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Abstract 

With the advent of LSI technology large numbers of 
inexpensive processors have become available, yet our ability to 
realize the full potential of this technology has fallen short . 

. A primary reason .for this failure has been due to an inability to ' 
move beyond the sequential control structure of conventional 
programming languages. The notion of a sequential and/or 
centralized control for a machine composed of large numbers of 
processing elements severely restricts the design and complexity 
of possible compl.lter architectures. We claim that data flow 
languages (i.e., languages in which the execution of statements 
is constrained only by the availability of tbe required operants) 
provide an alternative base machine language more suited to a 
technology (such as LSI) which favors distributed processing. 

The objective of the proposed· research· is to formulate .and 
evaluate (by simulation) a machine whose design is based on a new 
technique of interpreting existing data flow languages. The most 
significant and distinguishing aspect of this new scheme of 
interpretation is that it ·permits a literal exchange of 
processing elements for computation time, in a very general and 

··mechanical way. An architecture based on the new. inter.pr:eter 
will allow a computation to unfold and spread dynamically over a 
space of processing elements. The machine also has the 
capability of partitioning itself into disjoining domains of 
activity, each domain corresponding to· the execution of a 
distinct process. 

When the proposed research is carried out, we will have 
shown that piocessing elements (space) can be exchanged for time, 
and that this makes possible a computer organization capable of 
e~fectively utilizing large numbers of processors. 
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I.. INTRODUCTION 

1 ... Objective 

The objective of the proposed research is to formulate and 

evaluate a machine capable of dynamically unfolding and spreading 

a computation over a space of processing· elements, and hence a 

machine capable of utilizing large numbers of processors. 

2.. Significance 

2.1 Direction of the proposed research 

For the fir~t time, LSI technology ~makes· av~ii~bie large 

numbers of inexpensive processors, and thus the capacity to do 

computation which previously was not possible. However, this 

capacity has not yet become a cap~bility; in short, we do not 

know how to utilize this new tec~nology. This proposal is 

directed towards a possible solution of this problem. 

We claim that the problems involved in utilizing the new 

technology are not related to simply providing an interconnection 

mechanism, or to designing specialized machines which, for 

example, can efficien~ly manipulate arrays. Rather, the problems 

are due to one of the fundamental premises of computer 

architecture, that is, the sequential control of von Neumann-type 

computers [GIMT73]. 

We note that the primary architectural implication of LSI is 

a disposition favoring "distributed processing" among many 

distinct processing elements with essentially autonomous control· 
o I 
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A workshop on Software-Related Advances in Computer Hardware, 

which was conducted durinq the Symposium on the High Cost of 

Software, stated in its final report: 

"Ar.chi tectural notions that promis·e to engender 
greater modularity in computing systems can be 
expected to have very beneficial effects on the 
costs of development and maintenance of such 
systems. II ••• [Even so] e.. "Our field has 
witnessed repeatedly the heated arguments for and 
a~ainst these types of system. organization 
without, so far, being able to settle on their 
true merits. ·A thoughtful basic research program 
will uncover the potential of such system 
organizations without necessarily requiring the 
expenditure of outlandish amounts of money." 
[HCS73,ppll2-113] 

To build a system with any reasonable degree of autonomy and 

distribution,. it becomes .. impossible to. th.ink in -conventional 

architectural terms, for example, "in$truction streams" and "data 

st"reams". Instead, the starting point must be a base machine 

language founded on an asynchronous control str~cture, and on 

this ground we cannot function within the realm of conventional 

programming languages. In this vein, we repeat here two of the 

seven research recommendations made by this same workshop on 

Software-Related Advances in Computer Hardware: 

"The research should aim at: 

(1) Reaching a better understanding of the 
software structure for systems utilizing a number 
of semi-autonomous processors: chiefly whether 
this will result in greater modularity ... 
(2) Means for obtaining better theoretical grasp 
of the control issues of such configurations." 
[HCS73,pp 112] 

With this need for asynchrony and distribution, we feel that 

a data flow language is an eminently suited machine-level 

language for distributed processor machines [GIMT73]. Using as a 

G I 
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base a data flow language already devised by others [073], we 

have developed, in an abstract form, a new interpreter [AG75] for 
. . 

this language. This new interpreter dynamically removes all 

ordering between operations due only to time, while retaining 

those orderings required by the need for part~al results. The 

primary manifes~ations of this scheme of interpretation are the 

automatic . unfolding of loops and the ·simultaneous execution of 

distinct invocations of the same operation. Irr terms of 

hardware, the interpreter permits an exchange of blocks of 

processors for slices of time, and facilitates the dynamic 

grouping. of processing ·elements into· loca1ized · regi.an·s of process· 

activity [AG75]. This will allow far greater utilization of a 

machine composed of distributed processing elements than 

previously possible, and will ·.permit faster execution of a 

program as more processing elements are provided. The 

flexibility of trading processing elements for time in a general 

and mechanicftl way is extremely important in view of the 

technology, and is the primary feature distinguishing our 

proposed work from others. 

2.2 Significancg of data flow 

Of secondary significance (as far as the proposed research 

is concerned) is capitalizing on the use of data flow as the base 

machine language. By data flow, we mean a language in which 

(1) an in$truction executes when and only when all . operands 
needed' for that instruction become available, and · · 

(2)· instructions, at whatever level they might exist, are 
p,urely functional and produce no side-effects. 
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There are several advantages of data flow languages over 

conventional .Programming languages, sue h as an absence of 

variables (explicit memory), and a highly modular program 

structure [K73,D73]. A particular advantage of data flow is its 

inherently f Urtctional nature. We suggest that many of the 

difficulties now realized in constructing and verifying the 

behijVior of large systems can be traced to the non-functional 

behavior of their components. To support this point,·we note 

that principles of structured programming are often advocated in 

order to produce systems ·with greater modularity and simpler flow 

of control. Yet many of ·the· .positive .. aspects o'f ·.structured 

programming can be viewed simply in terms of the desire for more 

functional and less procedural semantics. That is, we are 

looking for languages with an ab~ence of side-effects both in 

control structure and in computation~l results. Also, with both 

program and machine exhibiting a more functional character, 

simpler verification of opeiatiori and.predictability of. behavior 

should result. 

3. Method 

We propose to use the following method to reach the 

objective of formulating a. distributed processor machine capable 

of utilizing large numbers of LSI processors: 

(1) The new data flow interpreter (described in Section II) forms 
the abstract basis of the proposed machine and is essentially 
complete. We wish to move from this abstract basis directly to 
an architecture capable of carrying out the function of the 
abstract interpreter. Initial steps already taken in this 
direction, in the form of a ba~ic architecture, are given. in 
section III. To complete the architecture, we propose the 
following: 
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(a)· To ·study the behavior of data fl ow programs by computer 
simulation. Section IV states several questions concerning 
data flow program behavior we need to answer. 

(b) ·To· refine and flirther · formulate'· the architecture· to 
provide support for the expected behavior of programs. 

(2) To carry out experiments, by simulation, of the resulting 
architecture in order to determine: 

(a) The performance of the machine. 

(b) The degree to whtch the research objective has been 
achieved, i.e., how. well . doe.s the proposed architecture 
utilize numbers of processors, how effectively are 
processors exchanged for time, and how well does the 
mechanism which localizes process activity operate? 

Section IV of this proposal gives a schedule stating those 

.Probl~ms ·and questions we· have identified, and how and when we 

expect to answer them . 

. ,. 
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II. ABSTRACT BASIS OF THE MACHINE 

L Data flow,· and the distinction hetween feedback 

non-feedback interpreters 

Several data flow languages and schemas have already been 

devised [e.g., B72, DFL72 and D73, K73, KM69, P62]. Our approach 

does not directly involve work on da~a flow languages. themselves; 

rather, we are building on the work of those cited above and are 

concentrating on the underlying interpretation mechanism. In 

particular; we have selected Dennis'· data flow .l.angu~ge [D73] 

(hereafter called DDF) as the vehicle in which data flow programs 

are expressed, and we execute these programs according to a new 

interpreter which is described ip detail in [AG75]. We have 

chosen DDF over other data flow languages primarily because of 

the availability of theoretical results, the presence of a very 

good data structure facility, and its relatively advanced state 

of development. 

To contrast the new interpreter with the usual data flow 

interpreter, we first describe how the usual interpreter executes 

a data· flow program. Consider. the segment of a procedure P in 

DDF shown in Figure la". The variously shaped boxes are program 

statements connected by arcs along which tokens flow. The tokens 

may be considered to carry all computation values -~ both inputs 

to and results from computations performed in the program 
I 

statements. Statement P.1 in Figure la is a merge·and operates 

by absorbing a control token (true or false value only) on input 
e I 
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C which then specifies which of the remaining two inputs is to be 

absorbed. In this case, the token at input C is an initial token 

with value false, and thus the token at the False input of the 

merg_g is absorbed. The output from the ill~ is a copy of 

whichever of. the True or False data inputs was selected. The 

output of P.1 actually forks in Figure la to three statements 

function f, a predicate. statement, and function g; thus three 

tokens are adtually output fro~ p~·1, each token carrying the 

value 1 (Figure lb). At this point statements f, g, and the 

predicate may compute in ·parallel since they have no other inputs 

and thus need not wait fo:r; other data• Each of the:se. statements 

will execute at its own rate. Let us say that f and the 

predicate have now completed, and furthermore, the predicate has 

evaluated as true (Figure le). Now let P.4 execute. Statement 

P.4 is a Gate-if-True statement,·and initiates only when both 

inputs are present. The output of p.4 is a copy of its data 

input since the control token wa·s a true token (Figure ld); that 

is, P.4 gates data or destroys data depending upon the control 

input 1 ine .. (If the control input had been a false token, the 

data input token would have been absorbed but no output would 

have been produced.) 

At this point (Figure id) we have returned to P.1, but this 

time the data from the True input of the merge will be selected 

since the control input token is true. However, note that 

statement. g still has not executed, though it could have at any 

time.. The .fact that there now remains .§. .token at the output of 

~-1 Rrohibits R!_l fr~m executing. That is, there is a feedback 
o I 
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link from all siriks (e.g., statements f, g, and the predicate) to 

source (statement P.1) such that all sinks must initiate 

execution before further inputs to these sinks can be made 

available. (Please note: the above essentially states that 

there is a maximum input token queue length of 1 for each input 

to a statement; the problem noted below is not that the maximum 

is 1, but rather that it is any particular number.) 

The usual interpreter, which moves tokens in a data flow 

language in the manner described above, is called a feedback 

interprete_r.. The interpreter proposed in [AG 7 5] operate~. in sue h 

·a way" that no feedback is· present, hence we call it the 

non .... feed back interpreter. The non-feedback interpreter, 

operating on the program in Figurs la, will produce any number of 

inputs to function g. Each of these inputs is, in fact, destined 

for a di.stinct invocation of g whicn we call an activity. These 

invocations, or activities, under a feedback interpreter are 

ordered '· in time. That is, if we label function gin Figure 1 

with the name P.5, then the first invocation of g is activity 

P.5.1, the second is activity P.5.2, etc. However, in the 

non .... feedback scheme the inputs appear whenever they are produced 

and any number of invocations of g (activities of the form p.s.1, 

P.5.2, •••• , P.S.i, ••• )may exist in execution at the same time. 

Ordering in time has been eliminated where it is not necessary. 

In [AG75] it is proved that the non-feedback interpreter produces 

the same computational results as the feedback inte·rpreter. 
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which 

One of the most significant 

interpreter described above and 

aspects of the non~feedback 

in [AG75] is that it permits 

faster execution of a DDF program if more processing elements 

(PEs) are provided. Two examples are detailed in Appendix A 

which .illustrate the generality of processing power-time 

tradeoff. In order to simplify the argument we have assumed that 

an unbounded number of PEs are available to us. The details of 

the proposed architecture described in· S~ction III wi 11 make it 

clear that a bounded number of PEs d·oes not complicate the 

PE-time tradeoff. If a program could use more PEs during 

execution than what is current)y available, it will execute 

somewhat slower. 

It is our contention that data flow and the non-feedback 

interpreter .are not only a promising approach to the solution of 

some of the outstanding problems in computer system design 

[GIMT75,HCS73], but that they also provide ample opportunity for 

new and novel ideas in machine architecture. 

2. Other proposals to implement data flow machines 

In this section we mention briefly three proposals by other 

researchers for data flow architectures. Please note that these 

system~ were- not necessarily motivated by the same ~orces as ours 

(i.e., the utilization of LSI technology), but each in some way 

approaches the problem to a degree better than conventional 
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systems. Historically, designs 8ased on cellular automata [V66] 

have.been attempted for highly distributed machines [H60, C63]. 

These ,earlier designs were unsuccessful mainly due to the 

programming complexity of the base machine and the inadequate 

technology . then available. Since that time we feel that 

technology has dramatically eased its constraints, and· that data 

flow can simplify the earlier programming difficulties. 

To contrast our proposed architecture (appearing in Section 

III) wi~h the following machines, we might characterize each of 

them as being an interpreter with feedback; this 
. . . 

characterization holds regardless of the~parti~ulai base machine 

language used. Again, the machine we propose is an interpreter 

without feedback, and consequently, at any given time, has an 

opportunity to call upon many processors which otherwise might 

not be demanded. 

2.1 The Basic Data Flow Processor 

Dennis, et s..l [DM74] have proposed an architecture for the 

direct execution of programs in a subset of-DDF. The basic 

architecture is shown in Figure 2 and incorporates· a ·memory of 

many complex cells. Each cell is (essentially) preassigned a 

statement of the DDF program to be executed. A cell then waits 

for the input tokens required by the statement, and after all 

inputs arrive (as determined by a memory controller which 

c:onstantly monitors all memory cells) the cell with its function 

code and operands (called an "instruction packet") leaves memory 

for the functional uni ts. The proper functional unit is then 
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allocated with the help ·of an arbitration network, the specified 

operation is applied to the operands, and result tokens are 

produced. ~he result tokens then leav~ the functional units and 

head for their individual destination cells back in memory, 

providing.input to some other waiting operation. 

2.2 Rumbaugh's Machine 

Rumbaugh has proposed a data flow machine [R75] which 

executes programs in a modified 

(Figure 3) consists of a number of 

.local.·· mentory, each of which can 

DDF language. The machine 

Activation Processors with 

execute a DDF procedure. A 

procedure executing in an Activation Processor has access to the 

Structure Memory which holds the data structures implied by the 

value tokens. Structure Memory is manipulated by controllers 

which may be shared among several Activation Processors. While 

the requests of a process to the Structure Memory are being 

carried out, the process can be swapped out to the Swap Memory by 

a central scheduler. The Scheduler is a separate hardware unit 

that controls the allocation of Activation Processors. All 

requests for the creation and destruction of processes (due to 

the execution of Apply statements) are also carried out by the 

Scheduler~ Clearly, Activation Processors are a critical 

resource and high utilization is attained by proper scheduling. 
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2.3 The ~raph Machine 

Sonnenburg and Irani [SI74] have proposed a data flow 

language which is very similar to Rodriguez's [R69]. They have 

also suggested an architecture for a computer called The Graph 

Machine to execute their data flow language. The Graph Machine 

(Figure 4) consists of a large number of processing elements 

(called operation units), each of whi~h has two inputs and one 

·output. A PE can execute any instruction in the Sonnenburg-Irani 

data flow language, and all PEs are connected to all other P~s by 

a control switch of (N 2) simple switches. The simple switches 
. ' 

are controlled by a graph. metnory where program intercon.nections 

are stored. PE allocation occurs at graph memory load-time. 

·Miller and Cocke [MC72] have also suggested architectures called 

configurable computers which are . very similar to the Graph 

Machine. 

6 I 
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1. General - We now describe an architecture to implement the 

non--... feedback interpreter. We begin with the schematic 

representatibri of Figure 5, in which the machine is composed of 

an array of some number of equally powerful processing elements 

-(PEs), each attached to a 'communication system and to a memory 

system. During program execution, each PE is dynamically 

allocat~d, that is, given an activity name. The PE then performs 

the computation corresponding to that activity, outputs tokens 

destined for other activities, and fi~aliy 'bec6me~ free by 

deallocating itself. PEs may be added to the array to provide 

increased computational power, or deleted from the array, as 

desired. 

As shown in Figure 6, ·each PE is composed of 

sub sections which perform the fo.llowing functions: 

(1) activity name recognition 

(2) token input and output 

( 3) cornputa ti on 

(4) memory system interface. 

four 

The token input and output subsection of each PE is interfaced 

with the communication system. The communication system carries 

the.tokens, in the form of messages, between the PEs. Each token 

carries with it the activity name of its destination. The 

tommunication system accepts tokens output from- a PE and 

circulates the tokens among all. PEs. When a match is found 

* I 
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between the destination· activity name on the token and the 

current activity name of some PE, that PE accepts the token as 
. . -

input. When all necessary tokens have been received by the PE, 

it beg ins the c omputa ti on designated by the a.cti vi ty name. When 

the computation terminates, output tokens are injected back into 
.. 

the communication system by the PE and the·PE deallocates itself 

by clearing its activity name. The PE is then available for 

reallocation to another activity.· 

2. ' The communication system A key aspect of the system 

described above is the communication system through which tokens 

~ircuiate ·and visit the PEs~ Figure 7 shows our iriitial approach 

to the communication system, and the location and interconnection 

of PEs to the system. 

The PEs are grouped in columns (labelled i~l, i, i+l in 

Figure 7a) such that all PEs on the same column share a local 

bus. This bus is the internal bus and is present so that all PEs 

lying along one column may communicate tokens amongst themselves 

very quickly. Thus, a PE that produces a· token places that token 

(which includes its destination activity name) on the bus. All 

allocated PEs constantly monitor their internal bus looking for 

input tokens. If the destination activity has been allocated a 

PE which lies on the same bus, then the token will be absorbed 

immediately. Thus local communication is easily accomplished. 

Now we must account for communication to and from other columns 

of PEs. Communication from one column to·another is handled by a 

ring bus encircling the columns. The top of the ring is detail~d 

6 I 
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in Figure 7~ as·the double-~idth line passing from right to left 

through the switches T.. The bottom of the ring pa~ses from left 
l 

to right through the switches B.. Finally, the buses are closed 
l 

by firewalls at each end to complete the ring·: the left end is 

closed by a firewall at column 1 by switch T1 forcing all token 

traffic to go down the line labeled L 1 ; the right end is closed 

by a firewall at column n by switch B forcing all tokep traffic 
n 

to go up the line labelled· Rri. The arrangement of the ring and 

th~ various switches are shown in Figure 7b (the PEs and internal 

buses are not shown). 

With the ring bus, tokens may circulate and visit each 

column looking for their respective destinations. Switch T. of 
l 

each column contains an associatively addressed activity name 

table which records the activity names of each allocated PE 

within that column. (The idea of an activity name table is 

similar to the process nametables maintained in the ring 

interface~ of the Distributed Cbmputing Syst~m [F73].) When a 

token enters switch T., its destination name is compared with the 
l 

activity names in the table. If the destination name· is present, 

the token· is diverted onto the internal bus where the waiting PE 

will absorb it. If the destination name of the token entering 

switch Ti does not match any of the allocated activity names,. 

then the token continues on to the next column. One may think of 

the token as circulating around the ring as many times as 

necessary until a match is found. $Witch B. is used to put a· 
. l 

token produced by a PE within a column onto the ring when no PE 

on the internal bus accepts that token. 
e ' 
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We envision a ring bus impl ei:nen ted by shift registers, and 

thus both token storage and token movement are provided by the 

same simple device. Also, new Columns o"f PEs may be easily 

attached by joining onto the ring. The amount of storage (and 

thus the 1 ength of the ring and the communication delay) may vary 

dynamically as. the number of circulating tokens grows and 

diminishes over time. However, significant parameters such as 

token .. Size I token delay·, . and. token bit rates rem,ain Unknown I 

although estimates of these parameters indicate ·feasible token 

c ommun ica ti on s can be obtained with current and near-term 

technology. 

For example, let there be an average requirement of n input 

tokens per PE, and let a token be k bits long. Also, let there 

be N PEs per column in simultaneous .operati6n, ·a fraction f of 

which require communication with t~~ ring. Then if the average 

wait and execution time of a PE is T, the ring must support a 

mean rate of· (nk/T)Nf bits per second. A crude estimate for the 

worst case is n=3 input tokens per PE, k=lOO bits per token, N=8 

PEs in simultaneous execution, a fraction f=0.5 of which require 

communication off the column, and a PE wait and executi time of 

T=lOO microseconds. This results in a bit rate of 12 megabits 
;. 

per second, an entirely reasonable figure for near-term LSI shift 

register speeds. Better estimates for shift register 

requirements can be obtained by simulation and will determine the 

shift register characteristics. 

. ' 
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The.com~urii~ation sy~tem is discussed in further detail in 

section 5: Execution domains. 

3. PE allocation and deallocation - Allocation of a PE in some 

column to an activity P.s.i is.dynamic during execution, and is 

noted in the activity name table contained in that column's 

switch Allocation is distributed in that no central 

controller selects a PE and assigns it an activity name.· Rather, 

one of the inputs to each statement of a program is selected at 

compile time to be the allocation input, and any token sent to 

that input is marked as an allocation token. Thus there is one 

and o~lY one allocation t6ken per activity. 

The presence of an allocation token in the system implies 

that a free (unallocated) PE must be found and assigned the 

activity name appearing on the allocation token. However, we 
.. 

have little experience with data flow programs and their 

behavior, and hence only some understanding of what might 

constitute a good allocation scheme. One heuristic which we feel 

is good states that PEs should be allocated whenever possible on 

the same column in which the allocation token was produced; the 

second best position is an adjacent column, and so on. That is, 

PEs should be grouped together for close token interaction. The 

heuristic as applied to procedure calls is discussed further in 

section 5: Execution domains. 

4. Deadlock - There are two limited resources in the system so 

far discussed that could be sources of deadlock, unless some 

precautions are taken. These two resources are (1) the finite 
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number of PEs, and (2) the finite storage capacity of the ring. 

Even if only one of these two resources is finite, a deadlock is 

still possible. We describe a deadlock situation when the 

communication system is assumed to have infinite storage capacity 

but finite delay, and the number of PEs is limited. 

(1) Suppose all the PEs are waiting for an input token, that 
is, all PEs have been allocated but Qone have begun execution. 
Also suppose that tokens n.eeded by the allocated activitiE2S are 
not. present in the communication system either, (otherwise there 
would be no deadlock). This is possible only if we a~sume that 
the tokens for some activity C that will produce the needed 
tokens are all present in the communication system, (otherwise 
the program itself is malformed [AG75] ). But the activity C 
cannot be carried out because no PE is available· 

To avoid this deadlock possibilitYr we have instituted a 

rule which holds for all activities or functions with which we 

work • This r ul e state s fir st that any PE which has been 

allocated (and thus holds at least one input token) may 

deallocate itself at any time simply~ by clearing its activity 

name and returning to the communication system all the tokens 

which it has ~bsorbed up to the time of deallocation. Secondly, 

the rule states that any PE which has received all its input 

tokens and has initiated execution will always pe able to go to 

completion. (This rule has implications for the memory system 

discussed below~ Any request·to the memory by a PE must be 

satisfied without requiring any more PEs. In other words, the 

memory system and the PEs must function independently.) Thus, for 

example, each PE may have a randomly set tirne .... out period which 

begins at allocation, and if' the time .... out expires before 

initiation, then the PE deallocates itself and becomes available 

for reallocation. In this way there will always be at least one 
• I 
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PE available to carry the computation forward, and thereby avoid 

deadlock. Actually a scheme slightly more sophisticated than the 

random time out is needed to ensure a deadlock-free system. One 

must ensure that no activity is excluded indefinitely from being 

allocated. 

(2) Suppose the communication ring is full, but no token on 
the ring can find a qestination PE. Thus, there must be an 
activity c in execution, which when· it teminates will ·output a 
token which causes allocation of a new activity~ If the 
allocation cannot be made on that column (for e~ample, all the 
PEs are in execution) then the token output from C must enter the 
ring. But the token cannot enter the ring since the ring is 
full· 

Alsoi the scheme described in (1) ab6ve to_ a~oid deadlocks 

will work only if essentially unlimited capacity is guaranteed in 

the communication system. We propose to do. this by providing a 

memory access port to switches·J and B. A switch may take some 

tokens out of the ring if the ring overflows and it may put these 

tokens back onto the ring at some appropriate time later. Taking 

tokens out iri this fashion increases the storage capacity of the 

ring without increasing the communication delays for most tokens. 

5. Execution domains - Section· 3 above on PE allocation and 

deallocation briefly discussed a heuristic for allocation: that 

an activity should be allocated a PE near the PE which produc~d 

the allocation token. This heuristic attempts to realize a 

belief about data flow programs. The belief is that there is 

Jocality in data flow programs - that statements (or activities) 

which are "near" in terms of program graph di stance, should al so 

be near in execution. Specifically, activities within some 
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procedure would generally be nearer to themselves than to any 

activity outside that procedure. In fact, the only interactions 

which any statement within a procedure has with any statement 

outside that procedure are the passing of input parameter tokens 

to the procedure and the returning of result tokens from the 

called procedure back to the caller. 

We have selected the procedure as a basic pr~gram element 

with which the machine's architecture is to interact. The 

machine is to partition itself into disjoint domains of localized 

process activity during execution. Each domain corresponds 
. . 

exactly to a single invocation of a procedure. We believe the 

existence of such domains as machine partitions will increase 

machine speed by isolating those sets of tokens which would not 

usefully be mixed, arid by reducing the token destination search 

space to a particular subportion of the entire machine. (We note 

that a complete activity name as defined in [AG75] actually 

·contains one more field 'u' to denote· the context from. which a 

procedure is called. Hence, a complete activity name has the 

form u.P.s.k. However, the partitioning of the machine solves 

the problem of the length of token activity names by knowing. that 

the. context is the same for all activities within a given domain· 

Hence, the u.P part of the activity na~e will be implied by the 

execution domain, and only the s.k part of the activity name will 

be carried by the token within the domain [AG75].) 

• I 
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For example, Figure 8 shows a procedure at a particular 

point in execution as indicated by the presence of tokens at 

various statement inputs. Figure 9a shows the machine and the 

fact that procedure P lives within a particular area bounded by a 

left firewall LP and a right firewall Rp· The switches T and B 

are responsible for constructing and maintaining the firewalls, 

and they do so in two ways. First, the firewalls . force all 

token-s· with destination in procedure P to remain on ·that portion 

of the ring surrounding P.. Second, any token whfch does not have 

destination in P, but which finds itself inside P, is allowed to 

continue and to pass -on _through P. The .. firewalls: .·thus create 

small subrings which circumscrib·e collections of PEs with high 

internal token interaction, yet allow tokens going to other 

domains to pass quietly throug~ •. A schematic representation of 

switches T and B is shown in Figure 10. 

Now let the statement apply Q be performed in P, where 

proc~dure Q 'is some data flow procedure. As detailed in [AG75], 

an apply Q statement is actually two separate activities: an 

activate Q and a terminate Q activity, both of whiqh execute 

within domain P. · An activate c·auses two actions to occur: 

(1) domain Q is cr·eated, 

(2) the input tokens to ill2.l2.J .. Y. Q are sent as inputs to 
proce_dure Q in the newly created domain. 

Returning to Figure 9a we see domain P and the remaining 

unused portio~s of the machine. All unused portions a~e known, 

and all conting~ous columns of unused. PEs form free domains from 

which free PE columns are allocated to enlarge existing domains 
• I 
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or to create new domains. In. domain P in Figure 9a, the apply Q 

statement is about to be executed and domain Q created. Domain Q 

is created when the activate Q portion of the .9.l2!2.1Y produces a 

create domain Q token as output (along with the input parameter 

tokens for Q). The create domain token then leaves domain P. 

When the token reaches a free domain of sufficient size, the free 

domain is partitioned into the new domain Q, and a free domain of 

1 e.s ser size. 

In.~igure 9b two procedures and their domains now exist. 

Next, it is necessary to transmit input parameter tokens from P 

to Q. Input parameter tok~ns to Q may be.passed out 0£ P simply 

by marking their destination as being in Q, and hence outside of 

P. Given the rule above that tokens which find themselves inside 

a region which is not their destination region are simply allowed 

to pass through, these input parameter tokens will be released 

from the domain P and they will find their way to Q. Once inside 

domain Q, these input parameter tokens appear just as any other 

token inside Q would appear. 

The above has described the creation of a domain and the 

passing of input parameter tokens into that domain. The inverse 

of the above occurs at termination of the called procedure Q. 

Fi~st, result tbkens are passed back t6 the terminate Q portion 

of the apply Q statement in P. Then the terminate activity 

outputs a destroy domain Q token which will find domain Q and 

aestroy it by adding the PEs in it to a fre·e domain. -

. ' 
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There are several unresolved points concerning procedure 

domains. How do domains acquire more PE resources (how do 

firewalls move from one column to another) when it would be 

useful for them to do so? What would comprise a good scheduler 

for allocating domains? Is there a way to reduce the overhead 

procedure call~, possibly by specifying some maximum number of 

concurrent invocations of a procedure and reuse the domains? 

These and other questions require further ~nvestigation to 

be resolved. However, we feel that the notion of an execution 

domain is ·viable, and brings an intuitive feeling for how 

procedure~ operate into ths basic structure of the machine. 

6. The m~mory system ~ Values in data flow are carried by 

tokens. However, these values ·Qan have rather complex structure 

(such as a tree) and be of significant size. For the purpose of 

reducing the quantity of information carried by a token, [D73] 

presents a technique whereby data values can instead be 

maintained in a memory and only pointers to those values need be 

present on the tokens themselves. Ba se d upon pure LI s P , the 

technique also allows garbage collection to be handled by simple 

reference count techniques. (This can be done since data is 

never modified after : it is created, and is destroyed when all 

tokens· carrying (pointing to) that data have been input to their 

destinatiori PEs.) 

Since memory is present only to reduce the bit rate which 
I • 

the communication system would otherwise have to support, we 

~equire the memory system itself to be responsible for all name 
• I 
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and storage management· Also, since any PE may perform any data 

flow.statement, all PEs must be physically able to gain access to 

all of memory. 

The above are the reasons for, and the logical requirements 

of, the memory system. We have not as yet fully determined a 

structure for the memory system discussed below. however some 

·points have emerged. First, we expect a "locality" effect, in 

that data moves from a producer PE to neighboring consumer PEs, 

and we expect many such activities to occur simultaneously. Thus 

we feel a use for a distributed memory composed of many 

independent uni ts capable of functioning simultaneously, and a 

given memory unit must be accessible by any PE. Second, a given 

memory unit should be closely associated with one or more PEs of 

a given column, with newly created data values placed as closely 

as possible to the PE causing the creation of that data. Thus, 

due to the expected close interaction among the PEs within a. 

single column, any PE on a given column should have faster access 

to the memory unit(s) associated with that column, than any PE 

not on that column. Lastly, we expect to be able to tolerate 

some access delays that are longer than in current conventional 

machines. 

Clearly, several gue stions remain and can be answered only 

with research into actual data flow program behavior patterns. 

Such questions are: How many memory units should be highly 

~ccessibl~ by a given PE? Under what circ~mstances·is it better 

to copy a structure to another area. of the machine rather than 
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suffer repeated access delays? Given the experience with Holland 

machines [H60,C63] and c.mmp [FSS73], what kind of bussing 

structure will allow all PEs access to any memory unit, but 

without obstructing other PE memory unit accesses? 

7. Toroids 

Lastly, we intend to unify the machine's structure from that 

given in Figure 7 a. As sho'wn in Figure lla, PE columns l ·and n 

will be connected together by the ring bus so that the "ends" of 

the machine itself will be defined only by firewalls (which can 

also move). Also, switches T.· and B.· in e·ach PE col°urnn L can be 
.. l l 

molded into a single physical device. Figure llb shews that the 

machine's resulting logical form is a· toroid. 

. ' 
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. rv. SCH~DULE OF PROPOSED WORK 

We propose to carry out the work by building a simulator for 

data flow programs, measuring the behavior of those programs, and 

orienting the architecture of the machine to function in concert 

with that behavior. As architectural decisions are finalized 

they will be incorporated into the simulator to study their 

effects on program execution. When all components. of the 

architecture are complete, we will 'have a simulator of that 

architecture. Our proposed schedule of work is as follows: 

Months 1-3: This first period· will be devoted to building a data 

flow program simulator, and to gathering a collection of test 

data flow programs on which measurements will be made (two simple 

candidates, quicksort and matrix multiply, appear in Appendix A). 

Months 4-6: During this period we plan to measure the behavior 
,. 

of the test data flow programs, assuming a grid of processing 

elements and a basic execution time for each data flow operation. 

No particular communication system nor memory system will be 

assumed; thus the simulator will initially function just as the 

theoretical interpreter functions, and the measures will reflect 

the properties of data flow itself. We plan to measure: 

(1) data structure access and creation behavior 

(2) token density and flow patterns 

(3) the effect of varying. the size of a "unit of 
computation" (activity) on items (1) (2), above. 

• I 
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This work will impact data flow language design itself. 

Initial efforts in determining a "unit of computation" produced 

the work covered in Appendix A, and we anticipate advances in 

data flow language design to grow out of these beginnings. That 

work which is easily accomplished and which will contribute to 

the design of data flow languages, we pl~n to do here.· 

. During this period, the above information will be used to 

determine the functional power to be given to a processing 

element9 The results of these experiements will also be used 

during the following period. 

(1) Dur~ng this phase, the major goal is to 

determine an architecture for the memory system. The design will· 

reflect expected near .... term LSI capabilities, and the 

characteristics of behavior of data flow programs determined 

during Months 4-6. We then plan to impose the memory system upon 

the data flow simulator, and to measure the effects of the memory 

system on program execution. Of particular importance is the 

memory allocation scheme, but we expect that the "locality" 

scheme described in Section III (or some variant thereof) will 

prove to be good. Also, the effects on performance of some 

parameters concerning the memory system must be determined; 

these parameters are 

(a) density of memory units distributed throughout the 
machine 

(b) ·~emory system bandwidth 

(c) the extent 
neighborhood" of 
direct access. 

of a 
memory, 

processing element's "local 
i.e., the memory to which it has 
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(2) A ~econd goal during this period will be to determirie a. 

good PE allocation scheme. (Again, we anticipate that the 

"locality" ·scheme described in Section· III will .be appropriate.) 

Then, when the allocation scheme is decided, it will be possible 

to more accurately determine parameters concerning the 

communicafion system bandwidth and storage capacity. 

We feel that the memory system will be the most difficult 

and sensitive area of the machine, while we anticipate little 

difficulty with the token communication system· 

.Months. l..3~18: During. this. phase., we plan to incorpo!!ate the 

memory and communication system de~igns into the simulation. We 

will then have a simulator of the architecture and will be able 

to evaluate the performance of the machine. · This period will 

also be devoted to determining system bottlenecks and improving 

those subsystems where difficulties might arise. To determine 

machine performance, we propose to measure the following: 

(1) The overall rate of computation of the machine, assuming 
basic component speeds consistent with near-term LSI 
capabilities. 

(2) The utilization of the machine's processors based upon 
the number of processors in execution concurrently. 

(3) Evaluation of the degree to which processors are 
exchanged for time. This measure is somewhat complex, and 
is best accomplished by comparing two executions of the same 
data flow program one execution in which the 
processor/time exchange mechanism is inhibited, and one 
execution in which it is fully operative. 

(4) Evaluation of the effect of the mechanism which. 
localizes process activity· · into disjoin·t domains of 
execution. This measure will be accomplished (similarly to 
( 3) above) by comparison of two executions .... one execution 
in which the mechanism is inhibited, and one in which it is 
operative. . , 
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Months 19-24: We propose to investigate the requirements and 

resource demands which a kernel operating system might place upon 

the machine, where the kernel contains basic functions such as 

creation and destruction of processes, protection, interprocess 

communication, and input/output. We feel that this work is 

necessary to gain a clearer view of the. machine and how it might 

function in a real computing environment. Some of these basic 

functions appear straightforward {·e.g~, creation arid destruction 

of processes) while others are still problems even in 

conventional machines, ·but perhaps more easily solved in the 

proposed·machine (e.g., protection). 

0 I 
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P. 5: 

Figure la 

A p::>rtion of a data flON procedure P in its initial configuration 

.. ,,,,____/ 

Figure Ib 

Status of the program a£ter P .1 executes · , 
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· Figure le 

Statement f and the predicate carplete execution 

• CJ . 

Figure ld 

The gate produces its output 
e I 
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Figure 2 

Basic Dennis-Misunas data flow ma.chine 
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Basic view of prop::>sed data flav architecture 
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An apply stateirent in procedure P calls procedure Q 
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APPENDIX A 

Two Data Elow Programs and Their Analyses 

A.1 Macros in QDF 

Before we give the sample programs, we will tlefine two new 

primitive operators in the DDF language. These primitives can 

also be viewed as macrq, that is, a.n e·quivalent ._9~oup. of DDF 

statements exists which can be substituted for each occurrence of 

these operators. The upper portion of Figure A.1 shows a DDF 

program which is often a part. of 1 arger DDF programs. The 

equivalent program using the macros (yet to be defined) is shown 

in the lower portion of Figure A.1. 

Essentially, on arrival of an input token v, n tokens with 

values f (v), f(f(v) ), ••• are produced by loop 1. After each 

of these tokens is transformed by some program g they are input 

to loop 2. Loop 2 accepts these n tokens and forms one result 

token according to function h• A very common situation is when f 

is the identity function and h is the :L operator. 

The following are detailed definitions of the two macros: 

(1) time-Distributer Ct-Dist): There is a function f, a 
constant n, and an input v associated with each t-Dist. Once the 
input v has be~n received, then n tokens with -valu~s f(v), 
f(f(v) ), will be produced, ordered in time. When at-Dist 
is executed under the feedback interpreter, an output token is 
produced on an arc only after the previous token output on that 
~re has. been absorbed. Howeve~, under the . non-feedback 





. interpretEr · all. n 
simul tanecusly with 
u.P.s.k+n··l. (The 

·number on t.he input 
t he number u · P. t • i , 

· Page A ..... 2 

tokens can be produced and output (almost) 
activity numbers u.P.s.k, u.P.s.k+l, 
value of k will depend upon the activity 

token. v; for example,. if the input token. ·has 
then k=(i-l)*n+l.) 

Figlre A.2 gives the firing rules and the DDF program 

equivalent to t-Dist. If f is an identity function then t-Dist 

will simply· produce a sequence of n copies of v. Another very 

usefuJ f function is 41 +1" which wi 11 produce a sequence of tokens 

with values 1, 2, 3, ••• , n assuming. the initial input· v had 

valua zero. 

(2) time-Collector (t-Coll): This operator performs, in a 
.sense, the. inverse of t ..... Dist. t .... Coli also. has a function f and 
.const~nt ti associated with it. It has an input s · .(the initial 
value), and an input port v on which n tokens, 8rdered in time, 
with values v1 , v2 , .•. , v are received. Under the non-feedback 
interpreter tokens with nactivity numbers u.P.s.k., u.P.ssk+l, 
M••1 u.P.s.k+g-1 will be needed for one execution of t-Coll· 
~For the it initiation of t-Coll, the value of k would be 
(i-l)*n+l.) After all the input tokens have been received, an 
output t ok en wi th v a 1 u e f ( v , f ( v 1 , • . . f ( v2 , f ( v1 , s ) ) · · • ) ) i s n n- o 
produced. Two useful functions f for this macro are "I:" and 
"append". Figure A. 3 gives the DDF program equivalent to' t-Coll • 

' The macros t-Dist and t-Coll not only simplify the writing 

of programs, but also result in less token traffic and demands on 

PE resources. It is easy to see that a single PE could be given 

the capability to execute t-Dist. A PE executing t-Dist under 

the non-feedback interpreter will produce n tokens in roughly 

C 0 +rn units of time, where c
0 

is the set-up time of a PE and r is 

the additional time needed to produce a token. For simple 

functions (e.g. I f=identi ty), r< <c • 
0 

Equivalent statements can 

be made concerning a single PE implementation of t-Coll, except 

that a slight modification is needed to enable a single PE to 

accept tokens within a range of activity numbers rather than just 
o I 
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one particular activity number. 

We note one more point regarding these two macr~s before 

giving the example programs. It may be desirable t~ hlve n, the 

number of tokens to be produced or accepted by t-Dist or t-Coll, 

as an input token to the macros. This can be accomp~ished by 

changing the interpretation rules of the macros in Figures A.2c 

and A.3c to include a dum_my token (simi.lar to·that for Qc .. tes and 

merges [AG75] ) to indicate the range of ~ctivity numb~rs to be 

produced (in the case of t-Dist) and the range of activity 

numbers to-be accepted (in the case of t~Coll). 

A.2 Sample Programs 

Example 1 - Matrix Multiply Subroutine 

A pseudo Algol program for ~ultiplying two matrices A and B 

is given in Figure A.4. This program has been hand transl~ted 

into the DDF language and is given in Figure A. s. There are 

eight loops connected with eight different merge operators. 

Loops 1, 2, and 3 are nested and generate the proper value of k· 

Every time the select operator is executed a token is.needed on 

all its input arcs. 
·2 

Therefore n copies of each of indices i and 

j must be produced; this is accomplished by loops 4, 5, and 6. 

Loop 7· constructs the sum s and loop 8 constructs the new matrix 

C by storing s in the proper place. 

We have not shown the loops for the input n to the predicate 

statements, nor have we shown the loops for matrix names A and B 

for the select statements. These loops can be drawn in a 
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straightforwa~d ·manner, however, they are not necessarily needed 

.since any parameter that remains constant during one activiation 

of a procedure could be substituted just before the activation of 

that procedure. 

A DDF· program using t-Di st and t .... Coll is shown in Figure 

As already d~scussed, the execution time of these macros 

under the non-feedback int~rpreter is roughly · c
0

+ rn. .For an 

arbitrary PE structure it is safe to assume that r will be very 

much smaller than the time needed to multiply two numbers 

together. Let us assume that it takes ~f units of time .~o carry 

·out each of the statements 7, 8, and 9. Given a sufficient 

number of PEs (i•e• I > n3) the program in Figure A.6 will take 

5 c +2 cf+4 rn+rn 2 
~ c+rn 2 units of time (where c is some constant 

I 0 

> >r) • On computers without parallel operations (i•e• I without 

pipelinin~, etc.) the matrix multipl~ will generally take c'+cfn3 

units of time. If r<<cf then c+rn2 << c'+cfn3 for large ·n. This 

is underslandable in view of the fact that un~er the non-feedback 

interpreter all multiplications can be executed 

simultaneously, and the time to execute the program is 

proportional to the time needed to ·collect the results of the 

mul tipl ica tions. 

If the number of available PEs is smaller then n3 , then the 

execution time would be proportionately longer. 

Example l - Subroutine ~ort 

. ' 
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This procedure sorts an array of n numbers according to the 

quicksort method. A pseudo Algol program for quicksort is given 

in Figure A.,'7 .. · The procedure is recursive. In order to simplify 

·writing the procedure in DDF we define a function called 

ComRarator shown in Figure A.8. A DDF procedure ~ort(a,n) using 

t-Dist, t-Coll~ and Comparator is given in Figure A.9. If ·n is 

greater than 2, the procedure simply se~ects the middle element 

am . in array a and constructs two new arrays b and c, where b 

contains all the elements of array a less than or equal 

and c contains all the elements of array a greater than 

to 

a .. m The 

dimensions of arrays b .a.nd c are id en tic.al-, and one )·ess. than the 

dimension of a. If the ~th elemeht of array a is stored in the 

ith position in array b (i.e., a. a ) then a null is stored in 
i m 

the ith position in array c. Simiiarly, foi every non-null entry 

in c there is a corresponding nu1·1 entry in b. Box 3 in Figure 

A.9 counts the number of non-null entries in b. Boxes 1 and 2 

(i.e., t~Coll with function f=Build) construct new arrays where 

the null entries have been deleted. Then both arrays b and c are 

sorted simultaneously by parallel recursive calls to procedure 

Sort· The final result is produced by concatenating the sorted 

array -b, element a , and the sorted array c. m 

take 

Again, if we assume that the statements t-Dist and t-Coll 

c +rn 
0 . 

time, the Com2arator takes cf units of time 

(where r<cf), and more than n PEs are available, then one 

invocation ·of procedure Sort will require c+2rn time besides the 

time taken by the ~.212.lY operators. On an average the parallel 

recursive calls will be nested O(log2 n) deep. In the worst case 
. ' 
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tnere can be· n nested calls to procedure Sort. Therefore, if 

~ufficient numbers of PEs are available, the program will take on 

an average (c+2rn)log
2

n time. In the worst case time taken will 

be ( c + 2 r n) n. For sequential computers these times would be 

These two examples illustrate the significant reductions we 

expect in the exec u ti 0 n . time 0. f m 0 st a 1g0 r it hm s • These 

reductions will occur automatically, when the algorithms are 

written in DDF and executed under the non-feedback interpreter. 

O I 
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Figure A.2a 

'Ille t-Dist macro symbol 
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Figure A.2b 

Data flCM definition of t-Dist 

f --~ 

Figure A.2c 

Snapshot of behavior of t-Dist 
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t-c~I! 

Figure A.3a 

'!he t-COll macro symbol 

v 

\ . 

Figure A .. 3b 

Data flON definition·ot t-Coll 

t.Uhere-

Figure A.3c . 'k = {t._1)n +I 
Snapshot of behavior of t-Coll 
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!1uftiply (n,A,B,c) ~ 
fo-r i ~ 1. ·fQ· n .@. 

for j ~ 1 fu n do 
s~o; 

for K+-1 -to n dtJ - - -

.. 
; . 

s <- s + A l i.,/<) * B ( k i ) 
'<l' 

end 

·ctiO~s 
'• end'_ 

encl · 
~·: ----

Figure A.4 

Pseudo-Algol rum matrix multiply C=A*B 
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Figure A.5 

First data floo natrix rm.tl.tiply program 
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Figure A.6 

Improvea version of natrix multiply under non-·feedback' interpreter 
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sort ( ct , n ) : :... 

m «- L11+2_! ) 

k~o; /~O) 

fer i~ _t t"O l'I ~ 
1/ i Im nf~n L_,/ q ~ dm 

1-tfel'! [i,,...jtl j ~<-a;] . 
elre [ k~k-r} · c.~q. 77' - ) IC ,_,_, 

c/re [ J 
end 

sorl (Ii., j )_. j sort ( ~~ k) ; · '<I 

Figure A.7 

PseUdo-Algol recursive program for quicksort 

---~ cz --""""" a ff ~ ~ b e.Lre ~ 
Co7. ~ ~ if d > & £/;e rJ 

.__~ 1 !f tl~b cl1e ~ 

Figure A.8 

The Corrparator function 
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Figure A.9 

Recursive quicksort to be executed by non-feedback.irlterpreter 
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