
UC Irvine
ICS Technical Reports

Title
A computer capable of exchanging processing elements for time

Permalink
https://escholarship.org/uc/item/0126076w

Authors
Gostelow, Kim P.
Arvind

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0126076w
https://escholarship.org
http://www.cdlib.org/

A Computer Capable of Exchanging Proc~ssing
Elements for Time -

by

Kiln P. Gostelow
·.:~:-.

and

Arv.ind

Technical Report #77

January 1976

Notice: This Material
may be protected

, by Copyright Law
(Title 17 U.S.C.)

• I

~ \

',f·

', }

Revised: January 1976 ((1) corrections to Figure A .. 5 and A.6 and
references to Figure A.,5 on page A-3.

(2) minor editorial changes.))

0 I

·INDEX

I. Introduction 2

1. Objective 2

2. Significande 2

2.1 Direction of the proposed research 2

2.2 Significance of data flow 4

3. Method 5

II. Abstract Basis of the Machine 7

1. Data flow, and the distinction between feedback 7
and the no~-feedback· interpreters

2; Other proposals to implement data flow machines 10

2.1 The basic data flow processor

2.2 Rumbaugh's Machine

2.3 The Graph Machine

III.-The Proposed Distributed Processor Architecture
Some Ideas

1. General

2. The communication system

3. PE allocation and deallocation

4. Deadlock

5. Execution domains

·6. The memory system

7. Toroids

IV. Schedule of Proposed Work

V; References

11

12

1-3

14

14

15

20

24

26

27

31

Figures 32

Appendix.A - Two data flow programs & their analysis. , A-1

ii

A.l Macros iri DDF

A.2 Sample Programs

Figures for Appendix A

Acknowledgements

iii

A-1

A-3

A-7

A-15

Abstract

With the advent of LSI technology large numbers of
inexpensive processors have become available, yet our ability to
realize the full potential of this technology has fallen short .

. A primary reason .for this failure has been due to an inability to '
move beyond the sequential control structure of conventional
programming languages. The notion of a sequential and/or
centralized control for a machine composed of large numbers of
processing elements severely restricts the design and complexity
of possible compl.lter architectures. We claim that data flow
languages (i.e., languages in which the execution of statements
is constrained only by the availability of tbe required operants)
provide an alternative base machine language more suited to a
technology (such as LSI) which favors distributed processing.

The objective of the proposed· research· is to formulate .and
evaluate (by simulation) a machine whose design is based on a new
technique of interpreting existing data flow languages. The most
significant and distinguishing aspect of this new scheme of
interpretation is that it ·permits a literal exchange of
processing elements for computation time, in a very general and

··mechanical way. An architecture based on the new. inter.pr:eter
will allow a computation to unfold and spread dynamically over a
space of processing elements. The machine also has the
capability of partitioning itself into disjoining domains of
activity, each domain corresponding to· the execution of a
distinct process.

When the proposed research is carried out, we will have
shown that piocessing elements (space) can be exchanged for time,
and that this makes possible a computer organization capable of
e~fectively utilizing large numbers of processors.

6 I

i

Page 2

I.. INTRODUCTION

1 ... Objective

The objective of the proposed research is to formulate and

evaluate a machine capable of dynamically unfolding and spreading

a computation over a space of processing· elements, and hence a

machine capable of utilizing large numbers of processors.

2.. Significance

2.1 Direction of the proposed research

For the fir~t time, LSI technology ~makes· av~ii~bie large

numbers of inexpensive processors, and thus the capacity to do

computation which previously was not possible. However, this

capacity has not yet become a cap~bility; in short, we do not

know how to utilize this new tec~nology. This proposal is

directed towards a possible solution of this problem.

We claim that the problems involved in utilizing the new

technology are not related to simply providing an interconnection

mechanism, or to designing specialized machines which, for

example, can efficien~ly manipulate arrays. Rather, the problems

are due to one of the fundamental premises of computer

architecture, that is, the sequential control of von Neumann-type

computers [GIMT73].

We note that the primary architectural implication of LSI is

a disposition favoring "distributed processing" among many

distinct processing elements with essentially autonomous control·
o I

Page 3

A workshop on Software-Related Advances in Computer Hardware,

which was conducted durinq the Symposium on the High Cost of

Software, stated in its final report:

"Ar.chi tectural notions that promis·e to engender
greater modularity in computing systems can be
expected to have very beneficial effects on the
costs of development and maintenance of such
systems. II ••• [Even so] e.. "Our field has
witnessed repeatedly the heated arguments for and
a~ainst these types of system. organization
without, so far, being able to settle on their
true merits. ·A thoughtful basic research program
will uncover the potential of such system
organizations without necessarily requiring the
expenditure of outlandish amounts of money."
[HCS73,ppll2-113]

To build a system with any reasonable degree of autonomy and

distribution,. it becomes .. impossible to. th.ink in -conventional

architectural terms, for example, "in$truction streams" and "data

st"reams". Instead, the starting point must be a base machine

language founded on an asynchronous control str~cture, and on

this ground we cannot function within the realm of conventional

programming languages. In this vein, we repeat here two of the

seven research recommendations made by this same workshop on

Software-Related Advances in Computer Hardware:

"The research should aim at:

(1) Reaching a better understanding of the
software structure for systems utilizing a number
of semi-autonomous processors: chiefly whether
this will result in greater modularity ...
(2) Means for obtaining better theoretical grasp
of the control issues of such configurations."
[HCS73,pp 112]

With this need for asynchrony and distribution, we feel that

a data flow language is an eminently suited machine-level

language for distributed processor machines [GIMT73]. Using as a

G I

Page 4

base a data flow language already devised by others [073], we

have developed, in an abstract form, a new interpreter [AG75] for
. .

this language. This new interpreter dynamically removes all

ordering between operations due only to time, while retaining

those orderings required by the need for part~al results. The

primary manifes~ations of this scheme of interpretation are the

automatic . unfolding of loops and the ·simultaneous execution of

distinct invocations of the same operation. Irr terms of

hardware, the interpreter permits an exchange of blocks of

processors for slices of time, and facilitates the dynamic

grouping. of processing ·elements into· loca1ized · regi.an·s of process·

activity [AG75]. This will allow far greater utilization of a

machine composed of distributed processing elements than

previously possible, and will ·.permit faster execution of a

program as more processing elements are provided. The

flexibility of trading processing elements for time in a general

and mechanicftl way is extremely important in view of the

technology, and is the primary feature distinguishing our

proposed work from others.

2.2 Significancg of data flow

Of secondary significance (as far as the proposed research

is concerned) is capitalizing on the use of data flow as the base

machine language. By data flow, we mean a language in which

(1) an in$truction executes when and only when all . operands
needed' for that instruction become available, and · ·

(2)· instructions, at whatever level they might exist, are
p,urely functional and produce no side-effects.

Page 5

There are several advantages of data flow languages over

conventional .Programming languages, sue h as an absence of

variables (explicit memory), and a highly modular program

structure [K73,D73]. A particular advantage of data flow is its

inherently f Urtctional nature. We suggest that many of the

difficulties now realized in constructing and verifying the

behijVior of large systems can be traced to the non-functional

behavior of their components. To support this point,·we note

that principles of structured programming are often advocated in

order to produce systems ·with greater modularity and simpler flow

of control. Yet many of ·the· .positive .. aspects o'f ·.structured

programming can be viewed simply in terms of the desire for more

functional and less procedural semantics. That is, we are

looking for languages with an ab~ence of side-effects both in

control structure and in computation~l results. Also, with both

program and machine exhibiting a more functional character,

simpler verification of opeiatiori and.predictability of. behavior

should result.

3. Method

We propose to use the following method to reach the

objective of formulating a. distributed processor machine capable

of utilizing large numbers of LSI processors:

(1) The new data flow interpreter (described in Section II) forms
the abstract basis of the proposed machine and is essentially
complete. We wish to move from this abstract basis directly to
an architecture capable of carrying out the function of the
abstract interpreter. Initial steps already taken in this
direction, in the form of a ba~ic architecture, are given. in
section III. To complete the architecture, we propose the
following:

Page 6

(a)· To ·study the behavior of data fl ow programs by computer
simulation. Section IV states several questions concerning
data flow program behavior we need to answer.

(b) ·To· refine and flirther · formulate'· the architecture· to
provide support for the expected behavior of programs.

(2) To carry out experiments, by simulation, of the resulting
architecture in order to determine:

(a) The performance of the machine.

(b) The degree to whtch the research objective has been
achieved, i.e., how. well . doe.s the proposed architecture
utilize numbers of processors, how effectively are
processors exchanged for time, and how well does the
mechanism which localizes process activity operate?

Section IV of this proposal gives a schedule stating those

.Probl~ms ·and questions we· have identified, and how and when we

expect to answer them .

. ,.

Page 7

II. ABSTRACT BASIS OF THE MACHINE

L Data flow,· and the distinction hetween feedback

non-feedback interpreters

Several data flow languages and schemas have already been

devised [e.g., B72, DFL72 and D73, K73, KM69, P62]. Our approach

does not directly involve work on da~a flow languages. themselves;

rather, we are building on the work of those cited above and are

concentrating on the underlying interpretation mechanism. In

particular; we have selected Dennis'· data flow .l.angu~ge [D73]

(hereafter called DDF) as the vehicle in which data flow programs

are expressed, and we execute these programs according to a new

interpreter which is described ip detail in [AG75]. We have

chosen DDF over other data flow languages primarily because of

the availability of theoretical results, the presence of a very

good data structure facility, and its relatively advanced state

of development.

To contrast the new interpreter with the usual data flow

interpreter, we first describe how the usual interpreter executes

a data· flow program. Consider. the segment of a procedure P in

DDF shown in Figure la". The variously shaped boxes are program

statements connected by arcs along which tokens flow. The tokens

may be considered to carry all computation values -~ both inputs

to and results from computations performed in the program
I

statements. Statement P.1 in Figure la is a merge·and operates

by absorbing a control token (true or false value only) on input
e I

Page 8

C which then specifies which of the remaining two inputs is to be

absorbed. In this case, the token at input C is an initial token

with value false, and thus the token at the False input of the

merg_g is absorbed. The output from the ill~ is a copy of

whichever of. the True or False data inputs was selected. The

output of P.1 actually forks in Figure la to three statements

function f, a predicate. statement, and function g; thus three

tokens are adtually output fro~ p~·1, each token carrying the

value 1 (Figure lb). At this point statements f, g, and the

predicate may compute in ·parallel since they have no other inputs

and thus need not wait fo:r; other data• Each of the:se. statements

will execute at its own rate. Let us say that f and the

predicate have now completed, and furthermore, the predicate has

evaluated as true (Figure le). Now let P.4 execute. Statement

P.4 is a Gate-if-True statement,·and initiates only when both

inputs are present. The output of p.4 is a copy of its data

input since the control token wa·s a true token (Figure ld); that

is, P.4 gates data or destroys data depending upon the control

input 1 ine .. (If the control input had been a false token, the

data input token would have been absorbed but no output would

have been produced.)

At this point (Figure id) we have returned to P.1, but this

time the data from the True input of the merge will be selected

since the control input token is true. However, note that

statement. g still has not executed, though it could have at any

time.. The .fact that there now remains .§. .token at the output of

~-1 Rrohibits R!_l fr~m executing. That is, there is a feedback
o I

Page 9

link from all siriks (e.g., statements f, g, and the predicate) to

source (statement P.1) such that all sinks must initiate

execution before further inputs to these sinks can be made

available. (Please note: the above essentially states that

there is a maximum input token queue length of 1 for each input

to a statement; the problem noted below is not that the maximum

is 1, but rather that it is any particular number.)

The usual interpreter, which moves tokens in a data flow

language in the manner described above, is called a feedback

interprete_r.. The interpreter proposed in [AG 7 5] operate~. in sue h

·a way" that no feedback is· present, hence we call it the

non feed back interpreter. The non-feedback interpreter,

operating on the program in Figurs la, will produce any number of

inputs to function g. Each of these inputs is, in fact, destined

for a di.stinct invocation of g whicn we call an activity. These

invocations, or activities, under a feedback interpreter are

ordered '· in time. That is, if we label function gin Figure 1

with the name P.5, then the first invocation of g is activity

P.5.1, the second is activity P.5.2, etc. However, in the

non feedback scheme the inputs appear whenever they are produced

and any number of invocations of g (activities of the form p.s.1,

P.5.2, •••• , P.S.i, •••)may exist in execution at the same time.

Ordering in time has been eliminated where it is not necessary.

In [AG75] it is proved that the non-feedback interpreter produces

the same computational results as the feedback inte·rpreter.

The architecture we propose is for a

implements the non-feedback interpreter.

machine

Page 10

which

One of the most significant

interpreter described above and

aspects of the non~feedback

in [AG75] is that it permits

faster execution of a DDF program if more processing elements

(PEs) are provided. Two examples are detailed in Appendix A

which .illustrate the generality of processing power-time

tradeoff. In order to simplify the argument we have assumed that

an unbounded number of PEs are available to us. The details of

the proposed architecture described in· S~ction III wi 11 make it

clear that a bounded number of PEs d·oes not complicate the

PE-time tradeoff. If a program could use more PEs during

execution than what is current)y available, it will execute

somewhat slower.

It is our contention that data flow and the non-feedback

interpreter .are not only a promising approach to the solution of

some of the outstanding problems in computer system design

[GIMT75,HCS73], but that they also provide ample opportunity for

new and novel ideas in machine architecture.

2. Other proposals to implement data flow machines

In this section we mention briefly three proposals by other

researchers for data flow architectures. Please note that these

system~ were- not necessarily motivated by the same ~orces as ours

(i.e., the utilization of LSI technology), but each in some way

approaches the problem to a degree better than conventional

Page 11

systems. Historically, designs 8ased on cellular automata [V66]

have.been attempted for highly distributed machines [H60, C63].

These ,earlier designs were unsuccessful mainly due to the

programming complexity of the base machine and the inadequate

technology . then available. Since that time we feel that

technology has dramatically eased its constraints, and· that data

flow can simplify the earlier programming difficulties.

To contrast our proposed architecture (appearing in Section

III) wi~h the following machines, we might characterize each of

them as being an interpreter with feedback; this
. . .

characterization holds regardless of the~parti~ulai base machine

language used. Again, the machine we propose is an interpreter

without feedback, and consequently, at any given time, has an

opportunity to call upon many processors which otherwise might

not be demanded.

2.1 The Basic Data Flow Processor

Dennis, et s..l [DM74] have proposed an architecture for the

direct execution of programs in a subset of-DDF. The basic

architecture is shown in Figure 2 and incorporates· a ·memory of

many complex cells. Each cell is (essentially) preassigned a

statement of the DDF program to be executed. A cell then waits

for the input tokens required by the statement, and after all

inputs arrive (as determined by a memory controller which

c:onstantly monitors all memory cells) the cell with its function

code and operands (called an "instruction packet") leaves memory

for the functional uni ts. The proper functional unit is then

·Page 12

allocated with the help ·of an arbitration network, the specified

operation is applied to the operands, and result tokens are

produced. ~he result tokens then leav~ the functional units and

head for their individual destination cells back in memory,

providing.input to some other waiting operation.

2.2 Rumbaugh's Machine

Rumbaugh has proposed a data flow machine [R75] which

executes programs in a modified

(Figure 3) consists of a number of

.local.·· mentory, each of which can

DDF language. The machine

Activation Processors with

execute a DDF procedure. A

procedure executing in an Activation Processor has access to the

Structure Memory which holds the data structures implied by the

value tokens. Structure Memory is manipulated by controllers

which may be shared among several Activation Processors. While

the requests of a process to the Structure Memory are being

carried out, the process can be swapped out to the Swap Memory by

a central scheduler. The Scheduler is a separate hardware unit

that controls the allocation of Activation Processors. All

requests for the creation and destruction of processes (due to

the execution of Apply statements) are also carried out by the

Scheduler~ Clearly, Activation Processors are a critical

resource and high utilization is attained by proper scheduling.

Page 13

2.3 The ~raph Machine

Sonnenburg and Irani [SI74] have proposed a data flow

language which is very similar to Rodriguez's [R69]. They have

also suggested an architecture for a computer called The Graph

Machine to execute their data flow language. The Graph Machine

(Figure 4) consists of a large number of processing elements

(called operation units), each of whi~h has two inputs and one

·output. A PE can execute any instruction in the Sonnenburg-Irani

data flow language, and all PEs are connected to all other P~s by

a control switch of (N 2) simple switches. The simple switches
. '

are controlled by a graph. metnory where program intercon.nections

are stored. PE allocation occurs at graph memory load-time.

·Miller and Cocke [MC72] have also suggested architectures called

configurable computers which are . very similar to the Graph

Machine.

6 I

Irr. THE PROPOSED DISTRIBUTED PROCESSOR ARCHITECTURE -

SOME IDEAS

Page 14

1. General - We now describe an architecture to implement the

non--... feedback interpreter. We begin with the schematic

representatibri of Figure 5, in which the machine is composed of

an array of some number of equally powerful processing elements

-(PEs), each attached to a 'communication system and to a memory

system. During program execution, each PE is dynamically

allocat~d, that is, given an activity name. The PE then performs

the computation corresponding to that activity, outputs tokens

destined for other activities, and fi~aliy 'bec6me~ free by

deallocating itself. PEs may be added to the array to provide

increased computational power, or deleted from the array, as

desired.

As shown in Figure 6, ·each PE is composed of

sub sections which perform the fo.llowing functions:

(1) activity name recognition

(2) token input and output

(3) cornputa ti on

(4) memory system interface.

four

The token input and output subsection of each PE is interfaced

with the communication system. The communication system carries

the.tokens, in the form of messages, between the PEs. Each token

carries with it the activity name of its destination. The

tommunication system accepts tokens output from- a PE and

circulates the tokens among all. PEs. When a match is found

* I

Page 15

between the destination· activity name on the token and the

current activity name of some PE, that PE accepts the token as
. . -

input. When all necessary tokens have been received by the PE,

it beg ins the c omputa ti on designated by the a.cti vi ty name. When

the computation terminates, output tokens are injected back into
..

the communication system by the PE and the·PE deallocates itself

by clearing its activity name. The PE is then available for

reallocation to another activity.·

2. ' The communication system A key aspect of the system

described above is the communication system through which tokens

~ircuiate ·and visit the PEs~ Figure 7 shows our iriitial approach

to the communication system, and the location and interconnection

of PEs to the system.

The PEs are grouped in columns (labelled i~l, i, i+l in

Figure 7a) such that all PEs on the same column share a local

bus. This bus is the internal bus and is present so that all PEs

lying along one column may communicate tokens amongst themselves

very quickly. Thus, a PE that produces a· token places that token

(which includes its destination activity name) on the bus. All

allocated PEs constantly monitor their internal bus looking for

input tokens. If the destination activity has been allocated a

PE which lies on the same bus, then the token will be absorbed

immediately. Thus local communication is easily accomplished.

Now we must account for communication to and from other columns

of PEs. Communication from one column to·another is handled by a

ring bus encircling the columns. The top of the ring is detail~d

6 I

Page 16

in Figure 7~ as·the double-~idth line passing from right to left

through the switches T.. The bottom of the ring pa~ses from left
l

to right through the switches B.. Finally, the buses are closed
l

by firewalls at each end to complete the ring·: the left end is

closed by a firewall at column 1 by switch T1 forcing all token

traffic to go down the line labeled L 1 ; the right end is closed

by a firewall at column n by switch B forcing all tokep traffic
n

to go up the line labelled· Rri. The arrangement of the ring and

th~ various switches are shown in Figure 7b (the PEs and internal

buses are not shown).

With the ring bus, tokens may circulate and visit each

column looking for their respective destinations. Switch T. of
l

each column contains an associatively addressed activity name

table which records the activity names of each allocated PE

within that column. (The idea of an activity name table is

similar to the process nametables maintained in the ring

interface~ of the Distributed Cbmputing Syst~m [F73].) When a

token enters switch T., its destination name is compared with the
l

activity names in the table. If the destination name· is present,

the token· is diverted onto the internal bus where the waiting PE

will absorb it. If the destination name of the token entering

switch Ti does not match any of the allocated activity names,.

then the token continues on to the next column. One may think of

the token as circulating around the ring as many times as

necessary until a match is found. $Witch B. is used to put a·
. l

token produced by a PE within a column onto the ring when no PE

on the internal bus accepts that token.
e '

Page 17

We envision a ring bus impl ei:nen ted by shift registers, and

thus both token storage and token movement are provided by the

same simple device. Also, new Columns o"f PEs may be easily

attached by joining onto the ring. The amount of storage (and

thus the 1 ength of the ring and the communication delay) may vary

dynamically as. the number of circulating tokens grows and

diminishes over time. However, significant parameters such as

token .. Size I token delay·, . and. token bit rates rem,ain Unknown I

although estimates of these parameters indicate ·feasible token

c ommun ica ti on s can be obtained with current and near-term

technology.

For example, let there be an average requirement of n input

tokens per PE, and let a token be k bits long. Also, let there

be N PEs per column in simultaneous .operati6n, ·a fraction f of

which require communication with t~~ ring. Then if the average

wait and execution time of a PE is T, the ring must support a

mean rate of· (nk/T)Nf bits per second. A crude estimate for the

worst case is n=3 input tokens per PE, k=lOO bits per token, N=8

PEs in simultaneous execution, a fraction f=0.5 of which require

communication off the column, and a PE wait and executi time of

T=lOO microseconds. This results in a bit rate of 12 megabits
;.

per second, an entirely reasonable figure for near-term LSI shift

register speeds. Better estimates for shift register

requirements can be obtained by simulation and will determine the

shift register characteristics.

. '

Page 18

The.com~urii~ation sy~tem is discussed in further detail in

section 5: Execution domains.

3. PE allocation and deallocation - Allocation of a PE in some

column to an activity P.s.i is.dynamic during execution, and is

noted in the activity name table contained in that column's

switch Allocation is distributed in that no central

controller selects a PE and assigns it an activity name.· Rather,

one of the inputs to each statement of a program is selected at

compile time to be the allocation input, and any token sent to

that input is marked as an allocation token. Thus there is one

and o~lY one allocation t6ken per activity.

The presence of an allocation token in the system implies

that a free (unallocated) PE must be found and assigned the

activity name appearing on the allocation token. However, we
..

have little experience with data flow programs and their

behavior, and hence only some understanding of what might

constitute a good allocation scheme. One heuristic which we feel

is good states that PEs should be allocated whenever possible on

the same column in which the allocation token was produced; the

second best position is an adjacent column, and so on. That is,

PEs should be grouped together for close token interaction. The

heuristic as applied to procedure calls is discussed further in

section 5: Execution domains.

4. Deadlock - There are two limited resources in the system so

far discussed that could be sources of deadlock, unless some

precautions are taken. These two resources are (1) the finite

Page 19

number of PEs, and (2) the finite storage capacity of the ring.

Even if only one of these two resources is finite, a deadlock is

still possible. We describe a deadlock situation when the

communication system is assumed to have infinite storage capacity

but finite delay, and the number of PEs is limited.

(1) Suppose all the PEs are waiting for an input token, that
is, all PEs have been allocated but Qone have begun execution.
Also suppose that tokens n.eeded by the allocated activitiE2S are
not. present in the communication system either, (otherwise there
would be no deadlock). This is possible only if we a~sume that
the tokens for some activity C that will produce the needed
tokens are all present in the communication system, (otherwise
the program itself is malformed [AG75]). But the activity C
cannot be carried out because no PE is available·

To avoid this deadlock possibilitYr we have instituted a

rule which holds for all activities or functions with which we

work • This r ul e state s fir st that any PE which has been

allocated (and thus holds at least one input token) may

deallocate itself at any time simply~ by clearing its activity

name and returning to the communication system all the tokens

which it has ~bsorbed up to the time of deallocation. Secondly,

the rule states that any PE which has received all its input

tokens and has initiated execution will always pe able to go to

completion. (This rule has implications for the memory system

discussed below~ Any request·to the memory by a PE must be

satisfied without requiring any more PEs. In other words, the

memory system and the PEs must function independently.) Thus, for

example, each PE may have a randomly set tirne out period which

begins at allocation, and if' the time out expires before

initiation, then the PE deallocates itself and becomes available

for reallocation. In this way there will always be at least one
• I

Page 20

PE available to carry the computation forward, and thereby avoid

deadlock. Actually a scheme slightly more sophisticated than the

random time out is needed to ensure a deadlock-free system. One

must ensure that no activity is excluded indefinitely from being

allocated.

(2) Suppose the communication ring is full, but no token on
the ring can find a qestination PE. Thus, there must be an
activity c in execution, which when· it teminates will ·output a
token which causes allocation of a new activity~ If the
allocation cannot be made on that column (for e~ample, all the
PEs are in execution) then the token output from C must enter the
ring. But the token cannot enter the ring since the ring is
full·

Alsoi the scheme described in (1) ab6ve to_ a~oid deadlocks

will work only if essentially unlimited capacity is guaranteed in

the communication system. We propose to do. this by providing a

memory access port to switches·J and B. A switch may take some

tokens out of the ring if the ring overflows and it may put these

tokens back onto the ring at some appropriate time later. Taking

tokens out iri this fashion increases the storage capacity of the

ring without increasing the communication delays for most tokens.

5. Execution domains - Section· 3 above on PE allocation and

deallocation briefly discussed a heuristic for allocation: that

an activity should be allocated a PE near the PE which produc~d

the allocation token. This heuristic attempts to realize a

belief about data flow programs. The belief is that there is

Jocality in data flow programs - that statements (or activities)

which are "near" in terms of program graph di stance, should al so

be near in execution. Specifically, activities within some

Page 21

procedure would generally be nearer to themselves than to any

activity outside that procedure. In fact, the only interactions

which any statement within a procedure has with any statement

outside that procedure are the passing of input parameter tokens

to the procedure and the returning of result tokens from the

called procedure back to the caller.

We have selected the procedure as a basic pr~gram element

with which the machine's architecture is to interact. The

machine is to partition itself into disjoint domains of localized

process activity during execution. Each domain corresponds
. .

exactly to a single invocation of a procedure. We believe the

existence of such domains as machine partitions will increase

machine speed by isolating those sets of tokens which would not

usefully be mixed, arid by reducing the token destination search

space to a particular subportion of the entire machine. (We note

that a complete activity name as defined in [AG75] actually

·contains one more field 'u' to denote· the context from. which a

procedure is called. Hence, a complete activity name has the

form u.P.s.k. However, the partitioning of the machine solves

the problem of the length of token activity names by knowing. that

the. context is the same for all activities within a given domain·

Hence, the u.P part of the activity na~e will be implied by the

execution domain, and only the s.k part of the activity name will

be carried by the token within the domain [AG75].)

• I

Page 22

For example, Figure 8 shows a procedure at a particular

point in execution as indicated by the presence of tokens at

various statement inputs. Figure 9a shows the machine and the

fact that procedure P lives within a particular area bounded by a

left firewall LP and a right firewall Rp· The switches T and B

are responsible for constructing and maintaining the firewalls,

and they do so in two ways. First, the firewalls . force all

token-s· with destination in procedure P to remain on ·that portion

of the ring surrounding P.. Second, any token whfch does not have

destination in P, but which finds itself inside P, is allowed to

continue and to pass -on _through P. The .. firewalls: .·thus create

small subrings which circumscrib·e collections of PEs with high

internal token interaction, yet allow tokens going to other

domains to pass quietly throug~ •. A schematic representation of

switches T and B is shown in Figure 10.

Now let the statement apply Q be performed in P, where

proc~dure Q 'is some data flow procedure. As detailed in [AG75],

an apply Q statement is actually two separate activities: an

activate Q and a terminate Q activity, both of whiqh execute

within domain P. · An activate c·auses two actions to occur:

(1) domain Q is cr·eated,

(2) the input tokens to ill2.l2.J .. Y. Q are sent as inputs to
proce_dure Q in the newly created domain.

Returning to Figure 9a we see domain P and the remaining

unused portio~s of the machine. All unused portions a~e known,

and all conting~ous columns of unused. PEs form free domains from

which free PE columns are allocated to enlarge existing domains
• I

Page 2 3

or to create new domains. In. domain P in Figure 9a, the apply Q

statement is about to be executed and domain Q created. Domain Q

is created when the activate Q portion of the .9.l2!2.1Y produces a

create domain Q token as output (along with the input parameter

tokens for Q). The create domain token then leaves domain P.

When the token reaches a free domain of sufficient size, the free

domain is partitioned into the new domain Q, and a free domain of

1 e.s ser size.

In.~igure 9b two procedures and their domains now exist.

Next, it is necessary to transmit input parameter tokens from P

to Q. Input parameter tok~ns to Q may be.passed out 0£ P simply

by marking their destination as being in Q, and hence outside of

P. Given the rule above that tokens which find themselves inside

a region which is not their destination region are simply allowed

to pass through, these input parameter tokens will be released

from the domain P and they will find their way to Q. Once inside

domain Q, these input parameter tokens appear just as any other

token inside Q would appear.

The above has described the creation of a domain and the

passing of input parameter tokens into that domain. The inverse

of the above occurs at termination of the called procedure Q.

Fi~st, result tbkens are passed back t6 the terminate Q portion

of the apply Q statement in P. Then the terminate activity

outputs a destroy domain Q token which will find domain Q and

aestroy it by adding the PEs in it to a fre·e domain. -

. '

Page 24

There are several unresolved points concerning procedure

domains. How do domains acquire more PE resources (how do

firewalls move from one column to another) when it would be

useful for them to do so? What would comprise a good scheduler

for allocating domains? Is there a way to reduce the overhead

procedure call~, possibly by specifying some maximum number of

concurrent invocations of a procedure and reuse the domains?

These and other questions require further ~nvestigation to

be resolved. However, we feel that the notion of an execution

domain is ·viable, and brings an intuitive feeling for how

procedure~ operate into ths basic structure of the machine.

6. The m~mory system ~ Values in data flow are carried by

tokens. However, these values ·Qan have rather complex structure

(such as a tree) and be of significant size. For the purpose of

reducing the quantity of information carried by a token, [D73]

presents a technique whereby data values can instead be

maintained in a memory and only pointers to those values need be

present on the tokens themselves. Ba se d upon pure LI s P , the

technique also allows garbage collection to be handled by simple

reference count techniques. (This can be done since data is

never modified after : it is created, and is destroyed when all

tokens· carrying (pointing to) that data have been input to their

destinatiori PEs.)

Since memory is present only to reduce the bit rate which
I •

the communication system would otherwise have to support, we

~equire the memory system itself to be responsible for all name
• I

Page 25

and storage management· Also, since any PE may perform any data

flow.statement, all PEs must be physically able to gain access to

all of memory.

The above are the reasons for, and the logical requirements

of, the memory system. We have not as yet fully determined a

structure for the memory system discussed below. however some

·points have emerged. First, we expect a "locality" effect, in

that data moves from a producer PE to neighboring consumer PEs,

and we expect many such activities to occur simultaneously. Thus

we feel a use for a distributed memory composed of many

independent uni ts capable of functioning simultaneously, and a

given memory unit must be accessible by any PE. Second, a given

memory unit should be closely associated with one or more PEs of

a given column, with newly created data values placed as closely

as possible to the PE causing the creation of that data. Thus,

due to the expected close interaction among the PEs within a.

single column, any PE on a given column should have faster access

to the memory unit(s) associated with that column, than any PE

not on that column. Lastly, we expect to be able to tolerate

some access delays that are longer than in current conventional

machines.

Clearly, several gue stions remain and can be answered only

with research into actual data flow program behavior patterns.

Such questions are: How many memory units should be highly

~ccessibl~ by a given PE? Under what circ~mstances·is it better

to copy a structure to another area. of the machine rather than

Page 26

suffer repeated access delays? Given the experience with Holland

machines [H60,C63] and c.mmp [FSS73], what kind of bussing

structure will allow all PEs access to any memory unit, but

without obstructing other PE memory unit accesses?

7. Toroids

Lastly, we intend to unify the machine's structure from that

given in Figure 7 a. As sho'wn in Figure lla, PE columns l ·and n

will be connected together by the ring bus so that the "ends" of

the machine itself will be defined only by firewalls (which can

also move). Also, switches T.· and B.· in e·ach PE col°urnn L can be
.. l l

molded into a single physical device. Figure llb shews that the

machine's resulting logical form is a· toroid.

. '

. Page 27

. rv. SCH~DULE OF PROPOSED WORK

We propose to carry out the work by building a simulator for

data flow programs, measuring the behavior of those programs, and

orienting the architecture of the machine to function in concert

with that behavior. As architectural decisions are finalized

they will be incorporated into the simulator to study their

effects on program execution. When all components. of the

architecture are complete, we will 'have a simulator of that

architecture. Our proposed schedule of work is as follows:

Months 1-3: This first period· will be devoted to building a data

flow program simulator, and to gathering a collection of test

data flow programs on which measurements will be made (two simple

candidates, quicksort and matrix multiply, appear in Appendix A).

Months 4-6: During this period we plan to measure the behavior
,.

of the test data flow programs, assuming a grid of processing

elements and a basic execution time for each data flow operation.

No particular communication system nor memory system will be

assumed; thus the simulator will initially function just as the

theoretical interpreter functions, and the measures will reflect

the properties of data flow itself. We plan to measure:

(1) data structure access and creation behavior

(2) token density and flow patterns

(3) the effect of varying. the size of a "unit of
computation" (activity) on items (1) (2), above.

• I

Page 28

This work will impact data flow language design itself.

Initial efforts in determining a "unit of computation" produced

the work covered in Appendix A, and we anticipate advances in

data flow language design to grow out of these beginnings. That

work which is easily accomplished and which will contribute to

the design of data flow languages, we pl~n to do here.·

. During this period, the above information will be used to

determine the functional power to be given to a processing

element9 The results of these experiements will also be used

during the following period.

(1) Dur~ng this phase, the major goal is to

determine an architecture for the memory system. The design will·

reflect expected near term LSI capabilities, and the

characteristics of behavior of data flow programs determined

during Months 4-6. We then plan to impose the memory system upon

the data flow simulator, and to measure the effects of the memory

system on program execution. Of particular importance is the

memory allocation scheme, but we expect that the "locality"

scheme described in Section III (or some variant thereof) will

prove to be good. Also, the effects on performance of some

parameters concerning the memory system must be determined;

these parameters are

(a) density of memory units distributed throughout the
machine

(b) ·~emory system bandwidth

(c) the extent
neighborhood" of
direct access.

of a
memory,

processing element's "local
i.e., the memory to which it has

· Page 2 9

(2) A ~econd goal during this period will be to determirie a.

good PE allocation scheme. (Again, we anticipate that the

"locality" ·scheme described in Section· III will .be appropriate.)

Then, when the allocation scheme is decided, it will be possible

to more accurately determine parameters concerning the

communicafion system bandwidth and storage capacity.

We feel that the memory system will be the most difficult

and sensitive area of the machine, while we anticipate little

difficulty with the token communication system·

.Months. l..3~18: During. this. phase., we plan to incorpo!!ate the

memory and communication system de~igns into the simulation. We

will then have a simulator of the architecture and will be able

to evaluate the performance of the machine. · This period will

also be devoted to determining system bottlenecks and improving

those subsystems where difficulties might arise. To determine

machine performance, we propose to measure the following:

(1) The overall rate of computation of the machine, assuming
basic component speeds consistent with near-term LSI
capabilities.

(2) The utilization of the machine's processors based upon
the number of processors in execution concurrently.

(3) Evaluation of the degree to which processors are
exchanged for time. This measure is somewhat complex, and
is best accomplished by comparing two executions of the same
data flow program one execution in which the
processor/time exchange mechanism is inhibited, and one
execution in which it is fully operative.

(4) Evaluation of the effect of the mechanism which.
localizes process activity· · into disjoin·t domains of
execution. This measure will be accomplished (similarly to
(3) above) by comparison of two executions one execution
in which the mechanism is inhibited, and one in which it is
operative. . ,

Page 30

Months 19-24: We propose to investigate the requirements and

resource demands which a kernel operating system might place upon

the machine, where the kernel contains basic functions such as

creation and destruction of processes, protection, interprocess

communication, and input/output. We feel that this work is

necessary to gain a clearer view of the. machine and how it might

function in a real computing environment. Some of these basic

functions appear straightforward {·e.g~, creation arid destruction

of processes) while others are still problems even in

conventional machines, ·but perhaps more easily solved in the

proposed·machine (e.g., protection).

0 I

Page 31

V.. REF ER ENC ES

[AG75] Arvind and K. P. Gostelow, a New Inter2reter for Data
Flow Schemas and Its. Implications. for: Computer Architecture,
TR 72, Dept. of Information and Computer Science,
University of California, Irvine, November 1975.

[B72] Bahrs, A., Operation Patterns (An Extensible Model of an
Extensible Language), Symposium on Theoretical Programming,
Novo ~>.i bi r s k , USSR , Aug 7 2 , (pp 21 7 - 2 4 6) •

fC 63] Comfort, W. T. "A Modified Holland Machine" Proceedings
FJCC, 1963, (pp 481--488).

[D73] Dennis, J. B., First Version .of .9. Data Flow Procedure
Language, MAC TM 61 (originally published as Computation
Structures Group Memo 93, Nov 1973), Project MAC, MIT, May
1975.

[DFL72] Dennis, J. B., J. B· Fosseen and J. P. Linderman,
~ .E.lillY, Schemas, _ Sympo·sium on· Theoretical Programing,
Novosibirsk, USSR, Aug 72, (pp 187-216).

_[DM74] Dennis, . J. B., D. P. Mi sunas, _ A Prediminary
Architecture .fQ.£ s]2.a sic Data Flow Processor, The 2 11 Annual
Symposium on Computer Architecture, Houston, January 1975,
(ACM SIGARCH Vol 3, No. 4, Dec 74) (pp126 132).

[F73] Farber, o. J., et. al., The Distributed Computing System,
Proc~ Seventh Annual IEEE Computer Society International
Conf., Feb 1973, (pp 31 34).

[FSS73] Fuller, s. H., D· P. Siewiorek, and R. J. Swan
"Computer Modules: An Architecture for Large Digital
Modules" Proceeding_§. of First Annual Symposium on Computer
Architecture, Dec. 9 11, 1973, University of Florida, (pp
231 237).

[GIMT74] Glushkov, v. M., M. B. Ignatyev, v. A. Myasnikov
and v. A. Torgashev, Recursive Machines and Computing
Technology, Information Processing 74, North-Holland
Publishing Company, Stockholm. Aug 1974, (pp 65-70).

[H60] Holland, J. c., "Iterative Circuit Computers" Proceedings
Western !l,oint Computer Conference, 1960, (pp 259-265). ·

[HCS73] Gagliardi, Ugo o., et. al. "Software-Related Advances
in Computer Hardware" Proceedings of g_ Symposium Q!l the 1:LlJI.h
Cost of Softare, Monterey, California, J. Goldberg, ed.,
Stanford Research Institute Project 3272, . Sept. 17-19,
1973, (pp 99-119). .

[K73] Kosinski, P. R., ~ Qata Flow Language
Systemg Programming, Proceedings of ACM
Interface Meeting, SIGPLAN Notices Voi. 8,

for Operating
SIGPLAN-S IGO PS

No... 9, Sept ..

Page 32

1973 .. (pp 8 9 9 4) ..

[KM69] Karp, R. M. and R.
Schema ta'· JC SS Vol. 3, No ..

E.. Miller,
2, Nov 1.969,

Parallel Program
(pp 14 7 195) •

[M75] Misunas, D. P., Dead lack avoidance in a Data Flow
Architecture, Proc .. of 31 ACM IEEE Milwaukee-Symposium on
Automatic Computation and Control, Apr 1975. (pp 337-343).

[MC72] Miller, R. E. and J. Cocke, Configurable Computers~ ~
New Class of General Purpose Machines, Symp. on Theoretical
Programming, Novosibirsk, USSR, Aug 72, (pp 285-2 98).

[P62] ~etri, c. A., Communication with Automata, RADC-TR 65-377,
Vol 1, Griffiss Air Force Base, New York 1966. · (originally
published in German: Kommunikation Mit .Automaten,
University of Bonn, 1962)

[P75] Petri, c. A., Keynote Address, First Conference on Petri
Nets ·and Related Methods, MIT, J.uly 1975, (proceedings to
app.ear 1976)

[R69] Rodriguez, J. E., A Qraph Model for Parallel Computations,
TR-64, Dept. of EE, Project MAC, MIT, Sept. 1969.

[R75] Rumbaugh, J. A Parallel Asyp_~hronous.Architecture for Data
F·loVL Programs, Ph.D. Th$sis (MAC TR 150), Dept. of EE,
MIT, May 1975.

[SI74] Sonnenburg, c. R. and K. "B. Irani, A Configurable
Parallel Computing System, TR 82, Dept. of EE, University
of Michigan, Oct. 1974.

[T74l. Turn., R., Computers in 1980s Trends in Hardware
Technology, Information Processing 74, North-Holland
Publishing Company, Stockholm, Aug 1974, (pp 137-140).

[V66] von Neumann, Theory of Self Reproducin.g_ Automata,. A. w.
Burks, ed. University of Illinois Pres, 1966.

Page 33

P. 5:

Figure la

A p::>rtion of a data flON procedure P in its initial configuration

.. ,,,,____/

Figure Ib

Status of the program a£ter P .1 executes · ,

Page 34

· Figure le

Statement f and the predicate carplete execution

• CJ .

Figure ld

The gate produces its output
e I

~age 35

ce!t n

Figure 2

Basic Dennis-Misunas data flow ma.chine

Activation
\[/ Processor 1 I

;'
I; _; -,, !"- / Swap / ...

Memory ... / Activation Swap Processor 2 I\

Net-
; I/ ' Work ' , / Scbeduler

Activation
Program P.rocessor 3 /I\ - .

pipe-Memory ,,,..
~ local line /

.... - i:'!CC"?- & /

ory status1

1 \I ,, l
Structure Structure

~
Peripheral

> bulk data transfer Controller 2 Controller 1 Processor

t> l /,\
memory access

> control flow
\Y

Structure Memory To Outside

World

Figure ·3

Rumbaugh's machine (figure from the thesis [R75])

DATA
MEMORY

/ --~~:---=-~ ':._---+---------------••:: _____ __,., __
/ ,,,.."" ~~-----...-· -----' ~' . :
L'
2. . .

_graph
2N .. : , () I

l'? . N-1 .-~.--- ·.-,----
',, ' ________ ,.,,.,. r

Figure 4

Sonne.nI:ierg:-Irani nachine (figure from the thesis [SI14])

~age 36

·. /

memo7
syst"em

PE

commu1Jicolion
system

Figure 5

Basic view of prop::>sed data flav architecture

pcfivily
l'ldll?e

7 recognl tion

to/,en
ln;ut
and

oufj>td

me mo 'J'
cO/i'Jj>llt1lit>11 s yd em ~G<---7>

iJrler~ce

Figure 6 0 I

The four subsections of a PE

~age 37

~age.38

77_,

.... ;

D l_. / • ''i-1 (-

•

·~·

i-1 i-i-1

Figure 7a'"

The ccrnmunication system

. 7j 7; . . . -;;;
.~~-~

LJ.
c j

R.h

~~~-~ 
BJ. B~ . . . 811 

Figure 7b . ' 

·-·-The ·ring bus encircling the PE columns 



. . . 

I ... f 

Figure 8 

An apply stateirent in procedure P calls procedure Q 

Page 39 



Page 40 

7.i -;; fl •• 

?";, 
o--o t~ ..., 

t.t 
free 

1' 
Rn 

® 

BJ. B;t. . ,. . . 817 

~ 

· dom C.' 1·n· 

p 

Figure 9a 

IX:m3.in P within the machine 

7; 7; ••• T: 
' Tn 

e 

~p ,tlL9 R9 \ free 
Rn 

free _ j 
G --e-

8.1. Bz ••• 8: /311 
...... -v-· ./ ...... v ...-/ 

domain dotn<Z/n 
p 9 , 

Figure .9b e I 

Darain Q is created by P 



Page 41 

/ 
f//tci' ,,,. ba- L filter 

/• 
c ........ ~µ ~ {!?Mfd) 

"-.... 
li(--- _..,.... 

Ii 
/\ 

~ 
~~ 

I 

R.i . 

iJ 

I \/ 

I .. 
/ 

' . ' filter 
,. 

me'le ' -1 me7e.. > 
~ /I / 

B1 

Figure· 10 
Internals of the switches T. and B. · , 

J_ J. 



.J I 
SJl./ttCIJe .. ~ 

Figure lla 

Connecting the ends of the machine together 

. I 

.ri'!J bus 

Figure llb 

The resul tir1g toroidal ;:irchl tecture • I 

Page 42 





APPENDIX A 

Two Data Elow Programs and Their Analyses 

A.1 Macros in QDF 

Before we give the sample programs, we will tlefine two new 

primitive operators in the DDF language. These primitives can 

also be viewed as macrq, that is, a.n e·quivalent ._9~oup. of DDF 

statements exists which can be substituted for each occurrence of 

these operators. The upper portion of Figure A.1 shows a DDF 

program which is often a part. of 1 arger DDF programs. The 

equivalent program using the macros (yet to be defined) is shown 

in the lower portion of Figure A.1. 

Essentially, on arrival of an input token v, n tokens with 

values f (v), f(f(v) ), ••• are produced by loop 1. After each 

of these tokens is transformed by some program g they are input 

to loop 2. Loop 2 accepts these n tokens and forms one result 

token according to function h• A very common situation is when f 

is the identity function and h is the :L operator. 

The following are detailed definitions of the two macros: 

(1) time-Distributer Ct-Dist): There is a function f, a 
constant n, and an input v associated with each t-Dist. Once the 
input v has be~n received, then n tokens with -valu~s f(v), 
f(f(v) ), will be produced, ordered in time. When at-Dist 
is executed under the feedback interpreter, an output token is 
produced on an arc only after the previous token output on that 
~re has. been absorbed. Howeve~, under the . non-feedback 





. interpretEr · all. n 
simul tanecusly with 
u.P.s.k+n··l. (The 

·number on t.he input 
t he number u · P. t • i , 

· Page A ..... 2 

tokens can be produced and output (almost) 
activity numbers u.P.s.k, u.P.s.k+l, 
value of k will depend upon the activity 

token. v; for example,. if the input token. ·has 
then k=(i-l)*n+l.) 

Figlre A.2 gives the firing rules and the DDF program 

equivalent to t-Dist. If f is an identity function then t-Dist 

will simply· produce a sequence of n copies of v. Another very 

usefuJ f function is 41 +1" which wi 11 produce a sequence of tokens 

with values 1, 2, 3, ••• , n assuming. the initial input· v had 

valua zero. 

(2) time-Collector (t-Coll): This operator performs, in a 
.sense, the. inverse of t ..... Dist. t .... Coli also. has a function f and 
.const~nt ti associated with it. It has an input s · .(the initial 
value), and an input port v on which n tokens, 8rdered in time, 
with values v1 , v2 , .•. , v are received. Under the non-feedback 
interpreter tokens with nactivity numbers u.P.s.k., u.P.ssk+l, 
M••1 u.P.s.k+g-1 will be needed for one execution of t-Coll· 
~For the it initiation of t-Coll, the value of k would be 
(i-l)*n+l.) After all the input tokens have been received, an 
output t ok en wi th v a 1 u e f ( v , f ( v 1 , • . . f ( v2 , f ( v1 , s ) ) · · • ) ) i s n n- o 
produced. Two useful functions f for this macro are "I:" and 
"append". Figure A. 3 gives the DDF program equivalent to' t-Coll • 

' The macros t-Dist and t-Coll not only simplify the writing 

of programs, but also result in less token traffic and demands on 

PE resources. It is easy to see that a single PE could be given 

the capability to execute t-Dist. A PE executing t-Dist under 

the non-feedback interpreter will produce n tokens in roughly 

C 0 +rn units of time, where c
0 

is the set-up time of a PE and r is 

the additional time needed to produce a token. For simple 

functions (e.g. I f=identi ty), r< <c • 
0 

Equivalent statements can 

be made concerning a single PE implementation of t-Coll, except 

that a slight modification is needed to enable a single PE to 

accept tokens within a range of activity numbers rather than just 
o I 



Page A-3 

one particular activity number. 

We note one more point regarding these two macr~s before 

giving the example programs. It may be desirable t~ hlve n, the 

number of tokens to be produced or accepted by t-Dist or t-Coll, 

as an input token to the macros. This can be accomp~ished by 

changing the interpretation rules of the macros in Figures A.2c 

and A.3c to include a dum_my token (simi.lar to·that for Qc .. tes and 

merges [AG75] ) to indicate the range of ~ctivity numb~rs to be 

produced (in the case of t-Dist) and the range of activity 

numbers to-be accepted (in the case of t~Coll). 

A.2 Sample Programs 

Example 1 - Matrix Multiply Subroutine 

A pseudo Algol program for ~ultiplying two matrices A and B 

is given in Figure A.4. This program has been hand transl~ted 

into the DDF language and is given in Figure A. s. There are 

eight loops connected with eight different merge operators. 

Loops 1, 2, and 3 are nested and generate the proper value of k· 

Every time the select operator is executed a token is.needed on 

all its input arcs. 
·2 

Therefore n copies of each of indices i and 

j must be produced; this is accomplished by loops 4, 5, and 6. 

Loop 7· constructs the sum s and loop 8 constructs the new matrix 

C by storing s in the proper place. 

We have not shown the loops for the input n to the predicate 

statements, nor have we shown the loops for matrix names A and B 

for the select statements. These loops can be drawn in a 



Page A-4 

straightforwa~d ·manner, however, they are not necessarily needed 

.since any parameter that remains constant during one activiation 

of a procedure could be substituted just before the activation of 

that procedure. 

A DDF· program using t-Di st and t .... Coll is shown in Figure 

As already d~scussed, the execution time of these macros 

under the non-feedback int~rpreter is roughly · c
0

+ rn. .For an 

arbitrary PE structure it is safe to assume that r will be very 

much smaller than the time needed to multiply two numbers 

together. Let us assume that it takes ~f units of time .~o carry 

·out each of the statements 7, 8, and 9. Given a sufficient 

number of PEs (i•e• I > n3) the program in Figure A.6 will take 

5 c +2 cf+4 rn+rn 2 
~ c+rn 2 units of time (where c is some constant 

I 0 

> >r) • On computers without parallel operations (i•e• I without 

pipelinin~, etc.) the matrix multipl~ will generally take c'+cfn3 

units of time. If r<<cf then c+rn2 << c'+cfn3 for large ·n. This 

is underslandable in view of the fact that un~er the non-feedback 

interpreter all multiplications can be executed 

simultaneously, and the time to execute the program is 

proportional to the time needed to ·collect the results of the 

mul tipl ica tions. 

If the number of available PEs is smaller then n3 , then the 

execution time would be proportionately longer. 

Example l - Subroutine ~ort 

. ' 



Page A--5 

This procedure sorts an array of n numbers according to the 

quicksort method. A pseudo Algol program for quicksort is given 

in Figure A.,'7 .. · The procedure is recursive. In order to simplify 

·writing the procedure in DDF we define a function called 

ComRarator shown in Figure A.8. A DDF procedure ~ort(a,n) using 

t-Dist, t-Coll~ and Comparator is given in Figure A.9. If ·n is 

greater than 2, the procedure simply se~ects the middle element 

am . in array a and constructs two new arrays b and c, where b 

contains all the elements of array a less than or equal 

and c contains all the elements of array a greater than 

to 

a .. m The 

dimensions of arrays b .a.nd c are id en tic.al-, and one )·ess. than the 

dimension of a. If the ~th elemeht of array a is stored in the 

ith position in array b (i.e., a. a ) then a null is stored in 
i m 

the ith position in array c. Simiiarly, foi every non-null entry 

in c there is a corresponding nu1·1 entry in b. Box 3 in Figure 

A.9 counts the number of non-null entries in b. Boxes 1 and 2 

(i.e., t~Coll with function f=Build) construct new arrays where 

the null entries have been deleted. Then both arrays b and c are 

sorted simultaneously by parallel recursive calls to procedure 

Sort· The final result is produced by concatenating the sorted 

array -b, element a , and the sorted array c. m 

take 

Again, if we assume that the statements t-Dist and t-Coll 

c +rn 
0 . 

time, the Com2arator takes cf units of time 

(where r<cf), and more than n PEs are available, then one 

invocation ·of procedure Sort will require c+2rn time besides the 

time taken by the ~.212.lY operators. On an average the parallel 

recursive calls will be nested O(log2 n) deep. In the worst case 
. ' 



· Page A .... 6 

tnere can be· n nested calls to procedure Sort. Therefore, if 

~ufficient numbers of PEs are available, the program will take on 

an average (c+2rn)log
2

n time. In the worst case time taken will 

be ( c + 2 r n) n. For sequential computers these times would be 

These two examples illustrate the significant reductions we 

expect in the exec u ti 0 n . time 0. f m 0 st a 1g0 r it hm s • These 

reductions will occur automatically, when the algorithms are 

written in DDF and executed under the non-feedback interpreter. 

O I 



Pcge A-7 

v 

~ 
·~ 
F ~ 

r t?-

I 
.l'a>r.1 

_... --'. --( 

I 
I v f .,,,., 

I 

' ... . f 

Figure A.l 

I 

I 
I 
I 
I 
I 

t 

I 
I' 

,.... 

.( 

. I 

I 

I 

e0 
-----' · --e-----L I 

I. 
I 

) 

w 

A ccmron program carponent in the upper portion of th2 figure, 
and its macro shorthand equivalent in ~e lo~ portion 

0 l 

?>. 
w 



t ~/Jt"sf 

v ...... _c --....... -,;.; J 

Figure A.2a 

'Ille t-Dist macro symbol 

v 

Figure A.2b 

Data flCM definition of t-Dist 

f --~ 

Figure A.2c 

Snapshot of behavior of t-Dist 

. . 

Page A-8 

i 
i 

.__;..,..-~ u ~ ~---· j 
~ 

I 
I 
I 

i 



Page A-9 

t-c~I! 

Figure A.3a 

'!he t-COll macro symbol 

v 

\ . 

Figure A .. 3b 

Data flON definition·ot t-Coll 

t.Uhere-

Figure A.3c . 'k = {t._1)n +I 
Snapshot of behavior of t-Coll 



' ·~ - :. ·' \ 

!1uftiply (n,A,B,c) ~ 
fo-r i ~ 1. ·fQ· n .@. 

for j ~ 1 fu n do 
s~o; 

for K+-1 -to n dtJ - - -

.. 
; . 

s <- s + A l i.,/<) * B ( k i ) 
'<l' 

end 

·ctiO~s 
'• end'_ 

encl · 
~·: ----

Figure A.4 

Pseudo-Algol rum matrix multiply C=A*B 

Page A-10 



Page A-11 

. I 

A B 

/~ 7 

-. 

Figure A.5 

First data floo natrix rm.tl.tiply program 

,i 

e I 



Page A-12 

! . . ; 

7: ....-----~-se.leet 
A fl;/<.) 

J 
l 

//: 

,. c 

Figure A.6 

Improvea version of natrix multiply under non-·feedback' interpreter 

. ' 



.··-·.!, 

Page A-13 

sort ( ct , n ) : :... 

m «- L11+2_! ) 

k~o; /~O) 

fer i~ _t t"O l'I ~ 
1/ i Im nf~n L_,/ q ~ dm 

1-tfel'! [i,,...jtl j ~<-a;] . 
elre [ k~k-r} · c.~q. 77' - ) IC ,_,_, 

c/re [ J 
end 

sorl (Ii., j )_. j sort ( ~~ k) ; · '<I 

Figure A.7 

PseUdo-Algol recursive program for quicksort 

---~ cz --""""" a ff ~ ~ b e.Lre ~ 
Co7. ~ ~ if d > & £/;e rJ 

.__~ 1 !f tl~b cl1e ~ 

Figure A.8 

The Corrparator function 

I 1' 



n 

selci.t 
l<C--~---

477 m 

-----+-J ~·de.ct l 
.L2-f ·rA _ __.-_ _.c..._ 

/., .Q. 

Cornp: 
1 z 3 

. ~L>/'Y - """'~--~ 
SNt . 

Figure A.9 

Recursive quicksort to be executed by non-feedback.irlterpreter 



A-15 

ACKNOWLEDGEMENTS 

We wish to thank Professors Tim Stan~ish and Fred Tonge for 

their constructive criticism during the preparation of this 

proposal, and to Mr. Wil Plouffe for his innumerable suggestions 

in the analysis ·of the algorithms of Appendix A. Many people, 

especially Messrs Larry Rowe, Paul Mockapetrf.s and Professor Dave 

Farber of the Distributed Computing System Project have offered 

suggestions. We are also grateful to Professor Gerald Estrin for 

his comments and criticism during the early stages of this work. 

And, of course, thanks to Peg Gray for typing, and to our 
. . 

resident PDP-10 text expert Shirley Rasmussen for preparing 

several versions of this proposal. 

0 I 

I 




