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Abstract

With the advent of LSI technology 1large numbers of
inexpensive processors have become available, yet our ability to
realize the Full potential of this technology has fallen short.
A primary reason - for this failure has been due to an inability to
move beyond the sequential control structure of conventional
programming languages. The notion of a sequential and/orx
centralized control for a machine composed of large numbers of
processing elements severely restricts the design and complexity
of possible computer architectures. We claim that data flow
languages (i.e., 1languages in which the execution of statements
is constrained only by the availability of the required operants)
provide an alternative base machine language more suited to a
technology (such as LSI) which favors distributed processing.

- The objective of the proposed research is to formulate .and
evaluate (by simulation) a machine whose design is based on a new
technique of interpreting existing data flow languages. The most
significant and distinguishing aspect of this new scheme of
interpretation is that it -permits a 1literal exchange of
processing elements for computation time, in a very general and
~-mechanical way. An architecture based on the new interpreter
will allow a computation to unfold and spread dynamically over a
space of processing elements. The machine also has the
capability of partitioning itself into disjoining domains of
activity, each domain corresponding to the execution of a

distinct process.

When the proposed research is carrvied out, we will have
shown that processing elements (space) can be exchanged Ffor time,
and that this makes possible a computer organization capable of
effectively utilizing large numbers of processors.
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I. INTRODUCTION

1. Objective

The'objective of the proposed research is to formulate and
evaluate a machine capable of dynamically unfolding and spreading
~a computation over a space of processing elements, and hence a

machine capable of utilizing large numbers of processors.
2. Significance
2.1 Direction of the proposed research

For the first time, LSI 'techhology ‘makes avaiiabie large
numbers of inexpensi&e processors, and thus the capacity to do
computation which previously was not possible. However, this
capacity has‘ not yet become a capability:; in short, we do'not
know hoW to utilize this new technology- This proposal 1is

directed towards a possible solution of this problem.

We claim that the problems involved in utilizing the new
technology are not related to simply providing an interconnection
mechanism, or to designing specialized machines which, for
example, can efficiently manipul ate arrays. Réthef, the problems
are due to one of the fundamentai premises of computer
architecﬁure, that is, the éequential control of von Neumann—-type

computers [GIMT73].

We note that the primary architectural implication of LSI is
a disposition favoring "distributed processing" among many

distinct processing elements with essentially autonomous control.
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A workshop on Software—~Related Advances in Computer Hardware,
 which was conducted during the Sympbsium on the High Cost of
Software, stated in its final report:

"Architectural notions that promise to engender
greater modularity in computing systems can be
expected to have very beneficial effects on the
costs of development and maintenance of such
systems." ... [Even sol... "Our field has
witnessed vrepeatedly the heated arguments for and
" against these types of system. organization
without, so far, being able to settle on their
true merits. A thoughtful basic research program
will uncovert the potential of such system
organizations without necessarily requiring the
expenditure of outlandish amounts of money."
[BCS73,ppll12-113]

To build a system with any reasonable degree of autonomy and
distribqtion,. it becomes. .impossible to. thinkAin-conventional
afchiteéfural terms, for examéle, "instructién streams”" and "data
streams". Instead, the starting point must be a base machine
-language founded on an asynchronous control structure, and on

this ground we cannot function within the realm of conventional

[N

programming languages. In this vein, we repeat here two of the

seven research recommendations made by this same workshop on

A

Software—~Related Advances in Computer Hardware:

"The research should aim at:

(1) Reaching a better understanding of the
software structure for systems utilizing a number
of semi-autonomous processors: chiefly whether
this will result in greater modularity ... .

(2) Means for obtaining better theoretical grasp
of the control issues of such configurations."

[HCS73,pp 112]

With this need for asynchrony and distribution, we feel that

a data flow language 1is an eminently suited machine-level

language for distributed processor machines [GIMT73]. Using as a
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base é data’ flow ianéuége already devised by others [D73], We
have developed, in an abstract form, a.new interpreter [AG75] for
this language- " This new interpreter dynémically removes all
ordering between operations due only to time, while> retaining
those orderings required by the need for partial results. The
primary manifestations of this scheme of interpretation are. the
automatic unfolding of 1loops and the 'simultaneous execution of
distinct invocations of‘ the same - operation. In terﬁs of
hardware, the interpreter permits an exchangé of‘ blocks of
processors‘for slices of time, and facilitates the dynamic
- grouping of processing'elements intovlocélized~regions of process
activity [AG75]. This will allow far greater ﬁtilization of a
machine compo sed of distributed processing elements than
previously possible, and will',pexmit faéter execution of a
program as mbre procéssing ' elements are provided. The
flexibility of trading processing elements for time in a general
and mechanical way 1is extremely important inA view of the
techﬁology, and 1is the primary feature distinguishing our

proposed work from others.

2.2 §ignificance‘g§ data flow

Of secondary significance (as far as the proposed research
is concerned) is capitalizing on the use of data flow as the base
machine 1ahguage- By data flow, we mean a language in which

(l) an instruction executes when and only when all . operands
needed for that instruction become available, and

(2) instructions, at whatever level they might exist, are
purely functional and produce no side—-effects.

¥ '
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There are several advantages'of data flow 1languages over
cohventiqnal. programming languages, such as an absence of
variables (explicit memory):. and a highly modular program
structure [K73,D73]. A particular advantage of data flow is its
inherently funetional nature. We suggest that‘ many of the
difficulties now realized in eonstruCting and vefifying the
behavior of large systems can be ktraeed to the non—-functional
behavior of“ their cdmponents- " To eupport this ﬁoint,‘we note
that priqciples of structured programming are often advocated in
order to produce systems with greater modularity and simpler flow
of control. Yet many cof ‘the positive ‘aspects of - structured
programming can be viewed simply in terms of the desire for more
functional and 1less procedural semantics. That 1is, Wwe are
looking for 1languages with an absence of side—effects both in
control.structure and in computetionel results. Also, with both
program and machine exhibiting a more functionel character,
simpler verification of operation and. predictability of behavior

should result.
3. Method

We propose to use the following method to reach the
objective of formulatihg a. distributed processor machine capable
of.utilizing large numbers of LSI processors: |
(l)'The new data flow interpreter (described in Section II) forms
the abstract Dbasis of the proposed machine and is essentially

complete. We wish to move from this abstract basis directly to
an architecture <capable of <carrying out the function of the

apstract interpreter. Initial steps already taken in - this
direction, 1in the form of a basic architecture, are given. in
section III. To complete the architecture, we propose the

following: , .,
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(aj‘To Study the béhaviof of data flow prdgrams‘by computer
simulation. Section IV states several questions concerning
data flow program behavior we need to answer.

(b)'To refine and further formulate ' the architecture to
provide support for the expected behavior of programs.

(2) To carry out experiments, by simulation, of the resul ting

architecture in order to determine:

(a) The performance of the machine,

(b) The degree to which the research objective has been
achieved, 1i.e., how well .does the proposed architecture
utilize numbers of pProcessors, how effectively are
processors exchanged for time, and how well does ‘the
mechanism which localizes process activity operate?

Section 1V of this proposal gives a schedule stating those
problems -and questions we have identified, and how and when we

expect to answer them.
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II. ABSTRACT BASIS OF THE MACHINE

1. Da ta flow,j and the distinction between feedback and’

non—~feedback interpreters

Several data flow languages and schemas haQe’ aiready been
devised [e.g., B72, DFL72 and D73, K73, KM69, P62]. Our approach
does not directly involye work on data flow,1aﬁguages‘themSelves;
rather,i we are building on the work of those cited above and are
concentrating on the underlyihg interpretation mechanisme In
particular, we have selected Dennis’' data flow language [D73]
(hereaftéf.called DDF) as the vehicie in'which data~flow programs
are expressed, and we execute these programs according to a new
interpreter which is described in detail in ‘IAG75]. We have
chosen DDF err other data fléw 1anguages>primarily because of
the availability of theoretical results, the presence of a very
good data structure facility, and its relatively advanced state

of development.

To contrast the new interpreter with the usual data flow
interpretef, we first describe how the usual interpreter executes
a data'fldw program. Consider. the segment of a procedure P in
DDF shown 1in Figure 15} The variously shaped boxes are program
statements connected by arcs along which tokens flow. The tokens
may be coﬁsidered to carry all computation values ~- both inputs/
to and results from computations performed in the program
statemehts; | Sﬁatement P.1l in Figure la is a mggggiaﬁd operates

by absorbing a control token (true or false value only) on input

© )
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C which then specifies which 6f tﬁe remaining two inputs is to be
abSorbéd- In this case, the token at input C is an initial token
with vaiﬁe Aig;gg, and thus the tokén at the False input of theh
nmerge is absorbed. The output from the merge 1s a copy of
whichever of. the True or False data inputs was selected. The
output of P.l dctually forks in Figure 1& to three Statements k)
.funqtion £, a predicatevstatement,'and function g; thus three
tokens are actually output from P:1l, each token acarrying the
value 1 (Figure 1b). At this point statements f;, g, and the
predicété may compute in parallel since they have no other inputs
and ~thus need‘not wait for other data. Each of these. statements

will execute at its own rate. Let wus say that £ and the
predicate have now completed, and furthermore, the predicate has
evaluated as true (Figure 1lc). Now let P.4 execute. Statement

P.4 is a Gate—if-True statement, and initiates only when both

-

inputs are present. The outputvof P.4 is a copy of itsv data
input since the control token was a L;gg.token (Figure ld); that
is, P-4 gates data or destroys data depending upon the control
input 'linea (If the control inpuf had been a false token, the
data input token would have been absorbed butv no output would

have been produced.)

At this point (Figure 1d) we have returned to P.l, but this
time the data from the True input of the merdge will be selected
since the control input token is true. However, note that

statement. g still has not executed, though it could have at any

time. The fact that there now remains a token at the output of

P.l prohibits P.l from executing. That is, there is a feedback
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link from aliAsinks (e-g-; stateménts f, g, and the predicété) to
source (statement P.1) such thaf all sinks must initiate
execution béfore further vinputé to Afhese‘ siﬁks can be maae
available. (Please note: the above essentially states that
there is a maximum input token queue length of 1 for each input
to a staféhenﬁ; the problem noted below is not that the maximuﬁ

is 1, but rather that it is any particular number.)

The usual interpreter, which moves tokens 1in a data flow
laﬁguage in the manner described above, is called a feedback
vintergreter- The iﬁterpreter prpposed ig [AG75] operateslin such
‘a wa?' that no feedbacﬁ 'is» present, hence we call it the
non-feedback interpreter. - The | non-feedback interpreter,
Qperating on the program in Figure La, will produce any number of
inputs to function g. Each of these inputs is, in fact, destined
for a distinct invocation of g whicH we call an activity. These
invocations, or activities, under a feedback interpréter are
ordered in time. That is, if we label function g in Figure 1
with the name P.5, then the first invocation of g is activity
P.5.1, the second is activity P.5.2, etc. However, in the
non-feedback scheme the inputs appear whenever they are produced
and any number of invocations of g (activities of the form P.5.1,
P.5. 2, ..;., Peb5ei; o.«) may exist in execution at the same time.
Ordering in time has been eliminated where it is not necessary.
In [AG75] it is proved that the non-feedback interpreter produces

the same computational results as the feedback interpreter.
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The architecture we propose is for a machine which

implements the non—feedback interpreter.

One of the most significant aspects of the non-feedback
interpreter described above and in [AG75] is that it permits
faster execution of a DDF program if more proeessing elements
(PEs) are provided. Two examples are detailed in Appendix A
whiehv‘illustrate the_ generality ,.of | processing‘ powerftime
tradeoff- In order to simplify the argument we have assumed that
an unbounded number of PEs are available to us. The details of
the proposed architecture‘deecribed in-Sectien III will make it
clear thatAa bounded number ‘of PEs does not eoﬁplicate the
PE~time tradeoff. If a program could use more PEs during
eXecution than what 1is currently availqble. it will execute

somewhat slower.

-

It is our contention that data flow and the non-feedback
interpreter ~.are not only a promising approach to the solution of
some'of the outstanding problems in computer system design
[GIMT75,HCS73], but that they also provide ample opportunity for

new and novel ideas in machine architecture-

2. Othexr proposals to implement data flow machines

In this section we mention briefly three proposals by other
researchers for data flow architectures. Please note that these
systems were not necessarily motivated by the same forces as ours
(i.e.sy the wutilization of LSI technology), but each in some way

approaches the problem to a degree Detter than' conventional
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eystems- | Hieforiéally, designs based on cellﬁlar autemata [V66]
have_been attempted for highly distributed maehines [H60, C631.
These \eérlier .designs were unsuccessful mainly due to the
programming complexity‘of the base machine and the inadequate
technology then available. Since that time we feel that
technology has dramatically eased its constraints, and that data

flow can simplify the earlier programming difficulties.

To contfast our preposed erchitecture (appeafing in .Sectioh
I1I) with the following machines, we might characterize each of
them as being an ..interpreter with feedback: this
charactefization holds redardless of thexbaftiéﬁlar‘ﬂése machine :
language used. Again, the machine we propose is an interpreter
without feedback, and consequently; at any given time, has an

opportunity to call upon many proceSEOrs which otherwise might

not be demandede. , -

Dennis, gt al [DM74] have proposed an architecture for the
direct execution of programs in a subset of DDF. The basic
architecture is shown in Figure 2 and incorporates a -memory of
many complex cells. Each <cell is (essentially) preassigned a
statement of the DDF pregram to be executed. A cell then waits
for the input tokens required by the statement, and after all
inputs arrive (as determined by a memory controller which
constantly monitors all memory cells) the cell with its function
code and operands (called an "instruction packet") leaves memory

L

for the functional units. The proper functional unit is then
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aliocaﬁéd with'fhe helpiof aﬁ'arbitration network, the sbecifiéd
operation 1is applied to the operands, and result tokens are
produced. The result tokens theén leave the functional units ‘énd
head for ‘their individual destination cells back in memory.

providing. input to some other waiting operation.

2.2 Rumbaugh’s Machine

Rumbaugh has proposea ‘a .déta' flow machine [R75] thch
executes programs in a modified DDF 1language-. The machine
(Figure 3) consists of a number of Activation Procgssors with
:localf.memofy. each .6f' Which .éan eXécuté'a DDf procédure- A
procedure executing in an Activation Processor has access to the
Structure Memory which holds the data structures implied by the
Qalue tokens. Structure Memory is‘ manipulated by controllers
which may beé shared among several Activation Processors. While
the requests of a process to the Structure Memory are being
carried out, the process can be swapped out to the Swap Memory by
a central scheduler. The Scheduler is a separate hardware unit
that controls the allocation of Activation Processors. All
requests for the creation and destruction of processes (due to
the execution of Apply statements) are also carried out by the
Scheduler. Clearly. Activation Processors are a critical

resource and high utilization is attained by proper scheduling.
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2.3 The Graph Machine

Sonnenburg and Irani [SI74] have proposed a data flow
language which 1is very similar to Rodriguez’s [R69]. They have

also suggested an architecture for a computer called The Graph

Machine to execute their data flow language. The Graph Machine
(Figure‘4)’consiéts of a large number of proceséing elements
(called operation wunits), each of whic¢ch has two inputs and one
'outpuﬁ.l A PE can execute any insﬁruétion'in the Sonnénbhrg—Irani
data flow language, and all PEs are connected to éll other PEs by
a control switch of (Nz) simple switches. The simple switches
‘are controlled by‘a'gtaph.membry whete_prbgramvintéfconnections

are stored. PE allocation occurs .at graph memory load-time.

- Miller and Cocke [MC72] have also suggested architectures called

configurable computers which are ‘very similar to the Graph

Machine. .



Page 14

III. THE PROPOSED DISTRIBUTED PROCESSOR ARCHITECTURE —-

SOME IDEAS

l. General - We now describe an architecture to implement the
non~feedback interpreter. We begin with the schematic
representation of Figure 5, in which the machine is composed of

an array of some number of equally powerful processing elements

(PEs), each attached to a communication system and to a memory
siétem. During program ekecution,. each PE 'ié dynémically
allocated, that is, given an activity name. The PE then performs
the computatign correSﬁonding to that activity, outputs tokens
destined for other activities, and fiﬁaliy ‘becomes :free by
deallocating itself. | PEs may be added to the array to provide

increased computational power, or deieted from the array, as

desired-.

As shown in Figure 6, each PE is composed of four
subsections which perform the following functions:

(1) activity name récognitidn o

(2) token input and output

(3) computation

(4) memory system interface.
The token input and output subsection of each PE 1is interfaced
with the communication sysfem- The communication system carries
the tokens, in the form of messages, between the PEs. Each token
carries with it the activity name of its destination. The
COmmunicétion system accepts tokens output from- a PE and

circulates the tokens among all. PEs. When a match is found
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betweeﬁ‘fhe deéfinationi activity name on the token and the
vcurrent activity name of some PE, that PE accepts the token as
input. Wheh all necessary tokens have been received by the 'éE,

it begins the computation designated by'the activity name. When

the computation terminates, output tokens are injected back into
the communication system by the PE and the PE deallocates itseif
by clearing its activity name. The PE 1is then available for

reallocation to another activity.:

2. ' The communication system ~ A Xkey aspect of the system

described above is the communication system through which tokens
.circulate'and visit the PEs. Figure 7 shows our initial approach
to the communication system, and the location and interconnection

of PEs to the system-.

The PEs are grouped in columns (labelled i-l, i, i+l 1in
Figure 7&) such that all PEs on ghe same column share a local
bus. This bus is the internal bus and is present so that all PEs
lying along one column may communicate tokens amongsf themselves
very quickly. Thus, a PE that produces a‘ token places that token
fwhich includes 1ts destination activity name) on the bus. All
allocated ?Es constantly monitor their.internal bus loocking for
input tokens. If the destination activity has been allocated a
PE which lies on the same bus, then the token will be absorbed
immediately. Thus 1local communication is easily accomplished.
Now we must account for communication to and from other columns

of PEs. Communication from one column to another is handled by a

ring bus encircling the columns. The top of the ring is detailed

¢
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in vFigufe 7é<55'the dodbie~width line passing'from right to left
through the_switches Ti' The bottomlof the ring passes from left
to right thfough t he swiﬁches Bi' Fiﬁally} thé buses are cléséd
by firewalls at each end to complete the.ring: the left end 1is
closed by a firewall at column 1 by switch Tl forcing all token
traffic'téAgo down the line labeled Ll; the right end 1is closéa
by a firewall at column n by switch Bn forcing all token traffic
to go up the line labelled‘Rh. " The arrangemen£ of the ring and
the various switches are shown in Figure 7b (the PEs and internal

buses are not shown).

With the ring bus, tokens may circulate and visit each

column looking for their respective destinations. Switch Ti of

each column contains an associatively addressed activity name
igglg which records the activity names of each allocated PE

within that column- (The idea of 4dn activity name table 1is
similar to the process nametables maintained in fhe ring
interfaces of the Distributed Computing System [F73].) When a
token enters switch Ti' its destination name is compared with the
activity names in the table. If the destination name is present,

the token is diverted onto the internal bus where the waiting PE
will absorb it. If the destination name of the token entering
switch Ti does not match any of the allocated activity names,

then the token continues on to the next column. One may think of
the token as circulating around the ring as many times as
necessary until a match is found-. Switch'Bi is wused to put a-
token produced by a PE within a column onto the ring when no PE

on the internal bus accepts that token-
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We envision a riﬁg bds implemented by shift registers, énd
thus Dboth token storage and token movement are provided by the
same simple device. Also, new c¢olumns of PEs may be easily
attached by Jjoining onto'the ring. The amount of storage (and
thus the length of the ring and the communication delay) may vary
dynamically as. the number of <circulating tekens grows and
diminishes over time. However, signifiqant éarameters such as
teken,‘size, token delay, and. token bit‘raees remain unknown,
although estimates of these parameters indicate - feasible token

communications can be obtained with current and near—term

_ technology;

For example, let there be an a&erage reguirement of n input
tokens per PE, and let a token be k bits long- Also, let there
be N PES per column in simultanebps,operation, a fraction f of
which require communication with the ring. Then if the average
wait and execution time of a PE is T, the ring must support a
mean rate of. (nk/T)Nf bits per second. A crude estimate for the
worst.case is n=3 input tokens per PE, k=100 bits per token, N=8
PEs 1in simultaneous execution, a fraction £f=0.5 of which require
communication off the column, and a PE wait and executicn time of
T=100 microseconds. This results in a bit rate of 12 megabits
per second, an entirelyireasonable figure for near—-term LSI shift
| register speeds. Better estimates for shift register
requiremenfs can be obtained by simulation and will determine the

shift register characteristics.
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The communication system is discussed in further detail in

section 5: Execution domains.

3. PE allocation and deallocation - Allocation of a PE in some
column to an activity Pe.s.i is dynamic during execution, and is
noted in ;he activity name table contained in that column’s
switch T.' 'Allocation is distributed in that no central
Controllerlselects a éE and assigns it an actiyity name.- Rather;,
one of the inputs to each Staiehent of a program is selécted at

compile time to be the allocation input, and any token sent to

that input is marked as an allocation token. Thus there is one

iand only one allocation token pet'activify.

The presence of an allocation token in the system implies
;hat a free (unallocated) PE must be found and assigned the
activity name appearing on the allocation token-. However, we
have 1i£tle experience with daté flow programs and their
behavior, and hence only some understanding of what might
constituté a good allocation scheme. One heufistic which we feel
is good states that PEs should be allocated whenever possible on
the same column in which the allocation token was préduced; the
second best position is an adjacent doiumn, and so on.‘ That 1is,
PEs should be grouped together for close token interaction. The

heuristic as applied to procedure calls is discussed further in

section 5: Execution domains.

4. Deadlock - There are two limited resources in the system so
far discussed that could be sources of deadlock, unless some

precautions are taken. These two resources are (1) the finite

¢ )
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v

number of PEs, and (2) the finite storage cabacity of the ring.
Even if only one of these two resources is finite, a deadlock 1is
still possible. We describe a deadlock situation when the
communication system is assumed to have infinite storage capacity
but finite delay, and the number of PEs is limited.

(1) Suppose all the PEs are waiting for an input token, that
isy all PEs have been allocated but none have begun execution.
Also suppose that tokens needed by the allocated activities are
not. present in the communication system either, (otherwise there
would be no deadlock). This is possible only if we assume that
the tokens for some activity C that will produce the needed
tokens are all present in the communication system, (otherwise
the program itself is malformed [AG75]). But the activity C
cannot be carried out because no PE is available.

To avoid this deadlock possibility. we have instituted a
rule which holds for all activities or functions with which we
work. This rule states first that any PE which has been
allocated (and thus holds at least one input token) may
deallocate itself at any time simply- by clearing its activity
name and returning to the communication system all the tokens
which it has absorbed up to the time of deallocation. Secondly
the rule states that any PE which has received all its input
tokens and has initiated execution will always be able to go to
completion- (This rule has implications for the memory system
discussed below. Any request to the memory by a PE must be
satisfied without requiring any more PEs. In other words, the
memory system and the PEs must function independently.) Thus, for
example, each PE may have a randomly set time-out period which
begins at allocation, and if the time-out expires  before

initiation, then the PE deallocates itself and becdmes available

for reallocation. 1In this way there will always be at least one

€ 3
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PE available to carry thé computation forward, and thereby avoid
deadlock. Actually a scheme slightly more sophisticated than the
random time out is needed to ensure a deadlock~free system. One

must ensure that no activity is excluded indefinitely from being

allocated-

(2) Suppose the communication ring is full, but no token on
the ring <can find a destination PE. Thus, there must be an
activity C in execution, which when it teminates will -output a
token which causes allocation of a new activitye If the
allocation cannot be made on that column (for example, all the
PEs are in execution) then the token output from C must enter the
ring. But the token cannot enter the ring since the 1ring 1is

full.

Also, the scheme described iﬁ (i) above téA»a§5id deadlocks
will work only if essentially unlimited capacity is guaranteed in
the communication system. We propose to do this by providing a
memory access port to switcheé’T>and B-' A switch may take some
tokens out of the ring if the ring overflows and it may put these
tokens back onto the ring at some appropriate time later. Taking
tokens out in this fashion increases the storage capacity of the

ring without increasing the communication delays for most tokens.

5. Execution domains - Section 3 above on PE allocation and
deallécation briefly discusséd a heuristic for allocation: that
an activity should be ailocated a PE near the PE which produced
the allocation token-. This heuristic attempts to realize a
belief about data flow programs. The belief 1is that there 1is
locality in data flow programs ~ that statements (or_activities)
which are "nearﬁ in terms of program graph distance; should also

be near in execution. Specifically, activities within some
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érocedureAwouid gehefally be hearér to £hemse1ves thén to any
activity outside that procedure. In fact; £he only interactions
which any stéteﬁent within a procedufe has with any statement
outside that procedure are the passing of input parameter tockens
to the procedure and the returning of result tokens from the

called procedure back to the caller.

We have'selected the procedure as a basic program element
Qiﬁh which >the machine's Archifecture is to‘ interaét- Thé
machine is to partition itself into disjoint domains of localized
process activity duriﬁé executions Each domain corresponds
exactly £o a single invocaﬁioﬁ of é ﬁrbceéuré- i We'vﬁélieve the-
existence of such domains as machine partitions will increase.
machine speed by isolating those sets}of tokens which would not
usefully be mixed, and by reducing‘the token destination search
space to a particular subportion of the entire machine. (We note
that a complete activity name as defined in [AG75] actually
contains one more field ‘U’ to denote the context from. which a
procedure 1is called-. Hence, a complete activity name has the
form u.P.s.k. However, the partitioning of the machine solves
the problem of the length of token activity names by knowing. that
the context is the same for all activities within a given domaine.
Hence, the u.P part of the activity name will be implied by the
execution domain, and only the s.X part of the activity name will

be carried by the token within the domain [AG75].)
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Fbr example, Figﬁre-B’shéws a pfocedure' at a particulér
point in execution as indicated by the presence of tokens at
various Statémenf inputse. Figuré 9a showsithe machine and the
fact that procedure P lives within a particular area bounded by a
left firewall L, and a right firewall Rp. The switches T and B
are ?esponsible for constructing and maintaining the firewélls,
and they do so in two wayse. First: the fi;ewalls . force all
tokens with destination in procedure P to remain on-that bortion
of the ring surrounding P. Second, any token which doés not have
destination in P, but which finds itself inside P, is allerd to
continue and to pass on .through P. _.Thé._firewalls:fthus Create
small subrings which circumscribe coilectioné-of PEs with high
internal token interaction, vyet allow tokens going to other
domains to pass quietly thfough-. A schematic representation of

switches T and B is shown in Figdre 10.

-

Now let the statement apply Q be performed in P, where
procedure ( is some data flow proceduré- As detailed in [AG75].,
an apply QO statement is actually two separate activities: an
activate ‘Q and a terminate OQ activity, both of which execute

within domain P. - An activate causes two actions to occur:

(1) domain Q is created,

(2) the input tokens to apply Q are sent as inputs to
procedure QO in the newly created domain.

Returning to Figure 9a we see domain P and the remaining
unused portions of the machine. All unused portions are known
and all continguous columns of unused PEs form free domains from

which free ©PE columns are allocated to enlarge existing domains

© s
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or to create new domains. In domain P in Figure 9a, the apply O
statemént is about to be executed and domain Q created. Domain Q
is created when the activate O portion of the apply produces a
create domain Q token as output (along with the input parameter

tokens for Q)f The create domain token then 1leaves domain Pe

When the token reaches a free domain of sufficient size, the free
domain is partitioned into the new domain Q, and a free domain of

lesser size.

In Figure 9b two procedures and their domains now exist.
Next, it is necessarynfo transmit input parameter tokens from P
to Q- Iﬁput parameter tokens to O mdy be’paésed outﬂéf f simply
by marking their desﬁination as being in Q, and hence outside of
P. Given the rule above that tokens Which find themselves inside
a region which is not their destination region are simply allowed
to pass'through, these input parameter tokens will be released
from the domain P and they will find their way to Q. Once inside
domain Q, these input paraméter tokens appear just as any other

token inside Q would appear.

The above-has déscribed the creation of a domain and the
passing of input parameter tokens into that dbmaiﬂ- The inVerse
of the above occurs at termination of the called procedure Q.
First, result tokens are bassed back to the terminate Q portion
of the apply QO statement in P. Then the terminate activity
outputs a destroy domain QO token which will find domain Q and

destroy it by adding the PEs in it to a free domain. -
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There are severai ﬁn&esolved points coﬁcerning proceduie
domainse. How do domains acquire more PE resources (how do
firewalls move from one column to another) when it would be
useful for them to do so? What would comprise a good scheduler
for allocating domains? Is there a way to reduce the overhead i
proceduré calls, possibly by specifying some maximum numbér of

concurrent invocations of a procedure and reuse the domains?

These and other questions require further investigation to
be resolved. However, we feel that the notion of an execution
domain is ~viables, and brings an intuitive feeling for how

procedures operate into the basic structufe of the machine.

6. The memory system - Values in data flow are carried by
tokens. However, these valﬁes'can‘have rafher complex structure
(such as a tree) and be of'significant size. For the purpose of
reducing the quantity of information carried by a token, [D73]
presents a technique whereby data values can instead be
maintained in a memory and only pointers to those values need be
present on the tokens themselves. Based upon pure LISP, the
technique also allows garbage collection to be handled'by simple
reference count techniques. (This can be done since data 1is
never modified after ‘it 1is created, and is destroyed when all

tokens carrying (pointing to) that data have been input to their

destination PEs.)

Since memory 1s present only'to reduce the bit rate which
the communication system would otherwise have to support, we

require the memory system itself to be responsible for all name
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and storage managemente Alsd, since any PE may perform any data
flowAstatement. all PEs must be physically able to gain access to

all of mémory-

The above are the reasons for, and the logical requirements
.0f;, the memdry systeme. We have not as yet fully determined a
structure for the memory system discussed below. however some
points have emerged-. First, we expect a "locali@y“ effect, in
ﬁhét data mo?es from a‘producér PE“to neighboring consumér PES;
and we expect many such activities to occur simultaneously. Thus
we feel a use for é. distributed memozry >composed of many
independént units capablé of funcﬁioniﬁg éimﬁltaﬁééhsiy, and a

given memory unit must.be accessible by any PE. Second, a given

memory unit should be closely associéted with one or more PEs of
a given column, with newly created data values placed as closely
as possible to the PE causing the éreation of that data. Thus,
due to the expected close interaction among the PEs within a
. single column, any PE on a given'column should hdave faster access
to the memory unit(s) associated with that column, than any PE
not on that columne. Lastly:, we expect to be able to tolerate

some access delays that are longer than in current conventional

machines.

2N

Clearly, several questions remain and can be answered only
with research into actual data flow program behavior patterns.
Such questions are: How many memory units should be highly
accessible by a given PE? Under what circumstances-is it better

to copy a structure to another area.of the machine rather than
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suffer repeated access delays? Given the experience with Holland
machines [H60,C63] and C.mmp [FSS73], what kind of bussing
structure will allow all PEs access to any memory unit, but

without obstructing other PE memory unit accesses?

7. Toroids

Lastly, we intend to unify the méchine's structure from that
given in Figure 7a. As shown in Figure]la,I%:Coﬁmmsiband11
will be.connected together by the ring bus so that the "ends" of
the macﬁine itself will be defined only by firewalls (which can
also mové). Also, switches T. and B; in each PE column i, can be
molded into a singlé physical device. Figure 11lb shows that the

machine’s resulting logical form is a toroid.
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"IV. SCHEDULE OF PROPOSED WORK

We propose to carry out the work by puilding a simulator for
data flow piegrams, measur ing the behe§ier ef tﬁose programs,.aﬁd
orienting the architecture of the machine to function in concert
with that Dbehavior-. As architectural decisions are finalized
they wiil'be iﬁcorporated into the simulator to study their
effects on program ‘exeeution- When all components. of the
architectufe are complete,‘we will ‘have a eimulator ef that

architecture. Our proposed schedule of work is as follows:

Monthe'l—jz This first period will be devoted to building a data
flow program simulator, and to gathering a collection of test
data flow programs on which measurements will be made (two simple
eandidates, guicksort and matrix multiply, appear in Appendix A).
Months 4-6: During this period we plan to measure the 4behavior
of the ‘test data flow programs} assuming a grid of processing
elements and a basic execution time for each data flow operations
No particular communication system nor memory system will be
assumed; thus the simulator will initially function just as the
theoretical interpreter functions, and the measures will reflect

the properties of data flow itself. We plan to measure:

(1) data structure access and creation behavior
(2) token density and flow patterns

(3) the effect of varying"the size of a "unit of
computation" (activity) on items (1) (2), above.
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This.worknwili impact data ‘flow 1angua§e fdesign itself.
Initial efforts in determining a "unit of Computation" broduced
the work'covéred in Appendix A, and we anticipate advances in
data flow language design to grow out of these beginnings. That
work which is easily accomplished and which will contribute to

'the design of data flow languages, we plan'to do here.

During this period, the above information willA be used to
determine the functional power to be given to a prbcessing
element. The results of these experiements will also be used

during the following period.

Mcnths 7~12: (1) During this phase, the major goal 1is to

determine an architecture for the memory system. The design will"
reflect expected near—term LST capabilities, and the
characteriétics of behavior of data flow programs determined
during Months 4-6. We then plaﬁ to impose the memory system upon
the data flow simulator, and to measure the effects of the memory
’vsystem on program execution. Of .parﬁicﬁlar importancé is the
memory allcocation scheme, Dbut we expect that the "locality"
scheme described in Section III (of some variant thereof) will
prove to be good. Also, the effects on.perfdrmahce of“some
parémeters concerning the memory syétem must Dbe determined:;
these parameters are

(a) density of memory units distributed throughout the
machine

(b) memory system bandwidth

(c) the extent of a processing element’s "local
neighborhood" of memorys, 1i.e., the memory to which it has
direct access. '

“ ’
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(2) A second goal during this period will be to determine a
good PE allocation scheme. (Again, we anticipate that the
"locality" scheme described in Section III will be appropriaté?)
Then, when the allocation scheme is decided, it will be possible
to more accurately determine parameters concerning the

communication system bandwidth and storage capacity.

We feel that the memory system will be the most difficult
and sensitive area of the machiné, while we anticipate little

difficulty with the token communication system.

.Months 13-18: During this phase, we plan . to ‘incorporate the
'memor§' and communication sYstém designs into the simulation- We
will then have a simulator of the architecture and will be able
to evaluate the performance of the machine. This period will
also be devoted to determining system bottlenecké and improving
those subsystems where difficultiés might arise. To determine

machine performance, we propose to measure the following:

a

(1) The overall rate of computation of the machine, assuming
basic component speeds consistent with near—-term LSI

capabilities.

(2) The utilization of the machine’s processors based upon
the number of processors in execution concurrently.

(3) Evaluation of the degree to which processors are
exchanged for time. This measure is somewhat complex, and
is best accomplished by comparing two executions of the samé
data flow program - one execution in which the
processor/time exchange mechanism is inhibited, and one
execution in which it is fully operative.

(4) Evaluation of the effect of the mechanism which

localizes process activity'  into disjoint domains of

execution. This measure will be accomplished (similarly to

(3) above) Dby comparison of two executions - one execution

in which the mechanism is inhibited, and one in which it 1is
. operative. o ‘ ©
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Months 19-24: We propose to invéstigate the requirements and

reSourbe demands which a kernel operating syétem might place upon
the machine,.whére the kernel contains basic functions such as
creation and destruction of processes, protection, interprocess
communication, and input/outpute. We feel that this work vis
}necessary to gain a clearer view of the:méchine aﬁd how it might
Afunction in a real computing environment. Some of these basic
funétions appear straightforward {(e.g., creation and destruction
of processes) while others are still problems even in
conventidnal machines,  -but perhaps more easily solved in the

proposed'machihe (e.g., praotection). -
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Figure la
A portion of a data flow procedure P in its initial configuration

Figure Ib
Status of the program after P.l executes



: ' 'Figure 1c
Statement £ and the predicate camplete execution

Figure 1d
The gate produces its output
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Figure 8
An apply statement in procedure P calls procedure Q
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APPENDIX A

Two Data Flow Programs and Their Analyses

A.1 Macros in DDF

Before we give the sample programs, we will define two new
primitive operators in the DDF language. These primitivés can
also be,viéwed as macro, that is, an ngivalent . group. of DDF
statements exists which caﬁ be substituted for ééch occurrence of
these operators. The upper portion of Figure A.l shows a DDF
program which is often a part_ of 1arger_DDF programs. The
equivalent program usind-the macfosA(yet to be defined) is shown

-

in the lower portion of Figure A.l.

'Essentially, on arrival of an input token v, n tokens with
values f(v), f(£(v)), «.. are produced by loop 1. After each
of these tokens is transformed by some program g they are input
to 1loop .2. Loop 2 accepts these n tokens and forms one result:
tokenAaccording to function h: 'A very common situation is when £

is the identity function and h is the > operator.

The following are detailed definitions of the two macros:

(1) time-Distributer (t-Dist): There is a function £, a
constant n, and an input v associated with each t—-Dist. Once the
input v has beén received, then n tokens with -values £(v),
f(£(v))y .o will be produced, ordered in time. When a t-Dist
is executed under the feedback interpreter, an output token 1is
produced on an arc only after the previous token output on that
arc has. been absorbed-. However, under the . npon—feedback
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‘interpreter ~ all n tokens can Dbe produced and output (almost)
simul tanecusly with activity numbers Uu.Pes.k; U«Pes.k+l, ...
u.P.s.k+n"l. (The value of k will depend upon the activity
‘number on the input token v; for example, if the input token has

the number uU.P.t.i, then k=(i~1)*n+l.)

’ Figiwre A.2 gives the firing ruleé and the DDF program

equivalent to t-Dist. If £ is an identity function then t-Dist
will simpiy'prdduce a sedquence of n copies of v. Another very
useful £ function is "+1" which will produce a sequence pf tokens
with values 1, 2, 3, «eey n assuming . the initial input v had

valu2 zero.

(2) time—-Collector (t-Coll): This operator performs, in a
.sense, the. inverse of t—-Dist. - t—Coll also has a function f and
.constant n associated with it. It has an input s_ (the initial
value), and an input port v on which n tokens, O0rdered in time,

with values v,, v,, ..., v_ are received. Under the non-feedback
interpreter okens with activity numbers u.P.s.k., u.P.s.k+l,
veey u-P.s-k€R~l will be needed for one execution of t£=Coll.
(For the i initiation of t~Coll, the value of k would be
(i~1)*n+l.) After all the input tokens have been received, an
output token with value f(vn'f(vn“l'"'f(vz’f(vl'so))"°)) is

produced. Two useful functions f for this macro are " 2 " and
"append". Figure A.3 gives the DDF program equivalent to't—Coll.

The macros t-Dist and t-Coll not only simplify the writing

of programs, but alsc result in less token traffic and demands on
PE resources. It is easy to see that a single PE could be given
the «capability to execute t-Dist. A PE executing ;:g;g; under
the non-feedback interpreter will produce n tokens in roughly
Co+rn uniﬁs of time, where o is the set—~up time of a PE and r is
the additional time needed to produce a token. For simple
functions (e.g., £f=identity), r<<co. Equivalent statements can
be made concerning a single PE imp;ementation of £~Coll, except-

that a slight modification is needed to enable a single PE to

accept tokens within a range of activity numbers rather than just
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one pafticular activity number-

We note»qnevmore point regarding these two mécrds before
giving the example programs. It may be desirable td‘haVe n, the
number of tokens to be produced or accepted by t—-Dist or t~-Coll,
as an input token to the macros. This can be accomp! ished by
changing the inferpretation rules of the macros in Figurss A.2c

and A.3c to include a dummy token (similar to-that for.gates and

mérges [AG75]) to indicate the range'of éctivity nuﬁbers to Dbe
produced (in the case of t-Dist) and the range of activity

numbers to be accepted (in the case of t5Coll)-

A.2 Sample Prodrams
Example 1 - Matrix Multiply Subroutine

A pseudo Algol program for mulﬁiplying fwo matrices A and B
is given in PFigure A.4. This proéram has been hand translated
into the DDF language and is given in Figure A.5. There are
eight loops connected ’with eight different mgggg operators.
Loops 1, 2, and 3 are nested and generate the proper value of k.
Every time the select operator is executed a token is needed on
all its input arés. Therefore 52 copies of each of indices i énd
j must Dbe produced; this ié accomplished by loops 4, 5, and 6.
Loop 7 constructs the sum s and loop 8 constructs the new matrix

C by storing s in the proper place.

We have not shown the loops for the input n to the predicate
statements, nor have we shown the loops for matrix names A and B

for the select statements. These 1loops can be drawn in a

¢
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straightforwérd ‘manner} however, they are not necessarily needed
since any parameter that remains constant during one activiation
of a procedure could be substituted just before the activation of

that procedure.

A DDF program using t-Dist and t~Coll Ais shown 1in Figure
A.6. As already discussed, the execution time of these macros
under the non—feedback interprete; is roughly ‘co+ rne 'AFor an
arbitrary PE structure it is safe to assume that r will be very
muc h smaller than the time needed to multiply two numbers
‘together. \Let us és;umg that ;t takes'c.f upits of time';o carry
out each of ﬁhe statements.7; '8, and 9. Given a sufficient
number of PEs (i.e., > n3) the pfogram in Figure A.6 will take
§C0+2cf+4rn+rn2 ~ c+rn2 units of time_(where c is some constant
$>r)- On computers without parallel operations (i.e., without
pipelining, etc.) the matrix multiply will generally take c'+cfn3
units of time. If r<<cg then c+rn2 << c’+cfn3 for 1arge‘n- This
is understandable in view of the fact that under the\non~feedback
interpreter all n3 multiplications can be executed

simul taneously, and the time to execute the program is

proportional to the time needed to collect the results of the

multiplications.

If the numbei of available PEs is smaller then n3, then the

/

execution time would be proportionately longer.

Example 2 - Subroutine Sort
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This procedure sdrté én array of ﬁ numberé according to £he
quicksort method. A pseudo Algol program for qguicksort is given
in Figurée A.7. The procedure is recursive. In order to simplify
Wriﬁing the procedure inv DDF we define a function called

Comparator shown in Figure A.8. A DDF procedure Sort(a,n) using

t-Dist, t-Coll, and Comparator is given in Figure A.9. If n is
greater than 2, the procedure simply selects the middle element
an .in array a ‘and constructs two new arrays b and c, Where b
contains all the elements of array a less than or equél to an
and c¢ contains all the elements of array a greater than am; The
, dimensionsiof arrays b and c are identicalq and one;LessAthan the

th

dimension of a. If the i element of array a is stored in the

ith position in array b (i.e., ai am) then a null 1is stored in
the ith position in array c. Similarly, for every non-null entry
in ¢ there is a corresponding null éntry in b. Box 3 in Figure
A.9 counts the number of non—null‘entries in b. Boxes 1 and 2
(i.ees t=Coll with function f=Build) construct new arrays where
the nuli entries have been deleted. Then both arréys b and c are
sorted simultaneously by parallel recursive calls to procedure

Sort. The final result is produced by concatenating the sorted

array b, element a r and the sorted array c.

Agains 1f we assum; that the statements t-Dist and t-Coll
take co+;n time, the Comparator takes Cs units of time
(where r<cf), and more than n PEs are available, then one
invocation 'Qf.procedure Sort will require c+2:n‘time besides the
time tékeﬁ by the apply operators. On an average :the parallel

recursive calls will be nested O(logzn) deep. In the worst case

¢ '
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tnere can be n nested calls to procedure Sort. Therefore, 1if

sufficient numbers of PEs are available, the program will take on

an average (C+2rn)1092n time. In the worst case time taken will
be (c+2rn)n. For sequential computefs these times would be

cfnlogzn and cfnz, respectively, where cf>>r-

These two examples illustrate the significant reductions we

expect in the execution time of most algorithms.  These

reductions will occur automatically, when the algorithms are

written in DDF and executed under the non—feedback interpreter.
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A common program camponent in the upper portion of the figure,
and its macro shorthand equivalent in the lower portion
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Figure A.2a
The t-Dist macro»syrdbol
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Figure A.2b
Data flow definition of t-Dist
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Figure A.2c
Snapshot of behavior of t-Dist
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Figure A.3a
The t-Coll macro symbol

Figure A.3b
Data flow definition of t-Coll
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Multiply (n,A,B,C) :
for ie1tondb
for j«1ton do
Se 0;
for kel tondo
S<~s+A(i,.n’<)%:‘B(/<,éiﬁ)
end
| | - Clif)es

Figure A.4
Pseudo-Algol nxn matrix multiply C=A*B




_ Figure A.5
- First data flow matrix multiply program
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Figure A.6

Improvéd version of matrix multiply under non-feedback interpreter
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Figure A.7
Pseudo-Algol recursive program for quicksort

NP S o azd ehe
Jy [0’”/’-‘ > @ if a8 clic £
7 > 1 if azh ehe O

Figure A.8
The Comparator function
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Figure A.9
Recursive quicksort to be executed by non-feedback ‘irterpreter
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