
UC Davis
IDAV Publications

Title
3D Video Recorder

Permalink
https://escholarship.org/uc/item/0124g3df

Authors
Würmlin, S.
Lamboray, Edouard
Staadt, Oliver G.
et al.

Publication Date
2002

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0124g3df
https://escholarship.org/uc/item/0124g3df#author
https://escholarship.org
http://www.cdlib.org/

3D Video Recorder

Stephan Würmlin1 Edouard Lamboray1 Oliver G. Staadt2 Markus H. Gross1

1Computer Science Department 2Computer Science Department
Swiss Federal Institute of Technology (ETH) University of California, Davis

Zurich, Switzerland Davis, CA
{wuermlin, lamboray, grossm}@inf.ethz.ch staadt@cs.ucdavis.edu

Abstract
We present the 3D Video Recorder, a system capable of
recording, processing, and playing three–dimensional
video from multiple points of view. We first record 2D video
streams from several synchronized digital video cameras
and store pre-processed images to disk. An off-line process-
ing stage converts these images into a time–varying three–
dimensional hierarchical point–based data structure and
stores this 3D video to disk. We show how we can trade–off
3D video quality with processing performance and devise
efficient compression and coding schemes for our novel 3D
video representation. A typical sequence is encoded at less
than 7 megabit per second at a frame rate of 8.5 frames per
second. The 3D video player decodes and renders 3D vid-
eos from hard–disk in real–time, providing interaction fea-
tures known from common video cassette recorders, like
variable–speed forward and reverse, and slow motion. 3D
video playback can be enhanced with novel 3D video
effects such as freeze–and–rotate and arbitrary scaling.
The player builds upon point–based rendering techniques
and is thus capable of rendering high–quality images in
real–time. Finally, we demonstrate the 3D Video Recorder
on multiple real–life video sequences.

1 Introduction
Conventional two–dimensional video is a mature technol-
ogy in both professional environments and home entertain-
ment. A multitude of analog and digital video formats is
available today, tailored to the demands and requirements
of different user groups. Efficient coding schemes have
been developed for various target bit rates, ranging from
less than 100 kilobit per second for video conferencing
applications to several megabit per second for broadcast
quality TV. All of these technologies, however, have in
common that they are only capable of capturing temporal
changes of scenes and objects. Spatial variations, i.e., alter-
ing the viewpoint of the user, are not possible at playback.
3D video captures dynamics and motion of the scene dur-
ing recording, while providing the user with a possibility to
change the viewpoint during playback.

Spatio-temporal effects (e.g., freeze–and–rotate) have
been demonstrated in numerous recent feature films. How-
ever, these effects can only be realized by employing a
large number of still cameras, and involve a considerable
amount of manual editing (http://www.mvfx.com/). Typi-
cally, input data is processed off–line in various ways to
create a plenitude of stunning effects. A three-dimensional
video system could capture and process this data without
manual intervention in shorter time and at lesser cost.

The approach presented in this paper is a generalization
of spatio–temporal or 3D video. We present algorithms and
data structures for acquisition and construction of view-
independent time–varying video. Each 3D video frame is
stored in a three–dimensional point–based data structure
which allows for direct rendering. We present a 3D video
player supporting multi-viewport rendering of pre–
recorded dynamic scenes in real–time. Moreover, we adapt
standard video cassette recorder interaction features, such
as variable-speed forward and reverse and slow motion,
and introduce novel 3D video effects such as freeze–and–
rotate, or arbitrary scaling.

The architecture of the 3D Video Recorder reflects two
main performance constraints of any video recorder:
Acquisition of input data as well as playback of 3D video
have to be accomplished in real–time. However, processing
3D video from acquired image data can be carried out off-
line without real-time constraints. After the acquisition of
multiple video streams, we reconstruct 3D information for
every pixel in the input images and store this representation
using a hierarchical, point–based data structure. Although
our framework does not build upon a specific reconstruc-
tion scheme, we currently use a shape–from–silhouette
method to extract positional and normal information. Other
reconstruction schemes, such as voxel coloring, multi-
baseline stereo, or active vision systems [4], can be used
instead. In general, our framework is able to build a 3D
video including fore- and background. The prototype pre-
sented in this paper, however, aims at generating 3D video
from objects, i.e. humans, and not from scenes. The 3D
video player decodes the compressed 3D video progres-
sively from disk and renders the 3D video object employ-
ing efficient point-based rendering schemes.

The main contributions of this paper can be summarized
as follows:

• A general framework for 3D video recording compris-
ing acquisition, processing, and rendering of time–
varying three–dimensional scenes.

• An efficient processing pipeline to reconstruct view–
independent 3D video with a user–controlled trade-off
between processing time and 3D video quality.

• Efficient algorithms for encoding and compressing the
resulting progressive 3D video.

• A full-featured 3D video player built upon a real-time
point-based rendering framework.

1.1 Previous Work

View–dependent 3D video representations and systems are
still an emerging technology, and various approaches have
been developed in the past.

Kanade et al. [11] and Narayanan et al. [18] employ a tri-
angular texture–mapped mesh representation. Multi-base-
line stereo techniques extract depth maps from a fixed set of
camera positions, which requires significant off-line pro-
cessing. At rendering time, depth information from one or
more cameras closest to the new virtual view are used to
construct the mesh. An edge-collapse algorithm is used for
mesh simplification. For the EyeVision system, based on
Vedula [30], a large number of video cameras, distributed in
a football stadium, are used for capturing sports events from
different views. Replays are constructed from interpolated
views, both in space and time.

Mulligan and Daniilidis [17] presented an approach uti-
lizing trinocular stereo depth maps. Their system is used in
a tele-immersive conference where advanced off-line pro-
cessing and storage as well as compression issues have not
been addressed. Pollard and Hayes [21] utilize depth map
representations to render real scenes from new viewpoints
by morphing live video streams. Pixel correspondences are
extracted from video using silhouette–edge information.
This representation, however, can suffer from inconsisten-
cies between different views.

The image-based visual hull (IBVH) system, introduced
by Matusik et al. [15], is taking advantage of epipolar
geometry [6] to build an LDI [28] representation. Color
information is determined using nearest-neighbor interpola-
tion. Thus, depth–color alignment cannot be guaranteed.
While the resulting LDI is neither progressive nor view–
independent, it allows for free scaling and freezing. Due to
the fact that it is a real–time system, free spatio-temporal
effects (e.g., freeze–and–continue) cannot be accomplished.

The polyhedral visual hull [14] also builds upon an epipolar
geometry scheme for constructing a triangular representa-
tion of an object. While this enables viewpoint–independent
rendering, the limitations of mesh-based methods persist:
The potentially improper alignment of geometry and tex-
ture, and the non-trivial realization of progressive streaming
of dynamically changing polygonal meshes.

Other approaches are based on volumetric object repre-
sentations. Moezzi et al. [16] create view–independent 3D
digital video from multiple video sequences. The dynamic
information from each video is fit into a voxel model and
combined with a pre-generated static model of the scene.
Yemez and Schmitt [32] introduce an octree-based particle
representation of 3D objects, which they use for multilevel
object modeling, storage, and progressive transmission.
However, they transform the octree particles into a triangle
mesh before rendering and do not address compression
issues.

Rusinkiewicz and Levoy presented Streaming QSplat
[26], a view-dependent progressive transmission technique
for a multi–resolution rendering system, which is based on a
bounding sphere hierarchy data structure and splat render-
ing [25]. Their framework is efficient for streaming and ren-
dering large but static data sets.

1.2 Overview

The following section describes the overall architecture of
the 3D Video Recorder. Section 3 presents recording and
preprocessing of the 2D video input streams. Section 4
describes the different steps comprising the 3D video pro-
cessing pipeline, including the hierarchical data representa-
tion of 3D video and compression. The 3D video player is
introduced in Section 5. Our prototype acquisition environ-
ment is presented in Section 6, followed by a discussion of
experimental results in Section 7. Finally, Section 8 con-
cludes the paper and discusses some ideas for future work.

2 System Architecture

A schematic overview of the 3D Video Recorder is depicted
in Figure 1. As opposed to a traditional 2D home video
recorder comprising only two stages—recording and play-
back—the 3D Video Recorder features an additional stage:
processing. It is clear that recording and playing need to be
carried out in real–time. There are no hard real–time con-
straints for the off-line processing stage. According to Deer-
ing [5], spending 60x more time on off-line processing than
on on-line decompression is still acceptable. A 3D–replay
application in a broadcasting studio has stronger time con-

Figure 1: System Architecture of the 3D Video Recorder. The pipeline illustrates the process for one frame.

straints, since the replay needs to be available for broadcast
only 10–20 seconds after the live action. The ultimate goal
of a 3D video recorder is to process 3D information within
these time limits.

The key elements of the 3D Video Recorder stages can be
summarized as follows:

• 2D Video Recording. (Section 3) Video images from
multiple cameras are streamed to disk in real–time. The
images are undistorted and segmented on-the-fly.

• 3D Video Processing. (Section 4) The key task of the
processing stage is the reconstruction of 3D positional
information for every foreground pixel of the input
images. Optionally, we can calculate a surface normal
for every 3D point. Since we employ a shape–from–sil-
houette algorithm whose performance largely depends
on the approximation of the silhouette contours, the
user can control the accuracy of the approximation to
trade–off performance and quality. The reconstructed
3D points from all cameras are merged in a hierarchical
data structure, the PRk-tree, which is a variant of an
octree. This tree is encoded, compressed, and stored to
disk.

• 3D Video Playing. (Section 5) The decoded sequence
is displayed using a point–based rendering framework.
We use efficient splatting schemes for rendering a con-
tinuous surface of the 3D video object. The 3D video
player incorporates features known from 2D video such
as play, pause, fast–forward, fast–reverse, and slow
motion. Moreover, it also integrates novel video effects
like arbitrary scaling, panning, tilting, and freeze–and–
rotate.

3 2D Video Recording
Recording multiple synchronized live video streams
requires preprocessing and file streaming techniques that
run at interactive rates. Since we need to store several
NTSC-resolution video sequences, we have to reduce the
data volume during acquisition. For that purpose, we did not
consider lossy image or video compression schemes, such
as JPEG or MPEG, because we did not want to compromise
the 3D video reconstruction by introducing compression
artifacts in the 2D video sequence. As an alternative, we
carry out image segmentation, which is necessary for sepa-
rating the foreground object from the background. Based on
the segmented images, we only record the area-of-interest
for each frame. This results in storing a rectangular sub-
image which contains the complete view of the object,
together with offset position and dimensions of the area-of-
interest. For typical sequences, we can thereby reduce the
size of the 2D video stream by 50%. Off-line entropy cod-
ing of the 2D video sequences additionally results in 30-
50% compression gain.

The employed segmentation method is built on tradi-
tional chroma–keying [31, 29]. We can classify an object in
front of a blue background as foreground if

, (1)

where is an arbitrary constant between ,
and and are the blue and the green chroma channels
of the video pixel, respectively. Note that we only need to

consider a binary decision for separating foreground and
background pixels. We do not need to calculate an -value,
as in traditional matting. One problem arising from this
approach is color spill near object silhouettes [29], i.e., the
reflection of background color on the foreground object due
to increasing specularity near grazing angles. This leads to
poor image quality when merging the points together from
multiple cameras as discussed in Section 4.2. Since we
oversample the object in a multi–camera setup, we solve
this problem by simply shrinking the mask by a few pixels
for reconstruction.

Another issue that leads to severe artifacts when merging
3D points from multiple cameras is also tackled at this
stage: The use of lenses with short focal length results in
video frames with heavy distortions. A 4.5 millimeters lens,
for example, can lead to displacements of up to 20 pixels in
the periphery of the image. Our point-merging framework
relies on the assumption of point correspondences between
frames from different cameras. This assumption does not
hold anymore when the video images are distorted. Thus,
we need to undistort the image before further processing.
We employ the Open Computer Vision Library (http://
sf.net/projects/opencvlibrary/) for undistortion, which is
based on a pre–computed displacement look–up table and
thus reasonably fast.

4 3D Video Processing

Once the 2D video sequences are recorded, we start the 3D
video generation. Since our 3D video framework builds
upon point–based modeling and rendering, we do not need
connectivity information for rendering. The input data, i.e.
video images, do not provide meaningful neighborhood
information, since adjacent pixels on the image plane are
not necessarily adjacent on the surface of the sampled
object. Since we associate a 3D point with every 2D pixel,
3D video processing provides a one–to–one mapping
between the color of 2D pixels in the input images and the
corresponding 3D points. Consequently, we can avoid inter-
polation and alignment artifacts introduced by mesh–based
representations. At the end of the processing stage, the 3D
points are encoded, compressed and streamed to disk.

4.1 3D Reconstruction

For every pixel used in the 3D video we have to compute a
3D point. Thus, we need a method which projects a pixel
from two–dimensional image space into three–dimensional
object space. In our implementation we utilize a variant of
the image–based visual hulls (IBVH) [15]. Originally, depth
and normal information are calculated for each pixel for a
desired view different from the reference views of the cam-
eras. In our approach, we carry out the reconstruction for
each of the camera views. This ensures a one–to–one map-
ping between depth information and texture color informa-
tion. The IBVH method computes a volume known as the
visual hull, which is the maximal volume consistent with all
input silhouettes [12]. The visual hull is computed in such a
manner that quantization and aliasing artifacts imposed by
volumetric approaches are removed.

Bb a2 Gb⋅≤

a2 0.5 a2 1.5≤ ≤
Bb Gb

α

For computing image–based visual hulls we determine a
depth interval for 3D rays originating from the camera’s
center–of–projection and going through every pixel. Each
ray is projected onto the image planes of the other cameras.
Finally, we intersect the projected ray with all silhouette
contour edges and project the resulting interval back onto
the original 3D ray. The performance bottleneck is the 2D
line–line intersection in the image planes which depends on
the number of silhouette contour edges. We devise a novel
multi–scale contour extraction method which leads to a
user–controllable trade–off between performance and
resulting image quality. Note that the contour extraction is
computed on the original silhouette mask rather than on the
shrunken silhouette as explained in Section 3.

Contour Extraction. Our contour extraction algorithm
marches the pixels of silhouette boundaries and stores edge
endpoints. A user–controlled parameter determines the
accuracy of a contour and is a threshold for permitted direc-
tion changes along the approximation of a silhouette edge.
Hence, larger thresholds result in coarser approximations of
the edge and, thus, a smaller number of contour edges.

One special property of our extraction method is that it
approximates the silhouette very well along curved bound-
aries, while only few edges are required for straight regions.
The threshold used for describing a person’s silhouette is
typically in the range of 0, which results in an exact contour,
to 15, which is leading to a total number of edges between
2500 and 50. For a more precise discussion of the perfor-
mance–quality trade-off, see Section 7.

4.2 PRk –trees

The generation of 3D points for every camera view still
leads to a view–dependent 3D video. The support of arbi-
trary viewpoints, however, requires a view–independent
representation. We therefore merge all 3D information in a
PRk–tree, which is a hierarchical point–based data struc-
ture. This data structure is a variant of the point–region
quadtree (PR quadtree) [27], which is very well suited for
2D point representations. The PR quadtree forms a regular
decomposition of planar regions, which associates data
points with quadrants. Leaf nodes are either empty or con-
tain a single point and its coordinate. A straightforward
extension for 3D points in volumetric regions is the PR
octree. The main disadvantage of the PR quadtree/octree is

that the maximum decomposition level largely depends on
the distance between points in the same spatial region. If
two points are very close, the decomposition can be very
deep. This can be avoided by employing bucketing strate-
gies, viewing leaf nodes as buckets with capacity . Nodes
are only decomposed further if the bucket contains more
than points.

Another approach for controlling the number of decom-
positions at each level consists in subdividing a node by an
integer factor of in each spatial direction. In the 3D case,
this results in child nodes at the next level. For

, our representation forms a PR8–tree, which is iden-
tical to the PR octree. By varying , we can balance the
depth of the tree for a desired number of points. Figure 3
depicts a simple 2D example of a PR9–tree decomposition.

Table 1 lists the minimum, maximum, and average depths
of a PRk–tree for real data. For this case, is a good
choice. The maximum depth for is too large. On the
other hand, the tree for becomes too wide with
already more than 16 million nodes at level four. Note that
the maximum depth of the tree is not fixed, but depends on
the sampling density of the points.

In principle, each leaf node in the PRk–tree stores coordi-
nate, color, and normal information of a single point. Inter-
nal nodes of the PRk–tree store averaged data from their
child nodes, as well as their number of children and pointers
to the corresponding child objects.

A 3D PRk–tree represents a regular partition of a volume.
If the total volume is a cube with side length , the side
length of a partition at depth of the PRk–tree equals

. (2)

Figure 2: Different scales in the contour extraction.
(a) an exact contour with 2548 points, (b) an approx-
imation with 221 points (threshold=5), and (c) an ap-
proximation with 94 points (threshold=15).

(a) (c)(b)

Figure 3: An example of a 2D two-level PR9–tree
(s=3). Each node is decomposed into nine child
nodes. a: Distribution of points in the plane at level
zero. b: Decomposition of the PR9–tree at level two.

Table 1: Empirical depths of a PRk–tree for
~100,000 points. The PR27–tree (s=3) provides a
good balance between number of leaf nodes and
average depth.

TREE DEPTH S = 2 S = 3 S=4

minimum 6 4 4

maximum 12 9 7

average 7 6 4

c

c

s
k s3=

s 2=
s

(a) (b)

s 3=
s 2=

s 4=

s0
sd d

sd

s0

k3()
d

--------------=

Given the dimensions and configuration of the acquisi-
tion and reconstruction environment, we can compute a
limit depth , for which the dimensions of the partitions
fall below the initial camera precision. Thus, we can prune
all tree nodes which are located at depth . Because
of the averaged representation contained in the inner nodes,
which might become leaf nodes after pruning, our strategy
is similar to a bucketing strategy.

From the distance between object and camera, and from
the camera resolution, we conclude that an area of approxi-
mately mm2 projects into one camera pixel. For our
acquisition environment (see Section 6) with size
and typical configuration with , we have .

4.3 Encoding and Compression

As elucidated in the previous section, the processing of each
frame of the initial 2D image data leads to a point cloud
organized in a PRk-tree. These trees, which represent the
reconstructed 3D video frames, need to be stored using a
space efficient and progressive representation. In order to
achieve a progressive encoding, we traverse the tree in a
breadth-first manner. Hence, we first encode the upper-level
nodes, which represent an averaged representation of the
corresponding subtree. As suggested in [5], a succinct stor-
age of the 3D representation can be achieved by considering
separately the different data types it contains. We distin-
guish between the connectivity of the PRk-tree, which
needs to be encoded without loss, and the position of the
points, color and normal information, where the number of
allocated bits can be traded against visual quality and lossy
encoding is acceptable.

Note that in our coder design, we also need to trade-off
storage requirements, and hence coding complexity, against
complexity at the decoding step, which needs to be feasible
in real-time. We focus on coding strategies which provide
reasonable data reduction at low decoding complexity.

The following paragraphs describe the encoding of each
separate data stream:

Connectivity. In the field of tree representation, a lot of
research is limited to binary trees [2]. Benoit et al. classify
trees of higher degrees into two categories: ordinal trees,
where the children of each node are simply ordered, and
cardinal trees, where each node has positions, each of
which may have a reference to a child. According to this
terminology, a PRk-tree belongs to the family of cardinal
trees. Jacobson developed a simple, but asymptotically opti-
mal scheme for coding the connectivity of ordinal trees
[10]. Benoit et al. extended this representation to both ordi-
nal and cardinal trees and additionally support basic naviga-
tion in constant time. The information–theoretic lower
bound for the connectivity encoding of a PRk-tree contain-
ing nodes and up to children per node, being large
with respect to , can be stated as

(3)

where denotes the logarithm in base 2.

The algorithm presented in [2] requires

(4)

In our current application, we do not exploit the addi-
tional features of elaborated tree coding strategies, as those
presented in [2]. Hence, we use 2 bits per node for encoding
the raw connectivity of the PRk-tree. Given a node , we
write a 1 for every child node of and a 0 to terminate the
sequence. Thus, we follow Jacobson’s algorithm from [10].

Position approximation. In order to achieve a complete
cardinal tree encoding, we need to encode additionally the
indices of the child nodes. This can be achieved by using

 bits per child node. A better compression ratio can
be achieved by using an adaptive encoding of the index
of node . In that case, the number of bits spent on is

(5)

Note that both variants of these representations of cardi-
nal trees are bounded by

(6)

Using this information only, , the centre of the volume
described by node , can be used as an approximation of
the correct position of the point primitive represented by
node .

Position refinement. However, the position approxima-
tion we deduce by just considering the connectivity of the
cardinal tree is not precise enough. The position can further
be refined by encoding the error using a
Laplace quantizer. We achieved good results using an 8-
level quantizer. The trade-offs of this part of the encoding
scheme are discussed in Section 7 and shown in Figure 8.

Leaf flag. We introduce one additional bit per node which
indicates if the current node is a leaf node. This information
is redundant, but it helps to simplify the progressive decod-
ing process. We refer to Section 5.1 for further explanations.

Comparison with mesh coding. Most effort in the field
of geometry compression has been concentrated on the
compression of triangular meshes [5, 9, 24, 7]. State-of-the
art multi–resolution geometry coders for triangular meshes
achieve a compression performance between 3 and 5 bits
per triangle for connectivity and 10-20 bits per vertex for its
coordinates, depending on the model and the initial quanti-
zation [1, 3, 19]. Our tree-based geometry coding scheme
uses a total of 17 bits per node, which is of the same order-
of-magnitude, and which can be further improved by
entropy coding. Yet, a tree is a more redundant data struc-
ture than a mesh. Hence, for a given 3D object, the number
of nodes in its tree representation is larger than the number
of vertices in its mesh representation. In practice, the num-
ber of nodes is approximately equal to 1.1-1.4 times the
number of vertices.

In both cases, additional bits need to be spent on normal
and color information. An extensive analysis of 3D object
compression with respect to geometry, color and normal
information was done by Deering [5].

Color. The hierarchical data representation cannot easily
be exploited for color coding. In case of high frequency tex-
tures, the color values of two neighboring points can be
completely different. Hence we decided to use a straight-
forward quantization scheme for the color coding, and, at
this point, do not yet exploit eventual redundancies in the
PRk-tree representation. The colors are encoded in YUV
format, and we achieved visually appealing results using 6

dlim

d dlim≥

3 3×
s0 2≈ m

k 27= dlim 7=

k

n k n
k

lgk lge+()n bits,

lg

lgk lg e+()n O n() bits.+

ni
ni

lg k
ci

ni ci

lg k for i 0= and lg k ci 1–– 1– for 1 i k.<≤

lgk lg2+()n bits.

pi
ni
pi

ni

∆pi pi pi–=

bits for Y and 3 bits for U and V respectively. During
decoding however, we need to transform the color into RGB
space for rendering purposes. Storing the color information
already in RGB format would simplify the decoding pro-
cess, but the compression ratio, respectively the reconstruc-
tion quality would decrease. By using twice as much bits for
the Y component than for the U and V components respec-
tively, we follow the recommendation of the well estab-
lished 4:2:2 format in traditional 2D video coding.

Normals. The normal vectors are encoded using quan-
tized spherical coordinates. We normalize the vectors before
encoding and then allocate 4 bits for each of the two angles.
In general, the use of 2 bytes for normal quantization is rec-
ommended [5, 25], however, the quality of our current nor-
mal computation is not exploiting a larger bit budget than 1
byte per node.

Table 2 summarizes the storage requirements for the dif-
ferent data types per node and compares them to the initial
data size. For the lossless encoding of the connectivity of
the PRk-tree, we use a scheme coming close to the informa-
tion theoretic bound. The indicated values for the remaining
data types are those which provided us with visually appeal-
ing results.

Inter-frame coherence. Consecutive frames in a 3D
video sequence contain a lot of redundant information, i.e.,
regions of the object remaining almost static, or, changes
which can be efficiently encoded using temporal prediction
and motion compensation algorithms. These techniques are
commonly used in 2D video compression. However, the
efficient computation of 3D scene flows is non-trivial. Pre-
vious efforts into this direction predict for our current proto-
type configuration 30 seconds of computation time for the
scene flow per frame [30]. Nevertheless, exploiting inter-
frame coherence based on the analysis of 3D displacements
of all points, together with color and normal encoding
exploiting the hierarchical data structure, can certainly
improve the compression performance of our coding
scheme.

Entropy coding. After the encoding of a given frame, we
get six separate bit streams, describing connectivity, posi-
tion approximation, position refinement, leaf flags, colors
and normals. Each of these bit streams is further com-
pressed by an entropy coder. In our current implementation,
we use the range coder provided by Schindler (http://
www.compressconsult.com/rangecoder). Range coding is
similar to arithmetic coding [23], but is about twice as fast
for a negligible decrease in compression performance [13].

The main difference lies in the renormalization step, which
is bitwise in classical arithmetic coding and bytewise in
range coding.

File format. Currently, we save the different bit streams
into separate files. For each frame and bit stream, we store
the compressed bit stream, preceded by a frame identifier
and the compressed bit stream length in bytes. This format
allows for navigation in the sequence and does not impose
any restrictions on the order in which the frames are
decoded.

5 3D Video Playing

The 3D video player is the final stage of the 3D Video
Recorder framework. It decodes 3D video sequences from
disk and renders individual points by employing a point–
based splatting technique. Progressive rendering is imple-
mented not only by splatting individual points at leaf nodes,
but also by using averaged points from intermediate tree
nodes. Frames and quality levels are controlled by user
interaction and desired frame rate.

5.1 Decoding

During playback, the 3D video player requests a frame
 at quality level , where is the maximum depth of

the returned tree data structure. The main parts of the
decoding process are described in the remainder of this sec-
tion.

File positioning. In a first step, the decoder needs to
position the input file at the correct frame. This is achieved
by reading the frame header information and thus retrieving
the current frame number and the length of the bit stream

. If is different from , the decoder advances
bytes and reads the header information of the next frame as
long as the requested frame has not been reached. During
the first pass, the decoder builds a look-up table containing

 tuples. This table allows for backward navigation
and simplifies forward navigation in subsequent passes.

Progressive symbol load. Once the input file is at the
right position, the first part of the bit stream is read and
entropy decoded into a buffer . The number of bytes
which are initially read depend on quality level and on bit
stream length .

During the actual decoding process, decoder symbols are
retrieved from . If does not contain enough symbols to
reach the requested quality level , the next set of symbols
can be progressively read from the file into .

Since the PRk–tree is traversed in breadth-first order dur-
ing encoding, we retrieve the information for the top nodes
by decoding the first part of the bit stream.

Point Primitive Decoding. The decoder does not need to
return a complete tree data structure, but only the decoded
point primitives. Hence, the parent-child relations from the
initial data structure are only temporarily stored. In fact, the
currently decoded node needs to know its parent node
for setting the bounds of the volume it represents. This vol-
ume is determined by the parent’s volume and by the struc-
ture of the cardinal tree, i.e., by ‘s index . This
information is necessary for correctly decoding the position
of the point primitive contained in .

Table 2: Memory requirements for one PR27 node.

NAME DATA TYPE
RAW
[BITS]

COMPRESSED
[BITS]

position float[3]

color char[3]

normal float[3]

numberOfChildren unsigned char

children *PRkNode

Total 1088 37

3 32⋅ 3 3 3+ +
3 8⋅ 6 3 3+ +
3 32⋅ 8
8

2 1 lg 27+ +
27 32⋅

ftarget q q

fi
li fi ftarget li

fi li,()

B
q

li

B B
q

B

ni

ni ci

ni

For playback at quality level , we need to decode the set
of significant nodes for quality level . A node ,
located at depth in the tree, is significant for quality level

 if or if is a leaf node with .
Since our connectivity encoding only allows us to deter-

mine if is a leaf node during decoding of level ,
we use the additional leaf flag for taking this decision
already at level .

Based on the results of decoding the connectivity and of
the leaf flag bit streams, we determine whether is sig-
nificant with respect to . If this is the case, we further pro-
ceed with the complete decoding of and write its
position, normal, and color information into the vertex
array. The cartesian coordinates of the normal vectors are
retrieved from a precomputed look-up table and the YUV
color components additionally need to be transformed into
RGB space.

5.2 Point Based Rendering

We employ two different splatting schemes for point–based
rendering. With the first scheme we can achieve pure ren-
dering frame rates up to 20 frames per second. The second
scheme, which provides higher quality rendering, still
ensures interactive frame rates up to 5 frames per second.
We use the computed surface normals for optional per–
point reshading.

Similar to QSplat [25], the first splatting scheme uses
OpenGL GL_POINTS as splatting primitive. After decoding
the 3D video we directly transfer the corresponding points
from disk into an OpenGL vertex array. The vertex array is
then rendered using the OpenGL pipeline. The shape of the
splatting primitive is very important for the resulting visual
quality of the rendered object. By using GL_POINTS, we are
restricted to either square (non anti-aliased points) or circu-
lar primitives (anti-aliased points). Unfortunately, these
splats are nothing more than “fat pixels” on the screen.
Thus, the splats cannot adjust to the shape of the object’s
silhouette in an optimal way. This is a limitation of the
OpenGL point primitive. By using other graphics APIs such
as Microsoft’s DirectX, one can overcome this restriction.
DirectX provides a point sprite primitive whose projected
shape depends on the direction of the normal, which can
point in arbitrary directions. Jaggy edges arising with fixed
splat shapes could so be avoided. Note that the use of
GL_POINTs enables us to easily merge 3D video with con-
ventional geometry-based objects and environments by
depth compositing.

The second scheme utilizes the EWA surface splatting
approach from Zwicker et al. [34], which is based on a
screen space formulation of the elliptical weighted average
(EWA) filter adapted for irregular point samples. EWA sur-
face splatting provides us with high–quality images and ren-
ders approximately 250,000 anti–aliased points per second.
Recently, Ren et al. [22] introduced object space EWA sur-
face splatting which implements the EWA filter as a two–
pass rendering algorithm using programmable vertex and
pixel shader architectures. This hardware–accelerated
approach achieves rendering performance of up to 3 million
points per second and is well suited for future integration
into our 3D video framework.

5.3 Interaction

As described in Section 5.1, we can randomly access and
decode individual frames of the 3D video. Furthermore,
every frame can be retrieved at different quality levels,
reaching from a coarse approximation to a very detailed
representation. During normal playback, we read frame
after frame and control the quality level such that the player
adheres to the frame-rate of the original 2D video sequence.
The quality level is thus determined by the decoder’s per-
formance and rendering complexity. When the sequence is
paused, the decoder can completely decode the current
frame at the highest quality level.

Fast-forward is implemented by decoding only a coarse
representation, by using larger frame increments, or by a
combination of both. Fast-reverse is realized in a corre-
sponding way, we just need to decrement the requested
frame number instead of incrementing it in between frames.

Slow motion can simply be realized by slowed-down
playback, i.e., by decoding higher quality levels than the
player supports in real-time. High-quality slow motion,
however, requires additional point-based shape interpola-
tion between consecutive frames, or the use of high-speed
cameras.

The 3D video player implements a virtual trackball and
hence arbitrary navigation and scaling is possible and fol-
lows the popular interaction metaphors from other graphics
renderers.

Special effects, such as freeze–and–rotate, can easily be
achieved by playing a sequence, pausing, rotating the view–
point, and continuing playback again. In case the system is
used for editing a 2D video from a 3D video sequence, the
virtual camera path and the frame increments can be config-
ured in a script file.

6 Prototype System
We built a prototype acquisition and reconstruction environ-
ment with six digital cameras — two Point Grey Research
Dragonfly and four SONY DFW–V500 cameras — allow-
ing to generate 3D video from approximately 160 degrees.
Both camera types are equipped with CCD
imaging sensors. We use C– and CS–mount lenses with
focal lengths between 2.8mm and 6mm. For calibrating the
six cameras, we employed the Caltec camera calibration
toolbox (http://www.vision.caltech.edu/bouguetj/calib_doc/
), which is based on [8, 33]. Each of the six cameras is con-
nected via FireWire to a 1.2 GHz Athlon Linux-based PC
System, where the 2D video is recorded. The camera acqui-
sition software is based on the linux1394 project (http://
sf.net/projects/linux1394/) and the libdc1394 digital camera
control library for Linux (http://sf.net/projects/libdc1394/).
Although both camera types are capable of capturing unsyn-
chronized images at 30 frames per second, external syn-
chronization decreases the capture rate to 10 frames per
second. The DFW-V500 cameras deliver YUV 4:2:2 images
which are directly converted to RGB. The Dragonflys
deliver 8-bit Bayer tiled images and thus RGB color inter-
polation is needed. For this purpose, we either use bilinear
interpolation or an edge sensing algorithm. Note that we
carry out chroma–keying in the RGB color space. The
stored image sequences are processed on a dual processor

q
q ni d,

d
q d q= ni d, d q<

ni d, d 1+

d

ni d,
q

ni d,

640 480×

machine with two AMD AthlonMP 1600+ CPUs where the
3D video is generated. The 3D video renderer runs on a 1.8
GHz Pentium4 machine equipped with an nVidia GeForce3
Ti200 graphics accelerator. The physical setup of the acqui-
sition environment is depicted in Figure 4.

7 Experimental Results

Figure 5 a) and b) show some example images from 3D
video sequences recorded in our prototype system. Note
that we currently build 3D videos using all cameras and a
contour approximation threshold of 1. Unfortunately, due to
the physical dimensions of the prototype system, the recon-
struction frustum is rather small and does not allow for large
movements. As discussed in Section 4.2, we encode PR27-
trees down to depth 6 and position errors down to depth 5.
Each frame leads to approximately 56k tree nodes and 48k
significant point primitives for quality level 6.

Visual Quality. The small number of contours can lead to
artifacts in regions occluded by all reference images, espe-
cially visible between the legs and under the arms. Further-
more, the normals (see flat–shaded images in Figure 5c)
from the 3D reconstruction method are not very precise. We
use a normal fairing algorithm [20] to optimize the surface
normals. It turned out that this approach did not provide us
with better normals since the quality of the underlying sur-
face representation is also not too good (see depth map in
Figure 5d). Figure 6 shows comparative frames rendered
with the simple splatting scheme based on OpenGL point
primitives (a) and using EWA surface splatting (b). Note the
anti–aliasing provided by surface splatting, which is espe-
cially visible on the logo of the shirt. Figure 8 shows identi-
cal frames, except that frame (a) is rendered with refinement
of the point primitives' position and frame (b) only uses the
position approximation resulting from the PRk-tree struc-
ture. In frame (b), the position errors are well noticeable at
the contours of the 3D video object, and are especially dis-
turbing during playback. Our results show that an accurate
encoding of the point primitives' position, at least down to a
certain tree depth, is essential for visually appealing images.

Timings. The timings of our multi-threaded implementa-
tion of the 3D video processing on a dual processor machine
are as follows:

• Contour extraction: ~30 milliseconds per 3D video
frame

• 3D reconstruction: ~25 seconds per 3D video frame
• Encoding: ~1 second per 3D video frame.
It appears that the 3D reconstruction is the most expen-

sive part. However, while using less accurate contours (see
Figure 7), the performance of the 3D reconstruction can be
improved by a factor of five.

Compression. The bit rates for the different data streams
of typical sequences are listed in Table 3. Note that in our
prototype implementation, we encode the 12 color bits per
node on 2 bytes, and we use 6 bits per node for the position
approximation, instead of the required bits for
PR27-trees. Furthermore, we point the reader's attention to
the fact that the final entropy coding step, reduces the total
data volume by almost 60%. The framework allows us to
encode 3D video sequences of humans at a total bit rate of
less than 7 megabit per second, the sequence running with
8.5 frames per second in normal playback. This represents
an average of 14 bits per node of the PR27-tree and leads to
a total size of typically less than 30 megabytes for a
sequence of 30 seconds. Compared to the memory require-
ments of the complete data structure (see Table 2), we
achieve a compression ratio of 64:1. Recording the same
sequence with 6 cameras at 8.5 frames per second would
lead to approximately 2 megabit per second in consumer
video quality (MPEG-1) or 5 megabit per second in broad-
cast quality TV (MPEG-2). However, 6 separate MPEG
sequences would only include temporal correlation in
between frames from different cameras, but no spatial cor-
relation, as in our 3D video format.

8 Conclusions and Future Work
The 3D Video Recorder is a powerful framework for gener-
ating three–dimensional video. Our 3D video concept is
founded on point primitives which are stored in a hierarchi-
cal data structure. The 3D video player decodes and dis-
plays the representation from disk in real–time and provides
interaction features like fast–forward and fast–reverse, as
well as arbitrary scaling and rotating. Limitations include
the quality of the underlying surface representation and the
precision of the reconstructed normals. We plan to optimize
the quality by employing other 3D reconstruction methods
and by using more than six cameras. Furthermore, photo-
metric calibration of the cameras is needed for our point–
merging framework which would improve the texture qual-
ity. We expect better compression performance by exploit-

Figure 4: Physical setup of the prototype system.

Table 3: Bit rates in megabit per second for 3D
video streams recorded at 8.5 frames per second.

TYPE OF INFORMATION
 BEFORE ENTROPY

CODING [MBPS]
 AFTER ENTROPY
CODING [MBPS]

Connectivity 0.95 0.37

Position approximation 2.96 1.43

Position refinement 0.61 0.61

Leaf flag 0.48 0.06

Color 7.62 2.92

Normals 3.81 1.30

Total 16.4 6.7

lg 27 5=

ing inter–frame coherence and by devising adaptive bit
allocation schemes for the lossy parts of the 3D video
encoding. Future work will also include the integration of
the hardware–accelerated EWA surface splatting and view-
dependent decoding into the 3D video player.

Acknowledgements
We would like to thank Stefan Hösli, Nicky Kern, Christoph
Niederberger, and Lior Wehrli for implementing parts of the
system; Martin Näf for producing the video; Mark Pauly
and Matthias Zwicker for the point rendering engine and for
proofreading the paper. Many thanks to all members of the
blue-c team for many fruitful discussions. This work has
been funded by ETH Zurich as a “Polyprojekt”.

References
[1] C. L. Bajaj, V. Pascucci, and G. Zhuang. “Progressive Com-

pression and Transmission of Arbitrary Triangular Meshes.”
In Proceedings Visualization 99, pages 307–316. IEEE Com-
puter Society Press, 1999.

[2] D. Benoit, E. D. Demaine, J. I. Munro, and V. Raman. “Rep-
resenting trees of higher degree.” In Proceedings of the 6th
International Workshop on Algorithms and Data Structures
99, Lecture Notes in Computer Science 1663, pages 169–180.
Springer-Verlag, 1999.

[3] D. Cohen-Or, D. Levin, and O. Remez. “Progressive Com-
pression of Arbitrary Triangular Meshes.” In Proceedings
Visualization 99, pages 67–72. IEEE Computer Society Press,
1999.

[4] B. Curless and S. Seitz. “3D photography.” Course Notes.
ACM SIGGRAPH 2000, 2000.

[5] M. F. Deering. “Geometry compression.” In Proceedings of
SIGGRAPH 95, pages 13–20. ACM SIGGRAPH, Addison
Wesley, 1995.

[6] O. Faugeras. Three-dimensional Computer Vision: A Geomet-
ric Viewpoint. MIT Press, 1993.

[7] S. Gumhold and W. Straßer. “Real time compression of trian-
gle mesh connectivity.” In Proceedings of SIGGRAPH 98,
pages 133–140. ACM SIGGRAPH, Addison Wesley, 1998.

[8] J. Heikkila and O. Silven. “A four-step camera calibration pro-
cedure with implicit image correction.” In Proceedings of the
International Conference on Computer Vision and Pattern
Recognition 97. IEEE Computer Society Press, 1997.

[9] H. Hoppe. “Progressive meshes.” In Proceedings of SIG-
GRAPH 96, pages 99–108. ACM SIGGRAPH, Addison Wes-
ley, 1996.

[10] G. Jacobson. “Space-efficient Static Trees and Graphs.” In
30th Annual Symposium on Foundations of Computer Science,
pages 549–554. IEEE, 1989.

[11] T. Kanade, P. Rander, and P. Narayanan. “Virtualized reality:
Constructing virtual worlds from real scenes.” In IEEE Multi-
Media, Vol.4, No.1, Jan.-Mar. 1997, pages 43–54, 1997.

[12] A. Laurentini. “The visual hull concept for silhouette-based
image understanding.” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(2):150–162, 1994.

[13] G. Martin. “Range encoding: an algorithm for removing
redundancy from a digitised message.” In Video & Data
Recoding Conference, Southampton, 1979.

[14] W. Matusik, C. Buehler, and L. McMillan. “Polyhedral visual
hulls for real-time rendering.” In Proceedings of Twelfth Euro-
graphics Workshop on Rendering, pages 115–125, 2001.

[15] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan. “Image-based visual hulls.” In Proceedings of
SIGGRAPH 2000, pages 369–374. ACM Press / ACM SIG-
GRAPH / New York, 2000.

[16] S. Moezzi, A. Katkere, D. Y. Kuramura, and R. Jain. “Immer-
sive Video.” In Proceedings of the 1996 Virtual Reality
Annual International Symposium, pages 17–24. IEEE Com-
puter Society Press, 1996.

[17] J. Mulligan and K. Daniilidis. “View-independent scene
acquisition for tele-presence.” In Proceedings of the Interna-
tional Symposium on Augmented Reality, pages 105–108,
2000.

[18] P. J. Narayanan, P. Rander, and T. Kanade. “Constructing vir-
tual worlds using dense stereo.” In Proceedings of the Interna-
tional Conference on Computer Vision ICCV 98, pages 3–10,
1998.

[19] R. Pajarola and J. Rossignac. “Squeeze: Fast and Progressive
Decompression of Triangle Meshes.” In Proceedings of Com-
puter Graphics International, pages 173–182. IEEE Computer
Society Press, 2000.

[20] M. Pauly and M. Gross. “Spectral processing of point-sampled
geometry.” In Proceedings of SIGGRAPH 2001, pages 379–
386. ACM Press / ACM SIGGRAPH, 2001.

[21] S. Pollard and S. Hayes. “View synthesis by edge transfer with
application to the generation of immersive video objects.” In
Proceedings of the ACM Symposium on Virtual Reality Soft-
ware and Technology, pages 91–98. ACM Press / ACM SIG-
GRAPH, New York, 1998.

[22] L. Ren, H. Pfister, and M. Zwicker. “Object space EWA sur-
face splatting: A hardware accelerated approach to high qual-
ity point rendering.” In Proceedings of Eurographics 2002,
COMPUTER GRAPHICS Forum, Conference Issue, 2002. to
appear.

[23] J. Rissanen and G. G. Langdon Jr. “Arithmetic coding.” IBM
Journal of Research and Development, 23(2):149–162, 1979.

[24] J. Rossignac. “Edgebreaker: Connectivity compression for tri-
angle meshes.” IEEE Transactions on Visualization and Com-
puter Graphics, 5(1):47–61, January - March 1999. ISSN
1077-2626.

[25] S. Rusinkiewicz and M. Levoy. “QSplat: A multiresolution
point rendering system for large meshes.” In Proceedings of
SIGGRAPH 2000, pages 343–352. ACM Press / ACM SIG-
GRAPH, New York, 2000.

[26] S. Rusinkiewicz and M. Levoy. “Streaming QSplat: A Viewer
for Networked Visualization of Large, Dense Models.” In Pro-
ceedings of the 2001 Symposium on Interactive 3D Graphics,
pages 63–68. ACM, 2001.

[27] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

[28] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. “Layered
depth images.” In Proceedings of SIGGRAPH 98, pages 231–
242. ACM SIGGRAPH, Addison Wesley, 1998.

[29] A. R. Smith and J. F. Blinn. “Blue screen matting.” In Pro-
ceedings of SIGGRAPH 96, pages 259–268. ACM SIG-
GRAPH, Addison Wesley, 1996.

[30] S. Vedula. Image Based Spatio-Temporal Modeling and View
Interpolation of Dynamic Events. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 2001.

[31] P. Vlahos. Comprehensive Electronic Compositing System.
U.S. Patent 4,100,569, July 11 1978.

[32] Y. Yemez and F. Schmitt. “Progressive Multilevel Meshes
from Octree Particles.” In Proceedings of the 2nd Interna-
tional Conference on 3-D Imaging and Modeling, pages 290–
299. IEEE Computer Society Press, 1999.

[33] Z. Zhang. “Flexible camera calibration by viewing a plane
from unknown orientations.” In Proceedings of the 7th Inter-
national Conference on Computer Vision 99, pages 666–673.
IEEE Computer Society Press, 1999.

[34] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. “Surface
splatting.” In Proceedings of SIGGRAPH 2001, pages 371–
378. ACM Press / ACM SIGGRAPH, New York, 2001.

Figure 5: Images from 3D video sequences. (a) and (b) show surface splatted views from the 3D video. (c)
reconstructed normals by flat–shading the view from (b) without colors. (d) is the corresponding depth map.

(a) (b) (c) (d)

Figure 6: Different splatting schemes. (a) shows
an image rendered using the simple splatting
scheme. b) image rendered with surface splatting.

(a) (b)

Figure 8: Necessity of accurate position encod-
ing. (a) with, and (b) without position refinement.

(a) (b)

Figure 7: Quality–performance trade-off. Both
images are rendered using the simple splatting
scheme. (a) shows an image reconstructed with
a contour extraction threshold of 1. (b) shows the
same image reconstructed with threshold 15.

(a) (b)

