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Abstract

Increasingly, adverse health effects from wildfire exposure are not limited to select

populations in the wildland-urban interface. As wildfires continue to grow in frequency

and intensity, they are also continuing to encroach on urban areas, putting larger and

larger populations at risk. In this study we develop an innovative research design in the

wildfire and health literature, and report results for a small scale implementation on

California’s central coast. Instead of focusing on smoke exposure and PM 2.5 or PM 10

as the primary physiological pathway linking wildfire and adverse cardiovascular health

outcomes, we draw on a stress pathway as a potential link between stress and heart

health. We use a novel spatiotemporal definition of wildfire exposure that is directly

measurable at the individual level and acutely stressful: evacuation orders. Combining

longitudinal health data from the dominant local hospital system in southern Santa

Barbara County, California, we directly determine exposure to an evacuation order and

smoke plumes from three large fires in the 2017 - 2019 wildfire period. Controlling for

additional known risk factors, such as diabetes status and smoking status, we model the

risk of secondary cardiovascular events (CVE) for 2,411 patients with existing cardio-

vascular disease. Roughly 16.2% of patients (n = 391) were exposed to an evacuation

order. We found evacuation order exposure was not significantly associated with an

increased risk of cardiac events for the CVD population, but estimates hovered be-

tween 12.5-16.3% over un-evacuated cohorts. Smoke exposures were not significantly

associated with CVE risk in models adjusted for evacuation orders nor unadjusted

models, and estimates of effects varied widely. Both the method and the findings have

implications for public health departments, clinicians and wildfire researchers.

keywords: wildfire, survival analysis, spatial data, heart disease, evacuation
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1 Introduction1

Increasingly, adverse health effects from wildfire exposure are not limited to select pop-2

ulations in the wildland-urban interface. As wildfires continue to grow in frequency and3

intensity, they are also encroaching on urban areas, putting larger and larger populations4

at-risk. Adverse health outcomes associated with wildfires include various end points such5

as increased rates of hospitalizations, emergency department visits, and deaths (Reid et al.,6

2016a, Chang et al., 2022, Cohen et al., 2022, Heaney et al., 2022, Johnston et al., 2014), as7

well as exacerbation of specific illnesses such as respiratory illnesses (like asthma) (Heaney8

et al., 2022, Johnston et al., 2014, Brook et al., 2010, Chang et al., 2022, Mott et al., 2005),9

cardiorespiratory-related illnesses (like congestive heart failure) (Mott et al., 2005, Delfino10

et al., 2009, Reid et al., 2016a), and cardiovascular diseases/events (like stroke) (Heaney11

et al., 2022, Henderson Sarah B. et al., 2011, Moore et al., 2006, Johnston et al., 2014, Wen12

et al., 2022, Wettstein et al., 2018).13

While research linking wildfire to health outcomes has blossomed across multiple fields14

in recent years, findings related to cardiovascular disease (CVD) and cardiovascular events15

(CVE) remain mixed (Wellenius et al., 2005, Delfino et al., 2009, Reid et al., 2016a, Wettstein16

et al., 2018, Heaney et al., 2022, Reid et al., 2016b, Moore et al., 2006). This inconsistency17

could be due to several common conceptual and methodological constraints in the CVE-18

wildfire literature. Conceptually, much of the current literature focuses on smoke or particu-19

late matter as the primary pathway linking wildfire and adverse health outcomes (Reid et al.,20

2019, 2016a). From other disaster literature, there is evidence to suggest that earthquakes21

(Chan et al., 2013, Bazoukis et al., 2018), tsunamis (Nakagawa et al., 2009, Nakamura et al.,22

2013), hurricanes (Swerdel et al., 2014, Peters et al., 2014), and flood events (Ryan et al.,23

2015) may be associated with higher risk of cardiovascular events. This mechanism may24

manifest over longer periods than are typically studied in the smoke-exposure-motivated ap-25

proaches (Nakagawa et al., 2009, Nakamura et al., 2013, Swerdel et al., 2014, Jordan et al.,26

2013, Leor and Kloner, 1996, Peters et al., 2014). Additionally, conceptualization and mea-27
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surement of “exposure” to a wildfire varies widely across the literature, from purely temporal28

comparisons of “pre-fire” periods to “post fire” periods (Cohen et al., 2022, Moore et al.,29

2006), to a more nuanced spatial and temporal assignment of all persons in a statistical30

area, zip code or grid cell to an observed particulate matter concentration for a given time31

period (Delfino et al., 2009, Wettstein et al., 2018, Johnston et al., 2011, Thelen et al.,32

2013, Aguilera et al., 2020, Reid et al., 2019). These approaches introduce an assumption of33

homogeneity of exposure at the scale of analysis.34

From a methodological viewpoint, most studies are also limited by indirect methods of35

individual exposure and rely on counts of new hospitalizations or emergency department36

visits in the aggregate. Within such counts, it is often not possible to disentangle those37

who were actually exposed (for example, to a wildfire plume), from those who were not.38

Additionally, these aggregate measures, as opposed to individual measures, cannot account39

for compositional shifts of patient case-counts before and after events (such as changing mixes40

of socio-demographic characteristics of the patient case-counts in the immediate aftermath41

of an exposure event), and may dilute the size of the response given the stimulus (Heaney42

et al., 2022, Reid et al., 2016b, Mott et al., 2005). Finally, some studies attempt to normalize43

rates (of hospital admissions or emergency department visits) against an at-risk population44

estimate for a specific areal unit (Wettstein et al., 2018). This approach introduces additional45

variability into the denominator of these rates and it is not clear how such variation may46

propagate into estimates of effects and standard errors.47

In this study we pursue an alternative approach that addresses some of these constraints48

and offers an innovative study design in the wildfire and health literature. Instead of focusing49

on smoke exposure and PM 2.5 or PM 10 as the primary physiological pathway linking50

wildfire and adverse cardiovascular health outcomes, we draw on a stress pathway as a51

potential link between stress and heart health. Though the biological mechanisms are not52

well understood, there is evidence to suggest one such mechanism may be neurocardiogenic,53

linking acute emotional or physical stress states to stress cardiomyopathy and/or myocardial54
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infarction (heart attack) (Hollenberg, 2016, Boland et al., 2015, Chan et al., 2013, Swerdel55

et al., 2014, Peters et al., 2014).56

Taking this pathway as our baseline, we use a novel spatiotemporal definition of wildfire57

exposure that is directly measurable at the individual level and acutely stressful: evacuation58

orders. Combining longitudinal health data from the dominant local hospital system in59

southern Santa Barbara County, California, we directly determine exposure to an evacuation60

order and smoke plumes from three large fires in the 2017 - 2019 wildfire period. Controlling61

for additional known risk factors, such as diabetes status and smoking status, we model62

the risk of secondary cardiovascular events (CVE) for patients with existing cardiovascular63

disease1 after exposure to evacuation orders and smoke plumes. With an individual-level64

approach, we can provide new insights into compositional shifts and disease exacerbation65

after exposure. Additionally, because we focus on those with existing cardiovascular disease,66

we are able to both narrow our at-risk pool for a cleaner interpretation of any uncertainty,67

but also contribute existing research on CVE risk for a large2 CDC-classified vulnerable68

population (Tsao et al., 2023).69

2 Methods and Materials70

This study has been approved by the Santa Barbara Cottage Hospital Institutional Review71

Board.72

2.1 Evacuation Order Data73

From October 2016 through the end of May 2019, there were a total of 24 named3 fires that74

burned in Santa Barbara County (see Figure 1). Three of these fires necessitated evacuation75

1Cardiovascular disease diagnoses include Chronic Heart Disease, Heart Failure, stroke, and hypertension
per the American Heart Association.

2Approximately 127.9 million Americans, or 48.6% of the population aged 20 years or older, have at
least one cardiovascular disease diagnosis (Tsao et al., 2023).

3Fires that burn more than 300 acres receive a reference name from one of CAL FIRE, USDA Forest
Service Region 5, USDI Bureau of Land Management, National Park Service and/or local agencies (CAL
FIRE, 2022).
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orders: the Alamo, Whittier, and Thomas fires. Due to local topographic features, vegetation76

and wind patterns, wildfires on the Central Coast can move at very high speeds and quickly77

consume structures. In this area, evacuations for wildfire are often sudden, unpredictable,78

and urgent. For example, the Thomas Fire was the largest and fastest moving of the fires79

that burned into Santa Barbara County during the study period. While it burned roughly80

281,000 acres in total; 100,000 acres burned in the first 48 hours (CAL FIRE, 2022). The81

final fire perimeters are mapped in Figure 1.82

Evacuation orders issued in response to the Alamo, Whittier and Thomas fires were col-83

lected from the County of Santa Barbara Evacuation Press Releases, official Twitter handles,84

and personal correspondence with local departments (DePinto, 2017). For each press release,85

written descriptions of street names and locations were digitized using QGIS version 3.1686

(QGIS Development Team, 2009) to derive spatial extent. To the extent that evacuation87

orders were repeated across press releases and days, evacuation zones were re-encoded as a88

new polygon with a new date attribute to generate the daily evacuation order data set. Oth-89

erwise, duration of evacuation orders were not recorded.4 Patients were considered exposed90

if their electronic medical record derived date-referenced residential location(s) coincided91

with any of the date-referenced evacuation zones. That is, patients were only exposed if92

their current address location at the time of the evacuation order fell within an evacuation93

zone polygon. Due to small sample sizes, mandatory versus voluntary orders were not dis-94

tinguished, and the time-to-exposure was limited to the time of the first evacuation order95

for each patient.96

4We were unable to assess the duration of the evacuation orders because of data limitations. When
residents were allowed back into the evacuated zones was not as clearly documented as the initial evacuation.
Hence, our results are limited in their interpretation to those having experienced any evacuation order as
opposed to being able to assess the effects of the duration of those orders. However, given the literature on
CVE and other natural disaster, we are unsure that assessing the end of an evacuation order has a meaningful
interpretation – it does not necessarily align with the end of a stress response.
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2.2 Electronic Medical Record Data97

In partnership with the predominant local hospital system, we obtained electronic medical98

records for all qualifying cardiovascular event-related (CVE-related) patient visits between99

October 1, 2016 and June 1, 2019. Qualifying CVE diagnoses were selected as diagnoses100

likely to be exacerbated by increased stress per our physician partner and based on the Inter-101

national Classification of Diseases Tenth Revision (ICD-10) system (see Table 1). Qualifying102

ICD-10 codes were selected by our physician author and included all child codes within the103

following: I10, I11, I13, I15, I20-I25, I40, I42-I52, I71, R00, R07.1, R07.2, R07.8, R07.9, and104

R94.3. These codes encompass a range of cardiac dysfunctions including severe diagnoses105

(stroke, cardiac arrest, acute myocardial infarction) and potentially less severe diagnoses106

(hypertensive heart disease and chest pain). Included diagnosis codes generally align well107

with other studies using similar methods (Reid et al., 2016a, Wellenius et al., 2005, Delfino108

et al., 2009, Heaney et al., 2022, Cohen et al., 2022, Reid et al., 2016b, Henderson Sarah109

B. et al., 2011, Chan et al., 2013, Swerdel et al., 2014, Lim et al., 2012, Yang et al., 2017,110

Wen et al., 2022), and include common cardiovascular disease (CVD) as well as symptomatic111

diagnoses (e.g. R07.9, “chest pain, unspecified”) to better capture a range of potential ex-112

posure effects. For the duration of the paper, we refer to the “qualifying cardiac event” as113

this initial CVE-related visit for each patient.114

The data include 7,364 patient visits across 5,318 unique patients distributed over the115

period. Though we initially requested dates of first qualifying CVD diagnosis for each patient,116

due to an electronic medical record (EMR) system migration in the fall of 2016, retrospective117

diagnosis dates were not available. Additionally, because our methods rely on accurate118

time of both study entry (in this case initial CVD diagnosis date) and secondary CVE (if119

observed), we limited our data to patients whose first CVE diagnosis in the EMR coincided120

with their first visit in the EMR (n=3,867) This restriction is an assurance of accuracy and121

data validity and is akin to imposing a sampling window on our study design. For the 3,867122

patients there were 7,088 unique (and dated) associated addresses that overlapped the study123
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period. We removed addresses indicating homelessness or shelter housing, post office boxes,124

listings of “No Address on File” and like statements (n=401). Using Santa Barbara County125

Assessor parcel data from 2016, we matched5 addresses in an iterative fashion and extracted126

point centroids of each polygonal parcel. We excluded addresses with no plausible match or127

those outside of Santa Barbara County (n=933). Of the eligible addresses, we achieved a128

90.3% match rate, or 5140 of 5693.129

Additionally, because of the decentralized and fragmented nature of healthcare provision130

in the United States, some patients may receive regular cardiovascular care from providers131

outside the hospital system, but use the study hospital system locations for extreme cases132

or emergencies. Such cases threaten the integrity of the research inference (interpreting133

secondary CVE risk requires both onset and sequential event) as well as the effect size of134

estimates (timing between visits could be artificially inflated as patients may receive care135

for another CVE from a different system). In an attempt to control for these difficulties136

in administrative data, we defined a geographic boundary for the study area that captures137

commuting flows and the hospital catchment and is informed by the Regional Wildfire Miti-138

gation Project (extended RWMP) for the area (Wesolowski, 2021); we assume that residents139

of this area are likely to travel to the study hospital system locations for cardiovascular care140

(see Figure 1).6 To be included in the final patient sample, we required individuals to have141

at least one valid (matched) address within the extended RWMP over the time period. The142

final sample size was 2,411 patients, aged 18-87 years.143

Using the same set of diagnosis codes, we restricted secondary CVEs to those that oc-144

curred through an emergency department so as not to accidentally catch scheduled follow-145

up care visits. Though conservative, this estimation method for secondary visits provides146

a cleaner interpretation of events, and we can assume independent events for each visit.147

In addition to date of hospital visit and dated address histories, the EMR records include148

5The exact address matching schema is available on request.
6We conducted a sensitivity analysis using other areal units (full county, patient zip code, and census

tracts) to better parse the the effects of the distance decay on the model estimates. Our results suggested
that the extended RWMP aligns best with our true hospital catchment area.
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patient sex, date-of-birth, preferred language, insurance status, smoking history, history of149

heart surgery, diabetes status and diagnosis. Diabetes status, smoking status, age and sex150

are all associated with onset of CVD (Benjamin et al., 2019). Initially, investigators were151

concerned that preferred language could be associated with stress levels hence its inclusion152

in the final models. EMRs often do not provide a direct indicator of socio-economic status;153

we used insurance type as an imperfect proxy. These variables are summarized in Table 2.154

2.3 Smoke Exposure Data155

Smoke data was collected from October 1st, 2016 through May 31st, 2019 from the National156

Oceanic and Atmospheric Administration (NOAA) Office of Satellite and Product Opera-157

tions (OSPO) Hazards Mapping System (HMS) Fire and Smoke Product (NOAA OSPO158

HMS, 2018). Implemented in 2003, HMS relies on polar and geostationary satellite observa-159

tions and expert image analysts who digitize the smoke plumes. Smoke plumes are further160

categorized based on density of the plume (thin, medium, thick). Though the HMS data161

do not directly measure particulate matter, they remain a common choice in the literature162

(Wettstein et al., 2018, Henderson Sarah B. et al., 2011). The HMS data set contains several163

readings per day (sometimes from different satellites). In processing the data, we chose to164

create daily unions of smoke extents to capture the broadest spatial extents by density type.165

On some days the extents of the polygons overlapped (that is a “medium” plume may have166

been contained within a larger “thin” density plume), but other days some areas were ex-167

posed to one density type (e.g. “medium”) without being exposed to “thin”. In light of this168

phenomena, we also created an “any” density plume each day to capture exposure to any169

density of plume. In each case (thin, medium, thick or any), patients were considered to have170

been exposed to a day of smoke if their date-referenced residential location was contained171

within a date-referenced smoke plume polygon.172
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2.4 Statistical Analysis173

The extended Cox Proportional Hazard Model (Cox PH) is an attractive method for an-174

alyzing time-structured exposures and outcomes for its ease of use and interpretation. In175

our case we may think of each individual having a set or triple [Ti, δi, [xi(t), 0 ≤ t ≤ Ti]],176

where i = 1, ..., n indexes the patients in the study, Ti is the time to the secondary CVE177

or end of study, δi indicates event status (1 if CVE observed or 0 if censored), and xi(t) =178

[xi1, xi2, ..., xip] the vector of p covariate values at time t. Following the work of Klein and179

Moeschberger as well as Aalen, Gjessing, and H̊akon (Klein and Moeschberger, 2010, Aalen180

et al., 2008), the extended cox model hazard can be written:181

h(t|xi1, xi2, ..., xip = xi) = h0(t)e
βTxi(t) = h0(t) exp

{ p∑
k=1

βkxik(t)
}

where h0(t) is the baseline hazard rate which remains unspecified, and β = (β1, ...βp)
T is182

the vector of regression coefficients that describe the effects of the covariates at time t. The183

xik(t) terms may be time-dependent covariates (such as exposure to an evacuation order or184

smoke plume), or may be constant over the time period (such as sex or diabetic status) for185

the ith individual. The extended Cox model assumes that the hazards between individuals186

of opposing covariate groups are proportional.187

In this analysis, we made explicit choices about how to code the evacuation exposure188

and smoke plume exposure variables. The evacuation order exposure is coded as a binary189

variable. For any given patient, evacit = 0 if t < Texposure, for t ≥ Texposure, evacit = 1; where190

Texposure is the time from study entry to evacuation exposure. Similarly, we coded exposure191

to a smoke plume (of any density) as binary variables at several cumulative time points192

where j = 1 day, 3 days, 7 days, or 10 days of total exposure to a plume type. For any given193

patient, smokejit = 0 if t < Texposure,j for t ≥ Texposure,j, smokejit = 1; where Texposure,j is the194

time from study entry to the jth day of cumulative smoke exposure of a specified type (thin,195

medium, thick, or any). Ultimately, we present results from five separate models each with196
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a different smoke exposure specification.7 Model 1 is not adjusted for any smoke exposure197

and only tests effects of evacuation orders and covariates on secondary CVE risk. Models198

2-5 adjust for exposure to 1-day cumulative “thin”, “medium”, “thick”, or “any” smoke199

exposure from the smoke polygon data as well as all covariates and evacuation orders.200

As is recommended practice for studies with multiple events per subject or more than201

one event type (Terry M. Therneau and Patricia M. Grambsch, 2000, Therneau, 2021) we202

used robust standard errors in this analysis. We used traditional selection criteria (AIC,203

BIC, Cox weighted residual tests for proportional hazards) for model specification, selection204

and fit. We consider α = 0.1 for Type I error control because of the exploratory nature of205

this study design.206

In our consideration of uncertainty, we use the evacuation order parameter estimates207

from each model specficiation (none, thin, medium, thick, any smoke exposure) and the208

associated standard errors as inputs into a lognormal distribution8 for which we simulated209

values along a continuum. This is consistent with the parametric assumptions of the model.210

We generated both cumulative density functions and probability density functions for each211

estimate.212

All analyses were completed in R version 4.1.3 (R Core Team, 2022).213

3 Results214

Within the study period, 2,411 patients had a qualifying cardiovascular event. Of these215

patients, 425 developed a secondary event during the study period (17.6%). There were 146216

total deaths (not all due to CVE), 12 of which were deaths on arrival. All deaths not due217

to CVE were treated as censored in our data. While deaths clustered at the end of every218

calendar year, there was no observed difference in the mean arrival rate of deaths between219

December 1, 2017-January 15, 2018 (Thomas Fire period) and the year prior. However, in the220

7We also include similar model results with smoke covariates but unadjusted for evacuation orders in the
supplementary material.

8The lognormal transposed the estimates on the link scale to the odd-ratio scale for easier interpretation.
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year following the mean rate of arrival was significantly lower (tdf=58 = −2.3291, p < 0.05).221

Of the 2,411 patients, a total of 391 went on to experience an evacuation order of any type:222

109 patients experienced a mandatory evacuation order due to an encroaching wildfire, 368223

patients experienced a voluntary order, and 86 would have experienced both (transition in224

either direction). Because of small sample sizes, we chose not to pursue an analysis based225

on the type of evacuation order exposure. Of the evacuation exposed cohort, 55 developed226

a secondary CVE. The remaining 370 secondary events were observed in the unexposed227

cohort. The median wait time until evacuation exposure was 213 days for patients who228

were eventually evacuated. For patients who had an observed secondary CVE, the wait time229

ranged from 1 to 438 days following the initial event and study entry.230

Trends in diagnosis and visits around the fire periods are reported in detail in the sup-231

plementary materials, but the evidence did not suggest a compositional shift (such as an232

increase in visits by those with existing cardiovascular disease in the immediate wake of233

evacuation exposure). There was a slight increase in diagnoses and visits during the active234

evacuation order period around the Thomas fire, but not for the Alamo or Whittier fires235

(which had concurrent evacuation orders). As compared to other years, the mean arrival236

rate during the 6-week Thomas Fire period was not significantly different from the year prior237

(mean rate of 3.1 per day), but was significantly more than the year post (2.1 per day, two-238

sided t-test p < 0.05). The most frequent diagnosis code was atrial fibrillation and flutter239

(33.4% of patients presenting), followed by heart failure (21.1%) and chest pain (17.9%).240

Note that many of these diagnoses codes occurred in conjunction with other related (or un-241

related) codes. The most common diagnosis codes for secondary cardiovascular events were242

heart failure (44.7% of patients), atrial fibrillation and flutter (41.9%), followed by chronic243

ischemic heart disease (19.1%).244
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3.1 Extended Cox Proportional Hazard Model Results245

In the literature, it is common to test multiple day lags to assess the effects of wildfire smoke246

exposure on hospital visits and/or admissions. While different researchers find different247

results, several authors have suggested that 1-day lags are associated with an increase in248

CVD-related visits and/or admissions (Wellenius et al., 2005, Heaney et al., 2022, Wettstein249

et al., 2018). Hence, to keep our results aligned with these findings, we included a one-250

day cumulative smoke exposure variable (thin, medium, thick, or any) in our final model251

selections.9 After assessing model fit and diagnostics, we present five different specifications252

based on the differing smoke plume densities (none, thin, medium, thick, and any). Note253

that the time within the study each individual crossed the threshold of three days of plume254

exposure depends on the spatial extent of each plume type. Additionally, the exact timing255

of the exposure for each individual is not constant across plume types.256

The parameter estimates are presented with respect to reference groups for each variable:257

English-speaking, female, under 60 years of age, commercial insurance and no history of heart258

surgery, diabetes, or smoking, and no smoke plume exposure or evacuation exposure. The259

parameter estimates are interpreted as an increase in the hazard of secondary CVE with260

respect to the reference group. The parameter estimates from these models are located in261

Table 3, and are visually represented in Figure 2. With no smoke indicator included in262

the model, we see a non-significant but positive effect of evacuation exposure on risk of263

secondary CVE (0.124, 90%CI [-0.127,0.376]), which indicates a 13.2% increase in risk as264

compared to the unevacuated group (100·(e0.124−1)). The increased risk effect stays positive265

and relatively consistent across different smoke specifications, with increases in risk ranging266

from 12.5-16.3% as compared to unexposed cohorts after controlling for all other covariates.267

While the 90% confidence intervals contain zero, in an exploratory context it is useful to268

further examine the uncertainty. Embedded in our study design, we have a strong prior that269

9Estimates from both three-day cumulative smoke exposure model fits and model fits with only smoke
exposures (no evacuation) are available from the authors.
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evacuation orders can only increase CVE risk or not change the risk at all; evacuation orders270

cannot be protective (or lower risk). Hence, we might consider the estimated parameter271

distribution at or above an actionable increment. We consider a 10% increase in risk as a272

clinical benchmark and threshold at which a clinician or emergency service provider may273

consider the risk to be actionable. Figure 3 displays the cumulative distribution functions274

and densities for the evacuation order effects under each smoke regime (none, any, thick,275

medium or thin.) From the cumulative distributions (Figure 3 (a)), a 10% increase lies276

between .36 and .44 probability depending on the smoke plume type specification, which277

suggests that in more that 50% of random draws, the effect of evacuation exposure on risk278

of secondary CVE for this population would be greater than a 10% increase. To summarize279

this visually, Figure 3 (b) shows the density functions for each parameter estimate with280

the dotted line indicating the 10% increase in risk. In each case, more than 50% of the281

parameter’s distribution lies to the right of the line.282

Other expected covariate relationships hold. As age increases, the risk of secondary283

cardiac event also increases. A concurrent diagnosis of diabetes mellitus is associated with284

increased risk, as is smoking status and, to a lesser extent, history of heart surgery. There is285

no apparent difference in risk by sex. There are significant increases in risk by insurance type286

(though these distinctions are likely due to both coinciding changes in age and insurance as287

well as unmeasurable differences in SES seeping through insurance type). Finally, during the288

evacuation periods, particularly for the Thomas Fire period, there was some concern that289

evacuation orders were not reaching Spanish-speaking populations, potentially contributing290

to the stress of the period. However, preferred language did not appear to be related to CVE291

risk.292

To further understand the role of smoke in this model framework, we also ran models with293

one-day cumulative smoke exposures and covariates without adjusting for evacuation order294

exposure. These models generated very similar estimates of coefficient and standard errors295

for all covariates (all estimates were within a tenth of evacuation-adjusted model estimates,296
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see supplementary materials for details). Given this, the 1-day cumulative smoke measures297

do not appear to be associated with CVE risk, adjusted for evacuation order or otherwise.298

While simpler models with evacuation order and cumulative smoke measures showed some299

consistent directions of association across densities and exposure cutoffs, the adjusted models300

do not. Estimates for smoke effects range in both magnitude and direction, and, with the301

exception of the thin plume exposure, the standard errors are an order of magnitude larger302

than the effect sizes.303

4 Discussion304

In this study we had two aims: the first was to provide a proof-of-concept for an innova-305

tive study design to assess health risks related to wildfire exposure, and the second was to306

implement the method in a small setting to assess the effects of wildfire evacuations and307

smoke exposure on the risk of a secondary cardiovascular event for patients with existing308

cardiovascular disease. In pursuit of these aims, we’ve carefully described the logic, data309

sources and variable construction necessary to conduct such a study, and operationalized310

the design within the Santa Barbara County context. We collected electronic medical record311

data for CVE-related visits from October 1, 2016 through June 1, 2019, and combined pa-312

tient addresses with county parcel extents, daily smoke extents, and evacuation order extents313

for three fires that occurred within the time period. We then modeled the effects of these314

constructed variables on cardiovascular event risk while controlling for known covariates.315

Within the broader context of wildfire smoke exposure and CVEs, evidence of an effect316

is mixed. Some studies have found slight increases in number of admissions or emergency317

department visits for stroke, cerebrovascular disease and congestive heart failure (Wellenius318

et al., 2005, Delfino et al., 2009, Reid et al., 2016a, Wettstein et al., 2018), where others have319

found null results (Heaney et al., 2022, Reid et al., 2016b, Moore et al., 2006, Reid et al.,320

2016a). Our study contributes to this open question; even for a CDC classified vulnerable321

population (those with existing CVD), we find no evidence of a consistent association between322
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1-day smoke plume exposure and CVE risk. Given the open question in the literature about323

the effects of smoke on CVD outcomes, had smoke been strongly associated with adverse324

CVD outcomes, we would have expected consistent large positive estimates that generally325

increased with both density of plume as well as days of exposure (j). After fitting our models,326

the effects of smoke plume effects on risk of secondary CVE are inconsistent and noisy. This327

could be due to our choice of the HMS smoke exposure variable, which as Feduda et al. (2020)328

note, may not capture peak PM 2.5 exposures on the ground and offer no information with329

regards to night-time plumes (Fadadu et al., 2020).330

Alternatively, the inconsistency and noise could also be due to heterogeneity of experience331

of individuals. There is a lack of quantification of avoidance behaviors for mitigating exposure332

to poor air quality or smokey days in this context. While short-term woodfire smoke has333

been shown to be detrimental in controlled environments (Brook et al., 2010), in natural334

settings, air quality warnings, visible smoke, and adherence to risk-reduction strategies (such335

as limiting outdoor time, masking, air filtration, relocation) may all mitigate the risk of336

particulate matter exposure from wildfire smoke.337

In the actual assessment of evacuation order effects, our data and modeling are, at best,338

suggestive. The point estimates of the evacuation order effects range from 12-16% over the339

unexposed population depending on the smoke specification, after controlling for known CVE340

risk factors. While the point estimates may be above an actionable threshold for clinicians,341

our estimates lack precision and are not statistically different from zero. In our consideration342

of the sources of uncertainty, we can point to two mechanical issues at play. First is the small343

sample sizes, particularly for the exposed population. Of our 2,411 patients, only 391 were344

exposed to an evacuation order and of those only 55 experienced a second cardiovascular345

event. These sample size constraints decrease the likelihood of recovering a strong signal, and346

made testing important interactions (such as advanced age and evacuation order exposure)347

impossible. As wildfires continue to grow in scope and scale and data sharing practices348

improve, larger studies that make use of this method may be able to more precisely estimate349
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effects.350

Secondly, though the evacuation orders provide a direct measure of exposure, the stress351

exposure itself may be experienced heterogeneously within the exposed group. Other factors,352

such as distance to the active fire line, number of dependents in the household, presence of353

pets or livestock, duration of exposure, availability of social capital, socio-economic status354

and resources, and media hype within the period could all contribute to an individual’s355

stress response.10 Additionally, while we were unable to distinguish between mandatory and356

voluntary evacuation orders, patterns of evacuations (immediate mandatory evacuation, ver-357

sus voluntary then mandatory) may engender different responses. Our concern here aligns358

obliquely with a mature body of literature in health geography arguing for more attention359

to correctly measuring an individual’s exposure to environmental risks by carefully defining360

spatial and temporal dimension of that risk (Spielman and Yoo, 2009). While that litera-361

ture specifically addresses improved estimation of neighborhood effects – mostly exposure362

to chronic stressors – our work makes a similar case for acute environmental stressors. It363

is unclear how to resolve the heterogeneous exposure or experience of stress within evacua-364

tion zones short of prospective studies with wearable heart rate sensors or direct measures365

of cortisol. Such studies could also incorporate mandatory versus voluntary evacuation or-366

der exposure, track duration of evacuation exposures, and incorporate better measures of367

individual socio-economic status, social capital, and available resources.368

Still, we believe that exposure to evacuation orders and the stress pathway provide a369

more precise indicator and mechanism than smoke exposure for assessing wildfire effects on370

cardiovascular risk. Because it is difficult to measure at the individual level, smoke exposure371

tends to be interpolated or estimated across wide expanses (Reid et al., 2016a, Henderson372

10Additionally, socio-economic status is also intrinsically linked with CVD risk through proximal pathways
like diet, exercise, occupation, agency and others. SES is a structural determinant of (heart) health (World
Health Organization, 2010). This study was constrained in its ability to assess those pathways; the best we
could do was to use insurance category. As our reviewer suggests, this is a far from perfect proxy, and SES,
social-capital, and individual resources impact both risk of initial CVD, disease progression/control, and
stress response to evacuation exposure. Future research should aim to more explicitly assess these pathways
and disentangle SES-effects on the stress pathway of secondary CVE.
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Sarah B. et al., 2011, Delfino et al., 2009). While newer machine learning approaches for373

smoke dispersion combine chemical transport models and multiple inputs from monitors,374

land use regression models, and satellites (Humphrey et al., 2019, Reid et al., 2015, Reid375

and Maestas, 2019), all exposures are still estimates that may be systematically biased when376

combined with individual data. Specifically in terms of cardiovascular event risk, recent377

research has pointed to overestimation of the association between urban PM 2.5 exposure and378

CVD, largely due to mismatches in scale and aggregation (Modifiable Areal Unit Problem379

and Uncertain Geographic Context Problem) (Humphrey et al., 2019). In contrast, in our380

approach evacuation order boundaries function as another type of exposure; an exposure that381

is both precise (not imputed from sensors) and carries substantial consequences including382

potential loss of property and life.383

A final strength of this study is the population at-risk. Our focus on patients with384

existing disease was intentional from both a health and statistical standpoint. From the385

health perspective, Nearly 49% of the population of Americans aged 20 years or older have386

at least one CVD diagnosis, and CVD remains a leading cause of death in the United States387

(Tsao et al., 2023). Existing research on prevention of secondary CVE suggests that the388

existing CVD population has a CVE risk 20-30% higher than baseline risk within a five-389

year period (Kaasenbrood et al., 2016, Kerr et al., 2009). As wildfires and natural hazards390

increase in strength and frequency, so too will evacuation order exposures, and the risk posed391

by stress responses will not be evenly distributed across the exposed population.392

Some studies use census tract or census block population estimates to identify the exposed393

population in the definition of rates (Wettstein et al., 2018). This is particularly problematic394

given the sampling variation in American Community Survey estimates at the tract and395

block group level, which is further accentuated when rates need to be disaggregated (by age396

group, race/ethnicity, etc.) (Folch et al., 2016, Spielman et al., 2014). From a statistical397

standpoint, failing to account for this sampling variation leads to grossly overstated precision398

of the resulting estimates. While no retrospective method is perfect, our choice of population399
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dramatically limits the variability within the at-risk population. With increasing data access,400

we hope more researchers will consider an approach like this one.401

5 Conclusion402

In this study we outlined an explicit spatial exposure approach to assess the relationship403

between cardiovascular events and wildfire using wildfire evacuation orders. We then demon-404

strated feasibility with a small sample from Southern Santa Barbara County. Though we405

do not have conclusive evidence suggesting a marked increase in CVE risk after exposure406

to an evacuation order, our methods has implications for public health officials, clinicians,407

and wildfire health researchers. For public health practitioners, this study design relies on408

accurate, shared electronic medical record data within a given area. Because of the fractured409

nature of the healthcare landscape in the United States, advocating for shared data struc-410

tures is critical to make larger studies in this vein feasible. For clinicians, implications are411

two fold. First, clinical providers should likely be on alert for symptoms related to cardiac412

dysfunction when wildfires are active in their community of practice, especially for popula-413

tions that may present with different symptoms, such as women and the elderly. Secondly,414

accurate data at the point of entry is extremely important for retrospective studies such as415

this, including accurate addresses. For wildfire health researchers, or other disaster health416

researchers, we have proposed a viable strategy to precisely measure effects of evacuation-417

stress-CVE pathway and with larger samples, the precision should improve. Our hope is418

that this method gets taken up more broadly, and inspires improved study designs in the419

field.420
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7 Tables and Figures

Figure 1: This map displays the final named wildfire perimeters during the 2016-2019 period in Santa Barbara
County (red polygons) as well as the 2010 Census classified urban areas (white dotted pattern polygon).
An urban area classification signifies an area with a density greater than 50,000 people and is derived from
the United State 2010 Census. The extended Regional Wildfire Mitigation Program (RWMP) area is also
displayed (yellow hash polygon). Additionally, the extended RWMP area was buffered by 1600 meters (solid
yellow line) in the analysis. The underlying base map is ESRI Satellite Data, freely available. These data
were mapped by the author on December 19, 2022. Note, only fires with areas greater than 10,000 acres are
labeled on the map.
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Patient Population Criteria
Patients with any of the following ICD-10 diagnosis codes as a “New Diagnosis” within the time period.

All diagnosis codes should appear as primary or secondary codes within the problem list of the EMR.

∗ Indicates wildcard (all available next-digit options), in addition to parent codes.

ICD-10-CM Code Description
I10 Essential Primary Hypertension
I11.* Hypertensive Heart Disease
I13.** Hypertensive Heart and Chronic Kidney Disease
I16.* Hypertensive Crisis
I20.* Angina Pectoris
I21.** Acute Myocardial Infarction
I22.* Subsequent ST elevation (STEMI) and non-ST

elevation (NSTEMI) myocardial infarction
I23.* Certain current complications following ST elevation

and non-ST elevation myocardial infarction within 28 day period
I24.* Other acute ischemic heart diseases
I25.*** Chronic Ischemic Heart Disease
I40.* Acute Myocarditis
I42.* Cardiomyopathy
143.* Cardiomyopathy in disease classified elsewhere
I44.** Atrioventricular and left bundle-branch blocks
I45.** Other conduction disorders
I46.* Cardiac arrest
I47.* Paroxysmal tachycardia
I48.** Atrial fibrillation and flutter
I49.** Other cardiac arrhythmias
I50.** Heart Failure
I51.** Complications and ill-defined descriptions of heart disease
I52 Other heart disorders in diseases classified elsewhere
I71.** Aortic aneurysm and dissection
R00.* Abnormalities of heart beat
R07.1 Chest pain on breathing
R07.2 Precordial pain
R07.8* Other chest pain
R07.9 Chest pain, unspecified
R94.3* Abnormal results of cardiovascular function studies

Table 1: Table describes the International Classification of Diseases, Tenth Revision, Clinical Modification
(ICD-10-CM) diagnosis codes that comprise the qualifying cardiac events within the study time frame. Note
that ∗ indicates depth of wildcard parent and child-nodes pursued. This list was compiled and revised for
completeness and clinical relevance by all clinical team members.
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Sample Characteristics

Evacuation Evacuation

Variable Exposed % (n) Unexposed % (n)

16.2 (391) 83.8 (2020)

Sex Female 41.2 (161) 39.2 (792)

Male 58.8 (230) 60.8 (1228)

Diabetic Status None 86.4 (338) 84.9 (1715)

Present 13.6 (53) 15.1 (305)

Smoking Status None 94.4 (369) 95.1 (1922)

Present 5.6 (22) 4.9 (98)

History of Heart Surgery None 85.7 (335) 83.6 (1689)

Present 14.3 (56) 16.4 (331)

Preferred Language English 86.7 (339) 89.4 (1805)

Other 0.3 (1) 1.1 (22)

Spanish 13.0 (51) 9.6 (193)

Insurance Type Commercial 18.2 (71) 18.6 (376)

Other 17.1 (67) 15.3 (310)

Senior 64.7 (253) 66.0 (1334)

Age Category < 60 22.0 (86) 23.4 (473)

60s 19.9 (78) 23.2 (469)

70s 33.0 (129) 31.0 (626)

≥ 80 25.1 (98) 22.4 (452)

Mean Age (Years) At 12/05/2017 69.5 68.4

Mean Length of Stay (Days) At Qualifying Event 5.2 5.0

Table 2: Descriptive attributes of patients with a qualifying cardiovascular event within the study period. No
significant differences between evacuated individual and non-evacuated individuals were observed at α = 0.1.
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Dependent variable:

Risk of Secondary CVE (Robust Errors)

(1) (2) (3) (4) (5)

Evacuation 0.124 0.137 0.118 0.151 0.125
(0.153) (0.154) (0.157) (0.163) (0.155)

1-Day Smoke Exposure Thin Plume Medium Plume Thick Plume Any Plume
−0.162 0.028 −0.089 −0.006
(0.134) (0.144) (0.144) (0.136)

Sex: Male 0.015 0.015 0.015 0.015 0.015
(0.103) (0.102) (0.103) (0.103) (0.103)

Age Category: 60s 0.367∗∗ 0.369∗∗ 0.366∗∗ 0.368∗∗ 0.367∗∗

(0.177) (0.177) (0.177) (0.177) (0.177)

Age Category: 70s 0.636∗∗∗ 0.636∗∗∗ 0.636∗∗∗ 0.633∗∗∗ 0.636∗∗∗

(0.192) (0.192) (0.192) (0.192) (0.192)

Age Category: >80 0.696∗∗∗ 0.692∗∗∗ 0.696∗∗∗ 0.692∗∗∗ 0.696∗∗∗

(0.203) (0.202) (0.203) (0.203) (0.203)

Insurance Type: Other 1.058∗∗∗ 1.053∗∗∗ 1.058∗∗∗ 1.055∗∗∗ 1.057∗∗∗

(0.204) (0.205) (0.205) (0.205) (0.205)

Insurance Type: Senior 0.528∗∗ 0.534∗∗∗ 0.527∗∗ 0.531∗∗ 0.528∗∗

(0.207) (0.206) (0.207) (0.207) (0.207)

Preferred Language: Other −1.566∗ −1.538∗ −1.568∗ −1.559∗ −1.565∗

(0.897) (0.903) (0.895) (0.897) (0.897)

Preferred Language: Spanish −0.051 −0.043 −0.052 −0.048 −0.051
(0.155) (0.155) (0.155) (0.155) (0.155)

History of Heart Surgery 0.191 0.191 0.191 0.190 0.191
(0.131) (0.131) (0.131) (0.131) (0.131)

History of Diabetes 0.873∗∗∗ 0.864∗∗∗ 0.874∗∗∗ 0.869∗∗∗ 0.872∗∗∗

(0.108) (0.109) (0.108) (0.108) (0.109)

History of Smoking 0.606∗∗∗ 0.608∗∗∗ 0.606∗∗∗ 0.607∗∗∗ 0.606∗∗∗

(0.189) (0.190) (0.189) (0.190) (0.189)

NTotal 2411 2411 2411 2411 2411
NEvacuation Exposed 391 391 391 391 391
NSmoke Exposed 0 1533 1614 1425 1649

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Full Covariate Models with Evacuation and Mixed Density Smoke Exposures
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Figure 2: The coefficient effects on secondary CVE risk are summarized for each smoke type in this figure.
The 90% confidence intervals are shown in addition to 68.5% confidence intervals and the the point estimates.
Note that the 68.5% confidence intervals show one-standard deviation from the parameter estimate mean in
either direction. The coloring indicates parameter estimates under 1-day of the various smoke specifications:
thin smoke exposure (grey), medium smoke exposure (pink), thick smoke exposure (blue-green), and any
smoke exposure (orange). The point estimates for evacuation order effects are 14.7% (thin), 12.5% (medium),
16.3% (thick) and 13.3% (any) increase in risk over the baseline.
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(a) Cumulative Distribution of Estimates (b) Density of Estimates

Figure 3: Panel (a) displays the cumulative distributions corresponding to the evacuation parameter esti-
mates from the fitted models presented in Table 3, and displayed in Figure 2. The dotted vertical line shows
a 10% increase in risk of CVE, and the the corresponding probability quantiles are shown on the y-axis. The
quantiles range from 0.36 to 0.44 indicating the probability of the percent change in CVE risk being 10% or
less. Panel (b) displays the densities for each evacuation order parameter estimate, with the 10% increase
also marked. Under each specification more than 50% of the estimate parameter distribution lies to the right
of the 10% line.
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7.1 Supplemental Materials

7.1.1 Visit and Diagnoses Trends

Figure 4 (a) shows the trends in diagnosis code use over the study period. The black
rectangles indicate the periods of active evacuation orders for the Alamo, Whittier, and
Thomas fires. The Alamo and Whittier fire evacuation orders occurred concurrently (first
fire period), whereas the Thomas fire burned longer and more area, and subsequently had
more associated evacuation orders. There is an increase in diagnoses in this period, which
is echoed in the unique patient accrual counts in figure 4 (b).

Because of the study design, patients could enter the study with a qualifying cardiac
event at any point and are followed through to censorship (study end) or their secondary
CVE. The arrival counts for each study week range from 10 to 38, and the arrival pattern
suggests both a relatively high variability in weekly case counts for new CVE as well as
some potential seasonal trends. The Thomas fire began in early December (study week 62),
a period where other studies(Lichtman et al., 2016, Yang et al., 2017) suggest a seasonal
increase in cardiac events like acute myocardial infarction and stroke. Comparing the mean
arrival rate for new cardiac events from December 1, 2017 - January 15, 2018 with the mean
arrival rates for the same period the year prior and the year post, we do not see a significant
difference in arrival rate the year prior, and we see a significant decrease from the following
year.11

The diagnoses patterns and trends for the second CVEs (n=474) are similarly presented
in figure 4 (c). The most common diagnoses codes for those returning to the hospital are
heart failure (45.4% of patients), atrial fibrillation and flutter (40.5%), followed by chronic
ischemic heart disease (19.8%). In contrast to the first cardiac event diagnosis trends over
time, the trends of the second cardiac event diagnoses appear more scattered and random,
without an obvious seasonality. The visit counts are also sporadic through the study period
(see figure 4 (d)).

11Year prior had a mean arrival rate of 3.8 patients per day and the Thomas fire year had an average
arrival rate of 3.6, (two-sided t-test, p-value = 0.58). The year following the Thomas fire had an average
arrival rate of 2.8 (two-sided t-test, p-value = 0.07).
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(a) Trends in study entry diagnoses (Qualifying CVEs) (b) Trends in patient visit counts (n=2,411)

(c) Trends in secondary CVE diangoses (d) Trends in secondary CVE visit counts (n=425)

Figure 4: The upper row of this graphic shows the trends of parent ICD-10 diagnosis codes within qualifying
CVEs for first-time patients within Cottage Hospital over the study period (a) and the corresponding new
patient visit counts on the right (b). For example, I46 indicates visits for cardiac arrest and includes visits
for child codes: I46.2 cardiac arrest due to underlying cardiac condition, I46.8 cardiac arrest due to other
underlying condition and I46.9 cardiac arrest, cause unspecified. The lower row shows the trends of diagnosis
codes for secondary CVEs (c) and the patient visit counts on the right (d). Many patients presented with
(or acquired) more than one diagnosis in their admission. However, patient visit counts directly correspond
to a single patient within the study; no patient appeared more than twice. The large vertical rectangles
indicate the weeks that evacuation orders were active for the Alamo and Whittier fires (concurrent evacuation
orders, first rectangle), and the Thomas fire (second rectangle). There appears to be an elevated count of
new patients around the time of the Thomas fire and the mean rate of arrival is significantly elevated when
compared to the year post fire (p < 0.1), but not when compared to the year prior to the fire (p = 0.5).
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7.1.2 Mixed Density Smoke Models Without Evacuation Variable

Table 4 shows the coefficient estimates for mixed density 1-day cumulative models (no plume,
thin plume, medium plume, thick plume). Estimates for the electronic medical record driven
covariates remain consistent with the estimates from models including the evacuation expo-
sure (see Table 3). Estimates for each smoke exposure also remain quite similar in direction
and magnitude, though ‘Any Plume‘ exposure flipped signs. To the authors this suggests a
lack of evidence relating 1-day cumulative smoke exposure to secondary CVE risk.
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Dependent Variable:

Risk of Secondary CVE (Robust Errors)

No Plume Thin Plume Medium Plume Thick Plume Any Plume

1-Day Smoke Exposure −0.154 0.043 −0.055 0.006
(0.133) (0.141) (0.136) (0.133)

Sex: Male 0.015 0.014 0.015 0.014 0.015
(0.103) (0.102) (0.103) (0.103) (0.103)

Age Category: 60s 0.368∗∗ 0.370∗∗ 0.367∗∗ 0.370∗∗ 0.368∗∗

(0.177) (0.177) (0.177) (0.177) (0.177)

Age Category: 70s 0.639∗∗∗ 0.639∗∗∗ 0.638∗∗∗ 0.637∗∗∗ 0.639∗∗∗

(0.192) (0.192) (0.192) (0.192) (0.192)

Age Category: >80 0.697∗∗∗ 0.694∗∗∗ 0.698∗∗∗ 0.695∗∗∗ 0.698∗∗∗

(0.203) (0.203) (0.203) (0.204) (0.203)

Insurance Type: Other 1.061∗∗∗ 1.057∗∗∗ 1.061∗∗∗ 1.059∗∗∗ 1.061∗∗∗

(0.205) (0.205) (0.205) (0.205) (0.205)

Insurance Type: Senior 0.529∗∗ 0.535∗∗∗ 0.528∗∗ 0.531∗∗ 0.528∗∗

(0.207) (0.206) (0.207) (0.207) (0.207)

Preferred Language: Other −1.574∗ −1.549∗ −1.577∗ −1.571∗ −1.575∗

(0.897) (0.903) (0.895) (0.897) (0.897)

Preferred Language: Spanish −0.046 −0.038 −0.048 −0.043 −0.046
(0.155) (0.155) (0.155) (0.155) (0.155)

History of Heart Surgery 0.189 0.190 0.189 0.188 0.189
(0.131) (0.131) (0.131) (0.131) (0.131)

History of Diabetes 0.869∗∗∗ 0.861∗∗∗ 0.871∗∗∗ 0.866∗∗∗ 0.870∗∗∗

(0.108) (0.109) (0.108) (0.108) (0.109)

History of Smoking 0.608∗∗∗ 0.610∗∗∗ 0.608∗∗∗ 0.608∗∗∗ 0.608∗∗∗

(0.190) (0.190) (0.189) (0.190) (0.190)

NTotal 2411 2411 2411 2411 2411
NSmoke Exposed 0 1533 1614 1425 1649

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Mixed Density Smoke Models with No Evacuation (Robust Errors)
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