode line width of the custom actuators were designed to be greater than that of the

commercial MFC in an attempt to reduce frequency dependency. The creep strain for the

two custom actuators and the commercial MFC are shown in figure 5.3. The greater relative

electrode gap and relative electrode line width of the custom actuators should alleviate the

frequency dependency.

93



Figure 5.3: Surface plot comparing the creep strain response after an applied unipolar elec-

tric field and DC polarization saturation. Black dots indicate experimentally found values.

Surface plot generated through interpolation.

Table 5.1: Actuator Geometry Values for Frequency Study

Actuator L2(mm) L(mm) H(mm) L2/H (L− L2) /H

MFC 0.09 0.45 0.23 0.40 1.60

1 0.48 1.65 0.60 0.80 1.96

2 0.92 3.00 0.60 1.52 3.48

The actuators were electrically driven using a 10 kV voltage amplifier. Both actuators

were instrumented with four strain gages. Two strain gages were placed on the positive

x1 and two on the negative x1 side of the actuator. On a given side the strain gages were

oriented along the primary extension direction x3 and the transverse direction x2. These

directions are denoted longitudinal and transverse respectively. The respective gages on the

top and bottom were averaged to compensate for bending. Strain gages were chosen such

that they span at least 6 electrodes. The strain gages were fed to a strain gage amplifier.

The output of the voltage amplifier and strain gage amplifier were recorded by a digital

acquisition system.
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5.2.2 Experimental Procedure

The commercial and custom actuators were subjected to various electric loading voltages

and frequencies to determine its response. Both actuator types started in a poled state.

Each experiment consisted of a sinusoidal applied voltage ranging from a minimum voltage

Vmin to a maximum voltage Vmax. The frequency of the sinusoidal voltage was swept from

a starting frequency fstart to a end frequency fend. The total time of the frequency sweep is

denoted ∆t.

Figure 5.4 shows an example frequency sweep applied to an actuator. In each experiment

the frequency was swept from 0.1 Hz to 15 Hz over the course of 20 seconds. Figure 5.4a shows

the voltage versus time of an example experiment. The voltage ranges were kept constant

while the frequency was increased. Figure 5.4b shows the logarithmic frequency sweep with

time. The frequency sweep was logarithmic such that the instantaneous frequency at a given

time, t, is given by,

f (t) = fstart × βt, (5.1)

where the coefficient β is defined as,

β ≡
(
fend

fstart

) 1
∆t

. (5.2)
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(a)

(b)

Figure 5.4: Example of frequency sweeping of sinusoidal signal. Subfigure (a) represents the

applied voltage versus time. The voltage ranges are uniform while the frequency is increased.

Subfigure (b) represents the electrically driven frequency applied to the actuator at a given

time.

Table 5.2 shows the experimental procedure parameters for each experiment. While each

experiment was performed under frequency ranges from 0.1 to 15 Hz, at higher frequencies

some experiments hit the voltage amplifier’s current limits. The maximum frequency fmax

depicts the maximum frequency before the current limit was hit. Experiments 1-7 were
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performed on the commercial MFC actuator within given operating ranges. The minimum

and maximum operating voltages of a MFC are −500 and 1500 volts respectively. The first

three experiments were unipolar with Vmin at 0 volts. The maximum voltages were applied

up to 1500 volts in 500 volt increments from the minimum voltage. Experiments 4-7 were

performed under biased operation such that Vmin was -500 volts. The maximum voltages

were applied up to 1500 volts in 500 volt increments from the minimum voltage.

Experiments 8 and 9 were performed on custom actuator 1 and experiments 10 and 11

were performed on custom actuator 2. The voltage ranges of experiment 8 and 10 were

applied such that the longitudinal strains on the custom actuator at the initial frequencies

matched that of the commercial actuator in experiment 2. The voltage ranges of experiment

9 and 11 were applied such that the longitudinal strains on the custom actuator at the initial

frequencies matched that of the commercial actuator in experiment 5.

A frequency response measurement was also performed on a monolithic PZT-5A wafer

with uniform electrodes. The bulk response of the PZT-5A plate were used to make com-

parisons of IDE actuators with the bulk material.

Table 5.2: Experimental Procedure for Actuators

Experiment Actuator Vmin (kV) Vmax (kV) fstart (Hz) fmax (Hz)

1 MFC 0.00 0.50 0.10 15.0

2 MFC 0.00 1.00 0.10 15.0

3 MFC 0.00 1.50 0.10 15.0

4 MFC -0.50 0.00 0.10 15.0

5 MFC -0.50 0.50 0.10 15.0

6 MFC -0.50 1.00 0.10 11.0

7 MFC -0.50 1.50 0.10 8.50

8 1 0.00 2.57 0.10 11.1

9 1 -0.60 1.73 0.10 7.42

10 2 0.00 3.16 0.10 9.82

11 2 -0.78 2.23 0.10 9.82
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5.3 Experimental Results

The results of experiment 1 is shown in figures 5.5 and 5.6. The figures for experiment 1

give similar qualitative trends for experiments 2 and 3 which also have Vmin = 0 V . Figure

5.5 shows the strain versus voltage response during the frequency sweep. Time is depicted

by the changing brightness value in the HSV color space. As time increases, the brightness

value decreases.

Figure 5.5a shows the longitudinal strain versus voltage for the MFC in experiment 1.

As the frequencies increased, the longitudinal strain difference from Vmin to Vmax of each

cycle decreased. This is seen in the figure as the major axis of the elliptical-like cyclic curves

rotating to a shallower angle as frequency/time increases. By defining a nominal electric

field E as voltage applied divided by electrode spacing L, a piezoelectric coefficient can be

defined. The d33 coefficient as a function of cycle was defined as,

d33 (N) =
εlong (Emax, N)− εlong (Emin, N)

Emax − Emin

, (5.3)

where N is the current cycle number, Emax is the maximum applied nominal electric field,

Emin is the minimum applied nominal electric field, and εlong (E,N) is the longitudinal strain

as a function of cycle number and electric field applied. The piezoelectric coefficient d33 (N)

is geometrically equivalent to the slope of the secant line combining the longitudinal strains

from Emin to Emax for a given cycle. As the cycles/frequencies increased, the d33 (N) coeffi-

cient for experiment 1 varied from an initial value of 386.1 pC/N to 198.2 pC/N.
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(a)

(b)

Figure 5.5: Strain versus voltage behavior of MFC actuator in experiment 1. Subfigure (a)

indicates longitudinal strain output while subfigure (b) indicates transverse strain output.

Time/Frequency is inversely proportional to color brightness.

Figure 5.5b shows the transverse strain versus voltage for the MFC in experiment 1.

Similar to d33, d31 per cycle was defined as,

d31 (N) =
εtran (Emax, N)− εtran (Emin, N)

Emax − Emin

, (5.4)

where εtran (E,N) is the transverse strain as a function of cycle number and electric field
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applied. The d31 coefficient for experiment 1 varied from an initial value of -158.3 pC/N to

-73.4 pC/N as cycles/frequencies increased.

The strain output versus instantaneous frequency of the MFC is shown in figure 5.6

to better demonstrate the behavior of the maximum and minimum strain per cycle. The

instantaneous frequency was found from the time data using equation 5.1. In order to find

a bounds on the strain output, each local maxima and minima were found such that a

corresponding maximum and minimum strain bound could be plotted. The figures show a

qualitative horizontal symmetry and asymptotic behavior of the bounds.

When finding the piezoelectric coefficients per cycle, d (N), the slope of the secant line

combining the strains from Emin to Emax was needed. This corresponds to needing the

strain difference per cycle, ε (Emax, N) − ε (Emin, N). While the strain difference per cycle

was calculated, the instantaneous frequency varied per cycle. In order to find the strain

difference and thus a piezoelectric coefficient as a function of instantaneous frequency, the

upper and lower strain bounds of figure 5.6 were cubically interpolated. The piezoelectric

coefficients as a function of frequency are defined as,

d33 (f) =
εlong

max (f)− εlong
min (f)

Emax − Emin

d31 (f) =
εtran

min (f)− εtran
max (f)

Emax − Emin

,

(5.5)

where εlong
max (f) is the maximum longitudinal strain bound as a function of frequency, εlong

min (f)

is the minimum longitudinal strain bound as a function of frequency, εtran
max (f) is the maximum

transverse strain bound as a function of frequency, and εtran
min (f) is the minimum transverse

strain bound as a function of frequency. Note the order of the binary operation of the strain

bounds in the numerator of d31 (f) was chosen to correspond with the order of their values

at Emax and Emin.
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(a)

(b)

Figure 5.6: Strain versus frequency behavior of MFC actuator in experiment 1. Subfigure (a)

indicates longitudinal strain output while subfigure (b) indicates transverse strain output.

Data indicates the strain value at the instantaneous frequency. Data bound indicates the

strain envelope which bounds the plot.

For the rest of the manuscript the longitudinal strain difference will be defined as,

εlong
δ (f) ≡ εlong

max (f)− εlong
min (f) , (5.6)
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and the transverse strain difference will be defined as,

εtran
δ (f) ≡ εtran

min (f)− εtran
max (f) . (5.7)

Figure 5.6a shows the longitudinal strain versus instantaneous frequency for the MFC in

experiment 1. At 0.3 Hz, the MFC had a maximum longitudinal strain of 638.1 µε and a

minimum longitudinal strain of 207.1 µε. This corresponds to a longitudinal strain difference

of 431.0 µε. At 14.8 Hz, the MFC had a maximum longitudinal strain of 544.0 µε and a

minimum longitudinal strain of 314.6 µε. This corresponds to a longitudinal strain difference

of 229.4 µε. The range of frequencies was reported from 0.3 to 14.8 Hz due to the frequencies

in the domain of the strain bound functions being dependent on the instantaneous frequencies

of the first and last maxima/minima. As the frequency increased from 0.3 to 14.8 Hz, the

longitudinal strain difference decreased by 46.8%.

A similar trend occurred for the transverse strain in experiment 1. Figure 5.6b shows the

transverse strain versus voltage for the MFC. At 0.3 Hz, the MFC had a maximum transverse

strain of -97.52 µε and a minimum transverse strain of -277.3 µε. This corresponds to a

transverse strain difference of -179.8 µε. At 14.8 Hz, the MFC had a maximum transverse

strain of -152.5 µε and a minimum transverse strain of -228.4 µε. This corresponds to a

transverse strain difference of -75.9 µε. As the frequency increased from 0.3 to 14.8 Hz, the

transverse strain difference decreased by 57.8%. The output of the MFC actuator was nearly

halved for the longitudinal and transverse strain difference.

Figure 5.7 shows the strain differences for experiments 1-3. The strain differences are

proportional to the piezoelectric coefficients in equation 5.5. The strain differences seemed

to decay and asymptote to a single value per experiment as frequencies increased. The

longitudinal strain differences for experiments 1-3 are shown in figure 5.7a. As Vmax was

increased from 500 V to 1500 V the longitudinal strain difference at 0.3 Hz increased from

424.4 µε to 1009 µε. As the frequencies increased the longitudinal strain differences decreased.

At 14.8 Hz, when Vmax was increased from 500 V to 1500 V, the longitudinal strain difference

increased from 229.1 µε to 706.9 µε. From 0.3 to 14.8 Hz the longitudinal strain difference

drops at 500 V, 1000 V and 1500 V were 46.0%, 38.9% and 29.9% respectively.
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(a)

(b)

Figure 5.7: Strain difference versus frequency for experiments 1-3. Subfigure (a) indicates

longitudinal strain difference while subfigure (b) indicates transverse strain difference.

The transverse strain differences for experiments 1-3 are shown in figure 5.7b. As Vmax

was increased from 500 V to 1500 V the transverse strain difference at 0.3 Hz decreased

from -175.5 µε to -478.0 µε. As the frequencies increased the absolute value of transverse

strain differences decreased. At 14.8 Hz, when Vmax was increased from 500 V to 1500 V,

the transverse strain difference decreased from -76.0 µε to -301.1 µε. From 0.3 to 14.8 Hz

the longitudinal strain difference drops at 500 V, 1000 V and 1500 V were 56.7%, 47.0% and
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37.0% respectively.

The results of experiment 4 is shown in figures 5.8 and 5.9. The figures for experiment

4 give similar qualitative trends for experiments 5, 6 and 7 which also have a biased back

voltage, Vmin = −500 V . Figure 5.8 shows the strain versus voltage response during the

frequency sweep. At low frequencies the curves are no longer elliptic-like as in figure 5.5. As

frequencies increased the curves resembled more and more the elliptic like structure. The

longitudinal and transverse strain at Vmin varied little as frequencies increased compared to

at Vmax.

The longitudinal and transverse strain variations with frequency is more easily seen in

figure 5.9. The minimum longitudinal strain bound varied from -768.2 µε to -725.6 µε as

frequency increased from 0.3 to 14.8 Hz. The maximum longitudinal strain bound varied

from -387.6 µε to -607.2 µε as frequency increased from 0.3 to 14.8 Hz. The minimum

longitudinal strain bound only had a increase of 5.5% compared to the maximum longitudinal

strain bound decrease of 56.6%. A similar trend occurred for the opposite bounds for the

transverse strain. The minimum transverse strain bound only had a increase of 2.02%

compared to the maximum longitudinal strain bound increase of 78.0%. These lopsided

bound changes account for a lack of horizontal symmetry as opposed to the symmetry seen

in figure 5.6.
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(a)

(b)

Figure 5.8: Strain versus voltage behavior of MFC actuator in experiment 4. Subfigure (a)

indicates longitudinal strain output while subfigure (b) indicates transverse strain output.

Time/Frequency is inversely proportional to color brightness.

105



(a)

(b)

Figure 5.9: Strain versus frequency behavior of MFC actuator in experiment 4. Subfigure (a)

indicates longitudinal strain output while subfigure (b) indicates transverse strain output.

Data indicates the strain value at the instantaneous frequency. Data bound indicates the

strain envelope which bounds the plot.

Figure 5.10 shows the strain differences for experiments 4-7. Again, the strain differences

seemed to decay and asymptote to a single value per experiment as frequencies increased.

The longitudinal strain differences for experiments 4-7 are shown in figure 5.10a. As Vmax

was increased from 0 V to 1500 V the longitudinal strain difference at 0.3 Hz increased
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from 366.4 µε to 1975 µε. As the frequencies increased the longitudinal strain differences

decreased. At 8.3 Hz, when Vmax was increased from 0 V to 1500 V, the longitudinal strain

difference increased from 134.7 µε to 1402 µε. From 0.3 to 8.3 Hz the longitudinal strain

difference drops at 0 V, 500 V, 1000 V and 1500 V were 63.2%, 46.9%, 34.5% and 29.0%

respectively.

(a)

(b)

Figure 5.10: Strain difference versus frequency for experiments 4-7. Subfigure (a) indicates

longitudinal strain difference while subfigure (b) indicates transverse strain difference.

The transverse strain differences for experiments 4-7 are shown in figure 5.10b. As Vmax

107



was increased from 0 V to 1500 V the transverse strain difference at 0.3 Hz decreased from

-157.0 µε to -889.2 µε. As the frequencies increased the absolute value of transverse strain

differences decreased. At 8.3 Hz, when Vmax was increased from 0 V to 1500 V, the transverse

strain difference decreased from -53.5 µε to -594.8 µε. From 0.3 to 8.3 Hz the longitudinal

strain difference drops at 0 V, 500 V, 1000 V and 1500 V were 65.9%, 53.1%, 39.0% and

33.1% respectively.

A custom actuator was prepared to try to alleviate the drop in strain from the higher

frequencies. Large relative electrode line width ratios L2/H, yield less strain creep and

relaxation times. The custom actuator was designed with a larger relative electrode line

width than the commercial MFC.

The result of the custom actuator experiments is shown in figure 5.11. The custom

actuators, with no negative voltage bias (experiments 8 and 10), shown in figure 5.11a,

were electrically driven to near the same strain as the commercial actuator in experiment

2. The custom actuator’s longitudinal strain difference tended to asymptote faster than the

commercial MFC. From 0.3 Hz to 10 Hz, the longitudinal strain drop of custom actuators 1

and 2 were 17.4% and 7.68% respectively compared to the commercial actuator which had

a 36.5% drop.

The custom actuators with a negative voltage bias (experiment 9 and 11), shown in figure

5.11b, were electrically driven to near the same strain as the commercial MFC in experiment

5. Again, the custom actuator’s longitudinal strain difference tended to asymptote faster

than the commercial MFC. From 0.3 Hz to 7.3 Hz, the longitudinal strain drop of custom

actuators 1 and 2 were only 19.5% and 10.5% respectively compared to the commercial

actuator which had a 45.0% drop. In both subfigures of figure 5.11, the commercial MFC’s

strain differences hadn’t fully decayed at the comparable end frequencies. Accounting for

this would yield even larger drops in strain differences for the commercial MFC.
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(a)

(b)

Figure 5.11: Comparison of longitudinal strain difference versus frequency between custom

actuator and MFC. Subfigure (a) is a comparison of experiments 2 and 8 while subfigure (b)

is a comparison of experiments 5 and 9.

Considering the electrode geometry greatly affects the qualitative behavior of the actuator

when run a frequency sweep, a comparison was made to the bulk material. The results of

the frequency sweep cycle for the monolithic wafer with uniform electrodes is shown in figure

5.12. The bulk response showed very little dependence on electric field frequency. Increasing

the frequency from 0.1 Hz to 15 Hz caused the transverse strain difference to increase from
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-327 µε to -301 µε.

Figure 5.12: Frequency response of monolithic wafer with uniform electrodes.

5.4 Experimental Discussion

The longitudinal and transverse strain differences were sensitive to frequencies when varied

from 0.1 Hz to 15 Hz. Thus the piezoelectric coefficients d33 (f) and d31 (f) are also sensitive

to electrically driven frequencies due to being proportional to the longitudinal and transverse

strain differences respectively. The commercial MFC properties are reported independently

of applied electrically driven frequency.

The piezoelectric constants at low electric field, E < 1 MV/m, with unbiased operation,

Vmin = 0 V, are reported to be d33 = 400 pC/N and d31 = −170 pC/N. The experiment

performed corresponding to low electric field with unbiased operation is experiment 1. Fig-

ure 5.13 shows a comparison of the piezoelectric constants as a function of frequency versus

published values. There is a slight discrepancy at the low frequencies with the published

value. Extrapolating the experimental data to smaller frequencies would lower this discrep-

ancy. From 0.3 Hz to 14.8 Hz the low field d33 (f) varied from 381.7 pC/N to 206.2 pC/N.

This represents a increase in the percent difference of the reported value of 400 pC/N from

4.58% to 48.5%. From 0.3 Hz to 14.8 Hz the low field d31 (f) varied from -157.9 pC/N to
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-68.44 pC/N. This represents a increase in the percent difference of the reported value of

-170 pC/N from 7.12% to 59.7%. During unbiased operation at low electric field, the ex-

perimental piezoelectric coefficients were found to be around half of reported values when

operating at 14.8 Hz.

(a)

(b)

Figure 5.13: Low-field, unbiased-voltage piezoelectric coefficients versus frequency (Experi-

ment 1). Subfigure (a) indicates the d33 piezoelectric coefficient while subfigure (b) indicates

the d31.

The piezoelectric constants at high electric field, E > 1 MV/m, with biased operation,
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Vmin = −500 V, are reported to be d33 = 460 pC/N and d31 = −210 pC/N. The experiment

performed corresponding to high electric field with biased operation is experiment 1. Figure

5.14 shows a comparison of the piezoelectric constants as a function of frequency versus

published values. Again there is a slight discrepancy at low frequencies with the published

value, the reasonings are the same as mentioned for the low field constant. From 0.3 Hz

to 14.8 Hz the high field d33 (f) varied from 444.4 pC/N to 315.3 pC/N. This represents a

increase in the percent difference of the reported value of 460 pC/N from 3.39% to 31.5%.

From 0.3 Hz to 14.8 Hz the high field d31 (f) varied from -200.1 pC/N to -133.8 pC/N. This

represents a increase in the percent difference of the reported value of -210.0 pC/N from

4.71% to 36.3%. During biased operation at high electric field, the experimental piezoelectric

coefficients were found to be around 2/3rd of reported values when operating at 14.8 Hz.
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(a)

(b)

Figure 5.14: High-field, biased-voltage piezoelectric coefficients versus frequency (Experi-

ment 7). Subfigure (a) indicates the d33 piezoelectric coefficient while subfigure (b) indicates

the d31.

To reproduce the data, the strain differences from experiments 1-11 were fit to,

εδ (f) = ε∆ e
−f/τ + ε∞, (5.8)

where εδ (f) is the strain difference, either longitudinal or transverse, as a function of fre-

quency, ε∞ is a coefficient which represents a strain difference as the frequency approaches
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infinity, ε∆ is the change in the strain difference from the 0 Hz to infinity, and τ is the mean

lifetime constant of the exponential decay. The exponential decay equation with a shifted

constant value was chosen due to the observation all the strain difference data seemed to

decay to a constant strain difference as frequencies were increased.

The coefficients of equation 5.8 can not be found explicitly using linear least squares.

To remedy this, the derivative of equation 5.8 was taken and then exponentiated yielding a

linearized relation,

ln (−ε′δ) = ln
(ε∆
τ

)
− f

τ
, (5.9)

where ε′δ, is a strain difference differentiated by frequency. Using a least squares algorithm

via QR factorization on equation 5.9 the coefficients ε∆ and τ were found. Plugging ε∆

and τ back into equation 5.8 and using the least square algorithm via QR factorization, the

coefficient ε∞ was found.

The numerical differentiation of εδ amplifies the errors of the experimental data. This

can cause the coefficients found to not minimize the residual of the system of equations. To

alleviate this, the found coefficients were used as initial guesses for the Gauss-Newton non-

linear least squares algorithm. Without first finding the initial guesses, the Gauss-Newton

method would converge to values giving a poor goodness of fit.

An example of fitting for experiment 8 is shown in figure 5.15. The figure shows good

qualitative agreement between experimental data and the exponential fit. The curve fitting

coefficients and goodness of fit values are found in tables 5.3 and 5.4. Table 5.3 represent

the curve fitting parameters relating the longitudinal strain differences for experiments 1-9.

Table 5.4 represent the curve fitting parameters relating the transverse strain differences for

experiments 1-9. The goodness of fit parameters reported in both tables are, the coefficient

of determination R2 and the root mean square error RMSE. The coefficient of determination

was never less than 96.6% and was on average 98.7%. The root mean square error was never

greater than 14.0 µε and was on average 6.54 µε.
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Figure 5.15: Curve fit of exponential decay plus a constant for experiment 8. Scatter points

indicate data values while the solid line indicates the fitted curve.

Table 5.3: Exponential Fitting Values for Longitudinal Strain Difference

Experiment Coefficients Goodness of Fit

# ε∆ (µε) τ (Hz) ε∞ (µε) R2 (%) RMSE (µε)

1 184.2 3.03 233.5 98.6 4.70

2 284.7 2.86 483.0 98.5 8.12

3 284.4 2.86 715.7 98.6 7.90

4 212.2 2.32 125.3 96.6 9.14

5 492.7 2.45 519.0 98.3 14.0

6 600.1 2.65 1036 99.1 13.7

7 604.3 2.36 1406 99.3 12.1

8 140.2 1.26 608.4 98.8 2.84

9 229.0 1.80 803.7 99.6 3.12

10 85.66 1.24 807.4 99.1 1.42

11 123.0 1.98 940.3 99.7 1.49

The mean lifetime constant, τ can be thought of as the frequency in which the addition

of the ε∆ term in equation 5.8 is reduced by 1/e. In figure 5.11a, for unbiased operation,
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Table 5.4: Exponential Fitting Values for Transverse Strain Difference

Experiment Coefficients Goodness of Fit

# ε∆ (µε) τ (Hz) ε∞ (µε) R2 (%) RMSE (µε)

1 -93.95 2.88 -78.08 98.5 2.70

2 -161.6 2.99 -197.3 98.5 4.69

3 -168.5 3.02 -303.9 98.8 4.39

4 -103.4 2.29 -50.33 98.8 2.64

5 -243.4 2.86 -194.1 98.1 7.89

6 -302.1 3.10 -417.2 98.9 7.77

7 -309.2 2.77 -591.0 99.2 6.45

8 -110.7 2.27 -398.9 98.7 2.95

9 -176.5 2.37 -561.0 99.6 2.60

it was noted the longitudinal strain difference of the custom actuator decayed faster than

the MFC. Using the fitted parameters of experiments 2, 8 and 10 in table 5.3 actual decay

values can be conveyed. The MFC in experiment 2 had a mean lifetime of 2.86 Hz while

in experiments 8 and 10 the custom actuator had a mean lifetime of 1.26 Hz and 1.24 Hz

respectively. For unbiased operation, the mean lifetime coefficient of the custom actuator

in experiment 10 was 56% less than the MFC. Also, the amount of strain difference that

decays, ε∆, was less for the custom actuators then that of the MFC. The parameter ε∆ was

140.2 µε and 85.66 µε for the custom actuators 1 and 2 respectively while it was 284.7 µε

for the MFC.

Biased operation comparison between the MFC and custom actuator yields similar re-

sults. In figure 5.11b, for biased operation, it was noted the longitudinal strain difference

of the custom actuator decayed faster than the MFC. Using the fitted parameters of exper-

iments 5, 9 and 11 in table 5.3 decay values are noted. The MFC in experiment 5 had a

mean lifetime of 2.45 Hz while in experiments 9 and 11 the custom actuators had a mean

lifetime of 1.80 Hz and 1.98 respectively. For biased operation, the mean lifetime coefficient

of custom actuator 1 was 25% less than the MFC. Again, the amount of strain difference
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that decays ε∆ was less for the custom actuator then that of the MFC. The parameter ε∆

was 229.0 µε and 123.0 µε for the custom actuator while it was 492.7 µε for the MFC.

In both the unbiased and biased operations of the commercial actuators the strain differ-

ence drop ε∆ converged towards a single value as maximum applied voltages were increased.

In table 5.3, the unbiased operation ε∆ approached 285 µε, and in the biased operation ε∆

approached 600 µε. While, the strain difference drop was shown to asymptote, the strain

difference at high frequency ε∞ continued to increase as maximum applied voltages were

increased. These trends on ε∞ and ε∆ explain why the strain difference drop percentage

decreased when increasing the maximum voltage Vmax.

5.5 Conclusion

A commercial MFC was tested for its actuation abilities across a range of electrically driven

frequencies form 0.1 Hz to 15 Hz. Seven separate experiments were performed on the MFC

with applied voltages ranging within operating parameters from -500 V to 1500 V. The first

three experiments performed were under unbiased actuation Vmin = 500 V. The next four

experiments were performed under biased actuation Vmin = −500 V.

Under unbiased actuation it was found that the strain differences decayed rapidly as

frequencies were increased from 0.1 Hz to 15 Hz. Eventually, the strain difference was shown

to asymptote at high enough frequencies. At the lowest maximum applied voltage, Vmax, the

longitudinal strain difference drop from operating at 15 Hz was largest at 46%. Increasing

the maximum applied voltage to 1500 V lessened the strain difference drop to 29.9%.

Similar trends were found under biased actuation of the commercial MFC actuators. A

key difference was found that the biased operation lacked symmetry in the strain output

compared to the unbiased operation. The strain differences again decayed rapidly as and

converged as frequencies were increased. At the lowest maximum applied voltage, Vmax, the

longitudinal strain difference drop from operating at 15 Hz was largest at 63.2%. Increasing

the maximum applied voltage to 1500 V lessened the strain difference drop to 29.0%.
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Custom IDE actuators were manufactured with a smaller relative electrode line width and

larger relative electrode gap than that of the commercial MFC. The smaller relative electrode

line widths and larger relative electrode gaps tend to reduce strain creep and relaxation times

in IDE actuators. It was found that the custom actuators had a reduced the strain drop as

actuation frequencies increased. The mean lifetime coefficient also was less implying that

the strain difference was quicker to asymptote than the commercial MFC.

It was noted that the high-field, biased-voltage piezoelectric coefficient and the low-field

unbiased-voltage piezoelectric coefficients of the commercial MFC were reported independent

of frequency. Increasing the actuation frequencies caused the high-field, biased-voltage d33

piezoelectric coefficient to drop below 31.5% of the reported value. Similarly, increasing

actuation frequencies caused the low-field, unbiased-voltage d33 piezoelectric coefficient to

drop below 48.5% of the reported value.

The strain difference versus frequency plots were curve fit to an exponential decay equa-

tion with a added constant. The fitted equation had an average coefficient of determination

of 98.7% and an average root mean square error of 6.54 µε across all experiments. The

coefficients found helped quantify the decay properties of the experiments.
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CHAPTER 6

IDE Composition Experiment

6.1 Introduction

While the effect of geometry is of interest for intedigitated electrode piezoceramic acutators,

composition was also studied. Two compositions were explored, phase transforming 55/33/12

PLSnZT and quadratic electrostrictive 9.5/65/35 PLZT. The geometry of the exotic MFC

was chosen to be that of commercial MFC so that direct comparisons are possible. By

utilizing exotic materials in MFC, it was the hope that the use of piezocomposites could be

expanded.

Antiferroelectric to ferroelectric phase transitions of PLSnZT was established by Berlin-

court when he developed the materials ternary phase diagram [102]. He found that com-

pressive hydrostatic stresses favored antiferroelectric states, while electric fields forced an

antiferroelectric to ferroelectric phase transformation. Pan et al experimentally found that

the volumetric strain change associated with phase transforming from antiferroelectric to

ferroelectric could yield up to 0.85% strain [103,104]. The high strain output has also been

used for microactuator microelectric devices [27, 105].

PLZT phase diagrams [106, 107] show that compositions (x/65/35) with x ranging from

6 mol% to 12 mol% are along a morphotropic phase boundary in the slim loop ferroelectric

phase region. In the 9% to 10% La range, the material possess zero coercive field and zero

remnant polarization [107]. The phase transition in x/65/35 is sensitive to electric field,

temperature and frequency [108,109]. Materials in the slim loop phase region are useful for

pyroelectric energy conversion [110] and for their quadratic electrostrictive behavior across

a wide range of temperatures [111,112]
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The phase transforming behavior of PLSnZT is ideal for a binary actuator in which the

strain has two states (on and off). The composition can be modified so that when the material

phase transforms to ferroelectric upon removal of electric field it stays ferroelectric. This

behavior may have use for the self-latching piezocomposite discussed in previous chapters.

The binary actuation was explored for these actuators.

Quadratic electrostrictors possess very little creep compared to PZT and exhibit low

strain hysteresis. Thus, the material properties of electrostrictors are ideal for use in high

precision positioning devices. They are typically employed as monolithic plate actuators

which make use of the d31 effect. By combining an electrostrictor with the anisotropic d33

mode actuation of a MFC, it was the hope that a large strain high-precision actuator could

be devised.

6.2 Experimental Arrangement

6.2.1 Materials and Specimen Preparation

The ferroelectric ceramic material used in these experiments was synthesized by the typi-

cal mixed oxide method. Starting precursors included high purity(> 99.9 mol%) 2PbCO3 ·

Pb(OH)2 (Hammond Group Inc., IN, USA), La2O3 (Inframat Advanced Materials LLC,

CT, USA), ZrO2 (Magnesium Elektron Inc., NJ, USA), and SnO2 (Triple-S Chemical Prod-

ucts Inc., CA, USA), and TiO2 (Ishihara Sangyo Kaisha Ltd, Japan). Each precursor was

weighted with respect to the nominal composition of (Pb1−3x/2Lax)(Zr1−ySnyTiz)O3 assum-

ing A-site vacancy.

Each material was heated at 300 ◦C for 2 hours prior to mixing. This allowed any

volatile impurities or moisture content to escape. This loss percent on ignition was measured.

Deionized water with volume between 100% and 200% of volume of the powder, 1 wt.%

NH4OH solution, and 5wt.% Darvan dispersant (R.T. Vanderbilt Holding Company, Inc.,

CT, USA) were added to the mixture of powder to form a freely flowing hypersaturated

slurry. Using zirconia balls with triple volume of powder as grinding media, the suspension
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was milled for 16 hours to improve the homogeneity. The slurry was dried, and the substance

was calcined at 900 ◦C for 8 hours. The calcined powder was re-milled through the same steps

as before and passed through a 100-mesh sieve to limit the size of particles and increase the

packing efficiency. 3 wt.% polymer binder (Rohm and Haas Company, PA, USA) was added

using acetone as the solvent, and the binderized powder was uniaxially compressed into a

cylinder at 2500 psi. The compact disc was placed in an alumina crucible and sintered at

1250 ◦C for 2 hours in lead-rich environment provided by PbO and ZrO2 powder to minimize

the volatile Pb loss from the disc. A Pt foil was also laid between cylinder and crucible to

avoid diffusion.

The resulting ferroelectric ceramic cylinder had a radius of around 23 mm and a height of

15 mm. The cylinder was sent to Smart Material Corp. to be cut and have the IDE applied.

The process is outlined in figure 6.1. The ceramic cylinder was processed into a 14 mm cube.

The 14 mm cube was then sliced into a number of 14 mm× 14 mm× 0.23 mm wafers. Two

wafers were were placed end-to-end and diced in tandem for packaging in a standard MFC

size actuator. Wafers from each composition were also polished and electroded using Au

sputter deposition to measure bulk properties.

Figure 6.1: Custom ceramic material dicing scheme.
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The PLSnZT, PLZT, and commercial MFC piezocomposite actuators were instrumented

with tee rosette strain gages to measure longitudinal and transverse extensions. Two gages

were mounted on the top and two on the bottom of the actuator to monitor the bending

and extension of the specimen. The bulk wafers were instrumented with a single strain gage

on the ground electrode. The strain gages were powered by a strain gage amplifier and

fed into a digital acquisition system. The actuators were electrically driven with a 10 kV

amplifier. Applied voltage and strain was recorded for both the piezocomposites and the

bulk actuators. Charge output was additionally recorded for the bulk actuators using a

Sawyer Tower circuit.

6.2.2 Experimental Procedure

Throughout this chapter the piezocomposite actuator performance is reported in terms of

a nominal electric field. The nominal electric field ENom ≡ V/ (L− L2) is defined as the

applied voltage V divided by the gap distance between electrodes L− L2. Nominal electric

field is appropriate for comparing these actuators due to having the same electrode geometry

and plate dimensions. For the monolithic plate actuators, the electric field is reported as the

voltage applied divided by plate thickness.

The free strain and electric displacement response of the monolithic PLSnZT and PLZT

actuators was performed as a basis of comparison to the piezocomposite actuators. A bipolar

sinusoidal electric field at 0.1 Hz was applied to each specimen. Similarly, the free strain

response of the piezocomposite PLSnZT and PLZT and MFC actuators was performed. A

bipolar sinusoidal electric field from -7.6 MV/m to 7.6 MV/m at 0.1 Hz was applied to each

piezocomposite specimen.

The response of the PLZT piezocomposite actuator under different electrically driven

sinusoidal frequencies was also compared. A bipolar sinusoidal electric field from -7.0 MV/m

to 7.0 MV/m was applied to the PLZT piezocomposite specimen. The electric field was

applied at 0.05 Hz, 0.025 Hz, and 0.0125 Hz actuation frequencies.
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6.3 Experimental Results

The transverse strain output of the monolithic PLSnZt actuator is shown in 6.2. As electric

field was initially increased, little strain output was recorded. When the coercive field of

2 MV/m was hit, there was a sudden strain jump. As the field increased to 3 MV/m a

290 µε transverse strain was achieved in the plate actuator. As the field decreased, from 3

MV/m, the transverse strain stayed relatively constant. While decreasing the electric field at

1 MV/m, there was a sudden strain drop. When the electric field was completely removed,

the actuator only had 20 µε remnant transverse strain. This residual strain crept back to 0.

Reversing the electric field polarity yields a similar trend.

Figure 6.2: Transverse strain output of bulk 55/33/12 PLSnZT.

The polarization of the monolithic PLSnZT actuator is shown in figure 6.3. A double loop

behavior is observed. As the electric field was initially increased, the polarization change

increased linearly. When the coercive field of 2 MV/m was hit, there was a sudden jump in

polarization. As the field increased to 3 MV/m a 0.3 C/m2 polarization was achieved. As

the electric field decreased from 3 MV/m, the polarization linearly dropped. While further

decreasing the electric field at 1 MV/m there was a sudden drop in polarization. When the

electric field was completely removed, only a polarization of 0.03 C/m2 remained. Reversing

the electric filed polarity yields an opposite trend in polarization.
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Figure 6.3: Polarization output of bulk 55/33/12 PLSnZT.

The longitudinal strain output of the PLSnZT piezocomposite actuator is shown in figure

6.4. As the electric field was initially increased, little strain output was recorded. When the

nominal electric field hit 4.0 MV/m, there was a sudden strain jump. As the field increased

to 7.6 MV/m a 1087 µε longitudinal strain was achieved. As the field decreased from 7.6

MV/m, the longitudinal strain immediately began to drop. Further decreasing the nominal

electric field, at around 2 MV/m the strain drop is more pronounced. When the electric field

is completely removed, the actuator holds a 522 µε remnant longitudinal strain. Over the

course of 5 minutes the remnant longitudinal strain decays to 150 µε. Reversing the electric

field polarity yields a similar trend.
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Figure 6.4: Longitudinal strain output of 55/33/12 PLSnZT piezocomposite.

The transverse strain output of the PLSnZT piezocomposite actuator is shown in figure

6.5. It took two cycles for the transverse strain to train and follow the same path. Following

from 0 electric field at -215 µε transverse strain, as the electric field was increased the

transverse strain began to increase. At 2.3 MV/m, the transverse strain ceased increasing

with any increase of electric field. Increasing the field to 5 MV/m, the transverse strain

began to decrease. At a field of 7.6 MV/m a transverse strain of -250 µε was achieved. While

decreasing the electric field, the transverse strain slowly increased towards the starting point

of -215 µε at 0 MV/m. Reversing the electric field polarity yields a similar trend.

Figure 6.5: Transverse strain output of 55/33/12 PLSnZT piezocomposite.
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The transverse strain output of the monolithic PLZT actuator is shown in figure 6.6. The

transverse strain shows quadratic electrostrictive behavior. Increasing the electric field from

0 MV/m to 1.6 MV/m, the transverse strain begins to increase quadratically until it starts

to saturate. At 1.6 MV/m a maximum transverse strain of -812 µε was achieved. Decreasing

the electric field, the transverse strain begins to quadratically decrease. When the electric

field was removed, zero transverse strain remained.

Figure 6.6: Transverse strain output of bulk 9.5/65/35 PLZT.

The polarization of the monolithic PLZT actuator is shown in figure 6.7. A slim loop

ferroelectric behavior is observed. When the external electric field is applied, almost no

coercive field is observed. Increasing the electric field to 1.6 MV/m causes the polarization

to saturate at 0.23 C/m2. Upon removal of the electric field little remnant polarization is

observed. Reversal of the electric field yields the opposite trend in the polarization behavior.
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Figure 6.7: Polarization output of bulk 9.5/65/35 PLZT.

The longitudinal strain output of the PLZT piezocomposite actuator is shown in figure

6.8. When initially increasing the electric field from 0 MV/m to 7.6 MV/m, the strain follows

a quadratic electrostrictive trend. At an electric field of 7.6 MV/m the actuator achieves

a maximum longitudinal strain of 1555 µε. Decreasing the electric field, the longitudinal

strain does not follow the same return path. When the electric field is removed, residual

longitudinal strain of 300 µε remains on the actuator. Over the course of one minute, the

longitudinal strain relaxes to zero.

Figure 6.8: Longitudinal strain output of 9.5/65/35 PLZT piezocomposite.
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The transverse strain output of the PLZT piezocomposite actuator is shown in figure 6.9.

When initially increasing the electric field from 0 MV/m to 7.6 MV/m, the strain follows

a quadratic electrostrictive trend. At an electric field of 7.6 MV/m the actuator achieves

a minimum transverse strain of -850 µε. Decreasing the electric field, the transverse strain

does not follow the same return path. When the electric field is removed, residual transverse

strain of -175 µε remains on the actuator. Over the course of one minute, the transverse

strain relaxes to zero.

Figure 6.9: Transverse strain output of 9.5/65/35 PLZT piezocomposite.

The electric field driving frequency comparison of the PLZT piezocomposite actuator is

shown in figure 6.10. The peak longitudinal strains decreased from 1489 µε to 1390 µε as fre-

quencies were increased from 0.0125 Hz to 0.05 Hz. As the frequency of actuation increased,

the longitudinal strain output was delayed causing a shift in the curves and increased hys-

teresis. Upon removal of electric field, the return path was independent of frequency of

actuation.
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Figure 6.10: Frequency comparison of longitudinal strain output of 9.5/65/35 PLZT piezo-

composite.

6.4 Experimental Discussion

A comparison is first made between the piezocomposite actuator performance and the bulk

material. When discussing the results of the PLSnZT piezocomposite actuator, it must

be noted that the bulk transverse strain was roughly half that of the published value for

55/33/12 PLSnZT. Thus, statements of maximal performance cannot be made, only the

change in the performance from a bulk to a piezocomposite actuator.

The bulk actuator exhibits a response in which an application of electric field leads to a

phase transformation from an antiferroelectric tetragonal phase to a ferroelectric rhombohe-

dral phase. This is observed as the abrupt strain and polarization jump. Upon removal of

the field, the crystal structure undergoes a reverse phase transformation from ferroelectric

to antiferroelectric. In the bulk material, both longitudinal and transverse strain exhibit

positive strain jumps due to the dilatation of the crystal structure.

The transverse strain output of the bulk PLSnZT actuator and the PLSnZT piezocompos-

ite are very different. While the transverse strain of the bulk actuator performed qualitatively

as expected, the piezocomposite actuator showed some oddities. Upon first polarizing the
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transverse strain of the piezocomposite actuator jumps negative. After the material had been

polarized, starting from a state of zero electric field, the transverse strain exhibits a positive

strain jump at low field levels. Increasing the electric field levels even further the strain

again jumps negative. Upon removal of the field, no abrupt jumps were are observed. The

negative transverse strain jump along with the, remnant transverse strain contrast with the

bulk actuator performance. The remnant strain can be explained as stresses underneath the

electrode stabilizing the ferroelectric phase of the material when the electric field is removed.

The longitudinal strain output of the PLSnZT piezocomposite actuator exhibits a re-

sponse more expected. A positive longitudinal strain jump is observed with the application

of electric field. Upon removal of the field the strain jumps down. What differs from the

bulk response is the remnant longitudinal strain and creep behavior. The creep behavior

was previously found to be inherent in interdigitated ferroelectric actuators. This causes the

strain jumps of the PLSnZT piezocomposite to be more rounded.

The creep behavior of interdigitated piezocomposites also effected the PLZT actuator.

The bulk response of the PLZT showed a quadratic electrictive transverse strain response

with little hysteresis and no remnant strain. Conversely the PLZT piezocomposite actuator

shows a significant increase in hysteresis and a remnant strain with removal of field. The

remnant strain of the piezocomposite actuator does creep to zero after a period of one minute.

Both the monolithic actuator and piezocomposite actuator achieved around the same trans-

verse strain of 825 µε. The longitudinal strain output of the PLZT piezocomposite actuator

also showed increased hysteresis, remnant strain, and creep. By slowing the frequency down,

the hysteresis was decreased due by allowing for the strain to creep throughout the actuation

process.

A comparison of the PLZT, PLSnZT and commercial MFC piezocomposite actuators is

shown in figure 6.11. The quadratic electrostrictive PLZT actuator achieves peak strains

similar to that of commercial MFC. The PLSnZT actuator though shows only 1000 µε

longitudinal strain compared to 1500 µε longitudinal strain of the commercial MFC. Due to

the poor bulk material response of PLSnZT compared to published values, it is believed that

through better material manufacturing the strain output of the PLSnZT could be doubled.
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Also to note is the very small transverse strain output of the PLSnZT actuator. With such

a small transverse strain the volumetric strain ouput of the PLSnZT actuator bests both the

PLZT and commercial MFC piezocomposite actuator.

(a)

(b)

Figure 6.11: Piezocomposite actuator performance comparison of 55/33/12 PLSnZT

9.5/65/35 PLZT and MFC. Subfigure (a) indicates longitudinal strain output while sub-

figure (b) indicates transverse strain output.
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6.5 Conclusion

Two new materials were explored for use as a piezocomposite actuator with interdigitated

electrodes. The two explored compositions were phase transforming 55/33/12 PLSnZT and

quadratic electrostrictive 9.5/65/35 PLZT. Both the compositions were manufactured using

commercial actuator dimensions and electrode geometries.

The phase transforming PLSnZT piezocomposite actuator was able to phase transform

from antiferroelectric tetragonal to ferroelectric rhombohedral. Upon removal of the electric

field the actuator exhibited a permanent remnant strain. This was indicative of a partial

reverse transformation from ferroelectric to antiferroelectric and retention of some of the

ferroelectric phase. Also, while small, the actuator had a negative transverse strain which

differs from the bulk material response in which both longitudinal and transverse strains are

positive. The actuator also showed strain creep when the electric field on the actuator was

removed.

The slim loop ferroelectric, quadratic electrostrictive PLZT piezocomposite actuator also

showed creep and increased hysteresis. The increased hysteresis is troublesome, for the bulk

material is used for its slim loop behavior. The PLZT piezocomposite actuator exhibited a

small amount of remnant strain which crept back to zero when the electric field was removed.

Slowing the frequency of actuation down decreased the hysteresis of the free strain response.
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CHAPTER 7

Phase Field

7.1 Phase Field Framework

This chapter discusses an approach to modeling domain evolution in ferroelectric materials

at the unit cell level. The approach combines a finite element code with a Landau-Devonshire

ferroelectric polarization reorientation scheme. The finite element code uses linearly inter-

polated hexahedral elements to represent the unit cells of a ferroelectric material. Electrical

and mechanical compatibility is governed by the finite element code and yields stress and

electric fields in the material domain. The materials stress and electric field are then fed to

the Laundau-Devonshire subroutine to determine polarization reorientation. A local gradient

energy density is included for the material free energy density to approximate the atomic

mismatch between neighboring unit cells. The polarization distribution is modeled as a

discrete distribution of eigenstrains and eigenpolarizations. These discrete parameters are

then subjected to compatibility conditions and boundary conditions from the finite element

framework. The results show that the domain wall direction and width are dependent on a

balance of atomic structure, electrostatic interactions, mechanical interactions, and atomic

mismatches.

7.1.1 Introduction

Allik and Hughes laid the groundwork for ferroelectric finite element models by formulating

a piezoelectric finite element routine utilizing an electric scalar potential and tetrahedral

elements [14]. Since Allik and Hughes first modeled the piezoelectric effect using finite

elements, it has been adapted for use with multiple element types and shape functions [15].
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Chen and Lynch modeled ferroelectric materials using a linear piezoelectric finite element

code with a micromechanical subroutine to determine polarization reorientation [17]. In this

approach the finite element model used the electric scalar potential to model the electrical

degree of freedom. Landis noted the scalar potential can yield non positive definite stiffnesses.

He proposed using a vector potential formulation to account for the electrical degree of

freedom [24]. Kamlah [19,23,113] and Fang et al [18, 114,115] have also used finite element

models to account for ferroelectric polarization reorientation.

Phase field theory is a model for solving interfacial problems. It is often employed using

thermodynamic arguments to calculate driving forces that temporally evolve a material’s

microstructure. GJ Fix and Langer were one of the first to apply phase field theory. They

used phase field theory to study crystal growth formations [116–118]. Nambu and Sagala

applied phase field theory to model ferroelectric material behavior [119, 120]. They accom-

plished this by modeling the ferroelectric material analogously to Onuki’s method for phase

separating alloys. Onuki’s method to model phase separating alloys used a time-dependent

Ginzburg-Landau (TDGL) method. Onuki used elastic driving forces to drive the TDGL

method in the seperation of alloys. Nambu and Sagala’s approach used Landau-Devonshire

theory to drive the TDGL method for ferroelectric microstructure evolution.

Devonshire first formulated Landau-Devonshire theory in the 1950s as a phenomenolog-

ical technique to model the non linear behavior of ferroelectric materials [121]. Devonshire

modeled the free energy surface such that energy wells captured the symmetry and sponta-

neous polarization behavior of ferroelectric materials. Landau, Rosetti, and other research

groups have since extended Devonshire’s work [122,123]. Extending Devonshire theory, Caos

and Cross added phenomenologically consistent elastic and polarization gradient energy den-

sity terms to the free energy density to account for domain wall widths of perovskite twinning

structures [124]. Hu and Chen showed that global elastic and long range electrostatic in-

teractions were required to achieve correct dipole-dipole arrangements [125, 126]. Li and

Chen adapted the phase field model for ferroelectric thin films applications [127]. Wang

et al utilized a phase field model to demonstrate macroscopic polarization-electric field and

strain-electric field hysteresis loops [128].
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Multiple solution schemes have been employed to numerically solve phase field problems.

Shen and Chen used spectral methods for solving microstructure evolution. They showed

that computations in Fourier space allowed for faster solution times and greater accuracy

then Euler based finite-difference methods [129]. Su and Landis explored domain wall pinning

utilizing a phase field model with a finite element formulation [130]. Wang and Kamlah

developed a phase field model using a finite element code with Landau-Devonshire theory in

order to investigate physical defects in single domain ferroelectric materials [131,132].

This chapter uses a phase field model with a finite element based solution method to

model unit cell length scale domain evolution problems. The element type used was a linearly

interpolated hexahedral element to represent unit cells inside a ferroelectric crystal. The free

energy density formulation used incorporates structural, electrostatic, electromechanical,

and polarization gradient terms. This study attempts to model the physics of unit cell

interactions.

A characteristic trait of ferroelectric materials is their spontaneous polarization. The

spontaneous polarization induces an electrostrictive strain that elongates the unit cell along

the polarzation axis and contracts transverse to the polarization axis. The possible sponta-

neous polarization orientations are dependent on crystal symmetries. Neighboring dipoles

tend to orient themselves in the same direction forming domains. The interface between two

different domains is referred to as a domain wall. Considering the spontaneous polarization

is limited depending on the crystal symmetry, each phase can only accommodate domain

walls of certain angles. The domain walls for tetragonal materials occur at 90 ◦ and 180 ◦

angles [133]. Experimental measurements on barium titanate have shown that the domain

wall width of 180 ◦ domain walls are much smaller than 90 ◦ domain walls. Meyer and Van-

derbilt [134] and Little [135,136] found the domain wall thickness of a 90 ◦ wall to be around

4 nm and the domain wall thickness of a 180 ◦ wall to be the dimension of a unit cell.
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7.1.2 Theory

Polarization evolution is governed by the TDGL method as shown in the following equation,

∆P n
i

∆t
= −Γ

δF n

δP n
i

+ ηni , (7.1)

where P is polarization, t is time, Γ is a kinetic coefficient, F is a free energy density and η

is a noise term. Indicial notation is employed, the subscript i indicates spatial dimensions.

For this formulation, there are three spatial dimensions, thus the index i runs from 1 to 3.

The superscript n indicates an element number. The left-hand side of equation 7.1 is the

temporal evolution of polarization, where ∆P n
i is a change in polarization and ∆t is the

time step taken. The right-hand side shows that the polarization evolution is composed of a

driving force term to minimize the free energy density F n and a noise term η.

This approach discretizes the material domain into individual elements. Each element

represents a perovskite unit cell that has its own eigenpolarization and eigenstrain. The

finite element formulation to satisfy mechanical equilibrium and Gauss’s law is shown in the

following equation,

σij,j + bi = 0 Di,i = ρ, (7.2)

where σ, b, D, and ρ are stress, body forces, electric displacement and charge density re-

spectively. As in Einstein summation convention, repeated indices indicate a summation of

that term over all values of that index. Commas imply spatial differentiation with respect

to the index to the right of the comma.

The finite element framework approximates each element as a unit cell. Figure 7.1 graph-

ically depicts the ABO3 perovskite structure represented by a linearly interpolated hexahe-

dron element. The element nodes represent the A site atoms. Considering the element is

linearly interpolated, both the eigenpolarization and eigenstrain are of constant value in each

element. The eigenpolarizations are automatically induced in each unit cell by applying an

appropriate unbalanced charge on each of the hexahedral element’s eight nodes. Similarly,

the eigenstrain of each element is automatically induced in each unit cell by applying an

appropriate unbalanced force vector on each of the element’s nodes. The finite element code
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is then used to find the electric potential and mechanical displacement fields and to make

sure mechanical and electrical compatibility are maintained.

(a) (b)

Figure 7.1: (a) Perovskite unit cells. (b) Finite element representation of a poled perovskite

unit cell using a hexahedron (brick) element showing the unbalanced charges at the nodes.

Spontaneous polarizations lead to eigenstrains that are not necessarily mechanical com-

patible with neighboring cells. Figure 7.2 demonstrates how the finite element code satisfies

equlibrium to maintain mechanical compatibility between unit cells. Neighboring unit cells

with incompatible strains that do not satisfy equilibrium are shown in figure 7.2a. When

equilibrium is satisfied, the unit cells are forced into mechanical compatibility resulting in

local stresses as shown in figure 7.2b. A similar technique is used to force electrical compat-

ibility by using finite elements to satisfy Gauss’s law.
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(a) (b)

Figure 7.2: (a) Polarizations, shown with arrows, give each unit cell an associated eigenstrain.

(b) Displacments due to the total strain after compatibility are satisfied. Arrows indicate

the principle stresses with compression in blue and tension in red.

The polarization evolution of the material is programmed into a material subroutine

that uses the TDGL model from equation 7.1. Devonshire theory models the constitutive

behavior of a ferroelectric material by taking a series expansion of the Gibbs elastic energy

density, G1. The series expansion of G1 is,

G1 =
1

2
aijPiPj +

1

4
a′ijklPiPjPkPl +

1

6
a′′ijklmnPiPjPkPlPmPn︸ ︷︷ ︸

f structure

−Qabijσ
local
ab PiPj︸ ︷︷ ︸

f electrostrictive

−Elocal
m Pm︸ ︷︷ ︸

f electrostatic

,

(7.3)

where G1 is separated into three terms: the structure energy density, fstructure, also known

as the Landau energy density, the electrostrictive energy density, felectrostrictive, and the elec-

trostatic energy density, felectrostatic. In this formulation, polarization can be used to replace

electric displacement in the constitutive law since P � ε0E.

The fstructure term creates energy wells along crystallographic families of directions to

correspond to the material symmetry. The felectrostrictive term accounts for the effect on

the free energy density when a local stress is applied. The tensor Qijkl is an isotropic

electrostrictive tensor. The felectrostatic term accounts for the effect on the free energy density

when a local electric field is applied. Both local stresses σlocal
ab and local electric fields Elocal

m
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when applied to an element distort the surface of the total free energy density. The local stress

and electric field are determined from the finite element frameworks solution of mechanical

equilibrium and Gauss’s law.

The Gibbs elastic energy from equation 7.3 can be rewritten in the form of a total free

energy density, F . Heitmann and Rosetti proposed utilizing the total free energy density and

separating the structural energy density into both isotropic and anisotropic components [137].

Using this technique, the free energy density is written as,

F = fstructure + felectrostrictive + felectrostatic

fstructure =
1

2
α2

(
P 2

1 + P 2
2 + P 2

3

)
+

1

4
α4

(
P 2

1 + P 2
2 + P 2

3

)2
+

1

6
α6

(
P 2

1 + P 2
2 + P 2

3

)3

+
1

4
α′4
(
P 4

1 + P 4
2 + P 4

3

)
+

1

6

[
α′6
(
P 6

1 + P 6
2 + P 6

3

)
+ α′′6

(
P 2

1P
2
2P

2
3

)]
felectrostrictive = −Qabijσ

local
ab PiPj

felectrostatic = −Elocal
m Pm.

(7.4)

In order to visualize how the free energy density terms effect the energy surface landscape,

different surface plots were created. Figure 7.3 shows a surface energy plot for a ferroelectric

material with two-dimensional tetragonal symmetry. Figure 7.3a, is an example of the energy

landscape with no local stress or electric field applied. Only the fstructure term effects the

energy surface. The structural energy creates four energy wells which represent the four

possible in-plane spontaneous polarization directions. Each energy well has the same depth,

thus each polarization direction is equally favorable. Figure 7.3b, is an example of the

energy landscape with local stress and no electric field applied. In this figure, the effect of the

felectrostrictive term on the energy landscape is observed. The electostrictive energy term causes

the energy wells to deepen along the axis perpendicular to where the compressive stresses are

applied. Similarly the energy wells become more shallow along the axis parallel to where the

compressive stresses are applied. By changing the energy landscape, ferroelastic switching

can occur as different energy wells become more favorable. Figure 7.3c, is an example of

the energy landscape with no local stress and an applied electric field. In this figure, the

effect of the felectrostatic term on the energy landscape is observed. The electrostatic energy

term causes the energy density surface to tilt such that the energy lowers in the direction of

139



the applied electric field. As the energy well along the electric field direction becomes more

favorable, ferroelectric switching can occur.

(a)

(b)

(c)

Figure 7.3: Gibbs elastic free energy density for a tetragonal material under: (a) no load,

(b) externally applied stress, (c) externally applied electric field

The model for the free energy density takes into account structural, electrostatic, and
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electrostrictive terms. These terms determine spontaneous polarization directions and mag-

nitudes and domain wall angles and thickness. Depending on the energy penalties for form-

ing a domain wall, the driving forces can either favor a narrow or thick domain wall. By

constructing simple domain formations, it can be determined whether the current model

correctly forms domains such that the domain wall width of 180 ◦ domain walls are much

smaller than 90 ◦ domain walls.

Figure 7.4 visualizes the energy penalties for forming both 90 ◦ and 180 ◦ domain walls in

a material with tetrangonal symmetry. Electric compatibility for a 90 ◦ domain wall is shown

in figure 7.4a. The eigenpolarizations are represented as charges on the nodes. The charges

remain neutral for a 90 ◦ domain wall, and thus electric compatibility does not penalize a

narrow domain wall width. Mechanical compatibility for a 90 ◦ domain wall is shown in figure

7.4b. The eigenstrains cause elongation of the unit cell along the spontaneous polarization

direction. In order to be mechanically compatible internal stresses will develop, this leads

to an energy penalty. Thus, a larger domain wall width will occur in order to reduce the

energy penalty from the internal stresses. The third term dictating domain formation is the

structural term. The structural term has symmetry such that the energy wells equally favor

each of the spontaneous polarization directions and thus does not dictate domain wall width.

Similarly, the energy penalties for 180 ◦ can be seen in figures 7.4c and 7.4d. The electric

compatibility for a 180 ◦ domain wall is shown in figure 7.4c. The charges again remain

neutral and do not penalize a narrow domain wall width. Mechanical compatibility for

a 180 ◦ domain wall is shown in figure 7.4c. For the 180 ◦ domain wall, the unit cells are

mechanically compatible and thus do not cause internal stresses. Thus, there is no mechanical

energy penalty for a 180 ◦ domain wall and narrow wall widths are not penalized.

From the visualization of the domain walls using our model, it is determined that the

domain wall widths correspond to experiment. The mechanical incompatibility of 90 ◦ do-

main walls yield larger domain wall widths. The 180 ◦ domain wall has neither mechanical

or electrical incompatibility which favors a narrow width.
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(a) (b)

(c) (d)

Figure 7.4: (a) Electrical compatibility along a 90 ◦ domain wall in tetragonal material.

(b) Mechanical compatibility along a 90 ◦ domain wall in tetragonal material. (c) Electrical

compatibility along a 180 ◦ domain wall in tetragonal material. (d) Mechanical compatibility

along a 180 ◦ domain wall in tetragonal material.

With the structural, electrostrictive, and electrostatic free energy terms derived from

devonshire theory it is seen that it qualitatively yields the correct domain wall line widths.

A problem still arises in 180 ◦ domain formation. By enforcing only mechanical and electri-

cal compatibility, both ferroelectric and antiferroelectric domain configurations are equally

favorable. Figure 7.5 visualizes the ferroelectric (single domain) and antiferroelectric (anti-
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parallel head-to-tail) domain configurations. The single domain configuration shown in figure

7.5a is just as energetically favorable as the anti-parallel head-to-tail configuration shown

in figure 7.5b. In both cases mechanical and electric compatibilities are satisfied causing

domains of both types to likely form. In ferroelectric materials, the single domain configu-

ration is more favored. In antiferroelectric materials, the anti-parallel head-to-tail domain

configuration is more favored. Thus, there must be another energy term that allows for

favoring of one of the domain types over the other.

(a) (b)

Figure 7.5: Mechanical and electrical compatibility for the (a) single domain and (b) anti-

parallel head-to-tail configurations

The finite element formulation was used to enforce mechanical compatibility. The eigen-

strains resulting from a unit cell’s spontaneous polarization only account for shift of the A

site ions in an ABO3 perovskite crystal structure. The eigenstrains do not account for the

B site ions or the oxygen atoms. The distortion of the B site ions and the oxygen atoms do

not necessarily distort in a similar fashion to the A site ions. Shirane et al [138] found that

for lead titanate, the oxygen octahedra shifts off center from the unit cell formed by the lead

atoms. This is represented in figure 7.6a
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(a) (b) (c)

Figure 7.6: (a) The atomic distortions for a poled PbTiO3 unit cell modified from Shirate

[138]. (b) Neighboring PbTiO3 unit cells with a 90 ◦ change in polarization direction. (c)

Neighboring PbTiO3 unit cells with a 180 ◦ change in polarization.

The distortion of the oxygen octahedra in an ABO3 perovskite structure with sponta-

neous polarization also effects domain formation. The mechanical compatibility taking into

account the oxygen octahedra for both 90 ◦ and 180 ◦ domain walls is shown in figures 7.6b

and 7.6c. Figure 7.6b shows the atomic mismatch associated with 90 ◦ domain walls. There

is a mechanical incompatibility for the A site lead atoms as previously predicted. The oxy-

gen octahedra also yields further mechanical incompatibility. Figure 7.6c shows the atomic

mismatch associated with 180 ◦ domain walls. There is no mechanical incompatibility for the

A site lead atoms as previously predicted. The off center shift of the oxygen octahedra yields

a mechanical incompatibility. This incompatibility is not inherent in the model presented

in equation 7.4. An energy penalty for the mechanical incompatibility of the oxygen octa-

hedra must be accounted for to control the formation of single domain versus anti-parallel

head-to-tail domain configurations.

A simple technique is incorporated from other phase field models in order to account for

the mechanical incompatibility of the oxygen octahedra. The oxygen octahedra mechanical

incompatibility is incorporated by penalizing the square of polarization gradients. This

energy penalty is as follows,

fgradient = gijklPi,jPk,l, (7.5)
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where fgradient is variable denoting the definition of a local gradient energy density term, gijkl

is a tensor that is used penalize atomic mismatches according to material symmetry. The

tensor gijkl can be simplified down to four different constants for cubic symmetry [124–126,

128]. The four separate constants are denoted as g11, g12, g44 and g′44. The gradient free

energy term can thus be represented as,

fgradient =
1

2
g11

(
P 2

1,1 + P 2
2,2 + P 2

3,3

)
+ g12 (P1,1P2,2 + P1,1P3,3 + P2,2P3,3)

+
1

2
g44

[
(P1,2 + P2,1)2 + (P1,3 + P3,1)2 + (P2,3 + P3,2)2]

+
1

2
g′44

[
(P1,2 − P2,1)2 + (P1,3 − P3,1)2 + (P2,3 − P3,2)2] .

(7.6)

7.1.3 Results

Simulations were conducted to test the energy formulation with the structure, electrostric-

tive, electrostatic and gradient terms. The coefficients used for the simulations are shown in

table 7.1. The TDGL method was modified such that the maximum change in polarization

could not deviate more than 10% of the spontaneous polarization magnitude. This limited

any oscillatory behavior of the solution and prevented instabilities. In calculating each of the

free energy terms, the structure, electrostrictive, and electrostatic terms were independent of

the element dimensions. The free energy term for gradient energy is dependent on element

dimensions as it depends on spatial derivatives of the polarization terms. The gradient free

energy term was scaled such that the g coefficients can be represented as gij = γija
2 where

a× a× a is the dimension of an undistorted element. The electrostrictive tensors are given

in a coordinate system such that the x1 axis is parallel to the polarization of the element.

The simulations were run in effectively two-dimensions such that one of the dimensions was

only five elements thick. The polarization was restricted to only be in-plane with the two-

dimensional structure. The ferroelectric material was simulated with a five element thick

vacuum around it’s border. The vacuum was formulated such that it had zero stiffness,

the permittivity was of free space, and it had zero polarization. The vacuum permitted the

simulation of open circuit unclamped boundary conditions. This boundary condition was

necessary to prevent the formation of single domains, considering any polarization normal
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to the ferroelectric material surface would incur an energy penalty due to Gauss’s law.

fstructure

α2 (Jm−3) α4 (Jm−3) α6 (Jm−3) α′4 (Jm−3) α′6 (Jm−3) α′′6 (Jm−3)

−0.31× 106 −1.05× 106 2.67× 106 −1.30× 106 0 0

fgradient

γ11

(
mVC−1

)
γ12

(
mVC−1

)
γ44

(
mVC−1

)
γ′44

(
mVC−1

)
282 0 138.4 138.4

felectrostrictive and FEM coefficients

Q0
11

(
m4 · C−2

)
Q0

22

(
m4 · C−2

)
c11 (MPa) c12 (MPa) c44 (MPa) ε (ε0)

0.015 -0.0075 120 80 20 200

Table 7.1: Simulation coefficients for tetragonal ferroelectric material

Two simulations were conducted to show the effect of a ferroelectric material’s aspect

ration on domain formation. The first simulation was that of a ferroelectric material with an

aspect ratio of unity. Figure 7.7 shows the formation of domains for this material. The open

circuit boundary conditions promote polarizations parallel to the material boundary. The

aspect ratio of unity promotes the development of four 90 ◦ domain walls that span from the

corners of the material. The domains form in that of a vortex pattern. The influence of the

separate free energy terms can be seen. The electrostrictive energy term creates an energy

penalty for the 90 ◦ domain walls. Wide 90 ◦ domain walls can be seen. The gradient energy

term prevents any anti-parallel head-to-tail domains to form. The preference for the material

polarizations to lie in vertical or horizontal directions is from influence in the structure term.
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Figure 7.7: 20×20 element simulation of tetragonal ferroelectric material with unconstrained

open circuit boundary conditions.

A simulation of a ferroelectric material with a higher aspect ratio of 2.5 was performed.

Figure 7.8a shows the formation of domains for this material. The same boundary conditions

as the material with an aspect ratio of unity were used for this simulation. The simulation

with an aspect ratio of unity had only 90 ◦ domain walls. By increasing the aspect ratio to

2.5, 180 ◦ domain walls were also formed. Figure 7.8b investigates the domain wall widths

formed. Both 90 ◦ and 180 ◦ domain wall widths were compared. It was found that the 180 ◦

domain wall width was around 3a whereas the 90 ◦ domain wall had a width of 5.4a. This

corresponds to the findings of Meyer and Vanderbilt [134] and the model implementation.
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(a)

(b)

Figure 7.8: (a) 50 × 20 element simulation of tetragonal ferroelectric material with uncon-

strained open circuit boundary conditions. (b) Enlarged portion of the simulation shown in

(a) that highlights the difference in width between the 90 ◦ and 180 ◦ domain walls.
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CHAPTER 8

Conclusions

Piezoceramic composite actuators have offered many advantages over conventional mono-

lithic piezoceramic devices. The use of piezoceramic fibers embedded in an epoxy matrix

allows for the device to be conformable to surfaces with larger curvatures. The conformabil-

ity of the device also leads to durability. Dubbed an active fiber composite, Bent combined

the interdigitated electrode design with a piezoceramic fiber composite. The AFC is com-

posed of cylindrical fibers embedded in a soft epoxy matrix. The IDE design allowed the

AFC to polarize along the longitudinal axis of the fibers. This led to larger strains in the

device due to d33 mode actuation and for anisotropic sensing/actuation.

Researchers at NASA Langley extended the AFC design by using square fibers instead of

round fibers. This device was coined the macro fiber composite. The MFC improved upon

the AFC by having a larger contact area with the electrodes to the fibers. This mitigated

some of the electric field drop in the fibers due to dielectric mismatch between the epoxy

and the piezoceramic fibers. The manufacturing of the device was streamlined by dicing

fibers out of a piezoceramic wafer on top of a polymer carrier film. The polymer carrier film

allowed for handling whole sheets of fibers rather than individual fibers. When handling

individual fibers, manufacturing time/cost was increased and the sharp corners tended to

sever the device’s electrodes.

While piezocomposites with IDE have enabled practical applications for piezoelectric de-

vices ranging from aircraft control surface morphing, sensor/actuator rosettes and helicopter

rotor blade vibration control, they also introduced new device problems. The devices have

increased creep and strain relaxation times leading to frequency and time dependent behav-

ior. Studies that have attempted to model these piezocomposites largely ignore this problem.
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The focus of this dissertation has been to address some of these deficiencies and find designs

that could diminish them.

8.1 Summary of Results

Equations for a 0 ◦, 45 ◦, 90 ◦ strains sensing rosette was developed for piezoceramic devices

with anisotropic in-plane properties. The piezoceramic crystals were bonded to an aluminum

plate that was instrumented with strain gages. The plate was bent about various axes relative

to the strain sensing rosette. The strain components in the plate were calculated using both

the strain gages and the piezoceramic rosette. The strain sensing rosette equations for the

piezoceramic device demonstrated the possibility to sense principal strain components and

actuate principle strains.

The feasibility of the MFC for use as a strain sensing rosette was explored. A single MFC

was bonded to an aluminum plate that was instrumented with strain gages. The MFC was

subjected to various strain conditions by bending the plate using a four point bend system.

The strain conditions read on the strain gages were used to predict the charge output of

the MFC. It was found that the MFC had increased error when used as a strain sensor over

single crystal rosettes.

A parametric study of 20 distinct piezoceramic actuators with IDE was compared. It was

found that when the electrode line width L2 was less than the piezoceramic substrate height

H, the actuator was difficult to pole. The reasoning for the poling difficulties was identified

by using Gauss’s law. The polarization of the substrate’s midplane was limited by how much

free charge was on the electrodes. By applying a high DC voltage to the actuator, the net

polarization and strain output increased. Over time the strain output would saturate and

the polarization process was completed. In some cases the polarization process could take

50 minutes.

In order for the this unforeseen polarization to occur, the symmetry arguments used for

Gauss’s law must have been broken. It is surmised that charge conduction in the epoxy,

or charge conduction in cracks along the electrode edges must have allowed for some of the

150



actuators to polarize. The charge conduction causes a larger effective electrode size then its

actual size. The larger effective electrode size would then cause the material to polarize.

Typically comparisons between actuator geometries are made by defining a nominal elec-

tric field as the applied voltage V divided by the electrode separation L or electrode gap

L − L2. A dielectric model of the custom actuators was made that compared na average

dielectric midplane electric field to the nominal electric field. It was found that the dielectric

electric field in the fiber was only proportional to the nominal electric field in regions where

the relative electrode gap (L− L2) was larger than 2.0. Thus, when comparing actuators,

the nominal electric field may not be appropriate when the relative electrode gap is less than

2.0. It was also found that care must be made when using the midplane electric field, for

the distribution of the electric field at the midplane ceases to be uniform when the relative

electrode gap is less than 2.0.

A commercial MFC was used as a shape memory piezoelectric actuator. It was found

that its use as a shape memory piezoelectric actuator was feasible, but attempts were made

to improve upon its performance. A custom actuator with a small relative electrode line

width was polarized using the DC polarization technique. It was found that the commercial

MFC had a shape memory strain range of around 1400 µε, while the custom actuator had a

shape memory strain range of 2000 µε.

The twenty custom actuators were compared for initial polarization strain, unipolar strain

after DC polarization, and creep strain. During the initial polarization cycle, it was found

that when the relative electrode gap was held constant, actuators with a relative electrode

line width of 1.0 had peak performance. When the relative electrode line width was held

constant, actuator performance increased as the relative electrode gap was increased. Thus,

during the initial polarization cycle the best performing actuator had the largest relative

electrode gap and a relative electrode line width of 1.0.

After DC polarization, the free strain performance was again compared. The free strain

performance was vastly different from the initial polarization performance. The actuators

still showed that when the relative electrode line width was held constant, actuator perfor-
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mance increased as the relative electrode gap was increased. There was no longer a peak

performance at a relative electrode line width of 1.0. When the relative electrode gap was

held constant, actuator performance increased as the relative electrode line width was de-

creased. Thus, after the DC polarization cycle the best performing actuator had the largest

relative electrode gap and the smallest electrode line width.

After a unipolar actuation cycle, each actuator would exhibit relaxation creep strain. The

creep response of each actuator was compared. It was found that when the relative electrode

line width was held constant, the creep strain decreased as the relative electrode gap was

increased. Also, when the relative electrode gap was held constant, the creep strain increased

as the relative electrode line width decreased. Thus, actuators with the most creep had the

smallest relative electrode gap and the smallest relative electrode line width. Actuators

with the least amount of creep had the largest relative electrode gap and the largest relative

electrode line width. It was found that relaxation time and DC polarization time was also

proportional to the creep strain and showed the same trends.

The material used in the custom actuators was PZT-5A. PZT-5A is a “soft” ferroelectric

which does not show any polarization direction preference in actuation performance. It was

found that custom actuators with large relative electrode line widths also showed the soft

ferroelectric behavior. As the relative electrode line width shrunk the custom actuators

showed more and more of a directional preference for their initial polarization direction.

This is more indicative of a “hard” ferroelectric. By changing the electrode geometry it was

shown that the material response changed from a “soft” ferroelectric to be like a “hard”

ferroelectric.

Most computational analysis of piezocomposite actuators has been performed with linear

piezoelectric finite element codes. A ferroelectric finite element code was developed to extend

the linear piezoelectric models typically employed. While it was found experimentally that

certain geometries exhibit creep and time dependency, with a large enough relative electrode

line width the quasistatic code could still be used. It was found that along the electrode edge

there are large stress concentrations due to polarization gradients in the material. During

unipolar actuation, the stress gradients cause ferroelastic switching and domain wall motion.
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This domain wall motion leads to increased hysteresis in the actuator response.

With the increased creep and relaxation times of certain actuators, it was surmised that

certain actuators would have significant frequency dependency. A commercial MFC was

first used to test its free strain frequency response from 0.1 Hz to 15 Hz. Typically the

commercial MFC has values that are reported independent of actuation frequency. It was

found that increasing the frequency from 0.1 Hz to 15 Hz caused the piezoelectric coefficient

of the MFC to decrease to 51% of the reported value. Custom actuators with large relative

electrode line widths were found to have less creep strain and relaxation times. Two custom

actuators with larger relative electrode line widths than the MFC were investigated. It was

found that the custom actuators were able to prevent some of the decay of the piezoelectric

coefficient. The bulk response of PZT-5A was also investigated. It found that there was very

little frequency dependency of free strain response for the bulk material from 0.1 Hz to 15

Hz.

Two exotic ferroelectric ceramic material compositions were considered for use in a MFC

configuration. The compositions were synthesized using a mixed oxide method. The two

compositions explored were phase transforming 55/33/12 PLSnZT and quadratic electrostric-

tive 9.6/65/35 PLZT. Monolithic plates of the exotic material were formed. The plates were

diced into fibers and packaged using the same geometric configuration as a commercial MFC.

It was found that the increased hysteresis in the MFC configuration greatly effected the

exotic materials. The bulk electrostrictive PLZT exhibited a quadratic free strain response

with little hysteresis and no remnant strain. The PLZT MFC actuator showed a significant

increase in hysteresis and remnant strain. The material response of the PLZT MFC actuator

no longer had any advantages of the bulk material. The peak unipolar strain was comparable

to a commercial MFC.

A similar problem was found for the phase transforming PLSnZT in the MFC configura-

tion. The bulk response PLSnZT is such that it has a strain jump when phase transforming

from anti-ferroelectric to ferroelectric. The PLSnZT MFC actuator resisted the phase trans-

formation. This caused the phase transformation to occur over a wider range of electric field
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values. The actuator no longer had a sharp strain jump. The peak unipolar strain of the

PLSnZT MFC actuator was roughly 2/3 of the commercial MFC actuator. But, the bulk

composition synthesized showed smaller than expected free strain response. Thus, it is still

possible that the PLSnZT actuator could outperform the commercial MFC.

The domain configuration around the electrode edge is of interest when designing actua-

tors with IDE. A finite element based phase field model was created by applying a Landau-

Devonshire type multi-well potential as a material subroutine to a finite element framework.

The formed domain walls are created by a balance of mechanical, structure, electrostatic,

and local gradients. The effect of the free energy density balance was explored on the 180◦

and 90◦ domain walls.

8.2 Contributions

Prior to this research very little work had gone into characterizing piezocomposite actua-

tors with IDE beyond using linear piezoelectric finite element analysis. The work of this

dissertation has found several nonlinear effects which can significantly effect actuator per-

formance. It is the hopes of the author that this research can help improve device design of

piezocomposite actuators with IDE. A list of contributions is shown below.

• A method to create strain sensor/actuator rosettes using anisotropic piezoceramic de-

vices was made. It was found that when using a MFC for use as a strain sensor/actuator

rosette the hysteresis inherent in the device made it difficult to accurately sense strain.

By increasing the relative electrode line width of the actuator, it could be possible to

reduce the hysteresis and make a more accurate rosette.

• A DC polarization process was created to fully polarize piezoceramic actuators with

IDE. By applying large enough DC polarizing fields, actuators with small relative elec-

trode line widths were able to perform better than previously considered. This process

has allowed for the discovery of actuator geometries whose free strain outperform com-

mercial MFC.
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• A process for comparing IDE geometries was explored. A dielectric finite element

code was created to automatically mesh a range of IDE geometries and report average

midplane electric fields. This could prove useful when comparing actuators over using

a nominal electric field.

• A ferroelectric finite element code was created to explore the polarization process of

an actuator with IDE. It proved useful in its exploration of stress concentrations along

an electrode edge and any induced ferroelectric/ferroelastic switching inherent when

electrically driving the actuator. The ferroelectric code also proved useful in showing

the initial polarization response of the actuators.

• A 20 actuator parametric study was performed to experimentally determine actuator

performance trends. It was found that after DC polarization actuators with large

relative electrode gaps and small relative electrode line widths had the most free strain

actuation. Actuators with large relative electrode gaps and large relative electrode line

widths exhibited the least creep and smallest relaxation times.

• The frequency response of commercial MFC was explored. It was found that the free

strain response of commercial MFC was sensitive to frequency from a range of 0.1 Hz

to 15 Hz. The frequency sensitivity caused the free strain response to drop by over

50%. This frequency dependency was mitigated through the use of a custom actuators

with larger relative electrode line widths.

• Phase transforming PLSnZT and quadratic electrostrictive PLZT was synthesized us-

ing a mixed oxide method. The materials were packaged with the same geometries as a

commercial MFC actuator. It was found that the MFC actuator with exotic materials

had significantly increased hysteresis and frequency dependency over a bulk actuator.

8.3 Future Work

The findings of the research in this dissertation have opened up many more interesting

problems. Some of nonlinearities found were not expected to occur or not expected to have
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a significant contribution to material response. While this work has addressed some of these

characterization issues, more can be done to accurately model the piezoceramic actuators

with IDE.

While it is surmised that a conduction mechanism has allowed for actuators with small

relative electrode line widths to polarize, the actual mechanism hasn’t been proved or ex-

plored. Sensing the free charge on a Sawyer Tower Circuit has shown that both the custom

actuators and MFC had appreciable conduction compared to the bulk material. It is hy-

pothesized that the charge conduction in the epoxy or in cracks along the electrode edge is

causing the effective electrode line width to increase. Experiments should be performed with

metal deposited IDE to determine whether it is the epoxy or cracking that is causing the

conduction issue. Also, the metal deposited IDE could be used to explore whether the DC

polarization technique could still be used to polarize actuators with small relative electrode

line widths.

When exploring the free strain frequency response of the MFC and custom actuators,

an exponential decay plus a linear constant coefficient fit was used to describe to actuator

response. While the goodness of fit parameters showed significant agreement, the fit has

no physical significance besides experimental observation. It is surmised that the frequency

response is due to the creep strain and relaxation times of the actuators. These creep strain

and relaxation effects can be captured using rheological models. The rheological model could

then be used to predict the frequency response of the MFC or other custom actuators.

Initial tests were performed using exotic phase transforming PLSnZT and quadratic elec-

trostrictive PLZT. The exotic materials were packaged using the geometries of a MFC. It

was found that the exotic materials deviated significantly from the bulk material due to

increased creep and relaxation times. By packaging the exotic materials in a custom actua-

tor with larger relative electrode line widths, the actuators should exhibit a response more

comparable to the bulk material. Doing so should allow a better estimate whether these

materials can be used in an IDE actuator configuration.

Finally, a domain evolution phase field model was developed. The phase field model was
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used as a proof of concept for determining domain patterns within a ferroelectric material.

Along the electrode edge of the actuator there are large electric field gradients. These electric

field gradients cause cracks to grow along the electrode edge. By using the phase field model,

it could be possible design an electrode that mitigates some of the electric field concentrations

discussed.
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APPENDIX A

Rosette Equations

If the crystals are thin relative to their width and length and ideally bonded to the substrate

such that shear lag effects can be neglected, the crystals will each be in a state of plane

stress with in-plane strain components matching those of the substrate. This leads to a

state of strain in which there are three in-plane components ε11, ε22, ε12 and one out-of-

plane strain ε33. The strains ε of each crystal in their local coordinates are expressed as

ε0
11, ε0

22, ε0
12, ε0

33;ε45
11, ε45

22, ε45
12, ε45

33; ε90
11, ε90

22, ε90
12, ε90

33. The three in-plane strain components

in the substrate ε11, ε22 and ε12 are to be found in terms of the three measured electric

displacement components. In the coordinate system shown in figure 2.3, the crystals’s local

strains are defined in terms of the global coordinate system,

ε0
11 = ε22

ε0
12 = −ε12

ε0
22 = ε11

ε45
11 =

1

2
(ε11 + ε22)− ε12

ε45
12 =

1

2
(ε11 − ε22)

ε45
22 =

1

2
(ε11 + ε22) + ε12

ε90
11 = ε11

ε90
12 = −ε12

ε90
22 = ε22

(A.1)

The piezoelectric constitutive law in indicial notation is given by,

σij = CE
ijklεkl − enijEn

Dm = emklεkl + κεmnEn

(A.2)

where σij and εkl are stress and strain, En and Dm are electric field and electric displacement,

CE
ijkl, enij and κεmn are elastic, piezoelectric and dielectric tensors. Considering only the x3

axis directions, the electric displacement constitutive law is,

D3 = e3klεkl + κε3nEn. (A.3)
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With electric fields E applied to each crystal along the x3 directions, (E0
3 ;E45

3 ;E90
3 ), equation

A.3 is expanded as,

Di
3 = e311ε

i
11 + ei322 + ei333ε

i
33 + κε33E

i
3, (A.4)

where i = 0 ◦, 45 ◦, 90 ◦.

From equation A.2, since there is no traction in the ε3 direction the stress constitutive

law can be written as,

σi33 = CE
33klε

i
kl − en33E

i
n = 0, (A.5)

or by expanding,

CE
3311ε

i
11 + C3322ε

i
22 + CE

3333ε
i
33 − e333E

i
3 = 0, (A.6)

which implies,

εi33 = −C
E
3311

CE
3333

εi11 −
CE

3322

CE
3333

εi22 +
e333

CE
3333

Ei
3. (A.7)

Substituting equations A.7 and A.1 into equation A.3, electric displacements along the

x3 axis direction are obtained as,

D0
3 =

(
e322 − e333

CE
3322

CE
3333

)
ε11 +

(
e311 − e333

CE
3311

CE
3333

)
ε22 +

(
kε33 +

e2
333

CE
3333

)
E0

3

D45
3 =

1

2

(
e311 + e322 −

(
CE

3322 + CE
3311

CE
3333

)
e333

)
ε11

+

(
e322 − e311 +

(
CE

3311 − CE
3322

CE
3333

)
e333

)
ε12

+
1

2

(
e311 + e322 −

(
CE

3322 + CE
3311

CE
3333

)
e333

)
ε22 +

(
kε33 +

e2
333

CE
3333

)
E45

3

D90
3 =

(
e311 − e333

CE
3311

CE
3333

)
ε11 +

(
e322 − e333

CE
3322

CE
3333

)
ε22 +

(
kε33 +

e2
333

CE
3333

)
E90

3

(A.8)

These are written in matrix form as,

D = Mε+

(
κε33 +

e2
333

CE
3333

)
E (A.9)

159



where,

D =


D0

3

D45
3

D90
3

 ε =


ε11

ε12

ε22

 E =


E0

3

E45
3

E90
3

 ,

and

M =



e32 − e33
CE

32

CE
33

0

1

2

(
e31 + e32 −

(
CE

32 + CE
31

CE
33

)
e33

)
e32 − e31 −

(
CE

31 − CE
32

CE
33

)
e33

e31 − e33
CE

31

CE
33

0

e31 − e33
CE

31

CE
33

e31 + e32 −
(
CE

32 + CE
31

CE
33

)
e33

e32 − e33
CE

32

CE
33


.

This is solved for the strain component of the substrate in equation A.10

ε = M−1D −
(
κε33 +

e2
33

CE
33

)
M−1E (A.10)
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APPENDIX B

Finite Element Approximation

The finite element models used throughout this thesis approximate displacements and elec-

tric potentials using finite element shape function expressions. The unknown displacement

components ui can be approximated by,

ui ≈ ûi = Naũ
a
i i = 1, 2, 3; a = 1, 2, . . . , n , (B.1)

where �̂ denotes an approximation of a function, Na is a shape function for a specific elements

node a, �̃a denotes a functions nodal value for an element’s node a, and n is the number of

nodes the element has. In equation B.1 and all following, the shape function with its nodal

value counterpart Na�̃a denotes a summation across all the nodes of the element,

Na�̃
a =

∑
a

Na�̃
a. (B.2)

The vector representation of the the displacement field approximation is shown in the fol-

lowing equation,

u ≈ û =


û

v̂

ŵ

 =
∑
a

Na


ũa

ṽa

w̃a

 =
∑
a

Naũa. (B.3)

Differential operations on the displacement field are required in the finite element models

used. The differential operations are used to find a small deformation strain field εij which

is approximated by,

ε̂ij =
1

2

[
Na,jũ

a
i +Na,iũ

a
j

]
i, j = 1, 2, 3; a = 1, 2, . . . , n , (B.4)
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where Na,j denotes partial differentiation of the shape function Na with respect to xj, and

xj is a spatial component. While the small deformation strain is a tensor, it can be approx-

imated as a vector using voigt notation as,

ε =



εxx

εyy

εzz

γyz

γxz

γxy


≈ ε̂ =

∑
a



∂Na

∂x
0 0

0
∂Na

∂y
0

0 0
∂Na

∂z

0
∂Na

∂z

∂Na

∂y

∂Na

∂z
0

∂Na

∂x

∂Na

∂y

∂Na

∂x
0




ũa

ṽa

w̃a

 =
∑
a

Baũa, (B.5)

where Bu
a is a displacement differential operator operating on shape function Na.

Another independent variable that comes up in the mathematical models used in this

thesis is the electric potential φ. The electric potential can be approximated by a shape

function in the following way,

φ ≈ φ̂ = Nφ
a φ̃

a. (B.6)

Differential operations on the electric potential are also required for the finite element models

used. The differential operations on the scalar potential are used to find the electric field Ei

which is approximated by,

Êi = −Nφ
a,iφ̃

a. (B.7)

The electric field can also be representing using vector notation as,

E =


Ex

Ey

Ez

 ≈ Ê =
∑
a



− ∂Na

∂x

− ∂Na

∂y

− ∂Na

∂z


φ̃a =

∑
a

Bφ
a φ̃a, (B.8)

where Bφ
a is a electric potential differential operator operating on shape function Na.
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B.1 Global Derivatives

When performing a finite element analysis, the stiffness matrix depends on differential oper-

ators which depend on derivatives of the shape functions with respect to global coordinates

x, y, z. For the models used in this thesis the differential operators are shown in equations B.5

and B.8. While the differential operators depend on global derivatives, the shape functions

spatial variables are in natural coordinates ξ, η, ζ. Using the chain rule of partial differential

equations, the natrual derivatives on a shape function can be written in matrix form as,

∂Na

∂ξ

∂Na

∂η

∂Na

∂ζ


=



∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ





∂Na

∂x

∂Na

∂y

∂Na

∂z


= J



∂Na

∂x

∂Na

∂y

∂Na

∂z


, (B.9)

where the matrix J is the Jacobian matrix. When using an isoparametric formulation the

Jacobian matrix can be defined as,

J =
∑
a



∂Na

∂ξ
xa

∂Na

∂ξ
ya

∂Na

∂ξ
za

∂Na

∂η
xa

∂Na

∂η
ya

∂Na

∂η
za

∂Na

∂ζ
xa

∂Na

∂ζ
ya

∂Na

∂ζ
za


, (B.10)

where xa, ya, za denotes the global coordinates of an element at node a. To then find the

global derivatives on N , the linear system of equation B.9 can be inverted in the following

fashion,



∂Na

∂x

∂Na

∂y

∂Na

∂z


= J−1



∂Na

∂ξ

∂Na

∂η

∂Na

∂ζ


. (B.11)
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Both linear and quadratic isoparametric shape functions were developed for tetrahedron

and brick elements. An example linear 8-node brick shape function is shown in as,

Na =
1

8
(1 + ξaξ) (1 + ηaη) (1 + ζaζ) , (B.12)

where ξa, ηa, ζa denotes the natural coordinates of an element at node a. The isoparametric

map from global to natural coordinates is shown in figure B.1. The coordinate values and

the node ordering of the 8-node brick implemented is showni n table B.1. The extents of the

nodes of the 8-node brick element extend from +/- 1 in the natural coordinate system.

Figure B.1: Isoparametric mapping from natural to global coordinates

Node(a) ξ η ζ

1 -1 -1 -1

2 1 -1 -1

3 1 1 -1

4 -1 1 -1

5 -1 -1 1

6 1 -1 1

7 1 1 1

8 -1 1 1

Table B.1: Local Node Locations of 8-Node Brick Element
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To find the global derivatives as seen in equation B.11, the shape function of the 8-node

brick are first differentiated by the natural coordinate system variables,

∂Na

∂ξ
=

1

8
ξa (1 + ηaη) (1 + ζaζ)

∂Na

∂η
=

1

8
ηa (1 + ζaζ) (1 + ξaξ)

∂Na

∂ζ
=

1

8
ζa (1 + ξaξ) (1 + ηaη) .

(B.13)

The Jacobian matrix is also found using equation B.10 and is expressed for the 8-node brick

as,

J =
1

8

8∑
a=1


ξa (1 + ηaη) (1 + ζaζ)

ηa (1 + ζaζ) (1 + ξaξ)

ζa (1 + ξaξ) (1 + ηaη)


[
xa ya za

]
. (B.14)

Using the expression for the Jacobian matrix and natural coordinate derivatives for the

8-node brick, the global shape function derivatives are obtained from equation B.11 as

∂Na

∂x

∂Na

∂y

∂Na

∂z


=

1

8
J−1


ξa (1 + ηaη) (1 + ζaζ)

ηa (1 + ζaζ) (1 + ξaξ)

ζa (1 + ξaξ) (1 + ηaη)

 . (B.15)

While the global derivatives on a 8-node brick element was derived, similar derivations

were required for the quadratic shape functions and tetrahedral elements developed. The

tetrahedron global derivatives were fined using volumetric coordinates.

B.2 Volume Integrals

Not only are global derivatives on shape functions required when performing finite element

analysis, integration across an element with respect to global coordinates is also required.

Global integration across the 8-node brick element is represented in terms of natural coor-
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dinates using a coordinate transformation as,

∫
ΩE

f (x, y, z) dΩ =

1∫
−1

1∫
−1

1∫
−1

f (x (ξ, η, ζ) , y (ξ, η, ζ) , z (ξ, η, ζ))J (ξ, η, ζ) dξdηdζ, (B.16)

where J (ξ, η, ζ) = det (J) and is known as the Jacobian.

The integration across an element using functions in global variables can thus be rep-

resented in terms of integration limits from +/- 1. Integration in this form is prime for

numerically integrating equation B.16 using Gauss quadrature. Gauss quadrature on the

8-node brick can be represented as,

1∫
−1

1∫
−1

1∫
−1

g (ξ, η, ζ) dξdηdζ =
n∑
i=1

n∑
j=1

n∑
k=1

g (ξi, ηj, ζk)wiwkwk, (B.17)

where ξi, ηj, ζk are quadrature points on quadrature index i, j, k and wi, wj, wk are quadrature

weights corresponding to quadrature index i, j, k. Again similar derivations can be employed

for finding integrals across other elements.
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