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ABSTRACT 

 
This paper analyzes the performance of heteroskedasticity-and-autocorrelation-consistent 

(HAC) covariance matrix estimators in which the residuals are prewhitened using a 

vector autoregressive (VAR) filter.  We highlight the pitfalls of using an arbitrarily fixed 

lag order for the VAR filter, and we demonstrate the benefits of using a model selection 

criterion (either AIC or BIC) to determine its lag structure.  Furthermore, once data-

dependent VAR prewhitening has been utilized, we find negligible or even counter-

productive effects of applying standard kernel-based methods to the prewhitened 

residuals; that is, the performance of the prewhitened kernel estimator is virtually 

indistinguishable from that of the VARHAC estimator. 
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1.  Introduction 
 Existing procedures for constructing heteroscedasticity-and-autocorrelation-
consistent (HAC) covariance matrices have largely focused on kernel-based methods  
of estimating the spectral density matrix at frequency zero. Given that these methods  
tend to yield relatively poor inference properties in the presence of strong temporal 
dependence (cf. Andrews 1991), Andrews and Monahan (1992) proposed a class of 
kernel-based HAC estimators that incorporate a fixed order of vector autoregressive 
(VAR) prewhitening.  As originally suggested by Press and Tukey (1956), the approach 
of prewhitening is intended to flatten the relevant portion of the spectral density function, 
thereby reducing the bias of the kernel estimator and hence permitting the use of a 
smaller bandwidth parameter when the kernel is applied to the prewhitened residuals  
(cf. Priestley 1981, pp.556-7).  In practice, the simulation experiments of Andrews  
and Monahan (1992) utilized first-order VAR prewhitening, and this specification  
has generally been followed in subsequent research (e.g., Newey and West 1994). 
 In this paper, we highlight the pitfalls of using a fixed order of VAR 
prewhitening, and then we analyze the benefits of using data-dependent VAR 
prewhitening in constructing HAC covariance matrix estimators. In particular, we 
consider the use of either Akaike’s (1973) Information Criterion (AIC) or Schwarz’ 
(1978) Bayesian Information Criterion (BIC) to select the lag structure of the VAR 
model.  We evaluate the use of data-dependent VAR prewhitening in conjunction with 
the kernel-based methods studied by Andrews (1991) and Andrews and Monahan (1992).  
We also consider the VARHAC procedure proposed by Den Haan and Levin (1996, 
1997), in which the spectral density matrix at frequency zero is constructed directly from 
the VAR model, rather than applying a kernel-based method to the prewhitened residuals. 
 We utilize Monte Carlo simulation experiments to evaluate the finite-sample 
performance of these procedures in generating accurate confidence intervals for linear 
regression coefficients.  In comparing these procedures, we find that dramatic 
improvements in inference accuracy can be obtained by permitting the lag order  
to vary across the equations of the VAR, and indeed, to vary across the explanatory 
variables within each equation.  This flexibility of VAR prewhitening is in striking 
contrast to one of the fundamental restrictions of kernel-based methods, namely, that the 
entire spectral density matrix must be constructed using a single bandwidth parameter  
to ensure a positive semi-definite HAC covariance matrix (cf. Robinson 1996).   
 Furthermore, once data-dependent VAR prewhitening has been utilized, we find 
relatively little benefit from applying a kernel-based method to the prewhitened residuals.  
The bandwidth selection method used in the simulation studies of Andrews (1991) and 
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Andrews and Monhana (1992) focuses mainly on the degree of low-order autocorrelation 
of the prewhitened residuals; hence, this method tends to yield a low value of the 
bandwidth parameter, even if the residuals are not truly “white noise.”  Thus, the 
inferences obtained using the VAR-prewhitened kernel estimator tend to be virtually 
indistinguishable from those obtained using the VARHAC estimator, at least for all  
of the data-generating processes (dgps) considered here.   
 The remainder of this paper is organized as follows:  Section 2 discusses the steps 
used in constructing each of the various HAC covariance matrix estimators.  Section 3 
reports on the Monte Carlo simulation results.  Section 4 summarizes our conclusions  
and highlights some issues for further research.   
 
 

2.  HAC Covariance Matrix Estimation 
 This section describes the procedures used in constructing HAC covariance 
matrix estimators. As shown in section 2.1, the principal challenge is to estimate the 
spectral density matrix at frequency zero.  Section 2.2 describes the VARHAC procedure 
proposed by Den Haan and Levin (1996, 1997).  Section 2.3 highlights several important 
pitfalls associated with kernel-based estimation procedures.  Section 2.4 reviews the 
VAR-prewhitened kernel procedure of Andrews and Monahan (1992), and indicates how  
this method can be generalized to allow for data-dependent VAR prewhitening order. 
 
2.1  The General Problem 
 In many estimation problems, a parameter estimate $ψ T  for a p×1 parameter 
vector ψ 0 is obtained for a sample of length T using the sample analog of a set of moment 
conditions, such as E Vt(ψ 0) = 0, where Vt(ψ 0) is an N×1 vector of residual terms with  
N ≥ p.  This orthogonality condition is often used to motivate the following estimator  
of ψ 0: 
 
(2.1)  $ψ T   = argminψ  V′T  MT  VT, 
 
where VT = =∑ V Ttt

T ( ) /ψ1  is the vector of sample moments of Vt(ψ ), and the N×N 
symmetric weighting matrix MT  may be deterministic or stochastic (cf. Hansen 1982).   
 Under certain regularity conditions, ( )0ˆ ψψ −TT  has a limiting normal 
distribution with mean vector 0 and covariance matrix  Ω    =  2π B′ f (0) B,  
where f (0) denotes the limiting spectral density at frequency zero of the process  
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Vt(ψ 0).  In particular, the N×N matrix TT Sf ∞→=lim)0( / 2π;  the N×p matrix 
1' )(lim −

∞→= TTTTTT DMDDMB , and the matrices ST and DT are defined as follows: 
 

(2.2)  ∑ ∑= == T

s

T

t tsT VV
T

S
1 1 00 )(')(E1 ψψ  
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'
)(E1

ψψ∂ψ
ψ∂  

 
 The matrix DT  is typically estimated by its sample analog $DT   ≡ DT( Tψˆ ),  

where $DT  - DT   →  0 in probability as T →  ∞ .  Thus, the key challenge in estimating the 

asymptotic HAC covariance matrix Ω   is to estimate the spectral density matrix,  f (0). 

 

2.2  The VARHAC procedure 

 By specifying a parametric time series model for the N×1 vector process Vt( Tψˆ ), 

(henceforth referred to simply as tV̂ ), an estimate of the spectral density matrix at 

frequency zero can be constructed directly from the estimated parameters of the model. 

This approach has a long history in the statistics literature (cf. Press and Tukey 1956; 

Blackman and Tukey 1958; Grenander and Rosenblatt 1956).  In particular, Parzen 

(1969) identified several advantages of estimating the spectral density using an 

autoregressive (AR) model rather than a non-parametric kernel, and these advantages 

were subsequently highlighted in a variety of simulation experiments (e.g., Beamish  

and Priestley 1981; Kay and Marple 1981; Parzen 1983).  Asymptotic results concerning 

the properties of AR spectral estimation may be found in Berk (1974), An, Chen and 

Hannan (1982), Hannan and Kavalieris (1983), and Den Haan and Levin (1998). 

 Nevertheless, parametric spectral estimation has not been widely used to date in 

HAC covariance matrix estimation.  Andrews (1991) and Andrews and Monahan (1992)  

briefly considered a first-order AR spectral estimator, but the estimator did not correct  

for heteroskedasticity and performed poorly in simulation experiments.  Stock and 

Watson (1993) utilized second and third-order VAR spectral estimation in simulation 

experiments and in an empirical application.  Finally, Eichenbaum et al. (1988) and  

West (1997) proposed a class of HAC covariance matrix estimators for the case of  
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a vector moving-average (VMA) process of known finite order. 

 Here we consider the VARHAC procedure proposed by Den Haan and  

Levin (1996, 1997), which uses a model selection criterion to select the best VAR 

representation of Vt.  (For comparison, VAR estimators with fixed lag order will also be 

considered in the simulation experiments in Section 3.) 

 

Step 1.  Lag order selection for each VAR equation.  For each equation n = 1,..,N  

of the VAR, we permit the number of lagged values hn1 of the dependent variable $Vnt   

(that is, the nth  element of tV̂ ) to differ from the number of lagged values hn2 of the other 

N-1 residuals mtV̂  for m≠n.  (Note that the restriction that the lag order hn2 is identical  

for all m ≠ n drastically reduces the computational burden when N is large, but need  

not be imposed when N is very small.)   

 Thus, for every combination of the lag orders hn1 = 0,..., H  and hn2  = 0,..., H ,  

the following model is estimated by ordinary least squares (OLS): 

 

(2.4)  ∑ ∑ ∑= ≠ = −− ++= 1 2
1 211 ,21,21 ),(ˆˆ),(ˆˆ),(ˆˆ n nh

k nnnt
N

nm

h

k ktmnnnmkktnnnnnknt hheVhhVhhV αα  
 
for  t  = H +1, ...,T.  Of course, when hn1 = hn2 = 0, no estimation is required, and  

ntnt Ve ˆ)0,0(ˆ ≡ .  Note that the maximum lag length H  should increase with the sample 

size.  (For example, the asymptotic analysis in Den Haan and Levin (1998) assumes 

that H (T) = O[ T1/3 ]).  However, for notational simplicity, we suppress the dependence  

of H on T. 

 Using these OLS results, the value of the model selection criterion (either AIC  

or BIC) is calculated for each combination of lag orders hn1 and hn2:  

 

(2.5)   ( )
HT

HTNhh nnT
Ht nnntnn hhehh

−
−−++= ∑ +=

)log())1(( 21
1 21

2
21 ),(ˆlog),(BIC  

 

(2.6)   ( )
HT

Nhh
hhehh nnT

Ht nnntnn −
−++= ∑ +=

))1((2
),(ˆlog),(AIC 21

1 21
2

21  

Then the optimal combination of lag orders *
1nh and *

2nh for the nth VAR equation  
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are chosen as the values of hn1 and hn2 that minimize the model selection criterion. 
Note that when *

1nh and *
2nh are both strictly less than H , the nth VAR equation  

can be reestimated using a slightly longer sample, namely, t =  max( *
1nh , *

2nh ),...,T ;  
this approach is followed in the simulation experiments reported in Section 3. 
 

Step 2. Estimation of innovation covariance matrix.  Using the results of step 1,  

the restricted VAR can be expressed as: 

(2.7)   tTkt
H

k k eVA ˆ)ˆ(ˆ
0

=−=∑ ψ , 
 
where tê  is an N×1 vector with typical element ),(ˆ *

2
*
1 nnnt hhe , and 0̂A  is the N×N  

identity matrix.  The (n,n) element of kÂ  equals ),(ˆ *
2

*
1 nnnnk hhα−  if  k  ≤ *

1nh  , and  
equals zero if  k  >  *

1nh .  For m ≠ n , the (n, m) element of kÂ  equals ),(ˆ *
2

*
1 nnnmk hhα−   

if  0 <  k  ≤  *
2nh , and equals zero if  k  >  *

2nh .  Finally, the innovation covariance  
matrix $ΣT  is estimated as follows: 

(2.8)   
pHT

eeT

Ht tt
T −−

=Σ ∑ += 1
'̂ˆˆ . 

 
 As an alternative to the OLS regression methods used here, seemingly unrelated 
regression (SUR) methods could be used to obtain joint estimates of the restricted VAR 
parameters and the innovation covariance matrix; SUR estimation would yield more 
efficient parameter estimates if the innovation covariance matrix has non-negligible  
off-diagonal elements. 
 

Step 3: Estimation of HAC covariance matrix.  Using the results of step 1 and 2, the 

VAR spectral estimator is constructed as follows: 

 

(2.9)  
1

0

1

0
'̂ˆˆˆ

−

=

−

= 



Σ



= ∑∑ H

k kT
H

k kT AAS  

 
Finally, the VARHAC covariance matrix estimator is defined by: 
 

(2.10)        [ ] [ ]1''1' ˆˆˆˆˆˆˆˆ −−=Ω TTTTTTTTTTTT DMDDMSMDDMD  
 



-6-  
 

2.3  Kernel-based methods 

 The true spectral density matrix at frequency zero, f(0), is an unweighted sum  

of the autocovariances of the process Vt ; this property provides the basic motivation  

for kernel-based spectral estimators, which have the following form: 

 

(2.11)   ∑ −
+−= Γ= 1

1
ˆ)(),(ˆ T

Tj j
T

TT
jS

ξ
κξκ , 

 
where κ(⋅) is a weighting function referred to as the kernel; ξT is referred to as the 
bandwidth  parameter; and jΓ̂  is the jth-order sample autocovariance matrix of the 
process tV̂  (with jj −Γ=Γ '̂ˆ  for  j < 0).  The remainder of this section highlights  
several important issues that arise in implementing kernel-based methods. 
 
2.3.1  The Choice of Kernel 
 An efficient choice for κ(⋅) is the simple truncated kernel, where κ(x) = 1 for  
| x | ≤ 1 and κ(x) = 0 for | x | > 1.  For infinite-order ARMA processes, Den Haan and 
Levin (1998) demonstrated that the asymptotic bias and asymptotic variance are of the 
same order for both the simple truncated kernel and the VAR spectral estimator (a result 
that was originally conjectured by Parzen 1969).  Unfortunately, the simple truncated 
kernel does not necessarily generate a positive semi-definite (PSD) spectral density 
estimator ),(ˆ

TTS ξκ , so that the resulting covariance matrix TΩ̂ may not be invertible.   
 Within the class of kernels that ensure a PSD spectral density matrix, a simple 
choice is the Barlett kernel (cf. Newey and West 1987, 1994), which is defined as  
κ(x) = 1 - | x | for | x | ≤ 1 and κ(x) = 0 for | x | > 1.  However, small efficiency gains may 
be obtained in some cases by using the quadratic spectral (QS) kernel, which is optimal  
in the class of PSD kernels (cf. Priestley 1962; Andrews 1991): 

(2.12)  




 −= )5/6cos(

5/6
)5/6sin(

12
25)( 22 x

x
x

x
xQS π

π
π

π
κ . 

 Nevertheless, it should be emphasized that using a PSD kernel is associated  
with non-negligible efficiency costs compared with parametric methods (such as VAR 
spectral estimation), for which the estimated spectral density matrix (and hence the HAC 
covariance matrix) is PSD by construction.  In finite samples, this efficiency cost is 
particularly apparent when the true dgp is known to be a MA process of order m:   
the optimal value of ξT  =  m for the simple truncated kernel, whereas this choice of  
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ξT  yields very poor results for PSD kernel-based spectral estimators (cf. Ogaki 1993). 
Asymptotically, Den Haan and Levin (1998) have shown under very general conditions 
(e.g., unconditional heteroskedasticity or even the absence of covariance stationarity)  
that the mean-squared error (MSE) of the VARHAC estimator shrinks at a faster rate  
than the MSE of any PSD kernel-based estimator.  
 
2.3.2  Constructing a Data-Dependent Bandwidth Parameter 
 Under certain regularity conditions, it is possible to derive the asymptotically 
optimal sequence of bandwidth parameters for a particular PSD kernel; that is, the 
sequence which minimizes the asymptotic MSE of the spectral estimator (cf. Priestley 
1981; Andrews 1991).  The optimal sequence, *

Tξ , depends on the smoothness of the 
kernel (as indicated by the characteristic exponent q), as well as the true spectral density 
and its generalized qth derivative at frequency zero.  In settings in which Vt contains 
multiple elements, it is also necessary to specify an N2×N2 weighting matrix W.  Then  
the asymptotically optimal bandwidth parameter sequence for the QS kernel is given by:   

(2.13)    ( )( )( )
5/1)2()2(

*

trace
)(vec)(vec23221.1 








⊗+

= T
SSKIW

SWS
T

'ξ  

where K is the N2×N2 commutation matrix that transforms vec(B) into vec(B′ ), and where 

S(2) indicates the generalized second derivative of the spectral density at frequency zero:  

(2.14)   ∑ ∞
− ∞==

j jCjS 2)2(   

 Thus, to estimate the value of the optimal bandwidth parameter *
Tξ  using equation 

(2.13), we need initial estimates of the spectral density matrix S and its generalized 
second derivative S(2). Andrews (1991) proposed that parametric methods be used to 
provide these initial estimates; in the simulation experiments performed by Andrews 
(1991) and Andrews and Monahan (1992), univariate AR(1) representations were used 
for this purpose.   
 Nevertheless, it is important to recognize that a poor choice of parametric model 
will generate relatively poor initial estimates of S and S(2), and hence the actual data-
dependent bandwidth parameter ξT  may differ substantially from its optimal value *

Tξ .  
Thus, given that the accuracy of kernel-based spectral estimation can be very sensitive  
to the value of the bandwidth parameter (cf. Andrews 1991), a poor choice for the initial 
parametric model may lead to substantial distortion of the final spectral estimator 
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),(ˆ
TTS ξκ .  Of course, since the true dgp is unknown in practice, one might want to 

consider employing a model selection criterion to choose an appropriate parametric 
model, which would then be used in constructing the data-dependent bandwidth 
parameter for the kernel-based spectral estimator. However, it would seem equally 
reasonable simply to estimate the spectral density directly from the estimated parameters 
of the chosen model (as in the VARHAC procedure). 
 
2.3.3  Choosing the Weighting Matrix 
 When Vt contains multiple elements, the data-dependent bandwidth parameter 
given by equation (2.13) depends on the particular choice of the weighting matrix W.  
The simulation experiments of Andrews (1991) and Andrews and Monahan (1992) 
utilized a diagonal weighting matrix; in this case, the value of *

Tξ  does not depend on  
any cross-products between different elements of  S (or S(2)).  These authors also assigned 
zero weights to all off-diagonal elements of S and S(2); for this specification of W, the 
value of *

Tξ  does not depend on the cross spectrum of the data.  Finally, in the context  
of a least-squares estimation problem, Andrews and Monahan (1992) assigned zero  
weight to the diagonal element that corresponded to the regression intercept, and assigned  
unit weight to each of the other N −  1 diagonal elements (corresponding to the slope 
coefficients).  Unfortunately, this choice of weights makes the bandwidth parameter 
sensitive to the scaling of the data, which can lead to highly unsatisfactory results;  
further analysis of this issue may be found in Den Haan and Levin (1997). 
 Finally, it should be emphasized that the entire spectral density matrix must be 
constructed using the same bandwidth parameter in order to ensure a PSD spectral 
density estimate (and hence an invertible HAC covariance matrix).  As pointed out by 
Robinson (1996), this constraint can yield very low accuracy when the autocovariance 
structure varies substantially across elements.  In contrast, the VARHAC estimator  
can permit the lag order to vary across equations in the VAR and across the variables  
in each equation, since the resulting covariance matrix is PSD by construction. 
 
2.3.4  Prewhitening 
 It has long been understood that kernel-based spectral estimation performs  
very poorly in the presence of strong temporal dependence.  As seen in equation (2.14),  
the optimal bandwidth parameter *

Tξ  is large (and hence the kernel-based spectral 
estimate has high sampling variance) when the spectral density exhibits strong curvature 
at frequency zero (as in the case of a dgp with a large AR root).  Thus, as originally 
proposed by Press and Tukey (1956), the approach of prewhitening is intended to flatten 
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the relevant portion of the spectral density function, thereby reducing the bias of the 
kernel estimator and hence permitting the use of a smaller bandwidth parameter when  
the kernel is applied to the prewhitened residuals (cf. Priestley 1981, pp.556-7). 
 Two prewhitening kernel-based estimators are considered in this paper.  First,  
the prewhitening kernel-based estimator from Andrews and Monahan (1992) applies  
a prewhitening VAR filter of order b and then applies the kernel-based procedure of 
Andrews (1991) to the “prewhitened” residuals.  (Thus, when b is set equal to zero,  
this estimator is identical to that of Andrews 1991.)  The second estimator uses a model 
selection criterion to determine the lag structure of the VAR prewhitening filter, using 
exactly the same procedures described in section 2.2, and then applies the kernel-based 
procedure of Andrews (1991) to the residuals from this procedure. 
 Andrews and Monahan (1992) only consider fixed values for b. In their Monte 
Carlo experiments, b is set equal to zero or one for each element of Vt( $ψ T ).  Note that  
we have placed the term “prewhitened” in quotation marks, because no correction for 
serial correlation would be needed if the residuals were truly prewhitened.  The spectral 
density at frequency zero of the “prewhitened” residuals is given by: 

(2.23)   

.0for )('̂)(ˆ

and     0for   '̂ˆ1)(ˆ

where   ,)(ˆ)ˆ(ˆ

1

1

1

<−Γ=Γ

≥=Γ

Γ=Σ

∑

∑
−

=
+

−

−=

−

jjj

jee
T

j

jj

TT

jT

t
jttT

T

Tj
T

T

PWQS
T ξ

κ

, 

The estimate of the spectral density at frequency zero is given by  

 

(2.24)   [ ] [ ]1

1

1

1
'̂ˆˆ)ˆ(ˆ −

=
−−

=
− ∑∑ −Σ−= b

k kN
PWQS

T
b

k kNT
PWQS

T AIAIS ψ  

 

Finally, it should be noted that using a prewhitening filter does not circumvent any of  
the inherent problems noted above.  The obvious exception is when the data are truly 
prewhitened, but in that case, there is no rationale for applying kernel-based spectral 
estimation to the prewhitened residuals.   
 It should also be noted that Phillips and Lee (1994) have analyzed the properties 
of an ARMA-prewhitened HAC estimator for the case of a finite-order ARMA process 
with i.i.d. innovations. 
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3.  Finite-Sample Properties 

In this section, Monte Carlo simulation experiments are used to compare  
the finite-sample properties of the autoregressive parametric estimators with the 
prewhitening kernel-based estimators. In all experiments, the results are computed  
for sample length T = 128 using 10,000 replications. Additional simulation results  
and comparisons with other kernel-based estimators may be found in Den Haan  
and Levin (1996, 1997). 
 

3.1  Scalar Autoregressive Processes 

 In our first set of experiments, we perform inferences concerning the mean of the 

following scalar process: 

(3.1)  tt VY += µ   where  ∑
=

− +=
p

k
tktpt VV

1

5.0 ε  

where the AR order p ∈  {1 2 3 4}, the disturbance εt is an i.i.d. standard normal process, 
and we normalize the true mean µ = 0. In this case, the HAC variance of the sample mean 
is obtained by estimating the spectral density at frequency zero of the estimated residual 

µ̂ˆ −= tt YV .  For each HAC variance estimator, we compute the true confidence level 
(at a nominal 90% significance level) of a two-tailed t-test of the significance of the 
sample mean of Yt .   
 
3.1.1  Autoregressive HAC Estimators 

 We first consider the performance of HAC variance estimators that are computed 
solely from an AR model for tV̂ .  The AR order is either fixed a priori at a value between 
1 and 4, or is determined by minimizing either AIC or BIC subject to the maximum lag 
order H = 4; however, the results are virtually identical for H = 7.  (The specification 
H = 4 is used throughout the remainder of this paper in implementing AIC and BIC)   
We also consider HAC variance estimators in which the QS kernel is used to compute  
the spectral density at frequency zero of the AR-prewhitened residuals.  In each case,  
the bandwidth parameter is determined using the same method as in the simulation 
experiments of Andrews and Monahan (1992), namely, formula (2.13) is evaluated  
using the OLS parameter estimates of an AR(1) model of the prewhitened residuals.  
 For each value of the true lag order p, Panel A of Table 1 indicates the true 
confidence level obtained using each autoregressive HAC estimator, as well as the mean 
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values of the lag orders chosen by AIC and BIC.  It is immediately apparent that the 
largest inference distortions occur when the specified AR order is substantially smaller 
than the true AR order.  As noted in Section 2, the prewhitening order h was fixed at 
unity in the Monte Carlo experiments of Andrews and Monahan (1992), and this 
specification has been followed in numerous subsequent applications.  Nevertheless, 
when the true AR order p = 4 (which is a plausible value for quarterly data), using a  
fixed value of h = 1 yields a true confidence level of only 70 percent.   
 Not surprisingly, the most accurate significance level is always obtained when the 
AR order h is fixed at its true value p (although even in this case some distortion results 
from downward bias of the estimated AR coefficient(s)).  It is interesting to note that 
relatively little cost is associated with using a slightly higher AR order, presumably 
because 128 observations are sufficient to ensure that the extra AR coefficients have 
estimated values  near zero (and hence don’t have much effect on the distribution of  
the test statistic).   
 While both data-dependent methods of choosing the AR order provide more 
accurate inferences than simply fixing h = 1, it should be noted that AIC performs  
much better than BIC in this example.  (Hall (1994) and Ng and Perron (1995) obtained 
similar results in the context of data-dependent AR lag order selection for unit root tests.)  
The penalty function of BIC grows at a sufficiently rapid rate to ensure that the true AR 
lag order is chosen consistently, whereas AIC tends to overestimate the lag order penalty 
even when the sample size becomes arbitrarily large (cf. Shibata 1976).  Nevertheless, 
these are not necessarily the relevant considerations in choosing the appropriate AR lag 
order for HAC covariance matrix estimation.  In small samples, the lag order chosen  
by BIC is typically smaller than the true lag order, leading to substantial bias in the 
estimated spectral density at frequency zero, whereas the somewhat higher lag order 
chosen by AIC reduces this bias at relatively little cost in terms of additional variance.   
 

3.1.2  Prewhitened Kernel HAC Estimators 

 Panel B of Table 1 shows the effects of applying the QS kernel to the prewhitened 
AR residuals.  When the fixed or data-dependent AR lag order h is at least as large as the 
true lag order p, no benefits are gained by applying the QS kernel to the estimated AR 
residuals.  In these cases, the estimated residuals are truly prewhitened in the sense that 
relatively little serial correlation remains.  Thus, the automatic bandwidth selection 
procedure tends to choose a bandwidth parameter very close to zero, and hence the 



-12-  
 

prewhitened kernel estimate is virtually indistinguishable from the AR estimate of the 
HAC variance.   
 One might have hoped that applying a kernel to the estimated residuals would 
yield substantial benefits in the cases where h < p, since these are the cases for which the 
“prewhitened” residuals are furthest from being white noise.  Unfortunately, applying  
the kernel actually reduces the accuracy of the confidence interval in these cases.   
For example, when the true AR order p = 2 and the prewhitening order h = 1, the AR 
estimator yields a true confidence level of 78.1 percent whereas the prewhitened kernel 
estimator yields a true confidence level of 76.0 percent.  The basic problem is that the 
data-dependent bandwidth parameter is typically fairly small, so that the kernel assigns 
substantial weight to the first-order autocovariance (which is negative) and assigns  
much smaller weights to the higher-order autocovariances (which are positive and  
decline slowly toward zero).  Consequently, applying the kernel exacerbates the 
downward bias of the spectral density estimate and hence reduces the accuracy of  
the HAC variance estimate. 
 
 
3.2  Scalar Moving-Average Processes 
 Now we analyze inferences concerning the mean of the following scalar process: 
 
(3.2)  tt VY += µ   where  1−+= tttV εθε  

where εt is an i.i.d. standard normal process.  We consider values of  the MA(1) 
parameter θ  between -0.1 and -0.9, and we normalize the true mean µ = 0.  As in the 
previous set of experiments, the HAC variance of the sample mean of Yt  is obtained by 
estimating the spectral density at frequency zero of the estimated residual µ̂ˆ −= tt YV .  
For each HAC variance estimator, we compute the true confidence level (at a nominal 
90% significance level) of a two-tailed t-test of the significance of the sample mean.   
 As in the previous experiment, prewhitening is performed using scalar AR  
models for which the lag order is either fixed at unity (as in the simulation experiments  
of Andrews and Monahan 1992) or determined by either AIC or BIC up to a maximum 
lag order of 4.  When the QS kernel is applied to the prewhitened residuals, we determine 
the bandwidth parameter using one of three alternative parametric models for the 
prewhitened residuals:  an AR(1) model estimated by OLS; an MA(1) model estimated 
by non-linear least squares (NLLS); and an MA(2) model estimated by NLLS.  For the 
latter two methods, we use the IMSL subroutine DNSLSE with no backcasting.  
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3.2.1  Autoregressive HAC Estimators 

 Panel A of Table 2 provides inference results (together with the mean lag order 
chosen by each model selection criterion) when the HAC variance is computed solely 
from the estimated AR model.  When the parameter θ  is relatively large in absolute 
value, a relatively high-order AR representation is required to approximate this 
autocovariance structure to a given level of accuracy.  Thus, as shown in panel A,  
the HAC estimator with a fixed lag order h = 1 performs relatively poorly compared  
with estimators in which the lag order is determined by either AIC or BIC.   
 As in the previous set of experiments, we find that the less conservative penalty 
function of AIC tends to yield a higher lag order which in turn facilitates more accurate 
estimates of the spectral density and hence more accurate confidence levels.  In fact, 
Shibata (1980, 1981) demonstrated that AIC is asymptotically efficient in choosing the 
AR lag order when the true AR order is infinite; that is, AIC minimizes the prediction 
error variance and the MSE of the integrated spectrum for infinite-order AR processes.   
 Finally, as θ approaches the limiting value of  − 1, the MA representation of Yt 
cannot be inverted into an infinite-order AR representation; thus, we are not surprised to 
find that all of the AR estimators perform relatively poorly when θ  = -0.7 or -0.9.   
 
3.2.2  Kernel HAC Estimators 

 Before evaluating the performance of HAC estimators in which the QS kernel  
is applied to the AR-prewhitened residuals, it is useful to consider kernel HAC estimators 
with no prewhitening at all (that is, estimators in which the kernel is applied directly  
to tV̂ ).  For each method of determining the bandwidth parameter, Panel B of Table 2  
provides inference results as well as the mean value of the bandwidth parameter.   
When the bandwidth parameter is determined using an AR(1) model (as in the  
simulation experiments of Andrews and Monahan 1992 and in many subsequent 
applications), the kernel HAC estimator performs very poorly, especially when  
θ  =  –0.7 or  –0.9.  In contrast, when the correctly specified MA(1) model is used  
in determining the bandwidth parameter, the kernel HAC estimator yields fairly  
accurate inferences for all five values of θ .  Finally, inference accuracy deteriorates 
somewhat when the over-parameterized MA(2) model is used to determine the  
bandwidth parameter.  
 These differences in inference accuracy can be largely understood by considering 
the characteristics of the optimal bandwidth parameter for the true MA(1) process Vt .  
With a larger bandwidth parameter, the QS kernel assigns weight closer to unity on the 
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first-order sample autocovariance (thereby reducing the bias of the spectral density 
estimate), and also assigns larger weights to the higher-order sample autocovariances 
(thereby raising the variance of the spectral density estimate, because the true value of 
these autocovariances is zero).  Given this bias-variance tradeoff, the asymptotic MSE  
is minimized by the bandwidth parameter sequence in formula (2.13).  In particular, the 
true spectral density at frequency zero S = (1 + θ )2 and its generalized second-derivative 
S(2) = 2θ .  Thus, as θ  approaches − 1, this MA(1) process is associated with very strong 
curvature of the spectral density at frequency zero; that is, as the ratio S(2) / S  becomes  
large, the optimal bandwidth parameter implied by formula (2.13) also becomes large  
and very sensitive to the exact value of θ .  In fact, when the bandwidth parameter is 
determined using the correctly specified MA(1) model, the mean bandwidth parameter 
value increases from 2.1 for θ  = − 0.1 to 12.3 for θ  = − 0.7, and to 65.4 for θ  = − 0.9 . 
 In contrast, an AR(1) model with negative first-order autocorrelation is associated 
with very low curvature of the spectral density at frequency zero and hence a relatively 
small value of the optimal bandwidth parameter.  Thus, when the data actually follow  
an MA(1) process but the bandwidth parameter is obtained from formula (2.13) using 
parameter estimates from a misspecified AR(1) model, the bandwidth parameter will 
generally be much smaller than the optimal value.  In this particular experiment, the  
mean bandwidth parameter value obtained using the AR(1) parametric model reaches  
a plateau of only 2.5 as the true MA(1) parameter θ  approaches − 1. 
 These results indicate the importance of discriminating between AR and MA 
processes in order to obtain an appropriate value of the bandwidth parameter.  More 
generally, one might want to consider employing a model selection criterion to choose  
an appropriate parametric model for the prewhitened residuals. As noted in Section 2.3.2, 
however, it would seem equally reasonable to estimate the spectral density directly from 
the estimated parameters of the chosen model (as in the VARHAC procedure). 
 
3.2.3  Prewhitened Kernel HAC Estimators 
 Now we consider the performance of HAC variance estimators in which the  
QS kernel is applied to AR-prewhitened residuals. For each method of determining  
the bandwidth parameter, Panel C of Table 2 reports the true confidence level and  
mean bandwidth parameter value when the AR prewhitening order is fixed at unity. 
Panels D and E provide corresponding results when the prewhitening order is chosen  
by minimizing AIC and BIC, respectively.  For ease of reference, the top row of each 
panel indicates the inference results from Panel A for the corresponding autoregressive  
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HAC estimator, or equivalently, those obtained when the bandwidth parameter is fixed  
at zero.   
 When the bandwidth parameter is determined using either an AR(1) or MA(1) 
model, it is evident in all three panels that applying the kernel to the prewhitened 
residuals has negligible effects on inference (relative to the autoregressive HAC 
estimator).  The underlying problem is that both the AR(1) and MA(1) models yield  
very low mean values of the bandwith parameter, because the first-order autocorrelation 
of the prewhitened residuals is very close to zero.  
 For example, consider the properties of the AR(1)-prewhitened residuals  
as the sample becomes arbitrarily large.  Since Vt has first-order autocorrelation  
ρ  = θ / (1 + θ 2), the AR(1)-prewhitened series tV

(
 = Vt  - ρ Vt-1 is described by  

the following MA(2) process: 
 
(3.3) 2111 2

2
2

3
−+−+

−+= ttttV εεε
θ

θ
θ

θ(
 

The first-order autocorrelation of tV
(

 is θ 3 / (1  +  2θ 2  +  2θ 4  + θ 6), which approaches  
a value of only –1/6 as θ  approaches − 1.  Thus, when either an AR(1) or MA(1) model is 
fit to tV

(
, the estimated process has low curvature of the spectral density at frequency 

zero, and hence formula (2.13) yields a relatively low bandwidth parameter.  (The MA(1) 
model yields a somewhat higher mean bandwidth parameter than the AR(1) model, for 
the reasons discussed in the previous subsection.)  
 In light of this analysis, it is useful to consider the properties of the AR(1)-
prewhitened kernel estimator when the bandwidth parameter is determined using the 
correctly-specified MA(2) model.  As seen in the final row of Panel C, this method yields 
relatively accurate inferences for values of θ  in the range of − 0.1 to − 0.5.  Unfortunately, 
the performance of this estimator begins to deteriorate substantially as θ  approaches − 1, 
apparently because sampling error in estimating the MA(2) parameters leads to wider 
variation in the bandwidth parameter and hence to lower accuracy of the kernel estimate 
of the spectral density of the prewhitened residuals.   
 In contrast, when the AR prewhitening order is determined by AIC, Panel D  
of Table 2 shows that the kernel has relatively little effect on inference accuracy even  
when the bandwidth parameter is determined using an MA(2) model for the prewhitened 
residuals.  When |θ | > 0.1, AIC frequently chooses a lag order greater than unity, and 
hence the prewhitened residuals tend to exhibit very small first-order and second-order 
autocorrelation.  Thus, to get substantial improvements in performance from applying  
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the kernel, one would need to estimate an even higher-order MA process for the 
prewhitened residuals, which might be subject to more severe sampling error problems 
like those noted above. 
 Finally, Panel E indicates the performance of the prewhitened kernel estimator 
when the AR prewhitening order is chosen by minimizing BIC.  As in the previous  
two panels, applying the kernel has negligible effects when the bandwidth parameter  
is determined using an AR(1) or MA(1) model, because the prewhitened residuals  
exhibit very little first-order autocorrelation.  However, in contrast to the results for  
AIC, noticeable improvements in inference accuracy are obtained when an MA(2) model 
is used to determine the bandwidth parameter.  Given its more conservative penalty 
function, BIC frequently selects first-order prewhitening even when θ  is relatively large 
in absolute value, and hence an MA(2) model is able to capture the remaining serial 
correlation for the reasons discussed above. 
 
 
3.3  Bivariate Processes with Heterogeneous Components 
 In this set of simulation experiments, we perform inferences concerning the 
significance of the OLS regression estimates of α and β in the following scalar model: 
 

(3.3)    Yt   =   α Xt    +   β Zt   +   ut, 
 

The random variable Xt  =  0.95 Xt-1  +  εt , where εt  is i.i.d. N(0,1).  The random variable 
Zt is i.i.d. N(0, 1/(1-0.952) ), so that Zt has the same variance as Xt.  The disturbance  
ut  =  vt  +  θ vt, where vt is standard normal white noise, and the parameter θ  varies  
from -0.1 to -0.9.  Finally, we normalize the true regression coefficients α  = β  = 0.  
 For this specification, the vector Vt consists of the two components V1t  =  utXt  
and V2t  =  utZt . The first component has the same autocovariance structure as an MA(1) 
process with parameter 0.95θ , whereas the second component has no serial correlation.  
Furthermore, because Xt and Zt are independent, these two components are mutually 
uncorrelated at all leads and lags, and hence the spectral density f(0) and the asymptotic 
covariance Ω   are diagonal matrices.  Thus, to a first approximation, the HAC standard 
error of α̂ is determined by the estimated spectral density of the persistent component 

ttt XuV ˆ1̂ = , while the HAC standard error of β̂ is determined by the estimated spectral 
density of the idiosyncratic component ttt ZuV ˆ2̂ = .   
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3.3.1  VARHAC Estimators 
 In constructing a bivariate VAR model for tV̂ , three alternative approaches are 
used to determine the lag structure.  The first approach simply fixes the lag order at unity 
for the entire VAR, as in the simulation experiments of Andrews and Monahan (1992). 
The other two methods use a model selection criterion (either AIC or BIC) to determine 
the lag order of each variable in each equation (cf. Step 1 of Section 2.2).  For each 
method of determining the VAR lag structure, we analyze the accuracy of inferences 
when the HAC covariance matrix is calculated directly from the VAR model, and for 
HAC estimators in which the QS kernel is applied to the VAR residuals. 
 For each VAR estimator of the HAC covariance matrix, Panel A of Table 3 
reports the true confidence levels (at a nominal 90% significance level) of two-tailed  
t-tests of the significance of α̂ and β̂, and also reports the mean lag orders chosen  
by AIC and BIC.  These results confirm that the inference accuracy of each VARHAC 
estimator is not sensitive to the degree of heterogeneity across components of tV̂ ,  
because the lag order is permitted to vary across equations (and across variables within 
each equation).   
 As noted above, the robust standard error of α̂ (and hence inferences concerning 
its statistical significance) primarily depends on the estimated spectral density of tV1̂ .  
This time series has the same autocovariance structure as a univariate MA(1) process; 
that is, the true component V1t is related to its own lagged values but not to lagged values 
of V2t .  It is evident from Panel A that both AIC and BIC detect this pattern of temporal 
dependence:  for increasing values of θ , each model selection criterion chooses an 
increasing mean value of 11ĥ , while continuing to choose a very small lag order 12ĥ .  
Furthermore, for both AIC and BIC, the mean value of 11ĥ is similar to that obtained for 
the comparable univariate process in Section 3.2.  (The mean value is slightly smaller 
here because the relevant MA parameter is only 0.95θ  instead of θ .)  Finally, as in the 
previous two sets of experiments, AIC is less conservative than BIC in choosing each lag 
order; hence, BIC yields somewhat more accurate inferences when θ  equals -0.1 or -0.3, 
while AIC yields more accurate inferences when θ  equals -0.7 or -0.9.   
 The accuracy of inferences concerning the statistical significance of β̂ primarily 
depends on the estimated spectral density of tV2̂ .  Since the true component V2t is serially 
uncorrelated, both model selection criteria generate very low mean values of both 21ĥ and 

22ĥ , and hence yield true confidence levels that are quite close to the nominal 90% level.  
In this case, the greater parsimony of BIC results in uniformly better inference accuracy 
than that obtained using AIC.  
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3.3.2  VAR-Prewhitened Kernel Estimators 
 Now we consider the performance of HAC covariance matrix estimators in which 
the QS kernel is used to estimate the spectral density matrix of the VAR-prewhitened 
residuals.  As noted in Section 2.3.3, a single bandwidth parameter must be used in 
constructing the entire spectral density matrix in order to ensure that the resulting HAC 
covariance matrix is PSD.  As in the simulation experiments of Andrews and Monahan 
(1992), the bandwidth parameter is constructed using a diagonal weighting matrix W with 
values (1, 0, 0, 1) along its diagonal, so that formula (2.13) can be implemented by 
estimating a univariate parametric model for each VAR-prewhitened residual.  We 
consider the same univariate models as in Section 2.2, namely, an AR(1) model estimated 
by OLS; an MA(1) model estimated by non-linear least squares (NLLS); and an MA(2) 
model estimated by NLLS. 
 For each method of determining the bandwidth parameter, Panel B of Table 3 
reports the true confidence level and mean bandwidth parameter value when the VAR 
prewhitening order is fixed at unity.  Panels C and D provide corresponding results  
when the prewhitening order is determined using AIC and BIC, respectively.  For ease  
of reference, each panel also repeats the inference results from Panel A for the 
corresponding VARHAC estimator, or equivalently, the results obtained when the 
bandwidth parameter is fixed at zero.   
 Panels B, C, and D indicate that applying the kernel to the VAR-prewhitened 
residuals yields negligible improvements and frequently has counterproductive effects  
on inference accuracy.  The underlying problem is evident from part 3 of each panel:  
namely, the mean value of the bandwidth parameter is very small regardless of the value 
of θ .  Moreover, in contrast to the results obtained in Section 3.2, this problem is not 
resolved by using univariate MA(2) models (rather than AR(1) or MA(1) models)  
to determine the data-dependent bandwidth parameter.  Rather, the problem is simply  
that a single bandwidth parameter must be imposed in constructing the entire spectral 
density matrix.   
 If one were only concerned with estimating the spectral density of the first VAR 
residual (which is obtained by filtering the persistent component V1t), one would prefer  
to use a relatively large bandwidth parameter; that is, the mean value would be roughly 
similar to those reported in Panel B of Table 2.  In particular, the spectral density at 
frequency zero S11 and its generalized second-derivative S11

(2) each decline toward zero  
as θ  approaches -1, but the ratio S11

(2) / S11 becomes very large.  Thus, formula (2.13) 
indicates that the optimal bandwidth parameter for this component is also very large  
(that is, in the context of  univariate estimation). 
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 On the other hand, if one were only concerned with estimating the spectral density 
of the second VAR residual (which is obtained by filtering the idiosyncratic component, 
V2t), one would prefer to to use a bandwidth parameter near zero.  For this component, 
the generalized second derivative S22

(2) equals zero, while the spectral density S22 is a 
non-zero constant (namely, the variance of this component); thus, the optimal bandwidth 
parameter for this component is equal to zero in the univariate context.   
 Thus, kernel estimation faces an unpleasant compromise, because no single 
bandwidth parameter will be ideal for analyzing both residuals. When formula (2.13)  
is used for this particular bivariate system (with equal weight on both components),  
the bandwidth parameter depends on the ratio S11

(2) / (S11+ S22), which approaches zero  
as θ  approaches –1.  Thus, in the limiting case, the kernel fails to capture any of the 
temporal dependence that remains in the VAR-prewhitened residuals.   
 In fact, as in Section 3.1, applying the kernel often has counterproductive effects 
on inference accuracy.  Because the bandwidth parameter is generally too small, the 
kernel assigns substantial weight to the first-order autocovariance (which is negative)  
and assigns much smaller weights to the higher-order autocovariances (which are positive 
and decline slowly toward zero).  Consequently, applying the kernel exacerbates the 
downward bias of the spectral density estimate and hence reduces the accuracy of the 
HAC variance estimate. 
 More generally, one would expect that applying a kernel to the VAR-prewhitened 
residuals will tend to yield negligible or even counterproductive effects on inference 
accuracy whenever the residuals exhibit substantial heterogeneity with respect to the 
degree of temporal dependence. In such cases, any given value of the bandwidth 
parameter will be much smaller than the optimal value for a highly persistent component 
(and hence induce substantial bias in estimating its spectral density) and/or be much 
larger than the optimal value for a relatively idiosyncratic component (and hence induce 
excessive variance in estimating its spectral density).  And such problems will tend to  
be exacerbated in estimation problems in which Vt contains a larger number of variables. 
 
 
3.4  Multivariate Processes 
 This set of simulation experiments utilizes the same design as in Andrews  
and Monahan (1992), who considered several linear models in which the coefficient 
vector ψ 0 is estimated by OLS: 
 

(3.4)    Yt   =    ψ 0 Xt    +   ut 
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where the vector of explanatory variables Xt includes a constant term and four random 
variables. All elements of ψ 0 are normalized to zero.  Andrews and Monahan (1992) 
considered five different sets of assumptions regarding the dgps of the regressors Xt  
and the disturbance ut:  (a) homoskedastic AR(1) processes; (b) AR(1) processes  
with multiplicative heteroskedasticity overlaid on the errors; (c) homoskedastic MA(1) 
processes; (d) MA(1) processes with multiplicative heteroskedasticity overlaid on the 
errors; and (e) homoskedastic MA(q) processes with linearly declining MA parameters.   
In each case, a range of different parameter values is considered, so that this set of 
experiments involves a total of 24 different dgps for the AR(1) examples and 18 different 
dgps for the MA examples.  For each dgp and each choice of HAC covariance matrix 
estimator, we perform a two-tailed t-test of the null hypothesis that the coefficient on  
the first non-constant regressor is equal to its true value.   
 
3.4.1  VARHAC Estimators 
 For each dgp, Figure 1 reports the true confidence level (at a nominal 90% 
confidence level) for three alternative methods of determining the VAR lag structure.   
In particular, the grey column depicts the result obtained when the lag order is fixed  
at unity for every variable in every VAR equation.  It should be noted that this VAR 
estimator is not the same as the PARA estimator considered by Andrews and Monahan 
(1992); the PARA estimator was constructed under the assumption of homoskedasticity, 
and performed very poorly for all of the dgps involving conditional heteroskedasticity.     
The black column depicts the result when BIC is used to select a separate lag order  
for the lagged dependent variable and for the other explanatory variables in each  
VAR equation (as described in Step 1 of Section 2.2).  Finally, the white column depicts  
the corresponding result obtained using AIC. 
 For each of the AR(1) examples depicted in Panel A, the data-dependent lag  
order selection procedures yield confidence levels very close to those obtained when  
the VAR lag order is fixed at unity.  All three VAR estimators perform quite poorly  
when the AR(1) coefficient is equal to 0.9 or 0.95:  when the dgp is nearly non-
stationary, inferences are severely distorted by the strong downward bias of the sample 
autocovariances.  In such cases, one would expect to obtain more accurate inferences  
by using median-unbiased estimation methods similar to those considered by Andrews 
and Phillips (1987) and Andrews and Chen (1994).   
 For almost all of the MA examples depicted in Panel B, AIC yields more accurate 
confidence levels than BIC.  As in the univariate examples considered in Sections 3.1  
and 3.2, AIC tends to select a somewhat higher lag order, which substantially reduces the 
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spectral estimation bias at relatively little cost in terms of additional variance.  Finally, 
for the higher-order MA(q) processes on the right side of Panel B, either data-dependent 
lag order selection method performs noticeably better than simply fixing the VAR lag 
order at unity. 
 As noted previously, the VAR lag structure can be determined with a considerable 
degree of flexibility, because the VARHAC covariance matrix estimator is PSD by 
construction.  For the results depicted in Figure 1, either AIC or BIC selects a separate 
lag order for the lagged dependent and for the other variables in each VAR equation.   
It is useful to compare this approach (henceforth referred to as “asymmetric” lag order 
selection) with the more restrictive approach of selecting a single lag order for all of  
the variables in each VAR equation (henceforth referred to as “symmetric” lag order 
selection).   
 For each model selection criterion, Figure 2 indicates that asymmetric lag order 
selection yields more accurate inferences than symmetric lag order selection for virtually 
all of the dgps under consideration; that is, inference accuracy is generally enhanced by 
allowing greater flexibility in determining the VAR lag structure.  Of course, in practical 
applications, one could consider the even more flexible approach of choosing a separate 
lag order for every variable in every equation; unfortunately, this approach is not 
computationally feasible for the present simulation experiment, because too many 
alternative VAR models would have to be considered at each Monte Carlo replication.   
 
3.4.2  VAR-Prewhitened Kernel Estimators 
 For each of the three methods of VAR lag order determination considered in 
Figure 1, we consider the effects of using the QS kernel to estimate the spectral density 
matrix of the VAR-prewhitened residuals.  As in the simulation experiments of Andrews 
and Monahan (1992), the bandwidth parameter is determined by estimating a univariate 
AR(1) model for each VAR residual.   
 For each dgp and each VAR-prewhitened kernel HAC covariance matrix 
estimator, Figure 3 depicts the change in true confidence level (in percentage points) 
relative to the confidence level obtained using the corresponding VARHAC estimator 
(that is, the confidence level shown in Figure 1).  In particular, the grey column indicates 
the effects of applying the QS kernel to the VAR residuals when the VAR lag order is 
fixed at unity.  The black column indicates the effects of applying the kernel when BIC  
is used to determine the VAR lag structure according to the “asymmetric” approach 
described above.  Finally, the white column indicates the corresponding results obtained 
using AIC.   
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 Since the true confidence level is always below the nominal 90 percent 
confidence level, a positive value in Figure 3 indicates that more accurate inferences  
are obtained by applying the kernel QS rather than simply using the VARHAC estimator.  
Thus, the use of kernel estimation leads to improved inference accuracy for some of  
the AR(1) dgps in Panel A and for all of the MA(1) dgps in Panel B; these improvements  
are particularly noticeable when the VAR lag structure is determined using BIC.  On the 
other hand, when either AIC or BIC is used to determine the VAR lag structure, kernel 
estimation leads to lower inference accuracy for all of the MA(q) examples in Panel B, 
and for many of the AR(1) examples in Panel A.  These mixed results are symptomatic  
of the same problems identified in Sections 3.1 through 3.3, namely, kernel estimation 
may have counterproductive effects on inference accuracy when the data-dependent 
bandwidth parameter is far from optimal and/or the degree of temporal dependence  
varies substantially across the prewhitened VAR residuals. 
 Nevertheless, perhaps the most striking result in Figure 3 is that kernel estimation 
never leads to very large changes in the true confidence level compared with simply 
using the VARHAC covariance matrix estimator.  This result was not apparent in  
the simulation study of Andrews and Monahan (1992), in which the PARA estimator 
(which is not robust to heteroskedasticity) was the only parametric procedure considered.   
In contrast, regardless of the method of determining the VAR lag structure, we find that 
the VAR-prewhitened residuals have relatively low first-order autocorrelation.  Thus, 
formula (2.13) yields a relatively small bandwidth parameter when the initial estimates  
of the spectral density matrix and its generalized second-derivative are obtained using 
univariate AR(1) models as in the simulation experiments of Andrews (1991) and 
Andrews and Monahan (1992).  And as previously noted, when the bandwidth parameter 
is close to zero, the kernel estimate of the spectral density matrix is virtually identical to 
the sample innovation covariance matrix used in constructing the VARHAC estimator. 
 
4.  Conclusions 
 The simulation experiments reported in this paper highlight the potential pitfalls 
of using an arbitrarily fixed order of VAR prewhitening in constructing HAC covariance 
matrices.  One might have hoped that such pitfalls would be addressed by using a kernel 
to estimate the spectral density of the VAR-prewhitened residuals.  Unfortunately,  
we find that this hope may not be fulfilled for any of several reasons.  First, the kernel 
performs very poorly if the data contain an AR component of order higher than that of  
the prewhitening filter (cf. Section 3.1).  (In fact, this problem was noted by Andrews 
(1991) for AR(1) processes, and motivated the first-order VAR prewhitening used  
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in the simulation experiments of Andrews and Monahan (1992).)  Second, applying  
the kernel estimator to the VAR-prewhitened residuals tends to have negligible or  
even counterproductive effects unless the bandwidth parameter is determined using  
the correctly-specified parametric model (cf. Section 3.2).  Furthermore, prewhitening 
frequently results in low-order autocovariances with opposite sign from the higher-order 
autocorrelations, so that applying a kernel to the prewhitened residuals may actually have 
counterproductive effects on performance when the bandwidth parameter is too low.  
Finally, in any application involving more than a single variable, a single bandwidth 
parameter must be used to construct the entire spectral density matrix of the prewhitened 
residuals; hence the kernel estimator may perform very poorly when the autocovariance 
structure differs substantially across elements (cf. Section 3.3).   
 Given these pitfalls, it seems clear that a model selection criterion should  
be used to determine the VAR prewhitening order of the HAC covariance estimator  
(unless, of course, one has a priori information about the true VAR order of the data).  
Furthermore, once data-dependent VAR prewhitening has been utilized, we find that 
applying a kernel-based method to the prewhitened residuals has negligible or even 
counterproductive effects unless the bandwidth parameter is chosen using the correct 
parametric model.  In practice, of course, the true dgp is unknown.  Thus, one might 
consider employing a model selection criterion to choose the appropriate parametric 
model (e.g., from the class of vector MA or ARMA models), which would then be used 
in determining the bandwidth parameter for the kernel estimator.  However, an equally 
reasonable alternative would be to simply estimate the spectral density matrix directly 
from the estimated parameters of the chosen model (as in the VARHAC procedure 
considered here).   
 Beyond these general principles, several additional lessons are apparent from  
the simulation experiments considered in this paper.  First, the VARHAC estimator  
can permit the lag order to vary across equations in the VAR and across variables  
within each equation; we find that taking advantage of this flexibility yields substantial 
improvements in inference accuracy in multivariate applications (cf. Sections 3.3.1  
and 3.4.1).  Second, we confirm the well-known result that AR spectral estimation 
performs very poorly when the largest AR root is close to unity (cf. Section 3.4).   
In future work, it will be useful to investigate the extent to which this problem can  
be resolved using median-unbiased estimation methods similar to those considered by 
Andrews and Phillips (1987) and Andrews and Chen (1994).  Third, we find that AIC 
performs noticeably better than BIC for the higher-order AR processes in Section 3.1  
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as well as most of the MA processes in Sections 3.2 through 3.4.  Given this finding, 
asymptotically consistent selection of the true (finite) AR order is evidently not the 
relevant consideration in constructing a HAC covariance matrix that will yield accurate 
inferences. In fact, both AIC and BIC tend to be much too conservative for higher-order 
AR processes and for nearly non-invertible MA processes.  Thus, investigation of 
alternative model selection criteria should be a priority in future research on VARHAC 
covariance matrix estimation. 
 Finally, it should be noted that this paper has focused on the problem of 
constructing an asymptotically consistent HAC covariance matrix estimate, which is  
then used to obtain inferences concerning a regression estimator with a limiting normal 
distribution.  An alternative approach, proposed by Keifer, Vogelsang and Bunzel (2000), 
standardizes the regression estimator using a kernel estimator of the spectral density,  
with bandwidth parameter equal to the sample size.  The resulting test statistic has a 
limiting distribution which is invariant to the time-series properties of the residuals;  
this limiting distribution is non-standard, but Monte Carlo simulation is used to obtain  
the relevant critical values.  In future work, it will be useful to investigate the extent  
to which the performance of this estimator can be enhanced by using data-dependent  
VAR prewhitening in conjunction with the kernel estimator. 
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Table 1 
Scalar Autoregressive Processes 

 
Panel A:  Autoregressive Estimators 

 
True confidence level of the nominal 90% confidence interval 

 True AR Order  
 p  =  1 p  =  2 p  =  3 p  =  4 

Fixed AR Order     

  h  =  1 88.1 78.1 72.8 69.8 
  h  =  2 87.4 86.9 80.6 76.1 
  h  =  3 87.0 86.6 86.2 81.6 
  h  =  4 86.4 85.9 85.5 85.1 
Data-Dependent AR Order     
  AIC 87.1 85.7 83.9 80.7 
     (mean of hAIC)      (1.4) (2.2) (2.5) (2.4) 

  BIC 87.8 83.8 77.3 72.2 
     (mean of hBIC) (1.0) (1.6) (1.3) (1.0) 

 
 

Panel B: Applying the QS Kernel to the “Prewhitened” Res iduals 
 

True confidence level of the nominal 90% confidence interval 

 True AR Order  
 p  =  1 p  =  2 p  =  3 p  =  4 

Fixed AR Order     

   h  =  1 88.3 76.0 71.7 69.6 
   h  =  2 87.4 86.9 80.3 76.0 
   h  =  3 87.0 86.3 86.3 81.4 
   h  =  4 86.7  86.1 85.7 85.3 
Data-Dependent AR Order     
   AIC 87.2 85.6 83.7 80.4 

   BIC 88.0 83.3 76.5 71.1 
 
Note: The data are generated by Yt  =  Vt  where Vt  =  (0.5/ p)(V1-1 + ⋅⋅⋅ + Vt-p ) + εt , where p is the order of the autoregressive process 
and εt is an i.i.d standard normal random variable.  The sample length T = 128, and the results are computed using 10,000 replications.  
For each dgp and each HAC variance estimator, this table reports the true confidence level (at a nominal 90% significance level) of  
a two-tailed t-test of the significance of the sample mean of Yt . Panel A provides results for AR estimators of the HAC variance; a 
maximum lag order of 4 is used when the AR order is chosen by AIC or BIC.  Panel B provides results for HAC estimators in which 
the QS kernel is applied to a particular set of AR residuals, and the bandwidth parameter is determined using an AR(1) parametric 
model for these residuals. 
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Table 2 
Scalar Moving-Average Processes  

 
Panel A:  Autoregressive HAC Estimators 

(No Kernel applied to AR Residuals) 
 

True confidence level of the nominal 90% confidence interval 
 MA(1) Parameter θ 
Lag Order Determination -0.1 -0.3 -0.5 -0.7 -0.9 

      
   Fixed h = 1 89.7 93.1 97.9 100.0 100.0 
      
   AIC 89.6 89.8 90.9 95.6 99.9 
     (mean of ĥ ) (0.8) (1.7) (2.5) (3.4) (3.8) 
      
   BIC 91.6 92.3 94.1 97.2 99.9 
     (mean of ĥ ) (0.2) (1.0) (1.7) (2.6) (3.3) 

 
 

Panel B:  Kernel HAC Estimators  
(No AR Prewhitening) 

 
True confidence level of the nominal 90% confidence interval 

MA(1) Parameter θ  
Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      AR(1) model    90.7 93.2 97.0 99.8 100.0 

     (mean of Tξ̂ ) (1.7) (2.2) (2.4) (2.5) (2.5) 
      MA(1) model 89.9 90.0 89.6 88.1 88.1 

     (mean of Tξ̂ ) (2.1) (3.9) (6.5) (12.3) (65.4) 
      MA(2) model 88.8 89.1 88.5 86.6 85.5 

     (mean of Tξ̂ ) (3.1) (4.3) (6.8) (14.1) (42.9) 

 
 
Note:  This table reports inferences concerning the mean of the process Yt   =   µ  +  εt   +  θ εt-1 , where εt is i.i.d. N(0, 1), and  
we normalize µ = 0.  The sample length T = 128, and the results are computed using 10,000 replications.  For each value of θ  and 
each HAC variance estimator, this table reports the true confidence level (at a nominal 90% significance level) of a two-tailed t-test  
of the significance of the sample mean.  Panel A provides results for AR estimators of the HAC variance; a maximum lag order of 4  
is used when the AR order is chosen by AIC or BIC.  Panel B provides results for kernel estimators, with the bandwidth parameter 
determined by estimating the specified parametric model.  Panels C, D, and E provide results for HAC estimators in which the QS 
kernel is applied to a particular set of AR residuals, using the same methods of determining the bandwidth parameter; for ease of 
reference, the relevant results from Panel A are repeated in the top row of each panel. 
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Table 2 (contd.) 
Scalar Moving-Average Processes 

 
Panel C: Prewhitened Kernel Estimators  

Prewhitening Order Fixed at Unity 
 

True confidence level of the nominal 90% confidence interval 

MA(1) Parameter θ  
Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 89.7 93.1 97.9 100.0 100.0 

AR(1) model    89.7 92.9 97.3 99.9 100.0 

     (mean of Tξ̂ ) (0.7) (1.0) (1.5) (1.8) (2.0) 
      MA(1) model 89.6 92.6 95.9 98.1 99.9 

     (mean of Tξ̂ ) (0.8) (1.2) (2.1) (3.3) (4.7) 
      MA(2) model 88.3 88.7 88.4 86.1 82.1 

     (mean of Tξ̂ ) (2.8) (3.8) (6.5) (12.3) (41.5) 

 
 

Panel D: Prewhitened Kernel Estimators  
Prewhitening Order Determined by AIC 

 
True confidence level of the nominal 90% confidence interval 

MA(1) Parameter θ  
Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 89.6 89.8 90.9 95.6 99.9 

AR(1) model    89.1 89.8 90.9 95.6 99.9 

     (mean of Tξ̂ ) (1.1) (0.8) (0.8) (0.9) (1.1) 
      MA(1) model 89.0 89.7 90.8 95.5 99.9 

     (mean of Tξ̂ ) (1.2) (0.9) (0.9) (1.1) (1.7) 
      MA(2) model 88.3 88.9 90.1 94.6 97.8 

     (mean of Tξ̂ ) (2.4) (2.3) (2.2) (2.6) (5.7) 
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Table 2 (contd.) 
Scalar Moving-Average Processes 

 
Panel E:  Prewhitened Kernel Estimators  
Prewhitening Order Determined by BIC 

 
True confidence level of the nominal 90% confidence interval 

MA(1) Parameter θ  
Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 91.6 92.3 94.1 97.2 99.9 

AR(1) model    90.2 92.0 93.9 97.2 99.9 

     (mean of Tξ̂ ) (1.4) (1.1) (1.1) (1.1) (1.2) 
      MA(1) model 89.8 91.7 93.7 97.0 99.9 

     (mean of Tξ̂ ) (1.7) (1.3) (1.4) (1.6) (2.2) 
      MA(2) model 88.5 88.9 90.2 93.8 96.0 

     (mean of Tξ̂ ) (3.0) (3.4) (3.8) (4.1) (8.9) 
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Table 3 
Bivariate Processes with Heterogeneous Components  

 
Panel A:  VARHAC Estimators 

(No Kernel Applied to VAR Residuals) 
 

1. Inferences about the significance of α̂   
 

True confidence level of the nominal 90% confidence interval 
 MA(1) Parameter θ 
Lag Order Determination -0.1 -0.3 -0.5 -0.7 -0.9 

      
   Fixed h = 1 88.5 91.5 96.6 99.2 99.8 
      
    AIC 86.2 86.9 88.9 92.6 95.7 
     (mean of 11ĥ ) (1.5) (2.0) (2.5) (3.0) (3.2) 
     (mean of 12ĥ ) (0.6) (0.6) (0.6) (0.6) (0.6) 
      
    BIC 89.1 90.0 92.1 94.8 97.1 
     (mean of 21ĥ ) (0.5) (1.1) (1.6) (2.2) (2.5) 
     (mean of 22ĥ ) (0.1) (0.1) (0.1) (0.1) (0.1) 

 
 

2. Inferences about the significance of β̂  
 

True confidence level of the nominal 90% confidence interval 
 MA(1) Parameter θ 
Lag Order Determination -0.1 -0.3 -0.5 -0.7 -0.9 

      
   Fixed h = 1 88.7 88.6 88.6 88.9 88.7 
      
    AIC 87.7 87.8 87.4 87.5 87.5 
     (mean of 11ĥ ) (0.5) (0.5) (0.6) (0.6) (0.6) 
     (mean of 12ĥ ) (0.6) (0.6) (0.6) (0.7) (0.7) 
      
    BIC 88.9 88.9 88.3 88.5 88.3 
     (mean of 21ĥ ) (0.0) (0.1) (0.1) (0.1) (0.1) 
     (mean of 22ĥ ) (0.1) (0.1) (0.1) (0.1) (0.1) 

 
Note:  This table reports inferences concerning the OLS regression estimates of α and β for the model Yt   =   α Xt    +   β Zt  +   ut, .  
The variable Xt  =  0.95 Xt-1  + εt , where εt  is i.i.d. N(0, 1).  The variable Zt  is i.i.d. N(0, 1/(1-0.952)).  The disturbance ut  =  vt  +  θ vt , 
whereνt is i.i.d. N(0, 1).  The true coefficients are normalized as α  = β  = 0.  The sample length T = 128, and the results are computed 
using 10,000 replications.  For each value of θ  and each HAC covariance matrix estimator, this table reports the true confidence level 
(at a nominal 90% significance level) of two-tailed t-tests of the significance of α̂ and β̂.  A maximum lag order of 4 is imposed when 
AIC or BIC is used to determine the lag order of each variable in each VAR equation. Panel A provides results for VAR estimators of 
the HAC covariance matrix; that is, no kernel is applied to the VAR residuals.  Panels B, C, and D provide results for HAC estimators 
in which the QS kernel is applied to a particular set of AR residuals, with the bandwidth parameter determined by estimating the 
specified parametric model; for ease of reference, the relevant results from Panel A are repeated in the top row of each panel. 
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Table 3 (contd.) 
Bivariate Processes with Heterogeneous Components 

 
Panel B:  VAR-Prewhitened Kernel Estimators 

VAR Prewhitening Order Fixed at Unity 
 

1. Inferences about the significance of α̂  
 

True confidence level of the nominal 90% confidence interval 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 88.5 91.6 96.6 99.2 99.8 

AR(1) model    91.1 96.0 99.0 99.8 100.0 
      MA(1) model 89.1 92.7 97.2 99.2 99.7 
      MA(2) model 88.9 92.3 94.6 96.5 97.9 

 
 

2. Inferences about the significance of β̂ 
 

True confidence level of the nominal 90% confidence interval 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 88.7 88.6 88.6 88.9 88.7 

AR(1) model    88.7 88.6 88.5 88.3 88.0 
      MA(1) model 88.9 88.9 88.9 88.9 88.9 
      MA(2) model 87.6 86.9 86.6 86.3 86.1 

 
 
3. Mean Bandwidth Parameter 

 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      AR(1) model    0.8 1.0 1.2 1.3 1.4 
      MA(1) model 0.8 1.0 1.4 1.8 2.0 
      MA(2) model 2.7 3.0 3.8 4.6 5.1 
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Table 3 (contd.) 
Bivariate Processes with Heterogeneous Components 

 
Panel C:  VAR-Prewhitened Kernel Estimators 

Prewhitening Order Determined Using AIC 
 

1. Inferences about the significance of α̂  
 

True confidence level of the nominal 90% confidence interval 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 86.2 86.9 88.9 92.6 95.7 

AR(1) model    89.2 93.3 95.5 97.6 98.8 
      MA(1) model 87.3 89.7 93.2 96.5 98.3 
      MA(2) model 87.6 91.7 94.2 96.8 98.3 

 
 

2. Inferences about the significance of β̂ 
 

True confidence level of the nominal 90% confidence interval 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 87.7 87.8 87.4 87.5 87.5 

AR(1) model    87.9 87.8 87.8 87.7 87.4 
      MA(1) model 88.1 88.0 88.0 88.1 88.0 
      MA(2) model 86.7 86.6 86.0 85.9 85.5 

 
 
3. Mean Bandwidth Parameter 

 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      AR(1) model    1.2 1.2 1.2 1.2 1.2 
      MA(1) model 1.0 1.0 1.0 1.0 1.0 
      MA(2) model 2.1 2.1 2.1 2.1 2.2 
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Table 3 (contd.) 
Bivariate Processes with Heterogeneous Components 

 
Panel D:  VAR-Prewhitened Kernel Estimators 

Prewhitening Order Determined Using BIC 
 

1. Inferences about the significance of α̂  
 

True confidence level of the nominal 90% confidence interval 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 89.1 90.0 92.1 94.8 97.1 

AR(1) model    90.2 94.6 97.1 98.4 99.2 
      MA(1) model 89.0 91.7 95.0 97.5 98.8 
      MA(2) model 88.2 92.1 95.0 97.2 98.5 

 
 

2. Inferences about the significance of β̂ 
 

True confidence level of the nominal 90% confidence interval 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      None (ξ  ≡ 0) 88.9 88.9 88.3 88.5 88.3 

AR(1) model    88.7 88.6 88.5 88.4 88.1 
      MA(1) model 88.6 88.4 88.4 88.4 88.4 
      MA(2) model 87.8 87.0 86.6 86.4 85.8 

 
 
3. Mean Bandwidth Parameter 

 
MA(1) Parameter θ  

Bandwidth Parameter 
Determined By: -0.1 -0.3 -0.5 -0.7 -0.9 

      AR(1) model    1.5 1.4 1.4 1.4 1.4 
      MA(1) model 1.3 1.3 1.3 1.3 1.3 
      MA(2) model 2.6 2.6 2.7 2.8 2.9 
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Figure 1 
VAR Estimators for Multivariate Processes 

(True confidence level of the nominal 90% confidence interval) 
 
Panel A: AR(1) examples 
 
 
 

 

 

 

 

 

 
                

                 |            homoskedastic               |           heteroskedastic 1          |           heteroskedastic 2          | 

 

Panel B: MA Examples 
 

 

 

 

 

 

 

 

 
              |     homoskedastic     |    heteroskedastic 1  |   heteroskedastic  2  |            homoskedastic              | 
              |                                               MA(1)                                             |                      MA(q)                |    
 
 
Note:  For each dgp and for each method of determining the VAR lag structure, this figure indicates the frequency (in percentage 
points) that a two-tailed t-test at the nominal 90% confidence level does not reject the hypothesis that the coefficient corresponding  
to the first non-constant regressor is equal to its true value.  The gray column indicates the results when the VAR lag order is fixed  
at unity.  The black column indicates the results when BIC is used to select a separate lag order (up to a maximum of 4 lags) for  
the lagged dependent variable and for the other explanatory variables in each VAR equation, and the white column indicates the 
corresponding results obtained using AIC. Panel A indicates the results for experiments in which the regressors and the error term  
are generated by AR(1) processes; for each experiment, the value of the AR(1) coefficient is indicated below the x-axis.  Panel B 
reports the results for experiments in which the regressors and the error term are generated by MA processes; for each experiment, 
either the MA(1) coefficient or the order q of the MA process is indicated below the x-axis.   The sample length T = 128, and the 
results are computed using 10,000 replications. 
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Figure 2 
Symmetric vs. Asymmetric Lag Order Selection for Multivariate Processes   

(True confidence level of the nominal 90% confidence interval) 
 
Panel A: AR(1) examples 

             |            homoskedastic               |           heteroskedastic 1             |           heteroskedastic 2            | 
 
Panel B:  MA Examples 

 |     homoskedastic     |    heteroskedastic 1  |   heteroskedastic  2  |            homoskedastic              | 

              |                                               MA(1)                                             |                      MA(q)                |    
Note:  For each dgp described in Figure 1 and each VARHAC covariance matrix estimator, this figure indicates the frequency that  
a two-tailed t-test at the nominal 90% confidence level does not reject the hypothesis that the coefficient corresponding to the first 
non-constant regressor is equal to its true value.  The “symmetric” VARHAC estimators impose the constraint that the lagged 
dependent variable in each VAR equation has the same lag order as the other explanatory variables in that equation; the “asymmetric” 
VARHAC estimators do not impose this constraint. The VARHAC estimators are computed using a maximum lag order of 4.  
The sample length T = 128, and the results are computed using 10,000 replications. 
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Figure 3 
Prewhitened Kernel Estimators for Multivariate Processes 

(Difference from True Confidence Level shown in Figure 1) 
 
Panel A: AR(1) Examples 
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 |            homoskedastic               |           heteroskedastic 1          |           heteroskedastic 2          | 
 
Panel B: MA Examples 
 
 
 
 
 
 
 
 

 

 

 

 
      |  homoskedastic  |   heteroskedastic 1   |   heteroskedastic  2    |            homoskedastic              | 
      |                                         MA(1)                                              |                      MA(q)                 |    
 
Note:  For each dgp described in Figure 1 and for each method of determining the VAR lag structure, this figure indicates the change 
in the true confidence level (in percentage points) of the t-test described in Figure 1 when the QS kernel is used to estimate the spectral 
density matrix at frequency zero of the VAR-prewhitened residuals. The gray column indicates the results when the VAR lag order  
is fixed at unity.  The black column indicates the results when BIC is used to select a separate lag order for the lagged dependent 
variable and for the other explanatory variables in each VAR equation, and the white column indicates the corresponding results 
obtained using AIC.  The sample length T = 128, and the results are computed using 10,000 replications. 
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