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Neural signals and control of the larynx 

Benjamin Dichter 

The ability of the human brain to represent senses reliably and command a motor response is 

central to our ability to respond to the world around us. Here, I aim to understand these 

processes through simulation and experimental analysis. First I developed a recurrent neural 

network as a model of the brain receiving approximate sensory input. By learning to capture the 

distribution of the representation of a sense, the network learns the dynamics of the underlying 

stimulus and learns to integrate information near optimally over time, using recent estimates of 

position and velocity to inform the current estimate of the state of the object.  

Next, I analyzed the cortical representation of auditory speech. Syllables were played to human 

subjects while recording voltage fluctuations directly from their brains using 

electrocorticography. I found that the variability of the neural activity in the superior temporal 

gyrus, an auditory cortical region, was “quenched” upon stimulus presentation. Furthermore, this 

decrease in variability is coincident with stimulus representation, and enables the brain to 

represent a stimulus more accurately. 

Then, I examined the cortical control of laryngeal functions in humans using 

electrocorticography during produced speech. I found that the dorsal laryngeal motor cortex 

controls modulations of vocal pitch. Activity in that region is correlated with pitch in speech and 

in song. The representation of pitch in this region is separable from voicing, showing multiple 

dimensions of control represented in the cortex. Through cortical stimulation, I show that activity 

in this area caused proportional laryngeal muscle activation. I discuss how these findings may 

add important information furthering our understanding the evolution of speech in humans. 

Finally, I discuss how these signals can be used to decode prosodic patterns directly from 

neural activity for use in a speech prosthetic.
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Introduction 

Brains are machine that sense the body and the outside world, process the observation, form a 

plan of action, and send a command to muscles that carry out the plan. In order to achieve 

understanding of sensory inputs robustly in an ever-changing environment, the brain must 

respond in a systematic way to sensory stimuli. This relationship between the senses and the 

corresponding neural activity is often referred to as a “representation,” and much of systems 

neuroscience is devoted to understanding the nature of these representations, and the neural 

transformations thereof that facilitate appropriate responses.  

All of our senses must be captured by the electrochemical signals of neurons and 

transformations must be mediated by the connectivity between neurons. Although sensory 

observations generally exist in continuous, multidimensional spaces, the brain must represent 

them within the physical constraints of neuro-anatomy. A representational scheme commonly 

found in the brain is a grid of “receptive fields.” Each neuron has a maximal rate of action 

potentials for a specific sensory value (e.g. pitch, arm position, etc.) and the firing rate falls 

gradually as the sense deviates more from that “preferred” value. A population of neurons can 

faithfully capture a sensory space if the neurons have receptive fields that densely cover the 

range of that sense. 

The senses, though rich, often give organisms incomplete information about the state of their 

surroundings. In fact, sensory information is often better thought of as evidence about the state 

of the environment. Brains must receive, weigh, and combine evidence about the state of the 

word, and formulate a plan based on the probability distribution. A corollary of this fact is that 

the neural representations of sensory evidence must represent not point estimates (i.e. a best 

guess) of the state of the world, but probability distributions over possible states. It may seem 

unintuitive- most of us are not aware that the brain is considering a spectrum of world states and 

performing the complicated mathematics necessary to transform these distributions to a plan. 
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However, numerous psychophysical experiments have elicited behavior that would require the 

use of probability distributions and are incompatible with point estimate representations. A 

common example is multisensory integration: when given two conflicting cues from different 

senses about the location of target, subjects will estimate the position to be closer to the more 

reliable sense. This requires the brain to weigh senses according to the likelihood distributions 

determined by the reliability of each sense. 

A popular theory for the representation of probability distributions in the brain is the use of 

“probabilistic population codes.” In this scheme, the receptive field grid of neurons model the 

likelihood of states directly from the firing rates of neurons. This theory imposes assumptions 

about the shape of the receptive fields, the density of the coverage in sensory space, and the 

variability of response. Using these assumptions, a likelihood can be derived using Bayes rule, 

which describes a probability distribution of a state in the body or world given the firing rates of 

the neurons which represent it. 

There is yet another challenge faced by the brain: the world is constantly changing, causing 

rapid fluctuations in the senses that must be represented concurrently by the brain. Thus, the 

representational scheme employed to represent a phenomenon must be appropriate for the 

dynamics of that sense. A scheme that requires 10 seconds to represent the probability 

distribution of position of a limb would be useless for guiding a gate. It might seem, then, that in 

the face of these changing states, the brain must infer the state of the world only on the current 

instantaneous sensory information. In Chapter 1, we explore an alternative. We show that there 

is a tool that can be used – and is in fact used – by the brain to integrate information over time.  

Just as the brain can probabilistically combine information from different senses, it can also 

combine information from the past state estimates and the current sensory information. To do 

this, the brain needs to build a model of the dynamics of that state (e.g. the probability 
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distribution of position and velocity of the arm now given the position and velocity 1 second 

ago). In this way, information can be combined through time similarly to multi-sensory 

integration. In order to employ this strategy, the brain must build a representational map (state 

� neural activity) as well as a dynamical model (earlier state � current state). Estimating these 

models must be done indirectly, because, as established above, the brain never knows exact 

states, only probability distributions over states.  

This type of indirect inference is a well-studied problem in statistical learning theory, and is 

called a latent variable problem. Effective techniques have been developed for inference of 

these models (most notably expectation maximization). In this context, the goal of inference is to 

estimate these relationships based solely on the observed patterns of neural activation. 

However, established techniques are unlikely to be used by the brain. In the first chapter, I 

explore how the brain might perform dynamical state estimation by modeling the distribution of 

data. The approach extends successful computational models of multisensory integration. I 

show how the brain could use established neural learning rules to build the functional 

connections necessary to integrate probabilistic codes of state estimates over time, and I prove 

that this learning technique would allow the brain to learn a dynamical model with higher 

dynamics than those represented in the instantaneous sensory evidence.  

The representation of speech sounds in the human brain is a particularly interesting case of 

neural representation. The human brain is so specialized and successful at representing speech 

sounds that we can perform the computationally difficult task of speech perception in a variety of 

noisy environments with ease. In the second chapter, I examine the neural representation of 

these sounds using electrocorticography (ECoG). Surgically implanted electrodes record from 

the cortex and monitor neural activation as subjects listen to speech sounds. I show that the 

variability of neural activity is reduced when the brain is representing a sound, and that this 
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reduction in variability helps the brain faithfully capture that sound so that it can be distinguished 

from other speech sounds.  

In chapter three, I close the behavior loop by using ECoG to study the neural representation of 

vocal pitch as we speak and sing. I establish neural representation of vocal pitch in humans, 

and show that it is distinct from voicing, another behavior of the larynx. I also use electrical 

cortical stimulation to establish a causal relationship between activation of this region and 

excitation of the laryngeal muscles necessary to produce and modulate vocal pitch. 

Finally, I take a more engineering approach, showing how one might use ECoG signals to 

determine the intended emphasis pattern. In my first approach, I use a Kalman Filter to integrate 

neural information over time. This approach is not unlike the neural network explored in Chapter 

1. Here, dynamical state estimation is used in an engineering application inferring the intention 

of a subject rather than as a model of how the brain works. In my second approach, I explore 

decoding of word-emphasis discretely. Here, I appreciate the phonological and semantic 

aspects of pitch by decoding specifically the essential information of extracting the meaning of 

the prosodic contour. 
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Chapter 1. Learning to Estimate Dynamical State with 

Probabilistic Population Codes 

Joseph G. Makin*1,2, Benjamin K. Dichter*1,3, Philip N. Sabes1,2,3 

1Center for Integrative Neuroscience, University of California, San 

Francisco, San Francisco, California, United States of America,  

2Department of Physiology, University of California, San Francisco, San 

Francisco, California, United States of America, 3UC Berkeley-UCSF 

Graduate Program in Bioengineering, University of California, San 

Francisco, San Francisco, California, United States of America. *These 

authors contributed equally to this work. 

 

Abstract Tracking moving objects, including one’s own body, is a fundamental ability of 

higher organisms, playing a central role in many perceptual and motor tasks. While it is 

unknown how the brain learns to follow and predict the dynamics of objects, it is known 

that this process of state estimation can be learned purely from the statistics of noisy 

observations. When the dynamics are simply linear with additive Gaussian noise, the 

optimal solution is the well-known Kalman filter (KF), the parameters of which can be 

learned via latent-variable density estimation (the EM algorithm). The brain does not, 

however, directly manipulate matrices and vectors, but instead appears to represent 

probability distributions with the firing rates of population of neurons, “probabilistic 

population codes.” We show that a recurrent neural network—a modified form of an 

exponential family harmonium (EFH)—that takes a linear probabilistic population code as 

input can learn, without supervision, to estimate the state of a linear dynamical system. 

After observing a series of population responses (spike counts) to the position of a 
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moving object, the network learns to represent the velocity of the object and forms nearly 

optimal predictions about the position at the next time-step. This result builds on our 

previous work showing that a similar network can learn to perform multisensory 

integration and coordinate transformations for static stimuli. The receptive fields of the 

trained network also make qualitative predictions about the developing and learning 

brain: tuning gradually emerges for higher-order dynamical states not explicitly present in 

the inputs, appearing as delayed tuning for the lower-order states. 

Author Summary A basic task for animals is to track objects—predators, prey, even 

their own limbs—as they move through the world. Because the position estimates 

provided by the senses are not error-free, higher levels of performance can be, and are, 

achieved when the velocity and acceleration, as well as the position, of the object are 

taken into account. Likewise, tracking of limbs under voluntary control can be improved 

by considering the motor command that is (partially) responsible for its trajectory. 

Engineers have built tools to solve precisely these problems, and even to learn dynamical 

features of the object to be tracked. How does the brain do it? We show how artificial 

networks of neurons can learn to solve this task, simply by trying to become good 

predictive models of their incoming data—as long as some of those data are the activities 

of the neurons themselves at a fixed time delay, while the remainder (imperfectly) report 

the current position. The tracking scheme the network learns to use—keeping track of 

past positions; the corresponding receptive fields; and the manner in which they are 

learned, provide predictions for brain areas involved in tracking, like the posterior parietal 

cortex. 

Introduction 

Over the last decade, neuroscience has come increasingly to believe that sensory systems 

represent not merely stimuli, but probability distributions over them. This conclusion follows from 

two observations. The first is that the apparent stochasticity of the response, R, of a population 
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of neurons inherently represents the likelihood of the stimulus ( )|R p r s:  [1]. The second is 

that certain common computations essential to the function of many animals require keeping 

track of probability distributions over stimuli, rather than mere point estimates. For example, 

primates integrate information from multiple senses by weighting each sense by its reliability 

(inverse variance) [5, 6]. This framework has been used to hand-wire neural networks that 

integrate spatial information across sensory modalities and across time [2, 7, 8]. The more 

challenging problem faced by the brain, however, is to learn to perform these tasks.  

We have recently shown [4, 9] that the problem of learning to integrate information about a 

common stimulus from multiple, unisensory populations of neurons can be solved by a neural 

network that implements a form of unsupervised learning called density estimation. Such a 

network learns to represent the joint probability density of the unisensory responses—to build a 

good model for these data—in terms of the activities of its downstream, multisensory units. For 

example [4], an exponential family harmonium (EFH) [3] trained on the activities of two 

populations of Gaussian-tuned, Poisson neurons (linear probabilistic population codes [2]) that 

tile their respective sensory spaces (visual and proprioceptive, e.g.) will learn to extract the 

“common cause” of these populations, encoding the stimulus in its hidden layer. In this case, the 

unisensory information available on a “trial” can be characterized by two means (best estimates) 

and two variances (inverse reliabilities); and the estimate extracted by the hidden units of the 

trained network is precisely the inverse-variance-weighted convex combination that primates 

appear in psychophysical studies to use. 

Ecologically, however, the critical challenge is not typically to estimate the location of a static 

object, but to track the state of a dynamically changing environment. This task likewise requires 

reliability-weighted combination of information, in this case of the current sensory evidence and 

the current best estimate of the state given past information. But it is considerably more difficult, 



 

8 

since its solution requires learning a predictive model of the dynamics, which is not explicitly 

encoded in the sensory reports. In the case of Gaussian noise and linear dynamics (LDS), this 

recursive process is described by the Kalman filter, the parameters of which can be acquired 

with well-known iterative learning schemes. How the brain learns to solve this problem, 

however, is unknown.  

Here we propose a neural model that accomplishes this task. We show that by adding recurrent 

connections to an EFH similar to that used in [4], the network can learn to estimate the state of 

a dynamical system. For concreteness, we consider the problem of tracking the dynamical state 

of the upper limb, a necessary computation for accurate and precise movement planning and 

control. In this case, the neural circuit corresponds to the posterior parietal cortex (PPC), which 

appears to subserve state estimation [10, 11]; and its inputs are taken to be a population of 

proprioceptive neurons. The network’s performance can be quantified precisely by restricting 

our view to linear-Gaussian dynamics, where the filtering and learning problems have known 

optimal solutions (respectively, the Kalman filter and expectation-maximization, a maximum-

likelihood algorithm). And indeed, performance approaches that optimum. 

We then extend the network to controlled dynamical systems. Under the assumption that the 

controls are provided by motor cortex, these too are observed only noisily by PPC, in the form of 

efference copy, which the network must then learn to interpret as motor commands. State 

estimation is again close to optimal. In addition, the network is neurally plausible in both its 

representation of stimulus probabilities [2] and in the unsupervised learning procedure, which 

relies only on pairwise correlations between firing rates of connected neurons [12, 13]. Finally, 

the network makes two predictions about neural circuits that learn to perform state estimation: 

(1) During learning, position receptive fields will emerge before velocity receptive fields; or more 

generally, receptive fields will develop from lower- to higher-order states, especially when 

explicit information about the higher-order states is not in the inputs. (2) Filtering is implemented 
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by tuning to past positions (or more generally, lower-order states), rather than tuning directly to 

velocity (or more generally, higher-order states). 

Results 

Network performance 

The filtering problem. We present results for an uncontrolled and a controlled dynamical system. 

For both, the basic dynamical system is second-order (position, velocity), discrete time, 

stochastic, and linear. The noise in state transitions is additive, white, and Gaussian. The 

“observation” at time t is the response ( )tRθ  of a population of Poisson neurons, with Gaussian 

(bell-shaped) tuning curves that smoothly tile position. Since these neurons are taken to be 

reporting the proprioceptive sense, the “position” variable is the angle of a (single) joint, Θ . For 

the controlled system, there is a second population of Poisson neurons—carrying the “efference 

copy,” u
tR  —that smoothly tiles a space of input torques, U. Details appear in the methods 

section “Input-data generation.” 

The task of tracking an object (estimation) is to provide, at time t, the best estimate of the 

location that can be computed from all the noisy observations from time 0 up to t. When current 

position depends on only a finite number n of past positions, this problem can be solved 

recursively: rather than retaining a history of all past observations, it is necessary to maintain 

only the current best estimate of the state (a vector whose dimension is set by n), and the 

reliabilities of these estimates (a covariance matrix). By artful design of the system (see 

Methods), we have arranged for the optimal estimate at time t to be computable in closed form 

(see below). We emphasize that this computation does not approximate the firing statistics of 

the Poisson observations as Gaussian; see the section The optimal filtering distribution for 

details.  
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The task of learning is to acquire the parameters that make it possible to carry out the 

estimation task. These parameters correspond to a dynamical system (e.g., the state transition 

matrix and the covariance of the state transition noise), and a model of how the states of this 

system give rise to observations. In our network, however, the parameters that are learned 

directly are the synaptic connections (weights) and the bias of each unit’s response function; the 

correspondence with the parameters of the dynamical system is not transparent (we explore it 

below). 

The network. The central idea behind training our network, the “recurrent, exponential-family 

harmonium” (rEFH), is the choice of input data. In particular, each input vector consists of both 

the proprioceptive response to the current joint angle, and the activities of the hidden units at 

the previous time step. (For the case of a controlled dynamical system, the input vector also 

contains a noisy copy of the efferent motor command.) Biologically, this could be implemented 

via an additional population that simply reports, at a single time-step delay, the activities of the 

hidden units (Fig 1B, heavy black arrows; see also the section Cortical implementation below). 

Conceptually, this choice of input data reflects the fact that filtering can be expressed as a 

“multisensory integration,” not between (e.g.) proprioceptive and visual inputs (cf. [4]), but 

between proprioceptive inputs and a running best estimate of the state. We hypothesize that, 

because the hidden units learn to extract all the information available in their inputs [9], the 

hidden vector at time t − 1 will accumulate the information of the filtering distribution, 

( )1 0 1| ,...,t tp r rθ θθ − − . Then at the next time step, the network will “integrate” this information with 

the current proprioceptive information about joint angle. (See S2 Text for a longer discussion of 

this point.) 
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Experiments. We therefore test our network by decoding, for all t, hand position at time t, from 

its hidden units. Rather than directly compare this estimate to the optimal estimate, which would 

provide no sense of scale, we compute error statistics for both. That is, we take the difference 

between the network’s estimate and the true hand location; compute the mean and variance of 

this error across time steps (0 to T = 1000) and trajectories (Ntraj = 40); and then compare these 

statistics for the rEFH and the optimum (OPT). We also compare error statistics from a “naïve” 

decoder (PROP) that simply decodes the current proprioceptive population, ignoring dynamics. 

It is the optimal decoder for data with no temporal dependencies. 

The rEFH had to learn to solve the estimation problem, and in practice, learned solutions will 

always be somewhat suboptimal, because of finite, noisy data and a nonconvex problem space. 

Therefore, a perhaps more useful point of comparison is the set of the error statistics from 

another model that has been trained on the same data. In particular, it is possible in certain 

cases to derive optimal parameter-update equations for a learning procedure (“expectation-

maximization,” EM) that is guaranteed to reach at least local optima. Again by design of the 

dynamical system, and although the rEFH is not in theory limited to such data, such update 

equations are available (they are derived in S1 Text). We therefore generate error statistics for 

this model (EM), as well. We emphasize, however, that EM was given additional information not 

provided to the rEFH: the order of the dynamical system, as well as the parameters of the 

observation model. The latter includes the best estimate of the stimulus given the population 

response, and the reliability of that “observation”—whereas the rEFH had to learn how to infer 

these values from the population response itself. Since EM is sensitive to the initial (random) 

values of the parameters it is to estimate, we present results for the best model from 20 random 

restarts (see Methods); the same was done for the rEFH. To determine what order of dynamics 

the rEFH has learned, we also compare against lower-order models trained with EM. The order 

of these models is denoted with a superscript (e.g., EM2). 
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Uncontrolled dynamical system. The generative model for the data appears in Fig 1A. 

Conceptually, the problem is to track the shoulder joint (Fig 1C). To encourage second-order 

behavior, the parameters of the system were chosen make it underdamped (as e.g. when the 

arm hangs downward and acts as a pendulum; see Methods), yielding trajectories like those 

shown in black in Fig 1D, and the proprioceptive responses shown in orange. The rEFH was 

trained as a density estimator on these responses and the recurrent activity of its own hidden 

units at the previous time step (Fig 1B). 

Error statistics for the various decoders are shown in Fig 1E. Performance of the rEFH exceeds 

that of the naïve, purely sensory decoder (PROP), and approaches that of the optimum and the 

(second-order) EM-trained model (EM2). The rEFH also outperforms the first-order, EM-trained 

model, EM1, showing that it has learned to keep track not just of past positions, but of past 

velocities as well. We explore below how it encodes position and velocity (Learned receptive 

fields and connectivity). 

We chose the dynamics of the underlying stimulus because they let us clearly see that the rEFH 

can learn a second-order model; that is, it learns to track the lawful changes in velocity, as well 

as position—even though only position information was available at each time step. But the 

results are robust across various dynamical models. Fig 2 shows results for 36 different 

dynamical systems which were created by varying the oscillator’s Fig 2A stiffness, Fig 2B 

damping, or Fig 2C moment of inertia (colors as in Fig 1E). For all of them, the rEFH 

outperforms the first-order model (EM1), and performs close to the second-order model (EM2). 

Controlled dynamical system. We now consider a system with inputs. Whereas the uncontrolled 

dynamical system, above, corresponds to the case where the arm is moved only passively by 

external forces, the controlled system corresponds to the more general case of self-motion. 

Controls are issued to the muscles of the arm by motor cortex, but a copy of these efferent 
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signals is also fed back to posterior parietal cortex, Fig 3A [21]. This reference copy, being 

transmitted by a population of neurons, is assumed to be a noisy representation of the true 

control. Nor, presumably, is its role as a control signal explicitly given; rather, the network must 

learn, without supervision, to interpret it as such. This is precisely the learning problem faced by 

our network model (Fig 1B). 

Realistic controls are correlated through time, so the control signal was given its own dynamics: 

a random walk with a very mild decay towards zero (see Methods). This resulted in trajectories 

like that in Fig 3E. The effect on angle can be seen in the corresponding trajectory of Fig 3C: 

here, the control is driving the trajectory increasingly negative (cf. the first and second trough) in 

spite of the damping and the restoring force. In general, since the control is a random walk 

rather than merely white noise, the changes it effects on the position trajectory tend to 

accumulate. 

Mean squared errors (MSEs) for the various filters of the controlled system are shown in Fig 3D. 

The naïve model that ignores dynamics (PROP) is again the worst, as expected. Here the 

optimal EM-trained model is third-order (EM3), since the second-order dynamical system is 

driven by a control with first-order dynamics. Again the rEFH performs close to this model, and 

outperforms the best lower-order model (EM2). No trained model quite matches the true model’s 

performance (OPT), which result appears to be robust (see error bars), and presumably owes to 

the shape of the objective function (e.g., the optimal solution may be separated from suboptimal 

local maxima by deep valleys of low likelihood solutions). 

So the rEFH has learned a third-order system. However, this does not per se show that it has 

learned to use the efference-copy population; it might, for example, simply attribute all input to 

the system as white noise. To demonstrate that it does learn to use the controls, we compare it 

to the best state estimates that can be made without efference copy. To produce such 
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estimates, we fit a sixth filter, OBS, via regression, with full access to the state as well as the 

proprioceptive responses, but forced to assume zero control input. The resulting performance 

(Fig 3D, yellow bar) is clearly inferior to the other dynamical models. 

Since the control signal is, like the state, only noisily observed by the network (via the efference 

copy), it is sensible to ask how well it can be decoded from the various models as well. And 

since the signal has its own (first-order) dynamics, it is possible for these models to make better 

estimates of the control at time t than can be made from the efference copy alone at t. Fig 3F 

shows that this is indeed the case. All the filters perform about equally well, in comparison with 

the non-dynamical decoding of the efference-copy population (“EfCp”), although the harmonium 

is slightly inferior. 

Distributions of performance across initializations and hidden-layer size. One known limitation 

on the learning capacity of the harmonium is the number of hidden units: the network requires 

sufficient representational power in this vector to encode the cumulants of the input 

distribution—in this case, the filter distribution. To determine what network size is necessary for 

maximal performance, we test a series of networks with systematically increasing numbers of 

hidden units. Because, however, the number of recurrent units must equal the number of hidden 

units, the ratio of hidden units to input units (recurrent, proprioceptive, and efference-copy) is 

necessarily upper bounded at unity. This asymptote presumably diminishes the returns of 

additional hidden units, even beyond those limitations imposed by the learning algorithm or the 

difficulty of the filtering task. 

For each of twelve sizes, we train 20 networks de novo, test them on a single fixed data set, and 

compute mean squared errors. The results are shown in Fig 4, where network sizes (abscissae) 

are given by the number of hidden units. For the uncontrolled network, Fig 4A, MSE of the best 

network (out of 20) clearly diminishes, asymptotically, with increasing numbers of hidden units. 
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Beyond about 180 hidden units, no improvement in MSE is produced. For the controlled 

network, which has more to learn, the effect is even more severe (Fig 4B): increasing the 

number of hidden units beyond about 180 results in decreasing performance for even the best-

performing networks at each network size. This suggests a limit to the complexity of the 

dynamical systems learned by this architecture, or with this learning procedure (for details of 

which, see Methods).  

On the other hand, rEFH learning appears to be more robust than EM learning, as can be seen 

in the box plots for the EM-based models (Fig 4). As with the rEFHs, 20 of each of the four EM-

based models were trained from scratch, resulting in the distributions shown in light red and 

blue in Fig 4A and 4B, (the narrowness of some of these distributions results in some very thin 

boxes). Although the EM algorithm guarantees convergence, it is only to a local (rather than 

global) optimum; which optimum is determined by the (random) initial parameters. The lower 

order EM benchmarks (light red boxes; EM1 in Fig 4A and EM2 in Fig 4B) do indeed learn 

robustly, achieving nearly the same performance for all initializations. But the models with the 

true dynamical order (blue; EM2 in Fig 4A and EM3 in Fig 4B) exhibit a large performance 

distribution. These models are capable of outperforming the rEFH, but the runs that do are 

outliers. Thus, the large majority of the true-order EM-based models, for both the controlled and 

uncontrolled dynamical system, perform only about as well as their lower-order counterparts, 

which is inferior to all 20 of the 180-unit rEFH models. These rEFHs show comparatively little 

variation in performance—although that variance increases with the number of hidden units 

beyond 180. 

How does the rEFH track the state? Optimal (or nearly optimal) position estimation for these 

dynamical systems requires tracking velocity and position, so we plot receptive fields (RFs) in 

position-velocity space. Now, for oscillatory dynamics, high speeds rarely co-occur with 

positions far from zero (equilibrium), which leaves the “corners” of such RFs empty. This 
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obscures the pattern of RFs and the corresponding state-estimation scheme learned by the 

rEFH. Therefore, for simplicity, we present results from a network trained on a third dynamical 

model (“nospring”): uncontrolled, and with no spring force (see Methods). (Similar results, albeit 

less clean, are observed in the corresponding analyses for oscillatory dynamics; see S3 Text in 

the supporting material.) In Fig 5A, the position-velocity receptive fields are plotted for all 225 

hidden units of this rEFH, arranged in a 15 × 15 grid. The ordinate of each subsquare 

corresponds to position (increasing from top to bottom), and the abscissa to velocity (increasing 

from left to right). The large majority of receptive fields are negatively sloped “stripes” in this 

space. Interestingly, they resemble in this the receptive fields of neurons in MSTd of a rhesus 

macaque trained to track moving stimuli [22]—although in that work there are positively-sloped 

stripes as well.Interpretation of these receptive fields is facilitated by an observation. If the 

velocity (ωt) is roughly constant over n time steps of length Δ, then: 
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the equation of a line in position-velocity space. Hence, such fields could be produced by 

neurons tuned simply for position at a delay, where the size of the delay ( )nΔ  determines the 

slope (negative because we have plotted position as increasing from top to bottom, to match the 

corresponding figure in [22]), and the “preferred” position determines the y-intercept. The 

equation is exact for n = 1; but to the extent that velocity is not constant, the receptive fields will 

be diminished—as seen in the more irregular and faded character of receptive fields with 

greater slopes. 

We therefore re-plot the receptive fields as a function of position only, but each at the time delay 

that maximizes mutual information between position and that hidden unit’s response (Fig 5C). 
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Units are ordered by preferred position (whereas units in Fig 5A were ordered by time delay). 

The resulting position tuning curves appear to tile space uniformly, with roughly constant 

receptive-field widths, suggesting that this is a concise description of the tuning curves that 

captures the computation being performed. As a final method of verification, we use these 

lagged-position receptive fields to generate idealized position-velocity receptive fields (Fig 5B; 

see Tuning analysis for details.) The match with Fig 5A is apparent. 

This result is, perhaps, unexpected. It is possible to represent (an estimate of) the current state 

of a second-order dynamical system compactly by encoding current position and the current 

velocity. But it is also possible to represent it—seemingly less efficiently—in terms of the past 

positions alone, with the weight on each position decaying exponentially as a function of the 

number of time steps into the past. The rEFH appears to have learned a representation of this 

second type. 

To determine if the weighting function applied to past positions by the rEFH does indeed 

correspond to such a scheme, we examine the distribution of “preferred” lags across hidden 

units (Fig 5D, center panel). Unsurprisingly, most units are tuned to the recent past, with an 

apparently monotonic decline into the past. Superimposed is the autocorrelation of the 

dynamical system on which the network was trained (see Methods), normalized to have the 

same integral as the histogram. Evidently, the distribution of lags is well tuned to the dynamics. 

To confirm the robustness of this finding, we trained four new rEFHs on four different dynamical 

systems, identical to the one under discussion up to the damping coefficient (frictional force). 

From left to right in Fig 5D, the dynamical systems were increasingly damped, resulting in 

longer autocorrelations (thick black lines). The temporal tuning of the rEFHs trained on these 

dynamical systems appears well matched in each case. 
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Responsiveness to instantaneous reliability. Thus, the rEFH tracks stimuli by encoding its 

position at various lags, with the number of units assigned to each lag decreasing exponentially 

with distance into the past, according to the autocorrelation of the signal. What is nevertheless 

not clear from Fig 5D is whether the rEFH’s weighting of past positions takes into account the 

instantaneous reliability of the proprioceptive encoding of joint angle. In our models, as 

(presumably) in the brain, instantaneous reliability varies because the proprioceptive report of 

joint angle is corrupted by Poisson noise. For Poisson spiking, the reliability—i.e., the inverse 

variance of the posterior distribution over joint location, conditioned on the spiking of all 

proprioceptive neurons—is proportional to the total number of spikes produced by the 

population at that time step. In the results discussed above, we also increased the fluctuations 

in this number by additionally varying the “gain” of the proprioceptive population, i.e., the single 

parameter that sets the height of all the tuning curves (see Input-data generation). This is meant 

to model other random changes in the reliability of the proprioceptive report. Thus the optimal 

weighting of past position information, although on average an exponentially decaying function 

of time delay, will at any particular moment vary as a function of the recent, unpredictable, 

history of reliabilities: higher weights should be assigned to those time steps when the 

proprioceptive units had a collectively higher average firing rate, and vice versa. A network that 

ignores such fluctuations will perform well, but suboptimally, perhaps explaining the (small) 

discrepancy between the MSEs for the rEFH and EM2 seen in Fig 1E. Here we show that the 

rEFH is indeed sensitive to instantaneous reliability. We retest the network of the section 

Uncontrolled dynamical system on noiseless sensory data, i.e., using the mean spike counts of 

the proprioceptive neurons rather than Poisson samples drawn from those means. This allows 

us to set the total spike count essentially directly. In this noiseless test, a higher total spike 

count does not correspond to a more reliable signal: the signal is perfectly reliable for all spike 

counts. Hence for any total spike count, minimal (zero) error could be achieved by a “filter” that 

relied entirely on the current sensory input. Nevertheless, the optimal filter for the data on which 
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the rEFH was trained, viz., OPT, will not rely entirely upon this current sensory information, but 

rather will weight it in proportion to the total spike count. In consequence, OPT will achieve 

lower MSEs on data with greater total spike counts, since for such data it will lean more heavily 

on the perfect sensory information. This is the pattern observed in Fig 6A. If the rEFH is also 

treating total spike count correctly—i.e., if it is properly sensitive to instantaneous reliability—its 

MSEs will exhibit a similar pattern. And indeed, they do (Fig 6B). 

Here we emphasize again that, for the optimal filter (as well as OBS and EMn), we provided the 

transformation from total spike count to sensory reliability, whereas the the rEFH had to learn 

this transformation. Likewise, in engineered solutions to tracking problems, the Kalman filter is 

usually simplified to learn a single, average reliability for all time. We have demonstrated that 

the rEFH is not similarly limited, since it can learn to use instantaneous indicators of reliability if 

they are present in the observations. 

Emergence of receptive fields. Since velocity is not reported directly by the sensory 

(“proprioceptive”) population, the network will not immediately develop tuning for it. Fig 7 

illustrates its emergence across training trials. (We return here to the “no-spring” model for 

comparison with Fig 5A.) Since position information is a useful “feature” for explaining the 

proprioceptive inputs, the hidden units learn to extract it after just 100 batches of training (Fig 

7A). But information that is in the hidden units will also appear in the input, at a one-step time 

delay, via the recurrent units (see Fig 1B). So at this point in training, the input contains 

information about both the current position (in the proprioceptive population) and about the past 

position (in the recurrent population). This makes extraction of velocity information possible. It is 

useful because the stimuli obey second-order dynamics: knowing the relationship between past 

and present position allows each to provide information about the other, yielding overall superior 

estimates.  
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And indeed, by 200 batches of learning, some velocity tuning appears, evidenced by the sloping 

of receptive fields in position-velocity space, Fig 7B.  

But these units look back no more than a few steps in time. By 1000 batches (Fig 7C), strong 

velocity tuning is evident, although the full distribution of lags (slopes) has yet to emerge (cf. Fig 

5A, which is after some 100,000 batches of training).  

Organization of the learned weight matrix. The network learns to model the dynamics by making 

changes to the synaptic connection strengths, summarized by the weight matrices Wprop 

(sensory to hidden) and Wfb (recurrent to hidden). To understand better the mechanism of the 

network we examine these matrices (Fig 8), again for the “no-spring” model. (The corresponding 

figure for the non-zero stiffness model, slightly more difficult to interpret, is shown in S3 Text.) In 

the arbitrarily ordered form in which they are learned, they are difficult to decipher, but 

interesting patterns emerge when they are reordered by the parameters of the receptive fields. 

The reordering is applied to both the hidden and the recurrent units. (The original, topographical 

ordering of the sensory units is retained.) First, reordering by the hidden units’ preferred 

stimulus angles (“PA”), Fig 8A, reveals that the difference in PA between two hidden units 

dictates the sign of their connection. Hidden units with similar PAs have positive connections, 

and units with “out of phase” (recall that the stimulus is a circular variable) PAs have negative 

connections. This results from the continuity of the stimulus trajectories: the network “expects” 

the stimulus to move from any given position (encoded in the recurrent units) to a nearby one 

(encoded in the hidden units). Second, we reorder the units by “preferred lag,” τ  — i.e., the 

time delay at which mutual information between sensory input and hidden-unit activity is 

maximal (Fig 8B). Again, units with similar τ are preferentially wired together. 

 

 



 

21 

Cortical implementation 

More than one cortical area is thought to subserve object tracking. Since we have in this study 

focused on the task of tracking one’s own limbs, we consider posterior parietal cortex (PPC), 

which is thought to be responsible for this task [10, 11]. The computation may well be distributed 

across the PPC, but we focus on just one that has been particularly implicated [11], Brodmann 

Area 5. Our aim is to show that our neural network and its learning scheme are consistent with 

what is known about the connectivity of Area 5, both inter laminar and interareal. In particular, 

we consider its connections with the primary motor area (M1) and primary somatosensory 

cortex (S1). Our proposed implementation is speculative and not the only one possible; e.g., we 

identify the “recurrent” units with another layer of Area 5, but they might alternatively correspond 

to another area of PPC. 

Fig 9A summarizes the training procedure from an algorithmic perspective (see Methods for 

details). In Fig 9B, as in Fig 9A, input comes from two sources. Feedforward, proprioceptive 

input ( )tRθ  from primary somatosensory cortex, S1 (especially BA3a), projects to layer IV [23]. 

A copy of the efferent command ( )utR feeds back from M1 to layer I of Area 5 [23]. Layer II/III of 

Area 5 in turn projects forward to M1 [24]. Layer I is not believed to contain cell bodies [25], so 

we take these to be the terminal branches of the apical dendrites of layer II/III cells (which are 

also lightly labeled by anterograde tracers injected in M1 [23]). Within Area 5, we propose that 

the temporally delayed recurrency (Zt−1) of the rEFH is provided by the loop from layer II/III down 

to VI, then up to V, before modulating the activity of layer II/III neurons, consistent with the 

anatomy of Area 5 [25]. Layer IV and III, as well as V and III, also have reciprocal connections 

[25], as required for the rEFH training procedure. The latter loop has in fact been hypothesized 

to give rise to rhythmic activity in rat parietal cortex [26]. 
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According to the learning and filtering schemes of our model, the temporal flow of information is 

as follows. Sensory input ( )trθ  and efference copy ( )utr arrive at, respectively, layer IV of BA5 

and the feedback layer (presumably VI) of M1. At the same time, a “copy” (which could be any 

information-preserving transformation) of activity from layer II/III of BA5 (zt-1) passes down to 

layer V. Next, the spiking in these layers (M1 layer VI, BA5 layer IV, BA5 layer V) drives spiking 

(zt) in BA5 layer II/III. These responses encode, according to themodel, the optimal estimate of 

the limb, and this information will ultimately become the temporally delayed recurrent activities 

identified above. For learning, however, it is also necessary that this activity drive spiking in M1 

( )ˆutr , BA5 layer IV ( )ˆytr , and BA5 layer V ( )ˆtz , through the reciprocal connectivity lately noted. 

A “copy” of the layer II/III activity ( )tz  is simultaneously propagated down to layer VI. Lastly, the 

activities in M1, BA5 layer IV, and BA5 layer V again drive activity ( )ˆtz in BA5 layer II/III. At the 

same time, the “copy” of layer II/III activity ( )tz is communicated up to layer V. 

Discussion 

Summary of results 

We have shown that a neural network (the “rEFH”) with a biologically plausible architecture and 

synaptic-plasticity rule can learn to track moving stimuli, in the sense that its downstream 

(“hidden”) units learn to encode (nearly) the most accurate estimate of stimulus location 

possible, given the entire history of incoming sensory information (Figs 1 and 2). This requires 

learning a model of the stimulus dynamics. This is (as far as we know) the first biologically 

plausible model that has been shown to learn to solve this task. Moreover, the network learns 

the reliability of the sensory signal: the trained network leans more heavily on the internal model 

when the sensory signal is less reliable, and more heavily on the sensory signal when it is more 

reliable (Fig 6). 



 

23 

We are particularly interested in tracking the state of one’s own limbs. Here, additional 

information about stimulus location is thought to be available in the form of a “copy,” relayed to 

the posterior parietal cortex, of the efferent motor command [21]. And indeed, when such 

signals are available to our network, it learns to make use of them appropriately to track the arm 

more precisely—in spite of the fact that none of the incoming signals is “labeled” according to its 

role (Fig 3). Although an expectation-maximization (EM) algorithm can sometimes learn a 

Kalman filter that noticeably outperforms the best rEFH on these data, it usually does not (Fig 

4). That is, learning in the rEFH is more robust than EM in the sense that the variance in 

performance across models trained de novo is smaller, albeit at the price of a bias towards 

worse models. Finally, and surprisingly, the downstream neurons of the trained network track a 

moving stimulus by encoding its position at various time lags (Fig 5). 

Related work 

The earliest implementation of dynamical state estimation (“filtering”) in neural architecture 

comes from Rao and Ballard [27]. Their model, like ours, assigns a central role to recurrent 

connections, but as predictive coders rather than simply delayed copies of previous neural 

states. Likewise, the network connectivity is acquired with an unsupervised and local learning 

rule, a variant on EM. However, the authors do not train their network on moving objects or 

moving images, presumably because convergence of the neural state under their learning 

scheme is slow compared with any plausible stimulus dynamics. Instead, the connectivity is 

acquired on static images. Performance on state-estimation tasks is not tested. 

Several groups have hand wired neural networks to act as state estimators [7, 8, 28]. Although 

these papers do not address our central concern, the learning problem, it is nevertheless useful 

to compare the resulting architectures with our rEFH. For example, Beck and colleagues 

constructed a neural network to implement the Kalman filter on linear probabilistic population 
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codes, as in this work, and showed its performance (measured in information loss) to be nearly 

optimal. From analytical considerations, the authors showed that the required operations on 

neural firing rates are weighted summation (as in our network) and a quadratic operation (that 

acts like a divisive normalization in the steady state). In our rEFH, on the other hand, the only 

nonlinearities are element-wise: interaction between inputs is always in the form of a weighted 

sum. That the rEFH can nevertheless filter (nearly) optimally is possible because we do not 

require, as they do, that the output population encode information in the same way as the inputs 

(sc., that the posterior distribution over the stimulus have linear sufficient statistics; see S4 

Text). This critical difference provides the basis for an experimental discrimination between the 

respective models. Likewise, filters have been hand wired into attractor networks [28] and spike-

based (rather than rate-based) networks [8]. The latter in particular argues that the precise 

arrival time of spikes contains information about the stimulus, rather than the average rate 

across time, as in in our model. 

An approach that does include learning comes from Huys, Zemel, Natarajan, and Dayan [29, 

30]. The authors formulate the problem in terms very similar to ours, but they allow more 

general dynamical systems generated by Gaussian processes, and the basic unit of information 

is spikes rather than spike counts (although approximations that ignore precise arrival times 

lose little information [29]). The most significant difference with our work is that the authors learn 

the parameters of their network with a supervised, non-local rule, which they do not consider to 

be a biological mechanism. But again the comparison is instructive. We are able to formulate an 

unsupervised rule because we approach the filtering problem indirectly: Natarajan and 

colleagues require the posterior distribution, conditioned on hidden-unit activities, to be 

factorizable over hidden-unit spikes (so that a third layer can consider those spikes separately), 

and then force it to match the true filtering distribution by directly descending the KL divergence 

between them [30]. We, on the other hand, force the network to be a good model of its incoming 



 

25 

data—which, when some of those data are past hidden-unit activities, achieves the same end. 

In the machine-learning literature, Hinton and colleagues have proposed three variants on a 

theme quite similar to ours [31–33], although different in important ways. Most importantly, in all 

three, the past hidden-unit activities are treated by the learning rule as (fixed) biases rather than 

as input data; i.e., they cannot be modified during the “down pass” of contrastive-divergence 

training. That these activities ought to be treated as data, we argue more rigorously in a 

forthcoming work. 

The earliest variant [31], the “spiking Boltzmann machine,” is, like ours, a temporal extension of 

the restricted Boltzmann machine that is trained with the contrastive-divergence rule. Hidden 

units are directly influenced by past hidden-unit activities, as with the rEFH, but possibly from 

temporal distances τ  that are greater than one time step (contra the rEFH). However, the 

weights from a particular “past” hidden unit at various delays (e.g., from zt−nτ
i ,n ∈ 1,2,3,...{ }  to 

j
tz  are constrained to be identical up to a fixed (not learned) exponential decay. 

The motivation was to model the influence of past spikes in a biologically plausible way: 

Whereas in our rEFH, the (one-time-step delayed) past hidden activities are maintained in a 

separate population of neurons (Fig 9), in the “spiking Boltzmann machine” their effect on 

current hidden units is interpreted simply as the decaying influence of their original arrival. This 

makes it plausible, unlike in the rEFH, to include influences at delays greater than one time 

step. On the other hand, it necessitates treating those effects as biases rather than data. It is 

difficult to judge the limitations this imposes on the model, since the authors do not quantify its 

performance. However, they do investigate more thoroughly performance of a similar, but more 

powerful network. The “temporal restricted Boltzmann machine” (TRBM) [32] is a spiking 

Boltzmann machine without the constraint that the weights decay exponentially backwards in 

time; instead, they are learned freely and independently for all time. The order of the dynamical 
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system that can be learned by this network turns out, unlike ours, to be tied toτ : TRBMs with τ

= 1 (like the rEFH) can learn only random-walk behavior (first-order dynamics) [33]. This can 

(presumably) be overcome by including connections back as many time steps as the order of 

the system to be learned, but it is not obvious what biological mechanism could maintain copies 

of past activities at distant lags, or determine a priori how many such lags to maintain. The 

same authors show that this problem can be alleviated with a variant architecture, the “recurrent 

temporal RBM” (RTRBM) [33], but it requires a non-causal learning rule (backpropagation 

through time), again making it a poor model for neural function. For neither model do the 

authors precisely quantify its filtering performance; we do in a forthcoming study.  

Implications of the model 

Our simulations demonstrate three things: First, the rEFH is capable of learning to “track” 

moving stimuli, i.e. to estimate their dynamical state, and nearly as well as an optimal algorithm, 

as has been seen behaviorally in humans [34]. In fact, the network learns to encode the full 

posterior distribution over the stimulus, rather than just its peak: although we did not show it 

directly, it must, since the variance of this (Gaussian) distribution is required to combine properly 

the previous best estimate with the current sensory information. And rather than relying on a 

fixed estimate of sensory reliability, the network learns to take into account instantaneous 

changes in it (Fig 6). 

Second, the network does not require a special architecture or ad hoc modifications. It is, rather, 

identical, up to the choice of input populations, to the network and learning rule in our previous 

work [4]. Thus, if the input populations are proprioceptive and recurrent units, it will learn to 

estimate dynamical state; if they also include efference copy, it will learn the influence of motor 

commands on stimulus dynamics. If they are proprioceptive and visual reports of a common 

stimulus, it will learn to perform multisensory integration; if a gaze-angle-reporting population is 

also present, to transform the visual signal by that angle before integrating (“coordinate 
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transformations”); if the stimulus distribution is non-uniform, to encode that distribution [4]. (We 

have shown elsewhere, in terms of information theory, why this is the case [9]. For further 

discussion of the relationship between the static and dynamical computations, see S2 Text.) 

Thus, the network provides a very general model for posterior parietal cortex, where some 

combination of all of these signals is often present. Third, the model makes some predictions 

about the encoding scheme, receptive fields, and connectivity of cortical areas that track 

objects. As with all models, we take certain elements of ours to be essential and others to be 

adventitious. That learning in posterior-parietal circuits can be well described as a form of latent-

variable density estimation, for example, is central to our theory; but the precise form of the 

learning rule (“one-step contrastive divergence”), although plausible, is not. Our theory requires 

that sensory neurons encode distributions over stimulus position, but the representation scheme 

need not be probabilistic population codes of the Pougetian variety [2]. Here we list three 

predictions that do follow from essential aspects of the network. 

1. The network learns to track by encoding past positions. This is a non-obvious scheme (it 

is not, e.g., the one used by the Kalman filter) and apparently results from the fact that 

only position information is reported by the sensory afferents. It is possible that such 

receptive fields (Fig 5A) are in fact found in MSTd of monkeys that have been trained to 

track moving objects [22]. Now, in many circuits, velocity is detected at early stages. But 

even when velocity is directly reported by the inputs to an rEFH, tuning to past positions 

still appears, albeit with lower prevalence (see S3 Text). More generally, we predict that 

higher derivatives (e.g., acceleration), especially those not directly available in sensory 

input, will be encoded via delayed, lower derivatives (e.g., velocities)— as long as those 

higher-order states have lawful dynamics. 

2. During learning, receptive fields for position emerge before those for velocity. This is a 

necessary consequence of density estimation on recurrent units. A similar proviso 



 

28 

attaches: where velocity information is directly reported, it is acceleration-coding that will 

emerge over time.  

3. The use of delayed, feedback connections in neural circuits is a mechanism for learning 

dynamical properties of stimuli. Under this prediction, primary sensory areas that 

process information with very little temporal structure—e.g., smell—will lack the dense 

feedback found in, e.g., visual areas. Alternatively, the recurrency might be identified 

with interlaminar, rather than interareal, structure, as we have hypothesized (Fig 9B)—

which would explain why piriform cortex only needs three layers. 

Neural computation in posterior parietal cortex 

More generally, our investigation was motivated by two main ideas. The first is that populations 

of neurons, in virtue of their natural variability, encode probability distributions over stimuli 

(rather than point estimates) [1, 2]. Encoding certainty or “reliability” is a necessity for optimal 

integration of dynamic sensory information, since it determines the relative weight given to (a) 

current sensory information and (b) the prediction of the internal model. But rather than explicitly 

encoding the reliability of the stimulus location—e.g., via neurons that are “tuned” to reliability, 

as other neurons are tuned to location itself—this reliability is identified with the inverse variance 

of the posterior distribution over the stimulus, ( )|p s r , conditioned on the population activity [2]. 

This distribution arises as a natural consequence of the (putative) fact that neural responses are 

noisy, and can therefore be characterized by a likelihood, ( )|p r s [1]. If reliability were not 

encoded this way, our learning scheme would not work: it would have no way of knowing what 

to do with those reliabilities, which would be to it indistinguishable from (e.g.) the location of 

another stimulus.  
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The second idea is that higher sensory areas, like posterior parietal cortex and MSTd, can 

encode more precise distributions over the location (e.g.) of a stimulus than that provided by 

their sensory afferents at any given moment in time. This is due, essentially, to the continuity of 

the physical world: at successive moments in time, objects tend to remain near their previous 

positions. More precise localizations can consequently be achieved by a form of averaging that, 

because objects do move, accounts for the predictable changes in position from moment to 

moment. This requires learning a model of those predictable changes. The rich statistical 

structure of the sensory afferents—including efference copy of motor commands that may be 

influencing the evolution of the stimulus to be tracked, as when tracking one’s own limbs—

makes it possible to learn the model from those inputs alone. This unsupervised learning is a 

much more efficient approach than trying to use the few bits of information that may be available 

in the form of reward: very few rewards can be reaped before an animal can control its own 

limbs. In the special case of linear dynamics and Gaussian noise, these two problems—learning 

a dynamical model, and filtering in that model—have known algorithmic solutions: an 

expectation- maximization algorithm and the Kalman filter, respectively. Rather than try to map 

operations on vectors and matrices directly onto neural activity and learning rules, we have 

taken a more general approach, showing how a rather general neural-network architecture that 

tries to build good models for its inputs can learn to solve the problem, if those inputs are 

suitably chosen: temporally delayed recurrent activity from downstream units must be among 

the inputs. Our network learns by a local, Hebbian rule operating on spike-count correlations, 

although it remains to relate these to more specific biological learning rules, like STDP. 

Methods 

Notation is standard: capital letters for random variables, lowercase for their realizations; 

boldfaced font for vectors, italic for scalars. Capitalized italics are also used for matrices 

(context distinguishes them from random scalars). 
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Input-data generation 

We describe the most general dynamical system and observation model to be learned: a 

controlled, second-order, discrete-time, stochastic, linear dynamical system, whose 

“observations” or outputs come in the form of linear probabilistic population codes [2]; cf. Fig 3A. 

The uncontrolled model of the section Uncontrolled dynamical system (Fig 1A) is a special case 

(see below). We interpret the plant to be a rotational joint, so distance is in units of radians; and 

the control to be a torque, hence in Joules/radian. 

The primary rationale for our choice of dynamics and observation model was to show what 

kinds of computational issues the recurrent, exponential-family harmonium (rEFH) can 

overcome— issues which it must overcome if it is to be a good model for the way cortex learns 

to solve the problem. In particular, it might appear that the rEFH can learn relationships only 

between its current inputs and the previous ones, since its recurrent inputs are from the 

previous time step only (see Fig 9A). Therefore, we let the inputs report position only, but make 

the (hidden) dynamics second-order: velocity, as well as position, depends on previous position 

and velocity. If the rEFH can learn to associate only current and previous inputs, it can learn 

only first-order dynamics from these data. Furthermore, to clearly distinguish models that have 

learned second-order dynamics from those that have learned only a first-order approximation, 

we let the true dynamics be a (damped) oscillator (first-order systems cannot oscillate). 

Although the demonstration is in terms of positions and velocities, the point is more general: if 

the rEFH can learn second-order dynamics from position reports, it can learn higher temporal 

dynamics from lower-order data more generally. 

The controlled, single-joint limb obeys: 

 ( ) ( )1 | , ,t t t t t o op u N A buθ θ θ µ+ = + + Σ  (1) 
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where the vector random variable !! consists of angle and angular velocity. The control signal 

(torque) has itself first-order dynamics: 

 ( ) ( )21 | ,t t t u up u u N uα µ σ+ = +  (2) 

making the combined system third-order. The initial state and control are also normally 

distributed: 

 ( ) ( ),o o o op u Nθ ν= ϒ   (3) 

The current (time t) joint position and control are noisily encoded in the spike counts of 

populations of neurons, whose Gaussian-shaped tuning curves (fi) smoothly tile their respective 

spaces, proprioceptive (angle) and control (torque). Spike counts are drawn from (conditionally) 

independent Poisson distributions: 

 
p rt

o |θt ,gt
θ( ) = Pois ri ,t

o | gt
o fi Cθt( )⎡

⎣
⎤
⎦

i
∏ ,      p rt

u |ut ,gt
u( ) = Pois ri ,t

u | gt
u fi hrt( )⎡

⎣
⎤
⎦

i
∏

 
(4) 

with C = [1 0] and h = 1. Here the gt are “gains,” scaling factors for the mean spike count [2, 4]. 

Because the signal-to-noise ratio increases with mean for Poisson random variables, these 

gains essentially scale (linearly) the reliability of each population. Therefore, in order to model 

instant-to-instant changes in sensory reliability, the gains of each population were chosen 

independently and uniformly: 

 ( ) ( ) ( ) ( )6.4,9.6 ,            6.4,9.6 .u
t tp g u p g uθ = =   (5) 

Since the discrete time interval for a single draw from Eq. 4 is 0.05 s (see below), these gains 

correspond to maximal firing rates between 130 and 192 spikes/second, reasonable rates for 
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neurons in cortex. The joint distribution of the states, controls, their observations, and the gains 

is the product of Eqs 1–5, multiplied across all time. 

In accordance with the broad tuning of higher sensory areas, the “standard deviation,” σtc, of the 

tuning curves, 

( ) ( )2
2exp ,

2
i

i
tc

x
f x

ξ

σ

⎧ ⎫−⎪ ⎪
= −⎨ ⎬

⎪ ⎪⎩ ⎭
 

was chosen so that the full-width at half maximum is one-sixth of the space of feasible joint 

angles/torques, for all preferred stimuli iξ . However, joints and torques can in fact leave these 

“feasible spaces”: Although the system was designed to be stable (eigenvalues of the state-

transition matrix are within the unit circle), trajectories are nevertheless unbounded, since the 

input noise is unbounded (normally distributed). We chose not to impose hard joint and torque 

limits, because this would make the dynamics nonlinear, vitiating the optimality calculations. 

Instead, stimuli beyond the feasible space simply “wrap” onto the opposite side of encoding 

space; that is, each population tiles its corresponding stimulus modulo the length of its feasible 

space. 

But for the dynamical systems on which model performance was tested, parameters were 

chosen to make wrapping unlikely (but cf. the “no-spring” model described below). In particular, 

we used the discrete-time approximation to a damped harmonic oscillator, i.e., 

m!!θ + c !θ + kθ = u :   

1 0
,        b= ,

1
A k c

m m m

Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Δ⎢ ⎥ ⎢ ⎥− Δ − Δ
⎣ ⎦ ⎣ ⎦
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with moment of inertia m = 5 2 2. /J s rad , viscous damping c = 0.25 2. /J s rad , ideal-spring 

stiffness 23 /k J rad= , and sampling interval 0.05 sΔ = . This makes the system stable and 

under-damped (oscillatory). The control decay, α, in Eq 2 was set to 0.9994, making the 

dynamics close to a random walk, but mildly decaying towards zero. 

These parameters and the noise variances were chosen so that the system could not be well 

approximated by a lower-order one—i.e., so that the uncontrolled and controlled systems were 

“truly” second- and third-order (respectively). This was accomplished by ensuring that the 

Hankel singular values [14] for the system, with output matrix C = [1 0] and input matrix set by 

the noise variances, were within one order of magnitude of each other; that is, ensuring that the 

transfer function from noise to joint angle had roughly equal power in all modes. For the 

uncontrolled system, this was achieved with [ ]( )5 7,5 5o E EdiagΣ = − − ; for the controlled 

system, [ ]( )5 5,1 6o E EdiagΣ = − −  and 2 7.5 4u Eσ = − . While this last choice of noise is large 

enough to ensure that the control’s contribution to the dynamics is significant, it is also small 

enough to keep wrapping rare. This facilitates the comparison between the benchmark models 

(see below), which are acquired from non-wrapped trajectories, and the rEFH, which learns 

from sensory inputs with periodic tuning curves. That is, for fast enough trajectories on a circle, 

the dynamics would no longer be locally linear, and the learning and filtering tasks no longer 

comparable. 

The only other difference between the uncontrolled and controlled dynamical systems was that 

the former had, of course, no control signal (or simply b = 0) and no control observations 

(efference copy). For all models, the bias terms were set to zero: 0θµ = and 0uµ = . The initial 

positions for all trajectories were drawn from a uniform distribution across joint space (shoulder 

[ ]3, 3θ π π∈ −  radians; Fig 1C), up to a margin of 0.05 radians from the joint limits (to 
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discourage state transitions out of the feasible space); for EM learning (see below), this was 

treated as an infinite-covariance Gaussian centered in the middle of joint space. The initial 

velocity and initial control were normally distributed very tightly about zero, with a standard 

deviation of 5 5E −  (rad/s and J/rad, resp.). Hence [ ]( )E0, ,5 10o oY diagν = = ∞ − . The range 

(modulus) of feasible controls is [ ]1.25,1.25 /u J rad∈ − . 

For the receptive-field (RF) analyses, we used a third dynamical system. In the harmonic 

oscillator, whether driven or undriven, the non-zero stiffness (k above) couples velocity to 

position, making high speeds and far-from-zero positions unlikely to co-occur. This makes the 

RF analysis unreliable in the “corners” of position-velocity space, and the overall velocity-

encoding harder to interpret. For the analyses presented in Figs 5, 7 and 8, therefore, we 

trained a (third) rEFH on a simplified version (“no-spring”) of the uncontrolled dynamics, setting 

the spring constant to zero (eliminating oscillations). To encourage full exploration of the space, 

the variance of the state-transition noise was also increased by a factor of 50. The more and 

less auto-correlated variants of Fig 5D were created by simply scaling up or down the damping 

coefficient: from left to right, c = 0.25/4, 0.25/2, 0.25, 0.25 * 2, 0.25 * 4. For completeness, we 

nevertheless include, in the Supplement, the harder-to-interpret RF analyses for the rEFH 

trained on the (undriven) harmonic oscillator (S3 Text). 

The recurrent, exponential-family harmonium (rEFH) 

The network is very similar to that in [4], but we repeat the description here briefly. The 

harmonium is a generalization of the restricted Boltzmann machine (RBM) beyond Bernoulli 

units to other random variables in the exponential family [3]. That is, it is a two-layer network 

with full interlayer connections and no intralayer connections, which can be thought of as a 

Markov random field (undirected graphical model) or as a neural network. In our implementation 

(see Figs 1B and 3B), hidden units (turquoise, Zt) and recurrent units (dark turquoise, Zt−1) are 
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binary (spike/no spike), and the “proprioceptive” (orange, o
tR ) and “efference-copy” (purple, u

tR  

) populations are non-negative integers (spike counts). For all networks, the number of recurrent 

units is the same as the number of downstream or “hidden” units, because recurrent units at 

time t carry the activities of the hidden units at time t − 1—making the harmonium recurrent 

through time (rEFH). We chose Nhid = Nrecurrent = 240 for the network trained on the uncontrolled 

system, and Nhid = Nrecurrent = 180 for the controlled system. We used fifteen proprioceptive units 

(Nprop) and, for the network trained on the controlled system, fifteen efference- copy units (Nefcp), 

so the total number of “observed” (or “input”) variables was 255 = Nrecurrent + Nprop for the 

uncontrolled model and 210 = Nrecurrent + Nprop + Nefcp for the controlled model. 

During training and testing, the layers of the rEFH reciprocally drive each other, yielding 

samples from the following distributions: 

Zt ∼ q zt | zt−1,tt
θ ,rt

u( ) = Bern zt{ }i |σ Wfbzt−1 +Wproprt
θ +Wctrlrt

r +bhid{ }
i( )⎡

⎣⎢
⎤
⎦⎥

i

Nhid

∏

Zt−1 ∼ q zt−1 | zt( ) = Bern zt−1{ }i |σ Wfb
T zt +bfb{ }

i( )⎡
⎣⎢

⎤
⎦⎥

i

Nhid

∏

Rt
θ ∼ q rt

θ | zt( ) = Pois rt
θ{ }
i
| exp Wprop

T zt +bprop{ }
i( )⎡

⎣⎢
⎤
⎦⎥

i

N prop

∏

Rt
u ∼ q rt

u | zt( ) = Pois rt
u{ }
i
| exp Wefcp

T zt +befcp{ }
i( )⎡

⎣⎢
⎤
⎦⎥

i

Nefcp

∏

 

(6a) 

(6b) 

(6c) 

(6d) 

which corresponds to Gibbs sampling from the joint distribution represented by the harmonium, 

( )1, , , ; ,u
t t t tq z z r t W bθ

− . The letter q is used for the probability density function assigned by the 

rEFH to distinguish it from the true distribution over the observed variables, ( ), u
t tp r rθ . 

Here the notation {x}i means the ith element of the vector x; the matrices W and vectors b are the 

synaptic connection strengths (“weights”) and biases, respectively; and the neural nonlinearities, 
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the logistic ( ) ( )( )1/ 1 xx eσ = + and exponential functions, were chosen to produce means for 

each distribution that are in the appropriate interval ([0, 1] and +° , resp). The entire procedure 

is depicted graphically in Fig 9A. 

Training. Although the ultimate goal of training is to make the network able to solve the filtering 

problem, this is achieved indirectly by making the harmonium a good model for the data on 

which it was trained. That is, the harmonium should assign probability (q) to the observed data 

(Y) that matches the probability with which they actually appear (p); in short, the goal is to 

achieve: 

 q(y;W ,b) = p y( )   (7) 

equality between the “model distribution” and “data distribution,” by adjustment of the weights 

and biases of the network. In our case, Y = [Yo,…, YT], a collection of observations across time, 

where intuitively the observations at time t are the responses of the proprioceptive and 

efference-copy populations, , u
t t tY R Rθ⎡ ⎤= ⎣ ⎦. However, these random variables are not 

independent across time; that is ( ) ( )0 0, ,..., , ,u u u
T t t tt

p r r r r p r rθ θ θ≠∏ . In order, then, to make 

possible incremental training—weight changes without first collecting population responses for 

all time, [0, …, T]—we train on the augmented observation vector: 

 1,R , ,u
t t t tY Z Rθ

−⎡ ⎤= ⎣ ⎦  
(8) 

where Zt−1 are the hidden-unit activities at the previous time step. Intuitively, the addition of 

these recurrent activities renders the data independent because they recursively accumulate all 

the information contained in their inputs [9]. 
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Weight changes are made proportional to the approximate gradient of a function (“onestep 

contrastive divergence,” CD1) that has Eq 7 at its minimum [12, 13]. In exponential family 

harmoniums, following this gradient is particularly simple: Stimuli in the world drive the input 

populations (y, Eq 4), which drive the hidden units (z, Eq 6a), which reciprocally drive the input 

populations ( ŷ , Eqs 6b, 6c and 6d), which drive the hidden units once more ( ẑ , Eq 6a); after 

which parameters are changed according to:  

 ˆ ˆˆ ˆ,                    ,                        T T
y zW yz yz b y y b z zΔ ∝ − Δ ∝ − Δ ∝ −  (9) 

Note that the learning rule is local and Hebbian (correlational). The entire procedure amounts to 

taking a full step of Gibbs sampling in a Markov chain that has been initialized at a vector 

sampled from the “data distribution” p, and then changing weights so as to penalize the network 

for drifting away from the data distribution. In practice, we depart from Eq 9 by using 

“momentum” and “weight decay” [15], as is standard in neural-network training. Our choice of 

momentum and decay make this equivalent to low-pass filtering the learning signal (the right-

hand sides of the equations) with an overdamped second-order system before making weight 

changes. Biologically, it corresponds to changes in synaptic strength having their own intrinsic 

dynamics. 

Training took place in “epochs.” Data in each epoch consisted of 40,000 vectors: 40 trajectories 

of 1000 time steps apiece, each vector consisting of the current sensory response 

(proprioceptive and efference-copy) and the previous hidden-unit activities (“recurrent”; see Fig 

3B). On the initial time step, the recurrent units were set to all zeros and drove no weight 

changes. In order to accelerate convergence, and although biological implausible, weight 

changes were made on “minibatches” of 40 input vectors, each of which corresponded to the 

same time point, but from the 40 different trajectories. Fresh data (40 new trajectories) were 

generated every five epochs. Learning rates (!) also decayed across epochs. For the rEFH 
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trained on an uncontrolled dynamical system, the total number of epochs was 120, and the 

decay was exponential: for the kth epoch, 1 1
01.1kk

− −=Ú Ú . For the case of controlled dynamics, the 

network was trained for 1200 epochs, with the reciprocal learning rate growing according to a 

sigmoidal function: Uk
−1 =

1000
1+ exp −k / 8+7.5{ }

+
1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟U0

−1  (The numbers were chosen so that the 

sigmoid approximately matches the exponential growth for the first 120 epochs, although their 

exact values are not critical.)  

Testing. Filtering was tested on a new set of 40 trajectories (40,000 vectors). At each time step, 

the current “sensory” (proprioception and efference copy) and recurrent responses were fed 

forward to the hidden layer of the network, as in training. Unlike training, however, no samples 

were taken from this vector of means; instead, the real-valued vector was itself returned as the 

recurrent response. This is equivalent to taking several (~15) samples and averaging [4]; the 

means themselves were used to simplify presentation of the results, since they correspond to 

the maximum achievable performance of the network. 

Formally, the solution to the filtering problem is the optimal posterior distribution over the current 

stimulus location, given all the observations up to this point in time: ( )0 0| ,..., , ,...u u
t t tp r r r rθ θθ . For 

the controlled dynamical system, we also ask about the posterior distribution over the controls, 

( )0 0| ,..., , ,...u u
t t tp u r r r rθ θ , since they are observed only noisily at each time step. We discuss 

optimality below, but note here that in our case these distributions are Gaussian, so their only 

non-zero cumulants are mean and covariance. Generically, proving optimality of the harmonium 

would require showing that both these cumulants can be recovered from its hidden units at 

every point in time; but in the present case it is only necessary to decode the posterior mean, 

since it is impossible for the network to keep track of the mean without also keeping track of the 
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covariance: incorrect estimates of the latter would result in mis-weighting of the relative 

reliability of current sensory information and current filter estimate, resulting in suboptimal 

inference of the mean at the next time step. Decoding the rEFH’s hidden units exploits a trick 

[4]. The representational space of the hidden units is obscure; therefore, the hidden unit 

activities (a real-valued vector) are passed back down through the network, i.e. into the space of 

the inputs. Here, the optimal decoding scheme is known: it is the center of mass of each noisy 

hill of activity [4]. This decoder was applied to hidden units at each time step, for each of the 40 

testing trajectories, from which errors from the actual joint angle and control input were 

computed. 

The optimal filtering distribution 

For the graphical models in Figs 1A and 3A, the solution to the filtering problem can be 

assimilated to a variant on the Kalman filter, and therefore computed in closed form. This is 

because, although the emission ( )|t tp rθ θ is not a Gaussian distribution over tr
θ , it is a 

Gaussian function of tθ  [4, 7] (i.e., the likelihood is an unnormalized Gaussian over tθ )—or 

more precisely, of C tθ , with C the observation matrix (see Eq. 4)—and this is the critical 

requirement for the derivation of Kalman’s recursive solution. The resulting modification is small: 

Where the emission variance and the (Gaussian-distributed) emission appear in the standard 

KF equations, we substitute, respectively, the scaled tuning-curve width, 2 /tc i ir
θσ Σ , and the 

center of mass of the population response, /i i i i ir rθ θξΣ Σ [16].  

The same applies, mutatis mutandis, to the controls. In fact, the “controlled” case provides no 

additional complexity, since it corresponds to an uncontrolled third-order system (since the 

control has its own dynamics) whose state Xt is the concatenation of tθ  and tu : 
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 ! ( ) ( )1 | , ,t t t x xp x xx µ+ Γ + Σ= N   (10) 

With 

2

1 0
0

: 1 ,         : ,          :
0

0 0

x x
u u
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m m m

θ θµ
µ

µ σ
α

Δ⎡ ⎤
⎢ ⎥ Σ⎡ ⎤ ⎡ ⎤Δ⎢ ⎥Γ = − Δ − Δ = Σ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 

In both cases, then, the posterior (filtering) distribution over the state is always Gaussian, so at 

every time step, one computes the posterior mean and covariance, which can be expressed in 

terms of the filtering distribution at the previous time step, and of the current sensory 

information. A full derivation appears in S1 Text.  

Eq 10 ignores some independence statements asserted by the graph of Fig 3A. In fact, an EM 

algorithm that accounts for them can be derived; but in our experiments, this algorithm does not 

achieve superior results to the “agnostic” version that tries to learn unconstrained versions of 

,  ,  and x xµΓ Σ . Therefore, results for EM3 throughout use the unconstrained version of the 

algorithm. 

Benchmark models. Error statistics for the rEFH are compared to those from four types of 

model. It is simplest to think of all four types using the same filtering algorithm—the KF, 

modified as described to account for the Poisson emissions—but running that filter on different 

generative models for the observed data ( ), u
t tr rθ . 

• PROP and EfCp: In the simplest benchmark model, joint-angle (PROP) and control (EfCp) 

estimates are made simply via the center of mass on the current “sensory” population. This 

is the optimal decoder for populations of smoothly tiled, Gaussian-tuned, Poisson neurons 

[17], under the assumption of independence through time (no dynamics). It can also be 
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thought of as a Kalman filter applied to a generative model with infinite state-transition 

covariance, xΣ . (This severs the horizontal connections in Figs 1A and 3A.)  

• OPT: The “optimal” model runs the KF on the true generative model for the data, i.e., using 

the true parameters, !, !,!,!, ℎ, Σ! ,!!!, !!,Υ! . 

• EMn: The rEFH was not, of course, given its parameters, but had to learn them, and only 

from the noisy population responses, 0 0,..., , ,...,u u
T TR R R Rθ θ  . A useful point of comparison, 

then, is the performance of a (Kalman) filter that has learned those parameters from the 

same noisy data, but following a learning procedure that is known to be optimal. For our 

linear, time-invariant systems, such learning rules can be derived: they are an 

implementation of expectation-maximization (EM), an algorithm that guarantees 

convergence to at least local optima. Applying EM to linear dynamical systems requires both 

a forward pass through the data, filtering, and a backward pass for smoothing, i.e., 

computing the probability of the hidden state given the observations for all time. These 

equations are derived in S1 Text. Likewise, the algorithm must be told the order (number of 

states) of the latent dynamical system. Which order it was told is indicated by a superscript 

(e.g., EM2). We emphasize that access to the backward pass of observations, and 

knowledge of the order of the latent dynamics, are advantages the EM-trained models (EMn) 

enjoyed over the harmonium. 

• OBS: For the controlled system (Controlled dynamical system), one would also like to know 

how useful knowledge of the controls is to inference of the joint angle. The optimal model 

that ignores controls, again under the assumption of linear dynamics, can be constructed by 

training on fully observed data, where the model parameters !,!, Σ! , !!,Υ!  are learned 

from 0 0,..., , ,...,T TR Rθ θθ θ , essentially via linear regression (see S1 Text). This corresponds to 
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using the generative model of Fig 1A, even though the true data were generated by the 

model of Fig 3A. OBS is therefore suboptimal, but tells us how much suboptimality accrues 

by ignoring the controls. (We fit the parameters of OBS, rather than providing them, because 

the fit model can actually outperform one based on the true dynamical-system parameters. 

This is because OBS can compensate to some extent for the missing controls by 

overestimating the state-transition noise. If the model were forced to use the true state-

transition noise, but still assume zero control input, it would be worse at explaining state 

transitions.) 

The benchmark models also enjoyed another advantage over the rEFH. The sufficient statistics 

of the emission for the state are the population center of mass and the scaled tuning-curve 

width (or simply the scaling factor), as alluded to above. These were given to the benchmark 

models, rather than learned. (In the standard model, linear-Gaussian emissions with fixed 

variance, learning that variance with EMis straightforward [18]. For our more complicated 

emission model, it is not, which is why we decided simply to provide it to the benchmark 

models.) The harmonium, on the other hand, had to learn what to do with the vectors of raw 

spike counts, , ur rθ . 

Different training runs, like different testing sets, will yield slightly different models. Thus, for 

each type of model to be trained, including the rEFH, we selected the best of 20 different 

networks, each trained from scratch with random initialization. Then we repeated this procedure 

itself twelve times, and from these twelve tokens of each model type, generated the error bars 

for the MSEs in Figs 1E, 3D and 3F. Each of the twelve tokens of a particular model type was 

tested on a different testing set, but the same testing set was used for matching tokens of 

different types (so, e.g., the fourth rEFH token was tested on the same data as the fourth EM2 

token).  
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Tuning analysis 

In the section Learned receptive fields and connectivity, in order to determine how the network 

has learned to solve the filtering problem, we sort hidden units by their “preferred” lags and 

“preferred” angles. These were computed as follows. First, we generated a new set of 40 

trajectories of 1000 time steps apiece. Then we computed hidden-unit mean activities, i.e., their 

probability of firing (these are the same quantity because the hidden units are conditionally 

Bernoulli random variables). Angular positions for all 40,000 time points were then discretized 

into 30 bins of uniform width spanning the feasible joint space. 

For each hidden unit, the following calculation was then performed. First, the empirical mutual 

information (MI) was computed, according to the standard formula [19], between the two 

discrete random variables: the discretized position (30 bins) and the binary (spike/no spike) 

hidden-unit response. Next, to reject spurious MI (which will anyway be rare, given the number 

of data), for each of 20 reshuffles, the unit’s response was shuffled in time and the MIs 

recalculated. If the unit’s unshuffled MI fell below the 95th percentile of its shuffled MIs, the 

unshuffled MI was set to zero. The entire procedure was then repeated with the response time 

shifted forward by one step, for each of 40 steps. Finally, the “preferred” lag was selected to be 

the time shift for which MI was maximized. These were used to sort the receptive fields in Figs 

5A and 5B, 7 and 8B. 

For each unit, a “lagged” tuning curve can be constructed by considering its mean responses to 

past (discretized) stimuli; in particular, to stimuli at that unit’s preferred lag. These are the curves 

plotted as a heat map in Fig 5C, where they have been sorted by the locations of the tuning 

curves’ peaks. The same locations were used to sort the weight matrix in Fig 8A. Inverting the 

process, one can ask how well these tuning curves explain the receptive fields in the space of 

non-delayed position and velocity (Fig 5A): apply each tuning curve to each of the 40000 stimuli, 



 

44 

delay the responses by the units’ preferred lags, and then compute receptive fields with these 

responses. This is how Fig 5B was constructed. 

Finally, comparing the distribution of preferred lags (Fig 5D) to the autocorrelation of the 

stimulus required computing the autocorrelation of a circular variable (angle). We used the 

angular-angular correlation measure given by Zar [20]. 

 

Acknowledgments and Author Contributions 

Some of the EFHs were trained using Tesla K40 GPUs, the generous donation of the Nvidia 

Corporation. 

Conceived and designed the experiments: JGM BKD PNS. Performed the experiments: JGM 

BKD. Analyzed the data: JGM BKD PNS. Wrote the paper: JGM BKD PNS. Proposed the 

technique that extends the harmonium to dynamical data: BKD. 

 
 

 

 
 
  
 



 

45 

 

Figure 1. Dynamical system and the neural network that learns it. (A) The first four (of 1000) time 
steps of the linear system. The evolution is second-order, but only the current position (joint angle) is 
reported by the population of sensory neurons (orange)—fifteen of them, although only three are shown. 
(B) The input (“observed”) data for the harmonium (see text) at each time step are the current sensory 
activities, and recurrent activity of the hidden units, which amounts to a copy (heavy arrows) of their 
activity at the previous moment in time. (C) The joint angle. (D) (Top) Fifteen seconds of a typical 
trajectory (black) and the trajectory decoded from the position-encoding sensory population (orange), and 
from the hidden units (turquoise). (Bottom) The activity of the fifteen sensory neurons reported as a heat 
map. (E) Error statistics for angle decoding under different models (see text). Error bars mark the first and 
third quartile across twelve de novo trained and tested networks of each type (see Methods for training 
details). 
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Figure 2. Mean squared errors (MSEs) for various dynamical systems. To show the flexibility of the 
rEFH, we train one for each of several different second order dynamical systems. Each sub plot shows 
the results for twelve different systems in which a single parameter has been varied across a range of 
values; otherwise the systems are identical to the undriven model of Fig1. For each of those twelve 
dynamical systems, 20 rEFHs were trained (each with 150 hidden units), MSEs calculated, and the best 
selected (turquoise).The same was then done for EM1 (light red) and EM2 (blue), i.e., Kalman filters 
trained with EM, assuming either first-or second-order dynamics. The vertical black line in each plot 
indicates the dynamical system used in Fig1 in the main text. (A) Varying the spring constant. The left 
most datum (k=0) corresponds to the “no-spring” model from which the RFs are analyzed below (although 
with lower transition noise); at this point, the dynamics can be well approximated by a first-order model. 
(B) Varying the damping coefficient. The spike in EM2 at c=0.4545 indicates that EM failed to find the 
second-order solution in any of its 20 attempts. As c increases and the systems approach critical 
damping, however, first-order approximations are increasingly adequate. (C) Varying the moment of 
inertia. 
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Figure 3. Dynamical system with efference copy. A reprise of Fig 1 for the controlled system. The 
evolution is now third-order, since the control signal is (close to) a random walk. (A) Angle (but not 
angular velocity) and the control signal are each noisily reported by populations of neurons (orange and 
purple; two of the fifteen neurons are depicted). (B) The training data for this harmonium at each time 
step are these two populations, and recurrent activity from the hidden units. (C) (Top) Fifteen seconds of 
a typical trajectory (black) and the trajectory decoded from the sensory population (orange), and from the 
hidden units (turquoise). The influence of the control can be seen in the (mildly) increasing amplitude of 
the oscillation. (Bottom) The activity of the fifteen sensory neurons is reported as a heat map. (D) Error 
statistics for joint-angle decoding under different models (see text). (E)The same as in (C), but the 
neurons carry “efference copy” rather than sensory information. (F) Error statistics for control-signal 
decoding under different models (see text). Error bars mark the first and third quartile across twelve de 
novo trained and tested networks of each type. 
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Figure 4. Box-and-whisker plot of MSEs for EM-based models and for rEFHs of various sizes. Each 
box corresponds to 20 networks trained de novo and tested on a common data set. Median MSE for each 
model is marked with a horizontal line; the box contains the interquartile range; whiskers extend to 1.5× 
the interquartile range, beyond which outliers are marked with plus signs. Performance among the EM-
learned linear dynamical systems (the first two boxes, light red and blue) varies comparatively little, 
although large outliers are sometimes produced. In fact, the higher-order (best performing) models are all 
outliers. To facilitate comparison with the rEFHs, a line extends from the best EM-based models across 
the entire plot. The remaining twelve boxes (turquoise) are rEFHs with different numbers of hidden units, 
listed on the abscissae. All have the same number of recurrent units as hidden units, and have a fixed 
number of “sensory units”: (A) 15 proprioceptive, or (B) 15 proprioceptive and 15 efference-copy. (A) The 
uncontrolled dynamical system. Overall, 
MSEs decline with increasing number of hidden/recurrent units, but appear to asymptote by 180 hidden 
units (ratio = 180/15 = 12). (B) The controlled dynamical system. The optimal number of hidden units is 
about 180 (ratio = 180/30 = 6), after which mean and variance (across networks) of MSE increases. 
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Figure 5. Position and velocity receptive fields of hidden units. In (A)-(C), pure white corresponds to 
a firing probability of one; pure black to zero. (A) Receptive fields for all 225 hidden units of the spring-
free model (see text) in the space of (angular) position (ordinates) and velocity (abscissae). The angle 
limits and angular-velocity limits, indicated on the first (upper-left) receptive field, are the same for all 
units. (B) The predicted position-velocity receptive fields of units that have only the lagged-position tuning 
given by (C). The match with (A) is excellent for all but the anomalous 25 units at the right. (C) The same 
225 units, each now plotted as a function of the time-lagged position with which that unit has maximal 
mutual information. Units have been arranged in order of increasing preferred position, whereas the units 
in (A) and (B) are arranged in order of maximally informative lags: from top to bottom and left to right, 
units are tuned for more temporally distant positions. This tuning gives rise to “stripes” in position-velocity 
space. For (A)-(C), the 25 units that do not appear to be well modeled by tuning to past positions have 
been placed at the end. (D) Histograms of the “preferred” lags, in terms both of time and (equivalently) 
discrete time steps, for five different networks. The normalized autocorrelation of the underlying 
dynamical system is superimposed. The central panel corresponds to the network analyzed in (A)-(C). 
The other four panels correspond to networks trained on observations from dynamical systems with 
different autocorrelations. From left to right panel, the dynamical systems get slower. 
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Figure 6. Network sensitivity to instantaneous reliability. The instantaneous (one-time-step) reliability 
of sensory information is determined by the total number of spikes across the sensory population within 
one time step. An optimal filter will up-weight sensory information that is more reliable (and vice versa). If 
such a filter is run on noiseless sensory data, then its errors will be smaller for sensory input with more 
total spikes (higher gain), since it will up-weight the perfect sensory information. (A) Box-and-whisker plot 
(interpretation as in Fig 4) of mean squared errors for the optimal model (OPT), when tested on noiseless 
sensory data and a range of gains. For each gain on the abscissa, the filter was tested on 12 sets of 320 
trajectories apiece, for which the sensory gain was fixed throughout. Higher-gain trajectories yield lower 
mean errors, as expected. (B) The same plot for the network (rEFH). The magnitude of the MSEs is 
larger than for the optimal filter, as in Fig 1E, but the pattern is the same, showing that the rEFH has 
indeed learned to treat higher-gain (more- spikes) sensory information as more reliable. 
 

 
Figure 7. Emergence of position and velocity receptive during training. Velocity tuning takes longer 
to emerge than position tuning, because velocity information is only available in the inputs after position 
has already been learned by the hidden units—and subsequently fed back. (A) After 100 batches of 
training, stripes are mostly horizontal or very shallowly sloped in position-velocity space—no velocity 
tuning. (B) By 200 batches, velocity tuning is evident across most units. (C) Later, at 1000 batches, the 
slopes of the “stripes” have increased, indicating position tuning for more temporally distant (past) stimuli. 
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Figure 8. The weight matrices. The organization of connections between inputs (sensory or recurrent 
units) and the hidden layer can be visualized by sorting units by (A) preferred stimulus angle or (B) by 
preferred lag (increasing from lower left to upper right). Here we analyze the “no-spring” network (see 
text). In both subfigures, both the recurrent and hidden units have been re-sorted; the sensory units 
remain organized by preferred angle. Note that self-connections (along the diagonal) are in fact more 
than 0.5, but the plot saturates at this value to make the other connections more visible. 
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Figure 9. Training and testing: in the model, and in a cortical implementation. (A) The training and 
testing procedure in the model. Three discrete times steps are arrayed vertically. At each one, the current 
arm position (θt) is reported by the proprioceptive population (orange) with Poisson-distributed spike 
counts, as shown in the first column. The current motor command is likewise reported by an “efference-
copy” population (purple). Second column: this spiking, along with recurrent activities (dark turquoise), 
stochastically drives single spikes in the hidden layer (turquoise). Third column: these spikes in turn drive 
the three “input” populations (this is not required during testing); a “copy” of the hidden vector is also 
saved to serve as recurrent activity at the next time step (curved black arrow). Fourth column: finally, the 
input populations drive the hidden layer once more, after which the weights are changed according to Eq. 
9 (also not required during testing). At every time step, the current joint angle and current control are 
decoded naïvely from the current activities of their respective input populations; with Kalman filters that 
are recursively updated based on these activities (not depicted in this figure); and from the hidden units of 
the rEFH. (B) A possible cortical implementation of the rEFH. The cortical layers of Brodmann Area 5 and 
its inputs are identified with elements of the rEFH by color. The synaptic connections are denoted by the 
arrows and their corresponding weight matrices. Primary somatosensory cortex (S1) provides 
feedforward proprioceptive input to layer IV, while primary motor cortex (M1) provides feedback input—a 
copy of the efferent command—to layer II/III. The recurrent signal of the rEFH (heavy curved arrow in (A)) 
is identified with a reverberatory loop from II/III to VI, to V, and back to II/III. 
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Abstract: Accurate sensory discrimination is commonly believed to require precise 

representations in the nervous system; however, neural stimulus responses can be highly 

variable, even to identical stimuli. Recent studies suggest that cortical response variability 

decreases during stimulus processing, but the implications of such effects on stimulus 

discrimination are unclear. To address this, we examined electrocorticographic cortical 

field potential recordings from the human nonprimary auditory cortex (superior temporal 

gyrus) while subjects listened to speech syllables. Compared with a prestimulus baseline, 

activation variability decreased upon stimulus onset, similar to findings from 
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microelectrode recordings in animal studies. We found that this decrease was 

simultaneous with encoding and spatially specific for those electrodes that most strongly 

discriminated speech sounds. We also found that variability was predominantly reduced 

in a correlated subspace across electrodes.Wethen compared signal and variability 

(noise) correlations and found that noise correlations reduce more for electrodes with 

strong signal correlations. Furthermore, we found that this decrease in variability is 

strongest in the high gamma band, which correlates with firing rate response. Together, 

these findings indicate that the structure of single-trial response variability is shaped to 

enhance discriminability despite non–stimulus-related noise. 

Key words: ECoG; encoding; noise correlations; speech; superior temporal gyrus; 

variability 

Significance Statement: Cortical responses can be highly variable to auditory speech 

sounds. Despite this, sensory perception can be remarkably stable. Here, we recorded 

from the human superior temporal gyrus, a high-order auditory cortex, and studied the 

changes in the cortical representation of speech stimuli across multiple repetitions. We 

found that neural variability is reduced upon stimulus onset across electrodes that 

encode speech sounds. 

Introduction 

The human superior temporal gyrus (STG) represents speech sounds with spatiotemporal 

patterns of neural activity across populations that are tuned to specific acoustic features of the 

sounds (Formisano et al., 2008; Chang et al., 2010; Obleser et al., 2010; Steinschneider, 2011; 

Mesgarani et al., 2014; Nourski et al., 2014). However, neural responses to sensory stimuli are 

variable, and the brain responds differently to the same stimulus each time it is encountered 

(Faisal et al., 2008). Speech perception fundamentally involves classifying instances of sounds 

as members of specific linguistic categories (e.g., phonemes, words, etc.) (Liberman et al., 

1957, 1967; Perkell and Klatt, 1986; Diehl et al., 2004), although the acoustics of these sounds 
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can vary in pitch, location, intensity, etc. The classification problem is compounded by the 

presence of different neural responses to physically identical sounds (Kisley and Gerstein, 

1999). However, despite this variability, human listeners perceive speech effortlessly. This 

reliability in sensory perception despite variability in the neural response holds across sensory 

domains: visual (Schiller et al., 1976; Heggelund and Albus, 1978; Rose, 1979; Churchland et 

al., 2010), somatosensory (Whitsel et al., 1977), and as such, understanding neural variability is 

essential to understanding neural representations in general (Averbeck et al., 2006; Churchland 

et al., 2011).  

Recent studies have identified a variety of factors that modulate trial-to-trial neural response 

variability in single-neuron firing rate. For example, the variability of neural responses to sensory 

stimuli is modulated by attentional state (Mitchell et al., 2009; Downer et al., 2015), and the 

difference in variability accounts for a large change in discriminability of stimuli (Cohen and 

Maunsell, 2009). Furthermore, neural response variability changes dynamically during the time 

course of stimulus presentation, with a reduction time-locked to stimulus onset (Cohen and 

Maunsell, 2009; Churchland et al., 2010). The potential for variability in both single neuron and 

population activity to hinder perception suggests that its modulation plays an important role in 

neural signal processing (Shadlen and Newsome, 1998; Abbott and Dayan, 1999; Churchland 

et al., 2011; Hu et al., 2014; Moreno-Bote et al., 2014). 

It is unclear how reduction in neural variability affects stimulus representation and 

discriminability at the mesoscale of aggregate neural populations (i.e., field potentials). With a 

few exceptions (He and Zempel, 2013), most of the literature on the dynamics of neural 

response variability focuses on individual or multiple single-unit recordings, in which at most a 

few hundred neurons are simultaneously observed, a small subset of those neurons active in 

the sensory task. Previous studies have found strong encoding of acoustic-phonetic features in 

the STG using high-density electrocorticography (ECoG) (Mesgarani et al., 2014), where each 
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electrode records from populations several orders of magnitude greater than those observed in 

multi-neuron recordings (Chang, 2015). It is unclear how variability dynamics found in single 

and multiunit recordings extend to these larger neural populations, and how this affects sensory 

processing.  

To address these questions, we recorded cortical field potentials using ECoG from human STG 

while subjects listened to simple speech sounds. We first determined whether cortical field 

potentials shared the trends found in firing rate responses: that the variance is correlated with 

the mean of the response (Tolhurst et al., 1983; Vogels et al., 1989) and that variability 

decreases after stimulus onset. Furthermore, we explored the relationship between variability 

and stimulus encoding, testing the hypothesis that the shape of the changes in variability of 

population neural responses depends on cortical sound representations. 

Materials and Methods 

The experimental protocol was approved by Human Research Protection Program at the 

University of California–San Francisco.  

Subjects and experimental task.  

Three native English-speaking human participants (one female) underwent implantation of a 

high-density, subdural ECoG array as part of their clinically indicated neurosurgical treatment for 

epilepsy. Participants gave their written informed consent before the day of surgery. Implanted 

ECoG grids were each 256-channel grids with 2.3-mm-diameter electrodes at 4 mm center-to-

center spacing and were placed in the language dominant hemisphere in each patient(as 

determined with the Wada carotid intra-arterial amobarbital injection), which was left in two 

subjects and right in one subject. Each participant listened to a recording of consonant-vowel 

(CV) syllables. Sixteen consonants (/b/, /d/, /g/, /k/, /l/, /m/, /n/, /p/, /r/, /s/, /sh/, /t/, /v/, /w/, /y/, /z/) 

combined with 3 vowels (/a/, /i/, /u/) were spoken by 6 speakers (3 female), resulting in 288 
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unique auditory stimuli total. The stimuli had a mean duration of 0.43 s and SD of 0.093 s. The 

inter stimulus interval was jittered across trials, with a mean of 1 s and a SD of 0.15 s. Stimuli 

were recorded in-house and played with speakers. Each stimulus was presented between 17 

and 21 times to each subject.  

Anatomical location of STG. 

We focused our analysis on the STG, a non-primary auditory area that responds to speech 

sounds. Visual examination of co-registered CT and MR scans indicate that the ECoG grid 

covered the spatial extent of the STG of each patient. STG electrodes were identified through 

inspection of this co-registration and only those electrodes were used for analysis (see Fig. 1; 

number of electrodes in STG: S1:51; S2:48; S3:72).  

Data acquisition and signal processing. 

Cortical-surface field potentials were recorded referenced to scalp with a multichannel PZ2 

amplifier optically connected to a RZ2 digital signal processor (Tucker-Davis Technologies). 

ECoG signals were acquired at 3052 Hz. The speaker signal was split and recorded in-line with 

the ECoG data to ensure synchronization. The time series voltage trace of each channel was 

visually and quantitatively inspected for artifacts or excessive noise (typically 60 Hz line noise or 

movement artifacts). Recordings with many artifacts were excluded from analysis, and the 

signal of the remaining channels were then common average referenced for each 16-channel 

ECoG strip to remove electrical noise shared across electrodes. The signals of the remaining 

channels were bandpass filtered using Gaussian bandpass filters with logarithmically increasing 

center frequencies and semilogarithmically increasing band widths from 4 to 200 Hz. The Hilbert 

transform was then calculated for each band, and the analytic amplitude at 400 Hz tracked the 

activation in each of the filter bands. The high-gamma power was calculated by averaging the 

analytic amplitude across the eight bands between 70 and 150 Hz. To mitigate intersession 
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changes in signal strength, high-gamma power was z-scored relative to the mean and SD of the 

recording session for each channel. Throughout, when we speak of high-gamma power, we 

refer to this z-scored measure, denoted as Hγ  

Measuring variability. 

We wish to measure the time course of variability in neural activity. If we were to simply 

measure variance, the dynamics of the variability would be swamped by the effect of increased 

activity, which tends to increase following stimulus presentation and is strongly correlated with 

variance (Tolhurst et al., 1983). To study the effect of a stimulus on response variability, we 

observe how it changes the relation-ship between mean and variance of response. Previous 

studies have ac-counted for this relationship by using the Fano factor (FF) (Churchland et al., 

2010) and varCE (Churchland et al., 2011), both of which are variability measures designed for 

firing rates that assume a linear rela-tionship between mean activity and variance, and both 

were used to show a variability reduction following stimulus onset. We establish a similar metric, 

but cannot use FF or varCE because (z-scored) Hγ  has nonzero variance at zero activation. 

To account for this difference, we modify previous methods to include a y-intercept and quantify 

the variability as the slope of affine regression. We quantify the relationship between variance of 

responses (v) and mean of responses (m) with an affine function as follows: 

 v Dm C= +   (1) 

where D, the slope, is our measure of variability, and C is a y-intercept, which is discarded. 

Using this method, we are able to account for the effect of mean on variance. D is our analog for 

FF. It is not the same metric, but it serves the same purpose of quantifying the relationship 

between the mean and variance of neural activation. 
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Mean matching.  

To ensure that the variability reduction was not due to differences in the mean distribution, we 

use a “mean-matching” procedure adapted from Churchland et al. (2010). For each subject, 

electrode stimuli sets were removed so that each time point has the same mean distribution of 

Hγ  responses. The mean Hγ  responses for each stimulus on each electrode are binned into 

30 equally spaced bins for each of the time points in the 400 Hz Hγ  signal spanning 300 ms 

before to 700 ms after the stimulus onset. A maximum common histogram of mean responses 

was then constructed, which was where all of the histograms through time overlapped. At each 

time point, stimulus-electrode responses were removed randomly from bins with mean Hγ  in 

excess of the maximum common histogram until each histogram was equal to the maximum 

common histogram. The mean matching procedure resulted in data that had the same mean 

distribution through time, so differences in the regression coefficient cannot be attributed to 

differences in mean activity. 

Temporal encoding.  

The relationship between acoustics and Hγ  was modeled by a token stimulus-encoding model, 

where the Hγ  response was modeled for each of the 288 different CV sound stimuli 

independently. The adjusted ( )2 2R R  (Theil, 1961) was used to determine the degree of 

encoding through time as follows: 

 
R2 =1− 1− R2( ) n−1

n− p−1
 (2) 

Where n is the sample size and p is the number of unique stimuli. 2R  is similar to 2R  but is 

altered to adjust for bias in the estimation of variance due to a small sample size. 2R  was 

calculated independently for each Hγ  measurement in time, then averaged across electrodes 
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to obtain a trend across the STG. Qualitatively similar time courses for all three subjects were 

obtained with a linear discriminant classifier decoding stimulus identity from Hγ  across all 

electrodes in a subject.  

Spatial variability and encoding.  

Electrode-wise encoding and variability changes were analyzed by a comparison of the mean of 

D during a representation baseline (300 to 0 ms) and a stimulus-encoding period (100–400 ms). 

Here, encoding strength was calculated as 2R  but not averaged. The variance-mean regression 

was performed individually for each electrode and not mean-matched. 

Factor analysis.  

Next, we studied how the decrease in variability affected correlated noise across electrodes. 

Factor analysis (FA) was used to separate the variability of responses into shared variance and 

private noise. FA is an unsupervised machine learning algorithm that models the data as being 

generated by a Gaussian distribution on a lower dimensional space (x), corrupted with private 

(uncorrelated) noise Q into the full dimensionality of the data as follows: 

 !~! 0, !  (3)  
                     !~! !",!   
  

where x is a vector of latent variables and y is a vector of the observed Hγ , Q is the noise 

covariance matrix and is constrained to be diagonal, and C is the loadings matrix, which maps 

from the latent space to the observed space, and ! !, Σ  denotes a multivariate normal 

distribution with mean  and covariance . The shared component of network variability captured 

by FA was calculated by !!!, and a private uncorrelated component was the diagonal matrix Q. 

To have enough trials to robustly fit the FA model, stimuli were combined across the six CV 

speakers of the stimulus set. To ensure unique and informative stimulus responses, only 

electrodes with 2R >0.5 during the encoding period were used for each subject, approximately 
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half of the STG electrodes for each subject. Hγ  was z-scored across trials for each set of 

stimulus responses on each electrode, stimulus, and time point. We determined the 

dimensionality of the neural data by conducting principle component analysis on the average 

response across stimuli and the pre-stimulus period (Churchland et al., 2010). We found that 5, 

7, and 6 dimensions were required to explain 95% of the variance in each subject, respectively. 

To ensure that we did not overestimate the dimensionality of the data, we modeled the data in a 

subspace with a dimensionality of 5, the minimum across subjects, which explained 96%, of the 

variance in the data for S1, 92% for S2, and 93% for S3. FA was conducted independently on 

each time point. The proportion of variability that was shared was calculated by mean trace 

!!!. This is a proportion because the z-score makes the total variance mean trace !!! + ! = 1 

across time. Qualitatively similar results were observed if no common-average reference is 

performed. 

Relationship between signal and noise correlations. 

To determine whether the reduction in variability was in the directions that benefited stimulus 

discriminability, we compared signal and noise correlations for each pair of electrodes (Cohen 

and Maunsell, 2009). “Signal” is the mean Hγ  during the encoding period, and “noise” is the 

residual of this activity. Pairwise signal correlations were computed for each pair of electrodes 

during the encoding period using Pearson correlation. Noise correlations were calculated 

immediately before and 300 ms after stimulus onset. We calculated the average change in 

noise correlation. We also calculated the correlation between signal correlation and change in 

noise correlations before and after stimulus presentation across electrode pairs for each 

subject. 

Decoding. 
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As the brain responds to stimuli, the mean response changes, distinguishing between different 

sounds. The correlation between electrodes also changes, which can have additional effects on 

the discriminability between sounds. To determine the extent to which noise correlations affect 

discriminability, we developed an analytical method that imposes the noise correlations of the 

pre-stimulus period during the stimulus response. The high gamma activity was mean-

subtracted for each unique stimulus. Then the response was whitened by pre-multiplying by 

Σ!"#$%&"'
!!!  and “colored” by the prestimulus noise covariance by premultiplying by Σ!"#!!"#$

!
! . The 

stimulus response is now warped to express the same covariance as the prestimulus activity. 

The warped activity therefore has pre-stimulus noise correlations, but also the variances and 

covariance determinant, which can also affect discriminability. To determine the effects solely of 

correlations, we pre-multiply by an additional diagonal matrix, K. This matrix scales the warped 

responses so that they match the relative variances and the determinant of the original stimulus 

response covariance matrix. Because K is diagonal, this does not affect the correlations. In 

summary, 

 
!Xwarped = K !Xencodingencoding

−
1
2∑pre−stim

1
2∑   (4) 

was used, where !X  are residual activity matrices, are covariance matrices, and K is the 

diagonal matrix that scales the result to impose the relative variances and covariance 

determinant of the encoding responses. Finally, the means were added back, which resulted in 

the final warped encoding signal. We examined the response both before and after warping and 

trained linear classifiers on the warped and original data using linear discriminant analysis.  

Analysis across frequency bands.  

We explored the relationship between variability decrease and stimulus representation across 

frequency bands using the canonical frequency bands theta (4–8 Hz), α/mu (8–13 Hz), (13–30 
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Hz), gamma (30–70 Hz), and high gamma (70–150 Hz) (Mackay, 1997; Canolty et al., 2006; 

Crone et al., 2011). Analytic amplitude within these bands was calculated analogously to the 

methods used forHγ . 2R , D, and decoding accuracy are calculated across time for each 

frequency band. 

Results 

To understand the role of neural variability in response to speech sounds, we presented 

subjects with auditory playback of 288 distinct CV syllables. The stimuli consisted of 16 

consonants followed by either /a/, /u/ or /i/ (cardinal vowels), spoken by six different speakers, 

and were chosen to sample the acoustic and phonological space of American English. We 

recorded neural activity directly from the surface of the STG in the language dominant 

hemisphere with high-density ECoG arrays. We examined the structure and dynamics of neural 

responses across multiple presentations of different syllables (across-syllable variability), and 

compared this with neural responses across multiple presentations of the same syllable (within-

syllable variability) to examine how STG encodes different sounds with distinct representations. 

Mean dependence of response variability 

Figure 1A shows the STG electrodes for one patient (S1), with a single example electrode 

highlighted in yellow. Figure 1B (top and middle rows) displays the amplitude waveform and 

spectrogram for the syllables /di/ and /si/, the consonants of which have very different acoustic 

structure. 

We focused on the cortical response in the high-gamma frequency component of field potentials 

(Hγ , 70–150 Hz), which correlates well with multiunit firing rates (Rasch et al., 2008; Ray et al., 

2008; Whittingstall and Logothetis, 2009; Ray and Maunsell, 2011; Rey et al., 2014). The Hγ  

responses from the highlighted electrode evoked by these syllables are displayed in Figure 1B. 
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Reponses increased shortly after the onset of both stimuli and returned to baseline by ~500 ms. 

In this example, /di/ caused greater mean activity than /si/, with the peak difference occurring at 

200 ms. Additionally, the response to /di/ had greater variability, as is evident from its broader 

error bars, which show SD and are compared side-by-side to the right. These example stimuli 

illustrate the general trend that the variance of Hγ  responses for a stimulus was positively 

correlated with the mean. Figure 1C shows the mean and variance of responses across 

repetitions of each of the 288 unique auditory stimuli for the example electrode. We found a 

strong positive correlation (Pearson correlation: r = 0.6) between mean and variance, as 

illustrated by the yellow dashed line, which is the best linear fit between the two. 

Similar results were observed across all STG electrodes. Figure 1D shows the correlation 

coefficient calculated in the same manner for all of the STG electrodes across each of the three 

subjects. We found statistically significant positive correlations between mean and variance of 

Hγ  responses across all of the STG electrodes that we recorded (! = 0.49 ± 0.12,!"#$ ±

!";! = 179; vertical dashed line indicates statistical significance). The positive correlation 

between mean and variance in His similar to the relationship between mean and variance that 

has been well studied in the response statistics of single neurons (Tolhurst et al.,1983), and is 

consistent with the hypothesis that variability of ECoG Hγ reflects variability in the activity of 

underlying populations of neurons.  

Reduction in variability following stimulus onset 

We next investigated how the relationship between mean and variance of neural responses 

changed through time during the representation of a stimulus. We hypothesized that this 

relationship would decrease, consistent with experiments (Cohen and Maunsell, 2009; 

Churchland et al., 2010) and models (Litwin-Kumar and Doiron, 2012) of single neuron firing. 

Figure 2 illustrates the dynamics of the relationship between the mean and variance of neural 
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responses. We quantified the relationship between the mean to the variance at each time point 

using linear regression (Eq. 1). The slope of the regression (D) is our metric of relative variability 

and is similar to FF, except that it is calculated with the inclusion of a y-intercept. To illustrate 

this procedure and metric, five time points are shown in Figure 2A: 200, 0, 200, 400, and 600 

ms. Each point of each panel in Figure 2A shows the mean and variance of Hγ  responses for 

a stimulus on an electrode of Subject S1. In each panel, a regression was performed, and the 

best-fit line is shown as a red dashed line. We observed the slope of the best-fit line was ~1 

before the acoustic onset of the stimulus, decreased following the acoustic onset of the 

stimulus, and slowly returned to 1. The regression was performed at every sample time and is 

shown in Figure 2B. Subject S1, the example subject for Figure 2A, is shown in red, and 

Subjects S2 and S3 are shown in green and blue, respectively. The slope decreased sharply 

within 100 ms of stimulus onset in each of the three subjects, and this reduction was sustained 

for 200–300 ms. During the period between 100 and 400 ms after stimulus onset, D decreased 

by 70%, 38%, and 42% for S1, S2, and S3, respectively. 

The decrease in relative variability is similar to the “quenching” in FF of firing rates after stimulus 

onset previously observed in animal studies (Cohen and Maunsell, 2009; Churchland et al., 

2010). 

Additionally, to ensure that the change in D was not due to a difference in the mean distribution, 

a version of “mean matching,” (Churchland et al., 2007, 2010) modified for ECoG, was also 

performed. Here, stimulus-electrode pairs were randomly excluded from each time point until 

only a subset of stimulus-electrode pairs remained that have the same mean distribution 

through time. Although mean-matching removed approximately half of stimulus-electrode pairs 

at each time point (S1: 56%, S2: 66%, S3: 50%), it did not qualitatively change the trend of a 

sharp decrease in D (Fig. 2B, light colors). Together, these results indicate that the relative 
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magnitude of neural variability is dynamically quenched during the presentation of speech 

stimuli. 

Co-occurrence between stimulus encoding and reduction in variability 

In order for changes in variability to affect encoding strength, these changes must coincide with 

the neural response that discriminates between stimuli, and must be present at electrodes that 

discriminate stimuli. To ascertain the role of reduced neural variability in the representation of 

stimuli, we examined its relationship with stimulus encoding. Specifically, we tested the 

hypotheses that the decrease in D temporally coincides with the encoding of a stimulus, and 

that electrodes which contribute most to the overall decrease in D are the electrodes that most 

strongly encode the stimulus. Encoding strength was measured using the coefficient of 

determination adjusted for degrees of freedom, 2R , which quantifies how much of the variance 

in the response of an electrode could be explained by which stimulus was presented (Eq. 2). 

We found that dynamics of stimulus encoding co-occurred spatially and temporally with the 

reduction in response variability. The encoding of syllables across the STG for Subject S1 is 

shown in Figure 3A. To determine the dynamics of encoding strength, 2R  was calculated for 

each STG electrode across the trial, time aligned to the acoustic onset of the stimulus (Fig. 3A, 

dashed black line). Here, electrodes are ordered by position on the STG, with posterior 

electrodes on the top and anterior electrodes on the bottom. The ordering of the electrodes was 

determined by eye. All electrodes had a 2R  near 0 before the acoustic onset of the stimulus, 

which indicates that their variability was not predicted by the upcoming stimulus. Following the 

stimulus onset, 2R  increased first in the posterior electrodes (Hickok and Poeppel, 2000) and 

peaked in the anterior electrodes over the first 100 ms (DeWitt and Rauschecker, 2012). Similar 

spatiotemporal structures were observed in the other subjects. Figure 3A (bottom) shows the 

average 2R  across all STG electrodes for each of the three subjects. For each subject, the 
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mean 2R  was maximum at ~100 ms and slowly decreased over the next 900 ms. Qualitatively, 

the dynamics of average 2R  had a similar time course to the decrease in D shown in Figure 2B. 

Similar results were obtained with a linear discriminant classifier decoding stimulus identity from

Hγ . 

To quantitatively compare the dynamics of 2R  to D, we used a cross-correlation analysis for 

each subject (Fig. 3B). The time of the minimum cross-correlation represents the overall lag 

between decreased variability and increased encoding strength. We found that the time lags 

were close to 0 for each subject, demonstrating that that the decrease in variability was nearly 

synchronous with stimulus encoding, preceding it only slightly for each subject. The large 

negative correlations close to 1 indicate that encoding strength and variability reduction have 

similar overall dynamics (S1: r = -0.89 at 5 ms, S2: r= -0.70 at 25 ms, S3: r= -0.97 at 5 ms). 

These results show that the representation of stimuli occurs simultaneously with the decrease in 

variability, which is necessary for the shaping of variability to enhance discriminability. 

Colocation of stimulus encoding and change in variability 

To determine the degree to which different speech sounds gave rise to different responses, we 

calculated the variance of the mean responses to the different stimuli (across-stimulus 

variance), which would be high if the activity of that electrode had different responses for 

different acoustic stimuli. The across-stimulus variance of each electrode was calculated during 

the “encoding period,” 100–400 ms after stimulus onset. Figure 3C (left) shows each electrode 

of Subject S1 with the color of the electrode indicating the variance of the mean response 

(darker red electrodes had a greater across-stimulus variance). D was also calculated 

separately for each electrode across time, and a change in D was determined by comparing the 

encoding period with the baseline period (300 ms before stimulus onset to the moment of 

stimulus onset). The change in variability is shown in Figure 3C (right). Electrodes that are dark 
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blue had a strong decrease in the linear relationship between mean and variance, and 

electrodes that are red had a slight increase. Figure 3D summarizes the relationship between 

stimulus variance and variability for all three subjects. We found a robust negative correlation 

between interstimulus variance and D across subjects (r = -0.56 ± 0.09; slope of best fit 

regression line = -5.4 ± 1.2; both are 95% CI), indicating that the electrodes with a high 

interstimulus variance tended to also have a greater decrease in variability. The 2R of Hγ of 

each electrode during the encoding period is indicated by color. Electrodes with a high across-

stimulus variance and a strong decrease in variability had the strongest encoding strength. 

Together with the previous analyses, these results demonstrate that the drop in variability and 

increase in stimulus encoding were nearly synchronous in time, and co-localized to the same 

electrodes. 

Reduction in population variability improves discriminability 

Phonetic features are encoded by a spatially distributed network of activity along the STG 

(Mesgarani et al., 2014). In distributed representations, noise in the activity of individual sites 

that is uncorrelated across the sites can be removed through averaging. However, if the 

variability is correlated across the different sites, averaging will not remove it, and this correlated 

noise can have a large impact on discriminability (Zohary et al., 1994). We have observed a 

change in variability coincident with stimulus representation, but the effect of this variability on 

strength of encoding depends on the shape of the variability. To understand how the decrease 

in variability was distributed across all of the electrodes, we used factor analysis (Eq. 3) 

(Churchland et al., 2010). Factor analysis distinguishes between correlated and uncorrelated 

variability by modeling the data with a generative process that contains a correlated subspace 

that is “shared” across observations, and corrupted by uncorrelated “private” noise. We 

hypothesized that, during speech perception, shared variability in the STG neural population 

would decrease more than the uncorrelated variability, and that the dynamics would be closely 
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matched to the dynamics of variability reduction at individual sites. This hypothesis is illustrated 

as a schematic in Figure 4A. Here, factor analysis finds a subspace, depicted by the ellipse that 

spans mostly Electrode 1 and Electrode 2. The activity is then corrupted by Gaussian noise, 

which extends activity mostly into the direction of Electrode 3. The arrows illustrated a reduction 

in shared variability, marked by a shrinking of the ellipse and a relative increase in variability in 

the direction of Electrode 3, the uncorrelated electrode. The resulting noise structure with less 

shared noise will be more spherical.  

For each subject, we modeled the shared component of Hγ  variability with a 5-dimensional 

subspace (see Materials and Methods). Factor analysis was performed separately on z-scored 

Hγ for each sample time of each consonant-vowel stimulus. The overall difference between 

subjects in the shared variance is explained by the number of electrodes on the STG of each 

subject. Subject S2 has the fewest electrodes and the most shared variance, and Subject S3 

has the most electrodes and the least shared variance. Following stimulus onset, there was a 

pronounced decrease in the proportion of the population variance that was correlated across 

electrodes, and the private noise makes up a larger proportion of the variance in each of the 

three subjects (Fig. 4B). This shows that neural variability is primarily constrained in the 

dimensions that are most variable during multiple presentations of a stimulus.  

Figure 5A shows a schematic of how noise correlations might affect discriminability at the 

example electrode in Figure 1. In the schematic, “di” causes a higher response than “si” in both 

electrode 1 and 2 (both 1 and 2 respond like the example electrode in Fig. 1). Because the two 

electrodes respond similarly to stimuli, they have positive signal correlation. The signal is 

corrupted by noise, indicated by the ellipses around the mean responses. The orange ellipses 

show noise that is positively correlated, which lowers the discriminability of the sounds. By 

reducing the magnitude of positive correlations, the distance between the ellipses increase. 
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Thus, discriminability improves if the positive correlations are reduced, as shown by the blue 

ellipses.  

To determine how changes in noise correlations affect stimulus discriminability, we examined 

the relationship between signal and noise correlations for each pair of electrodes before the 

stimulus and during representation (Cohen and Maunsell, 2009) (Fig. 5B). We find that noise 

correlations between electrode pairs are uniformly positive, and larger for electrodes with higher 

signal correlation, both of which are in agreement with neuronal firing rate correlations (Kohn 

and Smith, 2005; Cohen and Kohn, 2011). The majority of pairs (90%) of electrodes have a 

positive signal correlation. Noise correlations decreased on average during stimulus encoding 

for each subject 

!1 =  ∆!!"#$% = −0.018 ± 1.7! − 3; !2 = ∆!!"#$% = −0.034 ± 1.1! − 3; !3:∆!!"#$% = −0.014 ±

1.6! − 3; 95% !"# . Moreover, electrode pairs with positive correlations have more strongly 

reduced noise correlations, although this was only statistically significant in S1 and S3 

!1: ! = 0.28 ± 0.04; !2: ! = 0.05 ± 0.058; !3: ! = 0.24 ± 0.04; 95%!"#,! =

1711,1128, !"# 2556 . This is shown as an increasing difference between noise correlations 

before and during representation for higher signal correlations. These results provide another 

key insight into the shape of variability: the reduction in variability during stimulus representation 

is stronger in the directions of neural space that benefits discriminability. 

Recent theoretical work has demonstrated that noise correlations alone can give a misleading 

impression of change in strength of representation (Moreno-Bote et al., 2014). To determine the 

extent to which the observed correlations change the discriminability of speech sounds, we 

imposed the prestimulus correlations to the neural activity during the encoding period and 

quantified the difference in the accuracy of a decoder trained to distinguish consonants across 

time. To evaluate the effect of the change in correlations on discriminability across the STG, we 
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evaluated the change in decoding performance at 200 ms for all pairs of electrodes with 2R > 

0.5 (Fig. 5C). Pairs that had a greater signal correlation tended to discriminate better with the 

original signal than with the warped signal, whereas electrodes that had anti-correlated 

responses performed better with the warped signal (r = 0.27; p < 1e-4). However, warping the 

signal correlations had no effect on the decode accuracy of a classifier using all electrodes. 

Although the noise correlations were shaped by the similarity in stimulus response, these 

changes in the noise did not affect decoding performance across the STG.  

Variability reduction was correlated with discriminability across frequency bands 

Although we have emphasized Hγ , other frequency bands of the ECoG field potential may 

play important roles in speech processing. To explore these other bands, we compute the 

variability and encoding strength for the canonical frequency bands: theta (4 – 8 Hz), α/mu (8 –

13 Hz), β(13–30 Hz), gamma (30 –70 Hz), and high gamma (70 –150 Hz) (Mackay, 1997; 

Canolty et al., 2006; Crone et al., 2011). The time course of encoding and variability across 

electrodes for Subject S1 are shown in Figure 6, which is representative of the three subjects. 

Each of the standard frequency bands is represented by a different color. Variability primarily 

decreases in gamma (purple) and Hγ  (green) (Fig. 6A). In all bands, mean R 2 was 0 before 

stimulus onset, rose after the acoustic onset of the stimulus, and decreased over the next 1 s 

(Fig. 6B). Hγ (green) is shown for comparison, and has the strongest encoding. Figure 6C 

summarizes the across-frequency analysis of the three subjects. In each subject, Hγ  has the 

greatest drop in variability and the greatest encoding strength. Moreover, there was a strong 

negative correlation (Pearson r = -0.93, slope of line of best fit =-5.4e-3 ± 1.2e-3, 95% CI) 

between the encoding strength of a band and the drop in variability. This suggests that 

variability shaping is a primary encoding mechanism that distinguishes high-gamma from other 

frequency bands.  
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Discussion 

Speech perception relies on the ability to discriminate all of the different sounds of a given 

language. This requires that the representations within a sound category are similar to each 

other, and that the representations across sound categories are sufficiently distinct. Here, we 

examined the human nonprimary auditory cortex (STG) for encodings of speech sounds that 

underlie their discrimination. High-density ECoG permitted the study of variability on the 

mesoscopic level, with the spatiotemporal resolution necessary to observe neural dynamics 

associated with phonetic perception. We found a strong positive correlation between cortical 

response magnitude and variance that decreased dramatically following onset of an auditory 

stimulus, similar to neuronal action potentials across several species and brain areas. These 

results are evidence that Hγ trial-by-trial fluctuations are not merely measurement noise but 

reflect trial-by-trial differences in firing rates.  

Hγ on a single electrode reflects neural activity across an estimated several thousand neurons 

under that electrode (Miller et al., 2009). Previous studies of firing rate responses have found 

that neuronal variability decreases following stimulus onset in a shared subspace across 

neurons (Cohen and Maunsell, 2009; Churchland et al., 2010). However, these previous studies 

recorded from at most a few hundred neurons at a time. Our study expands upon previous 

findings, showing that the decrease in shared variability extends to a much larger neural 

population. The brain is thought to process sensory stimuli with large populations of neurons 

(Hinton, 1984). Therefore, variability of Hγ on individual electrodes may reflect network 

properties that are important for sensory representation and computational processing. 

The change in variability was monitored through the slope of the regression relating neural 

response mean to variance, which we called D. D is an analog of FF for ECoG data analysis; 

however, care must be taken in its interpretation. A FF of 1 is meaningful because it matches a 
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Poisson process, but D should not be interpreted this way; only relative changes in D are 

meaningful. Nevertheless, the decrease in D observed here is consistent with the hypothesis 

that variability in Hγ  reflects variability in the activity of the underlying neuronal population. 

One concern could be that the relationship between mean and variance was not changing, but 

instead it was simply a change in the mean distribution that was causing this change in D. If the 

variance of response does not change, D could decrease simply due to normalization by greater 

mean responses. Another possible concern is that there is an upper bound of activation for each 

electrode due to physiological limitations and that this upper bound might lower variability of 

high responses due to a ceiling effect. The mean matching control analysis addresses both of 

these concerns. Furthermore, our model (Eq. 1) includes a linear offset and a slope, capturing 

the additive and multiplicative noise components, respectively. Additive noise was captured in 

the offset term, so the slope, D, reflects specifically multiplicative noise. If the mean changed but 

the correlation with variance did not, this would be reflected in the offset term, not D. 

Computational models have provided some explanations for how a decrease in variability could 

be achieved mechanistically. In models of populations of neurons, networks that are clustered 

into subgroups exhibit a more stable response to stimuli, lowering the variability of activity 

(Litwin-Kumar and Doiron, 2012). Such subgrouping organization may also account for the 

decrease in response variability we observed in field potentials. Alternatively, reduction in ECoG 

Hγ  variability could reflect an increase in the synchrony of neural activation of the underlying 

population (de la Rocha et al., 2007). 

To determine the effect of variability on stimulus representation, we compared it with a stimulus-

encoding model. We found that the reduction in variability occurred nearly simultaneously with 

peak stimulus discriminability and was spatially specific to those electrodes that discriminate 

between different sounds. If variability reduction had been primarily on electrodes that did not 
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have distinct responses for different sounds, or if it had a very different time course from 

stimulus representation, the decrease in variability would have had no influence discriminability. 

Yet we show that variability decrease does occur together with stimulus representation, which is 

necessary for changes in variability to influence discriminability.  

The effect of changes in variability on the discriminability of stimuli depends on how these 

changes are correlated across electrodes. We used factor analysis to determine the extent to 

which changes in variability were correlated across electrodes. The use of factor analysis is 

similar to a previous work from He and Zempel (2013), where variability was examined using 

principal components analysis. Here we use factor analysis to model variability explicitly, and 

apply it to Hγ  rather than broadband voltage traces. We found that the reduction in variability 

was primarily shared in the subspace of noise correlations, rather than private to individual 

electrodes, similar to previous work from Churchland et al. (2010), who studied noise 

correlations between single neurons. Combined, our findings suggest that a reduction in noise 

correlations is a multiscale neural phenomenon that may play an important computational role in 

representation on several spatial scales. 

The decorrelation of noise we observe during stimulus representation may be a consequence of 

feedforward inhibitory input. Computational modeling has demonstrated that variability shaping 

can be caused by nonlinearities that alter the distribution of neural activity. Electrodes with 

positive signal correlations are de-correlated during stimulus representation because they 

receive a common feedforward input that changes the response distribution (Middleton et al., 

2012). However, it is unclear how this change in the shape of variance on the scale of neurons 

would generalize to aggregate neural populations in ECoG. 

Noise correlations can either decrease or increase discriminability of stimuli, depending on their 

relationship with the signal correlations. The “sign rule” (Hu et al., 2014) indicates that noise 
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correlations that are correlated with signal correlations decrease stimulus discriminability. On 

the other hand, noise correlations that are anti-correlated with signal correlations facilitate 

discriminability (Abbott and Dayan, 1999). We found the largest decrease in noise correlations 

between electrodes that are similarly tuned. According to the sign rule, these noise correlations 

lead to less discriminable representations. Therefore, the noise correlations that are mostly 

strongly diminished during representation are those that most hinder the discrimination of 

sounds. We used a linear decoder to quantify the change in information due to noise 

correlations (Moreno-Bote et al., 2014) and found a small but consistent effect for electrodes 

with high signal correlations.  

Our results show changes in the correlation structure that improves the discriminability of stimuli 

for electrodes with high signal correlations, but the improvement is very slight and only on a 

subset of electrode pairs. Previous studies have found a larger effect on discriminability of 

neuron firing rates from multiunit recordings (Cohen and Maunsell, 2009). One possible 

explanation is that the effect of noise correlations on discriminability is indeed very small for this 

task, but we think a more likely explanation is that the improvement in discriminability is stronger 

on the single-neuron level when recording densely from a relatively small volume of cortex. In 

contrast, ECoG samples over a very large area of cortex, and the average pairwise signal 

correlation between ECoG electrodes is typically less than single-unit recordings (Downer et al., 

2015). Our results imply that decoding activity from ECoG may be less sensitive to the noise 

structure of neural activity than from recordings of single units. 

We compared variability reduction across frequency bands and found that Hγ  activity has the 

highest encoding strength and that it exhibits the strongest reduction in variability upon stimulus 

onset. The gamma band, which also has been shown to modulate with firing rate (Cui et al., 

2016), shows a similar but weaker reduction in variability. These results suggest not only that 

higher bands in particular hold the most information about the acoustic stimuli, but also that they 
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uniquely exhibits variability changes similar to those found in neurons. These results provide 

further evidence that spectral power modulation in the higher range is distinct from lower bands, 

reflecting excitation of neuron populations (Rasch et al., 2008; Ray et al., 2008; Crone et al., 

2011; Buzsaki et al., 2012). 

A complete understanding of neural representation requires not only the mean response to 

sensory stimuli, but the entire distribution of neural responses. Variability is an integral part of 

stimulus representation, and changes dynamically as the stimulus is represented. Indeed, we 

find that neural activity is dynamically shaped in a manner that enhances the discriminability of 

sounds.
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Figure 1: Example response and correlation between mean and variance of response. A, 
Placement of high-density ECoG electrodes on the cortex of an example human subject. The electrode 
size is anatomically correct. Yellow electrode is the example electrode used for B and C. B, Top, Example 
consonant-vowel sounds, /di/ and /si/ with acoustic waveform spectrogram. Bottom, Mean and SD of !" 
responses across task time. Rectangles to the right compare the SDs of the two response distributions 
and illustrate that /di/, the sound that elicits a greater mean response, also elicits a greater variance of 
responses. C, Mean and variance of !" over trials of every stimulus for the example electrode (100–400 
ms after stimulus onset). This electrode has a positive Pearson correlation of 0.6, indicating that, for this 
electrode, stimuli that elicit a greater mean response tend to elicit a greater variance of response. D, The 
Pearson correlation coefficient between mean and variance of !" responses for each electrode across all 
three subjects. All electrodes have a correlation greater than chance, which is 0.01 ( p0.05). 
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Figure 2: Reduction in mean dependence of variance. A, !" for all stimulus-electrode responses for 
Subject S1. Red lines indicate the result of linear regression with a y-intercept. The regression line has a 
slope of ~1 before and during stimulus onset, decreases 200 and 400 ms after stimulus onset, and 
returns to1 by 600 ms. B, Slope of regression for each point in time for Subjects S1 (red), S2 (green), and 
S3 (blue). Lighter shade represents results for mean-matched D, where regression was performed on a 
subset of stimulus electrodes with a constant mean distribution through time. D decreases sharply after 
acoustic onset for mean-matched and regular regression. Data are mean ±SEM. 
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Figure 3: Temporal and spatial correlation between encoding and drop in variability. A, !! through 
time for each electrode on the superior temporal gyrus (STG) of S1 with electrodes ordered from posterior 
to anterior region of the STG. Mean !! across electrodes is shown below for S1 (red), S2 (green), and S3 
(blue). B, Cross-correlation between variability (D) and !! for the three subjects. Minimum cross-
correlation is marked as dashed lines colored by subject and was close to 0 in all three subjects. C, Left, 
For S1, the variance of the mean response during the encoding period (100–400 ms) is shown for each 
electrode. Darker electrodes are those that have more different responses for different stimuli. Right, D 
was calculated for each electrode independently. Electrodes are colored according to the change in D 
from the average of the pre-stim period (300 to 0 ms) to the average of the encoding period (100–400 
ms). D, Mean response variance and change in D are shown for each electrode across all three subjects. 
Individual electrodes from S1 (triangles) S2 (diamonds), and S3 (circles). Electrodes are also colored 
according to !!. Gray dashed line indicates the line of best fit. The negative correlation shows that 
electrodes that respond differently to different stimuli tend to have a reduced D during stimulus encoding. 
Data are mean ±SEM. 
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Figure 4: Factor analysis. A, Factor analysis schematic illustrating a change in variability from more 
correlated to less correlated. Shown is the activity on three example electrodes for a single stimulus. Oval 
represents correlated variability in a 2D subspace of the three electrodes. Dots represent individual data 
points after the addition of private uncorrelated noise. Arrows indicate a reduction in shared variability and 
an increase in private noise. The schematic represents a 2D subspace for illustrative purposes, but the 
data were actually modeled on a 5-dimensional subspace. B, Factor analysis results. The proportion of 
variability that was in the shared subspace is shown over time for Subjects S1 (red), S2 (green), and S3 
(blue). Although the portion of variability that was shared across electrodes differs between subjects, it 
decreases upon stimulus onset in all three subjects. Data are mean ±SEM. 
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Figure 5: Noise correlations and decoding. A, Schematic of signal and noise correlations. The 
responses of two hypothetical electrodes are shown for two stimuli, “si” and “di.” Circles in the center of 
the ellipses represent mean responses for these stimuli. Both of these electrodes have a stronger 
response to “di” than to “si,” like the real example electrode in Figure 1. Orange ellipses represent 
response distribution with a positive noise correlation because the major axis of the ellipse has a positive 
slope. Blue ellipses represent response distributions with reduced noise correlations, which would 
improve discriminability by increasing the separation between the ellipses. B, Noise correlation as a 
function of signal correlation across all electrode pairs, for example, Subject S1: gray represents noise 
correlations just before stimulus onset; black represents noise correlations at 200 ms after stimulus onset. 
Data are mean ±SEM. C, The effect of prestimulus noise correlations on stimulus discriminability of 
speech sounds is illustrated on two example electrodes. Leave-one-out linear discriminant analysis is 
used to test the separability of consonants. The true stimulus response is compared with a warped 
response that has noise correlations of the prestimulus period at 200 ms. The difference between 
decoding performance for original and warped activity for each electrode pair for Subject S1. Electrode 
pairs that had a greater signal correlation had a greater improvement of decoding compared with the 
warped signal decode (Pearson r=0.27; p<1e-4). 
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Figure 6: Multiband change in variability and encoding. A, The linear relationship between mean and 
variance of response, for each of the functional bands through time. !" and gamma have the strongest 
modulation in variability (D), and the lower frequency bands show little or no modulation. B, Encoding 
strength shown as !! across time for each of the functional bands. !" shows the greatest increase in !!. 
C, Encoding strength versus change in D for all subjects (S1: circles S2: asterisks S3: 5 stars) during the 
encoding period (100–400 ms after stimulus onset). Gray dashed line indicates line of best fit. 
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Chapter 3. The control of vocal pitch in human laryngeal 

motor cortex 

Benjamin K. Dichter, Jonathan D. Breshears, Matthew K. Leonard, 

and Edward F. Chang 

Abstract: The flexible control of vocal pitch during speech production is a 

fundamental aspect of human oral communication. Intonation patterns created by 

changing vocal pitch are a rich source of information for conveying meaning. Still, 

it is currently unknown how the brain generates the complex laryngeal motor 

commands that allow for prosody and song. Here, we used direct high-density 

cortical recordings from the human brain to determine the encoding mechanisms 

of vocal pitch control and voicing during natural speech and song production. We 

found neural activity at electrodes over the right dorsal laryngeal motor cortex 

(dLMC) that was highly selective to vocal pitch encoding, but not for other 

features in speech articulation. Using a model of vocal pitch contours, we found 

that neural activity at a subset of dLMC electrodes was selective for producing 

pitch accents, but distinct from those that encoded voicing in dLMC and the 

separate ventral laryngeal motor cortex (vLMC). The same neural populations 

showed similar encoding of pitch changes in a non-speech singing task, 

suggesting a general control mechanism. Finally, we confirmed the causal, feed-

forward involvement of dLMC in pitch production by using direct cortical 

stimulation to evoke laryngeal electromyographic responses and vocalizations. 

Together, these results have significant implications for understanding the neural 

basis of larynx-based vocal control in spoken language. 
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Introduction 

Central to the human ability to speak is the control of the larynx, which gives rise to voicing and 

modulations of vocal pitch (Ohala, 1983). In English, for example, deliberately controlled 

changes of vocal pitch are used to convey critical elements of prosody, such as syllable stress 

(Gay, 1978), word emphasis (Ladd and Morton, 1997), phrase segmentation (Jusczyk et al., 

1992), modality (e.g. question vs. statement) (Ohala, 1983), and even mood (Scherer, 1989).  In 

speech, the two dominant functions of the larynx are to generate voicing and modulate pitch. 

Voicing is created by adduction of the vocal folds (posterior cricoarytenoid muscle), bringing 

them into close proximity, so that they vibrate when air is passed through. In contrast, pitch is 

modulated primarily by stretching the vocal folds. (cricothyroid muscle). Greater tension in the 

vocal folds causes them to vibrate at a higher frequency during voicing, and produce a higher 

pitch sound (Titze et al., 1989; Hull, 2013). It has been speculated that the human ability to 

flexibly mimic pitch contours is due to the evolutionary changes in neural control of the larynx, 

rather than the larynx anatomy itself, and has contributed to the rapid development of language 

in humans (Brown et al., 2008; Hickok, 2016; Pisanski et al., 2016; Belyk and Brown, 2017).  

Previous studies have identified two distinct regions in the human sensorimotor cortex that are 

correlated with laryngeal movements. The ventral laryngeal motor cortex (vLMC) is at the 

bottom of the sensorimotor cortex homunculus (Foerster, 1936; Penfield and Boldrey, 1937), 

and is a likely homologue of LMC in other primate species (Hast and Milojkvic, 1966; Simonyan 

and Jürgens, 2002; Jürgens, 2009). A completely separate dorsal region (dLMC) has been 

identified between the cortical representation of the lips and the hand (Brown et al., 2008; 

Simonyan and Horwitz, 2011a; Belyk and Brown, 2015), and is thought to be unique to humans 

(Mayer et al., 2002; Belyk and Brown, 2017). The existence of two larynx cortical 

representations is controversial, in part because it is unknown how and whether each region 

contributes distinct roles in larynx operation. 
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Here, we sought to address four fundamental questions about the cortical control of vocal pitch, 

including: 1) its localization in the sensorimotor cortex, 2) whether encoding differs for 

functionally-distinct pitch components (accents, phrase, and voicing), 3) whether the same pitch 

control mechanisms are engaged during speech and non-speech vocalizations like singing, and 

4) whether electrical stimulation of the dLMC causes direct and proportional activation of 

laryngeal muscles. To address these questions, we used high-density intracranial recordings 

and stimulation of the lateral surface of the brain in participants who were undergoing epilepsy 

surgery. These high-resolution recordings allowed us to identify the functional roles of both LMC 

regions during naturalistic vocal production tasks. 

 

Results  

To understand how speakers control the pitch of their voices, we designed a lexical emphasis 

task that required participants to stress specific words in a sentence. Eleven participants spoke 

the sentence, “I never said she stole my money,” and on each trial, they were cued to change 

the meaning of the sentence by emphasizing a specific word (Rooth, 1985, 1992) (Fig 1b). For 

instance, “I never said she stole my money” would imply that someone else had stolen the 

money. The written forms of the sentences were presented to participants on a computer screen 

with the target word of emphasis underlined and italicized, and an example audio sentence was 

played through speakers. In an additional condition, subjects were instructed to say the 

sentence as a question. This task naturally elicits prosodic differences between conditions, 

while keeping the lexical and syllabic content for each sentence the same. 

We used an autocorrelation method (Boersma, 1993) to extract the pitch contour (fundamental 

frequency, f0) from the produced acoustic waveform. On every trial, the pitch contour contained 

a transient increase in pitch at the time of the emphasized word (Fig 1b, green lines). While 

participants performed the task, we recorded neural activity from ECoG electrodes on the lateral 
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cortical surface (Fig S1), and computed the analytic amplitude of the cortical activity in the high-

gamma range (HG; 70-150 Hz), which has been found to correlate with multi-unit firing rate 

(Ray and Maunsell, 2011), and has been shown to reliably track neural activity associated with 

speech articulation and other movements (Crone et al., 1998; Bouchard et al., 2013).  

We found electrodes with increased neural activity that was clearly time-locked to the production 

of the emphasized word (Fig 1b, single trial raster plots). We next quantified the relationship 

between vocal pitch and neural activity for every electrode across participants. We also 

controlled for three potential factors that can correlate with pitch in naturally produced speech. 

First, we used partial correlation to remove the effect of intensity (amplitude) (Stevens, 1935). 

Second, to remove the encoding of supralaryngeal articulators (Bouchard et al., 2013), we first 

used dynamic time warping on the acoustics to temporally align the syllabic sequence across 

trials, then subtracted the mean activation pattern across trials. Third, to control for natural 

declination (Ladd, 1984), which causes a correlation between pitch and proximity to the start of 

the sentence, we used a trial-wise shuffle test, which requires significant electrodes to correlate 

more strongly with pitch than would be expected from declination alone. (See Fig. S2 and 

methods for details). 

After removing these potential confounds, we found that across participants, the locations of 

pitch-encoding electrodes were specifically localized to a region of the right precentral gyrus, the 

dorsal laryngeal motor cortex (dLMC; p<0.001 using a shuffle test; Fig 1c). Some electrodes 

were found to correlate with pitch in the left hemisphere, but they were far less confined to a 

single region.  All electrodes in the right dLMC showed a positive monotonic relationship 

between high-gamma activity and pitch (Fig 1d). We also observed evidence for encoding of the 

auditory feedback of vocal pitch in electrodes over the bilateral superior temporal gyrus (STG). 

In contrast to right dLMC, which only had positive correlations, some STG electrodes 
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demonstrated positive correlations, while other STG electrodes showed negative correlations 

(Tang et al., 2017) (Fig 1e). 

 

Figure 1 | Human cortical encoding of vocal pitch in right dLMC during speech production. 
Participants were instructed to emphasize specific words in a sentence. a, Diagrams of laryngeal 
anatomy. The vocal folds are stretched by the cricothyroid muscle, and increased tension in the 
vocal folds results in a higher produced pitch. b, Pitch-correlated neural activity at an example 
electrode. The speech waveform for one example sentence (emphasis on “I”) is shown at the top. 
pitch contours (green lines) and high gamma activation for the example electrode (black rasters) 
for every sentence spoken by a single participant are shown. Trials are grouped by the word of 
emphasis and co-aligned to the beginning of the emphasized word. On a single trial level, 
increases in pitch are associated with increased neural activity. c, Spatial localization of 
electrodes that have a significant correlation with vocal pitch, after controlling for intensity and 
supralaryngeal articulators. Electrodes appear clustered in the right dorsal laryngeal motor cortex 
(M1) on anterior aspect of the precentral gyrus (dLMC, located lateral to hand and medial to the 
lip cortical representations), with weak responses in left sensorimotor cortex. The nonprimary 
auditory cortex on superior temporal gyrus (STG) (feedback responses). e, Tuning curves for 
pitch across electrodes all significant electrodes in M1 (mean and s.d. in grey, example electrode 
in black) over normalized pitch range. Activation increases monotonically with pitch values 
(middle 90 percentile range plotted). d, Correlation values for significantly tuned electrodes in the 
M1 and STG regions. Electrodes in M1 were all positively correlated with vocal pitch, whereas 
activity of electrodes over the STG were both positively and negatively correlated with pitch. 
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In natural speech, vocal pitch is composed of multiple elements, each with different timescales, 

and potentially with different encoding mechanisms. To understand the specific sub-processes 

involved in pitch control, we applied a model-based approach to estimate these distinct 

components of the pitch contour.  We used a well-known mathematical formalization (Fujisaki, 

2004), called the Fujisaki model, to explain the neural activity on each electrode in the ventral 

sensorimotor cortex (vSMC). For each sentence, the components in the model include a fast 

“accent” component (emphasized words or syllables), and a slow “phrase” component (the 

declination (Ladd, 1984) in pitch over the course of a phrase). The model is motivated by the 

physiological mechanisms of pitch control in the larynx, and is capable of parsimoniously 

modeling pitch contours across many languages(Fujisaki, 2004). We hypothesized that these 

theoretically distinct components are controlled independently in the brain.   

The phrase and accent components, along with whether the segments were voiced or unvoiced, 

allowed us to reconstruct the produced pitch contours nearly perfectly (R2=0.96, Fig 2a). At 

individual electrodes, high-gamma activity was correlated with these pitch components in a 

temporally-specific fashion (Fig 2b-d). Crucially, we found a clear and striking dissociation 

between electrodes that encoded accent, phrase, and voicing (Fig 2e). Although there were 

electrodes that were significantly tuned to both voicing and pitch, 59% of pitch-tuned electrodes 

were not tuned to voicing, and 81% of voicing electrodes were not tuned to pitch, suggesting 

that these components have separable control representations. 
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Figure 2 | Cortical representation of pitch contour components in speech: accent, phrase, 
and voicing. a, The Fujisaki model decomposes the pitch contour in natural speech into accent, 
phrase, and voicing components. Inference of the Fujisaki is shown on an example sentence. In 
order from top to bottom: acoustic waveform of produced sentence; pitch contour extracted from 
sentence; phrase (green), accent (purple), and voicing (brown) components extracted from the 
pitch contour; original pitch contour (green) and Fujisaki reconstruction of pitch contour (black). b, 
Single trial high gamma raster for an electrode controlling the phrasal component of the pitch 
contour. Green curves show the phrase component of the Fujisaki model for each trial, and the 
grey rasters show the activation of an example “phrase” electrode (r=0.45). This electrode 
responded similarly to sentences with different accents (top and bottom). c, Single trial high 
gamma raster for an electrode controlling pitch accents. Purple lines show the accent component 
for an example subject separated by sentence style, and the grey raster shows the activation of 
an example “accent” electrode (r=0.17). d, Single trial high gamma raster for an electrode 
controlling voicing. Brown lines show the proportion of sentences that are voiced for each style. 
This electrode has higher activation when the subject is voicing (r=0.2). e, The correlation 
coefficient between activation of the accent and phrase components of the Fujisaki model for 
each of the electrodes over the sensorimotor cortex. Example electrodes in b-d are marked in 
their respective colors. Electrodes tend to be predominantly along the axes-- no electrodes in the 
vSMC correlate with both phrase and accent. f, Spatial location of electrodes on the vSMC across 
all subjects. Accent and voicing electrodes were selected using a trial-wise shuffle test (p<.001).  
Phrase electrodes were selected using a trial-wise shuffle test and a cutoff or r<0.15. Each brain 
shows the kernel density estimation illustrating the spatial organization of electrodes on a 
common brain. Accent electrodes were strongly localized to the dLMC, while voicing and phrase 
electrodes were in both the dLMC and the vLMC. 

Given the results shown in Figure 1, we hypothesized that pitch encoding in right dLMC more 

strongly reflects the pitch accent component, consistent with the emphasized word in each 

sentence. We confirmed that right dLMC electrodes were most strongly associated with pitch 
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accent (Fig 2f). In contrast, phrase-encoding electrodes were found in bilateral vLMC. Finally, 

voicing was localized to a distinct subset of right dLMC and bilateral vLMC (Bouchard et al., 

2013) electrodes. Together, these results demonstrate a functional-anatomical distinction in the 

control of pitch phrase, pitch accent, and voicing. 

We next asked whether the encoding of vocal pitch was specific to the linguistic context (Mayer 

et al., 2002), or similar during speaking and singing, a form of non-speech vocal production. In 

addition to being interesting in its own right, singing provides a method for observing pure vocal 

pitch control without contamination of other speech features. Participants performed a singing 

task in which they listened to and then repeated pitch patterns alternating between sol-mi-do-mi-

sol (high-middle-low-middle-high) and do-mi-sol-mi-do (low-middle-high-middle-low) on a vowel. 

Figure 3a shows examples of the two melodies sung by one of the participants (Fig. S4 shows 

the performance of all subjects). To remove any effects of the sequential order of the produced 

pitches, the two melodies were interleaved so that the high and low notes occur in the same 

sequential order, both occurring third in the sequence 50% of the time and fifth in the sequence 

the other 50% of the time.  The first note in each melody was excluded from analysis, so that all 

analyzed notes were preceded by the same (middle) note. Importantly, this task was specifically 

designed to avoid some of the potential confounds in interpreting vocal pitch in natural speech 

described earlier. That is, this singing task did not have pitch declination, correlations between 

pitch and intensity, correlation between pitch and articulatory gestures, and high autocorrelation 

of pitch over time that each are common to natural speech. 

We examined neural activity time-locked to the onset of each note (Fig 3b). We found 

electrodes in the anterior part of right dLMC that exhibited pitch-specific activity immediately 

preceding the acoustic onset of the vocalization (yellow region; Fig 3c). In order to sing the 

correct pitch at the acoustic onset of each note, a singer must tense the laryngeal muscles, 

creating the necessary tension in the vocal folds (Fig. 1a). In this brief moment before the 
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acoustic onset, we observe neural control of the larynx without subjects hearing their own voice. 

Approximately 100-300ms after acoustic onset, electrodes in the posterior part of the right 

dLMC were correlated with pitch (blue region; Fig 3c). Both subgroups of electrodes, those that 

are tuned to pitch before acoustic onset, and those that are tuned to pitch during vocalization, 

are also correlated with pitch during the speaking task (Fig 3c). Pitch representation is weak in 

the vLMC both before and during vocalization. 

 

Figure 3 | Pitch encoding during singing. a, Singing task with two simple melodies. Notes are 
colored by low, middle, and high target tone. The sound waveforms are shown above, with 
produced pitch for each note below.  b, High gamma response for two example electrodes in right 
dLMC of the example subject for high (green) and low (purple) notes. Time 0 is the acoustic onset 
of the note. The yellow and blue segments mark time windows used to compute correlations in 
(c). Error bars are sem across trials. c, The Pearson correlation between cortical activation and 
vocal pitch for low and high notes using 50 ms before acoustic onset (left) and 100 – 300 ms after 
acoustic onset (middle). right: The Pearson correlation computed between pitch and high gamma 
activation for the contrastive emphasis task for this subject.  Arrows mark the electrodes from (b). 
d, Comparison between pitch encoding in right dLMC electrodes during singing and during 
speaking for all subjects. There is a strong correlation across electrodes in the two behavioral 
conditions (Pearson r=0.33, p-value < 0.01). 

To quantify the similarity of pitch representation during singing and speaking, we compared the 

continuous correlation between electrode activity and pitch in the two conditions (Fig 3d).  

Across all dLMC electrodes from all right hemisphere subjects, there was a strong correlation 

between how well electrodes encoded pitch in the singing and speaking tasks (Pearson r = 
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0.33, p-value=0.01) (Fig 3d). This demonstrates that dLMC activity reflects a task-independent 

representation of vocal pitch that is not specific to speech or singing. 

We have demonstrated that neural activity in dLMC reflects the detailed and temporally-specific 

features of produced pitch during speaking and singing. To demonstrate definitively that this 

activity reflects feed-forward control of laryngeal muscles, we used direct focal (bipolar) 

electrical stimulation during intraoperative clinical brain mapping. In two separate experiments, 

we examined whether there is a causal link between dLMC activity and laryngeal muscle 

activation. This approach helps rule out representation that is purely somatosensory feedback 

(Guenther, 2006), an efference copy signal (Niziolek et al., 2013), or an auditory response to the 

acoustics of one’s own voice (Wilson et al., 2004; Brown et al., 2008; Chang et al., 2013; 

Cheung et al., 2016). 

In the first stimulation experiment, participants undergoing neurosurgical procedures with 

general anesthesia were intubated with a specialized endotracheal tube with electromyographic 

(EMG) non-penetrating wire electrodes (Eisele, 1996; Rea and Khan, 1998). These electrodes 

contacted the left and right vocal folds, and were designed to record laryngeal muscle 

activations. In 18 participants (5 left), we stimulated cortical sites throughout the sensorimotor 

cortex (Tate et al., 2013) while recording laryngeal EMG. We found sites that elicited a laryngeal 

EMG response bilaterally in the dLMC and vLMC. The highest concentration was in the right 

dLMC, the same cortical region that correlated with vocal pitch during speech and singing (Fig 

4a). The dLMC was typically found between areas where stimulation evoked EMG-detected 

movements from the arm (dorsal), and mouth (ventral) (Fig 4d). 

To understand whether there is a causal relationship between the amount of cortical activity and 

the amount of laryngeal muscle activation, we varied the cortical stimulation amplitude, and 

found that it caused a proportional increase in the laryngeal EMG response (Fig 4b) with a 

latency of 11-19 ms (Fig 4g). This demonstrates a monotonic relationship between dLMC neural 
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activity and the magnitude of laryngeal muscle activation (Fig 4c). One example subject (red) 

received 11 cortical stimulations at mid range (60 V), which elicited a distribution of laryngeal 

responses in between the lowest and highest stimulation magnitude. These findings of 

proportional responses to graded stimulation are concordant with the monotonic relationship 

between cortical high gamma activity and vocal pitch, which is determined by tension of the 

cricothryroid muscle. Furthermore, the fast response is consistent with the timing and 

representation in the singing task, and suggests involvement of the direct cortical innervation of 

intrinsic laryngeal motor neurons (Simonyan and Horwitz, 2011b). 

In the second stimulation experiment, we asked whether stimulating the specific cortical region 

of dLMC causes an evoked, involuntary vocalization. In this experiment, stimulation was applied 

throughout the sensorimotor cortex in 82 neurosurgical patients undergoing awake surgical 

procedures in which the left hemisphere cortical surface was exposed. While we could not 

assess the right hemisphere, we were still interested in understanding what effects could be 

ascribed to dLMC stimulation given that we did find evidence of voicing encoding bilaterally. In 

20 participants, we observed that stimulation of dLMC evoked audible vocalizations (Breshears 

et al., 2015). 

We found that the evoked vocalizations were all voiced as demonstrated by energy at the 

fundamental frequency and voice-related harmonics (Fig 4f). These non-volitional, stimulation-

evoked vocalizations were not meaningful or communicative speech sounds, but sounded 

typically like a prolonged “aaah” that varied in vocal register, including vocal fry (9 subjects, 

example: Fig. S5a), modal register (10 subjects example: Fig 4f), and falsetto register (1 

subject, example: Fig S5b), and lasted 0.5 – 2.9 seconds (mean: 1.1 seconds).  

In early descriptions of evoked vocalizations by Penfield (Penfield and Roberts, 1959), similar 

responses were interpreted at positions spread throughout the ventral sensorimotor cortex. In  
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Figure 4 | Electrical stimulation of dLMC. a, Cortical stimulation mapping of larynx responses 
in the primary sensory and motor cortices for 18 participants. The larynx was monitored using 
electromyography (EMG) electrodes on a customized endotracheal tube. Other evoked 
movements not shown. The red star marks the example site that is shown in more detail in (b) 
and (c). b, Laryngeal response for stimulations ranging from 0-100 V. Stimulation was delivered 
11 times at 60 V and once at each other magnitude for this patient. c, Three other patients also 
received graded stimulation. Peak-to-trough response amplitude was determined for each 
stimulation, and is shown for each patient, normalized to the maximum and minimum response 
for each larynx side of each subject. Laryngeal responses for the example stimulation site of (a) 
and (b) are shown in red. Stimulation responses to 60V are greater than 0V (p-value < 1e-6, one-
sided t-test) and less than 100V (p-value < 1e-3, one-sided t-test). Therefore responses are not 
an all or none, but rather a graded response where more stimulation yields a greater laryngeal 
response. Stimulation magnitude is strongly correlated with laryngeal response across subjects 
(Pearson r = 0.85, p-value < 1e-52). d, Sites that evoked arm movement were dorsal of the larynx 
sites and sites that evoked mouth movement were ventral of the larynx sites. e, Sites that evoked 
a spontaneous involuntary voiced vocalization during awake stimulation mapping. The 
vocalization evoked by the red location is shown in (e). f, Spectrogram and pitch contour of an 
example evoked vocalization. Noise from the stimulator created a 3.5 kHz band in the 
spectrogram. g, Delay times between the start of stimulation and the beginning of the response 
for anesthetized (black) and awake (grey) stimulation. All of the response times for laryngeal 
response were shorter than times for vocalization response. 

fact, a distinct and separate dorsal representation of the larynx was never depicted in the 

homunculus.  Using the precision of an intraoperative stereotactic navigation system and EMG 

monitoring, however, we found that these responses were well-localized to the dLMC (Fig 4e). 

Concordant with the EMG results, we found that stimulation at other ventral sensorimotor cortex 

locations instead evoked contralateral pulling of the face, deviation of tongue, and jaw 
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movements, or arm movements more dorsally (Breshears et al., 2015). Furthermore, consistent 

with results from other primates (Jurgens, 1974), stimulating the vLMC did not elicit vocalization. 

These results provide definitive evidence that dLMC neural activity reflects the feed-forward 

encoding of motor commands in the larynx, though they also suggest that the representation 

might be more complex than control of a single muscle. The vocalization response requires 

adduction of the vocal folds, and involves precise coordination with respiratory processes in the 

lungs and diaphragm. 

 

Discussion 

In summary, we combined high-resolution cortical physiology and stimulation methods with 

natural speech and singing to demonstrate that neural signals in human dLMC encode motor 

commands that allow for the flexible, feed-forward control of vocal pitch. By modeling distinct 

aspects of the pitch production behavior, we demonstrated a functional-anatomical dissociation 

of two important dimensions of movement control in the larynx: voicing and pitch. It is known 

that voicing and pitch activate different laryngeal muscles: voicing is mediated primarily by 

adduction of the vocal folds, and pitch is mediated by the lengthening and tensing of the vocal 

folds. However, it was previously unknown whether and how cortical control signals 

differentiated these two important functions (Belyk and Brown, 2017). Consistent with our 

previous work (Bouchard et al., 2013), voicing was encoded by both the dLMC and vLMC. Here, 

we found that a subset of dLMC electrodes was selective for vocal pitch control, and not for 

other articulatory features, in the context of speaking and singing, demonstrating a distinct 

circuit for pitch. Furthermore, direct and temporally-precise control of pitch involves independent 

processes that unfold over short (accent) and long (phrase) timescales in distinct cortical 

regions. 



 

107 

Humans are unique among primates in our ability to flexibly control vocal pitch, and there is 

growing evidence that precise control of pitch was one of the first evolutionary developments 

that ultimately led to human-specific speech abilities (Brown et al., 2008; Hickok, 2016; Pisanski 

et al., 2016; Belyk and Brown, 2017). The specialization we observed for pitch control in dLMC 

adds important empirical evidence for the role that vocal pitch plays in species-specific 

behaviors like speech. These findings support a crucial role for the dLMC in the evolution and 

development of language specialization in humans.  

 

Methods 

The experimental protocol was approved by the Human Research Protection Program at the 

University of California, San Francisco. 

Subjects 

All 11 subjects were native English speaking patients who underwent chronic implantation of a 

high-density subdural electrocorticography (ECoG) array as part of their surgical treatment of 

epilepsy. Five of the subjects had ECoG grids on the left hemisphere, and six had ECoG grids 

on the right hemisphere. Electrode coverage for all patients is shown in Fig. S1. Subjects gave 

their written informed consent. Each subject reported normal speaking and hearing ability. 

Neural recordings 

Each subject was unilaterally implanted with a 256-channel lattice array of electrodes, each with 

an exposed diameter of 1.17 mm and center-to-center spacing of 4 mm. Cortical local field 

potentials were amplified and quantized using a pre-amplifier (PZ5, Tucker-Davis 

Technologies), and preprocessed using a digital signal processor (RZ2, Tucker-Davis 

Technologies). 
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Preprocessing 

The voltage trace of each electrode was visually inspected for artifact and excessive noise, and 

noisy electrodes were excluded from further analysis. For the remaining electrodes, we used a 

common average reference across electrode blocks and notch filters at 60, 120 and 180 Hz to 

remove line noise. For each electrode, we extracted the time-varying high gamma (HG) analytic 

amplitude using eight Gaussian band pass filters at 73.0, 79.5, 87.8, 96.9, 107.0, 118.1, 130.4, 

and 144.0 Hz followed by a Hilbert transform (Moses et al., 2016). HG was calculated as the 

mean of these bands, and z-score was computed relative to the entire experimental block. 

Acoustic analysis 

We extracted the pitch contour of each sentence using Praat (Boersma, 1993) with pitch min 

and max bound determined individually for each subject. Voicing was also determined at this 

point. We then used an 80 ms median filter, then corrected erroneous octave jumps, 

interpolated through unvoiced regions in log(Hz), and filtered with an 80 ms hanning window. 

Intensity was also extracted from each trial using Praat, and normalized by recording session. 

Throughout the text, “pitch” is refers to fundamental frequency. 

We found that some articulatory features tended to be correlated with pitch. For instance, nasals 

tended to have low pitch in all prosodic styles, so electrodes that were strongly tuned to velar 

movements would appear to be negatively correlated with pitch. To address this potential 

confound, an acoustic model was used. Although the pitch contours varied, the same syllable 

sequence was spoken each time, allowing us to examine specifically the control of pitch during 

natural speech and control for the articulatory movement of the production of the syllables. 

First, we used dynamic time warping to temporally align the sentences for each subject. Mel 

cepstral coefficients (MFCCs) were calculated for each sentence (McFee et al., 2017) and 

dynamic time warping was used to find the shortest path for the Euclidean distance of the 

MFCCs. This warp was then applied to the pitch, intensity, and high gamma analytic amplitude 
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contour of each sentence. By removing the average neural activation across trials in this new 

timing, we removed the contribution of neural representation of articulatory movements that 

were consistent across trials. 

This acoustic model does not track the articulators directly (Bouchard et al., 2016) or explicitly 

model the movement of specific articulators from the acoustics (Bouchard et al., 2013), but 

implicitly models the supra-laryngeal articulators by their effect on the acoustics of the sentence. 

Our approach has the advantage of being free of modeling assumptions about the relationship 

between neural activation and articulator movement (e.g. linearity). However, it does not capture 

trial-to-trial differences in articulation beyond timing differences. For instance, if a subject 

dropped the “r” of “never” for one trial, an explicit model might capture this but our approach 

would not. We expect these differences to be relatively rare and small for our task, where the 

syllabic context is the same across repetitions.  

To determine the functional relationship between pitch and neural activation pitch was digitized 

into 20 bins uniformly spanning the middle 90-percentile range of pitch values for each subject, 

and the average high-gamma was calculated for each bin and significant electrode. 

Fujisaki Parameter Estimation 

The Fujisaki model of vocal pitch is a model that separates the pitch contour of an utterance (F0) 

into three components, the phrase, the accent, and the baseline. The phrase (P) is composed of 

I individual phrase gestures of amplitude Ap and shape Gp, The accent (Ac) is composed of J 

individual accent gestures of amplitude Aa. The model is defined by the following equations 

(Fujisaki, 2004): 

ln!! ! = ln!! + ! +  !!  

! =  !!"!! ! − !!!
!

!!!
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!! =  !!" !! ! − !!! − !! ! − !!!
!

!!!
 

!! ! = !!!!!!" , ! ≥ 0,
 0,              ! <  0.  

!! ! = min 1 − 1 + !" !!!! , ! , ! ≥ 0,
0,                                             ! < 0.   

The phrase and accent components were estimated for each spoken sentence using 

FujiParaEditor (Mixdorff, 2000). We used automated inference(Mixdorff, 2009), with manual 

corrections where necessary. 

Correlation of neural activity (z-scored high gamma analytic amplitude) was calculated against P 

and Ac and against the binary voicing metric (V) extracted from Praat. For each metric and each 

of the 2816 electrodes, we conducted a shuffle test similar to the significance test for pitch 

(nboots = 1000, p < 0.001). Since the activation of many electrodes were correlated weakly with 

phrase due to sentence timing, electrodes were also required to have correlation > 0.1 to be 

labeled significantly tuned with P. 

 

Singing 

The singing performance was measured quantitatively for each subject. First, the value of each 

note was determined by the median pitch produced for the duration of the note. To enable 

comparison between subjects with different vocal ranges, each note converted to a semitone 

value: 

! = 12 log! !  

where f is pitch and s is semitone. Using the semitone values, the performance of each singer 

was measured by the average interval between “do” and “so” (target = 7.0) and the standard 

deviation for low and high notes. A single subject was best in both of these metrics (black, 



 

111 

Figure S2), and is used as the example subject in Figure 3. This subject also had approximately 

the same loudness distribution for low and high notes. 

A cross-subject analysis was used on the remaining subjects. Several of these subjects were 

not able to successfully mimic the melody of the task, but were still able to sing notes that varied 

in pitch. The median pitch through the duration of each note was used as the note’s pitch, and 

we calculated a timepoint-by-timepoint correlation between high-gamma activation and pitch for 

each electrode in the right dLMC. 

Stimulation Mapping 

Intraoperative direct electrical stimulation mapping of the peri-rolandic cortices was performed in 

18 subjects (5 left) as a part of their clinical care prior to surgical resection (4 of these subjects 

also participated in the contrastive emphasis and singing task experiments). After the induction 

of anesthesia, electromyography needles were placed in the orbicularis oris, tongue, and hand 

by a certified neuromonitoring specialist. A NIM® endotracheal tube (Medtronic, Minneapolis, 

MN) was placed under direct visualization with wire electrodes in contact with the vocal folds 

bilaterally to record laryngeal EMG activity(Eisele, 1996; Rea and Khan, 1998). The time-locked 

EMG activity and stimulation parameters were recorded on a Cascade® intraoperative 

neuromonitoring system (Cadwell, Kennewick, WA). 

A craniotomy was performed, the dura was opened, and the exposed fronto-temporo-parietal 

cortical surface was densely mapped.  The mapping was performed using a bipolar Ojemann 

Cortical Stimulator® probe (Integra, Plainsboro, NJ) with 5mm electrode spacing. The stimulator 

probe was applied sequentially to one cortical site at a time, as the voltage was increased from 

0V to 100V, in increments of 5-10V, or until an EMG response was observed at that site. A train 

of 5-9 biphasic square waves, each with equal positive and negative phases of 75µs duration 

was used (Tate et al., 2013). For each trial of stimulation, the voltage was held constant, while 

the current was allowed to vary. EMG activity was simultaneously recorded from orbicularis oris, 
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tongue, hand, and larynx as voltage was increased on each trail at each cortical site. Sites of 

cortical stimulation were spaced approximately 3-5mm apart. If an evoked potential was 

observed from any of the EMG electrodes, a voltage threshold was identified and the 

corresponding cortical site was photographed and recorded on the subject’s co-registered MRI 

surface reconstruction using the BrainLab® neuronavigation system.  The cortical sites from 

each subject were then warped into a common space for visualization (see previous description 

of electrode warping, Hamilton et al, in submission). Relative localization of the arm and mouth 

were determined by normalizing the location of the sites of each subject to the dorsal-most 

laryngeal site. 

In 4 right hemisphere subjects, multiple additional trials of stimulation across a range of voltages 

was performed at the dLMC site evoking laryngeal EMG activity, in order to characterize the 

relationship between dLMC stimulation voltage and the magnitude of laryngeal muscle 

activation. The cortical site was stimulated at voltages ranging from 10-15V below threshold, up 

to 100V or the plateau of the laryngeal EMG response. All stimulations were performed 5-10 

seconds apart to avoid adaptation. EMG voltage responses were filtered with a 8th order 

Butterworth filter with critical frequency 32 Hz. The normalized peak-to-trough amplitude of the 

motor evoked potentials recorded from the laryngeal EMG was plotted as a function of 

stimulation voltage.  Normalization was relative to the range of peak-to-trough response for 

each vocal fold of each subject. For the example subject, two one-tailed t-tests were conducted 

testing difference from the higher and lower extreme values (n=11, p<.01).   

In an independent cohort of patients undergoing craniotomy for surgical resection in the left, 

dominant hemisphere, stimulation mapping was performed with the patients fully conscious and 

conversant in order to identify speech areas (see previously published awake mapping protocol) 

(Breshears et al., 2015; Chang et al., 2016). After exposure of the peri-rolandic cortex and 

emergence from intravenous sedation (either dexmedetomidine or propofol), intravenous 
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fentanyl was titrated for optimal balance of pain control with patient arousal during the mapping 

procedure. The exposed cortex was densely mapped using an Ojemann stimulator (current 

range: 1 to 3.5 milliamps, pulse frequency 60Hz, pulse width 1ms, stimulus duration: 500 to 

1500ms, stimulator electrode spacing: 5 mm). Prior to mapping, the after-discharge threshold 

was determined; the mapping was conducted at the maximum current that did not result in 

cortical spread (i.e. after-discharges). This ensured a low false negative rate. Each response or 

non-response to stimulation was tested for consistency/repeatability with at least 3 non-

consecutive stimulations.  Responses were considered valid only in the absence of after-

discharges or seizure activity on electrocorticography, which was monitored and reported in 

real-time by an epileptologist. The mapping procedure was recorded simultaneously with 2 

video cameras, one with an unobstructed view of the patient’s face, and the second with an 

unobstructed view of the cortical surface. Cortical sites evoking involuntary vocalization 

responses were documented with a photograph and transferred onto the patient’s cortical 

surface reconstruction from their MR imaging. These were warped into a common space, as 

described above. Acoustic waveforms of the vocalizations were extracted from the audio files 

for spectral analysis using librosa (McFee et al., 2017). 
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Supplemental Figures 

 

 

Figure S1 | Electrode coverage. Position of electrodes from chronically implanted high-density grids 
from thirteen subjects. The procedure described in (Hamilton et al. In Submission) was used to 
nonlinearly warp the electrode positions onto an MNI atlas brain (cvs_avg35_inMNI152). 

 

 

Figure S2 | Pitch partial correlation analysis. The left column shows pitch correlation without including 
partial correlation with intensity in the model, and the right side shows the results after including intensity. 
The top row shows results that do not include the dynamic time warping, and the bottom shows results 
that include the dynamic time warping. 

 

 

 

electrode coverage
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Figure S3 | pitch tuning in MOCHA sentence production. To test whether pitch tuning in right dLMC 
generalized to natural speech in general, including speech with natural uninstructed intonation, we 
conducted an additional experiment on a subset of 10 of the subjects who performed the contrastive 
emphasis task. In this experiment, subjects read sentences from the MOCHA list out loud as they were 
presented on a computer screen. MOCHA is a list of semantically meaningful sentences designed to 
sample the articulatory space of English(Wrench, 1999). These sentences were not designed for pitch 
production specifically, but did elicit natural variability in pitch during production. This task tests the 
generalizability of the relationship between dLMC activity and vocal pitch, however each sentence is only 
spoken once, so we are unable to apply a “pseudo-articulatory model.” Instead, we use a linear model for 
each electrode in each task to predict the high gamma activation of that electrode from the produced 
vocal pitch. a, Encoding results for electrodes in the vSMC across the 10 subjects. Tuning for pitch was 
again observed in the right dLMC. b, The same analysis performed on the same subset of subjects for 
the contrastive emphasis task. c, Comparison of model fit MOCHA vs. contrastive emphasis for each 
electrode. There is a positive correlation between the models (Pearson r = 0.33; p-value < 1e-4), and the 
models trained and tested on contrastive emphasis fit better than the models trained and tested on 
MOCHA. 
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Figure S4 | Singing performance. a, Intensity and pitch distribution for the example subject in Figure 3 
for low (purple) and high (green) notes. b, For each of the nine singers, the performance of the singer is 
measured by the average interval between the high and low notes and the standard deviation of each 
note. The black point indicates the best singer by both metrics. This is the singer that is used as the 
example in Figure 3. 
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Figure S5 | Stimulation-evoked vocalizations. Cortical location and spectrograms of vocalizations and 
pitch contours are shown for select vocalizations to illustrate the range of vocalization types induced by 
stimulations to the dLMC. a, Example of a vocalization that is voiced but does not have sonorous pitch 
because it is in the vocal fry register. b, Example vocalization that shifted from the falsetto register to the 
modal register. 
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Chapter 4. Decoding Prosody 

Brain computer interfacing (BCI) enables the control a computer using neural activity directly, 

and is a promising technology for assistive communication devices of paralyzed individuals 

(Wolpaw et al., 2002; Hochberg et al., 2006). While many BCIs focus on the movement of 

cursors (Leuthardt et al, 2004) and prosthetic arms (Collinger et al., 2013), speech BCIs could 

restore the ability to create speech sounds. Speech BCIs would record from neural activity 

involved in the speech networks of the brain and output speech as desired by the user. In 

chapter 3, I outline how prosody has expressive power across many linguistic levels, and 

showed that the control of vocal pitch is represented in cortical activity. It would thus be 

beneficial for an assistive communication technology to capture this meaning by estimating the 

intended intonation of the user. Here, I examine the possibility of incorporating prosody control 

in a speech BCI. I now develop a framework for using neural activity to decode prosodic 

information directly from the brain. 

Two decoding approaches are developed: pitch decoding and word-of-emphasis decoding. In 

pitch decoding, pitch is treated as a variable that is continuous both in value and in time, and 

fluctuations in pitch are extracted from neural activity. In word-of-emphasis decoding, pitch is 

not estimated, but rather the word-of-emphasis is estimated directly. The word-of-emphasis is 

treated as a discrete variable, which is classified using neural activation as features. 

The methods for the task, recording setup, high gamma extraction, and pitch calculation are 

described in Chapter 3. A single female subject was used, who had a right hemisphere high-

density electrocorticography grid neurosurgically implanted laterally as part of her treatment for 

epilepsy. 
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Pitch Decoding 

To reconstruct pitch accurately, I used a dynamical model of pitch combined with a model of the 

relationship between vocal pitch and neural activity. I used a Kalman Filter, which has been 

widely, and successfully used in reaching BCIs (Wu et al., 2003) and which implies the following 

assumptions: 

1. Pitch is a Markov dynamical process. In other words, the probability of the state at 

time t+1 given the state at time t is independent of the previous states. In this case, 

since I using the value and velocity of pitch, this means that all higher order dynamics 

(e.g. acceleration) will have a negligible benefit for estimating the value and velocity of 

pitch at the next time-step. 

2. The dynamics are linear, time-invariant, and Gaussian. In this case, this means that 

the state (value and velocity; !!) of pitch at a specific time can be predicted by a matrix 

multiplication of the previous state, with a normally distributed error and that matrix does 

not change. 

3. The encoding model is linear and Gaussian. Here, the high gamma analytic 

amplitude of each electrode for a specific point in time (!!) can be predicted by a matrix 

multiplication of !!, and that the high gamma analytic amplitude has a normal 

distribution around that value.  

Putting these assumptions together: 

!!!! = !!! +!!      !!~! 0,!  
!! = !!! + !!           !!~! 0,!  

 
Where ! and ! are noise variables with covariances ! and ! respectively. Since the pitch 

states (!) are extracted from the acoustics of the subject’s speech, and (!) are extracted from 

the neural recordings, ! and ! are learned simply with linear regression. No expectation 

maximization is required, as if would be for unobserved !. We use a Kalman smoother 

approach, which performs inference of the pitch contour using the neural activity recorded 
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through the entire sentence. This solution could not be performed in truly real-time, since it uses 

activity later in the sentence to inform estimates of pitch earlier in the sentence. In practice, this 

inference must be made using data recorded from the entire sentence. 

The model was trained for all electrodes on the high density ECoG grid for a single subject. The 

model was trained on the first 30 sentences, and tested on the remaining 8. There was a 

correlation of 0.8 between the extracted and inferred pitch of the held-out sentences (Fig. 1). 

 

Figure 1 | Example pitch decode of 
a sentence. The black line shows the 
extracted pitch for a held-out 
sentence where the subject 
emphasized the word “I”. The red line 
shows the pitch contour inferred from 
the neural data using a Kalman 
smoother. 

Decoding Word-of-Emphasis 

Next, we determined how well the word-of-emphasis could be decoded directly from cortical 

activity patterns. We removed all of the question condition sentences from the collected data, 

and were left with only sentences where one of the seven words was emphasized. We used 

linear discriminant analysis, which models the relationship between neural activity and word of 

emphasis as following generative model (Fisher, 1940): 

!!|!! = ! ~ ! !! ,!  

where ! is the sentence number, ! is one of 7 words, and !! is the word that was emphasized 

for sentence !. The word boundaries were determined for each sentence using a phoneme 

aligner. Then the high gamma analytic amplitude was averaged over the duration of each word 

in the sentence. This resulted in 256 (number of electrodes) x 7 (number of words) = 1,792 

0.0 0.5 1.0 1.5 2.0
time (s)

150

200

250

pi
tc

h 
(H

z)

true
kalman smoother



 

126 

features per sentence. !! is the high gamma analytic amplitude averaged for each word and 

combined across words for each sentence !. 

We used the same data as in pitch decoding. A leave-one-sentence-out scheme was used so 

that performance reflected what would be expected for unseen data. We found an accuracy of 

80%, and all of the misclassifications were within 2 words of the correct word (Fig. 2). 

 

Figure 2 | Confusion matrix for word-of-
emphasis classification. Leave-one-out 
results are shown. Weight on the diagonal 
reflects accurate decoding. Accuracy is 80% 
and all errors are within 2 words of the correct 
word. 

Prosody has the potential to increase the richness of communication for assistive 

communication technology, yet few technologies have the ability to incorporate this feature. 

Here, we demonstrated successful decoding of spoken prosody from cortical activation in a 

continuous and discrete modes. This is a proof-of-concept using neural recording technology 

that is currently only available in neurosurgical patients who are undergoing this procedure as 

part of their treatment of epilepsy. Neurosurgery is rarely used for assistive technologies, and 

has not yet been used for a speech prosthetic. These results indicate that cortical signals are 

able to recover prosodic information that is difficult to achieve by other means.  

One caveat of this study is that it is unclear how much prosodic information is due to a 

feedforward command and how much is due to an acoustic encoding of the subject hearing her 

own voice.  Stimulation results from Chapter 3 would suggest that at least some of the cortical 

activity is actually representing a feedforward command, however some of the activity, 
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particularly in known auditory areas, could be due to the subject’s own voice, and therefore 

might not generalize well to use as an assistive technology. Further work is needed to explore 

how this approach will perform in a subject who is unable to speak. 
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Conclusion 

Whether monitoring the movement of a limb or understanding speech, making sense of one’s 

surroundings and responding appropriately requires precise encoding of the senses. Here, I 

have examined encoding of the senses theoretically and experimentally. I have demonstrated 

how dynamical state estimation can be achieved within the physical limitations of the brain and 

characterize the representation in a specific sensory modality. I also examined experimental 

data of the cortical encoding of speech and found a quenching of variability during auditory 

encoding. Finally, I showed how the brain commands control movement of an effector. I chose 

to examine the larynx because humans have a unique ability among primates to flexibly mimic 

pitch contours using their larynx. 

The human control of the larynx is a particularly interesting behavior, because humans appear 

to be specialized in the flexibility of its control, an ability that allows us to produce the pitch 

fluctuations that carry meaning in speech. Non-human primates do not appear to have this 

flexible control, and it is hypothesized that the difference in our abilities stems from differences 

in neural structure and activity. Here, we have shown representation of laryngeal control in a 

brain region that appears to be unique to humans among primates, the dorsal laryngeal motor 

cortex (dLMC). These results suggest that the dLMC is crucial for the fine control of pitch 

present in speech.  

In the auditory domain, pitch tends to follow the “receptive field” model outlined in the 

Introduction, where neurons have a specific preferred pitch, and respond according to the 

proximity of an incoming signal to that pitch (this is why we see both positive and negative 

correlations in the auditory response). However, the representation of pitch command we find in 

the dLMC follows a linear model, where higher pitch correlates with higher activity across the 

area. This finding illustrates a difference between auditory and motor representations of pitch. 
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We might be able to use this difference to determine if other speech areas are encoding in the 

auditory or motor space.  This difference might also apply to other sensory and motor 

representations-- that motor actions are encoded according to the muscle activity necessary for 

the action and senses are not.  

Further work is needed to understand how this area appeared in the evolutionary track of 

humans, and what precise role it played in the development of spoken language. I finish by 

demonstrating how these neural signals might be incorporated in a neural prosthetic device to 

improve the communicative ability of patients with difficulty speaking. 
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