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Abstract

In this paper we investigate the sum degrees of freedom (DoF) of multiple unicasts in a
wireless network. With 2 source nodes, 2 destination nodes, there are a total of 4 independent
unicast sessions (messages), one from each source to each sink node (this setting is also known
as an X network), and also there is a delay-free relay working in full-duplex mode helping the
transmissions from the source to destination nodes. For such a channel setting, we prove that
5/3 DoF is achievable almost surely for time-varying/frequency-selective channels, based on the
ideas of aligned interference neutralization, linear forwarding and interference alignment. Also,
the achievable scheme can be easily translated to the rational alignment scheme for the network
with constant-values channel coefficients. In addition, we provide an intuition for the 5/3 DoF
result from the perspective of counting the number of linear equations and variables.



1 Introduction

In network information theory, exploring the multiple unicast capacity is one of the most important
and fundamental problems. Due to the broadcast nature of the wireless transmission, multiple
users in concurrent transmissions will cause interference to each other. Thus, efficient interference
management is essential and key to improve the network throughput. The study of multiple unicast
capacity gives rise to many powerful ideas such as interference alignment that has been shown to
effectively achieve the capacity of many wireless networks. So far, interference alignment has been
applied primarily to single hop wireless networks. If the network goes beyond one hop transmission,
i.e., relay nodes are introduced to help the transmission from the source to the destination, the
capacity or even the DoF of the network is of interest. For the two-source two-sink multihop
networks, if the network has a layered structure1, then it has been shown that the DoF can only
take the values of 1, 3/2, 2 in the interference networks [2], and the values of 1, 4/3, 3/2, 5/3, 2
in the X networks [3]. However, if the network is non-layered, then the capacity also depend on the
types of the relay. In this paper, we will investigate the achievable DoF of a two-user X channel
with a delay-free relay helping the transmission from the two source nodes to the two sink nodes.

1.1 Prior Work

The relay nodes introduced into the networks may greatly impact the channel capacity. Usually
we consider the following two types of relay:

(a) Conventional relay: The transmitted signal of the relay only depends on its past received
signals.

(b) Delay-free relay: The transmitted signal of the relay depends on both its current and past
received signals.

For interference networks, e.g., two user interference channel with a conventional relay, it is well
known that if there is a direct link from one source to the unintended receiver, then the DoF of the
channel would collapse to only one [19]. However, with the same channel model but replacing the
conventional relay with an instantaneous relay, it is recently shown in [4] that 1.5 DoF is achievable
almost surely, based on the idea of aligned interference neutralization recently introduced in [1]. It
is a non-trivial result and somewhat surprising because a delay-free relay instead of a conventional
relay is able to provide at least 50% improvement in the DoF sense. It is well known that orthogonal
transmission is optimal for the one hop two user interference channel. However, adding a delay-free
relay makes interference alignment possible.

1.2 The Problem and Contribution

Since an instantaneous relay is able to improve the capacity of a two-user interference channel, a
natural question is what DoF can be achieved for the X channel setting. The channel model we
consider in this paper consists of two source nodes, two destinations, and one instantaneous relay
node. Each source wants to send one independent message to each destination, and thus there are a
total of four messages in this network. The relay node instantaneous amplifies the received signals

1The layered structure means if we denote the network with a graph, i.e., the connectivity between nodes is
denoted as an edge, then we can label each node with a layer index such that each node hears only from the nodes
in the previous layer and only talks to the nodes in the next layer.



and forwards them without delay to the destinations. Our aim is to characterize the sum degrees
of freedom (DoF) of this network. Interestingly, for time-varying/frequency selective channels, we
show that a total of 5/3 DoF can be achievable almost surely, a 25% capacity increase compared
to the 4/3 DoF of the two user X channel. The achievable scheme is based on aligned interference
neutralization, linear forwarding and interference alignment. Moreover, this scheme can also be
easily translated to rational alignment scheme to obtain the same result for the constant-valued
channels. In addition, we also provide another perspective to interpret the 5/3 DoF result, by a two-
step counting the number of linear equations and variables argument that is previously introduced
in [5] for multiple unicasts capacity of the layered interference channel.

The rest of this paper is organized as follows. Section 2 describes the system model and
definitions we use in this paper. In Section 3, we provide a linear scheme to achieve 5/3 DoF. In
Section 4, we also provide another perspective from the linear equations arguments to interpret the
DoF results. Finally, we conclude this paper in Section 5.

2 System Model

The wireless X network we consider in this paper consists of two source nodes S1, S2, two des-
tination nodes D1, D2 and an intermediate relay node R working in full-duplex mode, each with
only one antenna, as shown in Figure 1. The relay node operates in full-duplex mode, instanta-
neously demodulating and forwarding the currently received data symbols from the source to the
destination nodes. There are a total of four independent messages in this network. Each source Si

wants to send one independent message Wij to the each destination Dj where i, j ∈ {1, 2}, with
the collaboration of the instantaneous relay node.

Figure 1: Two-User X Channel with a Instantaneous Relay

Given the channel model in Figure 1, the relationships of the channel input and output are
given by:

yR(t) = hR1x1(t) + hR2x2(t) + zR(t) (1)

y1(t) = h11x1(t) + h12x2(t) + h1RxR(t) + z1(t) (2)

y2(t) = h21x1(t) + h22x2(t) + h2RxR(t) + z2(t) (3)

where xi, yi denote the transmit and receive signals, respectively at the node i, hji stands for the
channel coefficient from the node i to the node j where i ∈ {S1, S2, R} and j ∈ {R,D1,D2}. zj

denotes the additive white Gaussian noise at the node j, which is a random variable drawn from
an independent and identically distributed (i.i.d.) complex Gaussian distribution with zero mean
and with unit variance. We also assume that the transmitted signals from the source S1, S2 and



the relay R satisfy the average power constraints

1

T

T∑

t=1

E[|xi(t)|
2] ≤ P, i ∈ {S1, S2, R} (4)

for T channel uses. The rate Rij(P ) = log
|Wij |

T
is achievable if the destination Dj can decode

the message Wij with arbitrarily small error probability. In this work we focus on the high SNR
capacity, i.e., DoF, because not only it is more tractable than the general capacity problem, but
also it yields the most significant rate improvement compared to the convectional schemes. The
DoF corresponding to the message Wij is defined as:

dij = lim
P→∞

Rij(P )

log P
. (5)

In this work, our aim is to characterize the sum achievable DoF of the four messages transmitted
through the network we defined.

3 Achievability of 5/3 DoF in Time Varying/Frequency Selective
Channels

In this section, we are considering time varying or frequency selective channels. We have the
following DoF result.

Figure 2: Achievability of 5/3 DoF

Theorem 1 For the two-user X channel with an instantaneous relay defined in Section 2, a total

of 5/3 DoF is achievable almost surely.

We need to emphasize that the 5/3 DoF result is in the sense of almost surely since two DoF is
achievable if the channel coefficients satisfy some constraints. For example, we denote the scalar α
as the amplifying coefficient at the relay node. If the channel coefficients satisfy:

αh1RhR2 + h12 = 0 (6)

αh2RhR1 + h21 = 0 (7)



or equivalently

h1RhR2h21 − h2RhR1h12 = 0, (8)

then it can be seen that the interference would be neutralized at each unintended destination, and
thus two DoF is achievable. Since the channel coefficients satisfying the conditions above only
constitute a subset with zero measure, we will investigate the DoF in the almost surely sense in
what follows.

Proof: The achievable scheme is based on interference alignment in the linear space. In order
to achieve 5/3 DoF, we will use three symbol extension to show that a total of 5 DoF is achievable.
Because we use three symbol extension, each node is able to see a three dimensional space, and
thus the original channel coefficient of each link is converted to a 3 × 3 diagonal channel matrix,
and each diagonal entry is a i.i.d. random variable. In this new MIMO channel, therefore, the
input-output relationships of the channel are given by:

yR = HR1x1 + HR2x2 + zR (9)

y1 = H11x1 + H12x2 + H1RxR + z1 (10)

y2 = H21x1 + H22x2 + H2RxR + z2 (11)

where xi, yi denote the 3 × 1 transmit and receive signal vectors, respectively at the node i, Hji

stands for the 3 × 3 diagonal channel matrices from the node i to the node j. zi denotes the 3 × 1
noise vector and it follows the distribution CN (0, I). We want to send a total of 5 symbols in this
network. Specifically, S1 sends two symbols x11(1), x11(2) encoded with two linearly independent
3 × 1 beamforming vectors w11, w12, respectively to D1, one symbol x12 encoded with another
linearly independent 3× 1 beamforming vector w to D2; Similarly, S2 sends x21 and x22 to D1 and
D2 using two linearly independent 3× 1 beamforming vectors u1, u2 respectively. As what we will
show in the achievable scheme, the beamforming vectors of each source will depend on each other.
However, linear independencies among the beamforming vectors associated with each source are
still guaranteed, because otherwise each destination can not decode all of its desired symbols. In
what follows, we are going considering the transmission strategies from the source to the relay, and
destinations respectively.

From the Source to the Relay: At the source side, we design the four beamforming vectors
w12, w2, u1 and u2 such that two symbols x11(2) and x22 align in one dimension, and two symbols
x12 and x21 align in one dimension, at the relay node. Therefore, we obtain the following two
alignment equations:

HR1w12 = HR2u2 (12)

HR1w2 = HR2u1. (13)

At the Relay Node: As what we described above, x22 and x21 align with x11(2) and x12

respectively at the relay node. Since the three symbols from S1 are carried by three linearly
independent directions, the relay is able to demodulate the three symbols x11(1), x11(2) + x22 and
x12 + x21 in a three dimensional space, and then forwards them with other three beamforming
vectors v1, v2 and v3.

At the Destinations: At the destination side, D1 intends to decode three symbols x11(1), x11(2)
and x21. Thus, we need to protect a three dimensional space for the desired symbols. Since it can
only see a three dimensional space, we need to neutralize two interference symbols x12 and x22 at



D1. Since each interference symbol can arrive at D1 through two paths, i.e., one direct from the
source and the other via the relay, we have the following two equations:

H1Rv2 + H12v2 = 0 (14)

H1Rv3 + H11w2 = 0. (15)

At the other destination, D2 wishes to decode x12 and x22. Similarly D2 has a three dimensional
space, and thus only one dimensional space can be left for the interference symbol. Because there
are three interference symbols, we neutralize one interference symbol x11(1),

H2Rv1 + H21w11 = 0 (16)

and align the other two interference symbols x11(2) and x21 in one dimension, each again transmitted
from the source and the relay. That is,

H2Rv3 + H22u1 = H2Rv2 + H21w12. (17)

So far we have obtained six equations from (14) to (17). Because we have a total of eight
beamforming vectors that need specifying, i.e., three at S1, two at S2, and three at R, intuitively
we can randomly pick two of them, and rewrite the other six beamforming vectors as a function
of the two that we pick. Here let us pick w11 and w2 randomly, and thus the remaining six
beamforming vectors can be written as:

w12 = H−1

R1
HR2(H21H

−1

R1
HR2 − H2RH−1

1RH12)
−1(H22H

−1

R2
HR1 − H2RH−1

1RH11)w2 (18)

u1 = H−1

R2
HR1w2 (19)

u2 = (H21H
−1

R1
HR2 − H2RH−1

1RH12)
−1(H22H

−1

R2
HR1 − H2RH−1

1RH11)w2 (20)

v1 = −H−1

2RH21w11 (21)

v2 = −H−1

1RH12(H21H
−1

R1
HR2 − H2RH−1

1RH12)
−1(H22H

−1

R2
HR1 − H2RH−1

1RH11)w2 (22)

v3 = −H−1

1RH11w2. (23)

What remains to be shown is that with the beamforming vectors that we design, each destination
node is able to decode its desired symbols. Note that this also guarantees the linear independencies
among the beamforming vectors associated with each source. Let us consider each destination node
respectively.

At the Destination D1: At D1, since the two interference symbols are neutralized, we only
need to show that the three desired symbols arrive at the receiver 1 in three linearly independent
directions. The received signal vector at D1 is given by:

y1 = (H1Rv1 + H11w11)x11(1) + (H1Rv2 + H11w12)x11(2) + (H1Rv3 + H12u1)x21 + z1. (24)

Thus, we need to show the three vectors

f1 , H1Rv1 + H11w11 (25)

f2 , H1Rv2 + H11w12 (26)

f3 , H1Rv3 + H12u1 (27)



carrying the three symbols respectively, are linearly independent. Substituting the equations of
(18) to (23), we obtain:

f1 = (H11 − H1RH−1

2R
H21)w11 (28)

f3 = (H12H
−1

R2
HR1 − H11)w2 (29)

f2 = −(H12H
−1

R2
HR1−H11)H

−1

R1
HR2(H21H

−1

R1
HR2−H2RH−1

1R
H12)

−1(H22H
−1

R2
HR1−H2RH−1

1R
H11)w2

= −H−1

R1
HR2(H21H

−1

R1
HR2−H2RH−1

1R
H12)

−1(H22H
−1

R2
HR1−H2RH−1

1R
H11)

︸ ︷︷ ︸

Hf

f3. (30)

Since each matrix Hji is generated i.i.d., it turns out in (30) that the matrix Hf is not a identity
matrix almost surely. Thus, f2 and f3, as functions of only w2, are two linearly independent almost
surely. In addition, because f1 is a function of only w11 which is independently generated with w2,
the three vectors f1, f3 and f3 are linearly independent. Therefore, D1 is able to decode its three
symbols successfully.

At the Destination D2: The sink D2 wishes to decode the two symbols x12 and x22. Since we
neutralize one interference symbol, and align the other two interference symbols in one dimension,
we only need to show that the two desired symbols x12, x22 and the remaining interference (sum-
mation) symbol x11(2) + x21 arrive at D2 in three linearly independent directions. The received
signal vector at D2 is given by:

y2 = (H2Rv3 + H21w2)x12 + (H2Rv2 + H22u2)x22 + (H2Rv3 + H22u1)(x12(2) + x21) + z2. (31)

Our aim is to show the three vectors

g1 , H2Rv3 + H21w2 (32)

g2 , H2Rv2 + H22u2 (33)

g3 , H2Rv3 + H22u1 (34)

are linearly independent. Again substituting the equations of (18) to (23), we obtain:

g1 = (H21 − H2RH−1

1RH11)w2 (35)

g2 = (H22 − H2RH−1

1RH12)(H21H
−1

R1
HR2 −H2RH−1

1RH12)
−1(H22H

−1

R2
HR1 − H2RH−1

1RH11)w2 (36)

g3 = (H22H
−1

R2
HR1 − H2RH−1

1RH11)w2. (37)

It turns out that all these three vectors are functions of only w2 that we can pick freely. In order
to show more brevity, let w2 = (H22H

−1

R2
HR1 − H2RH−1

1RH11)
−1w0 where we pick w0 randomly.

Thus, the three vectors above can be rewritten as:

g1 = (H21 − H2RH−1

1RH11)(H22H
−1

R2
HR1 − H2RH−1

1RH11)
−1

︸ ︷︷ ︸

Hg1

w0 (38)

g2 = (H22 − H2RH−1

1RH12)(H21H
−1

R1
HR2 − H2RH−1

1RH12)
−1

︸ ︷︷ ︸

Hg2

w0 (39)

g3 = w0. (40)

Notice that H12 does not appear in Hg1
but Hg2

depends on H12, and also H11 does not appear in
Hg2

but Hg1
depends on H11. Thus, g1 and g2 are linearly independent almost surely. In addition,



Hg1
and Hg2

are both not identity matrices almost surely. Hence, g1, g2 and g3 are linearly
independent almost surely2. The two desired symbols therefore can be decoded successfully.

Since five symbols are transmitted over three time slots, a total of 5/3 DoF is achievable almost
surely.

Remark: If the channel coefficient is constant-valued over the time, we need the rational align-

ment scheme to achieve 5/3 DoF. Instead of in the linear space, the rational alignment scheme
mimics the linear alignment scheme in rational space, and thus it can be easily translated from the
the linear alignment scheme.

4 Another Interpretation of Achieving 5/3 DoF

In this section, we provide another perspective to interpret the achievability of 5/3 DoF in the
channel model defined in Section 2, by counting the number of equations and variables. The new
perspective is based on interference neutralization and interference alignment in linear spaces.

Let us consider N symbol extension, and thus each node can see an N dimensional space. We
assume that relay node only amplifies and forwards the received signals to the destinations, which
means the relay node multiplies an N × N square matrix to the received signal vector and then
forwards to the destinations. At the source side, we need to design beamforming vectors to encode
symbols such that each destination is able to decode its desired symbols.

Figure 3: Another Interpretation of Achieving 5/3 DoF

We design the transmission scheme by two steps.
In the first step, each source Si only talks to the destination Di, i.e., it forms a two-user

interference channel. In Figure 3, we explicate this interference channel by sending the message Wii

only intended to Di from Si. The symbols in the first step are transmitted using randomly picked
beamforming vectors. Since the transmitted symbols can arrive at the unintended destination
through two paths, i.e., Si − Dj and Si − R − Dj (i 6= j), we design the N × N amplifying matrix
at the relay such that the interference can be neutralized. Specifically, we denote A as the N × N
amplifying matrix at the relay. Let the interference at D1 and D2 be neutralized, then we have:

(H1RAHR2 + H12)x2 = 0 (41)

(H2RAHR1 + H21)x1 = 0. (42)

2The rigorous proof of linear independencies among g1, g2 and g3 is not difficult yet complicated, and thus we
omit it here for brevity. We recommend readers to refer [14] for the rigorous proof.



where xi is the transmit signal vector of user i which carries the same number of symbols, and is
given by:

xi = [wi1 wi2 · · · wiN1
] [ui1 ui2 · · · uiN1

]T . (43)

where ui1, · · · , uiN1
are denote symbols of user i in the first step, and wi1, · · · ,wiN1

are their
corresponding beamforming vectors. Since the beamforming vectors are picked randomly, and in
order to satisfy the two neutralization equations, we have:

(H1RAHR2 + H12) [w21 w22 · · · w2N1
] = ON×N1

(44)

(H2RAHR1 + H21) [w11 w12 · · · w1N1
] = ON×N1

. (45)

Note that the six channel matrices H1R, H2R, HR1, HR2, H12, H21, and the beamforming vectors
at the source are all independently generated. Our aim is to design the entries of the matrix A

to satisfy all linear equations in (44) and (45). In other words, we need to find non-zero solutions
for all those linear equations. It is well known that if linear equations have non-zero solutions
almost surely, then the necessary condition is that the number of variables should be larger than
that of equations3. The entries of the matrix A comprises of the variables, and thus we obtain
2NN1 < N2. Here N1 is the number of symbols that we can transmit at each source in the first
step. Thus, the maximum number of the first category symbols is equal to

maxN1 = N∗
1 = ⌊

N2 − 1

2N
⌋ ⇒ lim

N→∞

N∗
1

N
=

1

2
. (46)

It implies that we can achieve a normalized of 1/2 DoF per user in the first step design. Once we
establish this, the amplifying matrix A at the relay is fixed as well. Moreover, each destination
receives the desired signal within one half of its linear space, leaving the other half clean.

In the second step, each source sends one independent message to each destination, i.e., it forms
a 2 × 2 user X channel as shown in Figure 3. Since we have only one half of the linear space still
clean for the X channel, the total number of DoF for this X channel is 1

2
× 4

3
= 2

3
.

Adding up the number of DoF that we obtained from the two step shown above, we have the
sum DoF = 1

2
× 2 + 2

3
= 5

3
.

5 Conclusion

In this paper we study the achievable degrees of freedom (DoF) of the two user X channel with an
instantaneous relay working in full-duplex mode. We show that 5/3 DoF is achievable almost surely,
a 25% DoF improvement compared to the two user X channel that has 4/3 DoF. The achievable
scheme incorporates aligned interference neutralization, linear forwarding and interference align-
ment. Moreover, we provide another perspective - counting the number of linear equations and
variables - to interpret the new DoF result.

Several issues are worthy of further study. One issue is whether 5/3 DoF is optimal almost
surely for the channel setting we concern. Specifically, the channel has two DoF if the channel
coefficients satisfy some constraints even though they only constitute a subset with measure zero.
In the non-zero measure sense, the outer bound of the two user X channel and even the interference
channel with an instantaneous relay is still open. Another interesting issue is that what are the
DoF of the interference or X networks if the relay works in half-duplex mode, i.e., the transmission
in different paths may have different delays.

3In this work, it can also be easily shown that this is also the sufficient condition.
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